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Abstract

We propose MDP-GapE, a new trajectory-based Monte-Carlo Tree Search algo-
rithm for planning in a Markov Decision Process in which transitions have a finite
support. We prove an upper bound on the number of calls to the generative model
needed for MDP-GapE to identify a near-optimal action with high probability.
This problem-dependent sample complexity result is expressed in terms of the
sub-optimality gaps of the state-action pairs that are visited during exploration.
Our experiments reveal that MDP-GapE is also effective in practice, in contrast
with other algorithms with sample complexity guarantees in the fixed-confidence
setting, that are mostly theoretical.

1 Introduction

In reinforcement learning (RL), an agent repeatedly takes actions and observes rewards in an unknown
environment described by a state. Formally, the environment is a Markov Decision Process (MDP)
M = 〈S,A, p, r〉, where S is the state space, A the action space, p = {ph}h≥1 a set of transition
kernels and r = {rh}h≥1 a set of reward functions. By taking action a in state s at step h, the agent
reaches a state s′ with probability ph(s′|s, a) and receives a random reward with mean rh(s, a). A
common goal is to learn a policy π = (πh)h≥1 that maximizes cumulative reward by taking action
πh(s) in state s at step h. If the agent has access to a generative model, it may plan before acting by
generating additional samples in order to improve its estimate of the best action to take next.

In this work, we consider Monte-Carlo planning as the task of recommending a good action to
be taken by the agent in a given state s1, by using samples gathered from a generative model.
Let Q?(s1, a) be the maximum cumulative reward, in expectation, that can be obtained from state
s1 by first taking action a, and let ân be the recommended action after n calls to the generative
model. The quality of the action recommendation is measured by its simple regret, defined as
r̄n(ân) := V ?(s1)−Q?(s, ân), where V ?(s1) := maxaQ

?(s1, a).

We propose an algorithm in the fixed confidence setting (ε, δ): after n calls to the generative model,
the algorithm should return an action ân such that r̄n(ân) ≤ ε with probability at least 1− δ. We
prove that its sample complexity n is bounded in high probability by a quantity that depends on

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Table 1: Different settings of planning algorithms in the literature
Setting Input Output Optimality criterion

(1) Fixed confidence (action-based) ε, δ ân P (r̄n(ân) ≤ ε) ≥ 1− δ
(2) Fixed confidence (value-based) ε, δ V̂ (s1) P

(
|V̂ (s1)− V ?(s1)| ≤ ε

)
≥ 1− δ

(3) Fixed budget n (budget) ân E [r̄n(ân)] decreasing in n
(4) Anytime - ân E [r̄n(ân)] decreasing in n

Table 2: Algorithms with sample complexity guarantees
Algorithm Setting Sample complexity Remarks

Sparse Sampling [19] (1)-(2) H5(BK)H/ε2 or ε−
(
2+

log(BK)
log(1/γ)

)
proved in Lemma 1

OLOP [2] (3) ε
−max

(
2, log κ

log(1/γ)

)
open loop, κ ∈ [1,K]

OP [3] (4) ε
− log κ

log(1/γ) known MDP, κ ∈ [1, BK]

BRUE [8] (4) H4(BK)H/∆2 minimal gap ∆

StOP [28] (1) ε
−
(
2+ log κ

log(1/γ)
+o(1)

)
κ ∈ [1, BK]

TrailBlazer [13] (2) ε
−max

(
2,

log(Bκ)
log(1/γ)

+o(1)
)

κ ∈ [1,K]

SmoothCruiser [14] (2) ε−4 only regularized MDPs

MDP-GapE (ours) (1)
∑
a1∈A

H2(BK)H−1B

(∆1(s1,a1)∨∆∨ε)2 see Corollary 1

the sub-optimality gaps of the actions that are applicable in state s1. We also provide experiments
showing its effectiveness. The only assumption that we make on the MDP is that the support of the
transition probabilities ph(·|s, a) should have cardinality bounded by B <∞, for all s, a and h.

Monte-Carlo Tree Search (MCTS) is a form of Monte-Carlo planning that uses a forward model
to sample transitions from the current state, as opposed to a full generative model that can sample
anywhere. Most MCTS algorithms sample trajectories from the current state [1], and are widely used
in deterministic games such as Go. The AlphaZero algorithm [26] guides planning using value and
policy estimates to generate trajectories that improve these estimates. The MuZero algorithm [25]
combines MCTS with a model-based method which has proven useful for stochastic environments.
Hence efficient Monte-Carlo planning may be instrumental for learning better policies. Despite their
empirical success, little is known about the sample complexity of state-of-the-art MCTS algorithms.

Related work The earliest MCTS algorithm with theoretical guarantees is Sparse Sampling [19],
whose sample complexity is polynomial in 1/ε in the case B <∞ (see Lemma 1). However, it is not
trajectory-based and does not select actions adaptively, making it very inefficient in practice.

Since then, adaptive planning algorithms with small sample complexities have been proposed in
different settings with different optimality criteria. In Table 1, we summarize the most common
settings, and in Table 2, we show the sample complexity of related algorithms (omitting logarithmic
terms and constants) when B < ∞. Algorithms are either designed for a discounted setting with
γ < 1 or an episodic setting with horizon H . Sample complexities are stated in terms of the accuracy
ε (for algorithms with fixed-budget guarantees we solve E [r̄n] = ε for n), the number of actions
K, the horizon H or the discount factor γ and a problem-dependent quantity κ which is a notion of
branching factor of near-optimal nodes whose exact definition varies.

A first category of algorithms rely on optimistic planning [23], and require additional assumptions:
a deterministic MDP [15], the open loop setting [2, 21] in which policies are sequences of actions
instead of state-action mappings (the two are equivalent in MDPs with deterministic transitions), or
an MDP with known parameters [3]. For MDPs with stochastic and unknown transitions, polynomial
sample complexities have been obtained for StOP [28], TrailBlazer [13] and SmoothCruiser [14] but
the three algorithms suffer from numerical inefficiency, even for B <∞. Indeed, StOP explicitly
reasons about policies and storing them is very costly, while TrailBlazer and SmoothCruiser require a
very large amount of recursive calls even for small MDPs. We remark that popular MCTS algorithms
such as UCT [20] are not (ε, δ)-correct and do not have provably small sample complexities.

In the setting B <∞, BRUE [8] is a trajectory-based algorithm that is anytime and whose sample
complexity depends on the smallest sub-optimality gap ∆ := mina 6=a? (V ?(s1)−Q?(s1, a)). For
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planning in deterministic games, gap-dependent sample complexity bounds were previously provided
in a fixed-confidence setting [16, 18]. Our proposal, MDP-GapE, can be viewed as a non-trivial
adaptation of the UGapE-MCTS algorithm [18] to planning in MDPs. The defining property of
MDP-GapE is that it uses a best arm identification algorithm, UGapE [10], to select the first action in
a trajectory, and performs optimistic planning thereafter, which helps refining confidence intervals on
the intermediate Q-values. Best arm identification tools have been previously used for planning in
MDPs [24, 29] and UGapE also served as a building block for StOP [28].

Finally, going beyond worst-case guarantees for RL is an active research direction, and in a different
context gap-dependent bounds on the regret have recently been established for tabular MDPs [27, 30].

Contributions We present MDP-GapE, a new MCTS algorithm for planning in the setting B <∞.
MDP-GapE performs efficient Monte-Carlo planning in the following sense: First, it is a simple
trajectory-based algorithm which performs well in practice and only relies on a forward model.
Second, while most practical MCTS algorithms are not well understood theoretically, we prove
upper bounds on the sample complexity of MDP-GapE. Our bounds depend on the sub-optimality
gaps associated to the state-action pairs encountered during exploration. This is in contrast to
StOP and TrailBlazer, two algorithms for the same setting, whose guarantees depend on a notion
of near-optimal nodes which can be harder to interpret, and that can be inefficient in practice. In
the anytime setting, BRUE also features a gap-dependent sample complexity, but only through the
worst-case gap ∆ defined above. As can be seen in Table 1, the upper bound for MDP-GapE given
in Corollary 1 improves over that of BRUE as it features the gap of each possible first action a1,
∆1(s1, a1) = V ?(s1)−Q?1(s1, a1), and scales better with the planning horizon H . Furthermore, our
proof technique relates the pseudo-counts of any trajectory prefix to the gaps of state-action pairs on
this trajectory, which evidences the fact that MDP-GapE does not explore trajectories uniformly.

2 Learning Framework and Notation

We consider a discounted episodic setting where H ∈ N? is a horizon and γ ∈ (0, 1] a discount
parameter. The transition kernels p = (p1, . . . , pH) and reward functions r = (r1, . . . , rH) can have
distinct definitions in each step of the episode. The optimal value of selecting action a in state s1 is

Q?(s1, a) = max
π

Eπ
[

H∑
h=1

γh−1rh(sh, ah)

∣∣∣∣∣ a1 = a

]
,

where the supremum is taken over (deterministic) policies π = (π1, . . . , πH), and the expectation is
on a trajectory s1, a1, . . . , sh, ah where sh ∼ ph−1(·|sh−1, ah−1) and ah = πh(sh) for h ∈ [2, H].
With this definition, an optimal action in state s1 is a? ∈ argmaxa∈A(s1)Q

?(s1, a).

We assume that there is a maximal number K of actions available in each state, and that, for each
(s, a), the support of ph(·|s, a) is bounded by B: that is, B is the maximum number of possible next
states when applying any action. We further assume that the rewards are bounded in [0, 1]. For each
pair of integers i, h such that i ≤ h, we introduce the notation [i, h] = {i, . . . , h} and [h] = [1, h].

