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ABSTRACT
Federated Learning enables entities to collaboratively learn a shared

prediction model while keeping their training data locally. It pre-

vents data collection and aggregation and, therefore, mitigates the

associated privacy risks. However, it still remains vulnerable to var-

ious security attacks where malicious participants aim at degrading

the generated model, inserting backdoors, or inferring other partic-

ipants’ training data. This paper presents a new federated learning

scheme that provides different trade-offs between robustness, pri-

vacy, bandwidth efficiency, and model accuracy. Our scheme uses

biased quantization of model updates and hence is bandwidth ef-

ficient. It is also robust against state-of-the-art backdoor as well

as model degradation attacks even when a large proportion of the

participant nodes are malicious. We propose a practical differen-

tially private extension of this scheme which protects the whole

dataset of participating entities. We show that this extension per-

forms as efficiently as the non-private but robust scheme, even

with stringent privacy requirements but are less robust against

model degradation and backdoor attacks. This suggests a possible

fundamental trade-off between Differential Privacy and robustness.

KEYWORDS
Differential Privacy, Privacy-preserving, Security, Federated

learning, Robustness, Bandwidth efficient.

1 INTRODUCTION
In standard centralized training, a machine learning model is gener-

ated by a single server who collects the training data from different

sources such as mobile devices, sensors, or organizations. However,

data owners are often reluctant to share their potentially sensi-

tive data with an untrusted server. To overcome this shortcoming,

Collaborative Learning allows several parties (clients) to build a

common model without sharing their private training data. It pro-

poses to distribute and run the Machine Learning algorithms on the

entities that own the data instead of a central server. Data owners

periodically synchronize their local models either distributively

or through a central, perhaps untrusted server. For example, in

Federated Learning, clients send their model updates to the central

server which then summarizes the weights into a common model

and returns this model to the clients for another round. This proto-

col repeats until the model converges. Federated Learning has been

gaining popularity and considered to train shared models for many

applications such as input text prediction, ad selection
1
, drug dis-

covery
2
, or various medical applications [15] over the confidential

data of many different entities.

1
https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html

2
https://www.melloddy.eu

Although Collaborative learning creates new opportunities, it

also has a few drawbacks. First, it is not robust against misbehaving

parties who may not follow the learning protocol faithfully in order

to degrade the model performance. For example, a malicious party

may send bogus model updates for aggregation which degrades the

overall model quality or introduces backdoors [9]. Second, mali-

cious parties can potentially extract private information about the

training data of honest parties from their model updates or the

common model [28, 31]. Third, the bandwidth requirement of Fed-
erated Learning can be significant for large models: each update is

typically composed of 32 · 𝑛 bits, where 𝑛 is the number of model

parameters. Since it is not unusual to have models with thousands

or even millions of parameters, the size of each update can be quite

large.

Themotivation of this paper is to propose a new Federated Learn-

ing scheme that mitigates these issues, and is (1) bandwidth efficient,
(2) privacy-preserving, (3) secure, and (4) accurate. We identify sev-

eral trade-offs between these design goals suggesting that satisfying

all these requirements simultaneously is inherently difficult. More

specifically, we make the following contributions:

- We adapt the signSGD learning algorithm [7, 8] to the federated

learning setting which sends only a single bit per model param-

eter for aggregation instead of their actual value. This extreme

quantization reduces the required updates’ bandwidth by a factor

of 32, while still providing similar performance to the standard

centralized federated learning approach. As only a small random

subset of participants send their updates at each federated round,

our proposal is not only more bandwith efficient but also provides

stronger robustness and privacy guarantees than the standard

signSGD algorithm (see Section 6 for a detailed comparison).

- We propose a privacy-preserving federated signSGD extension

which provides client-level Differential Privacy (DP). Specifically,

it hides any information that is unique to a client’s training data,

regardless whether it is about a single or multiple records, but still

allows learning about characteristics that are common among

multiple clients’ training data. We show that our DP learning

protocol, whose convergence rate is also computed analytically,

produces models with an accuracy comparable to the non-private

federated case, even with stringent privacy guarantees (e.g., Y =

1).

- In order to diminish the communication costs of our DP algo-

rithm, we propose a novel discretized and distributed version of

the Gaussian Mechanism. In particular, as opposed to the stan-

dard Gaussian Mechanism [16], the noise values come from a

discretized domain and are tightly concentrated around its mean

depending on the desired privacy guarantee Y. As a result, these

values can be encoded with fewer bits than if they came from a

continuous Gaussian distribution.

https://blog.chromium.org/2019/08/potential-uses-for-privacy-sandbox.html
https://www.melloddy.eu


Algorithm 1: StdFed: Federated Learning

1 Server:
2 Initialize common model 𝑤0

3 for 𝑡 = 1 to𝑇cl do
4 Select K clients uniformly at random

5 for each client 𝑘 in K do
6 Δw𝑘𝑡 = Client𝑘 (w𝑡−1)
7 end

8 w𝑡 = w𝑡−1 +
∑
𝑘

|𝐷𝑘 |∑
𝑗 |𝐷 𝑗 |

Δw𝑘𝑡
9 end

Output: Global model w𝑡
10

11 Client𝑘 (w𝑘𝑡−1) :
12 w𝑘𝑡 = SGD(𝐷𝑘 ,w𝑘𝑡−1,𝑇gd)

Output: Model update (w𝑘𝑡 −w𝑘
𝑡−1)

- We experimentally evaluate the robustness of our schemes by im-

plementing and testing several State-of-the-Art security attacks

such as model degradation (where the adversary aims at modify-

ing the global model) or backdoor inclusion attacks (where the

adversary aims at inserting hidden backdoors). We show that,

due to the quantization of model updates, the non-private feder-

ated signSGD protocol, called SignFed, is more resilient to these

attacks than the standard Federated Learning scheme. However,

its differentially private variant turns out to be more vulnerable

to the security attacks. Indeed, the attacks are inherently con-

cealed by the noise which is introduced to guarantee Differential

Privacy.

Organization: The paper is structured as follows. Section 2

details the preliminaries including the basic federated learning al-

gorithm (StdFed) and Differential Privacy (DP). Section 3 describes

SignFed which is an adaption of signSGD [8] to the federated learn-

ing setting. The performance of SignFed and StdFed are compared

in Section 3.3. A DP learning protocol for client-level privacy (DP-

SignFed) is presented in Section 4, whose performance are evaluated

in Section 4.3. The resistance of our protocols against various secu-

rity attacks is studied in Section 5. Section 6 compares our proposal

with prior work, and finally Section 7 provides a summary and

additional discussions about the proposed algorithms.

2 BACKGROUND
2.1 Federated Learning (StdFed)

Algorithm 2: Stochastic Gradient Descent
Input: 𝐷 : training data,𝑇gd : local epochs, w : weights

1 for 𝑡 = 1 to𝑇gd do
2 Select batch B from 𝐷 randomly

3 w = w − [∇𝑓 (B;w)
4 end
Output: Model w

In federated learning [26, 35], multiple parties (clients) build a

commonmachine learningmodel on the union of their training data

without sharing themwith each other. At each round of the training,

some clients retrieve the global model from the parameter server,

update the global model based on their own training data, and

send back their updated model to the server. The server aggregates

the updated models of all clients to obtain a global model that is

re-distributed to some selected parties in the next round.

In particular, a subset K of all 𝑁 clients are randomly selected

at each round to update the global model, and 𝐶 = |K|/𝑁 denotes

the fraction of selected clients. At round 𝑡 , a selected client 𝑘 ∈ K
executes𝑇gd local gradient descent iterations on the commonmodel

w𝑡−1 using its own training data 𝐷𝑘 (𝐷 = ∪𝑘∈K𝐷𝑘 ), and obtains

the updated model w𝑘𝑡 , where the number of weights is denoted by

𝑛 (i.e., |w𝑘𝑡 | = |Δw𝑘𝑡 | = 𝑛 for all 𝑘 and 𝑡 ). Each client 𝑘 submits the

update Δw𝑘𝑡 = w𝑘𝑡 − w𝑘
𝑡−1 to the server, which then updates the

common model as follows: w𝑡 = w𝑡−1 +
∑
𝑘∈K

|𝐷𝑘 |∑
𝑗 |𝐷 𝑗 |

Δw𝑘𝑡 , where
|𝐷𝑘 | is known to the server for all 𝑘 (a client’s update is weighted

with the size of its training data). The server stops training after

a fixed number of rounds 𝑇cl, or when the performance of the

common model does not improve on a held-out data.

Note that each 𝐷𝑘 may be generated from different distributions

(i.e., Non-IID case), that is, any client’s local dataset may not be

representative of the population distribution [26]. This can happen,

for example, when not all output classes are represented in every

client’s training data. The federated learning of neural networks is

summarized in Alg. 1. In the sequel, each client is assumed to use

the same model architecture.

The motivation of federated learning is three-fold: first, it aims

to provide confidentiality of each participant’s training data by

sharing only model updates instead of potentially sensitive training

data. Second, in order to decrease communication costs, clients can

perform multiple local SGD iterations before sending their update

back to the server. Third, in each round, only a few clients are

required to perform local training of the common model, which not

only further diminishes communications costs but also increases

robustness against temporary client failures and hence makes the

approach especially appealing with large number of clients.

However, several prior works have demonstrated that model

updates do leak potentially sensitive information [28, 31]. Hence,

simply not sharing training data per se is not enough to guarantee

their confidentiality.

2.2 Differential Privacy
Differential privacy allows a party to privately release information

about a dataset: a function of an input dataset is perturbed, so that

any information which can differentiate a record from the rest of

the dataset is bounded [16].

Definition 1 (Privacy loss). Let A be a privacy mechanism
which assigns a value Range(A) to a dataset 𝐷 . The privacy loss of
A with datasets 𝐷 and 𝐷 ′ at output 𝑂 ∈ Range(A) is a random
variable P(A, 𝐷, 𝐷 ′,𝑂) = log

Pr[A(𝐷)=𝑂 ]
Pr[A(𝐷′)=𝑂 ] where the probability is

taken on the randomness of A.

Definition 2 ((𝜖, 𝛿)-Differential Privacy [16]). A pri-
vacy mechanism A guarantees (Y, 𝛿)-differential privacy if for
any database 𝐷 and 𝐷 ′, differing on at most one record,
Pr𝑂∼A(𝐷) [P(A, 𝐷, 𝐷 ′,𝑂) > Y] ≤ 𝛿 .
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Algorithm 3: SignFed: Sign Federated Learning

1 Server:
2 Initialize common model 𝑤0

3 for 𝑡 = 1 to𝑇cl do
4 Select K clients uniformly at random

5 for each client 𝑘 in K do
6 s𝑘𝑡 = Client𝑘 (w𝑡−1)
7 end

8 w𝑡 = w𝑡−1 + 𝛾sign
(∑
𝑘 s𝑘𝑡

)
9 end

Output: Global model w𝑡
10

11 Client𝑘 (w𝑖𝑡−1) :
12 w𝑘𝑡 = SGD(𝐷𝑘 ,w𝑘𝑡−1,𝑇gd)

Output: Model update sign(w𝑘𝑡 −w𝑘
𝑡−1)

Intuitively, this guarantees that an adversary, provided with the

output of A, can draw almost the same conclusions (up to Y with

probability larger than 1 − 𝛿) about any record no matter if it is

included in the input ofA or not [16]. That is, for any record owner,

a privacy breach is unlikely to be due to its participation in the

dataset.

