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ON THE SMALL-TIME LOCAL CONTROLLABILITY OF A KDV SYSTEM

FOR CRITICAL LENGTHS

JEAN-MICHEL CORON, ARMAND KOENIG, AND HOAI-MINH NGUYEN

Abstract. This paper is devoted to the local null-controllability of the nonlinear KdV equation
equipped the Dirichlet boundary conditions using the Neumann boundary control on the right.
Rosier proved that this KdV system is small-time locally controllable for all non-critical lengths
and that the uncontrollable space of the linearized system is of finite dimension when the length is
critical. Concerning critical lengths, Coron and Crépeau showed that the same result holds when
the uncontrollable space of the linearized system is of dimension 1, and later Cerpa, and then
Cerpa and Crépeau established that the local controllability holds at a finite time for all other
critical lengths. In this paper, we prove that, for a class of critical lengths, the nonlinear KdV
system is not small-time locally controllable.
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1. Introduction

We are concerned about the local null-controllability of the (nonlinear) KdV equation equipped
the Dirichlet boundary conditions using the Neumann boundary control on the right. More pre-
cisely, given L > 0 and T > 0, we consider the following control system

(1.1)


yt(t, x) + yx(t, x) + yxxx(t, x) + y(t, x)yx(t, x) = 0 for t ∈ (0, T ), x ∈ (0, L),

y(t, x = 0) = y(t, x = L) = 0 for t ∈ (0, T ),

yx(t, x = L) = u(t) for t ∈ (0, T ),
1
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and

(1.2) y(t = 0, x) = y0(x) for x ∈ (0, L).

Here y is the state, y0 is the initial data, and u is the control. More precisely, we are interested
in the small-time local controllability property of this system.

The KdV equation has been introduced by Boussinesq [15] and Korteweg and de Vries [30] as
a model for propagation of surface water waves along a channel. This equation also furnishes
a very useful nonlinear approximation model including a balance between a weak nonlinearity
and weak dispersive effects. The KdV equation has been intensively studied from various aspects
of mathematics, including the well-posedness, the existence and stability of solitary waves, the
integrability, the long-time behavior, etc., see e.g. [46, 33, 29, 44, 31].

1.1. Bibliography. The controllability properties of system (1.1) and (1.2) (or of its variants)
has been studied intensively, see e.g. the surveys [40, 19] and the references therein. Let us briefly
review the existing results on (1.1) and (1.2). For initial and final datum in L2(0, L) and controls
in L2(0, T ), Rosier [38] proved that the system is small-time locally controllable around 0 provided
that the length L is not critical, i.e., L /∈ N , where

(1.3) N :=

{
2π

√
k2 + kl + l2

3
; k, l ∈ N∗

}
.

To this end, he studied the controllability of the linearized system using the Hilbert Uniqueness
Method and compactness-uniqueness arguments. Rosier also showed that the linearized system
is controllable if L 6∈ N . He as well established that when L ∈ N , the linearized system is not
controllable. More precisely, he showed that there exists a non-trivial finite-dimensional subspace
M of L2(0, L) such that its orthogonal space is reachable from 0 whereas M is not.

To tackle the control problem for the critical length L ∈ N with initial and final datum in
L2(0, L) and controls in L2(0, T ), Coron and Crépeau introduced the power series expansion
method [24]. The idea is to take into account the effect of the nonlinear term yyx absent in
the linearized system. Using this method, they showed [24] (see also [22, section 8.2]) that system
(1.1) and (1.2) is small-time locally controllable if L = m2π for m ∈ N∗ satisfying

(1.4) @(k, l) ∈ N∗ × N∗ with k2 + kl + l2 = 3m2 and k 6= l.

In this case, dimM = 1 and M is spanned by 1− cosx. Cerpa [18] developed the analysis in [24]
to prove that system (1.1) and (1.2) is locally controllable at a finite time in the case dimM = 2.
This corresponds to the case where

L = 2π

√
k2 + kl + l2

3

for some k, l ∈ N∗ with k > l, and there is no m,n ∈ N∗ with m > n and m2 + mn + n2 =
k2 + kl + l2. Later, Crépeau and Cerpa [20] succeeded to extend the ideas in [18] to obtain the
local controllability for all other critical lengths at a finite time. To summarize, concerning the
critical lengths with initial and final datum in L2(0, L) and controls in L2(0, T ), the small-time
local controllability is valid when dimM = 1 and local controllability in a large enough time holds
when dimM≥ 2.

1.2. Statement of the result. The control properties of the KdV equations have been intensively
studied previously but the following natural question remains open (see [23, Open problem 10],
[18, Remark 1.7]):

Open problem 1.1. Is system (1.1) and (1.2) small-time locally controllable for all L ∈ N?
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In this paper we give a negative answer to this question. We show that system (1.1) and (1.2)
is not small-time locally controllable for a class of critical lengths. More precisely, we have

Theorem 1.2. Let k, l ∈ N∗ be such that 2k + l 6∈ 3N∗. Assume that

L = 2π

√
k2 + kl + l2

3
.

Then system (1.1) and (1.2) is not small-time locally null-controllable with controls in H1 and
initial and final datum in H3(0, L)∩H1

0 (0, L), i.e., there exist T0 > 0 and ε0 > 0 such that, for all
δ > 0, there is y0 ∈ H3(0, L) ∩H1

0 (0, L) with ‖y0‖H3(0,L) < δ such that for all u ∈ H1(0, T0) with

‖u‖H1(0,T0) < ε0 and u(0) = y′0(L), we have

y(T0, ·) 6≡ 0,

where y ∈ C
(
[0, T0];H

3(0, L)
)
∩ L2

(
[0, T0];H

4(0, L)
)

is the unique solution of (1.1) and (1.2).

Open problem 1.3. We are not able to establish that the control system (1.1) and (1.2) is not
small-time locally controllable with initial and final datum in L2(0, L) and control in L2(0, T ) for
a critical length as in Theorem 1.2. It would be interesting to extend the method in the paper to
deal with this problem. It would be also interesting to know what is the smallest s such that system
(1.1) and (1.2) is not small-time locally controllable with controls in Hs(0, T ), and initial and final
datum in D(As), A being defined in Lemma 2.1 below.

Remark 1.4. Concerning Open problem 1.3, may be the smallest s is not an integer, as in the
nonlinear parabolic equation studied in [8], a phenomenon which is specific to the infinite dimension
as shown in [7]. Note that in [32] a non integer s already appears for an obstruction to small-time
local controllability; however it is not known if this s is the optimal one.

Open problem 1.5. It would be also interesting to know what is the optimal time for the local
null controllability. In particular one may ask if T ≤ T>, with T> defined in [20, p. 463], then the
control system (1.1) and (1.2) is not locally null controllable in time T (for example with initial
and final datum in H3(0, L) ∩ H1

0 (0, L) and control in H1(0, T )) for critical lengths L as in the
above theorem.

Open problem 1.6. Finally, it would be interesting to know if the assumption 2k + l 6∈ 3N∗ can
be replaced by the weaker assumption dimM > 1. In other words, is it true that the control system
(1.1) and (1.2) is not small time locally controllable when dimM > 1?

In Theorem 1.2, we deal with controls in H1(0, T0), and initial and final datum in H3(0, L) ∩
H1

0 (0, L) instead of controls in L2(0, T0), and initial and final datum in L2(0, L) as considered in
[38, 24, 18, 20]. For a subclass of the critical lengths considered in Theorem 1.2, we prove later
(see Theorem 6.1 in Section 6) that system (1.1) and (1.2) is locally controllable with initial and
final datum in H3(0, L) ∩H1

0 (0, L) and controls in H1(0, T ). It is worth noting that even though
the propagation speed of the KdV equation is infinite, some time is needed to reach the zero state.

We emphasize that there are other types of boundary controls for the KdV equations for which
there is no critical length, see [38, 39, 28, 19]. There are also results on internal controllability for
the KdV equations, see [42], [17] and references therein.

A minimal time of the null-controllability is also required for some linear partial differential
equations. This is obviously the case for equations with a finite speed of propagation, such as the
transport equation [22, Theorem. 2.6], or the wave equation [3, 16], or hyperbolic systems [25].
But this can also happen for equations with infinite speed of propagation, such as some parabolic
systems [2, 11], Grushin-type equations [9, 4, 26], Kolmogorov-type equations [5] or parabolic-
transport coupled systems [6], and the references therein. Nevertheless, a minimal time required
for the KdV equations using boundary controls is observed and established for the first time in
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this work to our knowledge. This fact is surprising when compared with known results on internal
controls for KdV system (1.1) with u = 0. It is known, see [17, 37, 36], that the KdV system (1.1)
with u = 0 is local controllable using internal controls whenever the control region contains an
arbitrary open subset of (0, L).

However our obstruction to small-time local controllability of our KdV control system is of a
different nature than these obstructions to small-time null controllability for linear partial dif-
ferential equations. It comes from a phenomena which already appears in finite dimension for
nonlinear control systems. Note that in finite dimension, in contrast to the case of partial differ-
ential equations as just pointed above, a linear control system which is controllable in large time
is controllable in arbitrary small time. This is no longer the case for nonlinear control systems in
finite dimension: There are nonlinear control systems in finite dimension which are locally con-
trollable in large enough time but are not locally controllable in small time. A typical example is
the control system

(1.5) ẏ1 = u, ẏ2 = y3, ẏ3 = −y2 + 2y1u,

where the state is (y1, y2, y3)
T ∈ R3 and the control is u ∈ R. There are many powerful necessary

conditions for small-time local controllability of nonlinear control systems in finite dimension. Let
us mention in particular the Sussmann condition [43, Proposition 6.3]. See also [7] by Beauchard
and Marbach for further results, in particular for controls in the Sobolev spaces Hk(0, T ), and
a different approach. The Sussmann condition [43, Proposition 6.3] tells us that the nonlinear
control system (1.5) is not small-time locally controllable (see [22, Example 3.38]): it gives a
precise direction, given by an explicit iterated Lie bracket, in which one cannot move in small
time. For partial differential equations iterated Lie brackets can sometimes be defined, at least
heuristically, for interior controls but are not well understood for boundary controls (see [22,
Chapter 5]), which is the type of controls considered here. However, for the simple control system
(1.5), an obstruction to small-time local controllability can be obtained by pointing out that if
(y, u) : [0, T ]→ R3 × R is a trajectory of the control system (1.5) such that y(0) = 0, then

y2(T ) =

ˆ T

0
cos(T − t)y21(t) dt,(1.6)

y3(T ) = y1(T )2 −
ˆ T

0
sin(T − t)y21(t) dt.(1.7)

Hence,

y2(T ) ≥ 0 if T ∈ [0, π/2](1.8)

y3(T ) ≤ 0 if T ∈ [0, π] and y1(T ) = 0,(1.9)

which also show that the control system (1.5) is not small-time locally controllable and more
precisely, using (1.9), is not locally controllable in time T ∈ [0, π] ((1.8) gives only an obstruction
for T ∈ [0, π/2]). Note that condition (1.8), at least for T > 0 small enough, is the obstruction
to small-time local controllability given by [43, Proposition 6.3], while (1.9) is not related to this
proposition. For the control system (1.5) one knows that it is locally controllable in a large enough
time and the optimal time for local controllability is also known: this control system is locally
controllable in time T if and only if T > π; see [22, Example 6.4]. Moreover, if there are higher
order perturbations (with respect to the weight (r1, r2, r3) = (1, 2, 2) for the state and 1 for the
control; see [22, Section 12.3]) one can still get an obstruction to small-time local controllability
by pointing out that (1.6) and (1.7) respectively imply

for every T ∈ (0, π/2) there exists δ > 0 such that y2(T ) ≥ δ|u|2H−1(0,T ),(1.10)

for every T ∈ (0, π] there exists δ > 0 such that if y1(T ) = 0, then y3(T ) ≤ −δ|u|2H−2(0,T ).(1.11)
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Assertion (1.11) follows from the following facts:ˆ T

0

( ˆ t

0
y1(s) ds

)2
dt ≤

ˆ T

0
t

ˆ t

0
y1(s)

2 ds dt ≤ T
ˆ T

0
(T − s)y1(s)2 ds,

ˆ T

0

(ˆ T

t
y(s) ds

)2
dt ≤

ˆ T

0
(T − s)y(s)2 ds,

and, since y′1 = u and y1(0) = 0,

‖u‖2H−2(0,T ) ≤ C
ˆ T

0

(ˆ t

0
y1(s) ds

)2
dt+ C

( ˆ T

0
y1(s) ds

)2
.

Note that inequality (1.10) does not require any condition on the control, while (1.11) requires
that the control is such that y1(T ) = 0. On the other hand it is (1.11) which gives the largest time
for the obstruction to local controllability in time T : (1.10) gives an obstruction for T ∈ [0, π/2),
while (1.11) gives an obstruction for T ∈ [0, π], which in fact optimal as mentioned above.

There are nonlinear partial differential equations where related inequalities giving an obstruc-
tion to small-time local controllability were already proved, namely nonlinear Schrödinger control
systems considered by Coron in [21] and by Beauchard and Morancey in [10], a viscous Burg-
ers equation considered by Marbach in [32], and a nonlinear parabolic equation considered by
Beauchard and Marbach in [8]. Our obstruction to small-time local controllability is also in the
same spirit (see in particular Corollary 3.7). Let us briefly explain some of the main ingredients
of these previous works.

• In [21] and [10], the control is interior and one can compute, at least formally, the iterated
Lie bracket [43] in which one could not move in small time (see [22, Section 9.3.1]) if the
control systems were in finite dimension. Then one checks by suitable computations that
it is indeed not possible to move in small time in this direction by proving an inequality
analogous to (1.11). The computations are rather explicit due to the fact that the drift1

of the linearized control system is skew-adjoint with explicit and simple eigenvalues and
eigenfunctions.
• In [32] the control is again interior. However the iterated Lie bracket [43] in the direction

of which one could not move in small time turns out to be 0. Hence it does not produce
any obstruction to small-time local controllability. However an inequality analogous to
(1.10) is proved, but with a fractional (non integer) Sobolev norm. An important tool of
the proof is a change of time-scale which allows to do an expansion with respect to a new
parameter. In the framework of (1.5), this leads to a boundary layer which is analyzed
thanks to the maximum principle. Here the drift term of the linearized control system is
self-adjoint with explicit and simple eigenvalues and eigenfunctions.
• In [8] the control is again an interior control. Two cases are considered, a case [8, Theorem

3] related to [21] and [10] (already analyzed above) and a case [8, Theorem 4] where classical
obstructions relying on iterated Lie brackets fail. Concerning [8, Theorem 4] the proof relies
on an inequality of type (1.11). The proof of the inequality of type (1.11) can be performed
by explicit computations due to some special structure of the quadratic form one wants
to analyze: roughly speaking it corresponds to the case (see [8, (4.17)]) where (3.6) below
would be replaced by

(1.12)

ˆ L

0

ˆ +∞

0
|y(t, x)|2ϕx(x)e−ipt dt dx =

ˆ
R
û(z)û(z)

ˆ L

0
B(z, x) dx dz,

which simplifies the analysis the left hand side of (1.12) (in (3.6) one has û(z)û(z − p)
instead of û(z)û(z)). The computations are also simplified by the fact that the drift

1If the linearized control system is written in the form ẏ = Ay +Bu, the drift term is the map y 7→ Ay
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term of the linearized control system is self-adjoint with, again, explicit eigenvalues and
eigenfunctions.

In this article we prove an estimate of type (1.11), instead of (1.10), expecting that with more
precise estimates one might get the optimal time for local controllability as for the control system
(1.5). The main differences of our study compare with those of these previous articles are the
following ones.

• This is the first case dealing with boundary controls. In our case one does not know what
are the iterated Lie brackets even heuristically. Let us take this opportunity to point out
that, even if they are expected to not leave in the state space (see [22, pages 181–182]),
that would be very interesting to understand what are these iterated Lie brackets.
• It sounds difficult to perform the change of time-scale introduced in [32] in our situation.

Indeed this change will also lead to a boundary layer. However one can no longer use the
maximum principle to study this boundary layer. Moreover if the change of time-scale,
if justified, allows simpler computations2, the advantage for not using it might be to get
better or more explicit time for the obstruction to small-time local controllability.
• The linear drift term of the linearized control system (i.e. the operator A defined in Lemma

2.1) is neither self-adjoint nor skew-adjoint. Moreover its eigenvalues and eigenfunctions
are not explicit.
• Finally, (1.12) does not hold.

1.3. Ideas of the analysis. Our approach is inspired by the power series expansion method
introduced by Coron and Crépeau [24]. The idea of this method is to search/understand a control
u of the form

u = εu1 + ε2u2 + · · · .
The corresponding solution then formally has the form

y = εy1 + ε2y2 + · · · ,
and the non-linear term yyx can be written as

yyx = ε2y1y1,x + · · · .
One then obtains the following systems

(1.13)


y1,t(t, x) + y1,x(t, x) + y1,xxx(t, x) = 0 for t ∈ (0, T ), x ∈ (0, L),

y1(t, x = 0) = y1(t, x = L) = 0 for t ∈ (0, T ),

y1,x(t, x = L) = u1(t) for t ∈ (0, T ),

(1.14)


y2,t(t, x) + y2,x(t, x) + y2,xxx(t, x) + y1(t, x)y1,x(t, x) = 0 for t ∈ (0, T ), x ∈ (0, L),

y2(t, x = 0) = y2(t, x = L) = 0 for t ∈ (0, T ),

y2,x(t, x = L) = u2(t) for t ∈ (0, T ).

The idea in [18, 20] with its root in [24] is then to find u1 and u2 such that, if y1(0, ·) = y2(0, ·) = 0,
then y1(T, ·) = 0 and the L2(0, L)-orthogonal projection of y2(T ) on M is a given (non-zero)
element inM. In [24], the authors needed to make an expansion up to the order 3 since y2 belongs
to the orthogonal space of M in this case. To this end, in [24, 18, 20], the authors used delicate
contradiction arguments to capture the structure of the KdV systems.

