
HAL Id: hal-02378624
https://hal.inria.fr/hal-02378624v2

Submitted on 3 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bucket Graph Based Labelling Algorithm for Vehicle
Routing

Ruslan Sadykov, Artur Pessoa, Eduardo Uchoa

To cite this version:
Ruslan Sadykov, Artur Pessoa, Eduardo Uchoa. A Bucket Graph Based Labelling Algorithm for
Vehicle Routing. Transportation Science, INFORMS, 2020, Ahead of Print, �10.1287/trsc.2020.0985�.
�hal-02378624v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362230097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02378624v2
https://hal.archives-ouvertes.fr


A Bucket Graph Based Labeling Algorithm with

Application to Vehicle Routing

Ruslan Sadykov1, Eduardo Uchoa2, and Artur Pessoa2

1INRIA Bordeaux – Sud-Ouest 200 Avenue de la Veille Tour, 33405 Talence,
France

2Universidade Federal Fluminense - Engenharia de Produção , Rua Passo da
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Abstract

We consider the Shortest Path Problem with Resource Constraints (SPPRC) arising as
a subproblem in state-of-the-art Branch-Cut-and-Price algorithms for vehicle routing prob-
lems. We propose a variant of the bi-directional label correcting algorithm in which the
labels are stored and extended according to the so-called bucket graph. Such organization
of labels helps to decrease significantly the number of dominance checks and the running
time of the algorithm. We also show how the forward/backward route symmetry can be
exploited and how to eliminate arcs from the bucket graph using reduced costs. The pro-
posed algorithm can be especially beneficial for vehicle routing instances with large vehicle
capacity and/or with time window constraints. Computational experiments were performed
on instances from the distance constrained vehicle routing problem, including multi-depot
and site-dependent variants, on the vehicle routing problem with time windows, and on
the “nightmare” instances of the heterogeneous fleet vehicle routing problem. Significant
improvements over the best algorithms in the literature were achieved and many instances
could be solved for the first time.

1 Introduction

The best known exact approach for many classical variants of the Vehicle Routing Problem
(VRP) is a Branch-Cut-and-Price (BCP) algorithm in which the master problem contains route
variables, customer visiting constraints and additional cuts. Because of their exponential number,
the route variables are generated dynamically by solving pricing subproblems modeled as Shortest
Path Problems with Resource Constraints (SPPRC). In those problems, one looks for least cost
paths joining a source vertex with a sink vertex such that the accumulated consumption of
resources along the path respects given lower and upper limits. Dynamic Programming labeling
algorithms are the most usual way of solving those problems.

Labeling algorithms differ from the traditional “table filling” dynamic programming algo-
rithms because they only store (as labels) the reachable states, those representing feasible partial
paths. More importantly, while traditional dynamic programming only performs dominance
over identical states, labeling algorithms perform dominance between labels corresponding to
non-identical states. Typically, a label L′ representing a path PL

′
is dominated, and therefore

eliminated, if there is another label L representing a path PL that ends in the same vertex
and is not more costly and does not use more resources than PL

′
. Mono-directional labeling

algorithms start from a single label representing a null path at the source vertex. At each step,
a non-extended label L is extended to additional labels corresponding to the possible ways of
adding a single arc to PL. Dominance may be used to eliminate labels, avoiding future exten-
sions. If there are no non-extended labels, the algorithm stops and optimal solutions are found
among the labels representing paths ending in the sink vertex. The general labeling algorithm
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has several degrees of freedom. In particular, there are many possible ways of choosing the
next label to be extended and how often and how extensively dominance checks are performed.
Particular labeling algorithms are classified as being either label-setting or label-correcting. The
defining property of a label-setting algorithm is that it only extends labels that can never be
dominated by another label created after that extension.

There is a large literature on labeling algorithms for SPPRC, we refer to Irnich and De-
saulniers (2005) and Pugliese and Guerriero (2013) for surveys. However, somehow surprisingly,
not so many papers discuss in depth issues related to label organization and dominance strate-
gies. In fact, even though the pricing time is a bottleneck in many BCP algorithms for VRP,
authors often skip the details of the labeling algorithm used. An exception is the recent algo-
rithm for the Capacitated VRP (CVRP) in Pecin et al. (2017b). In that case, assuming that the
consumptions of the single resource (capacity) are given by positive integer numbers, labels are
organized in buckets corresponding to each possible consumption. Dominance is only performed
for labels in the same bucket, that by definition have the same resource consumption. However,
that approach cannot be applied in cases where resource consumptions are given by arbitrary
real numbers. In fact, if the consumptions are given by larger integer numbers the algorithm
becomes slow, since few dominance checks are performed and too many undetected dominated
labels are expanded. The opposite approach is to perform full label dominance after each ex-
tension. In this case, the running time may suffer a lot from too many dominance checks with
negative results.

Lozano and Medaglia (2013) proposed the so-called Pulse Algorithm for the SPPRC. Pulse is
better viewed as a depth-first branch-and-bound search algorithm than as a dynamic program-
ming labeling algorithm, because it uses dominance in a severely limited way — each vertex
only keeps a handful of partial paths for performing dominance checks. The main mechanism
in Pulse for trying to avoid an exponential explosion in its search is bounding, a partial path is
pruned if it can be shown that it cannot be extended into a full path ending at the sink vertex
that costs less than the currently best known source to sink path. Pulse produced excellent
results, much better than label-setting algorithms, on some stand-alone SPPRCs where all arc
costs are positive. The last feature helps Pulse because it allows good bounds to be computed by
Dijkstra’s-like algorithms. Up to now, as far as we know, Pulse was only tested as a subproblem
solver in a column generation algorithm for VRP with Time Windows (VRPTW) in Lozano,
Duque, and Medaglia (2015). The SPPRCs that appear in that context are more complex be-
cause the master dual variables make arc costs to be possibly negative. The test was calculating
the elementary route bound on instances with 100 customers. The variant of Pulse used for the
VRPTW only performs an even more basic form of dominance called rollback pruning. However,
it proposes a more sophisticated bounding mechanism that only considers the time resource. The
obtained results compare favourably with the labeling algorithms of Desaulniers, Lessard, and
Hadjar (2008) and Baldacci, Mingozzi, and Roberti (2011). It is not known how Pulse would
perform on larger instances and how it would handle the modifications in the SPPRC induced
by cuts, essential for modern BCP algorithms for VRP.

The main original contributions of this paper are the following:

• In Section 3, a new variant of the labeling algorithm is proposed. The approach relies on
a so-called bucket graph, consisting of buckets and bucket arcs. Labels for paths ending
in the same vertex of the original graph and having similar resource consumption are
grouped together in buckets. A bucket arc links two buckets if a label in the first one
can be possibly extended to a label in the second. Labels within the same bucket are
always pairwise undominated, i.e. there is no label which is dominated by another label
in the same bucket. However, dominance checks between labels in different buckets are
only performed before an extension, when it is checked whether a candidate label to be
extended is dominated or not. Moreover, this inter-bucket dominance uses bounds on the
costs of all labels in a bucket, avoiding many unnecessary checks. The key parameter of
the algorithm is the step size, used for determining the resource consumption intervals that
define each bucket. If the step size is sufficiently small, the bucket graph is acyclic and the
algorithm becomes a label-setting algorithm. In general, the bucket graph has cycles and
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the algorithm is a label-correcting algorithm. A bi-directional version of the bucket graph
based labeling algorithm is also proposed (since Righini and Salani (2006) it is known
that bi-directional labeling algorithms are often more efficient than their mono-directional
counterparts). The concatenation of labels step is also accelerated by bounds on the costs.
Bi-directional search also allows us to exploit the forward/backward symmetry of routes
that exists on some VRP variants, for example, on the classical Capacitated VRP (CVRP).
On those cases, the backward search is replaced by a “reversed copy” of the forward search,
reducing the running time.

• In Section 4, a procedure for accelerating the labeling algorithm by removing arcs from the
bucket graph using reduced cost arguments is proposed. We call it bucket arc elimination
procedure. The concept of jump bucket arcs is introduced. The new fixing procedure
generalizes both the procedures in Irnich et al. (2010) and in Pessoa et al. (2010). After a
fixing, some bucket arcs are eliminated, and thus the number of extensions and the running
times are reduced in future calls to the labeling algorithm.

The new labeling algorithm was embedded as the pricing method in a modern BCP algo-
rithm for VRPs. Our BCP also includes many ingredients found in other state-of-the-art BCP
algorithms, like dynamic ng−path relaxation, rounded capacity cuts, limited arc memory rank-
1 cuts, automatic dual price smoothing stabilization, a procedure for enumerating elementary
paths, and multi-phase strong branching with pseudo-costs. The algorithm was computation-
ally tested on several VRP variants with time window constraints and/or large vehicle capacity.
Pretests have shown that the labeling algorithm could perform very well, but that performance
is rather sensitive to the choice of the step size parameter. Moreover, the good step size val-
ues varied strongly from instance to instance. Therefore, a simple but effective scheme for an
automatic dynamic adjustment of the step size was devised. Other specific experiments indi-
cate that, on the hardest instances, the new bucket arc fixing procedure can indeed be better
than existing schemes for fixing arcs by reduced cost. Lastly, extensive experiments show that
the final BCP algorithm outperforms significantly other recent state-of-art algorithms for the
VRPTW and the Multi-Depot VRP with Distance Constraints (MDVRPDC). Moreover, our
algorithm is the first exact approach that can handle medium-sized instances of the classical
Distance Constrained Vehicle Routing Problem (DCVRP), including the site-dependent vari-
ant. Our algorithm is also the first exact method successfully applied for a set of “nightmare”
instances of the Heterogeneous Fleet VRP (HFVRP).

The remainder of this article has the following structure. Section 2 defines the exact SPPRC
solved in this paper. It is explained how this SPPRC arises as a pricing subproblem for solving a
Heterogeneous Fleet Vehicle Routing Problem with Time Windows (HFVRPTW) by a column-
and-cut generation algorithm. Section 3 describes the bucket graph labeling algorithm proposed
in this work. Section 4 presents the bucket arc elimination procedure and introduces the key
concept of jump bucket arcs. Section 5 presents the complete BCP algorithm for HFVRPTW
where the bucket graph labeling algorithm was embedded. Section 6 presents results of the
computational experiments. There are experiments devised to assess the impact of the bucket
step size and experiments for measuring the impact of the introduced bucket arc elimination
procedure. Moreover, extensive experiments evaluate the overall BCP performance on several
classical VRP variants that are particular cases of the HFVRPTW. Section 7 contains final
remarks. Finally, very detailed computational results are presented in the online appendix.

2 Application

In order to give a precise definition of the SPPRC addressed in this paper, we first need to define
its application; defining the family of VRPs that we ultimately want to solve and outlining the
column-and-cut generation algorithm where that SPPRC arises as the pricing subproblem.
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2.1 HFVRPTW Definition

The Heterogeneous Fleet Vehicle Routing Problem with Time Windows (HFVRPTW) (Jiang
et al. 2014) is defined as follows. Let G = (V,A) be a directed graph with vertex set V =
{0, . . . , n + 1}. For convenience, the depot vertex is split into the source vertex 0 and the sink
vertex n + 1; vertices in V ′ = V \ {0, n + 1} represent the n customers. The arc set is defined
as A = {(v, v′) : v, v′ ∈ V, v 6= v′, v 6= n + 1, v′ 6= 0, (v, v′) 6= (0, n + 1)}. Each vertex v ∈ V
has a demand wv, a service time (duration) sv, and a time window [lv, uv] associated with it.
Demands and service times are non-negative for customers v ∈ V ′ and equal to zero for the
depot vertices, l0 is assumed to be equal to 0. The fleet is composed of a set M of different types
of vehicles. For each m ∈ M , there are Um available vehicles, each with a capacity Wm. Let
W = max{Wm : m ∈ M} be the largest capacity. Every vehicle type is associated with a fixed
cost denoted by fm. For each arc a ∈ A and m ∈M there is a cost cma and a non-negative travel
time tma associated to the traversal of this arc by a vehicle of type m. We assume that G does
not have any cycle where, for some vehicle type, all vertices have zero demands and zero service
times and all arcs have zero time. A route P = (v0 = 0, v1, . . . , vk, vk+1 = n+ 1) for a vehicle of
type m ∈M is a walk where v1, . . . , vk are not necessarily distinct customers in V ′ and is said to
be feasible if 1) it satisfies vehicle capacity:

∑k
j=1 wvj ≤Wm; and 2) the earliest start of service

time Sj at every visited vertex vj , 0 ≤ j ≤ k + 1, falls within the corresponding time window:
lvj ≤ Sj ≤ uvj , where S0 = l0 and Sj = max{lvj , Sj−1 + svj−1 + tm(vj−1,vj)

}. A vehicle may arrive

at a vertex before the beginning of its time window and wait, but it cannot arrive after the end
of the time window. The cost of route P is calculated as fm+

∑k+1
j=1 c

m
(vj−1,vj)

. A route is said to

be elementary if the same customer is not visited more than once. The objective is to determine
a set of feasible elementary routes with minimal total cost such that: (i) each customer is visited
by exactly one route; (ii) the number of routes associated to a vehicle type does not exceed its
availability. Clearly, some of most classical VRP variants, like CVRP, VRPTW and HFVRP,
are particular cases of HFVRPTW. Other variants that are also particular cases of HFVRPTW
are listed below.

In the Multi-Depot VRP (MDVRP), the vehicles themselves are identical, they only differ
by being attached to different depots. It can be easily modeled as a HFVRP by associating each
depot to a vehicle type and setting costs cm(0,v) and times tm(0,v) for leaving the depot, together
with costs cm(v,n+1) and times tm(v,n+1) for entering the depot, that depend on m ∈ M . The Site

Dependent VRP (SDVRP), a variant where vehicles differ only by the subset of the customers
that they can visit, is also easily modeled as a HFVRP by setting infinite costs for cm(v,v′) if

vehicle type m cannot visit either v or v′.

The classical Distance Constrained Vehicle Routing Problem (DCVRP) can also be solved as
a HFVRPTW. In this variant, besides the capacity constraint, the route length is also forbidden
to be above a certain threshold D. Since service times are included in that “length”, this is
actually a time limit for returning to the depot. It can be modeled by setting time window [0, D]
for every v ∈ V .