Moments Accountant. Differential privacy maintains composition;

the privacy guarantee of the 𝑘-fold adaptive composition of

A
1:𝑘 = A1, . . . ,A𝑘 can be computed using the moments accoun-

tant method [2]. In particular, it follows from Markov’s inequality

that Pr[P(A, 𝐷, 𝐷 ′,𝑂) ≥ Y] ≤ E[exp(_P(A, 𝐷, 𝐷 ′,𝑂))]/exp(_Y)
for any output 𝑂 ∈ Range(A) and _ > 0. This implies that A
is (Y, 𝛿)-DP with 𝛿 = min_ exp(𝛼A (_) − _Y), where 𝛼A (_) =

max𝐷,𝐷′ logE𝑂∼A(𝐷) [exp(_P(A, 𝐷, 𝐷 ′,𝑂))] is the log of the mo-

ment generating function of the privacy loss. The privacy guaran-

tee of the composite mechanism A
1:𝑘 can be computed using that

𝛼A1:𝑘
(_) ≤ ∑𝑘

𝑖=1 𝛼A𝑖
(_) [2].

Gaussian Mechanism. There are a few ways to achieve DP, including

the Gaussian mechanism [16]. A fundamental concept of all of them

is the global sensitivity of a function [16].

Definition 3 (Global 𝐿𝑝 -sensitivity). For any function 𝑓 :

D → R𝑛 , the 𝐿𝑝 -sensitivity of 𝑓 is Δ𝑝 𝑓 = max𝐷,𝐷′ | |𝑓 (𝐷) −
𝑓 (𝐷 ′) | |𝑝 , for all 𝐷,𝐷 ′ differing in at most one record, where | | · | |𝑝
denotes the 𝐿𝑝 -norm.

The Gaussian Mechanism [16] consists of adding Gaussian noise

to the true output of a function. In particular, for any function

𝑓 : D → R𝑛 , the Gaussian mechanism is defined as adding i.i.d

Gaussian noise with variance (Δ2 𝑓 ·𝜎)2 and zero mean to each coor-

dinate value of 𝑓 (𝐷). Recall that the pdf of the Gaussian distribution
with mean ` and variance b2 is

pdfG(`,b) (𝑥) =
1

√
2𝜋b

exp

(
− (𝑥 − `)2

2b2

)
(1)

In fact, the Gaussian mechanism draws vector values from a

multivariate spherical (or isotropic) Gaussian distribution which

is described by random variable G(𝑓 (𝐷),Δ2 𝑓 · 𝜎I𝑛), where 𝑛 is

omitted if its unambiguous in the given context.

3 SIGNFED: SIGN PROTOCOL IN THE
FEDERATED LEARNING SETTING

3.1 The SignFed Protocol
In the StdFed scheme, presented in Section 2.1, each selected client

sends its updated model to the central server. As discussed previ-

ously, this scheme has several drawbacks in terms of bandwidth,

robustness and privacy. We propose to limit these drawbacks by

quantizing the model weights as in [8]. More specifically, in the

new scheme, referred to as SignFed in the rest of this paper, each

client sends only the sign of every coordinate value in its param-

eter update vector. The server takes the sign of the sum of signs

per coordinate and scales down the result with a fixed constant

𝛾 (which is in the order of 10
−3

in practice) in order to limit the

contribution of each client and adjust convergence. This scaled

aggregated updates are added to the global model.

More specifically, SignFed (see Alg. 3) differs from the standard

federated scheme StdFed (see Alg. 1) as follows:

(1) Each client returns s𝑘𝑡 = sign(w − w𝑘
𝑡−1) instead of (w −

w𝑘
𝑡−1), where sign : R𝑛 → {−1, 1}𝑛 returns the sign of each

coordinate value of the input vector if it is non-zero and a

sign chosen uniformly at random otherwise.

(2) The server sums the sign vectors s𝑘𝑡 sent by each client 𝑘 and

computes the sign vector of this sum as sign
(∑

𝑘 s𝑘𝑡
)
. This

is equivalent to take the median of all clients’ signs at every

position of the update vectors. Unlike in Alg. 1, the update

s𝑘𝑡 is not weighted with client 𝑘’s data size |𝐷𝑘 |, since that
would require the client to send |𝐷𝑘 | to the server which

would enable the adversary to maliciously scale up its sign

vector by sending a fabricated size of its training data.

The extreme quantization performed by SignFed reduces the

communication costs of federated learning by a factor of 32 (since

only one bit is sent per parameter instead of 32 bits), and also, as we

will demonstrate later, improves its robustness against different at-

tacks aiming to maliciously manipulate the common model through

the updates. Note also that, if the quantized update vector is sparse,

other compression techniques can further improve communication

efficiency [21].

3.2 Experimental Set-up
This section describes the experimental set-up that are used to

evaluate the accuracy, security and privacy of our proposals in

the rest of the paper. The following datasets were used: MNIST,

Fashion-MNIST, IMDB, LFW and CIFAR which is augmented from

50,000 images to 500,000 (See Appendix A.9 for more details)

3.3 Performance evaluation
In this section, we compare the performance of SignFed and StdFed

using the same configuration; Table 16 summarizes the different

parameter values that were used for the different datasets. For

SignFed, 𝛾 , the learning rate, was set to 0.001 for all datasets3. 𝑁 ,

the total number of participant clients, was set to 1000. 𝐶 , the the

percentage of selected clients at each round, was set to 0.1. |𝐷𝑘 |
3
We noticed experimentally that 𝛾 should be selected between range 0.001 and 0.005.

And it should be increased when DP is used.
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is the training data size of client 𝑘 . |B|, the batch size, was set to

50 with CIFAR dataset, 25 with IMDB, 10 for MNIST and Fashion-

MNIST datasets.𝑇gd, the local gradient descent iterations per round

and per client, was set to 30, 30, 5 and 50 for MNIST, Fashion-MNIST,

IMDB and CIFAR, respectively. 𝑇cl, the number of rounds, was set

to 100 for the MNIST, Fashion-MNIST, IMDB datasets, and 400

for CIFAR. We use two optimizers: the stochastic gradient descent

(SGD) [14] with a learning rate ([) set to 0.215 and the adaptive

moment estimation (Adam) [20] [14] with a learning rate set to

0.001.

The global model accuracy of StdFed and SignFed on the CIFAR,

MNIST, Fashion-MNIST, IMDB datasets are compared in Table 1.

The results show that the accuracy performance of both schemes

over the four datasets are very similar despite the severe parameter

quantization.

The bandwidth consumption is calculated by measuring the aver-

age number of bits sent by a client to the server. This is computed as

(𝐶× best_round ×model_size) for SignFed, and (32×𝐶× best_round

× model_size) for StdFed, where model_size is the number of the

model parameters and best_round represents the round when we

get the best accuracy over 𝑇cl rounds.

4 PRIVACY-PRESERVING SIGNFED
In SignFed, a participant only sends the signs of its updates, as

opposed to their actual value, hence it intuitively reveals less infor-

mation about the client’s dataset than the original StdFed scheme.

In order to experimentally validate this intuition, we implemented

the inference attack described in [28] on StdFed and SignFed
4
. The

results, which are not reported in this paper for lack of space, clearly

validated our intuition (the attack accuracy dropped from 92% for

StdFed to 50% for SignFed). Although these results are very promis-

ing and might confirm that privacy is preserved in practice, it does

not provide any strong guarantees. In order to obtain theoretically

private schemes, we extend SignFed with Differential Privacy. Our

goal is to design differentially private schemes that are efficient in

terms of accuracy and bandwidth (even for small Y values).

4.1 Privacy Model
We consider an adversary, or a set of colluding adversaries, who can

access any update vector sent by the server or any clients at each

round of the protocol. A plausible adversary is a participating entity,

i.e. a malicious client or server, that wants to infer the training data

used by other participants. The adversary is passive (i.e., honest-
but-curious), that is, it follows the learning protocol faithfully.

Different privacy requirements can be considered depending on

what information the adversary aims to infer. In general, private

information can be inferred about:

• any record (user) in any dataset of any client (record-level privacy),
• any client/party (client-level privacy).

To illustrate the above requirements, suppose that several banks

build a common model to predict the creditworthiness of their

customers. A bank certainly does not want other banks to learn

the financial status of any of their customers (record privacy) and

4
A model is trained for gender classification on the LFW dataset. The adversary’s goal

is to infer from the model updates whether a specific group of individuals in a client’s

dataset are black.

perhaps not even the average income of all their customers (client

privacy).

Record-level privacy is a standard requirement used in the pri-

vacy literature and is usually weaker than client-level privacy. In-

deed, client-level privacy requires to hide any information which

is unique to a client including perhaps all its training data.

We aim at developing a solution that provides client-level pri-
vacy and is also bandwidth efficient. For example, in the scenario of

collaborating banks, we aim at protecting any information that is

unique to each single bank’s training data. The adversary should

not be able to learn from the received model or its updates whether

any client’s data is involved in the federated run (up to Y and 𝛿). We

believe that this adversarial model is reasonable in many practical

applications when the confidential information spans over multiple

samples in the training data of a single client (e.g., the presence of

a group a samples, such as people from a certain race). Differential

Privacy guarantees plausible deniability not only to any groups

of samples of a client but also to any client in the federated run.

Therefore, any negative privacy impact on a party (or its training

samples) cannot be attributed to their involvement in the protocol

run.

4.2 Client-Based Privacy Preserving Federated
Learning (DP-SignFed)

To guarantee differential privacy per client, every client should add

enough noise to its update locally such that the server cannot learn

any client-specific information from the noisy update. However,

this approach (aka, local differential privacy [17]) requires so much

perturbation that it is impractical if the number of clients is limited.

Instead, likewise [38], we follow a different approach where clients

themselves add noise in a distributed manner so that the aggregated

updates are sufficiently noised to have meaningful differential pri-

vacy. To this end, individual noisy updates are encrypted with a

simple and efficient encryption scheme taken from [4, 11]. The pur-

pose of this encryption is to prevent the adversary from accessing

the individual (and weakly-noised) update per client but only their

sum over all clients which is in turn sufficiently noised to guarantee

DP for any client.

Specifically, each client 𝑘 first computes the gradient update

Δw𝑘𝑡 (in Line 12 of Alg. 4) and then takes the sign vector of this

update. Then, a random noise share 𝜌𝑘 is added to the sign vector

sign(Δw𝑘𝑡 ) so that
∑
𝑘∈K sign(Δw𝑘𝑡 ) + 𝜌𝑘 satisfies differential pri-

vacy. A simple solution is that 𝜌𝑖 ∼ G(0,
√
𝑛𝜎I/

√
|K|), which means

that

∑
𝑘∈K sign(Δw𝑘𝑡 ) +

∑
𝑘∈K 𝜌𝑘 =

∑
𝑘∈K sign(Δw𝑘𝑡 ) +G(0,

√
𝑛I𝜎)

as the sum of Gaussian random variables also follows Gaussian

distribution
5
. Indeed, the variance of the Gaussian noise has to be

proportional to the 𝐿2-sensitivity of the sign vector which is no

more than

√
𝑛, where 𝑛 is the number of parameters.