(ε, δ)-correct planning A sequential planning algorithm proceeds as follows. In each episode
t, the agent uses a deterministic policy on the form πt = (πt1, . . . , π

t
H) to generate a trajectory

(s1, a
t
1, r

t
1, . . . , s

t
H , a

t
H , r

t
H), where ath = πth(sth), rth is a reward with expectation rh(sth, a

t
h) and

sth+1 ∼ ph(·|sth, ath). After each episode the agent decides whether it should perform a new episode
to refine its guess for a near-optimal action, or whether it can stop and make a guess. We denote by τ
the stopping rule of the agent, that is the number of episodes performed, and âτ the guess.

We aim to build an (ε, δ)-correct algorithm, that is an algorithm that outputs a guess âτ satisfying

P (Q?(s1, âτ ) > Q?(s1, a
?)− ε) ≥ 1− δ ⇔ P

(
r̄(Hτ) (âτ ) ≤ ε

)
≥ 1− δ (1)

while using as few calls to the generative model n = Hτ (i.e. as few episodes τ ) as possible.

Our setup permits to propose algorithms for planning in the undiscounted episodic case (in which
our bounds will not blow up when γ = 1) and in discounted MDPs with infinite horizon. Indeed,
choosing H such that 2γH/(1 − γ) ≤ ε, an (ε, δ)-correct algorithm for the discounted episodic
setting recommends an action that is 2ε-optimal for the discounted infinite horizon setting.
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A (recursive) baseline Sparse Sampling [19] can be tuned to output a guess â that satisfies (1), as
specified in the following lemma, which provides a baseline for our undiscounted episodic setting
(see Appendix F). Note that Sparse Sampling is not strictly sequential as it does not repeatedly select
trajectories. However, it can still be implemented using a forward model by storing states on a stack.
Lemma 1. If B <∞, Sparse Sampling using horizon H and performing O

(
(H5/ε2) log (BK/δ)

)
transitions in each node is (ε, δ)-correct with sample complexity O(nSS) for nSS := H5(BK)H/ε2.

Structure of the optimal Q-value function In our algorithm, we will build estimates of the
intermediate Q-values, that are useful to compute the optimal Q-value function Q?(s1, a). Defining

Qh(sh, ah) = max
π

Eπ
[

H∑
i=h

γi−hr(si, ai)

∣∣∣∣∣ sh, ah
]
,

Q?(s1, a) = Q1(s1, a) and the optimal action-values Q = (Q1, . . . , QH) can be computed recur-
sively using the Bellman equations, where we use the convention QH+1(·, ·) = 0:

Qh(sh, ah) = rh(sh, ah) + γ
∑
s′

ph(s′|sh, ah) max
a′

Qh+1(s′, a′), h ∈ [H].

Let π? = (π?1 , . . . , π
?
H) denote a deterministic optimal policy where, for h ∈ [H], π?h(sh) =

arg maxaQh(sh, a), with ties arbitrarily broken. Hence the optimal value in sh is Qh(sh, π
?
h(sh)).

3 The MDP-GapE Algorithm

In this section we present MDP-GapE, a generalization of UGapE [10] to Monte-Carlo planning.
Like BAI-MCTS for games [18] a core component is the construction of confidence intervals on
Q1(s1, a). The construction below generalizes that of OP-MDP [3] for known transition probabilities.

Confidence bounds on the Q-values Our algorithm maintains empirical estimates, superscripted
with the episode t, of the transition kernels p and expected rewards r, which are assumed unknown.

Let nth(sh, ah, sh+1) :=
∑t
s=1 1

(
(ssh, a

s
h, s

s
h+1) = (sh, ah, sh+1)

)
be the number of observations

of transition (sh, ah, sh+1), and Rth(sh, ah) :=
∑t
s=1 r

s
h(sh, ah)1 ((ssh, a

s
h) = (sh, ah)) the sum of

rewards obtained when selecting ah in sh. We define the empirical transition probabilities p̂t and
expected rewards r̂t as follows, for state-action pairs such that nth(sh, ah) :=

∑
s n

t
h(sh, ah, s) > 0:

p̂th(sh+1|sh, ah) :=
nth(sh, ah, sh+1)

nth(sh, ah)
, and r̂th(sh, ah) :=

Rth(sh, ah)

nth(sh, ah)
.

As rewards are bounded in [0, 1], we define the following Kullback-Leibler upper and lower confidence
bounds on the mean rewards rh(sh, ah) [4]:

uth(sh, ah) := max

{
v : kl

(
r̂th(sh, ah), v

)
≤ βr(nth(sh, ah), δ)

nth(sh, ah)

}
,

`th(sh, ah) := min

{
v : kl

(
r̂th(sh, ah), v

)
≤ βr(nth(sh, ah), δ)

nth(sh, ah)

}
,

where βr is an exploration function and kl(u, v) is the binary Kullback-Leibler divergence between
two Bernoulli distributions Ber(u) and Ber(v): kl(u, v) = u log u

v + (1− u) log 1−u
1−v . We adopt the

convention that uth(sh, ah) = 1, `th(sh, ah) = 0 when nth(sh, ah) = 0.

In order to define confidence bounds on the valuesQh, we introduce a confidence set on the probability
vector ph(·|sh, ah). We define Cth(sh, ah) = ΣB if nth(sh, ah) = 0 and otherwise

Cth(sh, ah) :=

{
p ∈ ΣB : KL

(
p̂th(·|sh, ah), p

)
≤ βp(nth(sh, ah), δ)

nth(sh, ah)

}
,

where ΣB is the set of probability distribution over B elements, βp is an exploration function and
KL(p, q) =

∑
s∈Supp(p) p(s) log p(s)

q(s) is the Kullback-Leibler divergence between two categorical
distributions p and q with supports satisfying Supp(p) ⊆ Supp(q).
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We now define our confidence bounds on the action values inductively. We use the convention
U tH+1(·, ·) = LtH+1(·, ·) = 0, and for all h ∈ [H],

U th(sh, ah) = uth(sh, ah) + γ max
p∈Cth(sh,ah)

∑
s′

p(s′|sh, ah) max
a′

U th+1(s′, a′),

Lth(sh, ah) = `th(sh, ah) + γ min
p∈Cth(sh,ah)

∑
s′

p(s′|sh, ah) max
a′

Lth+1(s′, a′).

As explained in Appendix A of [9], optimizing over these KL confidence sets can be reduced to a
linear program with convex constraints, that can be solved efficiently using Newton’s method, which
has complexity O(B log(d)) where d is the desired digit precision.

We provide in Section 4.1 an explicit choice for the exploration functions βr(n, δ) and βp(n, δ) that
govern the size of the confidence intervals. Note that if the rewards or transitions are deterministic, or
if we know p, we can adapt our confidence bounds by setting βp = 0 or βr = 0.

MDP-GapE As any fixed-confidence algorithm, MDP-GapE depends on the tolerance parameter
ε and the risk parameter δ. The dependency in ε is explicit in the stopping rule (4), while the
dependency in δ is in the tuning of the confidence bounds, that depend on δ.

After t trajectories observed, MDP-GapE selects the (t + 1)-st trajectory using the policy πt+1 =
(πt+1

1 , . . . , πt+1
H ) where the first action choice is made according to UGapE:

πt+1
1 (s1) = argmax

b∈{bt,ct}

[
U t1(s1, b)− Lt1(s1, b)

]
,

where bt is the current guess for the best action, which is the action b with the smallest upper
confidence bound on its gap Q?1(s1, a

?)−Q1(s1, b), and ct is some challenger:

bt = argmin
b

[
max
a6=b

U t1(s1, a)− Lt1(s1, b)

]
, (2)

ct = argmax
c 6=bt

U t1(s1, c) . (3)

Then for all remaining steps we follow an optimistic policy, for all h ∈ [2, H],

πt+1
h (sh) = argmax

a
U th(sh, a).

The stopping rule of MDP-GapE is

τ = inf{t ∈ N : U t1(s1, c
t)− Lt1(s1, b

t) ≤ ε}, (4)

and the guess output when stopping is âτ = bτ . A generic implementation of MDP-GapE is given
in Algorithm 1 in Appendix A, where we also discuss some implementation details. Note that,
in sharp contrast with the deterministic stopping rule proposed for Sparse Sampling in Lemma 1,
MDP-GapEuses an adaptive stopping rule.

The high-level intuition behind MDP-GapE is that unlike a greedy optimistic policy, MDP-GapE
does not attempt to minimize regret while learning the best action to take in step 1. The UGapE
policy followed at depth 1 indeed explores much more than a purely optimistic algorithm. At depths
larger than 1, however, MDP-GapE does follow a greedy optimistic policy. This combination of
policy choices is crucial for the theoretical analysis of the algorithm, and for quickly achieving the
proposed stopping condition (4): stop when one of the confidence intervals on the value at depth 1 is
larger than and separated from the others.

4 Analysis of MDP-GapE

Recall that MDP-GapE uses policy πt+1 = (πt+1
1 , . . . , πt+1

H ) to select the (t + 1)-st trajectory,
s1, a

t+1
1 , st+1

2 , at+1
2 , . . . , st+1

H , at+1
H , satisfying at+1

h = πt+1
h (st+1

h ) and st+1
h+1 ∼ ph

(
·
∣∣st+1
h , at+1

h

)
.
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High probability event To define an event E that holds with high probability, let Er (resp. Ep) be
the event that the confidence regions for the mean rewards (resp. transition kernels) are correct:

Er :=
{
∀t ∈ N∗,∀h ∈ [H],∀(sh, ah) ∈ S ×A : rh(sh, ah) ∈

[
`th(sh, ah), uth(sh, ah)

]}
,

Ep :=
{
∀t ∈ N∗,∀h ∈ [H],∀(sh, ah) ∈ S ×A : ph(·|sh, ah) ∈ Cth(sh, ah)

}
.