2.2 Set Partitioning Formulation and Cuts

Let Ωm be the set of all feasible elementary routes for vehicle type m ∈ M . A set partitioning
formulation over those sets would lead to a hard pricing problem, probably intractable on large
instances. A more tractable (but weaker) formulation can be defined using a relaxed set of
routes that includes some non-elementary routes, i.e. routes in which some customers are visited
more than once. In this work we assume that the ng-route relaxation (Baldacci, Mingozzi, and
Roberti 2011), a route relaxation with a good tradeoff between formulation strength and pricing
difficulty, is being used. Let Nv ⊆ V ′ be the neighborhood of v ∈ V ′, typically containing the
closest customers to v. An ng-route can only revisit a customer v, forming a cycle, if the cycle
contains another customer v′ with v /∈ Nv′ . In many cases, reasonably small neighborhoods (for
example, with |Nv| = 8) already provide bounds that are close to those that would be obtained
by pricing elementary routes (Poggi and Uchoa 2014, Contardo, Desaulniers, and Lessard 2015).
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Let ΩNm ⊇ Ωm be the set of ng-routes for vehicle type m ∈ M with respect to a given set
of neighborhoods N = (N1, . . . , Nn). We denote by cP the cost of route P ∈ ΩNm, by xP(v,v′)
the number of times arc (v, v′) ∈ A appears in route P , and by yPv =

∑
a∈δ+({v})∪δ−({v}) x

P
a /2

the number of times vertex v ∈ V ′ is visited in route P (this “symmetric” definition of yPv is
exploited in Section 3.6). Let λP be a binary variable indicating whether route P is selected or
not in the solution. The Set Partitioning Formulation (SPF) for the HFVRPTW considered in
this paper is the following.

(SPF) min
∑
m∈M

∑
P∈ΩNm

cPλP (1)

subject to
∑
m∈M

∑
P∈ΩNm

yPv λP = 1 ∀v ∈ V ′, (2)

∑
P∈ΩNm

λP ≤ Um ∀m ∈M, (3)

λP ∈ {0, 1} ∀m ∈M,P ∈ ΩNm. (4)

A column generation algorithm should be used to solve the linear relaxation of (1)-(4). However,
even using large neighborhoods (or even enforcing that all routes are elementary) the resulting
bounds are often not good enough for building an effective branch-and-price algorithm. There-
fore, the SPF should be reinforced by adding cuts.

Let C ⊆ V ′ be a subset of the customers, define w(C) =
∑
v∈C wv as its total demand. The

value dw(C)/W e is a valid lower bound on the number of vehicles that must visit C. Therefore,
the following Rounded Capacity Cut (RCC) (Laporte and Nobert 1983) is valid:

∑
m∈M

∑
P∈ΩNm

 ∑
a∈δ+(C)∪δ−(C)

xPa

λP ≥ 2dw(C)/W e. (5)

RCCs are known to provide a significant reinforcement of the SPF on the CVRP (Fukasawa
et al. 2006). However, they do not work so well on many HFVRP and VRPTW instances. This
happens because the expression dw(C)/W e, which depends only on the largest vehicle capacity
W and disregards time windows, can be a poor bound on the actual number of vehicles visiting
C. The coefficient of a variable λP in a RCC is given by a linear expression over the values of
xPa . This means that RCCs are robust cuts (Pessoa, de Aragão, and Uchoa 2008), such cuts do
not have any impact in the difficulty of the pricing subproblem.

Using a Chvátal-Gomory rounding of a subset C ⊆ V ′ of Constraints (2), relaxed to ≤, with
multipliers pv (0 < pv < 1), v ∈ C, the following valid Rank-1 Cut (R1C) is obtained:∑

m∈M

∑
P∈ΩNm

⌊∑
v∈C

pvy
P
v

⌋
λP ≤

⌊∑
v∈C

pv

⌋
. (6)

The Subset Row Cuts (SRCs) proposed in Jepsen et al. (2008) are the particular R1Cs with
multipliers pv = 1/K, where K is an integer, for all v ∈ C. Recently, the optimal multiplier
vectors for R1Cs with up to five rows have been determined by Pecin et al. (2017c)

• For |C| = 3, ( 1
2 ,

1
2 ,

1
2 ).

• For |C| = 4, ( 2
3 ,

1
3 ,

1
3 ,

1
3 ) and its permutations.

• For |C| = 5, ( 1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ), ( 2

4 ,
2
4 ,

1
4 ,

1
4 ,

1
4 ), ( 3

4 ,
1
4 ,

1
4 ,

1
4 ,

1
4 ), ( 3

5 ,
2
5 ,

2
5 ,

1
5 ,

1
5 ), ( 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ),

( 2
3 ,

2
3 ,

2
3 ,

1
3 ,

1
3 ), ( 3

4 ,
3
4 ,

2
4 ,

2
4 ,

1
4 ) and their permutations.

They are optimal in the sense that they generate R1Cs that are equivalent or dominate the R1Cs
generated with any other multipliers. When non-elementary routes can be generated, one can
also apply cuts (6) with C = {v} and pv = 1/2 for some v ∈ V ′.

5



R1Cs are known to be very effective. However, because of the rounding down operator, the
coefficient of a variable λP in a R1C is not given by a linear expression over the values of xPa ,
so those cuts are non-robust. The concept of limited-memory for reducing the negative impact
of R1Cs in the pricing, first proposed in Pecin et al. (2014, 2017b), represented a breakthrough
in the performance of BCP algorithms for VRP. In this paper, we assume that the generalized
arc memory variant of the concept (Pecin et al. 2017a) is being used. Each R1C, indexed by `,
is associated to a customer subset C` ⊆ V ′, a multiplier vector (p`v)v∈C` , and an arc memory
set AM ` with AM ` ⊆ A. The idea is that, when a route P ∈ ΩNm leaves the memory set, i.e.
follows an arc not in AM `, it “forgets” previous visits to nodes in C`, yielding a coefficient for
λP in the cut ` that may be smaller than the original coefficient b

∑
v∈C` p

`
vy
P
v c. The memory set

AM ` is defined during the cut separation procedure as a minimal set preserving the coefficients
of the route variables λP that have a positive value in the current linear relaxation solution.
Given C ⊆ V ′, a multiplier vector p of dimension |C|, and a memory arc set AM ⊆ A, the
limited-arc-memory R1C cut is defined as:

∑
m∈M

∑
P∈ΩNm

α(C,AM, p, P )λP ≤

⌊∑
v∈C

pv

⌋
(7)

where the coefficient α(C,AM, p, P ) of the route variable λP , P ∈ ΩNm, is computed by the
following pseudocode:

Function α(C, AM , p, P = (v0 = 0, v1, . . . , vk, vk+1 = n+ 1))

α← 0, S ← 0;
for j = 1 to k do

if (vj−1, vj) /∈ AM then
S ← 0;

if vj ∈ C then
S ← S + pvj ;
if S ≥ 1 then
S ← S − 1, α← α+ 1;

return α;

This function can be explained as follows. Whenever a route P visits a vertex v ∈ C,
the multiplier pv is added to the state variable S. When S ≥ 1, S is decremented and α is
incremented. If AM = A, the function returns b

∑
v∈C pvy

P
v c and the limited-memory cut would

be equivalent to the original cut. On the other hand, if AM ⊂ A, it may happen that P
uses an arc not in AM when S > 0, causing the state S to be reset to zero and “forgetting”
some previous visits to nodes in C. In this case, the returned coefficient may be less than the
original coefficient. However, memory sets can be “corrected” in the next separation round. The
final linear relaxation bound obtainable with limited memory R1Cs is exactly that potentially
achieved with ordinary R1Cs.

2.3 Pricing Problem

We now define the pricing problem for the SPF over ng-routes and with additional RCCs and
limited-memory R1Cs, which decomposes into subproblems, one for each vehicle type. In the
subproblem for type m ∈M , we search for a route P ∈ ΩNm with the minimum reduced cost. Let
J be the current set of active RCCs (5), and L be the current set of active limited memory R1Cs
(7). Each cut  ∈ J is determined by a set C of customers. Each cut ` ∈ L is determined by
the triple (C`, AM `, p`). Let (π, µ, ν, σ) be the current dual solution of the linear relaxation of
(1)-(4) with sets J and L of cuts added, where π corresponds to the partitioning constraints (2),
µ corresponds to Constraints (3), ν corresponds to the set J of active RCCs, and σ corresponds
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to the set L of active limited memory R1Cs. Let c̄m(π, ν) be the vector of current arc reduced
costs, where

c̄m(v,v′)(π, ν) = cm(v,v′) −
πv
2
− πv′

2
−

∑
∈J :

(v,v′)∈δ+(C)∪δ−(C)

ν, (8)

where π0 and πn+1 are defined as zero. The pricing subproblem (PSPm) for vehicle type m ∈M
is then formulated as

min
P∈ΩNm

(∑
a∈P

c̄ma (π, ν)−
∑
`∈L

σ` · α(C`, AM `, p`, P )− µm

)
.

3 Bucket Graph based Labeling Algorithm

3.1 SPPRC over Forward and Backward graphs

We now formulate the pricing problem defined in Section 2.3 as a SPPRC in a forward graph
~G = (V, ~A) that is identical to G, so ~A = A. In this section we consider the dual solution
(π, µ, ν, σ) fixed and also drop index m for more clarity. Therefore, the reduced cost of an arc

a ∈ ~A is denoted simply as c̄a. Define a set of two resources R = {1, 2} corresponding to vehicle

capacity and time. The capacity resource consumption of each arc (v, v′) ∈ ~A equals to wv′ and
the time resource consumption of the same arc equals to sv + t(v,v′). For convenience, we use the

same notation d~a,r for the resource consumption of an arc ~a ∈ ~A for both resources r ∈ R. Each
vertex v ∈ V has lower and upper bounds lv,r and uv,r on the accumulated resource consumption
to v of each resource r ∈ R. For the second resource (time) these bounds correspond to original
time windows. For the first (capacity) resource, we have lv,1 = 0 and uv,1 = W . To simplify
the notation, we often drop the resource index r to represent a vector with the corresponding
values for all resources in R, e.g. lv = (lv,1, . . . , lv,|R|)

>. Moreover, we use x � y to denote the

component-wise product of two vectors x and y. We always represent a forward path ~P in graph
~G as defined by its arcs: ~P = (~a

~P
1 ,~a

~P
2 , . . . ,~a

~P
|~P |), with ~a

~P
j = (v

~P
j−1, v

~P
j ), v

~P
0 = 0, v

~P
|~P | = n + 1.

For lightening the notation, we may drop the superscript ~P when it is clear from the context.

Path ~P yields a vector of accumulated resource consumptions q
~P
j ∈ IR|R| at vertices that can be

computed as:

q
~P
j =

{
l0 if j = 0;

max
{
q
~P
j−1 + d~aj , lvj

}
, otherwise

(9)

where the max denotes the component-wise maximum function of two vectors. A forward path
~P is feasible if it respects

• the resource consumption bounds:

q
~P
j ≤ uvj , ∀j ∈ {0, . . . , |~P |}; (10)

• and ng-path neighborhoods:

∀(i, j) ∈ {(i, j) : 0 ≤ i < j ≤ |~P |, vi = vj = v} ∃h : i < h < j, v 6∈ Nvh . (11)

Condition (11) can be rewritten in the following way. Let F ~P
j be the set of vertices defined as

F ~P
0 = ∅ and F ~P

j = (F ~P
j−1 ∩Nvj )∪ {vj} for all 1 ≤ j ≤ |~P |. Then (11) is equivalent to vj 6∈ F

~P
j−1

for all 1 ≤ j ≤ |~P |. Let c̄
~P (π, µ, ν, σ) be the total reduced cost of path ~P :

c̄
~P (π, µ, ν, σ) =

∑
~a∈~P

c̄~a(π, ν)−
∑
`∈L

σ` · α(C`, AM `, p`, ~P )− µ.

7



Let also ~P be the set of all feasible forward paths. The pricing subproblem then can be refor-

mulated as finding a path in ~P minimizing the total reduced cost: min~P∈~P c̄
~P (π, µ, ν, σ). In the

remainder of this section, we use simplified notations c̄P and c̄a as the dual solution (π, µ, ν, σ)
is fixed.

We now define the backward graph ~G = (V, ~A) with source n+ 1 and sink 0. Set ~A contains

one backward arc ~a = (v′, v) for each forward arc ~a = (v, v′) ∈ ~A. Each backward arc ~a has the
same reduced cost c̄ ~a = c̄~a and same resource consumption d ~a = d~a as the corresponding forward
arc.

A backward path ~P is denoted by ~P = ( ~a1, ~a2, . . . , ~a| ~P |) in graph ~G, ~aj = (vj−1, vj), v0 = n+1,

v| ~P | = 0, possibly containing cycles, where we may add the superscript ~P if necessary as in the

forward graph. The accumulated consumption vector q
~P

j ∈ IR|R| in ~P is calculated recursively
as

q
~P

j =

{
un+1, if j = 0;

min
{
q

~P
j−1 − d ~aj , uvj

}
, otherwise.

where the min denotes the component-wise minimum function of two vectors. Feasibility condi-
tions for a backward path ~P are the same as for a forward path except that (10) is replaced by

q
~P

j ≥ lvj , for all j ∈ {0, . . . , | ~P |}. We denote as ~P the set of all feasible backward paths. Sets

F ~P
j , 0 ≤ j ≤ | ~P |, are defined in the same way as for a forward path.

It is easy to see that a forward path ~P belongs to ~P if and only if the corresponding backward
path ~P belongs to ~P, where |~P | = | ~P |, ~aj = (v, v′) and ~a|P |+1−j = (v′, v), 1 ≤ j ≤ |~P |. Also, we

have q
~P
j ≤ q

~P
| ~P |−j for 0 ≤ j ≤ |~P |. An example of a pair of forward and backward paths together

with their consumption of one resource is given in Figure 1. Moreover, the total reduced costs
of ~P and ~P are equal, as coefficients α(C,AM, p, P ) do not change if we traverse path P in the
backward order in function α. Therefore the pricing problem defined in Section 2.3 can be also
reformulated as finding a path in ~P minimizing the total reduced cost.

~P ( ) ~P ( )

qPj,1

v
~P
0

v
~P

6

v
~P
1

v
~P

5

v
~P
2

v
~P

4

v
~P
3

v
~P

3

v
~P
4

v
~P

2

v
~P
5

v
~P

1

v
~P
6

v
~P

0

0 = = n+ 1

lv

uv

Figure 1: An example of a forward and the corresponding backward paths in the case of one
resource

From now on, we use accent ~◦ for a forward entity, accent ~◦ for a backward entity, and no
accent for an entity which can be both forward or backward (when it is applied). We also use
accent ~◦~◦ for an entity of the opposite sense.
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3.2 Labels and Dominance Rule

We devise a labeling algorithm for the previously defined SPPRC where each label L = (c̄L, vL, qL,FL,SL)
corresponds to a partial forward or backward path P (partial means that we may have vP|P | 6∈
{0, n + 1}), where c̄L = c̄P , vL = vP|P |, q

L = qP|P |, F
L = FP|P |, and SL ∈ IR|L| gives the current

state (computed as in Function α) of each cut ` ∈ L for label L.

A label L dominates label L′ if vL = vL
′
, qL ≤ qL′ (qL ≥ qL′ for backward labels), FL ⊆ FL′ ,

and
c̄L −

∑
`∈L: SL` >S

L′
`

σ` ≤ c̄L
′
, (12)

as σ` ≤ 0, ` ∈ L (Jepsen et al. 2008). Condition c̄L > c̄L
′

is sufficient to verify that L does not
dominate L′.