The analysis in this paper has the same root as the ones mentioned above. Nevertheless, instead
of using a contradiction argument, our strategy is to characterize all possible u1 which steers 0 at
time 0 to 0 at time T (see Proposition 2.8). This is done by taking the Fourier transform with

2This is in particular due to the fact that for the limit problem one has again (1.12)
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respect to time of the solution y1 and applying Paley-Wiener’s theorem. Surprisingly, in the case
2k+ l 6= 3N∗, if the time T is sufficiently small, there are directions inM which cannot be reached
via y2 (see Corollary 3.7 and Lemma 5.3). This is one of the crucial observations in this paper.
Using this observation, we then implement a method to prove the obstruction for the small-time
local null-controllability of the KdV system, see Theorem 5.1. The idea is to bring the nonlinear
context to the one, based on the power series expansion approach, where the new phenomenon is
observed (the context of Corollary 3.7). To be able to reach the result as stated in Theorem 1.2,
we establish several new estimates for the linear and nonlinear KdV systems using low regularity
data (see Section 4.2 for the linear and Lemma 5.4 for the nonlinear settings). Their proofs partly
involve a connection between the linear KdV equation and the linear KdV-Burgers equation as
previously used by Bona et al. [13] and inspired by the work of Bourgain [14], and Molinet and
Ribaud [34]. To establish the local controllability for a subclass of critical lengths in a finite time
(Theorem 6.1), we apply again the power series method and use a fixed point argument. The key
point here is first to obtain controls in H1(0, T ) to control directions which can be reached via
the linearized system and second to obtain controls in H1(0, T ) for y1 and y2 mentioned above.
The analysis of the first part is based on a modification of the Hilbert Uniqueness Method and
the analysis of the second part is again based on the information obtained in Corollary 3.7 and
Lemma 5.3. Our fixed point argument is inspired by [24, 18] but is different, somehow simpler,
and, more importantly, relies on the usual Banach fixed point theorem instead of the Brouwer
fixed point theorem, which might be interesting to handle nonlinear partial differential equations
such that M is of infinite dimension, as, for example, in [32].

1.4. Structure of the paper. The paper is organized as follows. Section 2 is devoted to the study
of controls which steers 0 to 0 (motivated by the system of y1). In Section 3, we study attainable
directions for small time via the power series approach (motivated by the system of y2). The main
result in this section is Proposition 3.6 whose consequence (Corollary 3.7) is crucial in the proof
of Theorem 1.2. In Section 4, we established several useful estimates for linear KdV systems. In
Section 5, we give the proof of Theorem 1.2. In fact, we will establish a result (Theorem 5.1),
which implies Theorem 1.2 and reveals a connection with unreachable directions via the power
series expansion method. In Section 6, we establish the local controllability for the nonlinear KdV
system (1.1) with initial and final datum in H3(0, L)∩H1

0 (0, L) and controls in H1(0, 1) for some
critical lengths (Theorem 6.1). In the appendix, we establish various results used in Sections 2
to 4.

2. Properties of controls steering 0 at time 0 to 0 at time T

In this section, we characterize the controls that steer 0 to 0 for the linearized KdV system at a
given time. This is done by considering the Fourier transform in the t-variable and these conditions
are written in terms of Paley-Wiener’s conditions. The resolvent of ∂3x+∂x hence naturally appears
during this analysis. We begin with the discrete property on the spectrum of this operator.

Lemma 2.1. Set D(A) =
{
v ∈ H3(0, L), v(0) = v(L) = v′(L) = 0

}
and let A be the unbounded

operator on L2(0, L) with domain D(A) and defined by Av = v′′′+ v′ for v ∈ D(A). The spectrum
of A is discrete.

Proof. Since A is closed, we only have to prove that there exists a discrete set D ⊂ C such that
for z ∈ C \ D and for f ∈ L2(0, L), there exists a unique solution v ∈ H3(0, L) of the system

(2.1)

{
v′′′ + v′ + zv = f in (0, L),

v(0) = v(L) = v′(L) = 0.
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Step 1: An auxiliary shooting problem. For each z ∈ C, let U(z) ∈ C3(R;C) be the unique solution
of the Cauchy problem

(2.2) U ′′′(z) + U ′(z) + zU(z) = 0 in (0, L), U ′(z)(L) = U(z)(L) = 0, U ′′(z)(L) = 1.

Let θ : C → C be defined by θ(z) = U(z)(0). Then θ is an entire function. We claim that this

function does not vanish identically, and D := θ−1(0) is therefore a discrete set. Indeed, let us
assume that U(1)(0) = θ(1) = 0. Multiplying (2.2) with z = 1 (the equation of U(1)) by the (real)
function U(1) and integrating by parts on [0, L], one gets

(2.3)
1

2
U ′(1)(0)2 +

ˆ L

0
U2
(1)(x) dx = 0,

which implies U(1) = 0 in [0, L]. This is in contradiction with U ′′(1)(L) = 1.

Step 2: Uniqueness. Let z /∈ D, i.e., θ(z) = U(z)(0) 6= 0. Assume that v1, v2 ∈ H3(0, L) are
two solutions of (2.1). Set U = v1 − v2. Then U ′′′ + U ′ + zU = 0 and U(L) = U ′(L) = 0. It
follows that U = U ′′(L)U(z) in [0, L]. So, U(0) = U ′′(L)U(z)(0) = U ′′(L)θ(z). Since θ(z) 6= 0 and
U(0) = v1(0) − v2(0) = 0, we conclude that U ′′(L) = 0. Hence U = 0 in [0, L], which implies the
uniqueness.

Step 3: Existence. Let z /∈ D and f ∈ L2(0, L). Let V ∈ H3(0, L) be the unique solution of the
Cauchy problem

(2.4)

{
V ′′′ + V ′ + zV = f in (0, L),

V (L) = V ′(L) = V ′′(L) = 0.

Set v = V − V (0)(θ(z))−1U(z) in [0, L]. Then v belongs to H3(0, L) and satisfies the differential
equation v′′′ + v′ + zv = f , and the boundary conditions v(L) = 0, v′(L) = 0, and v(0) =
V (0)− V (0) = 0. Thus v is a solution of (2.1). �

Before characterizing controls steering 0 at time 0 to 0 at time T , we introduce

Definition 2.2. For z ∈ C, let (λj)1≤j≤3 =
(
λj(z)

)
1≤j≤3 be the three solutions repeated with the

multiplicity of

(2.5) λ3 + λ+ iz = 0.

Set

(2.6) Q = Q(z) :=

3∑
j=1

(λj+1 − λj)eλjL+λj+1L =

 1 1 1
eλ1L eλ2L eλ3L

λ1e
λ1L λ2e

λ2L λ3e
λ3L

 ,

(2.7) P = P (z) :=

3∑
j=1

λj(e
λj+2L − eλj+1L) = det

 1 1 1
eλ1L eλ2L eλ3L

λ1 λ2 λ3

 ,

and

(2.8) Ξ = Ξ(z) := −(λ2 − λ1)(λ3 − λ2)(λ1 − λ3) = det

 1 1 1
λ1 λ2 λ3
λ21 λ22 λ23

 ,

with the convention λj+3 = λj for j ≥ 1.
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Remark 2.3. The matrix Q and the quantities P and Ξ are antisymmetric with respect to λj
(j = 1, 2, 3), and their definitions depend on a choice of the order of (λ1, λ2, λ3). Nevertheless,
we later consider a product of either P , Ξ, or detQ with another antisymmetric function of (λj),
or deal with | detQ|, and these quantities therefore make sense (see e.g. (2.11), (2.12)). The
definitions of P , Ξ, and Q are only understood in these contexts.

In what follows, for an appropriate function v defined on R+ × (0, L), we extend v by 0 on
R− × (0, L) and we denote by v̂ its Fourier transform with respect to t, i.e., for z ∈ C,

v̂(z, x) =
1√
2π

ˆ +∞

0
v(t, x)e−izt dt.

We have

Lemma 2.4. Let u ∈ L2(0,+∞) and let y ∈ C
(
[0,+∞);L2(0, L)

)
∩L2

loc

(
[0,+∞);H1(0, L)

)
be the

unique solution of

(2.9)


yt(t, x) + yx(t, x) + yxxx(t, x) = 0 in (0,+∞)× (0, L),

y(t, x = 0) = y(t, x = L) = 0 in (0,+∞),

yx(t, x = L) = u(t) in (0,+∞),

with

(2.10) y(t = 0, ·) = 0 in (0, L).

Then, outside of a discrete set z ∈ R, we have

(2.11) ŷ(z, x) =
û

detQ

3∑
j=1

(eλj+2L − eλj+1L)eλjx for a.e. x ∈ (0, L),

and in particular,

(2.12) ∂xŷ(z, 0) =
û(z)P (z)

detQ(z)
.

Remark 2.5. Assume that û(z, ·) is well-defined for z ∈ C (e.g. when u has a compact support).
Then the conclusions of Lemma 2.4 hold outside of a discrete set z ∈ C.

Proof. From the system of y, we have

(2.13)


izŷ(z, x) + ŷx(z, x) + ŷxxx(z, x) = 0 in R× (0, L),

ŷ(z, x = 0) = ŷ(z, x = L) = 0 in R,

ŷx(z, x = L) = û(z) in R.

Taking into account the equation of ŷ, we search the solution of the form

ŷ(z, ·) =

3∑
j=1

aje
λjx,

where λj = λj(z) with j = 1, 2, 3 are defined in Definition 2.2.
According to the theory of ordinary differential equations with constant coefficients, this is

possible if the equation λ3 + λ + iz = 0 has three distinct solutions, i.e., if the discriminant
−4 + 27z2 is not 0. Moreover, if −iz /∈ Sp(A), this solution is unique. Thus, by Lemma 2.1,



10 JEAN-MICHEL CORON, ARMAND KOENIG, AND HOAI-MINH NGUYEN

outside a discrete set in R, ŷ(z, ·) can be written in this form in a unique way. Using the boundary
conditions for ŷ, we require that 

∑3
j=1 aj = 0,∑3

j=1 e
λjLaj = 0,∑3

j=1 λje
λjLaj = û.

This implies, with Q = Q(z) defined in Definition 2.2,

(2.14) Q(a1, a2, a3)
T = (0, 0, û)T.

It follows that

aj =
û

detQ

(
eλj+2L − eλj+1L

)
.

This yields

(2.15) ŷ(z, x) =
û

detQ

3∑
j=1

(eλj+2L − eλj+1L)eλjx.

We thus obtain

�(2.16) ∂xŷ(z, 0) =
û(z)P (z)

detQ(z)
.

As mentioned in Remark 2.3, the maps P and detQ are antisymmetric functions with respect
to λj . It is hence convenient to consider ∂xŷ(z, 0) under the form

(2.17) ∂xŷ(z, 0) =
û(z)G(z)

H(z)
,

where, with Ξ defined in (2.8),

(2.18) G(z) = P (z)/Ξ(z) and H(z) = detQ(z)/Ξ(z).

Concerning the functions G and H, we have

Lemma 2.6. The functions G and H defined in (2.18) are entire functions.

Proof. Note that the maps z 7→ Ξ(z)P (z), z 7→ Ξ(z) detQ(z) and z 7→ Ξ(z)2 are symmetric func-
tions of the λj and are thus well-defined, and even entire functions (see Lemma A.1 in Appendix A).
According to the definition of Ξ, Ξ(z0) = 0 if and only if X3 + X + iz0 has a double root, i.e.
z0 = ±2/(3

√
3). Simple computations prove that when ε is small,

(2.19)



λ1(z0 + ε) = ∓ i√
3

+

√
∓i

31/4
√
ε+O(ε),

λ2(z0 + ε) = ∓ i√
3
−
√
∓i

31/4
√
ε+O(ε),

λ3(z0 + ε) = ± 2i√
3

+
ε

3
+O(ε2).

Indeed, the behavior of λ3 follows immediately from the expansion of λ3 near ± 2i√
3
. The behavior

of λ1 and λ2 can be then verified using, with ∆ = −3λ23 − 4,

λ1 =
−λ3 +

√
∆

2
and λ2 =

−λ3 −
√

∆

2
.
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It follows that that Ξ2(z0 + ε) = c±ε + O(ε2) for some c± 6= 0. This in turn implies that z0 =
±2/(3

√
3) are simple zeros of Ξ2. When X3 +X + iz has a double root, the definitions of P and

detQ (Eq. (2.6) and (2.7)) imply

|P (z0)| = |detQ(z0)| = 0 for z0 = ±2/(3
√

3).

The conclusion follows. �

Remark 2.7. It is interesting to note that

(1)
(
H(z) = 0 and z 6= ±2/(3

√
3)
)

if and only if −iz ∈ Sp(A).

(2) iz ∈ Sp(A) and z is real if and only if L = 2π
√

k2+kl+l2

3 , and

(2.20) z =
(2k + l)(k − l)(2l + k)

3
√

3(k2 + kl + l2)3/2
,

for some k, l ∈ N with 1 ≤ l ≤ k.

Indeed, if L = 2π
√

k2+kl+l2

3 and z is given by the RHS of (2.20), then, from [38], iz ∈ Sp(A). On

the other hand, if z is real and iz ∈ Sp(A), then, by an integration by parts, the corresponding

eigenfunction w also satisfies the condition wx(0) = 0. It follows from [38] that L = 2π
√

k2+kl+l2

3

and z is given by (2.20) for some k, l ∈ N with 1 ≤ l ≤ k. We finally note that for z 6= ±2/(3
√

3),
the solutions of the ordinary differential equation u′′′ + u′ + izu = 0 are of the form u(x) =∑3

j=1 aje
λjx. This implies that Q(a1, a2, a3)

T = (0, 0, 0)T if u(0) = u(L) = u′(L) = 0. Therefore,

for z 6= ±2/(3
√

3), −iz is an eigenvalue of A if and only if |detQ(z)| = 0, i.e., H(z) = 0. We
finally note that, ±2i/(3

√
3) is not a pure imaginary eigenvalue of A since, for k ≥ l ≥ 1,

0 ≤ (2k + l)(k − l)(2l + k)

3
√

3(k2 + kl + l2)3/2
=

(2k + l)(k2 + kl − 2l2)

3
√

3(k2 + kl + l2)3/2
<

(2k + l)

3
√

3(k2 + kl + l2)1/2
<

2

3
√

3
.

We are ready to give the characterization of the controls steering 0 to 0, which is the starting
point of our analysis.

Proposition 2.8. Let L > 0, T > 0, and u ∈ L2(0,+∞). Assume that u has a compact support
in [0, T ], and u steers 0 at the time 0 to 0 at the time T , i.e., the unique solution y of (2.9) and
(2.10) satisfies y(T, ·) = 0 in (0, L). Then û and ûG/H satisfy the assumptions of Paley-Wiener’s
theorem concerning the support in [−T, T ], i.e.,

û and ûG/H are entire functions,

and

|û(z)|+
∣∣∣∣ ûG(z)

H(z)

∣∣∣∣ ≤ CeT |=(z)|,
for some positive constant C.

Here and in what follows, for a complex number z, <(z), =(z), and z̄ denote the real part, the
imaginary part, and the conjugate of z, respectively.

Proof. Proposition 2.8 is a consequence of Lemma 2.4 and Paley-Wiener’s theorem, see e.g. [41,
19.3 Theorem]. The proof is clear from the analysis above in this section and left to the reader. �
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3. Attainable directions for small time

In this section, we investigate controls which steer the linear KdV equation from 0 to 0 in some
time T , and a quantity related to the quadratic order in the power expansion of the nonlinear KdV
equation behaves. Let u ∈ L2(0,+∞) and denote y the corresponding solution of the linear KdV
equation (2.9). We assume the initial condition to be 0 and that y satisfies y(t, ·) = 0 in (0, L) for
t ≥ T . We have, by Lemma 2.4 (and also Remark 2.5), for z ∈ C outside a discrete set,

(3.1) ŷ(z, x) = û(z)

∑3
j=1(e

λj+1L − eλjL)eλj+2x∑3
j=1(λj+1 − λj)e−λj+2L

.

Recall that λj = λj(z) for j = 1, 2, 3 are the three solutions of the equation

(3.2) x3 + x = −iz for z ∈ C.
Let η1, η2, η3 ∈ iR, i.e., ηj ∈ C with <(ηj) = 0 for j = 1, 2, 3. Define

(3.3) ϕ(x) =
3∑
j=1

(ηj+1 − ηj)eηj+2x for x ∈ [0, L],

with the convention ηj+3 = ηj for j ≥ 1. The following assumption on ηj is used repeatedly
throughout the paper:

(3.4) eη1L = eη2L = eη3L,

which is equivalent to η3 − η2, η2 − η1 ∈
2πi

L
Z. The definition of ϕ in (3.3) and the assumption on

ηj in (3.4) are motivated by the structure of M [18, 20] and will be clear in Section 5.

We have

Lemma 3.1. Let p ∈ R and let ϕ be defined by (3.3). Set, for (z, x) ∈ C× [0, L],

(3.5) B(z, x) =

∑3
j=1(e

λj+1L − eλjL)eλj+2x∑3
j=1(λj+1 − λj)e−λj+2L

·
∑3

j=1(e
λ̃j+1L − eλ̃jL)eλ̃j+2x∑3

j=1(λ̃j+1 − λ̃j)e−λ̃j+2L
· ϕx(x),

where λ̃j = λ̃j(z) (j = 1, 2, 3) denotes the conjugate of the roots of (3.2) with z replaced by

z − p and with the use of convention λ̃j+3 = λ̃j for j ≥ 1. Let u ∈ L2(0,+∞) and let y ∈
C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution of (2.9) and (2.10). Then

(3.6)

ˆ L

0

ˆ +∞

0
|y(t, x)|2ϕx(x)e−ipt dt dx =

ˆ
R
û(z)û(z − p)

ˆ L

0
B(z, x) dx dz.

Remark 3.2. The LHS of (3.6) is a multiple of the L2(0, L)-projection of the solution y(T, ·) into
the space spanned by the conjugate of the vector ϕ(x)e−ipT whose real and imaginary parts are in
M for appropriate choices of ηj and p when the initial data is orthogonal to M (see [24, 18, 20],
and also (5.18)).

Proof. We haveˆ L

0

ˆ ∞
0
|y(t, x)|2ϕx(x)e−ipt dt dx =

√
2π

ˆ L

0
ϕx(x)|̂y|2(p, x) dx =

ˆ L

0
ϕx(x)ŷ ∗ ̂̄y(p, x) dx

=

ˆ L

0
ϕx(x)

ˆ
R
ŷ(z, x)̂̄y(p− z, x) dz dx

=

ˆ L

0
ϕx(x)

ˆ
R
ŷ(z, x)ŷ(z − p, x) dz dx.
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Using Fubini’s theorem, we derive from (3.1) thatˆ L

0

ˆ ∞
0
|y(t, x)|2ϕx(x)e−ipt dt dx =

ˆ
R
û(z)û(z − p)

ˆ L

0
B(z, x) dx dz,

which is (3.6). �

We next state the behaviors of λj and λ̃j given in Lemma 3.1 for “large positive” z, which will
be used repeatedly in this section and Section 4. These asymptotics are direct consequence of the
equation (2.5) satisfied by the λj .