For a state-action pair (sh, ah), let pπh(sh, ah) be the probability of reaching it at step h under policy
π, and let pth(sh, ah) = pπ

t

h (sh, ah). We define the pseudo-counts of the number of visits of (sh, ah)

as n̄th(sh, ah) :=
∑t
s=1 p

s
h(sh, ah) . As nth(sh, ah)− n̄th(sh, ah) is a martingale, the counts should

not be too far from the pseudo-counts. Given a rate function βcnt, we define the event

Ecnt :=

{
∀t ∈ N?,∀h ∈ [H],∀(sh, ah) ∈ S ×A : nth(sh, ah) ≥ 1

2
n̄th(sh, ah)− βcnt(δ)

}
.

Finally, we define E to be the intersection of these three events: E = Er ∩ Ep ∩ Ecnt.

4.1 Correctness

One can easily prove by induction (see Appendix B) that

Er ∩ Ep ⊆
⋂
t∈N?

H⋂
h=1

[ ⋂
sh,ah

(
Qh(sh, ah) ∈

[
Lth(sh, ah), U th(sh, ah)

] )
.

As the arm â output by MDP-GapE satisfies L1(s1, â) > maxc6=â U1(s1, c) − ε, on the event
E ⊆ Er ∩ Ep it holds that Q1(s1, â) > maxc6=âQ1(s1, c)− ε. Thus MDP-GapE can only output an
ε-optimal action. Hence a sufficient condition for MDP-GapE to be (ε, δ)-correct is P(E) ≥ 1− δ.

In Lemma 2 below, we provide a calibration of the thresholds functions βr, βp and βcnt such that
this sufficient condition holds. This result, proved in Appendix C, relies on new time-uniform
concentration inequalities that follow from the method of mixtures [7].
Lemma 2. For all δ ∈ [0, 1], it holds that P(E) ≥ 1− δ for the choices

βr(n, δ) = log(3(BK)H/δ) + log
(
e(1 + n)

)
, βcnt(δ) = log

(
3(BK)H/δ

)
,

and βp(n, δ) = log
(
3(BK)H/δ

)
+ (B − 1) log

(
e(1 + n/(B − 1))

)
.

Moreover, the maximum of these three thresholds defined (by continuity when B = 1) as

β(n, δ) := max
c∈{r,p,cnt}

βc(n, δ) = log
(
3(BK)H/δ

)
+ (B − 1) log

(
e(1 + n/(B − 1))

)
,

is such that n 7→ β(n, δ) is non-decreasing and n 7→ β(n, δ)/n is non-increasing.

4.2 Sample Complexity

In order to state our results, we define the following sub-optimality gaps. ∆h(sh, ah) measures
the gap in future discounted reward between the optimal action π?h(sh) and the action ah, whereas
∆?

1(s1, a1) also takes into account the gap of the second best action and the tolerance level ε.
Definition 1. Recall that ∆ = mina6=a? [Q1(s1, a

?)−Q1(s1, a)]. For all h ∈ [H], we let

∆h(sh, ah) = Qh(sh, π
?
h(sh))−Qh(sh, ah),

∆?
1(s1, a1) = max (∆1(s1, a1); ∆; ε) ,

and we denote ∆̃h(sh, ah) =

{
∆?

1(sh, ah), if h = 1,
∆h(sh, ah), if h ≥ 2.

Our sample complexity bounds follow from the following crucial theorem, which we prove in
Appendix D, that relates the pseudo-counts of state-action pairs at time τ to the corresponding gap.
Theorem 1. If E holds, every (sh, ah) is such that

n̄τh(sh, ah)∆̃h(sh, ah) ≤ 64
√

2(1 +
√

2)
(√

BK
)H−h√

n̄τh(sh, ah)β(nτh(sh, ah), δ).
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Introducing the constant C0 = (64
√

2(1 +
√

2))2 and letting cδ = log
(

3(BK)H

δ

)
, Lemma 12 stated

in Appendix G permits to prove that, on the event E , any (sh, ah) for which ∆̃h(sh, ah) > 0 satisfies

n̄τh(sh, ah) ≤ C0(BK)H−h

∆̃2
h(sh, ah)

[
cδ+ 2(B−1) log

(
C0(BK)H−h

∆̃2
h(sh, ah)

[
cδ√
B−1

+ 2
√
e(B−1)

])
+ (B−1)

]
(5)

As ∆̃1(s1, a1) = max (∆1(s1, a1); ∆; ε) is positive, the following corollary follows from summing
the inequality over a1, as n̄τ1(s1, a1) = nτ1(s1, a1) and τ =

∑
a1
nτ1(s1, a1).

Corollary 1. The number of episodes used by MDP-GapE satisfies

P

(
τ = O

(∑
a1

(BK)H−1

(∆1(s1, a1) ∨∆ ∨ ε)2

[
log

(
1

δ

)
+BH log(BK)

]))
≥ 1− δ .

The upper bound on the sample complexity n = Hτ of MDP-GapE that follows from Corollary 1
improves over theO(H5(BK)H/ε2) sample complexity of Sparse Sampling. It is also smaller
than the O(H4(BK)H/∆2) samples needed for BRUE to have a reasonable upper bound on its
simple regret. The improvement is twofold: first, this new bound features the problem dependent gap
∆(s1, a1) ∨∆ ∨ ε for each action a1 in state s1, whereas previous bounds were only expressed with
ε or ∆. Second, it features an improved scaling in H2.

It is also possible to provide bounds that features the gaps ∆̃h(sh, ah) in the whole tree, beyond
depth one. To do so, we shall consider trajectories t1:H = (s1, a1, . . . , sH , aH) or trajectory prefixes
t1:h = (s1, a1, . . . , sh, ah) for h ∈ [H]. Introducing the probability pπh(t1:h) that the prefix t1:h is
visited under policy π, we can further define the pseudo-counts n̄th(t1:h) =

∑t
s=1 p

πs

h (t1:h). One can
easily show that for all h ∈ [H], n̄τH(t1:H) ≤ n̄τh(t1:h) ≤ n̄τh(sh, ah), if (sh, ah) is the state-action
pair visited in step h in the trajectory t1:H , and (5) leads to the following upper bound.

Corollary 2. On the event E , n̄τh(t1:h) = O
([

minh`=1
(BK)H−`

(∆̃`(s`,a`))
2

]
log
(

3(BK)H

δ

))
.

In particular, using that τ =
∑
t1:H∈T n̄

τ
h(t1:H) where T is the set of (BK)H complete trajectories

leads to a sample complexity bound featuring all gaps. However, its improvement over the bound of
Corollary 1 is not obvious in the general case. For B = 1, that is for planning in a deterministic MDP
with possibly random rewards, a slightly different proof technique leads to the following improved
gap-dependent sample complexity bound (see the proof in Appendix E).
Theorem 2 (deterministic case). When B = 1, MDP-GapE satisfies

P

τ = O

 ∑
t1:H∈T

 H
min
h=1

(∑H
`=h γ

`
)2

(
∆̃2
h(sh, ah)

)2

(log

(
1

δ

)
+H log(K)

)
 ≥ 1− δ.

Scaling in ε A majority of prior work on planning in MDPs has obtained sample complexity
bounds that scale with ε only, in the discounted setting. Neglecting the gaps, Corollary 1 gives a
O(H2(BK)H/ε2) upper bound that yields a crude Õ

(
ε−[2+log(BK)/ log(1/γ)]

)
sample complexity

in the discounted setting in which H ∼ log(1/ε)/ log(1/γ). This exponent is larger than that in
previous work, which features some notion of near-optimality dimension κ (see Table 1). However,
our analysis was not tailored to optimizing this exponent, and we show in Section 5 that the empirical
scaling of MDP-GapE in ε can be much smaller than the one prescribed by the above crude bound.

Lower bounds To the best of our knowledge, the only available lower bound on the sample
complexity of MCTS planning in general MDPs is the (1/ε)1/ log(1/γ) worst-case bound given by
Kearns et al. [19], which is proved using an MDP that is a binary tree (B < ∞). In the open-
loop setting, Bubeck and Munos [2] prove a minimax lower bound that is Ω

(
ε− logK/ log(1/γ)

)
if

γ
√
K > 1 and Ω

(
ε−2
)

if γ
√
K ≤ 1. As for problem-dependent results, the only available results

hold for H = 1, for which MCTS planning boils down to finding an arm with mean that is within
ε of the best mean in a bandit model. In that case, the lower bound of Mannor and Tsitsiklis [22]
indeed features the gaps at depth-one that appear in Corollary 1. Deriving problem-dependent lower
bound for H ≥ 2 is left as an important future work.
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5 Numerical Experiments1

We consider random discounted MDPs with infinite horizon in which the maximal number B of
successor states and the sparsity of rewards are controlled. The transition kernel is generated as
follows: for each transition in S×A, we uniformly pick B next states in S . The cumulative transition
probabilities to these states are computed by sorting B− 1 numbers uniformly sampled in (0, 1). The
reward kernel is computed by selecting a proportion of the transitions to have non-zero rewards with
means sampled uniformly in (0, 1). The values for these parameters are shown in Table 3a.