However, recall that the adversary can access sign(Δw𝑘𝑡 ) + 𝜌𝑘 ,

which means that, if |K| is too large, 𝜌𝑘 is likely to be small allowing

the adversary to learn sign(Δw𝑘𝑡 ) + 𝜌𝑘 very accurately. For this rea-

son, each client 𝑘 encrypts sign(Δw𝑘𝑡 ) +𝜌𝑘 and sends the encrypted
result to the aggregator. After summing all the encrypted values,

5
More precisely,

∑
𝑖 G(a𝑖 , b𝑖 ) = G

(∑
𝑖 a𝑖 ,

√∑
𝑖 b

2

𝑖

)
4



Table 1: Model accuracy and average bandwidth consumption from a client to the server (Megabytes) based on the best round
(over 𝑇cl rounds) in terms of accuracy.

Dataset

StdFed SignFed

Acc round Cost Acc round Cost

CIFAR 0.86 375 205.46 0.83 386 6.61

MNIST 0.99 88 58.55 0.98 48 1.0

Fashion-MNIST 0.89 90 59.88 0.87 68 1.41

IMDB 0.88 84 13.53 0.85 91 0.46

the server obtains

∑
𝑘 EncK𝑘 (sign(Δw𝑘𝑡 ) + 𝜌𝑘 ) =

∑
𝑘 sign(Δw𝑘𝑡 ) +

G
(
0,
√
𝑛𝜎I

)
where EncK𝑘 (sign(Δw𝑘𝑡 ) + 𝜌𝑘 ) = sign(Δw𝑘𝑡 ) + 𝜌𝑘 +K𝑘

mod 𝑚 and

∑
𝑘 K𝑘 = 0 (see [4, 11] for details). Here, modulo is

taken element-wise and𝑚 = 2
⌈log

2
(max𝑘 | |1+𝜌𝑘 | |∞ |K |) ⌉

. Therefore,

the server can only access the aggregate which is sufficiently noised

to guarantee differential privacy; any client-specific information

that could be learnt from the noisy aggregate is quantified by the

moments accountant described in Section 2.2. To make learning

more resilient to perturbation, the server takes the sign of the sum

of updates and scales the result with 𝛾 < 1 which is crucial to

achieve convergence in practice especially if

√
𝑛𝜎 is large.

Unfortunately, the above simple approach is not bandwidth effi-

cient; adding noise from the continuous domain requires each noisy

update sign(Δw𝑘𝑡 ) + 𝜌𝑘 to be encoded as a floating-point number
6

(represented by at least 32 bits on a commodity hardware) no matter

that sign(Δw𝑘𝑡 ) would need only 1 bit per coordinate. Therefore,

the noisy update needs at least 32 times more data to be transferred

from a client to the server than with SignFed (in Alg. 3).

To alleviate the above bandwidth problem, each client 𝑘 gener-

ates a random integer from a discrete Gaussian distribution with

mean sign(Δw𝑘𝑡 ), encrypts this random integer, and sends the re-

sult for aggregation. Since the discrete Gaussian random variable

has an integer value and is concentrated around its mean, its value

can be encoded with fewer bits than a floating-point number. The

new learning algorithm, called DP-SignFed, guarantees differential

privacy for any client and is summarized in Alg. 4.

In what follows, we first describe the Discrete Gaussian Mecha-

nism (DGM), which is used in DP-SignFed, and prove that it practi-

cally provides the same privacy guarantee as the continuous Gauss-

ian Mechanism (GM) if its variance is sufficiently large. This allows

us to precisely quantify the privacy guarantee of DP-SignFed. Fi-

nally, we show that using DGM instead of (continuous) GM in

DP-SignFed reduces the communication overhead by roughly 40%.

4.2.1 Discrete Gaussian Mechanism (DGM). The discrete Gaussian
distribution has probability mass function

pmfDG(`,b) (𝑥) = 𝑍−1
exp(−(𝑥 − `)2/2b2) (2)

where 𝑍 =
∑
𝑥 ∈Z exp(−(𝑥 − `)2/2b2). Note that ` ∈ R but the

support of DG is always Z. Although 𝑍 is infeasible to compute,

there are several efficient techniques to sample from the discrete

Gaussian distribution [29].

The next lemma shows that the pmf of the discrete Gaussian

distribution can be almost perfectly approximated by its continuous

counterpart if b is large enough.

6
and then as a large integer for encryption

Lemma 1. Let pmfDG(`,b) (𝑥) and pdfG(`,b) (𝑥) be as defined in

Eq. (2) and Eq. (1), respectively, and ^ (b) = 2𝑒−2𝜋
2b2

1−𝑒−6𝜋2b2
. Then, 1 −

^ (b) ≤ pdfG(`,b ) (𝑥)
pmfDG(`,b ) (𝑥)

≤ 1 + ^ (b) for 𝑥 ∈ Z.

The proof can be found in Appendix A.1.

The multivariate spherical version of DG can be defined anal-

ogously to the spherical Gaussian distribution, that is, if z ∼
DG(𝝁, b), then 𝑧𝑖 ∼ DG(`𝑖 , b) independently for each 𝑖 .

The Discrete Gaussian Mechanism (DGM) is defined analogously

to the (continuous) Gaussian Mechanism except that it uses discrete

Gaussian noise instead of its continuous counterpart for perturba-

tion. The next theorem shows that the moments of DGM can be

tightly upper bounded by that of the continuous Gaussian mecha-

nism if b is large enough, and hence the privacy guarantee of DGM

can be efficiently and accurately approximated.

Let[
G
0
(𝑥 |b) = pdfG(0,b) (𝑥) and[

G
1
(𝑥 |b) = (1−𝐶)pdfG(0,b) (𝑥)+

𝐶pdfG(1,b) (𝑥) where𝐶 is the sampling probability of a single client

in a single round. Let

𝛼G (_ |𝐶) = logmax(𝐸1 (_, b,𝐶), 𝐸2 (_, b,𝐶)) (3)

where 𝐸1 (_, b,𝐶) =
∫
R
[
G
0
(𝑥 |b,𝐶) ·

(
[
G
0
(𝑥 |b,𝐶)

[
G
1
(𝑥 |b,𝐶)

)_
𝑑𝑥 and

𝐸2 (_, b,𝐶) =
∫
R
[
G
1
(𝑥 |b,𝐶) ·

(
[
G
1
(𝑥 |b,𝐶)

[
G
0
(𝑥 |b,𝐶)

)_
𝑑𝑥 . 𝛼DG (_ |𝐶) is defined

analogously to 𝛼G (_ |𝐶).

Theorem 1 (Privacy of DGM). 𝛼DG (_ |𝐶) ≤ 𝛼G (_ |𝐶) +
log

(
(1+^ (b))_
(1−^ (b))_+1

)
for any𝐶 , where ^ (b) is defined in Lemma 1. There-

fore, DGM is (min_

(
𝛼G (_ |𝐶) + log

(
(1+^ (b))_
(1−^ (b))_+1

))
−log𝛿)/_, 𝛿)-DP.

The proof can be found in Appendix A.2. Given a fixed value of

𝛿 , Y is computed numerically as in [2, 30].

4.2.2 Privacy of DP-SignFed. As shown in Alg. 4, each client 𝑘 gen-

erates a random integer vector z𝑘 ∼ DG(sign(Δw𝑘𝑡 ),
√
𝑛𝜎I/

√
|K|)

in DP-SignFed. Then, every client sends the encrypted result

EncK𝑘 (z𝑘 ) to the aggregator. After summing all the encrypted inte-

gers, the server obtains∑
𝑘

EncK𝑘 (z𝑘 ) =
∑
𝑘

z𝑘 =
∑
𝑘

DG(sign(Δw𝑘𝑡 ),
√
𝑛𝜎I/

√
|K|) (4)

The next theorem, proved in Appendix A.3, shows that DP-

SignFed is differentially private, supposing that the adversary

can only access

∑
𝑘 DG(sign(Δw𝑘𝑡 ),

√
𝑛𝜎I/

√
|K|) except any of its

members DG(sign(Δw𝑘𝑡 ),
√
𝑛𝜎I/

√
|K|).
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Algorithm 4: DP-SignFed: Federated Learning with Client Privacy

1 Server:
2 Initialize common model 𝑤0

3 for 𝑡 = 1 to𝑇cl do
4 Select K clients randomly

5 for each client 𝑘 in K do
6 Δw𝑘𝑡 = Client𝑘 (w𝑡−1)
7 end

8 w𝑡 = w𝑡−1 + 𝛾 · sign
(∑
𝑘 Δw𝑘𝑡

)
9 end

10 Client𝑘 (w) :
11 w𝑘

𝑡−1 = w
12 Δw𝑘𝑡 = SGD(𝐷𝑘 ,w𝑘−1𝑡 ,𝑇gd) −w𝑘

𝑡−1
Output: Enc𝐾𝑘

(
DG

(
sign

(
Δw𝑘𝑡

)
,
√
𝑛I𝜎/

√
|𝐾 |

))

Theorem 2 (Privacy of DP-SignFed). For any 𝛿 > 0, DP-SignFed

is (min_ (𝑇 ·
(
𝛼G (_ |𝐶) + log

(
(1+^ (

√
𝑛𝜎))_

(1−^ (
√
𝑛𝜎))_+1

(
1+a
1−a

)
3

))
−log𝛿)/_, 𝛿)-

DP, where 𝜎 ≥
√
|K| ln(2 + 2/a)/2𝑛𝜋2 and ^ is defined in Lemma

1.

Again, given a fixed value of 𝛿 , Y is computed numerically as in

[2, 30].

4.2.3 Communication overhead. The domain of z in Eq. (4) is the

support of DG which is still unbounded. This means that the size

of the encrypted text can be very large though with exponentially

small probability. Indeed, | |z𝑘 | |∞ is unbounded and hence mod-

ulo𝑚 = 2
⌈log

2
(max𝑘 | |z𝑘 | |∞ |K |) ⌉

has to be large. To overcome this

problem, we choose modulo𝑚 to be so large that the probability

that 2
⌈log

2
(max𝑘 | |z𝑘 | |∞ |K |) ⌉

is larger than𝑚 is negligible. For this

purpose, we rely on the following concentration inequality of the

discrete Gaussian distribution.

Lemma 2 ([29], Lemma 2.2). For anya > 0, b >
√
ln(2 + 2/a)/2𝜋2,

and 𝑡 > 0, Pr𝑥∼DG(`,b) [|𝑥 − ` | ≥ 𝑡 · b] ≤ 2𝑒−𝑡
2/2 · 1+a

1−a .

Lemma 2 implies that if b =
√
𝑛𝜎/

√
|K| > 3.51 then 1+a

1−a < 3

2
and

Prz∼DG(𝝁,
√
𝑛𝜎I/

√
|K |) [| |z − 𝝁 | |∞ ≥ 𝑡

√
𝑛𝜎] ≤ 3𝑛𝑒−|K |𝑡

2/2
after ap-

plying the union bound. For example, if𝑚 = 2
⌈log

2
(12

√
𝑛𝜎 |K |) ⌉

(i.e.,

𝑡 = 12) then the probability that | |z𝑘 − 𝝁𝑘 | |∞ cannot be bounded by

12

√
𝑛𝜎 per client is less than 2

−80
even if |K| = 1 and 𝑛 = 10

7
. Thus,

a client needs to transfer 𝑛 · log
2

(
2
⌈log

2
( (12

√
𝑛𝜎+max𝑘 | |𝝁𝑘 | |∞) |K |) ⌉

)
bits in total to the aggregator. For example, if |K| = 100,

max𝑘 | |𝝁𝑘 | |∞ = 1, 𝜎 = 1 (i.e., Y ≈ 0.2), then log
2
𝑚 = 22. By

contrast, if noise was generated from the continuous domain, then

log
2
𝑚 = 32 which means that DGM reduces the communication

overhead by roughly 32%.