Lemma 3.3. For p ∈ R and z in a small enough conic neighborhood of R+, let λj and λ̃j with
j = 1, 2, 3 be given in Lemma 3.1. Consider the convention <(λ1) < <(λ2) < <(λ3) and similarly

for λ̃j. We have, in the limit |z| → ∞,

(3.7) λj = µjz
1/3 − 1

3µj
z−1/3 +O(z−2/3) with µj = e−iπ/6−2jiπ/3,

(3.8) λ̃j = µ̃jz
1/3 − 1

3µ̃j
z−1/3 +O(z−2/3) with µ̃j = eiπ/6+2ijπ/3

(see Figure 1 for the geometry of µj and µ̃j). Here z1/3 denotes the cube root of z with the real
part positive.

µ1

µ̃1

µ2

µ̃2

µ3

µ̃3 Figure 1. The roots λj of λ3 +
λ + iz = 0 satisfy, when z > 0 is
large, λj ∼ µjz1/3 where µ3j = −i.
When z < 0 and |z| is large, then

the corresponding roots λ̂j satisfy

λ̂j ∼ µ̃j |z|1/3 with µ̃j = µj . We

also have λ̃j ∼ λ̂j .

We are ready to establish the behavior ofˆ L

0
B(z, x) dx

for z ∈ R with large |z|, which is one of the main ingredients for the analysis in this section.

Lemma 3.4. Let p ∈ R, and let ϕ be defined by (3.3). Assume that (3.4) holds and ηj 6= 0 for
j = 1, 2, 3. Let B be defined by (3.5). We have

(3.9)

ˆ L

0
B(z, x) dx =

E

|z|4/3
+O(|z|−5/3) for z ∈ R with large |z|,

where E is defined by

(3.10) E =
1

3
(eη1L − 1)

−2

3

3∑
j=1

η2j+2(ηj+1 − ηj)− ip
3∑
j=1

ηj+1 − ηj
ηj+2

 .
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Proof. We first deal with the case where z is positive and large. We use the convention in Lemma 3.3

for λj and λ̃j . Consider the denumerator of B(z, x). We have, by Lemma 3.3,

(3.11)
1∑3

j=1(λj+1 − λj)e−λj+2L
· 1∑3

j=1(λ̃j+1 − λ̃j)e−λ̃j+2L

=
eλ1Leλ̃1L

(λ3 − λ2)(λ̃3 − λ̃2)

(
1 +O

(
e−C|z|

1/3))
.

We next deal with the numerator of B(z, x). Set, for (z, x) ∈ R× (0, L),

(3.12) f(z, x) =
3∑
j=1

(eλj+1L − eλjL)eλj+2x, g(z, x) =
3∑
j=1

(eλ̃j+1L − eλ̃jL)eλ̃j+2x,

3

fm(z, x) = −eλ3Leλ2x + eλ2Leλ3x + eλ3Leλ1x, gm(z, x) = −eλ̃3Leλ̃2x + eλ̃2Leλ̃3x + eλ̃3Leλ̃1x.

We have
ˆ L

0
f(z, x)g(z, x)ϕx(x) dx =

ˆ L

0
fm(z, x)gm(z, x)ϕx(x) dx+

ˆ L

0
(f − fm)(z, x)gm(z, x)ϕx(x) dx

+

ˆ L

0
fm(z, x)(g − gm)(z, x)ϕx(x) dx+

ˆ L

0
(f − fm)(z, x)(g − gm)(z, x)ϕx(x) dx.

It is clear from Lemma 3.3 that

(3.13)

ˆ L

0
|(f − fm)(z, x)gm(z, x)ϕx(x)| dx+

ˆ L

0
|(f − fm)(z, x)(g − gm)(z, x)ϕx(x)| dx

+

ˆ L

0
|fm(z, x)(g − gm)(z, x)ϕx(x)| dx ≤ C|e(λ3+λ̃3)L|e−C|z|1/3 .

We next estimate

(3.14)

ˆ L

0
fm(x, z)gm(x, z)ϕx(x) =

ˆ L

0
fm(x, z)gm(x, z)

 3∑
j=1

ηj+2(ηj+1 − ηj)eηj+2x

 dx.

We first have, by (3.4) and Lemma 3.3,

(3.15)

ˆ L

0

(
− eλ3Leλ2xeλ̃2Leλ̃3x − eλ2Leλ3xeλ̃3Leλ̃2x + eλ2Leλ3xeλ̃2Leλ̃3x

)

×

 3∑
j=1

ηj+2(ηj+1 − ηj)eηj+2x

 dx = e(λ3+λ̃3+λ2+λ̃2)L
(
eη1LT1(z) +O

(
e−C|z|

1/3))
,

where

(3.16) T1(z) :=

3∑
j=1

ηj+2(ηj+1 − ηj)

(
1

λ3 + λ̃3 + ηj+2

− 1

λ3 + λ̃2 + ηj+2

− 1

λ2 + λ̃3 + ηj+2

)
.

3The index m stands the main part.
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Let us now deal with the terms of (3.14) that contain both eλ3L+λ̃3L and (either eλ1x or eλ̃1x).
We obtain, by (3.4) and Lemma 3.3,

(3.17)

ˆ L

0

(
eλ3Leλ1xeλ̃3Leλ̃1x − eλ3Leλ1xeλ̃3Leλ̃2x − eλ3Leλ2xeλ̃3Leλ̃1x

)

×

 3∑
j=1

ηj+2(ηj+1 − ηj)eηj+2x

 dx = e(λ3+λ̃3)L
(
T2(z) +O(e−C|z|

1/3
)
)
,

where

(3.18) T2(z) :=

3∑
j=1

ηj+2(ηj+1 − ηj)

(
− 1

λ1 + λ̃1 + ηj+2

+
1

λ1 + λ̃2 + ηj+2

+
1

λ2 + λ̃1 + ηj+2

)
.

We have, by (3.4),

(3.19)

ˆ L

0
eλ3Leλ2xeλ̃3Leλ̃2x

 3∑
j=1

ηj+2(ηj+1 − ηj)eηj+2x

 dx = e(λ3+λ̃3)LT3(z),

where

(3.20) T3(z) :=
(
eλ2L+λ̃2L+η1L − 1

) 3∑
j=1

ηj+2(ηj+1 − ηj)
λ2 + λ̃2 + ηj+2

.

The other terms of (3.14) are negligible, because we have

(3.21)

∣∣∣∣∣∣
ˆ L

0

(
eλ3Leλ1xeλ̃2Leλ̃3x + eλ2Leλ3xeλ̃3Leλ̃1x

)( 3∑
j=1

ηj+2(ηj+1 − ηj)eηj+2x
)
dx

∣∣∣∣∣∣
= |e(λ3+λ̃3)L|O(e−Cz

1/3
).

Using Lemma 3.3, we have

(3.22)


λ1 + λ̃1 + λ2 + λ̃2 + λ3 + λ̃3 = O(z−1/3),

λ1 + λ̃1 + λ3 + λ̃3 = O(z−1/3),

(λ3 − λ2)(λ̃3 − λ̃2) = 3z2/3(1 +O(z−1/3)).

We claim that

(3.23) |T1(z)|+ |T2(z)|+ |T3(z)| = O(z−2/3) for large positive z.

Assuming (3.23), and combining (3.11), (3.15), (3.17), (3.19), (3.21), and (3.22) yields

(3.24)

ˆ L

0
B(z, x) dz =

1

3|z|2/3
(
eη1LT1(z) + T2(z) + T3(z) +O(z−1)

)
.

We next derive the asymptotic behaviors of T1(z), T2(z), and T3(z), which in particular imply
(3.23). We first deal with T1(z) given in (3.16). Since

(3.25)

3∑
j=1

ηj+2(ηj+1 − ηj) = 0,
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we obtain

T1(z) =
3∑
j=1

ηj+2(ηj+1 − ηj)

(
1

λ3 + λ̃3 + ηj+2

− 1

λ3 + λ̃3

)

+
3∑
j=1

ηj+2(ηj+1 − ηj)

(
− 1

λ3 + λ̃2 + ηj+2

+
1

λ3 + λ̃2

)

+

3∑
j=1

ηj+2(ηj+1 − ηj)

(
− 1

λ2 + λ̃3 + ηj+2

+
1

λ2 + λ̃3

)
.

Using Lemma 3.3, we get

T1(z) = −
3∑
j=1

η2j+2(ηj+1 − ηj)

(
1

(λ3 + λ̃3)2
− 1

(λ3 + λ̃2)2
− 1

(λ2 + λ̃3)2

)
+O(z−1).

Moreover, we derive from Lemma 3.3 that

1

(λ3 + λ̃3)2
− 1

(λ3 + λ̃2)2
− 1

(λ2 + λ̃3)2
= z−2/3

(
(µ3 + µ̃3)

−2 − (µ3 + µ̃2)
−2 − (µ2 + µ̃3)

−2
)

+O(z−1)

= z−2/3

(
1

3
− −1 + i

√
3

6
− −1− i

√
3

6

)
+O(z−1)

=
2

3
z−2/3 +O(z−1).(3.26)

We derive that

(3.27) T1(z) = −2

3
z−2/3

3∑
j=1

η2j+2(ηj+1 − ηj) +O(z−1).

We next consider T2(z) given in (3.18). We have, by (3.25),

T2(z) =

3∑
j=1

ηj+2(ηj+1 − ηj)

(
− 1

λ1 + λ̃1 + ηj+2

+
1

λ1 + λ̃1

)

+
3∑
j=1

ηj+2(ηj+1 − ηj)

(
1

λ1 + λ̃2 + ηj+2

− 1

λ1 + λ̃2

)

+

3∑
j=1

ηj+2(ηj+1 − ηj)

(
1

λ2 + λ̃1 + ηj+2

− 1

λ2 + λ̃1

)
.

Using Lemma 3.3, we obtain

T2(z) =

3∑
j=1

η2j+2(ηj+1 − ηj)

(
1

(λ1 + λ̃1)2
− 1

(λ1 + λ̃2)2
− 1

(λ2 + λ̃1)2

)
+O(z−1),

and

1

(λ1 + λ̃1)2
− 1

(λ1 + λ̃2)2
− 1

(λ2 + λ̃1)2
= z−2/3

(
(µ1 + µ̃1)

−2− (µ1 + µ̃2)
−2− (µ2 + µ̃1)

−2
)

+O(z−1).
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By Lemma 3.3, we have

(µ1 + µ̃1)
2 = (µ3 + µ̃3)

2 (µ1 + µ̃2)
2 = (µ̃3 + µ2)

2 (µ̃1 + µ2)
2 = (µ3 + µ̃2)

2.

Combining this with (3.26), we then have

(3.28) T2(z) =
2

3
z−2/3

3∑
j=1

η2j+2(ηj+1 − ηj) +O(z−1).

We finally consider T3(z) given in (3.20). We have, by (2.5),

λ32 + λ̃32 + λ2 + λ̃2 = −iz + i(z − p) = −ip.
This yields

λ2 + λ̃2 = − ip

λ22 + λ̃22 + λ2λ̃2
.

From Lemma 3.3, we have

λ2 + λ̃2 = ipz−2/3 +O(z−1).

It follows that
3∑
j=1

ηj+2(ηj+1 − ηj)
λ2 + λ̃2 + ηj+2

=
3∑
j=1

ηj+2(ηj+1 − ηj)
ipz−2/3 + ηj+2

+O(|z|−1)

=

3∑
j=1

(ηj+1 − ηj)

(
1− ipz−2/3

ηj+2

)
+O(|z|−1)

= −ip
3∑
j=1

ηj+1 − ηj
ηj+2

z−2/3 +O(z−1).(3.29)

We derive from (3.29) and Lemma 3.3 that

(3.30) T3 = −ip
(
eη1L − 1

) 3∑
j=1

ηj+1 − ηj
ηj+2

z−2/3 +O(z−1).

Using (3.27), (3.28), and (3.30), we derive from (3.24) thatˆ L

0
B(z, x) dx = Ez−4/3 +O(z−5/3),

which is the conclusion for large positive z.

The conclusion in the case where z is large and negative can be derived from the case where z
is positive and large as follows. Define, for (z, x) ∈ R× (0, L), with large |z|,

M(z, x) =

∑3
j=1(e

λj+1L − eλjL)eλj+2x∑3
j=1(λj+1 − λj)e−λj+2L

.

Then

B(z, x) = M(z, x)M(z − p, x)ϕx(x).

It is clear from the definition of M that

M(−z, x) = M(z, x).

We then have

B(−z, x) = M(−z, x)M(−z − p, x)ϕx(x) = M(z, x)M(z + p, x)ϕx(x).
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We thus obtain the result in the case where z is negative and large by taking the conjugate of the
corresponding expression for large positive z in which ηj and p are replaced by −ηj and −p. The
conclusion follows. �

As a consequence of Lemmas 3.1 and 3.4, we obtain

Lemma 3.5. Let p ∈ R and let ϕ be defined by (3.3). Assume that (3.4) holds and ηj 6= 0 for
j = 1, 2, 3. Let u ∈ L2(0,+∞) and let y ∈ C([0,+∞);L2(0, L)) ∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the

unique solution of (2.9) and (2.10). We have

(3.31)

ˆ +∞

0

ˆ L

0
|y(t, x)|2ϕx(x)e−ipt dx dt =

ˆ
R
û(z)û(z − p)

( E

|z|4/3
+O(|z|−5/3)

)
dz.

Using Lemma 3.5, we will establish the following result which is the key ingredient for the
analysis of the non-null-controllability for small time of the KdV system (1.1).

Proposition 3.6. Let p ∈ R and let ϕ be defined by (3.3). Assume that (3.4) holds and ηj 6= 0
for j = 1, 2, 3. Let u ∈ L2(0,+∞) and let y ∈ C([0,+∞);L2(0, L)) ∩ L2

loc

(
[0,+∞);H1(0, L)

)
be

the unique solution of (2.9) and (2.10). Assume that u 6≡ 0, u(t) = 0 for t > T , and y(t, ·) = 0 for
large t. Then, there exists a real number N(u) ≥ 0 such that C−1‖u‖H−2/3 ≤ N(u) ≤ C‖u‖H−2/3

for some constant C ≥ 1 depending only on L, and 4

(3.32)

ˆ ∞
0

ˆ L

0
|y(t, x)|2e−iptϕx(x) dx dt = N(u)2

(
E +O(1)T 1/4

)
.

Here we use the following definition, for s < 0 and for u ∈ L2(R+),

‖u‖2Hs(R) =

ˆ
R
|û|2(1 + |ξ|2)s dξ,

where û is the Fourier transform of the extension of u by 0 for t < 0.
Before giving the proof of Proposition 3.6, we present one of its direct consequences. Denote

ξ1(t, x) = <{ϕ(x)e−ipt} and ξ2(t, x) = ={ϕ(x)e−ipt}. Then

(3.33) ξ1(t, x) + iξ2(t, x) = ϕ(x)e−ipt.

Denote E1 = <(E) and E2 = =(E), and set

(3.34) Ψ(t, x) = E1ξ1(t, x) + E2ξ2(t, x).

Multiplying (3.32) by E and normalizing appropriately, we have

Corollary 3.7. Let p ∈ R and let ϕ be defined by (3.3). Assume that (3.4) holds, ηj 6= 0 for
j = 1, 2, 3, and E 6= 0. There exists T∗ > 0 such that, for any (real) u ∈ L2(0,+∞) with u(t) = 0
for t > T∗ and y(t, ·) = 0 for large t where y is the unique solution of (2.9) and (2.10), we have

(3.35)

ˆ ∞
0

ˆ +∞

0
y2(t, x)Ψx(t, x) dx dt ≥ C‖u‖2

H−2/3(R).

We are ready to give the

Proof. [Proof of Proposition 3.6] By Proposition 2.8,

ûG/H is an entire function.

By Lemma 2.6, G and H are entire functions. The same holds for û since u(t) = 0 for large t. One
can show that the number of common roots ofG andH in C is finite, see Lemma B.2 in Appendix B.

4The map u 7→ N(u) is actually a norm, which is (somewhat) explicitly given in the proof, by N(u)2 = ‖ŵ‖2L2 ,

where w is defined in Eq (3.46).
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Let z1, . . . , zk be the distinct common roots of G and H in C. There exist m1, . . . ,mk ∈ N such
that 5, with

Γ(z) =

k∏
j=1

(z − zj)mj in C,

the following two functions are entire

(3.36) G(z) :=
G(z)

Γ(z)
and H(z) :=

H(z)

Γ(z)
,

and G and H have no common roots. Since

ûG/H = ûG/H

which is an entire function, it follows that the function v defined by

(3.37) v(z) = û(z)/H(z) = û(z)
Γ(z)Ξ(z)

detQ(z)
in C

is also an entire function.
It is clear that

(3.38) û(z) = v(z)H(z) in C.

We consider the holomorphic function v restricted to Lm :=
{
z ∈ C; |<(z)| ≤ cm, −

(
(2m +

1)/(
√

3L)
)3 ≤ =(z) ≤

(
(2m+ 1)/(

√
3L)
)3}

with large m ∈ N. Using Proposition 2.8 to bound û,

and Lemma B.3 in Appendix B to bound (detQ(z))−1, we can bound v on ∂Lm (and thus also in
the interior of Lm) by

(3.39) |v(z)| ≤ Cεe(T+ε/2)
(
(2m+1)/(

√
3L)
)3

in Lm,
for all ε > 0, since, for large |z|,

|Ξ(z)| ≤ C|z|.
Note that the constant Cε can be chosen independently of m. Here we used the fact

|û(z)| ≤ CeT |=(z)| for z ∈ C.
On the other hand, applying Lemma 3.3 and item 2 of Lemma B.3, we have
(3.40)

|v(z)| ≤ Cεe(T+ε)|z| in
{
z ∈ C; |<(z)| ≥ cm, −

(
(2m+ 1)/(

√
3L)
)3 ≤ =(z) ≤

(
(2m+ 1)/(

√
3L)
)3}

.