3.3 Bucket Graph

A critical aspect of labeling algorithms that solve the previously described SPPRC is when to
perform dominance checks. Given a set of labels that potentially dominate each other, dominance
checks may be performed for all pairs of labels. However, it can be prohibitively time consuming.
Alternatively, skipping too many dominance checks may cause a premature explosion on the
number of maintained labels. One approach to address this issue is to partition the labels into
buckets and to ensure that no pair of labels inside a bucket dominate each other. Pecin et al.
(2017b) followed this approach by defining buckets for every possible resource consumption of
labels and skipping inter-bucket dominance checks. In this paper we define buckets differently
in order to avoid resource discretisation. Also, we perform inter-bucket dominance checks, but
less frequently.

In the proposed labeling algorithm, labels are grouped into buckets based on their final
vertices and on ranges defined for both accumulated resource consumption values. Moreover,
we define bucket arcs connecting pairs of buckets through which the labels can be extended.
Different bucket graphs are then defined for forward and backward labeling. Bucket graphs are
useful because they help to determine an efficient order of treatment for the buckets. If the
bucket graph is acyclic, it is desirable to process the buckets in its topological order because
no further extension from a bucket is necessary after it has been processed. If the bucket
graph contains cycles, then buckets are handled in the topological order of the graph’s strongly
connected components, trying to minimize such reprocessing. Additionally, the bucket graph is
used to avoid label extensions that are proved not to contribute to a solution that improves the
current best one. This is achieved by removing arcs from the bucket graph based on a reduced
cost argument. In what follows, we present all the notation required to formalize these ideas.

The set of buckets associated to a given vertex v ∈ V is determined by a step size d̃r for
each resource r ∈ R. Let Kv be the set of all |R|-dimensional integer vectors such that the r-th

component belongs to {0, 1, . . . , b(uv, r − lv, r)/d̃rc}, r ∈ R. A forward bucket ~b is defined by a

pair of vertex and lower bound vector (ṽ~b, l̃~b) = (v, lv + κ� d̃), v ∈ V , κ ∈ Kv. A forward label
~L is contained in forward bucket ~b if v

~L = ṽ~b and l̃~b ≤ q
~L < l̃~b + d̃. Similarly, a backward bucket

~b is defined by a pair of vertex and upper bound vector (ṽ ~b, ũ ~b) = (v, uv − κ� d̃), v ∈ V , κ ∈ Kv.
A backward label ~L is contained in backward bucket ~b if v

~L = ṽ ~b and ũ ~b ≥ q
~L > ũ ~b − d̃. Let bL

be the bucket containing label L.

For a forward (backward) bucket b, let κb be the vector κ ∈ Kṽb such that l̃b = lṽb + κ � d̃
(ũb = uṽb − κ� d̃). We say that bucket b′ is component-wise smaller than bucket b (denoted as
b′ ≺ b) if buckets are of the same sense, ṽb′ = ṽb, and κb

′ ≤ κb.

Let ~B ( ~B) be the set of all forward (backward) buckets. We define as ~Γ ( ~Γ) the following set
of directed forward (backward) bucket arcs.
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Each forward/backward bucket arc γ ∈ Γ is defined by a pair (bγ , aγ) of bucket and arc of the
corresponding sense, bγ ∈ B, aγ ∈ A, and ṽbγ is the tail of aγ . The tail of a forward/backward

bucket arc γ is bucket bγ . Set ~Γ contains ~γ if l̃~b~γ + d~a~γ ≤ uv′ , where v′ is the head of ~a~γ . The

head of a forward bucket arc ~γ ∈ ~Γ, denoted by bhead
~γ , is the bucket ~b′ ∈ ~B such that ṽ~b′ = v′

and l̃~b′ ≤ max
{
l̃~b~γ + d~a~γ , lv′

}
< l̃~b′ + d̃. Set ~Γ contains ~γ if ũ ~b ~γ

− d ~a ~γ
≥ lv′ , where v′ is the head

of ~a ~γ . The head of a backward bucket arc ~γ, denoted by bhead
~γ , is the bucket ~b′ ∈ ~B such that

ṽ ~b′ = v′ and ũ ~b′ ≥ min
{
ũ ~b ~γ
− d ~a ~γ

, uv′
}
> ũ ~b′ − d̃. Let ~B = ( ~B, ~Γ) and ~B = ( ~B, ~Γ) be the directed

forward and backward bucket graphs, respectively.

For each forward/backward bucket b ∈ B, we define the set Φb of “adjacent” component-wise
smaller buckets:

Φb =
{
b′ : ṽb′ = ṽb, ∃r′ ∈ R, κb

′

r′ = κbr′ − 1, κb
′

r = κbr, ∀r ∈ R \ {r′}
}
.

As |R| = 2, we have |Φb| ≤ 2. By definition, we have b′ ≺ b for all b′ ∈ Φb. Let ~ΓΦ ( ~ΓΦ)
be the set of directed forward (backward) bucket arcs (b′, b) such that b ∈ B, b′ ∈ Φb. Let
~BΦ = ( ~B, φ(~Γ)∪ ~ΓΦ) be the extended forward bucket graph, where φ(~Γ) = {(b~γ , bhead

~γ ) : ~γ ∈ ~Γ}.
Analogously, ~BΦ = ( ~B, φ( ~Γ) ∪ ~ΓΦ) is the extended backward bucket graph. Those extended
graphs are not used in the core of the labeling algorithm, they are needed only in the initialization
to compute their sets of strongly connected components and appropriate topological orders for
them. Let Cb be the strongly connected component of a forward/backward bucket b.

Forward/backward label L, obtained by extension from label L′ along a bucket arc γ with
bγ = bL

′
, is not necessary contained in bucket bhead

γ . For forward labels, this happens when

qL
′

r + daγ ,r ≥ l̃bhead
γ ,r + d̃r, for some r ∈ R. The backward case is analogous. So, we may have

bhead
γ ≺ bL. Even in this case, we still consider that such an extension has been made along

γ. The bucket arcs in ΓΦ ensure that there is always a path from bL
′

to bL in the extended
forward bucket graph. Therefore, CbL cannot be before CbL′ in the topological order of strongly
connected components in ΓΦ.

source

v = 1

v = 2

v = 3

v = 4

sink

Figure 2: An example of Forward Graph

Figure 3 shows a small extended bucket graph that corresponds to the forward graph depicted
in Figure 2. In this figure, each rectangle represents the space of possible resource consumption
vectors for partial paths finishing in a corresponding vertex. The consumptions of the first
and second resource determine the shifts in the horizontal and vertical directions, respectively.
Thus, each square is associated with two ranges for the consumptions of both resources whose
dimensions are determined by the bucket steps. Each node of the extended bucket graph is
depicted inside the corresponding square. The bucket arcs that belong to ~Γ and ~ΓΦ correspond
to arrows between rectangles and between squares of the same rectangle, respectively. Finally,
an example of a strongly connected component of this extended bucket graph is bold printed in
the figure.
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v = 1

v = 2

v = 3

v = 4

source sink

l2,1 u2,1r = 1

l2,2

u2,2

r = 2

d̃1

d̃2

bucket
steps

Figure 3: An example of Extended Bucket Graph for the forward graph of Figure 2

3.4 Mono-directional labeling algorithm

In this subsection, we describe the mono-directional labeling algorithm, which can be run in either
forward or backward sense to solve the pricing problem. An auxiliary function Extend(L′, γ, L)
presented below extends a label L′ to label L along a bucket arc γ ∈ Γ. It returns false if this
extension is not possible. One can easily see that the steps performed by this function initialize
the reduced cost and the final vertex of the new label, calculate its resource consumptions and
check their bounds, obtain its ng-route information and check its feasibility, and finally update
its reduced cost considering the active R1Cs.

The labeling algorithm is presented in Algorithm 1. In this algorithm, we maintain values c̄bestb

equal to the smallest reduced cost of labels L such that bL � b. It also uses the auxiliary function
DominatedInCompWiseSmallerBuckets(L, b,Bvisited) presented below, which checks whether a
label L is dominated by a label contained in a bucket b′ such that b′ � b, b′ 6∈ Bvisited. To avoid
checking all component-wise smaller buckets, it assumes that the values of c̄bestb are updated
(for all buckets preceding bL in the topological order) and uses it to prune the search. If the
search reaches a bucket b′ such that c̄bestb′ > c̄L, one can conclude that no label in b′ or in the
component-wise smaller buckets can dominate L, and this search branch can be pruned. This
function also receives the set Bvisited of visited buckets needed to avoid processing the same
bucket twice. For our case with one or two resources it is easy to do a specific implementation
to verify whether a bucket belongs to set Bvisited in a constant time. The same implementation
can be used in Functions ConcatenateLabel and UpdateBucketsSet described later.

Two buckets b and b′ such that b′ ∈ Φb may belong to the same strongly connected component.
This may happen, for example, when b and b′ are forward buckets and there is another forward
bucket b′′ with ṽb′′ 6= ṽb′ = ṽb such that l̃b′,r < l̃b′′,r < l̃b,r, for some r ∈ R. In that case, the
extended bucket graph may contain the directed cycle ((b′, b), (b, b′′), (b′′, b′)). Therefore values
c̄bestb for buckets in the same strongly connected component are calculated in a lexicographic
order of κb to ensure that c̄bestb′ is set before c̄bestb .
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Function Extend(L′, γ, L)

c̄L ← c̄L
′

+ c̄aγ , vL ← the head of aγ

qL ← qL
′

if L is a forward label then
qL ← max{qL + daγ , lvL}
if qL > uvL then return false

if L is a backward label then
qL ← min{qL − daγ , uvL}
if qL < lvL then return false

if vL ∈ FL
′
then return false

FL ← (FL
′
∩NvL) ∪ {vL}

for ` ∈ L do

if aγ ∈ AM ` then SL` ← SL
′

`

else SL` ← 0

if vL ∈ C` then
SL` ← SL` + p`vL
if SL` ≥ 1 then
SL` ← SL` − 1, c̄L ← c̄L − σ`

return true

3.5 Bi-directional labeling algorithm

We call a pair of forward and backward labels ~L and ~L ω-compatible if

v
~L 6= v

~L, q
~L + d(v~L,v ~L) ≤ q

~L, F ~L ∩ F ~L = ∅, and c̄(P
~L||P ~L) < ω,

where P
~L||P ~L is the path obtained by concatenation of partial paths P

~L and P
~L along arc

(v
~L, v

~L) ∈ ~A, and its total reduced cost c̄(P
~L||P ~L) is calculated as

c̄(P
~L||P ~L) = c̄

~L + c̄(v~L,v ~L) + c̄
~L −

∑
`∈L:

S~L` +S ~L
` ≥1

σ`.

For a pair of forward and backward labels ~L and ~L such that v
~L 6= v

~L, c̄
~L + c̄(v~L,v ~L) + c̄

~L is

a lower bound on value c̄(P
~L||P ~L).

For the bi-directional labeling algorithm, we need to choose a resource r∗ ∈ R and a threshold
value q∗ ∈ [l0,r∗ , un+1,r∗ ] for it. The bi-directional labeling algorithm is presented in Algorithm 2.

It uses the auxiliary procedure ConcatenateLabel(~L, ~b, P best, ~Bvisited), presented below, which

tries to find a backward label ~L such that ~b
~L � ~b, ~b

~L 6∈ ~Bvisited, and such that pair (~L, ~L) is

c̄P
best

-compatible, i.e. concatenation of partial paths P
~L and P

~L along arc (v
~L, v

~L) improves on
P best. We use values c̄best as bounds to prune the search. From the reasoning of the previous

paragraph, if c̄
~L + c̄(v~L,ṽ ~b

) + c̄best~b ≥ c̄P
best

then such a label does not exist. All buckets that

may contain extensions for ~L that improve on P best are tried. In the literature, values c̄best~b are

referred as completion bounds (Christofides, Mingozzi, and Toth 1981).

3.6 Symmetric case

In this section, we suppose that 1) all time windows are the same; and 2) R1Cs arc memories
are symmetric: (v, v′) ∈ AM ` if and only if (v′, v) ∈ AM ` for all ` ∈ L. We now show that in
this case the forward/backward route symmetry can be exploited.
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Algorithm 1: Mono-directional labeling algorithm

if forward algorithm then Linit ← (0, 0, l0, ∅,0)

if backward algorithm then Linit ← (0, n+ 1, un+1, ∅,0)

insert initial label Linit to its bucket bL
init

and mark Linit as non-extended

foreach strongly connected component C in BΦ in a topological order do
repeat

foreach bucket b ∈ C do

foreach non-extended label L′ : bL
′

= b do

if not DominatedInCompWiseSmallerBuckets(L′, bL
′
, ∅) then

foreach bucket arc γ ∈ Γ such that bγ = bL
′
do

if Extend(L′, γ, L) then
if L is not dominated by a label in bL then

mark L as non-extended and insert in bL

remove labels dominated by L from bL

mark L′ as extended

until all labels in all buckets b ∈ C are extended

foreach bucket b ∈ C in a lexicographic order of κb do

c̄bestb ← min
{

minL: bL=b{c̄L},minb′∈Φb{c̄
best
b′ }

}
return P best = argminPL:vL=v′ c̄

L, where v′ is the sink in G

Function DominatedInCompWiseSmallerBuckets(L, b,Bvisited)

Bvisited ← Bvisited ∪ {b}
if Cb precedes CbL in the topological order used and c̄L < c̄bestb then return false

if b 6= bL and L is dominated by a label in bucket b then return true

for b′ ∈ Φb \Bvisited do

if DominatedInCompWiseSmallerBuckets(L, b′, Bvisited) then return true

return false

First, we redefine the resource consumption of arcs. We make the capacity resource consump-
tion of each arc (v, v′) ∈ ~A equal to 1

2wv + 1
2wv′ , and we make the time resource consumption of

this arc equal to 1
2sv + t(v,v′) + 1

2sv′ . Thus, the cost and the resource consumption of two arcs
(v, v′) and (v′, v), v, v′ ∈ V , become the same. Moreover, as for any route P coefficients xP(v,v′)
and xP(v′,v) are the same in constraints (2) and cuts (5), reduced costs of these arcs are the same:

c̄(v,v′) = c̄(v′,v), ∀v, v′ ∈ V. (13)

Consider now a backward label ~L and the corresponding partial path ~P = ~P
~L. Let ~P be

the partial forward path such that v
~P
j = v

~P
j , 1 ≤ j ≤ | ~P |, and ~L be the forward label such that

~P
~L = ~P . From (13) and from the fact that the R1Cs arc memories are symmetric, we have

c̄
~L = c̄

~L, F ~L = F ~L, and S~L = S ~L. As time windows are the same, resource bounds are also the

same: [lv, uv] = [l, u] for all v ∈ V . Then, q
~L− l = u− q ~L. Moreover, for every backward bucket

~b, there exists a symmetric forward bucket ~b such that l̃~b − l = u− ũ ~b and κ
~b = κ

~b.