Table 3: Experimental setting.
(a) Environment parameters

States S 105

Actions A 5
Number B of successors 2
Reward sparsity 0.5

(b) MDP-GapE parameters

Discount factor γ 0.7
Confidence level δ 0.1
Exploration function βr(nth, δ) log 1

δ + log nth
Exploration function βp(nth, δ) log 1

δ + log nth

The main objective of our numerical experiments is to empirically verify several properties of
MDP-GapE, but we acknowledge that these experiments have some limitations. Planning algorithms
such as MDP-GapE are usually intended for the case (BK)H−1 � SA, which does not hold in our
experiments (despite the large state space). Moreover, we use tighter threshold functions than those
prescribed by theory, as is sometimes done in the bandit literature. These choices of thresholds are
still inspired by our theoretical results, for their scaling in nth(s, a), un-doing a few union bounds that
were found to be conservative in practice.

Fixed-confidence: Correction and sample complexity We verify empirically that MDP-GapE is
(ε, δ)-correct while stopping with a reasonable number of oracle calls. Table 3b shows the choice of
parameters for the algorithm. For various values of the desired accuracy ε and of the corresponding
planning horizonH = dlogγ(ε(1−γ)/2)e (see Section 2), we run simulations on 200 random MDPs.
We report in Table 4 the distribution of the number n = τH of oracle calls and the simple regret
r̄n(ân) of MDP-GapE over these 200 runs. We first observe that MDP-GapE satisfies r̄n(ân) < ε
in all simulations, despite the use of smaller exploration functions compared to those prescribed
in Lemma 2. We then compare the empirical sample complexity of MDP-GapE to the number of
samples that Sparse Sampling would use. The sample complexity of Sparse Sampling with parameter
C (number of calls to the generative model in each node) is (KH+1 −K)/(K − 1) for C = 1 and
of order

∑H−1
h=0 [(KC)× (K(min(B,C)))h] for larger values of C. Thus, beyond very small C, the

runtime of SS is prohibitively too large to try the algorithm in our setting (larger than (BK)H = 10H ).
For C = 1, the sample complexity of SS is 2.0× 104, 4.9× 105 and 1.2× 107 in the 3 experiments
in Table 4, which is larger than the maximal sample complexity observed for MDP-GapE.

Table 4: Simple regret and number of oracle calls, collected on 200 simulations

ε H
MDP-GapE

max rn median n max n

1 6 3.6× 10−2 8.6× 103 1.8× 104

0.5 8 5.2× 10−3 7.3× 104 2.0× 105

0.2 10 0 5.0× 105 2.3× 106

Scaling in ε As discussed above, Corollary 1 with the aforementioned choice of the planning hori-
zon, yields a crude sample complexity bound of order Õ

(
ε−[2+log(BK)/ log(1/γ)]

)
= Õ

(
(1/ε)8.4

)
in our experimental setting. However, we observe that the empirical exponent can be much smaller in
practice. To see that, we plot in in log-log scale in Figure 1 the sample complexity n as a function
of 1/(∆ ∨ ε) when running MDP-GapE for 5 different values of ε and 200 random MDPs for each

1The source code of our experiments is available at https://eleurent.github.io/
planning-gap-complexity/
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value (each dot correponds to one value of ε and one MDP). The 5 vertical groups of dots correspond
to the 5 values of ε and to MDPs for which ∆ ∨ ε = ε. In particular, by measuring the slope of the
curve we obtain that the maximal sample complexity among those MDPs scales in n ' O

(
(1/ε)

3.0 ).
Dots that are between the vertical groups correspond to MDPs for which the smallest gap ∆ was
larger than ε, and for which the sample complexity is typically smaller than this worst-case value.

Comparison to the state of the art In the fixed-confidence setting, most existing algorithms are
considered theoretical and cannot be applied to practical cases. For instance, for our problem with
K = 5 and ε = 1, Sparse Sampling [19] and SmoothCruiser [14] both require a fixed
budget2 of at least nSS = 8× 109. Likewise, Trailblazer [13] is a recursive algorithm which
did not terminate in our setting. We did not implement StOP [28] as it requires to store a tree
of policies, which is very costly even for moderate horizons. In comparison, Table 4 shows that
MDP-GapE stopped after n = 1.8× 104 oracle calls in the worst case. To the best of our knowledge,
MDP-GapE is the first (ε, δ)-correct algorithm for general MDPs with an easy implementation and a
reasonable running time in practice. The only planning algorithms that can be run in practice are in
the fixed-budget setting, which we now consider.

Fixed-budget evaluation We compare MDP-GapE to three existing baselines: first, the KL-OLOP
algorithm [21], which uses the same upper-confidence bounds on the rewards uth and states values
U th as MDP-GapE, but is restricted to open-loop policies, i.e. sequences of actions only. Second,
the BRUE algorithm [8] which explores uniformly and handles closed-loop policies. Third, the
popular UCT algorithm [20], which is also closed-loop and performs optimistic exploration at all
depths. UCT and its variants lack theoretical guarantees, but they have been shown successful
empirically in many applications. For each algorithm, we tune the planning horizon H similarly to
KL-OLOP, by dividing the available budget n into τ episodes, where τ is the largest integer such that
τ log τ/(2 log 1/γ) ≤ n, and choose H = log τ/(2 log 1/γ). The exploration functions are those of
KL-OLOP and depend on τ : βr(nth, δ) = βp(n

t
h, δ) = log(τ). Again, we perform 200 simulations

and report in Figure 2 the mean simple regret, along with its 95% confidence interval. We observe
that MDP-GapE compares favourably with these baselines in the high-budget regime.

100 2× 100 3× 100 4× 100

1

∆ ∨ ε

104

105

106

bu
dg

et
n

Figure 1: Dependency of the maximum number
n of oracle calls with respect to 1/(∆ ∨ ε).
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Figure 2: Comparison to other planning algo-
rithms in a fixed-budget setting.

6 Conclusion

We proposed a new, efficient algorithm for Monte-Carlo planning in Markov Decision Processes, that
combines tools from best arm identification and optimistic planning and exploits tight confidence
regions on mean rewards and transitions probabilities. We proved that MDP-GapE attains the smallest
existing gap-dependent sample complexity bound for general MDPs with stochastic rewards and
transitions, when the branching factor B is finite. In future work, we will investigate the worst-case
complexity of MDP-GapE, that is try to derive an upper bound on its sample complexity that only
features ε and some appropriate notion of near-optimality dimension.

2In non-regularized MDPs, SmoothCruiser has the same sample complexity as Sparse Sampling.
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A Detailed Algorithm

In this section we provide a detailed algorithm for MDP-GapE, namely Algorithm 1.

Algorithm 1 MDP-GapE
1: Input: confidence level δ, tolerance ε
2: initialize data lists Dh ← [ ] for all h ∈ [H]
3: for t = 1 . . . do
4: //Update confidence bounds
5: U t−1

h , Lt−1
h ← UpdateBounds(t, δ,Dh)

6: if U t−1
1 (s1, c

t)− Lt−1
1 (s1, b

t) ≤ ε then
7: return bt−1, break
8: end if
9: // Best

10: bt−1 ← argmin
b

[
maxa6=b U

t−1
1 (s1, a)− Lt−1

1 (s1, b)
]

11: //Challenger
12: ct−1 ← argmax

c6=bt
U t−1

1 (s1, c)

13: //Exploration
14: at1 ← argmax

a∈{bt−1,ct−1}

[
U t−1

1 (s1, a)− Lt−1
1 (s1, a)

]
15: observe reward rt1, next state st2, save D1.append(st1, a

t
1, s

t
2, r

t
1)

16: for step h = 2, . . . ,H do
17: ath ← argmax

a
U t−1
h (sth, a)

18: observe reward rth−1, next state sth,save Dh.append(sth, a
t
h, s

t
h+1, r

t
h)

19: end for
20: end for

Implementation details There are different ways to store and update the confidence bounds on the
Q-value (that is, to specify the UpdateBounds subroutine) according to how we merge information
across states.

The most obvious one, suggested by previous work [2, 21, 3] (and also implemented for our experi-
ments) does not merge information at all and builds a search tree in which a node (sh, ah) at depth h
is identified with the sequence of h states and actions that leads to it. It leads to a very simple update:
after each trajectory, one only needs to update the confidence bounds, Uh(sh, ah) and Lh(sh, ah),
of the visited action-state pairs. Another option is to merge information for the same states and a
fixed depth. But in this case the search tree becomes a graph and after each trajectory we need to
re-compute the values Uh(sh, ah) for all stored state action pairs (sh, ah) at each depth.

B Correctness of MDP-GapE

In this section we prove the correctness of MDP-GapEunder the assumption that the event Er ∩ Ep
holds. Concretely, we prove by induction that

Er ∩ Ep ⊆
⋂
t∈N?

H⋂
h=1

[ ⋂
sh,ah

(
Qh(sh, ah) ∈

[
Lth(sh, ah), U th(sh, ah)

] )]
.

The base case is given by h = H + 1, in which case by our previous convention,

LtH+1(·, ·) = QH+1(·, ·) = U tH+1(·, ·) = 0.
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For the inductive case, assume that the inclusion holds at depth h+ 1. Then we have

Lth(sh, ah) = `th(sh, ah) + γ min
p∈Cth(sh,ah)

∑
s′

p(s′|sh, ah) max
a′

Lth+1(s′, a′)

≤ `th(sh, ah) + γ
∑
s′

ph(s′|sh, ah) max
a′

Lth+1(s′, a′)

≤ rh(sh, ah) + γ
∑
s′

ph(s′|sh, ah)Qh+1(s′, arg max
a′

Lth+1(s′, a′))

≤ rh(sh, ah) + γ
∑
s′

ph(s′|sh, ah)Qh+1(s′, π∗h+1(s′)) = Qh(sh, ah)

≤ uth(sh, ah) + γ
∑
s′

ph(s′|sh, ah) max
a′

U th+1(s′, a′)

≤ uth(sh, ah) + γ max
p∈Cth(sh,ah)

∑
s′

p(s′|sh, ah) max
a′

U th+1(s′, a′) = U th(sh, ah),

where we have used rh(sh, ah) ∈
[
`th(sh, ah), uth(sh, ah)

]
and ph(·|sh, ah) ∈ Cth(sh, ah).