Combining (3.39) and (3.40) yields

(3.41) |v(z)| ≤ Cεe(T+ε)|z| in C.
Since H is a non-constant entire function, there exists γ > 0 such that

(3.42) H′(z + iγ) 6= 0 for all z ∈ R.
Fix such an γ and denote Hγ(z) = H(z + iγ) for z ∈ C.

Let us prove some asymptotics for Hγ . Since
∑3

j=1 λj = 0, it follows from (2.6) that

detQ = (λ2 − λ1)e−λ3L + (λ3 − λ2)e−λ1L + (λ1 − λ3)e−λ2L.

We use the convention in Lemma 3.3. Thus, by Lemma 3.3, for fixed β ≥ 0,

(3.43) H(z + iβ) =
detQ(z + iγ)

Ξ(z + iγ)Γ(z + iγ)
= κz−2/3−

∑k
i=1 mje−µ1Lz1/3(

1 +O(z−1/3)
)
,

5One can prove that mj = 1 for 1 ≤ j ≤ k by Lemma B.1 in Appendix B, but this is not important at this stage.
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where

κ = − 1

(µ2 − µ1)(µ1 − µ3)
.

We can also compute the asymptotic expansion of H′(z + iβ), either by explicitly computing the
asymptotic behavior of λ′j(z+iβ) for large positive z (formally, one just needs to take the derivative

of (3.43) with respect to z), or by using the Cauchy integral formula on the contour ∂D(z, r) for
some fixed r to justify differentiating Eq. (3.43). We get:

H′(z + iβ) = −µ1L
3
z−2/3κz−2/3−

∑k
i=1 mje−µ1Lz1/3(

1 +O(z−1/3)
)
.

We then get

lim
z∈R,z→+∞

H(z)|z|−2/3/H′γ(z) = α := 3e−iπ/6/L.

Similarly, we obtain

lim
z∈R,z→−∞

H(z)|z|−2/3/H′γ(z) = −ᾱ.

Moreover, we have

(3.44)
∣∣H(z)|z|−2/3 − αH′γ(z)

∣∣ ≤ C|H(z)||z|−1 ≤ C|H′γ(z)||z|−1/3 for large positive z,

and

(3.45)
∣∣H(z)|z|−2/3 + ᾱH′γ(z)

∣∣ ≤ C|H(z)||z|−1 ≤ C|H′γ(z)||z|−1/3 for large negative z.

Set

(3.46) ŵ(z) = v(z)H′γ(z) = û(z)H′γ(z)H(z)−1.

Then ŵ is an entire function and satisfies Paley-Wiener’s conditions for the interval (−T − ε, T +
ε) for all ε > 0, see e.g. [41, 19.3 Theorem]. Indeed, this follows from the facts |ŵ(z)| ≤
Cε|v(z)|eε|z| for z ∈ C by Lemma 3.3, |v(z)| ≤ Cεe

(T+ε)|z| for z ∈ C by (3.41), |H′γ(z)v(z)| =

|H′γ(z)H(z)−1û(z)| ≤ |û(z)| for real z with large |z|, so that
´
R |û|

2 < +∞.

We claim that6

(3.47)

∣∣∣∣ˆ L

0
B(z, x) dx

∣∣∣∣ ≤ C

(|z|+ 1)4/3
for z ∈ R.

In fact, this inequality follows from Lemma 3.4 for large z, and from Lemma B.1 in Appendix B
otherwise since, for if z is a real solution of the equation H(z) = 0, which is simple by Lemma B.1,
it holds, by Lemma B.1 again,

3∑
j=1

(eλj+1L − eλjL)eλj+2x (B.2)
= 0.

From (3.42), (3.44), (3.45), and (3.47), we derive that

(3.48)

∣∣∣∣û(z)û(z − p)
ˆ L

0
B(z, x) dx

∣∣∣∣ ≤ C|ŵ(z)||ŵ(z − p)| for z ∈ R.

6Recall that B was defined in Eq.(3.5).
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Note that, for m ≥ 1,∣∣∣∣∣
ˆ
|z|>m

û(z)û(z − p)
ˆ L

0
B(z, x) dx dz − E|α|2

ˆ
|z|>m

ŵ(z)ŵ(z − p) dz

∣∣∣∣∣
≤
ˆ
|z|>m

∣∣∣∣û(z)û(z − p)
( ˆ L

0
B(z, x) dx− E|z|−4/3

)∣∣∣∣ dz
+ |E|

ˆ
|z|>m

∣∣∣|α|2ŵ(z)ŵ(z − p)− |z|−4/3û(z)û(z − p)
∣∣∣ dz.

Using (3.44) (3.45), and Lemmas 3.1 and 3.4, we derive that∣∣∣∣∣
ˆ
|z|>m

û(z)û(z − p)
ˆ L

0
B(z, x) dx dz − E|α|2

ˆ
|z|>m

ŵ(z)ŵ(z − p) dz

∣∣∣∣∣
≤ C

ˆ
|z|>m

|ŵ(z)||ŵ(z − p)||z|−1/3dz.

We derive from (3.42) and (3.48) that∣∣∣∣ˆ
R
û(z)û(z − p)

ˆ L

0
B(z, x) dx dz − E|α|2

ˆ
R
ŵ(z)ŵ(z − p) dz

∣∣∣∣
≤ C

ˆ
|z|≤m

|ŵ(z)||ŵ(z − p)| dz + Cm−1/3
ˆ
|z|>m

|ŵ(z)||ŵ(z − p)| dz.

Since, for z ∈ R,

|ŵ(z)| ≤ C‖w‖L1 = C‖w‖L1(−T,T ) ≤ CT 1/2‖w‖L2(R),

we derive that∣∣∣∣ˆ
R
û(z)û(z − p)

ˆ L

0
B(z, x) dx dz − E|α|2

ˆ
R
ŵ(z)ŵ(z − p) dz

∣∣∣∣ ≤ C ˆ T

−T

(
Tm+m−1/3

)
|w|2.

Using the fact

ˆ
R
ŵ(z)ŵ(z − p) dz =

ˆ
R
|w(t)|2e−itp dt =

ˆ T

−T
|w(t)|2e−itp dt,

we obtain, by choosing m = 1/T 3/4,

ˆ
R
û(z)û(z − p)

ˆ L

0
B(z, x) dx dz = E|α|2

ˆ T

−T
|w(t)|2(1 +O(1)T 1/4) dt.

The conclusion follows by noting that

ˆ
R
|w(t)|2 =

ˆ
R
|ŵ(z)|2 dz ≥ C

ˆ
R

|û(z)|2

1 + |z|4/3
dz,

and by normalizing u such that |α|‖w‖L2(R) = 1. �
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4. Useful estimates for the linear KdV equations

In this section, we establish several results for the linear KdV equations which will be used in the
proof of Theorem 1.2. Our study of the inhomogeneous KdV equations is based on three elements.
The first one is on the information of the KdV equations explored previously. The second one is a
connection between the KdV equations and the KdV-Burgers equations, as previously suggested
in [29, 13]. The third one is on estimates for the KdV-Burgers equations with periodic boundary
condition. This section contains two subsections. The first one is on inhomogeneous KdV-Burgers
equations with periodic boundary condition and the second one is on the inhomogeneous KdV
equations.

4.1. On the linear KdV-Burgers equations. In this section, we derive several estimates for
the solutions of the linear KdV-Burgers equations using low regular data information. The main
result of this section is the following result:

Lemma 4.1. Let L > 0 and f1 ∈ L1
(
R+;L1(0, L)

)
and f2 ∈ L1

(
R+;W 1,1(0, L)

)
be such that

(4.1)

ˆ L

0
f1(t, x) dx = 0 for a.e. t > 0,

and

(4.2) f2(t, 0) = f2(t, L) = 0 for a.e. t > 0.

Set f = f1 + f2,x and assume that f ∈ L1
(
R+;L2(0, L)

)
. Let y be the unique solution in

C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
, which is periodic in space, of the system

(4.3) yt(t, x) + 4yx(t, x) + yxxx(t, x)− 3yxx(t, x) = f(t, x) in (0,+∞)× (0, L),

and

(4.4) y(t = 0, ·) = 0 in (0, L).

We have, for x ∈ [0, L],

(4.5) ‖y(·, x)‖L2(R+) + ‖yx(·, x)‖H−1/3(R) ≤ C‖f‖L1(R+×(0,L)),

and

(4.6) ‖y(·, x)‖H−1/3(R) + ‖yx(·, x)‖H−2/3(R) + ‖y‖L2(R+;H−1(0,L)) ≤ C‖(f1, f2)‖L1(R+×(0,L)).

Assume that f(t, ·) = 0 for t > T . We have, for all δ > 0, and for all t ≥ T + δ,

(4.7) |yt(t, x)|+ |yx(t, x)| ≤ Cδ‖(f1, f2)‖L1(R+×(0,L)) for x ∈ [0, L].

Here C (resp. Cδ) denotes a positive constant depending only on L (resp. L and δ).

Remark 4.2. Using the standard energy method, as for the KdV equations, one can prove that

if f ∈ L1(R+, L
2(0, L)) with

´ L
0 f(t, x) dx = 0 for a.e. t > 0 (this holds by (4.1) and (4.2)), then

(4.3)-(4.4) has a unique solution in C([0,+∞);L2(0, L))∩L2([0,+∞);H1(0, L)) which is periodic
in space.

In the proof of Lemma 4.1, we use the following elementary estimate, which has its root in the
work of Bourgain [14].
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Lemma 4.3. There exists a positive constant C such that, for j = 0, 1, and z ∈ R,7

(4.8)
∑
n6=0

|n|j

|z + 4n− n3|+ n2
≤ C ln(|z|+ 2)

(|z|+ 2)
2−j

3

.

Proof. For z ∈ R, let k ∈ Z be such that k3 ≤ z < (k + 1)3. It is clear that

(4.9)
∑
n 6=0

|n|j

|z + 4n− n3|+ n2
=

∑
m+k 6=0

|m+ k|j

|z + 4(m+ k)− (m+ k)3|+ (m+ k)2
.

We split the sum in two parts, one for |m| ≤ 2|k|+ 2 and one for |m| > 2|k|+ 2. Since k3 ≤ z <
(k + 1)3, one can check that, for m ∈ Z, m+ k 6= 0, and |m| ≤ 2|k|+ 2,

|z + 4(m+ k)− (m+ k)3|+ |m+ k|2 ≥ C(|m|+ 1)(|k|+ 2)2,

and, for |m| ≥ 2|k|+ 2,

|z + 4(m+ k)− (m+ k)3|+ |m+ k|2 ≥ C|m|3

(by considering |k| ≥ 10 and |k| < 10). We deduce that

(4.10)
∑

|m|≤2|k|+2,m+k 6=0

|m+ k|j

|z + 4(m+ k)− (m+ k)3|+ (m+ k)2

≤ C
∑

|m|≤2|k|+2

1

(|k|+ 2)2−j(|m|+ 1)
≤ C ln(|k|+ 2)

(|k|+ 2)2−j
,

and

(4.11)
∑

|m|>2|k|+2

|m+ k|j

|z + 4(m+ k)− (m+ k)3|+ (m+ k)2
≤ C

∑
|m|>2|k|+2

1

|m|3−j
≤ C

(|k|+ 2)2−j
.

Combining (4.9) - (4.11) yields (4.8). �

In what follows, for an appropriate function ζ defined in R+ × (0, L), we denote

ˆ̂
ζ(z, n) =

1

L

ˆ L

0
ζ̂(z, x)e−

i2πnx
L dx for (z, n) ∈ R× Z.

Recall that to define ζ̂(z, x), we extend ζ by 0 for t < 0.

Proof. [Proof of Lemma 4.1] For simplicity of notations, we will assume that L = 2π. We establish
(4.5), (4.6), and (4.7) in Steps 1, 2 and 3 below.

Step 1: Proof of (4.5).
We first estimate ‖y(·, x)‖L2(R+) for x ∈ [0, L]. From (4.3) and (4.4), we have

(4.12) ˆ̂y(z, n) =
ˆ̂
f(z, n)

i(z + 4n− n3) + 3n2
for (z, n) ∈ R× (Z \ {0}),

and

(4.13) ˆ̂y(z, 0) = 0 for z ∈ R

7We recall that an absolutely convergent sum is nothing but the integral with the counting measure, which is
σ-finite. In the following, we will often exchange sums and integrals without comments, the justification being one
of Fubini’s theorem.
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since

ˆ L

0
f(t, x) dx = 0 for t > 0 by (4.1) and (4.2). By Plancherel’s theorem, we obtain

(4.14)

ˆ
R+

|y(t, x)|2 dt =

ˆ
R
|ŷ(z, x)|2 dz ≤ C

ˆ
R

∣∣∣∣∣∣
∑
n6=0

| ˆ̂f(z, n)|
|z + 4n− n3|+ n2

∣∣∣∣∣∣
2

dz.

Since

(4.15) | ˆ̂f(z, n)| ≤ C‖f‖L1(R+×(0,L)),

it follows from (4.14) that

(4.16)

ˆ
R+

|y(t, x)|2 dt ≤ C‖f‖2L1(R+×(0,L))

ˆ
R

∣∣∣∣∣∣
∑
n6=0

1

|z + 4n− n3|+ n2

∣∣∣∣∣∣
2

dz.

Applying Lemma 4.3 with j = 0, we derive from (4.16) that
ˆ
R+

|y(t, x)|2 dt ≤ C‖f‖2L1(R+×(0,L))

ˆ
R

ln2(|z|+ 2)

(|z|+ 2)4/3
dz,

which yields

(4.17) ‖y(·, x)‖L2 ≤ C‖f‖L1(R+×(0,L)).

We next estimate ‖yx(·, x)‖H−1/3(R+) for x ∈ [0, L]. We have, by (4.12), (4.13), and (4.15),

(4.18) ‖yx(·, x)‖2
H−1/3(R+)

≤ C‖f‖2L1(R+×(0,L))

ˆ
R

1

(1 + |z|2)1/3

∣∣∣∣∣∣
∑
n 6=0

|n|
|z + 4n− n3|+ n2

∣∣∣∣∣∣
2

dz.

Applying Lemma 4.3 with j = 1, we derive from (4.18) that

‖yx(·, x)‖2
H−1/3(R+)

≤ C‖f‖2L1(R+×(0,L))

ˆ
R

ln2(|z|+ 2)

(|z|+ 2)4/3
dz,

which yields

(4.19) ‖yx(·, x)‖H−1/3(R) ≤ C‖f‖L1(R+×(0,L)).

Assertion (4.5) now follows from (4.17) and (4.19).

Step 2: Proof of (4.6). By Step 1, without loss of generality, one might assume that f1 = 0. The
proof of the inequality ‖y(·, x)‖H−1/3 ≤ C‖f2‖L1(R+×(0,L)) is similar to the one of (4.19) and is
omitted.

To prove

(4.20) ‖yx(·, x)‖H−2/3(R) ≤ C‖f2‖L1(R+×(0,L)),

we proceed as follows. For z ∈ R, it holds

(4.21) ŷx(z, x) = − 1

L

ˆ L

0
f̂2(z, ξ)

∑
n6=0

n2ein(x−ξ)

i(z + 4n− n3) + 3n2
dξ.



ON THE SMALL-TIME LOCAL CONTROLLABILITY OF KDV EQUATIONS 25

We have, for some large positive constant c,∣∣∣∣∣∣
∑

|n|≥c(|z|+1)

n2ein(x−ξ)

i(z + 4n− n3) + 3n2
+

∑
|n|≥c(|z|+1)

ein(x−ξ)

in

∣∣∣∣∣∣ ≤ C
∑

|n|≥c(|z|+1)

1

|n|2
≤ C

|z|+ 1
,

∣∣∣∣∣∣
∑

0<|n|≤c(|z|+1)

ein(x−ξ)

in

∣∣∣∣∣∣ ≤ C ln(|z|+ 2),

and, as in (4.10) in the proof of Lemma 4.3,∣∣∣∣∣∣
∑

0<|n|≤c(|z|+1)

n2ein(x−ξ)

i(z + 4n− n3) + 3n2

∣∣∣∣∣∣ ≤ C ln(|z|+ 2).

It follows that

(4.22)

∣∣∣∣∣∣
∑
n6=0

n2ein(x−ξ)

i(z + 4n− n3) + 3n2
+
∑
n 6=0

ein(x−ξ)

in

∣∣∣∣∣∣ ≤ C

|z|+ 1
+ C ln(|z|+ 2).

Since ∑
n 6=0

einξ
′

in
= −ξ′ + π for ξ′ ∈ (0, 2π),

and

‖yx(·, x)‖2
H−2/3(R) =

ˆ
R

|ŷx(z, x)|2

(1 + |z|2)2/3
dz,

assertion (4.20) follows from (4.21) and (4.22).
We next deal with

‖y‖L2(R+;H−1(0,L)) ≤ C‖f2‖L1(R+×(0,L)).

Since

‖y‖2L2(R+;H−1(0,L)) ≤ C
ˆ
R

∑
n 6=0

∣∣∣∣∣ ˆ̂
f2(z, n)

|i(z + 4n− n3)|+ 3n2

∣∣∣∣∣
2

dz,

the estimate follows from Lemma 4.3. The proof of Step 2 is complete.

Step 3: Proof of (4.7).
For simplicity of the presentation, we will assume that f1 = 0. We have the following represen-

tation for the solution:

(4.23) y(t, x) =
∑
n6=0

einx
ˆ t

0
e−
(
i(4n−n3)+3n2

)
(t−τ)

(
in

L

ˆ L

0
f2(τ, ξ)e

−inξ dξ

)
dτ.

Let 1A denote the characteristic function of a set A in R. Assertion (4.7) then follows easily from
(4.23) by noting that, for t ≥ T + δ∑

n6=0

ˆ t

0
|n|10e−3n2(t−τ)1{

τ<T
} dτ < Cδ.

The proof is complete. �
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4.2. On the linear KdV equations. In this section, we derive various results on the linear KdV
equations using low regularity data information. These will be used in the proof of Theorem 1.2.
We begin with

Lemma 4.4. Let h = (h1, h2, h3) ∈ H1/3(R+)×H1/3(R+)×L2(R+), and let y ∈ C
(
[0,+∞);L2(0, L)

)
∩

L2
loc

(
[0,+∞);H1(0, L)

)
be the unique solution of the system

(4.24)

{
yt(t, x) + yx(t, x) + yxxx(t, x) = 0 in (0,+∞)× (0, L),

y(t, x = 0) = h1(t), y(t, x = L) = h2(t), yx(t, x = L) = h3(t) in (0,+∞),

and

(4.25) y(t = 0, ·) = 0 in (0, L).