Notice that if Y or 𝛿 is smaller (i.e., there is stronger privacy

guarantee), then 𝜎 is larger which implies that𝑚 also increases,

and hence more bits need to be transferred to the server per param-

eter. This results in a trade-off between Differential Privacy and

bandwidth efficiency.

4.3 Performance evaluation
The performance of DP-SignFed is compared with DP-StdFed in

Table 2 and 3. DP-StdFed is an extension of StdFed to provide

client-level differential privacy. Specifically, in DP-StdFed, the ran-

domly selected clients first clip their model update vector to have a

bounded 𝐿2-norm
7
, add continuous Gaussian noise to the clipped

update vector, and then transfer the non-quantized noisy model

update to the server (see Alg. 5 in the Appendix of [3] for more

details). The configurations of these protocols are summarized in

Table 17 of [3].

Table 2 and 3 show the best model accuracy observed over 200

rounds with each algorithm on the MNIST and Fashion-MNIST

datasets, respectively. DP-StdFed provides the best accuracy; for

MNIST, it is 86-93%, and for Fashion-MNIST, it is 63-78% depending

on the privacy parameter Y. The performance degradation of DP-

SignFed compared to DP-StdFed is 0.02 on MNIST and 0-0.07 on

Fashion-MNIST. As expected, weaker privacy requirement (i.e.,

larger Y) needs smaller noise magnitude and hence better accuracy

for all algorithms.

The communication cost of DP-SignFed is 66% of that of DP-

StdFed. Specifically, while DP-StdFed needs 32 bits per parameter,

DP-SignFed requires 21-22 bits depending on the value of Y8. If Y

is smaller, the variance of the noise is larger, and hence more bits

are necessary to encode the noisy signs. Notice that even if we use

early stopping and record the best accuracy sooner than 200 rounds,

it will neither decrease the communication cost nor increase the

privacy guarantee. Indeed, one has to execute all the 200 rounds in

the first place to identify the best performing round.

Table 2: Model accuracy and communication cost on MNIST
dataset. We give the communication cost per parameter
value (bits/parameter) for any value of Y.

Y = 1 Y = 2 Y = 4

Acc Cost Acc Cost Acc Cost

DP-StdFed 0.86 32 0.92 32 0.93 32

DP-SignFed 0.87 22 0.90 21 0.91 21

Table 3: Model accuracy and communication cost with
Fashion-MNIST dataset. We give the communication cost
per parameter value (bits/parameter) for any value of Y.

Y = 1 Y = 2 Y = 4

Acc Cost Acc Cost Acc Cost

DP-StdFed 0.63 32 0.74 32 0.78 32

DP-SignFed 0.63 22 0.70 21 0.73 21

7
The sensitivity 𝑆 =

√
𝑛 and 𝛾 = 0.005 for DP-SignFed. For DP-StdFed, the server

computes the median 𝐿2-norm value over 𝑁 𝐿2-norm values received during an

additional initialization round. Hence, 𝑆 is set to 1.73 and 2.15 for MNIST and Fashion-

MNIST, respectively.

8
It is computed from log

2

(
2
⌈log

2
( (12

√
𝑛𝜎+max𝑘 | |𝝁𝑘 | |∞) |K|) ⌉

)
where 𝜎 is obtained from

Y and 𝛿 = 10
−5

using the moments accountant. This ensures that the magnitude of

the noisy update per model parameter is less than the modulus 𝑛 with probability at

most 2
−80

(see Section 4.2.3).
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5 SECURITY ANALYSIS
This section evaluates the robustness of SignFed, DP-SignFed and

DP-StdFed against several state-of-the-art security attacks.

5.1 Security Model
Adversarial model: In this work, we assume that the adversary

controls a certain fraction of the participating entities/clients at

each round of the training, which means it can access and modify

these clients’ training data as well as all parameters of their local

model. We, however, assume that the server is honest (i.e., it does not
manipulate the aggregate or the update vector sent by any client).

The set of all malicious nodes is denoted byM.

We consider two types of adversary. The first one aims at de-

grading the overall model performance (i.e., increase the average

misclassification rate). The second one aims at causing targeted

misclassification on some particular classes of samples by injecting

backdoors into the model during the training phase. These adver-

saries are active in the sense that they may not follow the learning

protocol faithfully.

Next, we detail the attacks considered in our work.

5.1.1 Overall Model Degradation Attacks.

Random Update Attack. In this attack, malicious clients, whose

numbers might vary as shown later, use random updates. More

specifically, instead of the true model update Δw𝑘𝑡 , each mali-

cious client 𝑘 generates a random update Δŵ𝑘𝑡 in all time slots

𝑡 [10], where Δŵ𝑘𝑡 is drawn from an isotropic Gaussian distribu-

tion G(0, 𝜎AdvI) with mean zero and variance 𝜎2Adv. Each malicious

party selects the noise independently (i.e., they do not collude).

Gradient Ascent Attack. In this attack, malicious clients aim

at maximizing the loss by performing gradient ascent instead

of descent on their own training data. In particular, every ma-

licious client 𝑘 ∈ M updates the model parameters locally as

w𝑘
ℓ
= w𝑘

ℓ−1 + [Adv∇𝑓 (∪𝑘∈M𝐷𝑘 ;w), where [Adv is set in order to

suppress the updates of honest clients and to maximize the impact

of their own update on the common model. Notice that this attack

assumes colluding malicious clients (i.e., every malicious client sends

exactly the same update computed on the union of their training

data). This attack attempts to maximize the average misclassifica-

tion rate of the common model, and is more effective if the number

of malicious parties is large, or the training data of the malicious

and benign nodes come from similar distributions.

We note that Gradient Ascent Attack is equivalent to the Sign

Inversion Attack for SignFed, described in [8], if 𝑇gd = 1 (i.e., each

client computes its update using a single mini-batch in every round).

In Sign Inversion Attack, all malicious clients faithfully compute

the sign of their model update, but then send the inverted signs to

the server for aggregation.

5.1.2 Backdoor Attacks (Targeted Attacks). The goal of these at-
tacks is to selectively degrade the accuracy of the common model

with respect to only a few tasks. As opposed to the overall model

degradation attacks, they generate targeted misclassification while

preserving the model convergence as well as a high average pre-

diction accuracy except, of course, for the targeted tasks, called

backdoor classes.

We distinguish two types of backdoors: In-backdoors and Out-

backdoors.

- In-backdoor Attacks: In-backdoor attacks [9] are created for a

class of samples that exists in the training data of some parties.

Specifically, for some training samples 𝐷aux ⊆ 𝐷𝑘 , each adver-

sary uses output labels that are different from their true labels.

Let 𝑦′ denote the adversarially chosen label for a training sample

(𝑥,𝑦) ∈ 𝐷𝑎𝑢𝑥 , and 𝐷
′
𝑎𝑢𝑥 denotes the set of all relabelled samples

(i.e., (𝑥,𝑦′) ∈ 𝐷 ′
𝑎𝑢𝑥 ). The new objective is to minimize the loss

𝑓 ((𝐷𝑘 \ 𝐷𝑎𝑢𝑥 ) ∪ 𝐷 ′
𝑎𝑢𝑥 ;w).

- Out-backdoor Attacks: As opposed to in-backdoors, out-backdoors
are created from samples that do not exist in the training data

of any honest clients and are relabelled to have a class that does
exist in their training data. Specifically, let 𝐿 denote the set of

labels that exist in 𝐷 = ∪𝑘𝐷𝑘 . The adversary creates 𝐷 ′′
𝑎𝑢𝑥 such

that, for each (𝑥,𝑦) ∈ 𝐷 ′′
𝑎𝑢𝑥 , 𝑥 ∉ 𝐷 and 𝑦 ∈ 𝐿. The new objective

is to minimize the loss 𝑓 (𝐷𝑘 ∪ 𝐷 ′′
𝑎𝑢𝑥 ;w).

To illustrate the difference between in- and out-backdoors, con-

sider a model which recognizes dogs and rabbits in the input photos.

If the adversary relabels all photos of dogs as ’rabbit’ in its training

data, then it is an in-backdoor attack. However, if the adversary

adds new photos of frogs to its training data and relabels them as

’dog’, then this is an out-backdoor attack.

Out-backdoors are more difficult to detect than in-backdoors as

they can come from a much larger set of samples, which are poten-

tially unknown to the protocol participants. Hence, out-backdoors

are especially severe in security-related applications such as in

access control.

As per [9], the adversary also uses explicit boosting to outbalance

the combined effect of benign model updates. For both in- and

out-backdoors, the adversary boosts Δw𝑡Adv at time 𝑡 by sending

[AdvΔw𝑡Adv (` > 1) in order to suppress the model updates of

benign parties. Importantly, [Adv should be large enough in order

to achieve misclassification of the backdoor class but also small

enough to ensure the convergence of the common model and hence

hide the attack.

5.2 SignFed Security Analysis
In this section, we evaluate the robustness of SignFed against the

security attacks presented previously.

For the Overall Model Degradation attacks, different percentage

of malicious nodes are considered, the MNIST and IMDB datasets

were used, and the same experimental setting as defined in Table 16

is used. The boosting parameter [Adv of the Gradient Ascent Attack

is set to 10 with MNIST dataset and 20 with the IMDB dataset (we

use the boosting only with StdFed). We also do not need to use

boosting for the Random Update Attack with StdFed as 𝜎Adv = 200

generates large noise which prevents the model convergence.

For the Backdoor attacks, the MNIST and CIFAR datasets were

used and the experimental setting is shown in Table 18. As backdoor

attacks, which aim at modifying the prediction of one particular

label while maintaining the global accuracy, are more difficult to

perform on binary classifiers, we switched to the CIFAR dataset

with a multiclass classifier. Furthermore, similarly to [9], we reduce

the total number of clients 𝑁 from 1000 to 10, we use different

percentages of malicious nodes: 10%, 20% and 40%, and all clients
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report their updates to the server at each round (i.e. 𝐶 = 1.0). The

malicious nodes collude by sharing their data for the training and

by sending the same update to the server.

5.2.1 Overall Model Degradation Attacks.

Random update. Table 4 and 5 depict the best accuracy of the

global model over 100 rounds according to the fraction of malicious

nodes in set K. The results show that SignFed is robust against

the random update attack even if 20% of all nodes are malicious,

while StdFed fails to converge even if 1% of all nodes are malicious.

Indeed, with 20% of malicious nodes, SignFed reaches an accuracy

of 98% and 86% for the MNIST and IMDB datasets, respectively.