C Concentration Events

In this section we prove that the event E holds with high probability. But before we need several
concentration inequalities.

C.1 Deviation Inequality for Categorical Distributions

Let X1, X2, . . . , Xn, . . . be i.i.d. samples from a distribution supported over {1, . . . ,m}, of proba-
bilities given by p ∈ Σm, where Σm is the probability simplex of dimension m− 1. We denote by
p̂n the empirical vector of probabilities, i.e. for all k ∈ {1, . . . ,m}

p̂n,k =
1

n

n∑
`=1

1(X` = k) .

Note that an element p ∈ Σm will sometimes be seen as an element of Rm−1 since pm = 1 −∑m−1
k=1 pk. This should be clear from the context. We denote by H(p) the (Shannon) entropy of

p ∈ Σm,

H(p) =

m∑
k=1

pk log(1/pk) .

Proposition 1. For all p ∈ Σm, for all δ ∈ [0, 1],

P
(
∃n ∈ N∗, nKL(p̂n, p) > log(1/δ) + (m− 1) log

(
e(1 + n/(m− 1))

))
≤ δ .

Proof. We apply the method of mixture with a Dirichlet prior on the mean parameter of the exponen-
tial family formed by the set of categorical distribution on {1, . . . ,m}. Letting

ϕp(λ) = logEX∼p
[
eλX

]
= log(pm +

m−1∑
k=1

pke
λk),

be the log-partition function, the following quantity is a martingale:

Mλ
n = en〈λ,p̂n〉−nϕp(λ).
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We set a Dirichlet prior q ∼ Dir(α) with α ∈ R∗+
m and for λq = (∇ϕp)−1(q) and consider the

integrated martingale

Mn =

∫
Mλq
n

Γ
(∑m

k=1 αk

)
∏m
k=1 Γ(αk)

qαk−1
k dq

=

∫
en
(

KL(p̂n,p)−KL(p̂n,q)
)Γ
(∑m

k=1 αk

)
∏m
k=1 Γ(αk)

qαk−1
k dq

= enKL(p̂n,p)+nH(p̂n)

∫ Γ
(∑m

k=1 αk

)
∏m
k=1 Γ(αk)

q
np̂n,k+αk−1
k dq

= enKL(p̂n,p)+nH(p̂n)
Γ
(∑m

k=1 αk

)
∏m
k=1 Γ(αk)

∏m
k=1 Γ(αk + np̂n,k)

Γ
(∑m

k=1 αk + n
) ,

where in the second inequality we used Lemma 3. Now we choose the uniform prior α = (1, . . . , 1).
Hence we get

Mn = enKL(p̂n,p)+nH(p̂n)(m− 1)!

∏m
k=1 Γ(1 + np̂n,k)

Γ(m+ n)

= enKL(p̂n,p)+nH(p̂n)(m− 1)!

∏m
k=1(np̂n,k)!

n!

n!

(m+ n− 1)!

= enKL(p̂n,p)+nH(p̂n) 1(
n
np̂n

) 1(
m+n−1
m−1

) .
Thanks to Theorem 11.1.3 by [5] we can upper bound the multinomial coefficient as follows: for
M ∈ N∗ and x ∈ {0, . . . ,M}m such that

∑m
k=1 xk = M it holds(

M

x

)
=

M !∏m
k=1 xk!

≤ eMH(x/M) .

Using this inequality we obtain

Mn ≥ en kl(p̂n,p)+nH(p̂n)−nH(p̂n)−(m+n−1)H
(

(m−1)/(m+n−1)
)

= enKL(p̂n,p)−(m+n−1)H
(

(m−1)/(m+n−1)
)
.

It remains to upper-bound the entropic term

(m+ n− 1)H
(
(m− 1)/(m+ n− 1)

)
= (m− 1) log

m+ n− 1

m− 1
+ n log

m+ n− 1

n

≤ (m− 1) log
(
1 + n/(m− 1)

)
+ n log(1 + (m− 1)/n)

≤ (m− 1) log
(
1 + n/(m− 1)

)
+ (m− 1) .

Thus we can lower bound the martingale as follows

Mn ≥ enKL(p̂n,p)
(
e(1 + n/(m− 1))

)m−1
.

Using the fact that, for any supermartingale it holds that

P (∃n ∈ N∗ : Mn > 1/δ) ≤ δE[M1], (6)

which is a well-known property used in the method of mixtures (see [7]), we conclude that

P
(
∃n ∈ N∗, nKL(p̂n, p) > (m− 1) log

(
e(1 + n/(m− 1))

)
+ log(1/δ)

)
≤ δ .

Lemma 3. For q, p ∈ Σm and λ ∈ Rm−1,

〈λ, q〉 − ϕp(λ) = KL(q, p)−KL(q, pλ) ,

where ϕp(λ) = log(pm +
∑m−1
k=1 pke

λk) and pλ = ∇ϕp0(λ).
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Proof. There is a more general way than the ad hoc one below to prove the result. First note that

pλk =
pke

λk

pm +
∑m−1
`=1 p`eλ`

,

which implies that

pm +

m−1∑
k=1

pke
λk =

pm
pλm

, λk = log
pλk
pk

+ log
pm
pλm

.

Therefore we get

〈λ, q〉 − ϕp(λ) =

m−1∑
k=1

qk log

(
pλk
pk

pm
pλm

)
− log

(
pm +

m−1∑
k=1

pke
λk

)

=

m−1∑
k=1

qk log
pλk
pk

+ (1− qm) log
pm
pλm
− log

pm
pλm

=

m∑
k=1

qk log
pλk
pk

= KL(q, p)−KL(q, pλ) .

C.2 Deviation Inequality for Bounded Distribution

Let X1, X2, . . . , Xn, . . . be i.i.d. samples from a distribution ν of mean µ supported on [0, 1]. We
denote by µ̂n the empirical mean

µ̂n =
1

n

n∑
`=1

X` .

It is well known, see [11], that we can "project" the distribution ν on a Bernoulli distribution with
the same mean and then use deviation inequality for Bernoulli to concentrate the empirical mean.
This method dos not lead to the sharpest confidence intervals but it provides a good trade-off between
complexity computation and accuracy.

Proposition 2. For all distribution ν of mean µ supported on the unit interval, for all δ ∈ [0, 1],

P
(
∃n ∈ N∗, n kl(µ̂n, µ) > log(1/δ) + log

(
e(1 + n)

))
≤ δ .

Proof. First note that we can upper bound the log-partition function of ν by the one of a Bernoulli
Ber(µ), for all λ ∈ R,

log
(
E[eλXn ]

)
≤ log

(
E[Xne

λ + 1−Xn]
)

= log
(
1− µ+ µeλ

)
= ϕµ(λ).

Then we can follow the proof of Proportion 1 with m = 2 and where Mλ
n is only a supermartingale

but this does not change the result as the property (6) still holds. Thus the proposition follows by
specifying Proposition 1 to the case m = 2.

C.3 Deviation Inequality for sequence of Bernoulli Random Variables

LetX1, X2, . . . , Xn, . . . be a sequence of Bernoulli random variables adapted to the filtration (Ft)t∈N.
We restate here Lemma F.4. of [6].

Proposition 3. If we denote pn = P(Xn = 1|Fn−1), then for all δ ∈ (0, 1]

P

(
∃n ∈ N∗ :

n∑
`=1

X` <

n∑
`=1

p`/2− log(1/δ)

)
≤ δ .

15



C.4 Proof of Lemma 2

We just prove that each event forming E = Er ∩ Ep ∩ En holds with high probability. For the first
one using Proposition 2, since the reward are bounded in the unit interval we have

P
(
(Er)c

)
≤
∑
h∈[H]

∑
(sh,ah)∈S×A

P
(
∃t ∈ N∗ : nth(sh, ah) kl

(
r̂th(sh, ah), rh(sh, ah)

)
> βr(n

t
h(sh, ah), δ)

)
≤
∑
h∈[H]

∑
(sh,ah)∈S×A

δ

3ASH
≤ δ

3
.

where we used Doob’s optional skipping in the second inequality in order to apply Proposition 2,
see Section 4.1 of [12]. Similarly for the confidence regions for the probabilities transitions, using
Proposition 1 we obtain

P
(
(Ep)c

)
≤
∑
h∈[H]

∑
(sh,ah)∈S×A

P
(
∃t ∈ N∗ : nth(sh, ah) KL

(
p̂th(·|sh, ah), ph(·|sh, ah)

)
> βp(n

t
h(sh, ah), δ)

)
≤
∑
h∈[H]

∑
(sh,ah)∈S×A

δ

3ASH
≤ δ

3
.

It remains to control the counts, using Proposition 3,

P
(
(Ecnt)c

)
≤
∑
h∈[H]

∑
(sh,ah)∈S×A

P
(
∃t ∈ N∗ : nth(sh, ah) <

1

2
n̄th(sh, ah)− βcnt(δ)

)

≤
∑
h∈[H]

∑
(sh,ah)∈S×A

δ

3ASH
≤ δ

3
,

where we used that by definition of the pseudo-counts

n̄th(sh, ah) =

t∑
`=1

P
(
(s`h, a

`
h) = (sh, ah)|F`−1

)
,

and F`−1 is the information available to the agent at step `. An union bound allows us to conclude

P(Ec) ≤ P
(
(Er)c

)
+ P

(
(Ep)c

)
+ P

(
(Ecnt)c

)
≤ δ .