In this case (which we call symmetric), in the bi-directional labeling algorithm, we set q∗ =
1
2 l0,r∗+ 1

2un+1,r∗ , skip the backward labeling step, and use symmetric forward buckets and labels
instead of backward buckets and labels in the concatenation step.
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Algorithm 2: Bi-directional labeling algorithm

run forward labeling algorithm where only labels ~L, q
~L
r∗ ≤ q∗ are kept

run backward labeling algorithm where only labels ~L, q
~L

r∗ > q∗, are kept

let P best be the best complete path obtained in the two algorithms above

foreach forward label ~L do

foreach bucket arc ~γ ∈ ~Γ such that ~b~γ = ~b
~L do

if Extend(~L,~γ, ~L′) and q
~L′
r∗ > q∗ then

let ~b ∈ ~B be the bucket such that ũ ~b ≥ q
~L′ > ũ ~b − d̃

ConcatenateLabel(~L, ~b, P best, ∅)

return P best

Procedure ConcatenateLabel(~L, ~b, P best, ~Bvisited)

~Bvisited ← ~Bvisited ∪ { ~b}
if c̄~L + c̄

(v~L,ṽ ~b
)

+ c̄best~b ≥ c̄P
best

then return

foreach label ~L : b ~L = ~b do

if pair (~L, ~L) is c̄P
best

-compatible then

P best ←
(
P~L, ~a = (v

~L, v
~L), P ~L

)
foreach ~b′ ∈ Φ ~b \ ~Bvisited do

ConcatenateLabel(~L, ~b′, P best, ~Bvisited)

return

4 Bucket arc elimination

Arc elimination procedure by Irnich et al. (2010) can be employed to remove arcs from the
original graph using the argument that any path using one of these arcs is not contributing to
an optimal solution. In this section, we generalize this procedure to eliminate bucket arcs from
the bucket graph using the same argument. However, this generalization is not straightforward
because of the dominance between labels. Even labels from the same bucket may use different
bucket arcs when extended through the same path in the original graph. Hence, the same path
extension may be feasible for the dominated label and not feasible for the dominating label due
to removal of some bucket arcs. We introduce below the new concept of jump bucket arcs to
bring back compatibility between bucket arc elimination and dominance.

We call a path P ∈ Ωm, m ∈ M , improving if λP participates in an integer solution of the
original problem (SPF) with a cost smaller than the cost of the best solution found so far. We
denote the latter cost as UB, as it is an upper bound on the optimal solution value of (SPF).
Let ΩIm be the set of improving paths in Ωm. We can exclude paths proved to be non-improving
from the solution space of the pricing problem. Note that if there are no improving paths (i.e.,
the best known solution is optimal) any path can be correctly excluded, so we only need to be
careful in the case where some ΩIm sets are not empty. So, we assume that case in the remainder
of the section.

Suppose that some variables λP , P 6∈ ΩIm, are fixed to zero in (SPF). Let (π̄, µ̄, ν̄, σ̄) be the
dual solution of the current restricted linear relaxation of (SPF), corresponding to constraints
(2), (3) and to constraints of type (5) and (7). Let z(RSPF)(π̄, µ̄, ν̄, σ̄) be the value of this solution.
The value

LBLagr = z(RSPF)(π̄, µ̄, ν̄, σ̄) +
∑
m∈M

min

{
0, min
P∈ΩIm

c̄P (π̄, µ̄, ν̄, σ̄)

}
· Um

is a Lagrangian lower bound on the optimal solution value of (SPF ). It is obtained by dualizing
constraints (2), (5) and (7) with multipliers π̄, ν̄, and σ̄. For any vector (z1, z2, . . . , z|M |) such
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that
zm ≤ min

P∈ΩIm

c̄P (π̄, µ̄, ν̄, σ̄), m ∈M, (14)

we have
LB = z(RSPF)(π̄, µ̄, ν̄, σ̄) +

∑
m∈M

min {0, zm} · Um ≤ LBLagr. (15)

Thus, LB is a valid lower bound on the optimum solution of (SPF). If an algorithm for solving
pricing sub-problem (PSPm) returns value zm satisfying condition (14), we say that this algo-
rithm satisfies (14). Such an algorithm can be used to calculate a valid lower bound for (SPF)
even if it does not necessarily solve (PSPm) to optimality. In the remainder of this section, we
again drop index m and consider dual solution (π̄, µ̄, ν̄, σ̄) fixed for more clarity.

We say that a feasible forward/backward path P ∈ P passes through bucket arc γ ∈ Γ if
there is an index j, 1 ≤ j ≤ |P |, such that aPj = aγ , and l̃bγ ≤ qPj−1 < l̃bγ + d̃ for a forward path

(ũbγ ≥ qPj−1 > ũbγ − d̃ for a backward path). We denote such a bucket arc as γPj .

We call a forward/backward γ ∈ Γ an improving bucket arc if there exists an improving
path of the same sense passing through it. The bucket arc elimination procedure described
in Section 4.2 reduces the current set Γ by removing some non-improving bucket arcs from it.
However, the labeling algorithm proposed in Section 3, in which labels are only extended over a
reduced set Γ of bucket arcs does not necessarily satisfy condition (14).

Figure 4 illustrates a case where the value z of the best solution found by the labeling
algorithm does not satisfy (14). In this figure, the value of a single resource consumption r = 1
for each partial path is represented by the level of its end node in the vertical axis. P and P ′

are improving and non-improving forward paths, respectively. Thus, for each traversed arc, the
corresponding bucket arc that is passed through depends solely on the total resource consumed
up to this point. Paths P and P ′ traverse different arcs until vertex vPi−1 = vP

′

i′−1 and finish with
the same subpaths from this point until the sink vertex (but with such subpaths passing through
different bucket arcs).

Assume that the reduced bucket graph does not contain the non-improving bucket arc γ
corresponding to (vP

′

i′−1, v
P ′

i′ ). Suppose also that P ′ has a reduced cost smaller than that of P ,

allowing the label L associated to P ′ until vertex vP
′

i′−1 to dominate the label L̄ associated to
P until the same vertex. The reasoning for such domination is that one can always replace the
partial path of L̄ by that of L, causing that P is replaced by P ′ which has a smaller reduced cost.
However, absence of bucket arc γ in the reduced bucket graph prevents P ′ from being found by
the labeling algorithm. Thus, neither P nor P ′ are obtained by the labeling algorithm, and the
value z found by the algorithm may violate condition (14).

qP1

s
l̃0,1

l̃1,1

l̃2,1

l̃3,1

l̃4,1

vP
′

i′−1

vPi−1

vP
′

i′

vPi

vP
′

i′+1

vPi+1

vP
′
|P ′|

vP|P |

L

L̄

d
o
m

in
a
t
io

n

P ′

P

6∈ Γ

ju
m

p

b
u
c
k
e
t
a
r
c

L′′

L′

P ′′

P ′

Figure 4: Illustration of the proof of Proposition 1

The remainder of this section is divided in two parts. In Section 4.1, we show how to modify
our labeling algorithm so that it satisfies condition (14) when executed over a superset of all
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improving bucket arcs. In Section 4.2, we present a procedure for finding non-improving bucket
arcs, and show the correcteness of its combination with the modified labeling algorithm.

4.1 Modified labeling algorithm

To guarantee the fulfillment of condition (14), labels in our forward (backward) labeling algorithm

should not only be extended along the current reduced set ~Γ ( ~Γ) of bucket arcs, but also along

the set ~Ψ ( ~Ψ) of jump bucket arcs obtained as shown below. Jump bucket arcs impose an
additional resource consumption when traversed. Each forward/backward jump bucket arc ψ ∈
Ψ is characterized by a triple (bbase

ψ , bjump
ψ , aψ), where bbase

ψ is its base bucket, bjump
ψ is its jump

bucket such that ṽbbase
ψ

= ṽbjump
ψ

= ṽ, bbase
ψ ≺ bjump

ψ , and aψ = (ṽ, v′) ∈ A is its arc of the

corresponding sense. In the labeling algorithm, each label L should be extended along a jump
bucket arc ψ ∈ Ψ if bL = bbase

ψ . When extending label L′ along ψ ∈ Ψ, we first do the “jump”, i.e.

in the second line of function Extend(L′,ψ,L), instead of qL ← qL
′
, we do qL ← max

{
qL
′
, l̃bjump

ψ

}
(qL ← min

{
qL
′
, ũbjump

ψ

}
for a backward label). Function ObtainJumpBucketArcs(Γ) presented

below obtains the current set Ψ of jump bucket arcs given the current reduced set Γ of bucket
arcs. This function can be used for both forward and backward sense.

Function ObtainJumpBucketArcs(Γ)

Ψ← ∅
foreach bucket b ∈ B do

foreach a = (v, v′) ∈ A such that v = ṽb do
if 6 ∃γ ∈ Γ such that bγ = b, aγ = a then

B̄ ← {b′ � b : ∃γ ∈ Γ : bγ = b′, aγ = a}
remove from B̄ all buckets which are not component-wise minimal
foreach b′ ∈ B̄ do

Ψ← Ψ ∪ {ψ}, where bbase
ψ = b, bjump

ψ = b′, aψ = a

return Ψ

We denote as LPj the label corresponding to the partial path consisting of the first j arcs of

path P . If P passes through γ, then there is an index j, 1 ≤ j ≤ |P |, such that label LPj is

contained in bucket bγ . Let ~L(Γ,Ψ) and ~L(Γ,Ψ) be the sets of non-dominated labels generated
by the modified forward and backward mono-directional labeling algorithms, in which each label
L is extended along all bucket arcs γ ∈ Γ such that bγ = bL and along all jump bucket arcs
ψ ∈ Ψ such that bbase

ψ = bL.

The next proposition is auxiliary but very important. It shows that for every improving path
P , the modified mono-directional labeling algorithm either generates P or a path dominating
P . Moreover, this is true for any prefix of P . This proposition applies for both forward and
backward sense. Its proof is illustrated in Figure 4.

Proposition 1. Let set Γ be a superset of all improving bucket arcs, and Ψ be the set of jump
bucket arcs computed using procedure ObtainJumpBucketArcs(Γ). Then, for each improving
path P ∈ P and for each index j, 0 ≤ j ≤ |P |, either LPj ∈ L or there exists a label L ∈ L

dominating LPj , where L = L(Γ,Ψ).

Proof. Consider an improving path P ∈ P. We prove this proposition by induction on the value
of the index j, 0 ≤ j ≤ |P |. For j = 0 the proposition is true since there is a single label Linit

in the bucket bL
init

that corresponds to vertex vP0 . Now, assume that the proposition is true for
j = i−1, 1 ≤ i ≤ |P |. We must prove that it is also valid for j = i. By the inductive hypothesis,
either LPi−1 ∈ L or there exists a label L ∈ L dominating LPi−1. Let us use the notation L

defined for the latter case to also denote LPi−1 in the former case. In all cases, bL � bL
P
i−1 . Let
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γ′ and γ be the bucket arcs such that bγ′ = bL, bγ = bL
P
i−1 , and aγ′ = aγ = aPi . If γ′ ∈ Γ,

the label L′ obtained by extending L through aγ′ dominates LPi . In this case, either L′ ∈ L or
L′ is dominated by some label from L, which should also dominate LPi . In both situations, the
proof is finished. Otherwise, since γ′ 6∈ Γ, γ is an improving arc, and bL ≺ bγ , there exists a

jump bucket arc ψ ∈ Ψ such that aψ = aPi , bbase
ψ = bL, and bjump

ψ � bL
P
i . Existence of such a

jump bucket arcs is guaranteed by the definition of procedure ObtainJumpBucketArcs(Γ). Thus,
extending L through aψ leads to a label L′′ that dominates LPi . As before, either L′′ ∈ L or L′′

is dominated by some label from L, which dominates LPi , finishing the proof.

We have just shown essentially that the modified mono-directional labeling algorithm satisfies
condition (14). In Proposition 3, we show that the same condition is satisfied by the modified bi-
directional labeling algorithm. First observe that any complete path can be divided into forward
and backward parts by removing any arc it passes through. Moreover, the total reduced cost of
the concatenation of these parts is equal to the reduced cost of the complete path.

Observation 1. For a pair of corresponding forward/backward path P and the opposite sense

path ~P~P and each value j, 0 ≤ j < |P |, pair of labels LPj and ~L~L
~P~P
|P |−j−1 is ω-compatible for all

ω > c̄P .

Secondly, we will need the following auxiliary proposition.

Proposition 2. Suppose that i) forward and backward labels ~L′ and ~L′ are ω-compatible, ii)

either ~L = ~L′ or label ~L dominates ~L′, iii) either ~L = ~L′ or label ~L dominates ~L′. Then labels ~L

and ~L are also ω-compatible.

Proof. Let a = (v
~L, v

~L) = (v
~L′ , v

~L′). From the definition of dominance in Section 3.2 and the

definition of ω-compatible labels in Section 3.5, we have v
~L = v

~L′ 6= v
~L′ = v

~L, q
~L + da ≤

q
~L′ + da ≤ q

~L′ ≤ q
~L. We also have F ~L ⊆ F ~L′ , F ~L ⊆ F ~L′ , and F ~L′ ∩ F ~L′ = ∅. It follows then

that F ~L ∩ F ~L = ∅. From (12) and the definition of c̄(P
~L||P ~L) it follows

c̄(P
~L||P ~L) = c̄

~L + c̄a + c̄
~L −

∑
`∈L:

S~L` +S ~L
` ≥1

σ` ≤ c̄
~L′ +

∑
`∈L:

S~L` >S
~L′
`

σ`

︸ ︷︷ ︸
≥c̄~L as ~L dominates ~L′

+c̄a + c̄
~L′ +

∑
`∈L:

S ~L
` >S

~L′
`

σ`

︸ ︷︷ ︸
≥c̄ ~L as ~L dominates ~L′

−
∑
`∈L:

S~L` +S ~L
` ≥1

σ`

= c̄
~L′ + c̄a + c̄

~L′ −
∑
`∈L:

S~L′` +S ~L′
` ≥1

σ`

︸ ︷︷ ︸
=c̄(P ~L′ ||P ~L′ )<ω

+
∑
`∈L:

S~L′` +S ~L′
` ≥1,

S~L` +S ~L
` <1

σ`

︸ ︷︷ ︸
≤0 as σ≤0

+
∑
`∈L:

S~L` >S
~L′
`

σ` +
∑
`∈L:

S ~L
` >S

~L′
`

σ` −
∑
`∈L:

S~L′` +S ~L′
` <1,

S~L` +S ~L
` ≥1

σ`

︸ ︷︷ ︸
≤0 as σ≤0

It follows then that c̄(P
~L||P ~L) < ω. Hence, all conditions for ~L and ~L to be ω-compatible

are met.