On the contrary, StdFed fails to converge even with one malicious

node at each round. In fact, as we show in Appendix A.4, SignFed’s

convergence rate is𝑂

(
1

(1−𝛼)
√
𝐶𝑁𝑇cl

)
, where 𝛼 denotes the fraction

of malicious clients. This is in contrast to the sign inversion attack

detailed in [8], which has a convergence rate of 𝑂

(
1

(1−2𝛼)
√
𝐶𝑁𝑇cl

)
,

that is, convergence is only possible if less than half of the nodes

are malicious.

Table 4: Random update attack on SignFed and StdFed with
the MNIST dataset depending on the fraction of malicious
nodes.𝜎Adv = 200. The table represents the best accuracy over
100 rounds. "-" means that the algorithm does not converge.

10% 20% 40% 60%

StdFed - - - -

SignFed 0.98 0.98 0.94 -

Table 5: Random update attack on SignFed and StdFed with
the IMDB dataset depending on the fraction of malicious
nodes.𝜎Adv = 200. The table represents the best accuracy over
100 rounds. "-" means that the algorithm does not converge.

10% 20% 40% 60%

StdFed - - - -

SignFed 0.86 0.86 0.54 -

Gradient Ascent Attack. Table 6 and 7 show the best accuracy

of the global model over 100 rounds when the adversary aims to

degrade the average model performance by performing gradient

ascent on its own training data. With the MNIST dataset (in Table

6), SignFed reaches an accuracy of 98% and 79% for 20% and 40% of

malicious nodes, respectively, while StdFed does not converge even

if only 10% of the nodes are malicious. For IMDB dataset, SignFed

reaches an accuracy of 86% and 72% for 10% and 20% of malicious

nodes, respectively, while StdFed fails to converge with only 10%

of malicious nodes. Indeed, StdFed does not converge even if we

have only one malicious node. The reason for this difference is that

malicious nodes can scale up their update with [Adv and hence

boost its effect on the global model. However, such adversarial

boosting does not work with SignFed as the trusted server accepts

only the values −1 and +1 in the update vectors. Therefore, a single

malicious client does not have larger impact on the global model

than any other honest client. To boost its impact, the adversary

can only increase the number of the malicious clients, as shown

by the experimental results. Since Gradient Ascent is equivalent to

Sign Inversion Attack if 𝑇gd = 1, the convergence rate of Gradient

Ascent in this restricted scenario is 𝑂

(
1

(1−2𝛼)
√
𝐶𝑁𝑇cl

)
as shown in

[8].

Table 6: Gradient ascent attack on SignFed and StdFed with
the MNIST dataset. [Adv = 10. The table represents the best
accuracy over 100 rounds. "-" means that the algorithm does
not converge.

10% 20% 40% 60%

StdFed - - - -

SignFed 0.98 0.98 0.79 -

Table 7: Gradient ascent attack on SignFed and StdFed with
the IMDB dataset. [Adv = 20. The table represents the best
accuracy over 100 rounds. "-" means that the algorithm does
not converge.

10% 20% 40% 60%

StdFed - - - -

SignFed 0.86 0.72 0.52 -

5.2.2 Backdoor attacks.

In-backdoor attack. Figure 1, 2 and Table 8, 9 show the effect of in-

backdoor attacks on the MNIST and CIFAR datasets, respectively. In

all experiments, there are ten clients, out of which different fraction

of malicious nodes are considered. Figure 1 depicts the accuracy

of the global model for MNIST, when the adversary relabels every

image of digit ’5’ to ’7’ in its local dataset. The red plots show the

accuracy of the global models, while the green ones display the

model accuracy only for the images with label ’5’ (i.e., accuracy

on the backdoor class). The results show that SignFed is robust as

both global model accuracy and model accuracy on the specific

in-backdoor class (digit 5) reach 99% by the end of the training.

By contrast, with StdFed, while the accuracy of the global model

converges slowly to 99%, the accuracy of the attacked model oscil-

lates. Similar behaviour can be observed in Figure 2 which plots

the accuracy on CIFAR dataset, where images of airplanes are re-

labelled to ’ship’ in the adversary’s training data. In these exper-

iments, StdFed fails to converge on the backdoor class, and its

accuracy on CIFAR never exceeds 55%.

The oscillation of accuracy with StdFed can be explained by the

nature of gradient descent and in particular backpropagation: when

the malicious client injects the backdoor, it scales its update with

[Adv. In the following round, honest clients scale up their gradients

on the backdoor samples (i.e., images of digit 5 inMNIST and images

of airplanes in CIFAR) in order to “fix” the classification error on

the backdoor class. In the next round, when the model is “fixed” (i.e.,

digit ’5’ is correctly predicted as ’5’ again), the adversary’s gradients

8



are increased again in order to re-inject the backdoor. This process

repeats till the end of the training. By contrast, and similarly to the

overall model degradation attacks, a malicious client cannot scale

up its update in SignFed as the update vectors must take value from

{−1, 1}𝑛 .
Table 8 shows the accuracy of the model on digit class 5 (in-

backdoor class) when we consider different percentage of malicious

nodes (values are chosen based on the best model accuracy over 40

rounds). The global accuracy of the model over all the classes is 99%

and the accuracy on class ’5’ is 99% independently of the number of

malicious nodes and regardless whether StdFed or SignFed is used.

As in the previous table, Table 9 shows the accuracy of the model

on airplane class (in-backdoor class) when we consider different

number of malicious nodes (values are chosen based on the best

global accuracy over 100 rounds). SignFed with 20% of malicious

nodes reaches a global accuracy of 84%, and an accuracy of 76%

on the in-backdoor class. However, StdFed with the same amount

of malicious nodes reaches 80% of global accuracy and 0% for the

airplane class. The results confirm the larger robustness of SignFed

over StdFed.
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Figure 1: In-backdoor attack on SignFed and StdFed with the
MNIST dataset, [Adv = 7. The figure displays the global accu-
racy convergence and the accuracy of the label "5" which is
under attack. 10% of the nodes are malicious.

Table 8: In-backdoor attack on SignFed and StdFed with the
MNIST dataset, [Adv is set to 7, 3, 1 for 10%, 20%, 40% respec-
tively. The table depicts the global accuracy convergence and
the accuracy of the label "5" which is under attack.

10% 20% 40%

SignFed
Model accuracy 0.99 0.99 0.99

Accuracy on digit class ’5’ 0.99 0.99 0.99

StdFed
Model accuracy 0.99 0.99 0.99

Accuracy on digit class ’5’ 0.99 0.99 0.99

Out-backdoor attack. The main goal of the out-backdoor attack

is to introduce fake information during the training by relabeling a

sample, whose true label is not a valid output of the global model.

We experimented this attack on MNIST by first excluding all sam-

ples with digit ’0’ in all clients’ training datasets. We then choose
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Figure 2: In-backdoor attack on SignFed and StdFed with CI-
FARdataset,[Adv = 7. The figure displays the global accuracy
convergence and the accuracy of the label "airplane" which
is under attack. 10% of the nodes are malicious.

Table 9: In-backdoor attack on SignFed and StdFed with the
CIFAR dataset, [Adv is set to 7, 4, 2 for 10%, 20%, 40% respec-
tively. The table depicts the global accuracy convergence and
the accuracy of the label "airplane" which is under attack.

10% 20% 40%

SignFed
Model accuracy 0.86 0.84 0.82

Accuracy on airplane class 0.80 0.76 0.57

StdFed
Model accuracy 0.86 0.80 0.81

Accuracy on airplane class 0.55 0 0

different fraction of malicious clients and relabeled the samples

with ’0’ to ’1’. Similarly, the attack is also implemented using the

CIFAR dataset by removing all airplanes from the clients’ training

data and relabelling all images of an airplane as ’ship’ in the ma-

licious clients’ datasets
9
. Note that since only malicious clients

have samples from the backdoor class, the detection of this attack

is quite challenging.

Tables 10 and 11 display the global model accuracy as well as

the model’s prediction rate to misclassify the out-backdoor class

to the targeted class (attack accuracy) for MNIST and CIFAR, re-

spectively (values are chosen based on the best model accuracy

over 100 rounds with MNIST and 300 rounds with CIFAR). We

consider different fraction of malicious nodes. The results show

that the model accuracy is similar for both datasets and schemes,

but SignFed is much more robust against the attacks than StdFed.

In fact, with 10% of malicious nodes, the attack accuracy on the

MNIST dataset is very low for SignFed (19%) whereas it is quite

large for StdFed (92%). We obtained similar pattern with the CIFAR

dataset although the accuracy difference is less significant (66%

versus 72%). This can be explained by the inherent bias present in

CIFAR. For example, planes are often misclassified as ’bird’ or ’ship’

even without the attack because of the similar background of these

images (i.e., sky is very similar to sea in many images). Indeed, the

probability of predicting an airplane as a ship without the attack is

9
we also removed all birds and trucks from the training data, in order to limit the bias

between classes.
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58%, and it only increases to 66% and 72% with SignFed and StdFed,

respectively.

As for in-backdoor attacks, SignFed mitigates out-backdoor at-

tacks because the adversary cannot scale up its update in order to

increase its impact on the global model.

Table 10: Out-backdoors attack on SignFed and StdFed with
the MNIST dataset. [Adv is set to 1 (no boosting). The table
displays the global model accuracy as well as the model’s
prediction rate to misclassify the out-backdoor class "0" to
the targeted class "1" (attack accuracy).

10% 20% 40%

SignFed
Model accuracy 0.99 0.99 0.99

Attack accuracy 0.19 0.87 0.99

StdFed
Model accuracy 0.99 0.99 0.99

Attack accuracy 0.92 0.99 0.99

Table 11: Out-backdoors attack on SignFed and StdFed with
theCIFARdataset.[Adv is set to 1 (no boosting). The table dis-
plays the global model accuracy as well as the model’s pre-
diction rate to misclassify the out-backdoor class "airplane"
to the targeted class "ship" (attack accuracy).

10% 20% 40%

SignFed
Model accuracy 0.91 0.91 0.92

Attack accuracy 0.66 0.74 0.93

StdFed
Model accuracy 0.92 0.92 0.90

Attack accuracy 0.72 0.86 0.95

5.3 DP-SignFed Security Analysis
Table 12 and 13 depict the accuracy of the in-backdoor class and

the misclassification rate of the out-backdoor class (best values are

chosen based on the global model accuracy over 200 rounds) when

backdoor attacks are launched against our DP schemes.

Malicious clients, whose fraction changes between 0.1 and 0.4,

omit to add noise to their own updates at each round. We use the

configuration described in Table 17 except for 𝛾 which is decreased

to 0.001, and 𝛿 is fixed to 10−5. In Fashion-MNIST dataset, at all mali-

cious nodes, all images of ’Sandal’ are relabelled to ’Sneaker’ for In-

backdoor, and all images of ’T-shirt/top’ are relabelled to ’Trouser’

for Out-backdoor attacks (only the malicious nodes have photos of

’T-shirt/top’). In addition, with DP-SignFed, each malicious node

calculates their updates, extracts the signs (sign : R𝑛 → {−1, 1}𝑛)
and then uses a boosting parameter [Adv = 5000 to boost their

updates before sending them back to the server for aggregation.

Indeed, as all honest clients send the noisy update in DP-SignFed,

the noise together with encryption can conceal the manipulation

of the malicious update vectors.