We have, for T > 0,

(4.26) ‖y‖L2((0,T )×(0,L)) ≤ CT,L
(
‖(h1, h2)‖L2(R+) + ‖h3‖H−1/3(R)

)
,

and

(4.27) ‖y‖L2((0,T );H−1(0,L)) ≤ CT,L
(
‖(h1, h2)‖H−1/3(R) + ‖h3‖H−2/3(R)

)
,

for some positive constant CT,L independent of h.

Here and in what follows, H−1(0, L) is the dual space of H1
0 (0, L) with the corresponding norm.

Proof. By the linearity and the uniqueness of the system, it suffices to consider the three cases
(h1, h2, h3) = (0, 0, h3), (h1, h2, h3) = (h1, 0, 0), and (h1, h2, h3) = (0, h2, 0) separately.

We first consider the case (h1, h2, h3) = (0, 0, h3). Making a truncation, without loss of general-
ity, one might assume that h3 = 0 for t > 2T . This fact is assumed from now on. Let g3 ∈ C1(R)
be such that supp g3 ⊂ [T, 3T ], and if z is a real solution of the equation detQ(z)Ξ(z) = 0 of order

m then z is also a real solution of order m of ĥ3(z)− ĝ3(z), and

‖g3‖H−1/3(R) ≤ CT,L‖h3‖H−2/3(R).

The construction of g3, inspired by the moment method, see e.g. [45], can be done as follows.

Set η(t) = e−1/(t
2−(T )2)1|t|<T for t ∈ R. Assume that z1, . . . , zk are real, distinct solutions of

the equation detQ(z)Ξ(z) = 0, and m1, . . . , mk are the corresponding orders (the number of real
solutions of the equation detQ(z)Ξ(z) = 0 is finite by Lemma B.1 and in fact they are simple;
nevertheless, we ignore this point and present a proof without using this information). Set, for
z ∈ C,

ζ(z) =

k∑
i=1

η̂(z − zi)
k∏
j=1

j 6=i

(z − zj)mj
( mi∑
l=0

ci,l(z − zi)l
) ,

where ci,l ∈ C is chosen such that

dl

dzl

(
e2iT zζ(z)

)
z=zi

=
dl

dzl
ĥ3(zi) for 0 ≤ l ≤ mi, 1 ≤ i ≤ k.

This can be done since η̂(0) 6= 0. Since

|η̂(z)| ≤ CeT |=(z)|,

and, by [45, Lemma 4.3],

|η̂(z)| ≤ C1e
−C2|z|1/2 for z ∈ R,
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using Paley-Wiener’s theorem, one can prove that ζ is the Fourier transform of a function ψ of
class C1; moreover, ψ has the support in [−T, T ]. Set, for z ∈ C,

g3(t) = ψ(t+ 2T ).

Using the fact ĝ3(z) = ei2Tzζ(z), one can check that ĝ3 − ĥ3 has solutions z1, . . . , zk with the
corresponding orders m1, . . . , mk. One can check that

‖ψ‖C1 ≤ CT,L
k∑
i=1

mi∑
l=0

∣∣∣∣ dldzl ĥ3(zi)
∣∣∣∣ ,

which yields

‖ψ‖C1 ≤ CT,L‖h3‖H−2/3(R).

The required properties of g3 follow.
By considering the solution corresponding to h3 − g3, without loss of generality, one might

assume that if z is a real solution of order m of the equation detQ(z)Ξ(z) = 0 then z is also a real

solution of order m of ĥ3(z). This fact is assumed from now on.
We now establish (4.26). We have, by Lemma 2.4,

(4.28) ŷ(z, x) =
ĥ3(z)

detQ

3∑
j=1

(
eλj+2L − eλj+1L

)
eλjx for a.e. x ∈ (0, L).

From the assumption of h3, we have, for z ∈ R and |z| ≤ γ,

(4.29)

∣∣∣∣∣∣ ĥ3(z)

detQ(z)

3∑
j=1

(
eλj+2L − eλj+1L

)
eλjx

∣∣∣∣∣∣ ≤ CT,γ‖h3‖H−2/3(R),

and, by Lemma 3.3, for z ∈ R, |z| ≥ γ with sufficiently large γ,

(4.30)

∣∣∣∣∣∣ 1

detQ

3∑
j=1

(
eλj+2L − eλj+1L

)
eλjx

∣∣∣∣∣∣ ≤ C

(1 + |z|)1/3
.

Combining (4.29) and (4.30) yields

‖ŷ‖
L2
(
R×(0,L)

) ≤ CT ‖h3‖H−1/3(R),

which is (4.26) when (h1, h2, h3) = (0, 0, h3).
We next deal with (4.27). The proof of (4.27) is similar to the one of (4.26). One just notes

that, instead of (4.30), it holds, for z ∈ R, |z| ≥ γ with sufficiently large γ,

(4.31)

∥∥∥∥∥∥ 1

detQ

3∑
j=1

(
eλj+2L − eλj+1L

)
eλjx

∥∥∥∥∥∥
H−1(0,L)

≤ C

(1 + |z|)2/3
.

The details are omitted.
The proof in the case (h1, h2, h3) = (h1, 0, 0) or in the case (h1, h2, h3) = (0, h2, 0) is similar. We

only mention here that the solution corresponding to the triple (h1, 0, 0) is given by

ŷ(z, x) =
ĥ1(z)

detQ

3∑
j=1

(λj+2 − λj+1)e
λj(x−L) for a.e. x ∈ (0, L),
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and the solution corresponding to the triple (0, h2, 0) is given by

ŷ(z, x) =
ĥ2(z)

detQ

3∑
j=1

(λj+1e
λj+1L − λj+2e

λj+2L)eλjx for a.e. x ∈ (0, L).

The details are left to the reader. �

Remark 4.5. The estimates in Lemma 4.4 are in the spirit of the well-posedness results due to
Bona et al. in [13] (see also [12]) but quite different. The setting of Lemma 4.4 is below the
limiting case in [13], which was not investigated in their work.

We next establish a variant of Lemma 4.4 for inhomogeneous KdV systems.

Lemma 4.6. Let L > 0 and T > 0. Let h = (h1, h2, h3) ∈ H1/3(R+) × H1/3(R+) × L2(R+),
f1 ∈ L1

(
(0, T )× (0, L)

)
, and f2 ∈ L1

(
(0, T );W 1,1(0, L)

)
with

(4.32) f2(t, 0) = f2(t, L) = 0.

Set f = f1 + f2,x and assume that f ∈ L1(R+;L2(0, L)). Let y ∈ C
(
[0,+∞);L2(0, L)

)
∩

L2
loc

(
[0,+∞);H1(0, L)

)
be the unique solution of the system

(4.33)

{
yt(t, x) + yx(t, x) + yxxx(t, x) = f(t, x) in (0,+∞)× (0, L),

y(t, x = 0) = h1(t), y(t, x = L) = h2(t), yx(t, x = L) = h3(t) in (0,+∞),

and

y(t = 0, ·) = 0 in (0, L).

We have

(4.34) ‖y‖
L2
(
(0,T )×(0,L)

) ≤ CT(‖(h1, h2)‖L2(R+) + ‖h3‖H−1/3(R) + ‖f‖L1(R+×(0,L))

)
,

and

(4.35) ‖y‖
L2
(
(0,T );H−1(0,L)

) ≤ CT(‖(h1, h2)‖H−1/3(R) + ‖h3‖H−2/3(R) + ‖(f1, f2)‖L1(R+×(0,L))

)
.

Assume in addition that h(t, ·) = 0 and f(t, ·) = 0 for t ≥ T1 for some 0 < T1 < T . Then, for any
δ > 0 and for T1 + δ ≤ t ≤ T , we have

(4.36) |yt(t, x)|+ |yx(t, x)| ≤ CT,T1,δ

(
‖(h1, h2)‖H−1/3(R) + ‖h3‖H−2/3(R) + ‖(f1, f2)‖L1(R+×(0,L))

)
.

Here CT and CT,T1,δ denote positive constants independent of h and f .

Proof. The proof is based on a connection between the KdV equations and the KdV-Burgers
equations. Set v(t, x) = e−2t+xy(t, x), which is equivalent to y(t, x) = e2t−xv(t, x). Then

yt(t, x) =
(
2v(t, x) + vt(t, x)

)
e2t−x, yx(t, x) =

(
− v(t, x) + vx(t, x)

)
e2t−x,

yxxx(t, x) =
(
vxxx(t, x)− 3vxx(t, x) + 3vx(t, x)− v(t, x)

)
e2t−x.

Hence, if y satisfies the equation

yt(t, x) + yx(t, x) + yxxx(t, x) = f(t, x) in R+ × (0, L),

then it holds

vt(t, x) + 4vx(t, x) + vxxx(t, x)− 3vxx(t, x) = f(t, x)e−2t+x in R+ × (0, L).

Set, in R+ × (0, L),

(4.37) ψ(t, x) = ψ(t) :=
1

L

ˆ L

0
f(t, ξ)e−2t+ξ dξ and g(t, x) := f(t, x)e−2t+x − ψ(t, x).
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Then ˆ L

0
g(t, x) dx = 0.

Let y1 ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution which is periodic

in space of the system

(4.38) y1,t(t, x) + 4y1,x(t, x) + y1,xxx(t, x)− 3y1,xx(t, x) = g(t, x) in (0,+∞)× (0, L),

and

(4.39) y1(t = 0, ·) = 0 in (0, L).

We have, by (4.32),

(4.40) g(t, x) = f1(t, x)e−2t+x + f2,x(t, x)e−2t+x − ψ(t, x),

and

(4.41) ψ(t, x) =
1

L

ˆ L

0
f1(t, ξ)e

−2t+ξ dξ − 1

L

ˆ L

0
f2(t, ξ)e

−2t+ξ dξ.

Applying Lemma 4.1, we have

‖y1(·, x)‖L2(R+) + ‖y1,x(·, x)‖H−1/3(R) ≤ C‖g‖L1(R+×(0,L))

which yields, by (4.37),

(4.42) ‖y1(·, x)‖L2(R+) + ‖y1,x(·, x)‖H−1/3(R) ≤ C‖f‖L1(R+×(0,L)).

Similarly, by noting f2,x(t, x)e−2t+x =
(
f2(t, x)e−2t+x

)
x
− f2(t, x)e−2t+x, we get

(4.43) ‖y1(·, x)‖H−1/3(R) + ‖y1,x(·, x)‖H−2/3(R) ≤ C‖(f1, f2)‖L1(R+×(0,L)).

Applying Lemma 4.1 again, we obtain

(4.44) |y1,x(t, x)|+ |y1,t(t, x)| ≤ CT,T1,δ‖(f1, f2)‖L1(R+×(0,L)) for T1 + δ/2 ≤ t ≤ T.
if f = 0 for t ≥ T1.

Fix ϕ ∈ C(R) such that ϕ = 1 for |t| ≤ T and ϕ = 0 for |t| > 2T . Let y2 ∈ C
(
[0,+∞);L2(0, L)

)
∩

L2
loc

(
[0,+∞);H1(0, L)

)
be the unique solution of the system

y2,t(t, x) + y2,x(t, x) + y2,xxx(t, x) = ϕ(t)ψ(t, x) in (0,+∞)× (0, L),

y2(t, x = 0) = h1(t)− ϕ(t)e2ty1(t, 0) in (0,+∞),

y2(t, x = L) = h2(t)− ϕ(t)e2t−Ly1(t, L) in (0,+∞),

y2,x(t, x = L) = h3(t)− ϕ(t)
(
e2t−·y1(t, ·)

)
x
(t, L) in (0,+∞),

and
y2(t = 0, ·) = 0 in (0, L).

Using (4.40) and applying Lemma 4.4 to y2, from (4.42), we have

(4.45) ‖y2‖L2
(
(0,T )×(0,L)

) ≤ CT(‖(h1, h2)‖L2(R+) + ‖h3‖H−1/3(R) + ‖f‖L1(R+×(0,L))

)
,

and from (4.43), we obtain

(4.46) ‖y2‖L2
(
(0,T );H−1(0,L)

) ≤ CT(‖(h1, h2)‖H−1/3(R) + ‖h3‖H−2/3(R) + ‖(f1, f2)‖L1(R+×(0,L))

)
.

One can verify that y1 + y2 and y satisfy the same system for 0 ≤ t ≤ T and they are in the
space C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)). By the well-posedness of the KdV system, one has

y = y1 + y2 in (0, T )× (0, L).
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Combining (4.42) and (4.45) yields (4.34), and combining (4.43) and (4.46) yields (4.35). Com-
bining (4.44) and (4.45) yields, for some T1 + δ/2 ≤ τ ≤ T1 + 3δ/4,

(4.47) ‖y(τ, ·)‖H−1(0,L) ≤ CT,T1,δ

(
‖(h1, h2)‖H−1/3(R) + ‖h3‖H−2/3(R) + ‖(f1, f2)‖L1(R+×(0,L))

)
,

and assertion (4.36) follows by the standard C∞ smoothness property of solutions of the linear
KdV system (4.33). The proof is complete. �

Remark 4.7. One can check (4.47) by using a variant of (4.7) in Lemma 4.1 in which f = 0
however, a non-zero initial condition is considered.

5. Small time local null-controllability of the KdV system

The main result of this section is the following, which implies in particular Theorem 1.2.

Theorem 5.1. Let L > 0, and k, l ∈ N. Set

(5.1) p =
(2k + l)(k − l)(2l + k)

3
√

3(k2 + kl + l2)3/2
.

Assume that

(5.2) L = 2π

√
k2 + kl + l2

3
,

and

(5.3) 2k + l 6∈ 3N.
Let Ψ be defined in (3.34), where

(5.4) η1 = −2πi

3L
(2k + l), η2 = η1 +

2πi

L
k, η3 = η2 +

2πi

L
l,

and E is given by (3.10). There exists ε0 > 0 such that for all 0 < ε < ε0, for all 0 < T < T∗/2
8

and for all solutions y ∈ C
(
[0,+∞);H2(0, L)

)
∩ L2

loc

(
[0,+∞);H3(0, L)

)
of

(5.5)


yt(t, x) + yx(t, x) + yxxx(t, x) + yyx(t, x) = 0 in (0,+∞)× (0, L),

y(t, x = 0) = y(t, x = L) = 0 in (0,+∞),

yx(t, x = L) = u(t) in (0,∞),

y(0, ·) = y0(x) := εΨ(0, ·),

with (u ∈ H2/3(R+), ‖u‖H2/3(R) < ε0, u(0) = 0, and suppu ⊂ [0, T ]), we have

y(T, ·) 6= 0.

Remark 5.2. With the choices of p and L in Theorem 5.1, the function Ψ(t, x) given in Corol-
lary 3.7 satisfies the linear KdV system as noted in [18], i.e.,

(5.6) Ψt(t, x) + Ψxxx(t, x) + Ψx(t, x) = 0 in R+ × (0, L),

and

(5.7) Ψ(t, 0) = Ψ(t, L) = Ψx(t, 0) = Ψx(t, L) = 0 in R+.

This property can be rechecked using the fact η1, η2, η3 are the roots of η3 + η − ip = 0.

We first show that E defined by (3.10) with ηj given in (5.4) and with p in (5.1) is not 0 if (5.3)
holds. More precisely, we have

8T∗ is the constant in Corollary 3.7 with p, ηj , and L given previously. Note that E 6= 0 by Lemma 5.3 below.
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Lemma 5.3. Let k, l ∈ N and let E be given by (3.10) with ηj in (5.4) and with p in (5.1).
Assume that (5.2) holds. We have

E =
40π3

3L3
(eη1L − 1)ikl(k + l).

Consequently,

E 6= 0 provided that (5.3) holds.

Proof. With γj = Lηj/(2πi), we have

γ1 = −2k + l

3
, γ2 =

k − l
3

, γ3 =
k + 2l

3
.

It follows that

L3

(2πi)3

3∑
j=1

η2j+2(ηj+1 − ηj) =

3∑
j=1

γ2j+2(γj+1 − γj) = γ23k + γ21 l − γ22(k + l)

=(γ23 − γ22)k − (γ22 − γ21)l = (k + l)kl,

which yields
3∑
j=1

η2j+2(ηj+1 − ηj) = −8π3ikl(k + l)/L3.

We also have
3∑
j=1

ηj+1 − ηj
ηj+2

=

3∑
j=1

γj+1 − γj
γj+2

=
3k

k + 2l
− 3l

2k + l
− 3(k + l)

k − l
= − 27kl(k + l)

(k + 2l)(2k + l)(k − l)
.

We then have, by (3.10),

(5.8) E =
1

3
(eη1L − 1)

(
16π3i

3L3
kl(k + l) +

27ipkl(k + l)

(k − l)(k + 2l)(2l + k)

)
.

From (5.1) and (5.2), we have

p

(k − l)(k + 2l)(2l + k)
=
(2π

3L

)3
.

We derive from (5.8) that

E =
40π3

3L3
(eη1L − 1)ikl(k + l).

The proof is complete. �

Before giving the proof of Theorem 5.1, we state and establish new estimates for the nonlinear
KdV system (1.1) and (1.2) which play a role in the proof of Theorem 5.1.

Lemma 5.4. Let L > 0 and T > 0. There exists a constant ε0 > 0 depending on L and T such
that for y0 ∈ L2(0, L) and for u ∈ L2(R+) with

‖y0‖L2(0,L) + ‖u‖L2(R+) ≤ ε0,

then the unique solution y ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
of the system

yt(t, x) + yx(t, x) + yxxx(t, x) + y(t, x)yx(t, x) = 0 in (0,+∞)× (0, L),

y(t, x = 0) = y(t, x = L) = 0 in (0,+∞),

yx(t, x = L) = u(t) in (0,∞),
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with y(0, ·) = y0, satisfies

(5.9) ‖y‖
L2
(
(0,T )×(0,L)

) ≤ C(‖y0‖L2(0,L) + ‖u‖H−1/3(R)

)
,

and

(5.10) ‖y‖
L2
(
(0,T );H−1(0,L)

) ≤ C(‖y0‖L2(0,L) + ‖u‖H−2/3(R)

)
,

where C is a positive constant depending only on T and L.