We define as z(~Γ, ~Γ, ~Ψ, ~Ψ) the reduced cost of the best path obtained by the modified bi-

directional labeling algorithm in which forward labels are extended along bucket arcs in ~Γ and
~Ψ, and backward labels are extended along bucket arcs in ~Γ and ~Ψ.

Proposition 3. Let sets ~Γ and ~Γ be supersets of all improving forward and backward bucket
arcs, and ~Ψ and ~Ψ be the sets of forward and backward jump bucket arcs computed using

procedure ObtainJumpBucketArcs(Γ). Then z ≤ c
~P for any improving path ~P ∈ ~P, where

z = z(~Γ, ~Γ, ~Ψ, ~Ψ).

Proof. Consider an arbitrary improving path ~P ∈ ~P. Let j, 0 ≤ j ≤ |~P | be the largest index

such that q
~L
~P
j

r∗ ≤ q∗. We divide the proof into two cases: j = |~P | and j < |~P |.
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For j = |~P |, let ~L = ~L
~P
j . We have v

~L = n + 1. As ~P is improving, by Proposition 1, either

~L ∈ ~L(~Γ, ~Ψ) or there is a label ~L′ ∈ ~L(~Γ, ~Ψ) dominating ~L. As v
~L′ = n + 1, path ~P

~L′ ∈ ~P and

the total reduced cost of ~P
~L′ is ≤ c̄~P , thus z ≤ c̄~P .

Suppose now that j < |~P |. Let ~P be the corresponding backward path for ~P . By Observa-

tion 1, the pair of labels ~L′ = ~L
~P
j and ~L′ = ~L

~P
| ~P |−j−1

is ω-compatible for all ω > c̄
~P . As both ~P

and ~P are improving, by Proposition 1 either ~L′ ∈ ~L(~Γ, ~Ψ) or there exists a label ~L ∈ ~L(~Γ, ~Ψ)

dominating ~L′. Also, by Proposition 1 either ~L′ ∈ ~L( ~Γ, ~Ψ) or there exists a label ~L ∈ ~L( ~Γ, ~Ψ)

dominating ~L′. Thus, by Proposition 2 there exists a pair of ω-compatible labels generated by

the modified labeling algorithm for all ω > c̄
~P . Then c̄(~P

~L|| ~P
~L) ≤ c̄~P , thus z ≤ c̄~P .

We have just shown that our labelling algorithm can be modified in order to satisfy condi-
tion (14) by adding jump bucket arcs. Now it can be executed over any superset Γ of improving
bucket arcs. In the next section, we show how we can find non-improving bucket arcs, which
then can be safely removed from the current set Γ.

4.2 A procedure for finding non-improving bucket arcs

In this paragraph, we temporarily consider again all subproblems (PSPm), m ∈ M . Let
(π̄, µ̄, ν̄, σ̄) be the current dual solution of the restricted linear relaxation of (SPF) together
with constraints (5) and (7). Suppose that the current sets Γm, m ∈ M , include all improving
buckets arcs, and the modified labelling algorithms have returned values zm for all m ∈ M .
By Proposition 3, the modified labeling algorithm satisfies condition (14). Thus the value LB
given by (15) is a valid lower bound for (SPF). A necessary condition for a path P ∈ Ωm to be
improving is LB −min {0, zm}+ c̄P (π̄, µ̄, ν̄, σ̄) < UB. We denote

θm = UB − LB + min {0, zm} . (16)

Then, a sufficient condition for a forward/backward path P ∈ Ωm to be non-improving is
c̄P (π̄, µ̄, ν̄, σ̄) ≥ θm. The next proposition gives a necessary condition for a bucket arc to be
improving. The proposition applies for both forward and backward sense. In the following, we
drop again index m.

For a (jump) bucket arc γ ∈ Γ (ψ ∈ Ψ), we denote as ~b~barr
γ ( ~b~barr

ψ ) its arrival bucket of

the opposite sense. For a forward bucket arc ~γ ∈ ~Γ, its arrival bucket ~barr
~γ is the backward

bucket ~b such that ũ ~b ≥ max
{
l̃~b~γ + d~a~γ , lv′

}
> ũ ~b − d̃, where v′ is the head node of ~a~γ . For

a backward bucket arc ~γ ∈ ~Γ, its arrival bucket ~barr
~γ is the forward bucket ~b such that l̃~b ≤

min
{
ũ ~b ~γ
− d ~a ~γ

, uv′
}
< l̃~b + d̃, where v′ is the head node of ~a ~γ . For a jump bucket arc ψ ∈ Ψ,

the definition of its forward/backward arrival buckets is identical, just replacing bγ by bjump
ψ .

Proposition 4. Let set Γ be a superset of all improving bucket arcs, Ψ be the set of jump bucket
arcs computed using procedure ObtainJumpBucketArcs(Γ), and value θ be calculated according
to (16). If γ ∈ Γ is an improving bucket arc then there exists a pair of θ-compatible labels L ∈ L

and ~L~L ∈ ~L~L such that bL � bγ and ~b~b
~L~L � ~b~barr

γ , where L = L(Γ,Ψ), and ~L~L = ~L~L(Γ,Ψ).

Proof. If γ is an improving bucket arc, then there exists an improving path P and an index j,

0 ≤ j < |P |, such that bγ = bL
P
j and aγ = aPj+1. We have c̄P < θ, as it is a necessary condition

for P to be improving. Then by Observation 1, labels LPj and ~L~L
~P~P
|P |−j−1 are θ-compatible. If

label LPj ∈ L, let L = LPj , otherwise by Proposition 1 there exists a label L ∈ L dominating LPj

such that bL � bL
P
j = bγ . If label ~L~L

~P~P
|P |−j−1 ∈ ~L~L, let ~L~L = ~L~L

~P~P
|P |−j−1, otherwise by Proposition 1

there exists a label ~L~L ∈ ~L~L dominating ~L~L
~P~P
|P |−j−1 such that ~b~b

~L~L � ~b~b
~L~L
~P~P
|P |−j−1 � ~b~barr

γ . Finally, by

Proposition 2, L and ~L~L are θ-compatible.
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Proposition 4 is the basis for the procedure to find non-improving bucket arcs. To prove
that a bucket arc γ is non-improving, we need to verify that there does not exist a pair of θ-
compatible labels L ∈ L and ~L~L ∈ ~L~L (one at the tail and one at the head of aγ) such that bL � bγ
and ~b~b

~L~L � ~b~barr
γ . A direct approach is to exhaustively enumerate all such pairs of labels for every

bucket arc and verify whether at least one of them is θ-compatible. This approach is slow as the
same pair of labels may be verified for θ-compatibility several times.

To guarantee that no pair of labels is verified for θ-compatibility more than once, we compute
sets ~B~Ba,b of buckets of opposite sense with respect to bucket b at the head of arc a. ~B~Ba,b contains

every bucket ~b~b containing a label ~L~L ∈ ~L~L which is θ-compatible with a label L ∈ L such that
bL � b. Thus, a bucket arc γ is non-improving if ~B~Baγ ,bγ does not contain any bucket ~b~b � ~b~barr

γ .

An advantage of using sets ~B~Ba,b is that they can be constructed incrementally using adjacent

buckets: every set ~B~Ba,b is initialized as the union of sets ~B~Ba,b′ , b
′ ∈ Φb, and then augmented using

the recursive procedure UpdateBucketsSet which tries to find opposite sense buckets containing
a label which is θ-compatible with a label in b.

We now present formally the auxiliary procedure UpdateBucketsSet(θ, L, ~B~B, ~b~b, ~L~L, ~B~Bvisited),

which adds to set ~B~B all opposite sense buckets ~b~b′, ~b~b′ � ~b~b, ~b~b′ 6∈ ~B~Bvisited, containing at least one
label ~L~L ∈ ~L~L such that pair (L, ~L~L) of labels is θ-compatible.

Procedure UpdateBucketsSet(θ, L, ~B~B, ~b~b, ~L~L, ~B~Bvisited)

~B~Bvisited ← ~B~Bvisited ∪ { ~b~b}
if c̄L + c̄vL,ṽ ~b~b

+ c̄best~b~b ≥ θ then return

if ~b~b 6∈ ~B~B then

foreach label ~L~L ∈ ~L~L, ~b~b
~L~L = ~b~b do

if pair (L, ~L~L) is θ-compatible then
~B~B ← ~B~B ∪ { ~b~b}

foreach ~b~b′ ∈ Φ ~b~b \ ~B~Bvisited do

UpdateBucketsSet(θ, L, ~B~B, ~b~b′, ~L~L, ~B~Bvisited)

Finally, we present formally the main procedure BucketArcElimination(θ, Γ, Ψ, L, ~L~L) which
can be used for both forward and backward sense. The procedure removes some non-improving
bucket arcs from Γ, given the set L of non-dominated labels of the same sense as Γ and the
set ~L~L of non-dominated labels of the opposite sense. In this procedure, in order to do the
correct initialization of sets ~B~Ba,b, buckets b are considered in a lexicographic order of κb. When

considering bucket b, procedure UpdateBucketsSet is called to augment set ~B~Ba,b only if there
exists γ ∈ Γ such that b = bγ or there exists ψ ∈ Ψ such that b = bbase

ψ . If such a (jump) bucket

arc does not exist, there is no bucket arc γ′ ∈ Γ such that aγ′ = a and bγ′ � b, and thus set ~B~Ba,b
is not used in the reminder of the algorithm.

The next proposition proves formally that the combination of the modified bi-directional
labeling algorithm and the bucket arc elimination procedure is correct, i.e. it allows us to
compute a valid lower bound for the original problem.

Proposition 5. Let z be the reduced cost of the best path obtained by the modified bi-directional
labeling algorithm after performing j calls to procedure BucketArcElimination, for some integer

j ≥ 0. Then z ≤ c~P for any improving path ~P ∈ ~P.

Proof. It is enough to prove that the current forward (backward) bucket graph obtained after
j calls of Procedure BucketArcElimination is a superset of all improving forward (backward)
bucket arcs, since this proposition is a direct consequence of this statement and Proposition
3. We prove it by induction on the value of j. For j = 0, this is true because the initial
forward and backward bucket graphs contain all possible forward and backward bucket arcs.
Now, suppose by inductive hypothesis that this is valid for j = i, i.e. all improving forward
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Procedure BucketArcElimination(θ, Γ, Ψ, L, ~L~L)

foreach bucket b ∈ B in a lexicographic order of κb do
if Φb 6= ∅ then

foreach arc a = (ṽb, v
′) ∈ A do ~B~Ba,b ← ∪b′∈Φb

~B~Ba,b′

else

foreach arc a = (ṽb, v
′) ∈ A do ~B~Ba,b ← ∅

foreach jump bucket arc ψ ∈ Ψ such that bbase
ψ = b do

foreach L ∈ L such that bL = b do

UpdateBucketsSet(θ, L, ~B~Baψ,b,
~b~barr
ψ , ~L~L, ∅)

foreach bucket arc γ ∈ Γ such that bγ = b do
foreach L ∈ L such that bL = b do

UpdateBucketsSet(θ, L, ~B~Baγ ,b, ~b~barr
γ , ~L~L, ∅)

if 6 ∃ ~b~b′ ∈ ~B~Baγ ,b : ~b~b′ � ~b~barr
γ then Γ← Γ \ {γ}

(backward) bucket arcs are present in the current forward (backward) bucket graph before the
(i + 1)th call to procedure BucketArcElimination. Then, by Proposition 4, for each improving
(forward or backward) bucket arc γ ∈ Γ, the bi-directional labeling algorithm generates a pair

of θ-compatible labels L and ~L~L such that bL � bγ and ~b~b
~L~L � ~b~barr

γ . Since this pair of labels
prevents γ to be removed in the next call to procedure BucketArcElimination, the statement
under consideration is also true for j = i+ 1, finishing the proof.

Let us now give some final remarks on our bucket arc elimination procedure.

• Our procedure can be viewed as a “resource-value dependent” arc elimination and thus
a generalization of the arc elimination procedure by Irnich et al. (2010). The latter can

readily be extended to remove extensions of forward labels ~L along an arc if q
~L exceeds

a certain threshold (and extensions of backward labels ~L if q
~L is lower than a threshold).

The opposite case (“less than” for the forward sense and “greater than” for the backward
sense) is more complicated as shown in our analysis and necessitates introduction of jump
bucket arcs. Our procedure is more generic than both, and may result in elimination of
disjoint “resource-value” intervals for an arc.

• Necessity of adding jump bucket arcs essentially comes from the fact that the dominating
label may be contained in a different bucket than the dominated one. Restricting dom-
inance checks only to ones within buckets does not make jump bucket arcs redundant.
This is because two labels in the same bucket with distinct resource consumption may be
extended (over the same arc) to labels in different buckets. Only restricting the dominance
checks to labels with the same resource consumption allows one to skip the generation of
jump bucket arcs.

• “Resource-value dependent” arc elimination has already been used in Pessoa et al. (2010)
and in Pecin et al. (2017b). However, it was done at the cost of resource discretization,
limited dominance checks, and dropping the exploitation of the route symmetry. Our
procedure allows one to overcome these drawbacks.

5 Branch-Cut-and-Price algorithm

We implemented a BCP algorithm for the HFVRPTW using the new bucket graph labeling al-
gorithm in its pricing and also the bucket arc elimination procedure. Other algorithmic elements
are similar to the ones presented in Pecin et al. (2014), Pecin et al. (2017b) and Pecin et al.
(2017a), except that a different dynamic ng-relaxation by Bulhoes, Sadykov, and Uchoa (2018)
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and automatic dual price smoothing stabilization by Pessoa et al. (2018) are used. However, to
make this paper self-contained, we give a succinct algorithm description in what follows.

For each node of the branch-and-bound tree, the lower bound on the optimal cost is com-
puted by solving the linear relaxation of SPF enhanced with RCCs (5) and limited-memory
R1Cs (7). Before each cut generation round, the current SPF relaxation is solved through col-
umn generation, using automatic (parameterless) dual pricing smoothing stabilization described
in Pessoa et al. (2018). To further speed up the convergence, three-stage column generation is
implemented. At the first stage, the “light” pricing heuristic is applied in which only one label
per bucket (with the smallest reduced cost) is kept. In the second stage, a more expensive pricing
heuristic is used in which states F and S are not taken into account in the dominance checks.
In the last stage, the exact labeling algorithm is used. We use parameters χheur and χexact for
the maximum number of columns generated at each iteration of column generation at heuristic
and exact stages. When the number of columns in the restricted master exceeds χmax, we clean
them up and leave only χperc% columns with the least reduced cost. Basic columns are never
removed, however, non-basic columns with zero reduced cost may be removed.

The threshold value q∗ for the bi-directional labeling algorithm is an important parameter
in the non-symmetric case. Pecin et al. (2017b) and Tilk et al. (2017) proposed to modify
the labeling algorithm to automatically adjust this value. Here we adopt a simpler but still
effective approach. Value q∗ is initialized as the average middle value for all resource consumption
intervals. After each exact pricing we compare the number of forward and backward non-
dominated labels. If one number exceeds another by more than 20%, we adjust value q∗ by
moving it by 5% towards the maximum or minimum possible value.