The results show that DP-SignFed are less robust against back-

door attacks than SignFed. On the MNIST dataset, model accuracy

on the in-backdoor class is 0% for DP-SignFed regardless of the

number of malicious nodes, and larger than 97% and 95% for Sign-

Fed, with 10% and 20% of malicious nodes, respectively. The same

tendency holds for Fashion-MNIST. Out-backdoor attacks are es-

pecially effective on MNIST (see Table 14 and Table 15); here, the

misclassification rate is more than 98% for DP-SignFed and 0-99%

for SignFed. When we consider only 2% of malicious nodes with

MNIST, the misclassification rate is 0% for SignFed and 76% for

StdFed (without boosting) with a global model accuracy of 98%

for both schemes. Indeed, StdFed is vulnerable to the outbackdoor

attack even if we have only a small number malicious node and

without using any boosting. For MNIST and Fashion-MNIST, Sign-

Fed is clearly superior to DP-SignFed regarding all attacks.

Finally, random update attack and gradient ascent attack are

mounted against DP-SignFed. The same parameters are used as

in the previous experiments. Malicious clients still omit to add

any noise to their own model updates. Instead, they boost their

signs updates with DP-SignFed ([Adv = 5000). The model fails to

converge even if only 1% of all selected nodes are malicious at each

round.

Table 12: In-backdoor attack on DP-SignFed and SignFed
with MNIST dataset. The table depicts the global accuracy
convergence and the accuracy of the label "5" which is un-
der attack.

10% 20% 40%

Y = 1

Model accuracy 0.89 0.90 0.90

Accuracy on digit class ’5’ 0 0 0

Y = 2

Model accuracy 0.89 0.90 0.90

Accuracy on digit class ’5’ 0 0 0

Y = 4

Model accuracy 0.89 0.90 0.90

Accuracy on digit class ’5’ 0 0 0

SignFed
Model accuracy 0.98 0.98 0.90

Accuracy on digit class ’5’ 0.97 0.95 0

Table 13: In-backdoor attack on SignFed and DP-SignFed
with Fashion-MNIST dataset. The table depicts the global ac-
curacy convergence and the accuracy of the label "Sandal"
which is under attack.

10% 20% 40%

Y = 1

Model accuracy 0.77 0.79 0.80

Accuracy on Sandal class 0 0 0

Y = 2

Model accuracy 0.77 0.79 0.80

Accuracy on Sandal class 0 0 0

Y = 4

Model accuracy 0.77 0.79 0.80

Accuracy on Sandal class 0 0 0

SignFed
Model accuracy 0.83 0.84 0.79

Accuracy on Sandal class 0.90 0.84 0

6 RELATEDWORK
Security of Federated Learning: Federated learning being a rela-
tively new concept, its security has not been studied so far. However,

most ML security attacks also apply to it. In this section, we mostly
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Table 14: Out-backdoors attack on DP-SignFed and SignFed
with MNIST dataset. The table displays the global model ac-
curacy as well as the model’s prediction rate to misclassify
the out-backdoor class "0" to the targeted class "1" (attack
accuracy).

2% 10% 20% 40%

Y = 1

Model accuracy 0.98 0.98 0.99 0.99

Attack accuracy 0.98 0.99 0.99 1

Y = 2

Model accuracy 0.98 0.98 0.98 0.99

Attack accuracy 0.99 0.98 0.99 0.99

Y = 4

Model accuracy 0.98 0.98 0.99 0.99

Attack accuracy 0.99 0.99 0.99 0.99

SignFed

Model accuracy 0.98 0.98 0.98 0.99

Attack accuracy 0 0.97 0.99 0.99

Table 15: Out-backdoors attack on DP-SignFed and FL-SIG
with Fashion-MNIST dataset. The table displays the global
model accuracy as well as themodel’s prediction rate tomis-
classify the out-backdoor class "T-shirt/Top" to the targeted
class "Trouser" (attack accuracy).

10% 20% 40%

Y = 1

Model accuracy 0.87 0.88 0.90

Attack accuracy 0.78 0.81 0.87

Y = 2

Model accuracy 0.88 0.88 0.90

Attack accuracy 0.78 0.82 0.85

Y = 4

Model accuracy 0.87 0.89 0.90

Attack accuracy 0.78 0.81 0.86

SignFed

Model accuracy 0.87 0.88 0.90

Attack accuracy 0 0.12 0.83

focus on integrity attacks [33]. These attacks include pollution and

backdoor attacks.
In pollution attacks, the adversary manipulates its training data

or the corresponding labels to poison the global model. In backdoor

attacks, the adversary manipulates its training data or the incoming

labels in order to insert backdoors into the global model. Indeed,

the goal of the adversary is to cause the misclassification of specific

labels in the global model while maintaining a good accuracy on

the non-targeted labels. In the context of Federated Learning, the

most efficient strategy consists of directly manipulating the model

updates.

The first backdoor attack designed for a federated learning en-

vironment was proposed in [6]. Here, the adversary scales up its

update in order to surpass the contributions of other honest par-

ticipants after aggregation. The goal of the attack is to alter the

common model so that it exhibits some adversarial behaviour (e.g.,

targeted misclassification). However, these attacks are effective only

in later rounds, when the global model has converged. Indeed, the

attack exploits the fact that when the global model has converged,

the updates of other honest clients will be smaller and then are

more easier to surpass. In contrast, the adversary in [9] boosts its

update enough to surpass the contributions of the honest clients

from the very first rounds even when the global model has not

converged.

The resilience of distributed implementations of Stochastic Gra-

dient Descent (SGD) against Byzantine failures is studied in [10].

Each Byzantine worker (among a set of workers) sends a random

vector drawn from a Gaussian distribution. The results show that

only a single Byzantine worker can prevent the traditional feder-

ated schemes such as StdFed from converging. In the same paper,

KRUM a Byzantine-resilient algorithm is proposed as an aggrega-

tion rule to select one honest update per round in an adversarial

environment.

In [8], the authors study the robustness and the tolerance of

signSGD/SIGNUM [7] with majority vote against network faults

and adversarial clients, where SIGNUM is the momentum equiva-

lent of signSGD (i.e., each client maintains a momentum and trans-

mits the sign momentum to the server at each iteration). In [8],

the authors show that signSGD is robust against sign inversion

attack, when each malicious client inverts the sign of the computed

gradient. The authors argue that this is the best possible attack

in a non-adaptive setting (i.e., when the adversary performs the

attack independently of the gradients it computed). In this paper,

we experimentally show that SignFed is also robust against other

adaptive attacks like various backdoor attacks [9].

Privacy of Federated Learning: There exist a few inference at-

tacks specifically designed against federated learning schemes. In

[28], the adversary’s goal is to infer whether records with a specific

property are included in the training dataset of the other partici-

pants (called batch property inference). The authors demonstrate

the attack by inferring whether black people are included in any

of the training datasets, where the common model is trained for

gender classification (i.e., the inferred property is independent of

the learning objective). The adversary is supposed to have access

to the aggregated model update of honest participants. In [31], the

proposed attack infers if a specific person is included in the train-

ing dataset of the participants (aka, Membership inference). The

adversary extracts the following features from every snapshot of

the common model, which is a neural network: output value, hid-

den layers, loss values, and the gradient of the loss with respect

to the parameters of each layer. These features are used to train

a membership inference model, which is a convolutional neural

network.

The concept of Client-based Differential Privacy has been intro-

duced in [27] and [18], where the goal is to hide any information

that is specific to a single client’s training data. These algorithms

bound and noise the contribution of a single client’s instead of a

single record in the client’s dataset. The noise is added by the server,

hence, unlike our solution, these works assume that the server is

trusted. Also, the noise is drawn from continuous distributions.

Bandwidth Optimization in Federated Learning: Different
quantization methods have been proposed to save the bandwidth

and reduce the communication costs in federated learning. They can

be divided into two main groups: unbiased and biased methods. The

unbiased approximation techniques use probabilistic quantization

schemes to compress the stochastic gradient and attempt to approx-

imate the true gradient value as much as possible [5][40][39][21].

However, biased approximations of the stochastic gradient can still
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guarantee convergence both in theory and practice [7, 25, 34]. In

signSGD [7], all the clients calculate the stochastic gradient based

on a single mini-batch and then send the sign vector of this gradi-

ent to the server. The server calculates the aggregated sign vector

by taking the median (majority vote) and sends the signs of the

aggregated signs back to each client.

The main differences between our scheme (SignFed) and

signSGD are as follows:

• SignFed aims to train a common model that is distributed to a

random subset of all clients in every round. However, in signSGD,

each client builds its own model locally and the server sends the

same aggregated model update to every client. Selecting only a

random subset of clients in each round has at least three benefits.

First, SignFed becomes more robust against temporary node fail-

ures. Second, SignFed reduces the communication costs upstream

to the server. Finally, sampling boosts privacy due to the uncer-

tainty that a specific user’s or client’s data is used for training or

not.

• In SignFed, each client can perform multiple SGD iterations lo-

cally using multiple mini-batches before computing the model

update. On the contrary, signSGD always performs one local SGD

iteration with a single mini-batch at every client. This is needed

to guarantee convergence since all nodes maintain different local

models unlike in SignFed.

• As there is no single common model built in signSGD, the server

only transfers the sign of the aggregated signs to the clients in

every round. Therefore, only a single bit is transferred per pa-

rameter downstream to the clients. In SignFed, the whole model

is transferred but only to a random subset of clients.

7 SUMMARY AND DISCUSSION
We can make the following main observations.

(1) SignFed is almost as accurate as StdFed but incurs less com-

munication overhead and has better resiliency against both

security and privacy attacks (see Section 3.3 and 5.2).

(2) Although SignFed is more robust against state-of-the-art

privacy attacks than StdFed, DP-SignFed provides provable

privacy guarantees unlike SignFed. However, it also produces

models with slightly worse accuracy than SignFed. More

importantly, it is less robust against security attacks (see

Section 4.3 and 5.3).

(3) DP-SignFed has 30-40% less communication cost than StdFed

but it is roughly 20 times more than that of SignFed. In DP-

SignFed, there is a trade-off between privacy and bandwidth.

Stronger privacy requires to increase the variance of the

added discrete Gaussian noise which in turn implies larger

communication costs (see Section 4.2).

(4) The convergence rates of SignFed and DP-SignFed are

𝑂

(
1√

𝑇cl𝐶𝑁

)
and 𝑂

(
1√

𝑇cl𝐶𝑁
+ 𝑛3/2𝜎√

𝑇cl𝐶𝑁

)
, respectively, suppos-

ing that 𝛾 = 𝑂 (1/
√
𝑇cl), 𝑇gd = 1, |B| = 𝑇cl (see Appendix A.4

for the proofs). Therefore, the “cost of privacy” in conver-

gence rate is 𝑂

(
𝑛3/2𝜎√
𝑇cl𝐶𝑁

)
which is due to the added noise.

Seemingly, there is a possible trade-off between differential pri-

vacy and robustness against security attacks. One possible explana-

tion is that differential privacy requires to randomize every value

of the update vector so much that their aggregates become easier to

manipulate. As malicious clients omit to add any noise to their own

model updates, the attacked DP protocols essentially turn into Ran-

dom Update Attacks, where honest clients send almost uniformly

random signs and malicious clients transfer non-noisy, boosted up-

dates to the aggregator. As SignFed converges with Random Update

Attack even with limited number of honest nodes, the malicious

nodes in DP-SignFed can also degrade model performance or inject

backdoors for the very same reason. The smaller Y is the more uni-

form every coordinate’s distribution will be, and the larger impact

a malicious client has on the aggregate.
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A APPENDIX
A.1 Proof of Lemma 1

Proof. We first show that 𝑍/
√
2𝜋b ≤ 1 + 2𝑒−2𝜋

2b2

1−𝑒−6𝜋2b2
, where

𝑍 =
∑
𝑥 ∈Z exp(−(𝑥 − `)2/2b2), which implies the upper bound.