Proof. [Proof of Lemma 5.4] We have, see e.g. [24, Proposition 14] for ε0 small,

‖yx‖L2
(
(0,T )×(0,L)

) ≤ CT(‖y0‖L2(0,L) + ‖u‖L2(R+)

)
,

which yields

(5.11) ‖yx‖L2
(
(0,T )×(0,L)

) ≤ Cε0.
Set

f(t, x) = −y(t, x)∂xy(t, x).

The Cauchy–Schwarz inequality and (5.11) yield

‖f‖L1(R+×(0,L)) ≤ Cε0‖y‖L2
(
R+×(0,L)

).
Applying Lemma 4.6, and more precisely (4.34), we have

‖y‖L2(R+×(0,L)) ≤ Cε0‖y‖L2
(
R+×(0,L)

) + C
(
‖y0‖L2(0,L) + ‖u‖H−1/3(R)

)
.

By choosing ε0 sufficiently small, one can absorb the first term of the RHS by the LHS and assertion
(5.9) follows.

To prove (5.10), one notes

‖y2‖
L1
(
(0,T )×(0,L)

) ≤ C‖y‖
L2
(
(0,T );H−1(0,L)

)‖y‖
L2
(
(0,T );H1(0,L)

) (5.11)

≤ Cε0‖y‖L2
(
(0,T );H−1(0,L)

).
By Lemma 4.6 (this time Eq. (4.35)), we obtain

‖y‖L2((0,T );H−1(0,L)) ≤ Cε0‖y‖L2
(
(0,T );H−1(0,L)

) + C
(
‖y0‖L2(0,L) + ‖u‖H−2/3(R)

)
.

By choosing ε0 sufficiently small, one can absorb the first term of the RHS by the LHS and assertion
(5.10) follows. �

We are ready to give the

Proof. [Proof of Theorem 5.1] By Lemma 5.3, the constant E is not 0. Let ε0 be a small positive
constant, which depends only on k and l and is determined later. We prove Theorem 5.1 by con-
tradiction. Assume that there exists a solution y ∈ C

(
[0,+∞);H2(0, L)

)
∩L2

loc

(
[0,+∞);H3(0, L)

)
of (5.5) with y(t, ·) = 0 for t ≥ T , for some u ∈ H2/3(0,+∞), for some 0 < ε < ε0, and for some
0 < T < T∗/2 with ‖u‖H2/3(R+) < ε0, u(0) = 0, and suppu ⊂ [0, T ].

We have, for ε0 small, see e.g., [24, Proposition 14],

(5.12) ‖y‖
L2
(
(0,T );H1(0,L)

) ≤ C(‖y0‖L2(0,L) + ‖u‖L2(R+)

)
.

Set

(5.13) y1(t, x) = y(t, x)− c
ˆ L

0
y(t, η)Ψ(t, η) dηΨ(t, x),
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with c−1 :=

ˆ L

0
|Ψ(0, η)|2 dη. Since y0(x) = εΨ(0, x), this choice of c ensures that y1(0, ·) = 0 in

(0, L). Then y1 ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
is the solution of

y1,t(t, x) + y1,x(t, x) + y1,xxx(t, x) + f(t, x) = 0 in (0,+∞)× (0, L),

y1(t, x = 0) = y1(t, x = L) = 0 in (0,+∞),

y1,x(t, x = L) = u(t) in (0,+∞),

y1(0, ·) = 0,

where

f(t, x) = f1(t, x) + f2,x(t, x),

with

f1(t, x) = −c
ˆ L

0
yyx(t, η)Ψ(t, η) dηΨ(t, x) =

c

2

ˆ L

0
y2(t, η)Ψx(t, η) dηΨ(t, x),

and

f2(t, x) =
1

2
y2(t, x).

By Lemma 5.4, we have

(5.14) ‖y‖
L2
(
(0,T )×(0,L)

) ≤ C(‖y0‖L2(0,L) + ‖u‖H−1/3(R)

)
,

and

(5.15) ‖y‖
L2
(
(0,T );H−1(0,L)

) ≤ C(‖y0‖L2(0,L) + ‖u‖H−2/3(R)

)
.

From the definition of y1 in (5.13), and (5.15), after applying Lemma 4.6 to y − y1, we obtain

(5.16) ‖y1‖L2
(
(0,T );H−1(0,L)

) ≤ C(‖y0‖L2(0,L) + ‖u‖H−2/3(R)

)
.

Let y2 ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution of

y2,t(t, x) + y2,x(t, x) + y2,xxx(t, x) = −f(t, x) in (0,+∞)× (0, L),

y2(t, x = 0) = y2(t, x = L) = 0 in (0,+∞),

y2,x(t, x = L) = 0 in (0,+∞),

y2(0, ·) = 0,

and let y3 ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution of

y3,t(t, x) + y3,x(t, x) + y3,xxx(t, x) = 0 in (0,+∞)× (0, L),

y3(t, x = 0) = y3(t, x = L) = 0 in (0,+∞),

y3,x(t, x = L) = u(t) in (0,+∞),

y3(0, ·) = 0.

Then

y1 = y2 + y3.

There exists u4 ∈ L2(0,+∞) such that suppu4 ⊂ [2T∗/3, T∗],

‖u4‖L2(0,+∞) ≤ C‖y3(2T∗/3, ·)‖L2(2T∗/3,T∗),

and

y4(T∗, ·) = 0,
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where y4 ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
is the unique solution of

y4,t(t, x) + y4,x(t, x) + y4,xxx(t, x) = 0 in (2T∗/3,+∞)× (0, L),

y4(t, x = 0) = y4(t, x = L) = 0 in (2T∗/3,+∞),

y4,x(t, x = L) = u4(t) in (2T∗/3,+∞),

y4(T∗/2, ·) = y3(2T∗/3, ·).
Such an u4 exists since y3(2T∗/3, ·) is generated from zero at time 0, see [38].

Since y2(t, ·) + y3(t, ·) = 0 for t ≥ T∗/2, we have

‖u4‖L2(0,+∞) ≤ C‖y2(2T∗/3, ·)‖L2(0,L),

which yields

(5.17) ‖u4‖L2(0,+∞)

Lemma 4.6
≤ C‖(f1, f2)‖L1

(
R+×(0,L)

)
≤ C min

{
‖y‖2

L2
(
(0,T )×(0,L)

), ‖y‖
L2
(
(0,T );H1(0,L)

)‖y‖
L2
(
(0,T );H−1(0,L)

)}
(5.12),(5.14),(5.15)

≤ C min
{(
‖y0‖L2(0,L) + ‖u‖H−1/3(R)

)2
, ε0

(
‖y0‖L2(0,L) + ‖u‖H−2/3(R)

)}
.

Let ỹ ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution of

ỹt(t, x) + ỹx(t, x) + ỹxxx(t, x) = 0 in (0,+∞)× (0, L),

ỹ(t, x = 0) = ỹ(t, x = L) = 0 in (0,+∞),

ỹx(t, x = L) = u(t) + u4(t) in (0,+∞),

ỹ(0, ·) = 0,

Then, by the choice of u4,

ỹ(t, ·) = 0 for t ≥ T∗.
Multiplying the equation of y with Ψ(t, x), integrating by parts on [0, L], and using (5.6) and

(5.7), we have

(5.18)
d

dt

ˆ L

0
y(t, x)Ψ(t, x) dx− 1

2

ˆ L

0
y2(t, x)Ψx(t, x) dx = 0.

Integrating (5.18) from 0 to T and using the fact y(T, ·) = 0 yield

(5.19)

ˆ L

0
y0(x)Ψ(0, x) dx+

1

2

ˆ T

0

ˆ L

0
y2(t, x)Ψx(t, x) dx dt = 0.

It is clear that

(5.20)

∣∣∣∣ˆ T

0

ˆ L

0
y2(t, x)Ψx(t, x) dx dt−

ˆ +∞

0

ˆ L

0
ỹ2(t, x)Ψx(t, x) dx dt

∣∣∣∣
≤
∣∣∣∣ˆ T

0

ˆ L

0
y2(t, x)Ψx(t, x) dx dt−

ˆ T

0

ˆ L

0
y21(t, x)Ψx(t, x) dx dt

∣∣∣∣
+

∣∣∣∣ˆ +∞

0

ˆ L

0
y21(t, x)Ψx(t, x) dx dt−

ˆ +∞

0

ˆ L

0
ỹ2(t, x)Ψx(t, x) dx dt

∣∣∣∣ .
We next estimate the two terms of the RHS.
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We begin with the first term. We have

(5.21)

∣∣∣∣ˆ T

0

ˆ L

0
y2(t, x)Ψx(t, x) dx dt−

ˆ T

0

ˆ L

0
y21(t, x)Ψx(t, x) dx dt

∣∣∣∣
≤ C‖y − y1‖L2

(
(0,T );H1(0,L)

)‖(y, y1)‖L2
(
(0,T );H−1(0,L)

).
By considering the system of y − y1, we obtain

(5.22) ‖y − y1‖L2
(
(0,T );H1(0,L)

) ≤ C(‖y0‖L2(0,L) + ‖f1‖L1
(
(0,T );L2(0,L)

))
≤ C‖y0‖L2(0,L) + C‖y‖2

L2
(
(0,T )×(0,L)

) (5.14)

≤ C‖y0‖L2(0,L) + C
(
‖y0‖L2(0,L) + ‖u‖H−1/3(R)

)2
.

Combining (5.15), (5.16), and (5.22), we derive from (5.21) that

(5.23)

∣∣∣∣ˆ T

0

ˆ L

0
y2(t, x)Ψx(t, x) dx dt−

ˆ T

0

ˆ L

0
y21(t, x)Ψx(t, x) dx dt

∣∣∣∣
≤ Cε0‖y0‖L2(0,L) + C

(
‖y0‖L2(0,L) + ‖u‖H−2/3(R)

)(
‖y0‖L2(0,L) + ‖u‖H−1/3(R)

)2
.

We next estimate the second term of the RHS of (5.20). It is clear that

(5.24)

∣∣∣∣ˆ +∞

0

ˆ L

0
y21(t, x)Ψx(t, x) dx dt−

ˆ +∞

0

ˆ L

0
ỹ2(t, x)Ψx(t, x) dx dt

∣∣∣∣
≤ C‖y1 − ỹ‖L2

(
(0,T∗);H1(0,L)

)(‖y1‖L2
(
(0,T∗);H−1(0,L)

) + ‖ỹ‖
L2
(
(0,T∗);H−1(0,L)

)).
Consider the systems of y1 − y and ỹ. We have

‖y1 − ỹ‖L2
(
(0,T∗);H1(0,L)

) ≤C(‖f‖
L1
(
(0,T );L2(0,L)

) + ‖u4‖L2(0,T )

)
(5.25)

(5.17)

≤ C‖yyx‖L1
(
(0,T );L2(0,L)

) + C
(
‖y0‖L2(0,L) + ‖u‖H−1/3(R)

)2
(5.12)

≤ C
(
‖y0‖L2(0,L) + ‖u‖L2(R+)

)2
,

and, by Lemma 4.6 and (5.17),

(5.26) ‖ỹ‖
L2
(
(0,T∗);H−1(0,L)

) ≤ C‖(u, u4)‖H−2/3(R) ≤ C
(
‖y0‖L2(0,L) + ‖u‖H−2/3(R)

)
.

Using (5.16), (5.25), and (5.26), we derive from (5.24) that

(5.27)

∣∣∣∣ˆ +∞

0

ˆ L

0
y21(t, x)Ψx(t, x) dx dt−

ˆ +∞

0

ˆ L

0
ỹ2(t, x)Ψx(t, x) dx dt

∣∣∣∣
≤ C

(
‖y0‖L2(0,L) + ‖u‖L2(R+)

)2(
‖y0‖L2(0,L) + ‖u‖H−2/3(R)

)
.
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Combining (5.20), (5.23), and (5.27) yields

(5.28)

∣∣∣∣ˆ T

0

ˆ L

0
y2(t, x)Ψx(t, x) dx dt−

ˆ +∞

0

ˆ L

0
ỹ2(t, x)Ψx(t, x) dx dt

∣∣∣∣
≤ Cε0‖y0‖L2(0,L) + C

(
‖y0‖L2(0,L) + ‖u‖H−2/3(R)

)(
‖y0‖L2(0,L) + ‖u‖L2(R+)

)2
.

On the other hand, from Corollary 3.7 and the choice of y0, we have

(5.29)

ˆ L

0
y0(x)Ψ(0, x) dx+

1

2

ˆ +∞

0

ˆ L

0
ỹ2(t, x)Ψx(t, x) dx dt

≥ C
(
‖y0‖L2(0,L) + ‖u+ u4‖2H−2/3(R)

)
.

Using the fact

‖u+u4‖2H−2/3(R) ≥ C‖u‖
2
H−2/3(R)−C‖u4‖

2
L2(R)

(5.17)

≥ C‖u‖2
H−2/3(R)−C

(
‖y0‖L2(0,L)+‖u‖H−1/3(R)

)4
,

we derive from (5.29) that, for small ε0,

(5.30)

ˆ L

0
y0(x)Ψ(0, x) dx+

1

2

ˆ ∞
0

ˆ L

0
ỹ2(t, x)Ψx(t, x) dx dt

≥ C
(
‖y0‖L2(0,L) + ‖u‖2

H−2/3(R)

)
− C‖u‖4

H−1/3(R).

Combining (5.19), (5.28), and (5.30) yields

Cε0‖y0‖L2(0,L) + C
(
‖y0‖L2(0,L) + ‖u‖H−2/3(R)

)(
‖y0‖L2(0,L) + ‖u‖L2(R+)

)2
(5.31)

(5.28)

≥
∣∣∣∣ˆ T

0

ˆ L

0
y2(t, x)Ψx(t, x) dx dt−

ˆ +∞

0

ˆ L

0
ỹ2(t, x)Ψx(t, x) dx dt

∣∣∣∣
(5.19)

≥
ˆ L

0
y0(x)Ψ(0, x) dx+

1

2

ˆ ∞
0

ˆ L

0
ỹ2(t, x)Ψx(t, x) dx dt

(5.30)

≥ C
(
‖y0‖L2(0,L) + ‖u‖2

H−2/3(R) − C‖u‖
4
H−1/3(R)

)
.

It follows that, if ε0 is fixed but sufficiently small,

(5.32) ‖u‖4
H−1/3(R) + ‖u‖H−2/3(R)‖u‖

2
L2(R+) ≥ C‖u‖

2
H−2/3(R).

We have

(5.33) ‖u‖2
H−1/3(R) ≤ C‖u‖L2(R)‖u‖H−2/3(R) ≤ Cε0‖u‖H−2/3(R),

and

(5.34) ‖u‖2L2(R) ≤ C‖u‖H−2/3(R)‖u‖H2/3(R),

(recall that we extended u by 0 for t < 0). Let U be the even extension of u
∣∣∣
R+

in R. Applying

the Hardy inequality for fractional Sobolev space H2/3(R) for U after noting that U(0) = 0, see
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e.g. [35, Theorem 1.1] 9, we derive that

‖| · |−2/3U(·)‖L2(R) ≤ C‖U‖H2/3(R).

We have
‖U‖H2/3(R) ≤ C‖u‖H2/3(R+).

since U is an even extension of u, and

|U |2
H2/3(R) ∼

ˆ
R

ˆ
R

|U(s)− U(t)|2

|s− t|1+4/3
ds dt, |u|2

H2/3(R) ∼
ˆ
R+

ˆ
R+

|u(s)− u(t)|2

|s− t|1+4/3
ds dt.

We derive that
‖| · |−2/3u(·)‖L2(R) ≤ C‖u‖H2/3(R+).

Since

|u|2
H2/3(R) ∼

ˆ
R

ˆ
R

|u(s)− u(t)|2

|s− t|1+4/3
ds dt

u(s)=0, s<0

≤
ˆ
R+

ˆ
R+

|u(s)− u(t)|2

|s− t|1+4/3
dx dy + C

ˆ
R+

|u(t)|2

t4/3
dt

≤ C‖u‖2
H2/3(R+)

+ C

ˆ
R+

|u(t)|2

t4/3
dt,

it follows that

(5.35) ‖u‖H2/3(R) ≤ C‖u‖H2/3(R+).

Here we also used the fact u = 0 in R−. Combining (5.34) and (5.35) yields

(5.36) ‖u‖2L2(R) ≤ Cε0‖u‖H−2/3(R).

Using (5.33) and (5.36), we derive from (5.32) that, ‖u‖2
H−2/3 ≤ Cε20‖u‖2H−2/3 + Cε0‖u‖2H−2/3 .

So, for fixed sufficiently small ε0,
u = 0.

As a consequence, we obtain

‖y(t, ·)− εΨ(T∗/2, ·)‖L2(0,L) ≤ Cε2.
One has a contradiction if ε0 is sufficiently small. The proof is complete. �

Remark 5.5. Viewing the proof of Theorem 5.1, it is natural to ask whether or not one needs
to derive estimates for the (linear and nonlinear) KdV systems using low regular data. In fact,
without using these estimates, one might require that ‖u‖H2(0,T ) or even ‖u‖H3(0,T ) is small.

6. Controllability of the KdV system with controls in H1

For T > 0, set
X = C

(
[0, T ];Y

)
∩ L2

(
(0, T );H4([0, L])

)
with the corresponding norm. Here we denote

Y = H3(0, L) ∩H1
0 (0, L),

which is a Hilbert space with the corresponding scalar product.

In this section, we prove the following local controllability of the KdV system (1.1) and (1.2):

9We here apply [35, ii) of Theorem 1.1] with γ = −2/3, τ = p = 2, s = 2/3, a = 1, α = 0.
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Theorem 6.1. Let L > 0, and k, l ∈ N. Let p be defined by (5.1). Assume that (5.2) holds,
2k + l 6∈ 3N, and the dimension of M is 2. Given T > π/p, there exists ε0 > 0 such that for
y0, yT ∈ Y with

‖(y0, yT )‖Y ≤ ε0,
there exists u ∈ H1(0, T ) such that u(0) = y′0(L),

‖u‖H1(0,T ) ≤ C‖(y0, yT )‖1/2Y ,

and the corresponding solution y ∈ X of the nonlinear system (1.1) with y(t = 0, ·) = y0 satisfies
y(t = T, ·) = yT .

We recall a result in [12] ([12, Lemma 3.3] applied to s = 3) on the well-posedness and the
stability of the linearized system of (1.1).