The limited-arc-memory R1Cs are separated by complete enumeration for |C| ≤ 3 and by a
local search heuristic for |C| ∈ {4, 5}. This heuristic is launched for each possible optimal vector
p. Given p, it tries to find a subset C of customers such that the corresponding cut is violated
with a full memory. If such C exists, an arc-memory AM of minimal size such that the cut
violation remains the same is identified. Then AM is completed with all arcs between vertices
in C. When there already exists a cut defined for the same subset C and vector p but for a
different arc-memory AM ′, this cut is simply enhanced by enlarging its memory to AM ′ ∪AM .
Otherwise, a new cut is added for C, p and AM . Also, memory sets are kept symmetric. This
means that if arc (v, v′) is added to AM , then (v′, v) must also be added. Parameter vector β
is used in which βk, k ∈ {0, 1, 3, 4, 5} is the maximum number of R1C with |C| = k separated
per round (β0 is the maximum number of RCCs generated per round). Other parameters are
δperc% and δnum which are used to stop the cut generation by tailing-off. If the number of times
the dual-primal gap is decreased by less than δperc% reaches δnum, then branching is performed.
At the root node, R1Cs are separated only if RCCs are exhausted or tail off. Before each cut
round, non-active cuts are removed from the restricted master.

In our algorithm, we use the dynamic variant of the ng-relaxation from Bulhoes, Sadykov,
and Uchoa (2018) which is inspired by Roberti and Mingozzi (2014). We start by generating
ng-neighborhood for each customer by including their ηinit closest customers (including itself).
After the convergence of column generation, we augment neighborhoods in order to forbid the
cycles in the columns forming the current fractional solution. For each such column we either
forbid all cycles of size at most η1 or, if there is no one, the minimum size cycle. Cycles in at most
η2 columns are forbidden in each round. After augmentation, the neighborhood of any customer
cannot exceed size ηmax. The same tailing-off parameters are applied here as for cutting planes.
We start the root node by augmenting the ng-neighborhoods. Then, after tailing-off, RCCs are
separated. After another tailing-off, R1Cs are separated.

Each additional active inequality (7) or ng-neighborhood increase make the pricing problem
harder, since they weaken the dominance conditions. Because of that, separation is stopped
when the average exact pricing time since the last round of cuts has exceeded a given threshold
τ . In some extreme cases, R1Cs may be even removed by the roll-back procedure activated if a
single pricing time exceeds τ̄ , as described in Pecin et al. (2017b).

The bucket arc elimination procedure is called after the initial convergence, and also each
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time the current primal-dual gap decreased by at least υ% since the last call to the bucket arc
elimination procedure. A bi-directional enumeration procedure is called after each reduced cost
fixing to try to generate all improving elementary routes, using the algorithm proposed in Pecin
et al. (2017b). The enumeration procedure is interrupted if the number of labels exceeds ωlabels

or if the number of enumerated routes exceeds ωroutes. After a successful enumeration for a
pricing subproblem corresponding to a vehicle type, this subproblem passes to the enumerated
state and the (SPF) relaxation is updated by excluding non-elementary columns coming from
this subproblem. The pricing subproblem in the enumerated state is solved by inspection. Elim-
ination procedure based on reduced costs is also performed for enumerated pricing subproblems,
but considering each route individually. If after some point, the number of enumerated routes
for each subproblem falls below ωMIP, the residual problem is handled by a standard MIP solver,
and the node is considered as processed.

Recall that to perform bucket arc elimination, the forward and backward passes of the labeling
algorithm must be performed completely. Thus the running time may increase substantially in
comparison with the “standard” exact labeling in which the labels beyond the bi-directional
threshold value q∗ are not stored. To accelerate the bucket arc elimination procedure, we use
what we call exact completion bounds technique: for every label L just created by extension
beyond q∗, we verify exhaustively whether there exists an opposite sense label ~L~L such that L
and ~L~L are θ-compatible. Here θ is as defined in Section 4. We keep label L only if such a
label ~L~L exists. A similar approach is used in the bi-directional enumeration procedure. Using
completion bounds for labels before the bi-directional threshold value q∗, as it is done in Pecin
et al. (2017b), was not computationally beneficial for our labeling algorithm.

If tailing-off condition is attained, or at least one non-enumerated pricing subproblem becomes
too time consuming to solve, branching must be performed. This is done by adding constraints
to the master LP that correspond to tightening lower and upper bounds on the value of the
following aggregated variables corresponding to different branching strategies:

• gm =
∑
P∈Ωm

∑
v′∈V ′

1
2

(
xP(0,v′) + xP(v′,n+1)

)
λP , m ∈M ;

• gmv =
∑
P∈Ωm

yPv λP , v ∈ V , m ∈M ;

• g{v,v′} =
∑
m∈M

∑
P∈Ωm

(xP(v,v′) + xP(v′,v))λP , v, v′ ∈ V , v 6= v′.

gm corresponds to the number of used vehicles of type m ∈ M ; gmv characterizes whether
customer v ∈ V is served by a vehicle of type m; g{v,v′} characterizes whether edge (v, v′)
is used in the solution. Given a fractional branching variable g with fractional value f , two
child nodes are created by adding the constraints g ≤ bfc and g ≥ dfe to the master LP. A
generic branching constraint

∑
m∈M

∑
P∈Ωm

∑
a∈A α

m
a x

P
a λP ≥ β added to the master LP with

associated dual variable ι can be considered by the pricing algorithm by subtracting ιαma from
the expression of c̄ma (π, ν) given by (8), for each m ∈ M and a ∈ A, thus, not making the
subproblem harder. Moreover, the symmetry is preserved, as for any route P , coefficients xP(v′,v)

and xP(v,v′) are the same in all branching constraints we use.

The selection of the branching variable at each node is done using a sophisticated hierarchical
evaluation strategy similar to the one proposed in Pecin et al. (2017b). The idea is to spend more
time evaluating branching variables in the lowest levels of the branch-and-bound tree where each
selection has a greater impact on the overall time, and spend less time as the level increases,
taking advantage of the history of previous evaluations. The following three evaluation phases
are used:

Phase 0: Half of the candidates are chosen from history using pseudo-costs (if history is not
empty). The remaining candidates are chosen in a balanced way between the three strate-
gies. Within the same strategy, the candidates are chosen based on the distance from its
fractional value to the closest integer and for branching on edges, distance to the closest
depot (the smaller the better) is also taken into account.
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Phase 1: Evaluate the selected candidates from phase 0 by solving the current restricted master
LP modified for each created child node, without generating columns. Select the variables
with the maximum value of ∆LB1×∆LB2, where ∆LBi denotes the increase in the current
lower bound obtained for the ith child node, for i = 1, 2 (Product Rule, Achterberg (2007)).

Phase 2: Evaluate the selected candidates from phase 1 by solving the relaxation associated
to each created child node, including heuristic column generation, but not cut generation.
The best candidate is also selected by the Product Rule.

The parameters ζ0 and ζ1 are used to specify the maximum number of candidates chosen in
phases 0 and 1.

6 Computational experiments

The BCP algorithm described in the previous section was coded in C++ and compiled with GCC
5.3.0. The BaPCod package by Vanderbeck, Sadykov, and Tahiri (2017) was used to handle the
BCP framework. IBM CPLEX Optimizer version 12.6.0 was used as the LP solver in column
generation and as the IP solver for the set partitioning problem with enumerated columns. The
experiments were run on a 2 Deca-core Ivy-Bridge Haswell Intel Xeon E5-2680 v3 server running
at 2.50 GHz. The 128 GB of available RAM was shared between eight copies of the algorithm
running in parallel on the server. Each instance is solved by one copy of the algorithm using a
single thread.

6.1 Instances

VRPTW instances For the vehicle routing problem with time windows, 14 most difficult
(according to Pecin et al. (2017a)) instances with 100 customers by Solomon (1987), as
well as 120 instances by Gehring and Homberger (2002) with 200 and 400 customers were
considered. Solomon instances used are C203, C204, RC204, RC207, RC208, R202, R203,
R204, R206, R207, R208, R209, R210, and R211. The instances are divided into classes of
clustered (C), random-clustered(RC), and random (R) location of customers on the plane.
Note that the capacity resource in Solomon instances, as well as Gehring and Homberger
instances of classes C2, RC2, and R2, is not tight. Therefore, the subproblem only considers
the time resource in those classes. The capacity resource is imposed through RCCs, which
are treated as “core” cuts, i.e. they are separated for every fractional but also for every
integer solution found during the search. The initial upper bounds were obtained by the
heuristic in Vidal et al. (2013). The same values were used in Pecin et al. (2017a).

DCVRP instances For the distance constrained vehicle routing problem, we used seven classic
instances from Christofides, Mingozzi, and Toth (1979) with 50–200 customers, named
CMT6, CMT7, CMT8, CMT9, CMT10, CMT13, and CMT14. In spite of the fact that
those instances are ubiquitous in the heuristic literature for the CVRP, no exact methods
could solve them. The best known solutions for these instances are taken from Nagata and
Bräysy (2009).

MDVRP instances For the multi-depot vehicle routing problem, we used 22 standard distance
constrained instances by Cordeau, Gendreau, and Laporte (1997) with 80–360 customers,
named p08–p11, p13, p14, p15, p17, p19, p20, p22, p23, and pr01–pr10. The best known
solutions are taken from Vidal et al. (2012).

SDVRP instances For the site-dependent vehicle routing problem, we used 10 standard dis-
tance constrained instances by Cordeau and Laporte (2001) with 48–288 customers, named
pr01–pr10. The best known solutions are taken from Cordeau and Maischberger (2012).
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Problem Size Resources τ τ̄ r∗

VRPTW 100-200 1 10 30 time
VRPTW 200 2 5 10 capacity
VRPTW 400 1 20 60 time
VRPTW 400 2 10 20 capacity
HFVRP any 1 5 10 capacity
DCVRP any 2 5 10 time
MDVRP, SDVRP any 2 10 20 time

Table 1: Parameterisation of pricing time thresholds

HFVRP instances For the heterogeneous fleet vehicle routing problem, we used 96 instances
by Duhamel, Lacomme, and Prodhon (2011) with 20–256 customers. Each instance rep-
resents one of 96 French departments. The best known solutions are taken from Penna
et al. (2019). Following the convention used in those papers, we impose that each customer
should be visited exactly once. As the triangle inequality is not always satisfied in those
instances, allowing multiple visits could possibly reduce costs.

6.2 Algorithm parameterization

The column management parameter values are χheur = 30, χexact = 150, χmax = 10′000, χperc =
66%. The cut generation parameter values are β0 = β1 = β4 = β5 = 100, β3 = 150. The
tailing off parameter values are δperc = 1.5%, δnum = 3. Dynamic ng-relaxation parameter
values are ηinit = 8, η1 = 5, η2 = 100, ηmax = 16. Parameter value for the bucket graph
elimination procedure is υ = 10%. Enumeration parameter values are ωlabels = 1′000′000,
ωroutes = 5′000′000, ωMIP = 10′000. The strong branching parameter values are ζ0 = 50, ζ1 = 3.

The pricing time thresholds (in seconds) depend on instance class, instance size, and on the
number of resources (dimension of buckets). These thresholds as well as which resource is chosen
as r∗ in bidirectional labeling are shown in Table 1.

The bucket step size in the labeling algorithm is adjusted dynamically as explained below.

6.3 Impact of bucket step size and improved arc elimination

As two main contributions of the paper are using the bucket graph in the labeling algorithm and
improved procedure for bucket (or resource value dependent) arc elimination, we first estimate
their impact on the solution time of the BCP algorithm.

These tests were done on the set of 74 VRPTW instances with 100 and 200 customers. Only
the root node is considered. For instances which cannot be solved at the root, we establish the
“target” lower bounds. These values are determined in such a way that once they are achieved
by a good parameterisation of the algorithm in the root node, it is reasonable to branch because
either i) cuts are tailing off, or ii) pricing becomes too expensive. In Table 2, we give the instance
name, its optimum or Best Known Solution (BKS) value, and the Target Lower Bound (TLB)
value we use. For instances not shown in this table, the target lower bound equals the optimum
solution value.

The first parameter we test is the “maximum number of buckets per vertex” which we denote
as ξ. For instances with one time resource, bucket step size d̃ is determined as (un+1− l0)/ξ. For
instances with two resources, bucket step size d̃1 for the first (capacity) resource is determined as
W/
√
ξ, and bucket step size d̃2 for the second (time) resource is determined as (un+1 − l0)/

√
ξ.

All values d̃r are rounded off to one decimal place.

The second binary parameter to test is whether the standard arc elimination procedure (as
in Irnich et al. (2010)) or improved bucket arc elimination procedure is applied. In the former
case, we fix arc a ∈ A if all bucket arcs γ ∈ Γ such that aγ = a can be fixed. When fixing original
arcs, no jump bucket arcs are needed. The procedure for fixing original arcs runs faster, as once
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Instance BKS TLB Instance BKS TLB Instance BKS TLB
R208 701.0 699.0 R2 2 4 1928.5 1925.0 RC1 2 7 3177.8 3150.0
C2 2 3 1763.4 1753.1 R2 2 6 2675.4 2674.6 RC1 2 8 3060.0 3044.8
C2 2 4 1695.0 1663.5 R2 2 8 1842.4 1831.6 RC1 2 9 3074.8 3035.7
R1 2 3 3373.9 3352.2 R2 210 2549.4 2545.3 RC1 210 2990.5 2966.0
R1 2 4 3047.6 3035.3 RC1 2 1 3516.9 3499.1 RC2 2 2 2481.6 2477.5
R1 2 5 4053.2 4044.1 RC1 2 2 3221.6 3204.4 RC2 2 4 1854.8 1848.0
R1 2 6 3559.2 3544.2 RC1 2 3 3001.4 2980.7 RC2 2 7 2287.7 2279.7
R1 2 8 2938.4 2933.3 RC1 2 4 2845.2 2832.8 RC2 2 8 2151.2 2150.3
R1 2 9 3734.7 3726.0 RC1 2 5 3325.6 3310.0 RC2 2 9 2086.6 2072.0
R1 210 3293.1 3277.3 RC1 2 6 3300.7 3289.0 RC2 210 1989.2 1962.0

Table 2: Target lower bounds for VRPTW instances

we determine that a bucket arc γ ∈ Γ cannot be fixed, we do not try to fix bucket arcs γ′ ∈ Γ
such that aγ′ = aγ . The resource value dependent arc elimination procedure proposed in Pessoa
et al. (2010) is valid only for the single resource case with positive integer consumption. This
procedure can be viewed as a fixing in a bucket graph with unitary step size (d̃ = 1) under the
condition that the dominance checks are performed only between labels with the same resource
consumption.