From [37], 𝑍 =
√
2𝜋b𝜗3 (𝜋`, exp(−2𝜋2b2)), where 𝜗3 (𝑢, 𝑟 ) = 1 +

2

∑
𝑖≥1 𝑟

𝑖2
cos(2𝑖𝑢) is a Jacobi Theta function. Then,

1 + 2

∑
𝑖≥1

𝑟 𝑖
2

cos(2𝑖𝑢) ≤ 1 + 2𝑟
∑
𝑖≥0

𝑟3𝑖

≤ 1 + 2𝑟

1 − 𝑟3

if |𝑟 | < 1. The lower bound can be derived similarly using the fact

that cos(2𝑖𝑢) ≥ −1. □

A.2 Proof of Theorem 1
Proof. Without loss of generality, suppose thatDGb : R→ Z𝑛 .
We apply the moments accountant [2] and show that 𝛼DG (_)

can be upper bounded efficiently without evaluating the pmf of

DG.
Let [

DG
0

(𝑥 |b) = pmfDG(0,b) (𝑥) and [
DG
1

(𝑥 |b) = (1 −
𝑞)pmfDG(0,b) (𝑥) + 𝑞pmfDG(1,b) (𝑥) where pmfDG(`,b) (𝑥) =

Pr𝑥∼DG(`,b) [𝑥]. Then,

𝛼DG (_) = logmax(𝐸 ′
1
(_, b), 𝐸 ′

2
(_, b))

where

𝐸 ′
1
(_, b) =

∞∑
𝑥=−∞

[
DG
0

(𝑥 |b) ·
(
[
DG
0

(𝑥 |b)

[
DG
1

(𝑥 |b)

)_
≤ (1 + ^ (b))_

(1 − ^ (b))_+1
∞∑

𝑥=−∞
[
G
0
(𝑥 |b) ·

(
[
G
0
(𝑥 |b)

[
G
1
(𝑥 |b)

)_
≤ (1 + ^ (b))_

(1 − ^ (b))_+1

∫
R
[
G
0
(𝑦 |b) ·

(
[
G
0
(𝑦 |b)

[
G
1
(𝑦 |b)

)_
𝑑𝑦

=
(1 + ^ (b))_

(1 − ^ (b))_+1
𝐸1 (_, b)

where the first inequality follows from Lemma 1. Using a similar

reasoning we obtain that

𝐸 ′
2
(_, b) ≤ (1 + ^ (b))_

(1 − ^ (b))_+1
𝐸2 (_, b)

The theorem follows from Theorem 2 in [2]. □

A.3 Proof of Theorem 2
As opposed to the continuous case, the sum of discrete Gaussian

random variables

∑
𝑖 DG(`𝑖 , b𝑖 ) does not follow the distribution of

DG(∑𝑖 `𝑖 ,√∑
𝑖 b

2

𝑖
), though it is very close to that if b𝑖 is sufficiently

large. The exact difference is quantified by the following Lemma

from [29].

Lemma 3 ([29], Theorem 2.1). If b𝑖 ≥
√
ln(2 + 2/a)/𝜋 and 𝝁𝑖 ∈

R𝑛 , then

1 − a

1 + a ≤
Prz∼∑

𝑖 DG(𝝁𝑖 ,b𝑖 ) [z]
Pr

z∼DG
(∑

𝑖 𝝁𝑖 ,
√∑

𝑖 b
2

𝑖

) [z] ≤ 1 + a
1 − a

for any z ∈ Z𝑛

Intuitively, if 𝑍 =
∑
𝑥 ∈Z exp(−(𝑥 − `)2/2b2

𝑖
) ≈

√
2𝜋b𝑖

then DG(`𝑖 , b𝑖 ) ≈ G(`𝑖 , b𝑖 ), in which case

∑
𝑖 DG(`𝑖 , b𝑖 ) ≈∑

𝑖 G(`𝑖 , b𝑖 ) = G(`𝑖 ,
∑
𝑖 b𝑖 ) ≈ DG(`𝑖 ,

∑
𝑖 b𝑖 ), which follows from

Lemma 2. Indeed, it also follows from the proof of Lemma 1

that 𝑍/
√
2𝜋b𝑖 ≤ 𝜗3 (𝜋`, exp(−2𝜋2b2𝑖 )) ≤ 1 + 2𝑒

−2𝜋2b2
𝑖

1−𝑒−6𝜋2b
2

𝑖

≤ 1 +
2

exp(2b2
𝑖
𝜋2)−1 ≤ 1+ 2

exp(b2
𝑖
𝜋2)−2 ≤ 1+a which provides some insight

into the condition on b𝑖 in Lemma 3.

For example, a < 10
−4

is satisfied if b𝑖 > 1.

Let D̂Gb denote the distributed Gaussian mechanism which

returns

∑𝑁
𝑘=1

DG(𝝁𝑘 , b/
√
|K|) where 𝝁𝑘 ∈ R𝑛 . The next lemma,

which directly follows from Theorem 1 and Lemma 3, implies The-

orem 2.

Lemma 4. If b ≥
√
|K| ln(2 + 2/a)/𝜋 , then 𝛼 D̂G (_ |𝑞) ≤

𝛼G (_ |𝑞) + log

(
(1+^ (b))_
(1−^ (b))_+1

(
1+a
1−a

)
3

)
.
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A.4 Convergence Proofs
All the proofs are simple adaptations of Theorem 2 from [8]. Here

we outline only the main deviations from the proof of that theorem.

Assumptions:

(1) Lower bound: For all 𝑥 and some constant 𝑓 ∗, 𝑓 (𝑥) ≥ 𝑓 ∗,
where 𝑓 denotes the loss/objective function.

(2) Smoothness: Let 𝑔(𝑥) denote the gradient of the objective

function 𝑓 evaluated at 𝑥 . Then, for all 𝑥,𝑦 and some non-

negative constant L = (𝐿1, 𝐿2, . . . , 𝐿𝑛),

|𝑓 (𝑦) − [𝑓 (𝑥) + 𝑔(𝑥)T (𝑦 − 𝑥)] | ≤ 1/2
∑
𝑖

𝐿𝑖 (𝑦𝑖 − 𝑥𝑖 )2

(3) Variance bound: Upon receiving query 𝑥 ∈ R𝑛 , the stochastic
gradient oracle gives us an independent, unbiased estimate

𝑔 that has bounded variance per coordinate: E[𝑔(𝑥)] = 𝑔(𝑥),
E[(𝑔(𝑥)𝑖 − 𝑔(𝑥)𝑖 )2] ≤ 𝜏2

𝑖
for a vector of non-negative con-

stants 𝝉 = (𝜏1, 𝜏2, . . . , 𝜏𝑛).
(4) Unimodal, symmetric gradient noise: At any given point 𝑥 ,

each component of the stochastic gradient vector 𝑔(𝑥) has
unimodal distribution that is also symmetric about the mean.

Note that adding extra Gaussian noise to each gradient compo-

nent for the purpose of differential privacy will not violate Assump-

tion 4.

Theorem 3. If |B| = 𝑇cl, 𝑇gd = 1, and 𝛾 =

√
𝑓0−𝑓∗

| |L | |1𝑇cl , then

(1) For SignFed in the Random Update Attack,

1

𝑇cl

𝑇cl−1∑
𝑡=0

E | |𝑔𝑡 | |1 ≤ 2

√
𝑇cl

( √
2 | |𝝉 | |1

(1 − 𝛼)
√
𝐶𝑁

+
√
| |L | |1 (𝑓0 − 𝑓 ∗)

)
where 𝛼 denotes the fraction malicious clients and |𝑔𝑖 |/𝜏𝑖 ≤
2/
√
3 for all 1 ≤ 𝑖 ≤ 𝑛.

(2) For DP-SignFed,

1

𝑇cl

𝑇cl−1∑
𝑡=0

E | |𝑔𝑡 | |1 ≤ 2

√
𝑇cl

(
| |𝝉 | |1√
𝐶𝑁

+
√
3𝑛𝜎 | |𝝉 | |1
𝐶𝑁

+
√
| |L | |1 (𝑓0 − 𝑓 ∗)

)
if |𝑔𝑖 |/𝜏𝑖 ≤ 2/

√
3 for all 1 ≤ 𝑖 ≤ 𝑛.

Proof. The primary focus of all the proofs is to bound the proba-

bility that a client computes the sign of a parameter update correctly.

Let𝑀 = 𝐶𝑁 . As in [8], let 𝑍𝑖 ∈ [0, 𝑀] denote the number of correct

sign bits received by the aggregator for parameter 𝑖 , and 𝑝 denotes

the probability that a honest client computes the correct bit. Let

𝜔 = 𝑝 − 1

2
.

(1) Random Update Attack: Notice that the probability that

a sign of any parameter is correct at a malicious client is 1/2,
and each client acts independently from each other. Hence,

E [𝑍𝑖 ] = (1 − 𝛼)𝑀𝑝 + 1

2
𝛼𝑀 and Var [𝑍 ] = 1

4
𝛼𝑀 + (1 −

𝛼)𝑀𝑝 (1 − 𝑝). The probability that a vote fails for the 𝑖𝑡ℎ

parameter is identical to P [𝑍𝑖 ≤ 𝑀/2], which, likewise in

[8], can be bounded as follows.

P [𝑍𝑖 ≤ 𝑀/2] = P [E [𝑍𝑖 ] − 𝑍𝑖 ≥ E [𝑍𝑖 ] −𝑀/2]

≤ 1

1 + (E[𝑍𝑖 ]−𝑁 /2)2
Var[𝑍𝑖 ]

(by Cantelli’s inequality)

≤ 1

2

√
Var [𝑍𝑖 ]

(E [𝑍𝑖 ] −𝑀/2)2
(by 1 + 𝑥2 ≥ 2𝑥 )

≤ 1

2

√
𝑀

√√
1

4
𝛼 + (1 − 𝛼)𝑝 (1 − 𝑝)
(1 − 𝛼)2 (𝑝 − 1

2
)2

≤ 1

2

√
𝑀

√√
1

4
𝛼

(1 − 𝛼)2 (𝑝 − 1

2
)2

+ 1

2

√
𝑀

√
𝑝 (1 − 𝑝)

(1 − 𝛼) (𝑝 − 1

2
)2

≤
√
𝛼

4

√
𝑀 (1 − 𝛼) |𝜔 |

+ 1

2

√
𝑀

√
1

4
− 𝜔2

(1 − 𝛼)𝜔2

≤
√
3𝛼𝜏𝑖

2

√
𝑀 (1 − 𝛼) |𝑔𝑖 |

+ 𝜏𝑖√
𝑀 (1 − 𝛼) |𝑔𝑖 |

(5)

≤ 𝜏𝑖 (
√
𝛼 +

√
1 − 𝛼)

√
𝑀 (1 − 𝛼) |𝑔𝑖 |

≤
√
2𝜏𝑖√

𝑀 (1 − 𝛼) |𝑔𝑖 |

where, in Eq. (5), we used that
1

4𝜔2
− 1 ≤ 4𝜏2

𝑖
/𝑔2
𝑖
and 1/|𝜔 | ≤

2

√
3𝜏𝑖/|𝑔𝑖 | for |𝑔𝑖 |/𝜏𝑖 < 2/

√
3 based on Lemma 1 in [8]. The

rest of the derivation is identical to the proof of Theorem 2

in [8].