Lemma 6.2. Let L > 0 and T > 0. For y0 ∈ H3(0, L)∩H1
0 (0, L), f ∈W 1,1

(
[0, T ];L2(0, L)

)
, and

u ∈ H1(0, T ) with u(0) = y′0(L). There exists a unique solution y ∈ X of the system

(6.1)


yt(t, x) + yx(t, x) + yxxx(t, x) = f(t, x) for t ∈ (0, T ), x ∈ (0, L),

y(t, x = 0) = y(t, x = L) = 0 for t ∈ (0, T ),

yx(t, x = L) = u(t) for t ∈ (0, T ),

y(t = 0, ·) = y0 for x ∈ (0, L).

Moreover,

‖y‖X ≤ C
(
‖f‖

W 1,1
(
[0,T ];L2(0,L)

) + ‖u‖H1(0,1)

)
,

for some positive constant C depending only on L and T .

Remark 6.3. By the same method, the conclusion also holds for the non-linear KdV equations if
‖f‖

W 1,1
(
(0,T );L2(0,L)

) + ‖u0‖H1(0,L) is small.

In what follows in this section, M⊥ denotes all elements of Y orthogonal to M with respect
to L2(0, L)-scalar product. We also denote PM and PM⊥ the projections into M and M⊥ with
respect to L2(0, L)-scalar product. Before giving the proof of Theorem 6.1, let us establish two
lemmas used in its proof. The first one is a consequence of the Hilbert Uniqueness Method for
controls in H1 and solutions in X.

Lemma 6.4. Let L ∈ N and T > 0. There is a continuous linear map L :M⊥ → H1(0, T ) such
that for ϕ ∈M⊥ and u = L(ϕ), then u(0) = 0, and the unique solution y ∈ X of

(6.2)


yt(t, x) + yx(t, x) + yxxx(t, x) = 0 for t ∈ (0, T ), x ∈ (0, L),

y(t, x = 0) = y(t, x = L) = 0 for t ∈ (0, T ),

yx(t, x = L) = u(t) for t ∈ (0, T ),

y(t = 0, ·) = 0,

satisfies y(T, ·) = ϕ.

Proof. Set

M⊥1 =
{
w ∈M⊥;wx(0) = 0

}
.
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For ψ ∈M⊥1 , by Lemma 6.2, there exists a unique solution y∗ ∈ X of the backward KdV system

(6.3)


y∗t (t, x) + y∗x(t, x) + y∗xxx(t, x) = 0 for t ∈ (0, T ), x ∈ (0, L),

y∗(t, x = 0) = y∗(t, x = L) = 0 for t ∈ (0, T ),

y∗x(t, x = 0) = 0 for t ∈ (0, T ),

y∗(T, ·) = ψ.

Applying the observability inequality to y∗ and y∗t (see e.g. [18, Theorem 2.4] and also [38, the
proof of Proposition 3.9]), we have, for γ ≥ 1,ˆ T

T/2
γ|y∗x(t, L)η|2 + |y∗tx(t, L)|2 dt ≥ C

ˆ L

0
γ|y∗(T, x)|2 + |y∗t (T, x)|2 dx,

where in the last inequality, we used the fact that if ψ ∈M⊥ then ψ′′′+ψ′ is also inM⊥ (this can
be proved through integration by part arguments; recall that M⊥ is defined via L2(0, L)-scalar
product). In other words,

(6.4)

ˆ T

T/2
γ|y∗x(t, L)|2 + |y∗tx(t, L)|2 dt ≥ C

ˆ L

0
γ|ψ|2 + |ψ′′′ + ψ′|2 dx.

Fix a non-negative function η ∈ C1([0, T ]) such that η = 1 in [T/2, T ] and η = 0 in [0, T/3].
Since ˆ L

0
γ|ψ|2 + |ψ′′′ + ψ′|2 dx =

ˆ L

0
γ|ψ|2 + |ψ′′′|2 + |ψ′|2 + 2ψ′′′ψ′ dx,

and, for all ε > 0, ˆ L

0
|ψ′|2 dx ≤

ˆ L

0
ε|ψ′′′|2 + Cε|ψ|2 dx,

it follows that, for large γ,

(6.5)

ˆ L

0
γ|ψ|2 + |ψ′′′ + ψ′|2 dx ≥ C‖ψ‖2H3(0,L).

We haveˆ T

0
|y∗x(t, L)y∗tx(t, L)| dt ≤

ˆ T

0
ε−1|y∗x|2 + ε|y∗tx|2 dt ≤ C

ˆ L

0
ε−1|ψ|2 + ε|ψ′′′ + ψ′|2 dx.

Here in the last inequalitiy, we applied [38, (58) in the proof of Proposition 3.7] (see also [18,
Proposition 2]) to y∗ and y∗t . It follows from (6.4) and (6.5), for γ large enough, that

(6.6)

ˆ T

0
γη(t)|y∗x(t, L)|2 + y∗tx(t, L)

(
ηy∗x(t, L)

)
t
dt ≥ Cγ‖ψ‖2H3(0,L).

For a given ϕ ∈ M⊥1 , by the Lax-Milgram’s theorem and (6.6), there exists a unique Φ ∈ M⊥1
such that

(6.7)

ˆ L

0
γϕψ + (ϕ′′′ + ϕ′)(ψ′′′ + ψ′) dx =

ˆ T

0
γy∗xηY

∗
x + y∗tx(ηY ∗x )t dt ∀ψ ∈M⊥1 ,

where Y ∗ is the solution of (6.3) with ψ = Φ.
Let y ∈ X be the solution of (6.2) with u(·) = L1(ϕ) = η(·)Y ∗x (·, L). Then, by integration by

parts,

(6.8)

ˆ L

0
γψy(T, ·)+(ψ′′′+ψ′)

(
yxxx(T, ·)+yx(T, ·)

)
dx =

ˆ T

0
γy∗xηY

∗
x +y∗tx(ηY ∗x )t dt ∀ψ ∈M⊥1 .
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From (6.7) and (6.8), we obtain
ˆ L

0
γϕψ + (ϕ′′′ + ϕ′)(ψ′′′ + ψ′) =

ˆ L

0
γψy(T, ·) + (ψ′′′ + ψ′)(yxxx(T, ·) + yx(T, ·)) ∀ψ ∈M⊥1 .

Since y and Y ∗ satisfies system (6.2) with the same u for t ∈ [T/2, T ], it follows that y(t, ·) −
Y ∗(t, ·) ∈ M for t ∈ [T/2, T ]. In particular, y(T, ·) ∈ M⊥1 since Y ∗(T, ·) ∈ M⊥1 . Combining this
with the fact that ϕ ∈M⊥1 , we then derive from (6.5) that

y(T, ·) = ϕ.

The conclusion for 2T (instead of T ) is now as follows. Fix ζ ∈ C1([0, 2T ]) with ζ(2T ) = 1 and
ζ(t) = 0 for t ≤ 5T/4. For ϕ ∈M⊥, let ỹ∗ be the unique solution of

ỹ∗t (t, x) + ỹ∗x(t, x) + ỹ∗xxx(t, x) = 0 for t ∈ (T, 2T ), x ∈ (0, L),

ỹ∗(t, x = 0) = ỹ∗(t, x = L) = 0 for t ∈ (T, 2T ),

ỹ∗x(t, x = 0) = ϕx(2T, 0)ζ(t) for t ∈ (T, 2T ),

ỹ∗(2T, ·) = ϕ.

One can check that ỹ∗(T, ·) ∈M⊥1 . Set

(6.9) L(ϕ)(t) =

{
ỹ∗x(t, L) for t ∈ (T, 2T ),

L1(ỹ∗(T, ·))(t) for t ∈ (0, T ).

It is clear that L(ϕ) ∈ H1(0, 2T ) since ỹx(·, L) ∈ H1(T, 2T ), L1(ỹ∗(T, ·)) ∈ H1(0, T ), and
L1(ỹ∗(T, ·))(T ) = ỹ∗x(T, L), and that the corresponding solution at the time 2T is ϕ. The proof is
complete. �

For r > 0 and an element e ∈ Y , we denote Br(e) the ball in Y centered at e with radius r, and

Br(e) its closure in Y . The second lemma is a consequence of the power series method and the
information derived in Sections 3 and 5.

Lemma 6.5. Let L > 0, and k, l ∈ N. Let p be defined by (5.1). Assume that (5.2) holds,
2k + l 6∈ 3N, and the dimension of M is 2. Let T > π/p and 0 < c1 < c2. Fix ϕ ∈ M with
c1 ≤ ‖ϕ‖Y ≤ c2. There exist a constant 0 < c3 < c1/2, and two maps U1 : Bc3(ϕ) → H1(0, T )
and U2 : Bc3(ϕ) → H1(0, T ) such that for ψ ∈ Bc3(ϕ), U1(ϕ)(0) = U2(ϕ)(0) = 0, and the unique
solutions y1 and y2 in X of the following two systems, with u1 = U1(ϕ) and u2 = U2(ϕ),

(6.10)


y1,t(t, x) + y1,x(t, x) + y1,xxx(t, x) = 0 for t ∈ (0, T ), x ∈ (0, L),

y1(t, x = 0) = y1(t, x = L) = 0 for t ∈ (0, T ),

y1,x(t, x = L) = u1(t) for t ∈ (0, T ),

y1(t = 0, ·) = 0 for t ∈ (0, T ),

(6.11)


y2,t(t, x) + y2,x(t, x) + y2,xxx(t, x) + y1(t, x)y1,x(t, x) = 0 for t ∈ (0, T ), x ∈ (0, L),

y2(t, x = 0) = y2(t, x = L) = 0 for t ∈ (0, T ),

y2,x(t, x = L) = u2(t) for t ∈ (0, T ),

y1(t = 0, ·) = 0 for t ∈ (0, T ),

satisfy

y1(T, ·) = 0 and y2(T, ·) = ψ.
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Moreover, for ψ, ψ̃ ∈ Bc3(ϕ),

(6.12) ‖U1(ψ)− U1(ψ̃)‖H1(0,T ) ≤ C‖ψ − ψ̃‖Y
and

(6.13) ‖U2(ψ)− U2(ψ̃)‖H1(0,T ) ≤ C‖ψ − ψ̃‖Y ,

for some positive constant C depending only on L, T , c1, and c2.

Proof. By Lemma 5.3 and Corollary 3.7, for all τ > 0, there exists v1 ∈ H2
0 (0, τ) such that if

y1 ∈ X is the solution of (6.10) with u1 = v1 and y2 ∈ X is the solution of (6.11) with u2 = 0 then

y2(τ, ·) ∈M \ {0}.

Since c3 is small, dimM = 2, and v1 ∈ H2
0 (0, L), by using rotations (see also [18, the proof of

Proposition 13]) there exists U1(ψ) with U1(ψ)(0) = 0 satisfying (6.12) such that if y1 ∈ X is the
solution of (6.10) with u1 = U1(ψ) and ŷ2 ∈ X is the solution of (6.11) with u2 = 0 then

ŷ2 = PMψ.

We then choose

u2 = L(ŷ2 − PMψ),

where L is a map given by Lemma 6.4. �

We are ready to give the

Proof. [Proof of Theorem 6.1]
Fix y0, yT ∈ Y with small norms. For simplicity of the presentation, we will assume that

‖y0‖Y ≤ ‖yT ‖Y (the other case also follows from this case by e.g. reversing the time: t → T − t
and noting that yx(·, 0) is in H1(0, T ); this can be derived by considering the equation for yt

10).
Set ρ = ‖yT ‖Y and assume that ρ > 0 otherwise, one just takes the zero control and the conclusion
follows.

Let w0 be the state at the time T of the solution of the linear system (6.2) with the zero control
starting from PMy0 at the time 0. We first consider the case where

(6.14) ‖PMyT − w0‖H2(0,L) ≥ 2cρ,

for some small constant c independent of ρ and defined later.
Set

G : Y ∩Bcρ(yT ) → H1(0, T )

ϕ 7→ ρu0 + ρ1/2u1 + ρu2.

Here we decompose ϕ as

ϕ = PM⊥ϕ+ PMϕ,

u0 ∈ H1(0, T ) is a control for which the corresponding solution y0 in X of the linear system (6.2)
starting from PM⊥y0/ρ at 0 and arriving PM⊥ϕ/ρ at the time T , and u1 and u2 are controls for
which the solutions y1 ∈ X and y2 ∈ X of the system (6.10) and

(
(6.11) with the initial data

PMy0/ρ instead of 0
)

satisfies y1(T, ·) = 0 and y2(T, ·) = PMϕ/ρ. Moreover, by Lemma 6.4,
one can choose u0 in such a way that u0 = u0(ϕ) is a Lipschitz function of ϕ with the Lipschitz
constant bounded by a positive constant independent of ρ, and by Lemma 6.5 one can choose
u1 = u1(ϕ) and u2 = u2(ϕ) as Lipschitz functions of PMϕ/ρ with the Lipschitz constants bounded
by positive constants independent of ρ.

10The compatibility condition is automatic.
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Set

P :
{
w ∈ H1(0, T );w(0) = y′0(L)

}
→ H3(0, L)

w 7→ y(T, ·),
where y ∈ X is the unique solution of the nonlinear system (1.1) with u = w starting from y0 at
time 0. Consider the map

Λ: Y ∩Bcρ(yT ) → Y

ϕ 7→ ϕ− P ◦G(ϕ) + yT .

We will prove that

(6.15) Λ(ϕ) ∈ Bcρ(yT ),

and

(6.16) ‖Λ(ϕ)− Λ(φ)‖Y ≤ λ‖ϕ− φ‖Y ,
for some λ ∈ (0, 1). Assuming this, one derives from the contraction mapping theorem that there

exists a unique ϕ0 ∈ Y ∩Bcρ(yT ) such that Λ(ϕ0) = ϕ0. As a consequence,

yT = P ◦G(ϕ0),

and G(ϕ0) is hence a required control.
We next establish (6.15) and (6.16). Indeed, assertion (6.15) follows from the fact

‖ϕ− P ◦G(ϕ)‖Y ≤ C‖ϕ‖3/2Y for Y ∩Bρ/2(yT ).

This can be proved using the approximation via the power series method as follows. Set 11

u = ρu0 + ρ1/2u1 + ρu2 and ya = ρy0 + ρ1/2y1 + ρy2.

Let y ∈ X be the solution of the nonlinear KdV system (1.1) with y(t = 0, ·) = y0 and with u
defined above. Then

(y − ya)t + (y − ya)x + (y − ya)xxx + yyx − yaya,x = f(t, x),

where

−f(t, x) = ρ3/2(y1y2)x + ρ2y2y2,x + ρ2y0y0,x + ρ3/2
(
y0(y1 + ρ1/2y2)

)
x
.

Since
yyx − yaya,x = (y − ya)yx + ya(yx − ya,x),

applying Lemma 6.2, we obtain, for small ρ,

(6.17) ‖y − ya‖X ≤ C‖f‖W 1,1
(
(0,T );L2(0,L)

) ≤ Cρ3/2.
Assertion (6.15) follows since y(T, ·) = P ◦G(ϕ) and ya(T, ·) = ϕ.

We next establish (6.16). To this end, we estimate(
ϕ− P ◦G(ϕ)

)
−
(
ϕ̃− P ◦G(ϕ̃)

)
.

Denote ũ0, ũ1, ũ2, ũ and ỹ0, ỹ1, ỹ2, ỹa, ỹ the functions corresponding to ϕ̃ which are defined in the
same way as the functions u0, u1, u2, u and y0, y1, y2, ya, y defined for ϕ.

We have
(y − ỹ)t + (y − ỹ)x + (y − ỹ)xxx + yyx − ỹỹx = 0,

(ya − ỹa)t + (ya − ỹa)x + (ya − ỹa)xxx + yaya,x − ỹaỹa,x = g(t, x),

11The index a stands the approximation.
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where

(6.18) g(t, x) = ρ3/2
(

(y1y2)x − (ỹ1ỹ2)x

)
+ ρ2

(
y2y2,x − ỹ2ỹ2,x

)
+ ρ2

(
y0y0,x − ỹ0ỹ0,x

)
+ ρ3/2

(
y0(y1 + ρ1/2y2)− ỹ0(ỹ1 + ρ1/2ỹ2)

)
x
.

This implies

(y−ya − ỹ + ỹa)t + (y − ya − ỹ + ỹa)x + (y − ya − ỹ + ỹa)xxx

=−
(

(y − ya)yx + ya(y − ya)x − (ỹ − ỹa)ỹx − ỹa(ỹ − ỹa)x + g(t, x)
)

=−
(

(y − ya − ỹ + ỹa)yx + (yx − ỹx)(ỹ − ỹa) + ya(y − ya − ỹ + ỹa)x

+ (ya − ỹa)(ỹ − ỹa)x + g(t, x)
)

=−
(

(y − ya − ỹ + ỹa)yx + ya(y − ya − ỹ + ỹa)x + (yx − ya,x − ỹx + ỹa,x)(ỹ − ỹa) + h(t, x)
)
,

where
h(t, x) = g(t, x) + (ya,x − ỹa,x)(ỹ − ỹa) + (ya − ỹa)(ỹ − ỹa)x.

Using Lemma 6.2, we derive that, for ρ small,

(6.19) ‖y − ya − ỹ + ỹa‖X ≤ C‖h(t, x)‖
W 1,1

(
(0,T );L2(0,L)

).
We have

‖(y − ya, ỹ − ỹa)‖X
(6.17)

≤ Cρ3/2, ‖ya − ỹa‖X ≤ Cρ−1/2‖ϕ− ϕ̃‖Y ,
and

‖g(t, x)‖
W 1,1

(
(0,T );L2(0,L)

) ≤ Cρ1/2‖ϕ− ϕ̃‖Y .
It follows that

(6.20) ‖h(t, x)‖
W 1,1

(
(0,T );L2(0,L)

) ≤ Cρ1/2‖ϕ− φ‖Y ,
which yields, by (6.19),

‖(y − ya − ỹ + ỹa)(T, ·)‖Y ≤ Cρ1/2‖ϕ− φ‖Y .
Assertion (6.16) follows.