D Proof of Theorem 1

In this section we present the proof of Theorem 1, which relies on three important ingredients. The
first ingredient is Lemma 5 in Appendix D.1, which provides a relationship between the state-action
gaps and the diameter Dt

h(sh, ah) := U th(sh, ah) − Lth(sh, ah) of the confidence intervals. The
second ingredient is Lemma 8 in Appendix D.2, which provides an upper bound on the diameter
Dt
h(sh, ah). The third ingredient is Lemma 9 in Appendix D.3, which relates the actual counts of

state-action pairs to the corresponding pseudo-counts. After providing these ingredients, we present
the detailed proof of Theorem 1 in Appendix D.4.

D.1 Relating state-action gaps to diameters

Before stating Lemma 5, we prove an important property of the UGapE algorithm. We recall that bt
and ct are the candidate best action and its challenger, defined as

bt = argmin
b

[
max
a6=b

U t1(s1, a)− Lt1(s1, b)

]
,

ct = argmax
c 6=bt

U t1(s1, c).

The policy at the root is then defined as πt+1
1 (s1) = argmax

b∈{bt,ct}
[U t1(s1, b)− Lt1(s1, b)].
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Lemma 4. For all t ∈ [τδ − 1], the following inequalities hold:

1. U t1 (s1, c
t)− Lt1 (s1, b

t) ≤ U t1
(
s1, π

t+1(s1)
)
− Lt1

(
s1, π

t+1(s1)
)
,

2. U t1 (s1, b
t)− Lt1 (s1, c

t) < 2
[
U t1
(
s1, π

t+1(s1)
)
− Lt1

(
s1, π

t+1(s1)
)]

.

Proof. We show the first part by contradiction. If the inequality does not hold, we obtain

U t1(s1, b
t)− Lt1(s1, b

t) ≤ U t1(s1, π
t+1
1 (s1))− Lt1(s1, π

t+1
1 (s1)) < U t1(s1, c

t)− Lt1(s1, b
t),

U t1(s1, c
t)− Lt1(s1, c

t) ≤ U t1(s1, π
t+1
1 (s1))− Lt1(s1, π

t+1
1 (s1)) < U t1(s1, c

t)− Lt1(s1, b
t)

= max
a 6=bt

U t1(s1, a)− Lt1(s1, b
t) ≤ max

a6=ct
U t1(s1, a)− Lt1(s1, c

t),

where the last inequality follows from the definition of bt. Combining the two inequalities yields
U t1(s1, b

t) < U t1(s1, c
t) < maxa6=ct U t1(s1, a), which contradicts the definition of ct.

For the second part, if t < τδ then the algorithm has not yet stopped, implying

U t1(s1, b
t)− Lt1(s1, c

t) = U t1(s1, b
t)− Lt1(s1, b

t) + U t1(s1, c
t)− Lt1(s1, c

t)

−
[
U t1(s1, c

t)− Lt1(s1, b
t)
]

< 2
[
U t1(s1, π

t+1
1 (s1))− Lt1(s1, π

t+1
1 (s1)

]
− ε.

As a consequence of Lemma 4, we can upper bound any confidence interval involving bt and ct.
Corollary 3. For each pair of actions a, a′ ∈ {bt, ct}, it holds that

U t1 (s1, a)− Lt1 (s1, a
′) ≤ 2

[
U t1
(
s1, π

t+1(s1)
)
− Lt1

(
s1, π

t+1(s1)
)]
.

We are now ready to state Lemma 5.
Lemma 5. If E holds and t < τδ , for all h ∈ [H] and sh ∈ Sh(πt+1),

∆̃h(sh, π
t+1
h (sh)) ≤ 2

[
U th(sh, π

t+1
h (sh))− Lth(sh, π

t+1
h (sh))

]
.

Proof. The proof for h ∈ [2, H] is immediate from the correctness of the confidence bounds implied
by E , and the fact that the selection is optimistic:

∆h(sh, π
t+1
h (sh)) = Qh(sh, π

?
h(sh))−Qh(sh, π

t+1
h (sh))

≤ max
a

U th(sh, a)− Lth(sh, π
t+1
h (sh)) = U th(sh, π

t+1
h (sh))− Lth(sh, π

t+1
h (sh)).

For h = 1, we prove separately that each term in the max is smaller that the right hand side of desired
inequality, that is

max
(
∆1

(
s1, π

t+1(s1)
)
; ∆; ε

)
≤ 2

[
U th(sh, π

t+1
h (sh))− Lth(sh, π

t+1
h (sh))

]
.

Now, by definition of the stopping rule, if t < τδ, U t1 (s1, c
t) − Lt1 (s1, b

t) > ε. Using the first
property in Lemma 4 yields

ε < U t1
(
s1, π

t+1(s1)
)
− Lt1

(
s1, π

t+1(s1)
)
. (7)

Then, exploiting the fact that the action with largest UCB is either bt or ct, it holds on E that

∆1

(
s1, π

t+1(s1)
)

= Q1 (s1, a
?)−Q1

(
s1, π

t+1(s1)
)

≤ max
a

U t1 (s1, a)− Lt1
(
s1, π

t+1(s1)
)

= max
a∈{bt,ct}

U t1 (s1, a)− Lt1
(
s1, π

t+1(s1)
)
.

Using Corollary 3 to further upper bound the right hand side yields

∆1

(
s1, π

t+1(s1)
)
< 2

[
U t1
(
s1, π

t+1(s1)
)
− Lt1

(
s1, π

t+1(s1)
)]
. (8)
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Finally, one can also write, on the event E ,

∆ = min
a6=a?

[Q1(s1, a
?)−Q1(s1, a)] ≤ U t1(s1, a

?)−max
a6=a?

Q1(s1, a)

≤ max
a′∈{bt,ct}

U t1(s1, a
′)− min

a∈{bt,ct}
Q1(s1, a)

≤ max
a′∈{bt,ct}

U t1(s1, a
′)− min

a∈{bt,ct}
Lt1(s1, a).

In each of the four possible choices of (a, a′), Corollary 3 implies that

∆ ≤ 2
[
U t1
(
s1, π

t+1(s1)
)
− Lt1

(
s1, π

t+1(s1)
)]
. (9)

Lemma 5 follows by combining (7), (8) and (9) with the definition of ∆?
1

(
s1, π

t+1(s1)
)
.

D.2 Upper bounding the diameters

In this section we state and prove Lemma 8. We use the notation σh =
∑h−1
i=0 γ

i to upper bound the
discounted reward in h steps. As a first step, we prove the following auxiliary lemma.

Lemma 6. If E holds, for each h ∈ [H], each (sh, ah) and each q ∈ Cth(sh, ah),

∑
s′

(q(s′|sh, ah)− ph(s′|sh, ah))U th+1(s′, πt+1
h+1(s′)) ≤ 2

√
2σH−h

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1
.

Proof. First note that for each state s′, U th+1(s′, πt+1
h+1(s′)) can be expressed as an expecta-

tion on the form Eπt+1{∑H
i=h+1 γ

i−h−1uti(si, ai) | sh+1 = s′
}

, which is upper bounded
by
∑H
i=h+1 γ

i−h−1 = σH−h since uti(si, ai) ≤ 1 for each (si, ai). Note that for h = H ,
σH−H = σ0 = 0. If nth(sh, ah) = 0 the result trivially holds by the conventions adopted for
the confidence bounds and regions. Now, if nth(sh, ah) > 0, we have∑

s′

(q(s′|sh, ah)− ph(s′|sh, ah))U th+1(s′, πt+1
h+1(s′))

≤ ‖q(·|sh, ah)− ph(·|sh, ah)‖1 ‖U th+1(·, πt+1
h+1(·))‖∞

≤ σH−h
(
‖q(·|sh, ah)− p̂th(·|sh, ah)‖1 + ‖ph(·|sh, ah)− p̂th(·|sh, ah)‖1

)
≤ σH−h

(√
2 KL(p̂th(·|sh, ah), q(·|sh, ah)) +

√
2 KL(p̂th(·|sh, ah), ph(·|sh, ah))

)
≤ 2
√

2σH−h

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1
,

where we have used Pinsker’s inequality to bound the L1-norm using the KL divergence, combined
with the fact that both q and p are close to the empirical transition probabilities p̂t under E .

As a consequence, we can express the upper bound U t in terms of the true transition probabilities p.

Corollary 4. If E holds, for each h ∈ [H] and each (sh, ah),

U th(sh, ah) ≤ uth(sh, ah)+γ
∑
s′

ph(s′|sh, ah)U th+1(s′, πt+1
h+1(s′))+2

√
2γσH−h

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1
.

We can also express the lower bound Lt in terms of the transition probabilities p and policy πt+1.

Lemma 7. If E holds, for each h ∈ [H] and each (sh, ah),

Lth(sh, ah) ≥ `th(sh, ah)+γ
∑
s′

ph(s′|sh, ah)Lth+1(s′, πt+1
h+1(s′))−2

√
2γσH−h

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1
.
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Proof. We exploit the fact that for each h ∈ [H], each (sh, ah) and each q ∈ Cth(sh, ah),

∑
s′

(q(s′|sh, ah)− ph(s′|sh, ah)) max
a′

Lth+1(s′, a′) ≥ −2
√

2σH−h

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1
.

The proof is analogous to the proof of Lemma 6. We can now write

Lth(sh, ah) = `th(sh, ah) + γ min
p∈Cth(sh,ah)

∑
s′

p(s′|sh, ah) max
a′

Lth+1(s′, a′)

≥ `th(sh, ah) + γ
∑
s′

ph(s′|sh, ah) max
a′

Lth+1(s′, a′)− 2
√

2γσH−h

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1

≥ `th(sh, ah) + γ
∑
s′

ph(s′|sh, ah)Lth+1(s′, πt+1
h+1(s′))− 2

√
2γσH−h

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1
.