(2) DP-SignFed: The Gaussian noise is added to the sum of

signs. Let 𝑌𝑖 denote the random variable describing the noise

added by the clients to 𝑍𝑖 .

P [𝑍𝑖 + 𝑌𝑖 ≤ 𝑀/2] ≤ 1

2

√
Var [𝑍𝑖 + 𝑌𝑖 ]

(E [𝑍𝑖 + 𝑌𝑖 ] −𝑀/2)2

≤ 1

2

√
Var [𝑍𝑖 ] + Var [𝑌𝑖 ]
(E [𝑍𝑖 ] −𝑀/2)2

(by independence and E [𝑌𝑖 ] = 0)

≤ 1

2

√
Var [𝑍𝑖 ]

(E [𝑍𝑖 ] −𝑀/2)2

+ 1

2

√
Var [𝑌𝑖 ]

(E [𝑍𝑖 ] −𝑀/2)2
(6)
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Based on [8],

1

2

√
Var [𝑍𝑖 ]

(E [𝑍𝑖 ] −𝑀/2)2
≤ 1

2

√√√
𝑀

(
1

4
− 𝜔2

)
𝑀2𝜔2

≤ 1

2

√
𝑀4𝜏𝑖/|𝑔𝑖 |
𝑀2𝜔2

≤ 𝜏𝑖√
𝑀 |𝑔𝑖 |

(7)

Moreover, if |𝑔𝑖 |/𝜏𝑖 ≤ 2/
√
3, then 1/𝜔2 ≤ 12𝜏2

𝑖
/𝑔2
𝑖
, and hence

1

2

√
Var [𝑌𝑖 ]

(E [𝑍𝑖 ] −𝑀/2)2
≤ 1

2

√
𝑛𝜎2

𝑀2𝜔2

≤ 1

2

√
12𝑛𝜎2𝜏2

𝑖
/𝑔2
𝑖

𝑀2

≤
√
3

√
𝑛𝜎𝜏𝑖

𝑀 |𝑔𝑖 |
(8)

Plugging Eq. (7) and (8) into Eq. (6), we obtain that the prob-

ability that the noisy vote fails for the 𝑖𝑡ℎ coordinate is

bounded as

P [𝑍𝑖 + 𝑌𝑖 ≤ 𝑀/2] ≤ 𝜏𝑖√
𝑀 |𝑔𝑖 |

+
√
3

√
𝑛𝜎𝜏𝑖

𝑀 |𝑔𝑖 |

if |𝑔𝑖 |/𝜏𝑖 ≤ 2/
√
3. The claim follows from the proof of Theo-

rem 2 in [8].

□

A.5 Model architectures
For MNIST and Fashion-MNIST, we use a model [26] with the

following architecture: a convolutional neural network (CNN) with

two 5x5 convolution layers (the first with 32 filters, the second with

64, each followed with 2x2 max pooling), a fully connected layer

with 512 units and ReLu activation, and a final softmax output layer.

This results in 1,663,370 parameters in total.

The LFW dataset is used with a CNN of three 3x3 convolution

layers (32, 64, and 128 filters, each followed with 2x2 max pooling), a

fully connected layer with 256 units and ReLU activation, and a final

softmax output layer with 2 units. To test the property inference

attack from [28], batch size is set to 32, and the SGD learning rate

is 0.01.

The model that we use for the CIFAR dataset is called "All-CNN-

C" in [36] [23], which consists of a CNN of 3 blocks: the first block

has three 3x3 convolutions layers with 96 filters (the last layer has

a strides of 2x2 and dropout of 0.5 is applied), the ReLu activation

is used per layer. The second block has the same configuration

as the previous block, except the filter size which is 192 for each

layer. The last block has one 3x3 convolutions layer with 192 filters,

followed by two 1x1 convolution layers: the first with 192 filters

(Relu activation) and the second with 10 filters. The last layer is

connected with a global average pooling layer and uses softmax

activation. We use also the Adam optimizer with a learning rate of

0.001. This results in 1,369,738 parameters in total.

Finally, we use the following model for the IMDB dataset: one

embedding layer with an output size of 50 (the vocabulary size is

set to 5000 and the maximum length input to 400), followed by a

convolution layer of one dimension with a kernel size of 5 and 250

filters; and a max pooling layer of size 3; followed by a LSTM layer

with an output size set to 70 and an output layer with one unit that

uses a sigmoid activation function. We use the Adam optimizer

with a learning rate of 0.001. This results in 402,701 parameters in

total.

A.6 Selection of hyperparameters
Strictly speaking, the selection of hyperparameters in DP-SignFed,

such as batch size |B|, scaling factor 𝛾 , or sensitivity 𝑆 , must also

be differentially private. One option is to use public data for this

purpose which comes from the same distribution as the clients’

private training data. The selection of hyperparameters can also

be performed using more sophisticated methods like the one in

Appendix D of [2].

A.7 Robustness of DP-SignFed against client
failures

If any client fails to add its noise share to the model update

for any reason, the aggregate will not have sufficient amount of

noise to guarantee differential privacy. A straightforward coun-

termeasure is to increase the variance of the added noise so that

even if 𝑟 clients fail, the sum of 𝐶𝑁 − 𝑟 noise shares are still

enough for differential privacy. In particular, each client 𝑘 sends

Enc𝐾𝑘 (DG(sign(Δw𝑘𝑡 ),
√
𝑛𝜎I/

√
𝐶𝑁 − 𝑟 )) to the server for aggre-

gation. Obviously, if less than 𝑟 nodes fail, the aggregate will have

larger noise than what is necessary for differential privacy.

Table 16: Common environment and configuration of Sign-
Fed and StdFed. 𝛾 = 0.001.

Datasets

MNIST

IMDB CIFAR

Fashion-MNIST

Parameters

𝑁 = 1000; 𝑁 = 1000; 𝑁 = 1000;

𝐶 = 0.1; 𝐶 = 0.1; 𝐶 = 0.1;

|𝐷𝑘 | = 60; |𝐷𝑘 | = 25; |𝐷𝑘 | = 500;

|B| = 10; |B| = 25; |B| = 50;

𝑇gd = 30; 𝑇gd = 5; 𝑇gd = 50;

𝑇cl = 100; 𝑇cl = 100; 𝑇cl = 400;

𝑆𝐺𝐷 𝐴𝐷𝐴𝑀 𝐴𝐷𝐴𝑀

([ = 0.215) ([ = 0.001) ([ = 0.001)

A.8 Computational Environment
Our experiments were performed on a server running Ubuntu 18.04

LTS equipped with a Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz,

192GB RAM, and two NVIDIA Quadro P5000 GPU card of 16 Go

each. We use Keras 2.2.0 [12] with a TensorFlow backend 1.12.0 [1]

and Numpy 1.14.3 [32] to implement our models and experiments.

We use Python 3.6.5 and our code runs on a Docker container to

simplify the reproducibility.

A.9 Datasets
The following datasets were used:
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Table 17: Common environment of the privacy part. 𝛾 =

0.005 and𝑇cl = 200. For DP-StdFed, 𝑆 is set to 1.73 and 2.15 for
MNIST and Fashion-MNIST, respectively. For DP-SignFed, 𝑆
is fixed to

√
𝑛.

```````````Algorithms

Datasets

MNIST & Fashion-MNIST

DP-SignFed & DP-StdFed

𝑁 = 6000; 𝐶 = 1/60;
|𝐷𝑘 | = 10;

|B| = 10; 𝑇gd = 5;

𝑆𝐺𝐷 ([ = 0.215);
𝑛 = 1, 663, 370;

𝛿 = 10
−5

Table 18: Parameter Configuration for the BackdoorAttacks.
SignFed is used with the vote aggregation 𝛾 = 0.001.

XXXXXXXXXAttacks

Datasets

MNIST

In-backdoor

𝑁 = 10; 𝐶 = 1;

|𝐷𝑘 | = 6000; |B| = 10;

𝑇gd = 3000; 𝑇cl = 40;

𝑆𝐺𝐷 ([ = 0.215)

Out-backdoor

𝑁 = 10; 𝐶 = 1;

|𝐷𝑘 | = 6000; |B| = 10;

𝑇gd = 3000; 𝑇cl = 100;

𝑆𝐺𝐷 ([ = 0.215)
XXXXXXXXXAttacks

Datasets

CIFAR

In-backdoor

𝑁 = 10; 𝐶 = 1;

|𝐷𝑘 | = 50000; |B| = 100;

𝑇gd = 1000; 𝑇cl = 100;

𝐴𝐷𝐴𝑀 ([ = 0.001)

Out-backdoor

𝑁 = 10; 𝐶 = 1;

|𝐷𝑘 | = 50000; |B| = 100;

𝑇gd = 1000; 𝑇cl = 300;

𝐴𝐷𝐴𝑀 ([ = 0.001)

• The MNIST database of handwritten digits. It consists of 28 x 28

grayscale images of digit items and has 10 output classes. The

training set contains 60,000 data samples while the test/validation

set has 10,000 samples [24] [13].

• The CIFAR-10 dataset consists of 60000 32x32 colour images in

10 classes, with 6000 images per class. There are 50000 training

images and 10000 test images. We augment the dataset to 500,000

training images by randomly shifting the original images hor-

izontally and vertically and by randomly flipping the original

images horizontally [22] [13].

• Fashion-MNIST database of fashion articles consists of 60,000

28x28 grayscale images of 10 fashion categories, along with a

test set of 10,000 images [41] [13].

• IMDB Movie reviews sentiment classification dataset of 25,000

movies reviews, labeled by sentiment (positive/negative) [13].

The test set contains also 25,000 movies reviews.

Algorithm 5: DP-StdFed: Federated Learning with Client Privacy

1 Server:
2 Initialize common model 𝑤0

3 for 𝑡 = 1 to𝑇cl do
4 Select K clients randomly

5 for each client 𝑘 in K do
6 Δw̃𝑘𝑡 = Client𝑘 (w𝑡−1)
7 end
8 w𝑡 = w𝑡−1 + 1

|K|
∑
𝑘 Δw̃𝑘𝑡

9 end
10 Client𝑘 (w) :
11 w𝑘

𝑡−1 = w
12 Δw𝑘𝑡 = SGD(𝐷𝑘 ,w𝑘−1𝑡 ,𝑇gd) −w𝑘

𝑡−1

13 Δŵ𝑘𝑡 = Δw𝑘𝑡 /max

(
1,

| |Δw𝑘𝑡 | |2
𝑆

)
Output: Enc𝐾𝑘 (G(Δŵ𝑘𝑡 , 𝑆I𝜎/

√
|𝐾 |))

• Labeled Faces in the Wild (LFW) dataset: consists of 13,000 62 · 47
RGB images of faces collected from the web [19].
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