We next consider the case ‖PMyT −w0‖H3(0,L) ≤ 2c‖yT ‖H3(0,L). In fact, one can bring this case
to the previous case as follows. Fix ε > 0 small. By Lemma 5.3 and Corollary 3.7, there exists
v1 ∈ H2

0 (0, ε) such that if y1 ∈ X (with T = ε) is the solution of (6.10) with u1 = v1 and y2 ∈ X
is the solution of (6.11) with u2 = 0 then

y2(ε, ·) ∈M \ {0}.
Let u0,T , u1,T , u2,T be such that u0,T is a control for which the corresponding solution in X of
the linear system (6.2) starting from yT (L − ·)/ρ at 0 and arriving 0 at the time ε, u1,T = γv1,
u2,T = γ2v2 for some γ > 0 defined later. Let y be the unique solution of the nonlinear KdV
system in the time interval [T, T + ε] using the control

ρu0(· − T ) + ρ1/2u1(· − T ) + ρu2(· − T ),

with y(T, ·) = yT (L− ·). By choosing γ large enough, y0 and y(T + ε, L− ·) satisfy the setting of
the previous case for the time interval [0, T + ε] (instead of [0, T]). One now considers the control
(for the nonlinear KdV system) in the time interval [0, T + 2ε] which is equal to the one which
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brings y0 at the time 0 to y(T + ε, L − ·) at the time T + ε obtained in the previous case in the
time interval [0, T + ε], and is equal to −yx

(
2(T + ε) − t, 0

)
for t ∈ [T + ε, T + 2ε]. It is clear

that the solution of the nonlinear KdV system at the time T + 2ε is yT . The proof is complete by
changing T + 2ε to T . �

Remark 6.6. Similar result as the one in Theorem 6.1 also holds for y0, yT ∈ H2(0, L)∩H1
0 (0, L)

and u ∈ H2/3(0, T ). More precisely, one has the following result. Let L > 0, and k, l ∈ N. Let p
be defined by (5.1). Assume that (5.2) holds, 2k + l 6∈ 3N, and the dimension of M is 2. Given
T > π/p, there exists ε0 > 0 such that for y0, yT ∈ H2(0, L) ∩H1

0 (0, L) with

‖(y0, yT )‖H2(0,L) ≤ ε0,

there exists u ∈ H2/3(0, T ) such that u(0) = y′0(L),

‖u‖H2/3(0,T ) ≤ C‖(y0, yT )‖1/2
H2 ,

and the corresponding solution y ∈ C
(
[0, T ];H2(0, L)

)
∩ L2

(
(0, T );H3[0, L])

)
of the nonlinear

system (1.1) with y(t = 0, ·) = y0 satisfies y(t = T, ·) = yT . This is complementary to Theorem 5.1.
The only important modification in comparison with the proof of Theorem 6.1 is Lemma 6.4.
Nevertheless, the method presented in its proof can be extended to cover the setting mentioned
here (initial and final datum in H2(0, L) ∩H1

0 (0, 1) and controls in H2/3(0, T )). We also have

(6.21) ‖yx(·, 0)‖H2/3(0,T ) ≤ C
(
‖y(0, ·)‖H2(0,L) + ‖yx(·, L)‖H2/3(0,T )

)
,

for solutions y ∈ C
(
[0, T ];H2(0, L)

)
∩ L2

(
(0, T );H3[0, L])

)
of (1.1) with small norm. Asser-

tion (6.21) would follow from [12] applied to s = 2. Here is another way to see it. Split y
into two parts y1 and y2 where y1 is the solution of the linearized system with zero initial data
and y1,x(·, L) = yx(·, L). As in the proof of Lemma 4.4, one can prove

(6.22) ‖y1,x(·, 0)‖H2/3(0,T ) ≤ C‖yx(·, L)‖H2/3(0,T ).

Concerning y2, by considering yyx as a source term, similar to the proof of Lemma 4.6, one can
prove

(6.23) ‖y2,x(·, 0)‖H2/3(0,T ) ≤ C
(
‖y(0, ·)‖H2(0,L) + ‖yyx‖L2

(
(0,T );H2(0,L)

)).
Since

‖yyx‖L2
(
(0,T );H2(0,L)

) ≤ C‖y‖2
C
(
[0,T ];H2(0,L)

)
∩L2
(
(0,T );H3[0,L])

) (by the embedding theorem)

≤ C
(
‖y(0, ·)‖H2(0,L) + ‖yx(·, L)‖H2/3(0,T )

)2
(by [12, Theorem 3.4] applied to s = 2),

assertion (6.21) follows from (6.22) and (6.23). Therefore, the arguments using the backward
systems also work in this case.

Remark 6.7. The proof given in Theorem 6.1 can be extended easily to the case L 6∈ N to yield
the small-time local controllability of (1.1) with initial final and initial datum in H3(0, L)∩H1

0 (0, L)

(resp. H2(0, L) ∩H1
0 (0, L)) and controls in H1(0, T ) (resp. H2/3(0, T )).

Remark 6.8. Let L ∈ N . Assume that dimM is pair and for all (k, l) ∈ N2 with k > l ≥ 1 and

L = 1
2π

√
k2+l2+kl

3 , it holds 2k+ l 6∈ 3N. Then, using the same method in the proof of Theorem 6.1,

and involving the ideas in [20], one can prove that the system (1.1) and (1.2) is controllable at the
time given in [20].

Remark 6.9. The mappings G and Λ have their roots in [24] (see also [18]).
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Remark 6.10. Lemma 6.4 is motivated by the Hilbert Uniqueness Method and inspired by the
construction of smooth controls (for different contexts, e.g. the context of the wave equation) in
[27]. The function η used there is inspired from [27]. Nevertheless, we cannot take η = 0 near T
as in [27]. We also add a large parameter λ in the proof.

Remark 6.11. In the proof of Lemma 6.5, we use essentially the fact that for all τ > 0, there
exists v1 ∈ H2

0 (0, τ) such that if y1 ∈ X is the solution of (6.10) with u1 = v1 and y2 ∈ X is the
solution of (6.11) with u2 = 0 then

y2(τ, ·) ∈M \ {0}.

This is a consequence of Lemma 5.3 and Corollary 3.7. It is not clear for us how to use a con-
tradiction argument as in [24, 18, 20] to obtain such a function v1. This is why we cannot im-
plement the strategy in [24, 18, 20] to derive the local controllability for initial and final datum
in H3(0, L) ∩ H1

0 (0, L) with controls in H1(0, T ) for all critical lengths and for small time when
dimM = 1 and for finite time otherwise.

Remark 6.12. We emphasize that the way to implement the fixed point argument for Λ presented
in this paper is somehow different from the one in [18]. We only apply the fixed point arguments
once instead of twice, first for PM⊥Λ and then for PMΛ as in [18]. The Brouwer fixed point
theorem is not required in our analysis.

Appendix A. On symmetric functions of the roots of a polynomial

This is standard for people knowing algebraic functions [1, Ch. 8 §2], but for the sake of com-
pleteness, we justify that an analytic symmetric function of the roots λj(z) of λ3 + λ + iz = 0 is
an entire function.

Lemma A.1. Let (λ1(z), λ2(z), λ3(z)) be the three roots of λ3 + λ + iz = 0. Let F : C3 → C
be holomorphic in C3 and symmetric, i.e., for every permutation σ ∈ S3, F (zσ(1), zσ(2), zσ(3)) =
F (z1, z2, z3). Then, the function G : z ∈ C 7→ F (λ1(z), λ2(z), λ3(z)) is entire.

Note that the ordering λ1(z), λ2(z), λ3(z) is not unique (and we could prove that we can-
not chose an ordering that makes any of the λj entire), but since F is symmetric, the value
F (λ1(z), λ2(z), λ3(z)) does not depend on the ordering.

Proof. Note that, for z0 6= ±2/(3
√

3), the discriminant of X3 + X + iz is nonzero, and thus the
roots of X3 + X + iz0 are simple. By the implicit function theorem, there exists some complex
neighborhood U of z0, some neighborhood Vj of λj(z0) (1 ≤ j ≤ 3), and three holomorphic func-
tions µj : U → Vj such that µ1(z), µ2(z), µ3(z) are the three distinct roots. Since F is symmetric,
it follows that G(z) = F (µ1(z), µ2(z), µ3(z)) and is therefore analytic in U . Consequently, G is
analytic in C \ {±2/(3

√
3)}.

It suffices then to prove that G is continuous at ±2/3
√

3. The roots λj(z) are continuous, even

around at ±
√

4/27, in the sense that for every ε > 0, there exists δ > 0 such that for every |z−z0| <
δ, there exists some ordering of the λkj (z) such that |λk1(z)− λ1(z0)|+ · · ·+ |λk3(z)− λ3(z0)| < ε

(this can be seen e.g. thanks to Cardano’s formula). Thus G(z) is continuous at z0 = ±
√

4/27

and ±
√

4/27. �

Remark A.2. A variant of Lemma A.1 still holds for more general polynomial equations P (z, λ) =
0, but we wanted to avoid some technicalities of such a general equation. The general case would
be a consequence of the fact that the solutions of P (z, λ) = 0 define a finite number of algebraic
functions, see [1, Ch. 8 §2].
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Appendix B. On the real roots of H, the common roots of G and H, and the
behavior of |detQ|

We begin with

Lemma B.1. Let z ∈ R. We have

1) if z 6= ±2/(3
√

3) and H(z) = 0, then, for some k, l ∈ N with 1 ≤ l ≤ k, L = 2π
√

k2+kl+l2

3 ,

and

(B.1) z = −(2k + l)(k − l)(2l + k)

3
√

3(k2 + kl + l2)3/2
.

Moreover,

(B.2) λ1(z) = −2πi

3L
(2k + l), λ2(z) = λ1(z) +

2πi

L
k, λ3(z) = λ2(z) +

2πi

L
l,

and z is a simple zero of the equation H.
2) if z = ±2/(3

√
3) then

(B.3) λ1(z) = ∓ i√
3
, λ2(z) = ∓ i√

3
, λ3(z) = ± 2i√

3
,

z is not a zero of H, and z is a simple solution of the equation detQ(z)Ξ(z) = 0.

Proof. We begin with 1). By Remark 2.7, assertion (B.1) holds. Assertion (B.2) then follows from
[38]. To prove that z is then a simple root of the equation H(z) = 0 in the case z 6= ±2/(3

√
3),

we proceed as follows. We have

λj(z + ε) = λj(z)−
iε

3λ2j + 1
+O(ε2).

It follows that

detQ(z + ε) =

3∑
j=1

(
λj+1(z + ε)− λj(z + ε)

)
e−λj+2(z+ε)L

=

3∑
j=1

(
λj+1(z)− λj(z)−

iε

3λ2j+1 + 1
+

iε

3λ2j + 1
+O(ε2)

)
e−λj+2(z)L

(
1 +

iεL

3λ2j+2 + 1
+O(ε2)

)
.

Since

e−λ1(z)L = e−λ2(z)L = e−λ3(z)L,

we derive that

(B.4) detQ(z + ε) = iεLe−λ1(z)L
3∑
j=1

λj+1(z)− λj(z)
3λ2j+2(z) + 1

+O(ε2).
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In what follows, for notational ease, we denote λj(z) by λj . We have

(B.5)
3∑
j=1

λj+1 − λj
3λ2j+2 + 1

=
2πi

L

(
k

3λ23 + 1
+

l

3λ21 + 1
− k + l

3λ22 + 1

)

=
2πi

L

(
3k(λ22 − λ23)

(3λ23 + 1)(3λ22 + 1)
+

3l(λ22 − λ21)
(3λ21 + 1)(3λ22 + 1)

)

=

(
2πi

L

)2(
− 3kl(λ2 + λ3)

(3λ23 + 1)(3λ22 + 1)
+

3kl(λ2 + λ1)

(3λ21 + 1)(3λ22 + 1)

)
.

Note that

(B.6) (λ2 + λ1)(3λ
2
3 + 1)− (λ2 + λ3)(3λ

2
1 + 1)

= (λ1 − λ3) + 3(λ3 − λ1)(λ1λ2 + λ1λ3 + λ2λ3) = 2(λ3 − λ1),

since λ1λ2 + λ1λ3 + λ2λ3 = 1. From (B.4), (B.5), and (B.6), we derive that z is a simple root of
H(z).

We next consider 2). We only consider the case z = 2/(3
√

3), the other case follows similarly.
By (2.19) in the proof of Lemma 2.6, we have

(B.7) λ1(z+ε) = − i√
3

+

√
−i

31/4
√
ε+O(ε), λ2(z+ε) = − i√

3
−
√
−i

31/4
√
ε+O(ε), λ3(z+ε) =

2i√
3

+O(ε).

It follows that

detQ(z + ε) = −2Li√
3

√
−i

31/4
√
ε+O(ε).

Since Ξ(z + ε) = c+
√
ε for some c+ 6= 0 by (B.7), z = 2/(3

√
3) is not a root of the equation

H(z) = 0 and z is a simple root of the equation detQ(z)Ξ(z) = 0. The proof is complete. �

Lemma B.2. Let z ∈ C be such that z 6= ±2/(3
√

3). Assume that H(z) = G(z) = 0. Then, for
some k, l ∈ N with k ≥ l ≥ 1, we have

(B.8) L = 2π

√
k2 + kl + l2

3
,

and

(B.9) z = −(2k + l)(k − l)(2l + k)

3
√

3(k2 + kl + l2)3/2
.

Proof. By Remark 2.7 (see also Lemma B.1), it suffices to prove that if z ∈ C is such that
z 6= ±2/(3

√
3), and H(z) = G(z) = 0, then z is real. Indeed, note that

detQ(z) = (λ1 − λ3)(e−λ2L − e−λ3L) + (λ3 − λ2)(e−λ1L − e−λ3L),

and

−P (z) = (λ1 − λ3)(eλ2L − eλ3L) + (λ3 − λ2)(eλ1L − eλ3L).

It follows that

(B.10) | detQ(z)| = 0 if and only if (λ3 − λ1)(e(λ3−λ2)L − 1) = (λ3 − λ2)(e(λ3−λ1)L − 1),

and

(B.11) |P (z)| = 0 if and only if (λ3 − λ1)(e−(λ3−λ2)L − 1) = (λ3 − λ2)(e−(λ3−λ1)L − 1).
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Solving the system

(B.12)

{ ∑3
j=1 λj = 0,∑3

j=1 λjλj+1 = 1,

in which λ3 is a parameter, one has, with ∆ = −3λ23 − 4,

λ1 =
−λ3 +

√
∆

2
and λ2 =

−λ3 −
√

∆

2
.

This implies

(B.13) α = α(λ3) = λ3 − λ1 =
3λ3 −

√
∆

2
and β = β(λ3) = λ3 − λ2 =

3λ3 +
√

∆

2
.

Thus, if z is a common root of |detQ| and |P | and λi(z) 6= λj(z) for i 6= j (1 ≤ i, j ≤ 3), then,
by (B.10) and (B.11),

(eαL − 1)(e−βL − 1) = (e−αL − 1)(eβL − 1),

which is equivalent to

(eαL − eβL)(eαL − 1)(eβL − 1) = 0.

This implies that either eαL = eβL, or eαL = 1, or eβL = 1. Since λ1, λ2, λ3 are distinct, it follows
from (B.10) and (B.11) that

(B.14) eαL = eβL = 1.

We derive from (B.13) that

3λ3 ∈ 2πiZ/L.
Since

λ33 + λ3 = −iz,
it follows that z is real. The proof is complete. �

We finally establish

Lemma B.3. There exist c, C > 0 and m0 ∈ N such that

1) for m ∈ Z with |m| ≥ m0, we have

|detQ(z)| ≥ Ce−c|z|1/3 if =(z) =
(

(2m+ 1)π/(
√

3L)
)3
.

2) for z ∈ C with |z| ≥ m0 and |<(z)| ≥ c|z|1/3, we have

|detQ(z)| ≥ Ce−c|z|1/3 .

Proof. For z ∈ C with large |z|, denote λ1, λ2, λ3 be the three roots of the equation

λ3 + λ = −iz,
with the convention <(λ3) ≥ max

{
<(λ1),<(λ2)

}
, and, with ∆ = −3λ23 − 4,

λ1 =
−λ3 +

√
∆

2
, and λ2 =

−λ3 −
√

∆

2
.

This is possible since {
λ1 + λ2 = −λ3,

λ1λ2 = 1 + λ23.

We have

|λ−13 detQ(z)eλ3L| = |f(λ3)|,
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where

(B.15) f(λ3) :=
3λ3 −

√
∆

2λ3
(e

3λ3+
√

∆
2

L − 1)− 3λ3 +
√

∆

2λ3
(e

3λ3−
√

∆
2

L − 1).

Since λ3 is large, we have

(B.16)

(
3− i

√
3

2

)−1
f(λ3) = [1 +O(λ−23 )](e

3+i
√

3
2

λ3L+O(λ−1
3 ) − 1)

− [1 +O(λ−23 )]eiϕ0(e
3−i
√

3
2

λ3L+O(λ−1
3 ) − 1),

where ϕ0 = π/3 since 3+i
√
3

2 /3−i
√
3

2 = eiϕ0 .

We begin with 1). It suffices to prove, for z ∈ C with =(z) =
(

(2m + 1)π/(
√

3L)
)3

with large

|m| (m ∈ Z), that

(B.17) |λ−13 detQ(z)eλ3L| ≥ 1.

Assume that (B.17) does not hold. Then for some m ∈ Z with large modulus and for some z ∈ C
with =(z) =

(
(2m+ 1)π/(

√
3L)
)3

, we have

|f(λ3)| ≤ 1.

Since <(λ3) > 0 and is large, it follows that

|e
3+i
√

3
2

λ3L| = (1 +O(λ−13 ))|e
3−i
√

3
2

λ3L|.

One derives that, if λ3 = a+ ib with a, b ∈ R,

(B.18) a is large and |b| = O(λ−13 ).

It follows that

e
3+i
√

3
2

λ3L = e
3aL

2 ei
√

3aL
2 eO(λ−1

3 )

and

e
3−i
√

3
2

λ3L = e
3aL

2 e−i
√

3aL
2 eO(λ−1

3 ).

Using (B.16), and the fact |f(λ3)| ≤ 1 and =(z) =
(

(2m+1)π/(
√

3L)
)3

, we obtain a contradiction.

Hence (B.17) holds. The proof of 1) is complete.

To establish 2), it suffices to prove (B.17) for z ∈ C with |z| ≥ m0 and |<(z)| ≥ c|z|1/3 for some
c > 0. This indeed follows from the fact if |z| is large and |f(λ3)| ≤ 1, then (B.18) holds. The
proof is complete. �
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