We are now ready to state Lemma 8.
Lemma 8. If E holds, for all h ∈ [H], sh ∈ Sh(πt+1) and ah,

Dt
h(sh, ah) ≤ σH−h+1

[
4
√

2

√
β(nth(sh, ah), δ)

nth(sh, ah)
∧ 1

]
+ γ

∑
s′

ph(s′|sh, ah)Dt
h+1(s′, πt+1

h+1(s′)).

Proof. The bound on the diameter follows directly from Corollary 4 and Lemma 7:

Dt
h(sh, ah) = U th(sh, ah)− Lth(sh, ah)

≤
(
uth(sh, ah)− `th(sh, ah)

)
+ γ

∑
s′

ph(s′|sh, ah)
(
U th+1(s′, πt+1

h+1(s′))− Lth+1(s′, πt+1
h+1(s′))

)
+ 4
√

2γσH−h

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1

≤ 4
√

2σH−h+1

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1
+ γ

∑
s′

ph(s′|sh, ah)Dt
h+1(s′, πt+1

h+1(s′)),

where we used Er ⊇ E and Pinsker’s inequality to bound

uth(sh, ah)− `th(sh, ah) ≤
√

2β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1
< 4
√

2

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1
.

To obtain the final expression in Lemma 8, we observe that it also trivially holds that

Dt
h(sh, ah) ≤ σH−h+1 ≤ σH−h+1 + γ

∑
s′

ph(s′|sh, ah)Dt
h+1(s′, πt+1

h+1(s′)) ,

hence

Dt
h(sh, ah) ≤ σH−h+1 min

[
4
√

2

√
β(nth(sh, ah), δ)

nth(sh, ah) ∨ 1
, 1

]
+γ
∑
s′

ph(s′|sh, ah)Dt
h+1(s′, πt+1

h+1(s′)) .

The conclusion follows by observing that one can get rid of the maximum with 1 in the denominator
by using instead the convention 1/0 = +∞.

D.3 Relating counts to pseudo-counts

We now assume that the event E holds and fix some h ∈ [H] and some state-action pair (sh, ah). For
every ` ≥ h, we define pπh,`(s, a|sh, ah) to be the probability that starting from (sh, ah) in step h
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and following π thereafter, we end up in (s, a) in step `. We use pth,`(s, a|sh, ah) as a shorthand for
pπ

t

h,`(s, a|sh, ah).

Introducing the conditional pseudo-counts n̄th,`(s, a; sh, ah) :=
∑t
i=1 p

i
h(sh, ah)pih,` (s, a|sh, ah)

and using that on the event Ecnt ⊇ E the counts are close to the pseudo-counts, one can prove:

Lemma 9. If the event Ecnt holds,
[√

β(nt`(s,a),δ)
nt`(s,a)

∧ 1

]
≤ 2

√
β(nth,`(s,a;sh,ah),δ)

nth,`(s,a;sh,ah)∨1
.

Proof. As the event Ecnt holds, we know that for all t < τ ,

nt`(s, a) ≥ 1

2
n̄t`(s, a)− βcnt(δ)

≥ 1

2
n̄th,`(s, a; sh, ah)− βcnt(δ).

We now distinguish two cases. First, if βcnt(δ) ≤ 1
4 n̄

t
h,`(s, a; sh, ah), then

√
β(nt`(s, a), δ)

nt`(s, a)
≤

√√√√β
(

1
4 n̄

t
h,`(s, a; sh, ah), δ

)
1
4 n̄

t
h,`(s, a; sh, ah)

≤ 2

√√√√β
(
n̄th,`(s, a; sh, ah), δ

)
n̄th,`(s, a; sh, ah) ∨ 1

,

where we use that x 7→
√
β(x, δ)/x is non-increasing for x ≥ 1, x 7→ β(x, δ) is non-decreasing,

and βcnt(δ) ≥ 1. If βcnt(δ) > 1
4 n̄

t
h,`(s, a; sh, ah), simple algebra shows that

1 < 2

√
βcnt(δ)

nth,`(s, a; sh, ah) ∨ 1
≤ 2

√
β(nth,`(s, a; sh, ah), δ)

nth,`(s, a; sh, ah) ∨ 1
,

where we use that βcnt(δ) ≤ β(0, δ) and x 7→ β(x, δ) is non-decreasing. If nth,`(s, a; sh, ah) < 1,
the expression uses the trivial bound βcnt(δ) > 1

4 . In both cases, we have[√
β(nt`(s, a), δ)

nt`(s, a)
∧ 1

]
≤ 2

√
β(nth,`(s, a; sh, ah), δ)

nth,`(s, a; sh, ah) ∨ 1
.

D.4 Detailed proof of Theorem 1

We assume that the event E holds and fix some h ∈ [H] and some state-action pair (sh, ah). We
define some notion of expected diameter in a future step ` given that (sh, ah) is visited at step h
under policy πt+1. For every (h, `) ∈ [H]2 such that h ≤ ` we let

qth,`(sh, ah) :=
∑
(s,a)

pt+1
h (sh, ah)pt+1

h,` (s, a|sh, ah)Dt
`(s, a).

To be more accurate, qth,`(sh, ah) is equal to the probability that (sh, ah) is visited by πt+1, multiplied
by the expected diameter of the state-action pair (s, a) that is reached at step ` if one applies πt+1

after choosing ah in state sh. In particular, qth,`(sh, ah) = 0 if ah 6= πt+1(sh).

Step 1: lower bounding qth,h(sh, ah) in terms of the gaps From the above definition,

qth,h(sh, ah) = pt+1
h (sh, ah)Dt

h(sh, ah).

Using Lemma 5 and the fact that pt+1
h (sh, ah) = 0 if ah 6= πt+1(sh) yields

if t < τ, qth,h(sh, ah) ≥ 1

2
pt+1
h (sh, ah)∆h(sh, ah). (10)
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Step 2: upper bounding qth,h(sh, ah) in terms of the counts Using Lemma 8 and the fact that∑
(s,a)

pt+1
h (sh, ah)pt+1

h,` (s, a|sh, ah)

 ∑
(s′,a′)

p`(s
′|s, a)1

(
a′ = πt+1

`+1(s′)
)
Dt
`+1(s′, a′)


=

∑
(s′,a′)

pt+1
h (sh, ah)

∑
(s,a)

pt+1
h,` (s, a|sh, ah)p`(s

′|s, a)1
(
a′ = πt+1

`+1(s′)
)

︸ ︷︷ ︸
=pt+1

h,`+1(s′,a′|sh,ah)

Dt
`+1(s′, a′),

one can establish the following relationship between qth,`(sh, ah) and qth,`+1(sh, ah):

qth,`(sh, ah) ≤
∑
(s,a)

pt+1
h (sh, ah)pt+1

h,` (s, a|sh, ah)

[
4
√

2

√
β(nth(s, a), δ)

nth(s, a)
∧ 1

]
+ γqt+1

h,`+1(sh, ah).

By induction, one then obtains the following upper bound:

qth,h(sh, ah) ≤
H∑
`=h

γ`−hσH−`+1

∑
(s,a)

pt+1
h (sh, ah)pt+1

h,` (s, a|sh, ah)

[
4
√

2

√
β(nt`(s, a), δ)

nt`(s, a)
∧ 1

]
. (11)

Step 3: summing the inequalities to get an upper bound on nth(sh, ah) Summing for t ∈
{0, . . . , τ − 1} the inequalities given by (10) yields

τ−1∑
t=0

qth,h ≥
∆̃h(sh, ah)

2

(
τ−1∑
t=0

pt+1
h (sh, ah)

)
=

∆̃h(sh, ah)

2
n̄τh(sh, ah).

Summing the upper bounds in (11) yields that ∆̃h(sh, ah)nτh(sh, ah) is upper bounded by

Bτh(sh, ah) := 2

τ−1∑
t=0

H∑
`=h

γ`−hσH−`+1

∑
(s,a)

pt+1
h (sh, ah)pt+1

h,` (s, a|sh, ah)

[
4
√

2

√
β(nt`(s, a), δ)

nt`(s, a)
∧ 1

]
.

The rest of the proof consists in upper bounding Bτh(sh, ah) in terms of the pseudo counts nτh(sh, ah).

Step 4: from counts to pseudo-counts For all ` ≥ h, we introduce the set S`(sh, ah) of states-
action pairs (s, a) that can be reached at step ` from (s, a).

For each (s, a) ∈ S`(sh, ah), we define

C`(s, a; sh, ah) =

τ−1∑
t=0

pt+1
h (sh, ah)pt+1

h,` (s, a|sh, ah)

[
4
√

2

√
β(nt`(s, a), δ)

nt`(s, a)
∧ 1

]
.

One can observe that Bτh(sh, ah) = 2
∑H
`=h

∑
(s,a)∈S`(sh,ah) γ

`−hσH−`+1C`(s, a; sh, ah). To
upper bound C`(s, a; sh, ah) we further introduce the conditional pseudo-counts

n̄th,`(s, a; sh, ah) :=

t∑
i=1

pih(sh, ah)pih,`(s, a|sh, ah),

for which one can write

C`(s, a; sh, ah) =

τ−1∑
t=0

[n̄t+1
h,` (s, a; sh, ah)− n̄th,`(s, a; sh, ah)]

[
4
√

2

√
β(nt`(s, a), δ)

nt`(s, a)
∧ 1

]
.