The base variant of the algorithm which we denote as (O) is parameterized with ξ = 1, which
corresponds to the basic variant of the label correcting algorithm, and uses the standard arc
elimination procedure. The base variant is compared with variant (A) which is parameterized
with a fixed value ξ ∈ Ξ = {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000} and uses the standard arc
elimination procedure. Then variant (A) is compared with variant (A+) which uses a procedure
described below to automatically adjust value ξ and the standard arc elimination procedure.
Finally variant (A+) is compared with variant (A+B) which uses dynamically adjusted value ξ
and the improved procedure for bucket arc elimination.

Different bucket step sizes used in the labeling algorithm usually change the set of routes
returned by the “light” pricing heuristic to the master. This happens because a given non-
dominated label may be extended if one bucket step size is used and not extended if another
bucket step size is used. Thus, for each value ξ, the sequence of primal-dual master solutions
in the column generation may follow a different trajectory and converge to distinct alternative
optima. In turn, this changes the set of cuts returned by the separation procedures, affecting the
pricing difficulty for the next iterations. This “random noise” may make the experimental results
less clear. To avoid this, for each instance i ∈ I we choose a value ξ̄i ∈ Ξ. Then, two copies of
the labeling algorithm are created, the first one with value ξ̄i, and the second one with the value
being tested ξ′ ∈ Ξ. Both copies are executed in each iteration of columns generation, and the
arc elimination procedure is also performed twice. Only the set of columns produced by the first
copy of the algorithm is sent to the master. Therefore, the sequence of primal-dual solutions of
the master problem is always the same regardless of the bucket step size parameterisation.

For each run, i.e. for each pair (i, ξ′), we collect the following statistics. The first one is the
ξ-subproblem time which includes the time to create the bucket graph and a topological order for
it, the total pricing time, the total bucket arc elimination time, and the total enumeration time.
The second statistics is the master time which is the difference between the overall running time
and the sum of ξ̄i-subproblem time and ξ′-subproblem time. The total time is the sum of the
master time and the ξ′-subproblem time. For each instance i ∈ I and each value ξ′ ∈ Ξ, we
calculate ratios %toti,ξ′ and %spi,ξ′ between the corresponding total time (or ξ′-subproblem time) and
the minimum total time (minimum ξ-subproblem time) among all ξ ∈ Ξ for this instance. Ratio
%toti,1 shows the speed-up of variant (A) of the algorithm over variant (O) for instance i ∈ I.

In Figure 5, we show the graphs for average and maximum values for both %toti,ξ′ and %spi,ξ′ ,
as well as graphs for these ratios for some representative individual instances. The averages are
shown for two groups of instances: with one and two resources. The time limit was reached
for ξ′ = 1, 2, 5, 10, 20, 50, 100 for 6, 6, 4, 4, 3, 1, 1 instances accordingly. Therefore average and
maximum values given in Figure 5 for these values of ξ are in fact their lower bounds. It can be
seen from the figure that parameter ξ has a large impact on the total pricing time, as well as
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on the overall time of the root node. The best value for this parameter is instance-dependent.
Two extreme values ξ = 1 and ξ = 2000 are bad parameterisations on average. The variant
(A) with parameterisation ξ = 200 is at least 2.85 times faster on average than variant (O).
The maximum speed-up reaches at least the factor of 20 (it is expected to be much higher for
instances stopped by the time limit).
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Figure 5: Impact of parameter ξ on the subproblem and total time

In Figure 5, the graph for instance RC 1 2 5 also shows the interest to have smaller buck-
ets than it is required to make the extended bucket graph acyclic. For this instance, setting
parameter ξ to 500 makes the extended bucket graph acyclic. However, the subproblem time
and the total time of the algorithm are, respectively, 14% and 12% smaller for parameterisation
ξ = 1000. Most of the time, however, the best parameterisation results in an extended bucket
graph with cycles.

In variants (A+) and (A+B) we use a scheme for dynamic adjustment of parameter ξ which
outperforms the best parameterisation (ξ = 200) for variant (A). In this scheme, we start with
ξ = 25. After each column generation convergence, we calculate the average ratio (among all
calls to exact pricing) of the number of dominance checks between labels in a same bucket and
the total number of non-dominated labels. If this average ratio is larger than 500 and the average
number of non-fixed bucket arcs (including jump bucket arcs) per vertex is less than 10’000, we
multiply ξ by 2. After each such multiplication, the bucket graph is regenerated.

In Figure 6(a), we show the performance profile which compares the total time for variant
(A) with ξ = 200 and for variant (A+). The geometric mean of the speed-up ratios between
these two variants is 7%, and the maximum speed-up reaches 83%.

In Figure 6(b) we show the performance profile which compares variants (A+) and (A+B) of
the algorithm. Although the geometric mean of the speed-up ratios due to improved bucket arc
elimination procedure is only 6%, for two instances the speed-up ratio reaches the factor of two.
These are instances RC2 2 8 and R2 2 4. In general, we noticed that one significantly benefits
from the improved bucket arc elimination procedure on hard instances with small primal-dual
gap. Such instances have usually long routes.

26



1 1.2 1.4 1.6 1.8

0

20

40

60

80
Y

=
n
u

m
b

er
o
f

in
st

a
n

ce
s

fo
r

w
h

ic
h

(A) with ξ = 200

(A+)

(a)

1 1.2 1.4 1.6 1.8 2

(A+B)

(A+)

(b)

Total time for a variant is at most X times larger than the best

Figure 6: Performance profiles for variants (A), (A+), and (A+B) of the algorithm

Concluding this part, we summarize the results in Table 3. In it, we show the geometric
means of total solution time ratios for different variants of the algorithm. There, variant (A)
uses parameterisation ξ = 200. We give these ratios for all 74 instances as well as for subclasses of
instances. Looking at Table 3, we can say that the most computational improvement is achieved
when passing from variant (O) to variant (A) of the algorithm provided that the bucket step size
is well chosen. Additional speed-ups of variants (A+) and (A+B) are relatively small on average
but can be significant for certain instances.

Instances (O)→(A) (A)→(A+) (A+)→(A+B)
100 customers 1.54 1.18 1.06
200 customers 2.01 1.04 1.07
Series 1 2.10 1.11 1.05
Series 2 1.78 1.03 1.07
Series C 1.20 1.21 1.03
Series R 1.62 0.99 1.08
Series RC 4.15 0.97 1.09
All 1.91 1.07 1.06

Table 3: Comparison of different variants of the algorithm on VRPTW instances

6.4 Impact of two-dimensional buckets

As proposed in Section 3.3, labels are grouped into buckets based on the accumulated resource
consumption values. Thus, if there are two resources, we can say that buckets are “two-
dimensional”. However, buckets can also be formed based only on the accumulated consumption
of only one of two resources. Implementation of the labeling algorithm and bucket arc elimina-
tion procedure with such “one-dimensional” buckets is easier as sets Φb, b ∈ B, contain at most
one element. In this section we computationally verify whether an additional effort to implement
two-dimensional buckets pays off, i.e. it results in improved algorithm efficiency.

In this experiment, we use variant (A+B) of the algorithm to solve the root node of instances
with two resources. As the number of VRPTW instances with two resources is only 30 (these
are instances of classes C1, RC1, and R1), we add in this experiment MDVRP, SDVRP, and
DCVRP instances. In total, we have 69 instances. As before, for instances which cannot be
solved at the root, we set the “target” lower bounds, given in Table 4. Again, for instances not
shown in the table, the target lower bound equals the optimum solution value.
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Instance BKS TLB Instance BKS TLB Instance BKS TLB
CMT8 865.94 857.8 mdvrp p10 3631.11 3626.2 sdvrp pr04 3449.84 3432.3
CMT9 1162.55 1153.3 mdvrp p11 3546.06 3540.4 sdvrp pr05 4377.35 4332.6
CMT10 1395.85 1387.3 mdvrp pr05 2331.20 2318.7 sdvrp pr06 4422.02 4329.2
CMT13 1541.30 1475.2 mdvrp pr06 2676.30 2662.9 sdvrp pr08 2971.01 2962.6
mdvrp p08 4372.78 4347.6 mdvrp pr10 2868.26 2860.6 sdvrp pr09 3536.20 3527.7
mdvrp p09 3858.66 3849.9 sdvrp pr03 2575.36 2565.6 sdvrp pr10 4639.62 4659.4

Table 4: Target lower bounds for MDVRP, SDVRP, and DCVRP instances

As before, when using two-dimensional buckets, given parameter ξ, bucket step size d̃1 is de-
termined as W/

√
ξ and d̃2 is calculated as (un+1−l0)/

√
ξ. Naturally, when using one-dimensional

buckets, “bucketization” is performed according to the most critical resource. This is the ca-
pacity resource for VRPTW instances (d̃1 = W/ξ) and the time resource for the remaining ones
(d̃1 = (un+1−l0)/ξ). The most critical resource can easily be determined by running a reasonable
heuristic for the problem and analyzing the solutions obtained. As in the previous section, two
copies of the labeling algorithm are created to obtain the same sequence of primal-dual solutions
of the master problem for both tested configurations.

In Figure 7 we show the performance profile which compares variants with one-dimensional
and two-dimensional buckets. The geometric means of the speed-up ratios between the two
variants is 21%. On individual instances the maximum speed-up factor is 6.2. From detailed
results (not given here) it can be observed that it is important to use two-dimensional buckets
when both resources are similarly constraining.
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Figure 7: Performance profiles for variants with one-dimensional and two-dimensional buckets

In Table 5 we give the geometric means of total solution time ratios for five variants of the
algorithm applied for instances with two resources. First three variants (O), (A), (A+), (A+B)
use one-dimensional buckets, and the last variant (A+B) uses two-dimensional buckets. Again,
variant (A) uses parameterisation ξ = 200. We time ratios for all 69 instances as well as for
instances of different problems separately. Results in Table 5 suggest the most computational im-
provement is again achieved when passing from variant (O) to variant (A). Significant speed-ups
achieved when passing from (A) to (A+) and from one-dimensional buckets to two-dimensional.
Impact of the bucket arc elimination procedure is very small here.

6.5 Results for the BCP algorithm

In this section, we present the performance of the proposed BCP algorithm on instances from the
literature. We start with 74 VRPTW instances having 100 and 200 customers. We compare our
algorithm with the state-of-the-art BCP algorithm for this problem by Pecin et al. (2017a). The
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One-dimensional buckets One → two
Instances Number (O)→(A) (A)→(A+) (A+)→(A+B) (A+B)
DCVRP 7 2.72 1.08 1.05 1.02
MDVRP 22 1.80 1.25 1.01 1.12
SDVRP 10 6.16 0.88 0.93 1.89
VRPTW 30 1.78 1.23 1.05 1.14
All 69 2.23 1.16 1.02 1.21

Table 5: Comparison of different variants of the algorithm on instances with two resources

Our algorithm Algorithm in Pecin et al. (2017a)
Class Average Geomean Average Geomean

Solved
time time

Solved
time time

Solomon hard 14/14 456 160 14/14 5324 961
C1 10/10 100 14 10/10 133 61
C2 9/10 4774 510 8/10 4096 3027
R1 10/10 11756 1418 10/10 12854 1861
R2 10/10 7248 2158 8/10 13626 8991
RC1 8/10 15370 6351 8/10 38940 13585
RC2 9/10 29970 3751 7/10 27372 14390

Overall 70/74 9044 690 65/74 13066 1956
Solved by both 4350 500 13066 1956

Table 6: Comparison of our BCP algorithm with the one in Pecin et al. (2017a) on the VRPTW
instances

difference between the two algorithms mainly resides in the different labeling routines included.
Another difference is a better dual price smoothing stabilization with the automatically adjusted
parameter (Pessoa et al. 2018) used by us. Also, we use only standard RCCs and limited-memory
R1Cs with up to five rows, whereas algorithm in Pecin et al. (2017a) uses also elementary
inequalities (a family of R1Cs) with six and seven rows and clique cuts (after enumeration).
Finally, different mechanisms to dynamically adjust ng-neighborhoods are employed. Other
components used in both algorithms are similar.

The computer used in Pecin et al. (2017a) and our computer have approximately the same
speed, according to www.cpubenchmark.net/singleThread.html. In Table 6, we present the
comparison of the two algorithms. Our algorithm outperforms the one by Pecin at al. for all
classes of VRPTW instances, except class R1 for which the results are similar. Our algorithm
proved optimality for five out of nine open instances with 200 customers for the first time. On
the set of instances solved by the both algorithms, our approach is three times faster if we
compare average solution times, and four times faster if we compare the geometric mean of
solution times. Speed-up factor on individual instances reaches 47.5 as demonstrated in the
detailed results presented in the online appendix. Interestingly, the largest improvement factors
are reached on instances for which the improved arc elimination procedure had the most impact.

We have also tested our algorithm on VRPTW instances with 400 customers. In the literature
only one of these instances has been solved to optimality, by Kallehauge, Larsen, and Madsen
(2006). We managed to solve to optimality 24 instances out of 60. We observed three main
reasons (in decreasing order of the number of impacted instances) why algorithm could not solve
more 400-customer instances: (i) the labeling algorithm is not fast enough, so only relatively
few R1Cs can be added before the pricing time limit is exceeded, leaving a gap that is too large
(ii) R1Cs with up to five rows can be added almost until convergence, but they still leave a gap
that is too large, and (iii) column generation convergence is very slow.

In the next experiment, we compare our algorithm with the exact algorithm by Contardo
and Martinelli (2014) on the set of distance-constrained MDVRP instances. The main features
of that previous algorithm that differ from ours are:
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Our algorithm Algorithm in Contardo and Martinelli (2014)
Class Average Geomean Average Geomean

Solved
time time

Solved
time time

“p” 12/12 4538 201 6/6 938 342
“pr” 10/10 13773 937 4/7 39058 903

Overall 22/22 7881 392 10/13 16186 504
Solved by both 147 30 16186 504

Table 7: Comparison of our BCP algorithm with the one in Contardo and Martinelli (2014) on
the distance-constrained MDVRP instances

• Use of standard mono-directional label correcting algorithm for solving the pricing problem
(improved by decremental state-space relaxation);

• Absence of column generation stabilization;

• Separation of different families of valid inequalities, particularly, only a subset of R1Cs is
used (Subset Row Cuts), and the limited memory technique is not applied;

• Exclusive use of route enumeration for finishing the instance, without any branching.

The speed of the computer used in Contardo and Martinelli (2014) is approximately 1.6 times
slower than ours, according to www.cpubenchmark.net/singleThread.html. Therefore, in the
following comparison, as well in the detailed results in the online appendix, the solutions times
of Contardo and Martinelli (2014) are divided by 1.6. In Table 7, we present the comparison of
the two algorithms. Our algorithm solves all instances, most of them for the first time. When
compared on the set of instances solved by the both algorithms, our approach is 110 times faster
in terms of the average time, and 16.5 times faster in terms of the geometric mean time (33 times
faster if the smallest instance “pr01” is not taken into account). Speed-up factor on individual
instances reaches three orders of magnitude as demonstrated in the detailed results presented
in the online appendix. We believe that all the differences pointed above, not only the bucket
graph pricing, contribute to this big improvement. For the instance “pr10”, we improved the
best known solution. For other instances, the values obtained by Vidal et al. (2012) are optimal.