Using Lemma 9 to relate the counts to the conditional pseudo-counts, one can write

C`(s, a; sh, ah) ≤ 8
√

2

τ−1∑
t=0

[n̄t+1
h,` (s, a; sh, ah)− n̄th,`(s, a; sh, ah)]

√
β(nth,`(s, a; sh, ah), δ)

nth,`(s, a; sh, ah) ∨ 1

≤ 8
√

2
√
β(nτh,`(s, a; sh, ah), δ)

τ−1∑
t=0

n̄t+1
h,` (s, a; sh, ah)− n̄th,`(s, a; sh, ah)√

nth,`(s, a; sh, ah) ∨ 1

≤ 8
√

2(1 +
√

2)
√
β(nτh,`(s, a; sh, ah), δ)× n̄τh,`(s, a; sh, ah),
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where the last step uses Lemma 19 in [17].

Finally, by summing over episodes ` and over reachable states (s, a) ∈ S`(sh, ah), we can upper
bound Bτh(sh, ah) by

2

H∑
`=h

γ`−hσH−`+1

8
√

2(1 +
√

2)
√
β(nτh(sh, ah), δ)

∑
(s,a)∈S`(sh,ah)

√
n̄τh,`(s, a; sh, ah)


≤ 2

H∑
`=h

γ`−hσH−`+1

8
√

2(1 +
√

2)
√
β(nτh(sh, ah), δ)

√
(BK)h−`

√ ∑
(s,a)∈S`(sh,ah)

n̄τh,`(s, a; sh, ah)


= 2

H∑
`=h

γ`−hσH−`+1

[
8
√

2(1 +
√

2)
√
β(nτh(sh, ah), δ)

√
(BK)h−`

√
n̄τh(sh, ah)

]
,

where we have used that
∑

(s,a)∈S`(sh,ah) n̄
τ
h,`(s, a; sh, ah) = n̄τh(sh, ah). By using further

Lemma 10 to upper bound all the constants, we obtain

Bτh(sh, ah) ≤ 64
√

2(1 +
√

2)
(√

BK
)H−h√

n̄τh(sh, ah)β(nτh(sh, ah), δ) .

Lemma 10. For every x > 1,
∑H
`=h(γx)`−hσH−`+1 ≤ xH−h

(1− 1
x )

2 .

Proof. Since γ ≤ 1 and x > 1, we can write
H∑
`=h

(γx)`−hσH−`+1 ≤
H∑
`=h

x`−h(H − `+ 1) =

H−h∑
`=0

x`(H − h− `+ 1)

= xH−h
H−h∑
`=0

H − h− `+ 1

xH−h−`
= xH−h

H−h∑
`=0

(`+ 1)r`,

where r = 1/x < 1. The latter is an arithmetico-geometric sum that can be upper bounded as
H−h∑
`=0

(`+ 1)r` ≤
∞∑
`=0

(`+ 1)r` =
1

(1− r)2
=

1(
1− 1

x

)2 .

E Proof of Theorem 2

The proof of Theorem 2 uses the same ingredients as the proof of Theorem 1: Lemma 5 which relates
the gaps to the diameters of the confidence intervals Dt

h(sh, ah) = U th(sh, ah)− Lth(sh, ah) and a
counterpart of Lemma 8 for the deterministic case, stated below.
Lemma 11. If E holds, and t1:H = (s1, a1, . . . , sH , aH) is the (t + 1)-st trajectory generated by
MDP-GapE, for all h ∈ [H],

Dt
h(sh, ah) ≤

[√
2β(nth(sh, ah), δ)

nth(sh, ah)
∧ 1

]
+ γDt

h+1(sh+1, ah+1).

It follows from Lemma 11 that for all h ∈ [H], along the (t + 1)-st trajectory t1:H =
(s1, a1, . . . , sH , aH),

Dt
h(sh, ah) ≤

H∑
`=h

γ`−h
[√

2β(nt`(s`, a`), δ)

nt`(s`, a`)
∧ 1

]
.

Letting nt(t1:H) be the number of times the trajectory t1:H has been selected by MDP-GapE in the
first t episodes, one has nt`(s`, a`) ≥ nt(t1:H). Hence, if nt(t1:H) > 0, it holds that

Dt
h(sh, ah) ≤

H∑
`=h

γ`−h

√
2β(nt(t1:H), δ)

nt(t1:H)
= σH−h+1

√
2β(nt(t1:H), δ)

nt(t1:H)
.
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Using Lemma 5, if t < τ , if t1:H is the trajectory selected at time (t+ 1), either nt(t1:H) = 0 or

∀h ∈ [H], ∆̃h(sh, ah) ≤ σH−h+1

√
2β(nt(t1:H), δ)

nt(t1:H)

It follows that for any trajectory t1:H ,

nτ (t1:H)

max
h∈[H]

(
∆̃h(sh, ah)

)2

(σH−h+1)2

 ≤ 2β(nτ (t1:H), δ).

The conclusion follows from Lemma 12 and from the fact that τ =
∑
t1:H∈T n

τ (t1:H).

F Sample complexity of Sparse Sampling in the Fixed-Confidence Setting

In this section, we prove Lemma 1.

For simplicity, and without loss of generality, assume that the reward function is known. Let C > 0.
Sparse Sampling builds, recursively, the estimates V̂h and Q̂h for h ∈ [H + 1], starting from
V̂H+1(s) = 0 and Q̂H+1(s, a) = 0 for all (s, a). Then, from a target state-action pair (s, a), it
samples C transitions Zi ∼ ph(·|s, a) for i ∈ [C] and computes:

Q̂h(s, a) = rh(s, a) +
1

C

C∑
i=1

V̂h+1(Zi), with V̂h(s) = max
a

Q̂h(s, a)

For an initial state s, its output is Q̂1(s, a) for all a ∈ [K]. For any state s, consider the events

G(s, a, h) =
{∣∣∣Q̂h(s, a)−Q?h(s, a)

∣∣∣ ≤ εh}⋂
 ⋂
z∈supp[ph(·|s,a)]

G(z, h+ 1)

 .

and

G(s, h) =
⋂
a∈[K]

G(s, a, h).

defined for h ∈ [H + 1], where εh := (H − h+ 1)H
√

(2/C) log(2/δ′) for some δ′ > 0.

Let

δh =
2Kδ′

BK − 1

(
(BK)H−h+1 − 1

)
We prove that, for all s and all h, P [G(s, h)] ≥ 1 − δh. We proceed by induction on h. For
h = H + 1, we have Q̂H+1(s, a) = Q?H+1(s, a) = 0 for all (s, a) by definition, which gives us
P [G(s, a,H + 1)] = 1 and, consequently, P [G(s,H + 1)] = 1.

Now, assume that P [G(z, h+ 1)] ≥ 1− δh for all z. Since∣∣∣Q̂h(s, a)−Q?h(s, a)
∣∣∣ ≤ 1

C

∣∣∣∣∣
C∑
i=1

(
V̂h+1(Zi)− V ?h+1(Zi)

)∣∣∣∣∣+
1

C

∣∣∣∣∣
C∑
i=1

(
V ?h+1(Zi)− E

[
V ?h+1(Zi)

])∣∣∣∣∣
We have,

P
[
G(s, a, h){

]
≤

∑
z∈supp[ph(·|s,a)]

P
[
G(z, h+ 1){

]
+ P

[
1

C

∣∣∣∣∣
C∑
i=1

(
V ?h+1(Zi)− E

[
V ?h+1(Zi)

])∣∣∣∣∣ ≥ εh − εh+1

]

≤ Bδh+1 + 2 exp

(
−C(εh − εh+1)2

2H2

)
≤ Bδh+1 + 2δ′
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and, consequently,

P
[
G(s, h){

]
≤ BKδh+1 + 2Kδ′ = δh.

which gives us P [G(s, h)] ≥ 1− δh, as claimed above. In particular, taking h = 1, we have

∣∣∣Q̂1(s, a)−Q?1(s, a)
∣∣∣ ≤ H2

√
(2/C) log(2/δ′)

with probability at least 1 − δ, where δ = 2Kδ′
(
(BK)H − 1

)
/(BK − 1). Finally, we let ε :=

H2
√

(2/C) log(2/δ′)/2 and solve for C, obtaining

C = O
(
H5

ε2
log

(
BK

δ

))
.

Thus predicting â = argmax
a

Q̂1(s1, a) after O
(
C(BK)H

)
sampled transitions we have

P (Q?(s1, âτ ) > Q?(s1, a
?)− ε) ≥ 1− δ .

G A Technical Lemma

We state and prove below a technical result that permits to obtain an upper bound on n from a
condition of the form n∆2 ≤ β(n, δ), like the one which appears in Theorem 1.
Lemma 12. Let n ≥ 1 and a, b, c, d > 0. If n∆2 ≤ a+ b log(c+ dn) then

n ≤ 1

∆2

[
a+ b log

(
c+

d

∆4
(a+ b(

√
c+
√
d))2

)]
.

Proof. Since log(x) ≤ √x and
√
x+ y ≤ √x+

√
y for all x, y > 0, we have

n∆2 ≤ a+ b
√
c+ dn ≤ a+ b

√
c+ b

√
d
√
n

=⇒ √
n∆2 ≤ a+ b

√
c√

n
+ b
√
d ≤ a+ b(

√
c+
√
d)

=⇒ n ≤ 1

∆4

(
a+ b(

√
c+
√
d)
)2

.

Hence,

n∆2 ≤ a+ b log(c+ dn)

=⇒ n∆2 ≤ a+ b log(c+ dn) and n ≤ 1

∆4

(
a+ b(

√
c+
√
d)
)2

=⇒ n∆2 ≤ a+ b log

(
c+

d

∆4

(
a+ b(

√
c+
√
d)
)2
)
.
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