In the following Table 8 we give the summary results for remaining instances. To our knowl-
edge, these instances are treated by an exact approach for the first time. We solved to optimality
six out of seven classic distance-constrained CVRP instances by Christofides, Mingozzi, and Toth
(1979). All best known solution values for these instances given in Nagata and Bräysy (2009) are
optimal. The only unsolved instance CMT13 is clustered and has many long arcs in the solution.
The gap for this instance is large even after adding many R1Cs. This gap can be reduced by
adding even more cuts, but exact pricing becomes too expensive.

We solved to optimality seven out of ten of distance-constrained site-dependent instances.
These instances happen to be harder than similar multi-depot instances in class “pr”. Best
known solution values from Cordeau and Maischberger (2012) were improved for four instances.

Finally, we have considered HFVRP instances from Duhamel, Lacomme, and Prodhon (2011)
who called these instances “nightmare”. Particularities of these instances are large capacities of
vehicles, very heterogeneous customer demands, and many – up to eight – very heterogeneous
vehicle types. We confirm that these instances are particularly difficult. We could not solve
several instances which have slightly more than 100 customers. Nevertheless, we have solved to
optimality all instances with up to 100 customers, 29 from 38 instances with 101–150 customers,
13 from 30 instances with 151–200 customers. Improved solutions were found for 43 instances.

The detailed results for all tested instances are given in the online appendix.
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Largest Smallest Average Geomean
Class Solved

solved n unsolved n time time

DCVRP 6/7 199 120 5h30m 16m44s
SDVRP 7/10 216 240 32m09s 11m26s
HFVRP 56/96 186 107 3h56m 23m07s

Table 8: Results for instances never attacked by exact methods before

7 Conclusions

This article proposed a new bucket-graph based variant of the labeling algorithm for the SPPRC.
It can handle the particularities of the SPPRCs that arise as pricing suproblems in the most
effective existing exact algorithms for the VRP: the partial route elementarity defined by ng-sets
and the numerous additional dimensions induced by limited-memory R1Cs. The algorithm is
especially better than existing variants when the consumptions, in at least one of the resources,
are given either by real numbers or by large integer numbers. Besides, a new procedure that
generalizes the principle of arc elimination by reduced costs to the bucket graph context was
given.

The new algorithms were embedded in an advanced BCP algorithm, that includes several
other features picked from the literature. The computational results were highly positive. On the
classical VRPTW, the new BCP is at least four times faster on average than a very recent BCP
algorithm (Pecin et al. 2017a). Moreover, the new BCP solved five additional VRPTW instances
to optimality. Since most other elements in those two BCP algorithms, like ng-paths and rank-
1 cuts, are similar, the significant improvement is clearly due to the techniques introduced in
the paper. The experimental investigation suggests that the largest improvement comes from
the organisation of labels in buckets which decreases the number of dominance checks in the
pricing. In fact, this proposed labeling implementation can better handle the large numbers that
define the time resource in the benchmark VRPTW instances. Other components as dynamic
adjustment of the bucket step size and an improved arc elimination procedure bring less speed-up
on average but can be important for some instances.

Very good results were also obtained on instances from other important VRP variants, includ-
ing classical DCVRP instances proposed almost 40 years ago, but only now solved to optimality.

Although the bucket implementation presented in this paper considered up to two resources,
it is not difficult to extend it for handling the SPPRCs with several resources that arise in other
VRP variants. We believe that those harder problems may also benefit from the approach.
However, substantial additional experimental work would be needed for determining how many
and which resources should be used for defining the buckets, the remaining resources being
treated as in the standard labeling.
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Nagata Y, Bräysy O, 2009 Edge assembly-based memetic algorithm for the capacitated vehicle routing
problem. Networks 54(4):205–215.

Pecin D, Contardo C, Desaulniers G, Uchoa E, 2017a New enhancements for the exact solution of the
vehicle routing problem with time windows. INFORMS Journal on Computing 29(3):489–502.

Pecin D, Pessoa A, Poggi M, Uchoa E, 2014 Improved branch-cut-and-price for capacitated vehicle routing.
Lee J, Vygen J, eds., Integer Programming and Combinatorial Optimization, 393–403 (Springer).

Pecin D, Pessoa A, Poggi M, Uchoa E, 2017b Improved branch-cut-and-price for capacitated vehicle
routing. Mathematical Programming Computation 9(1):61–100.

Pecin D, Pessoa A, Poggi M, Uchoa E, Santos H, 2017c Limited memory rank-1 cuts for vehicle routing
problems. Operations Research Letters 45(3):206 – 209.

Penna PHV, Subramanian A, Ochi LS, Vidal T, Prins C, 2019 A hybrid heuristic for a broad class of
vehicle routing problems with heterogeneous fleet. Annals of Operations Research 273(1):5–74.

Pessoa A, de Aragão MP Marcus, Uchoa E, 2008 Robust branch-cut-and-price algorithms for vehicle
routing problems. Golden B, Raghavan S, Wasil E, eds., The Vehicle Routing Problem: Latest
Advances and New Challenges, volume 43 of Operations Research/Computer Science Interfaces,
297–325 (Springer US).

Pessoa A, Sadykov R, Uchoa E, Vanderbeck F, 2018 Automation and combination of linear-programming
based stabilization techniques in column generation. INFORMS Journal on Computing 30(2):339–
360.

Pessoa A, Uchoa E, de Aragão MP, Rodrigues R, 2010 Exact algorithm over an arc-time-indexed formula-
tion for parallel machine scheduling problems. Mathematical Programming Computation 2(3):259–
290.

Poggi M, Uchoa E, 2014 New exact algorithms for the capacitated vehicle routing problem. Vehicle Rout-
ing: Problems, Methods, and Applications, P. Toth, and D. Vigo (Eds), SIAM 59–86.

Pugliese LDP, Guerriero F, 2013 A survey of resource constrained shortest path problems: Exact solution
approaches. Networks 62(3):183–200.

Righini G, Salani M, 2006 Symmetry helps: Bounded bi-directional dynamic programming for the ele-
mentary shortest path problem with resource constraints. Discrete Optimization 3(3):255–273.

Roberti R, Mingozzi A, 2014 Dynamic ng-path relaxation for the delivery man problem. Transportation
Science 48(3):413–424.

Solomon MM, 1987 Algorithms for the vehicle routing and scheduling problems with time window con-
straints. Operations Research 35(2):254–265.
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A Detailed results

In this appendix, we present the detailed results for our BCP algorithm on all tested instances.

In the following tables, we show the instance name, n — the number of customers, m — the
number of different vehicle types or the number of depots, when applicable, the initial upper
bound, the “robust” dual bound (before adding non-robust cuts), the dual bound obtained in the
root node, the root node time, the number of R1Cs at the end of the root node, the number of
nodes, the total time, and the best solution value obtained by the algorithm. For instances solved
before by another algorithm in the literature, we give the corresponding time (which takes into
account the difference between the speed of the computers used), and the improvement factor
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(ratio of the running times of the literature algorithm and ours). In Tables 9–15, “Time PCDU”
refers to the running time of the algorithm by Pecin et al. (2017a). In Tables 22–23, “Time CM”
refers to the running time of the algorithm by Contardo and Martinelli (2014). In the tables,
∗ near the best solution value indicates that its optimality was proven for the first time. If the
best solution value is underlined, it improves on the best known solution value. All obtained
solutions were proven to be optimal except when the total time is given with the “>” sign.

Initial Robust Root Nodes Total Final Time Improv.
Instance

UB bound bound time #R1C number time UB PCDU factor

C203 588.8 588.7 588.7 27s 0 1 27s 588.7 6m05s 13.3
C204 588.2 588.1 588.1 40s 0 1 40s 588.1 27m28s 40.9
R202 1029.7 1022.2 1029.6 2m25s 72 1 2m25s 1029.6 5m16s 2.2
R203 870.9 866.9 870.8 1m16s 17 1 1m16s 870.8 9m25s 7.4
R204 731.4 724.9 731.3 3m04s 56 1 3m04s 731.3 24m55s 8.1
R206 876.0 866.8 875.9 2m30s 51 1 2m30s 875.9 9m06s 3.6
R207 794.1 790.1 794.0 1m43s 27 1 1m43s 794.0 12m08s 7.0
R208 701.1 691.6 697.7 14m57s 138 9 1h14m 701.0 17h48m 14.3
R209 854.9 841.4 854.8 3m45s 105 1 3m45s 854.8 9m59s 2.7
R210 900.6 889.4 900.5 4m34s 107 1 4m34s 900.5 12m09s 2.7
R211 746.8 734.6 746.7 3m42s 110 1 3m42s 746.7 22m00s 5.9
RC204 783.6 779.3 783.5 2m11s 15 1 2m11s 783.5 19m27s 8.9
RC207 963.0 947.3 962.9 3m21s 91 1 3m21s 962.9 5m47s 1.7
RC208 776.2 766.6 776.1 2m02s 36 1 2m02s 776.1 9m59s 4.9

Table 9: Detailed results for the hardest 100-customers Solomon
VRPTW instances

Initial Robust Root Nodes Total Final Time Improv.
Instance

UB bound bound time #R1C number time UB PCDU factor

C1 2 1 2698.7 2698.6 2698.6 8s 0 1 8s 2698.6 20s 2.2
C1 2 2 2694.4 2694.3 2694.3 20s 0 1 20s 2694.3 44s 2.1
C1 2 3 2675.9 2659.7 2675.8 4m39s 66 1 4m39s 2675.8 10m26s 2.2
C1 2 4 2625.7 2619.8 2625.6 6m51s 42 1 6m51s 2625.6 5m40s 0.8
C1 2 5 2695.0 2694.9 2694.9 11s 0 1 11s 2694.9 24s 2.1
C1 2 6 2695.0 2694.9 2694.9 15s 0 1 15s 2694.9 26s 1.7
C1 2 7 2695.0 2694.9 2694.9 18s 0 1 18s 2694.9 22s 1.2
C1 2 8 2684.1 2683.7 2684.0 19s 0 1 19s 2684.0 28s 1.4
C1 2 9 2639.7 2637.2 2639.6 54s 0 1 54s 2639.6 1m24s 1.5
C1 2 10 2624.8 2620.2 2624.7 2m40s 34 1 2m40s 2624.7 1m53s 0.7

Table 10: Detailed results for 200-customer Gehring and Homberger
VRPTW instances of class C1

Initial Robust Root Nodes Total Final Time Improv.
Instance

UB bound bound time #R1C number time UB PCDU factor

C2 2 1 1922.2 1915.0 1922.1 3m06s 70 1 3m06s 1922.1 14m20s 4.6
C2 2 2 1851.5 1839.4 1851.4 6m57s 80 1 6m57s 1851.4 1h29m 12.9
C2 2 3 1763.5 1737.0 1752.1 32m16s 287 37 11h10m 1763.4∗ >96h >8.6
C2 2 4 1695.1 1652.3 1663.2 28m59s 187 355 >60h 1695.1 >96h −
C2 2 5 1869.7 1858.7 1869.6 3m57s 52 1 3m57s 1869.6 23m48s 6.0
C2 2 6 1844.9 1836.6 1844.8 3m22s 23 1 3m22s 1844.8 34m03s 10.1
C2 2 7 1842.3 1834.9 1842.2 3m03s 21 1 3m03s 1842.2 44m33s 14.6
C2 2 8 1813.8 1801.3 1813.7 3m11s 12 1 3m11s 1813.7 42m22s 13.3
C2 2 9 1815.1 1795.0 1815.0 9m17s 101 1 9m17s 1815.0 2h01m 13.1
C2 2 10 1791.3 1765.7 1791.2 13m04s 96 1 13m04s 1791.2 2h56m 13.5

Table 11: Detailed results for 200-customer Gehring and Homberger
VRPTW instances of class C2
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Initial Robust Root Nodes Total Final Time Improv.
Instance

UB bound bound time #R1C number time UB PCDU factor

R1 2 1 4667.3 4655.0 4667.2 14s 22 1 14s 4667.2 59s 4.0
R1 2 2 3920.0 3907.2 3919.9 37s 75 1 37s 3919.9 2m42s 4.3
R1 2 3 3374.0 3320.3 3352.5 13m27s 502 693 17h01m 3373.9 25h56m 1.5
R1 2 4 3047.7 3001.5 3035.3 23m03s 635 267 10h45m 3047.6 5h00m 0.5
R1 2 5 4053.3 4007.6 4044.8 3m21s 290 9 10m51s 4053.2 7m25s 0.7
R1 2 6 3559.3 3493.4 3545.3 11m16s 559 71 2h00m 3559.1 2h00m 1.0
R1 2 7 3142.0 3099.2 3141.9 9m27s 335 1 9m27s 3141.9 16m42s 1.8
R1 2 8 2938.5 2902.2 2933.9 19m02s 436 5 27m38s 2938.4 41m39s 1.5
R1 2 9 3734.8 3678.3 3726.4 6m23s 443 7 14m43s 3734.7 12m51s 0.9
R1 2 10 3293.2 3244.9 3278.2 8m35s 489 49 1h47m 3293.1 1h23m 0.8

Table 12: Detailed results for 200-customer Gehring and Homberger
VRPTW instances of class R1

Initial Robust Root Nodes Total Final Time Improv.
Instance

UB bound bound time #R1C number time UB PCDU factor

R2 2 1 3468.1 3462.5 3468.0 2m20s 19 1 2m20s 3468.0 34m43s 14.9
R2 2 2 3008.3 3000.9 3008.2 7m33s 69 1 7m33s 3008.2 1h07m 9.0
R2 2 3 2537.6 2516.3 2537.5 33m26s 181 1 33m26s 2537.5 5h50m 10.5
R2 2 4 1928.6 1918.3 1924.9 33m39s 94 33 3h59m 1928.5∗ >96h >24.0
R2 2 5 3061.2 3029.4 3061.1 21m41s 123 1 21m41s 3061.1 1h45m 4.9
R2 2 6 2675.5 2644.9 2675.2 37m20s 249 3 50m39s 2675.4 4h04m 4.8
R2 2 7 2304.8 2277.8 2304.7 1h48m 335 1 1h48m 2304.7 12h16m 6.8
R2 2 8 1842.5 1808.9 1832.1 1h41m 393 19 11h47m 1842.4∗ >96h >8.1
R2 2 9 2843.4 2824.3 2843.3 12m37s 110 1 12m37s 2843.3 1h23m 6.6
R2 2 10 2549.5 2528.7 2545.4 15m33s 202 3 24m04s 2549.4 3h14m 8.1

Table 13: Detailed results for 200-customer Gehring and Homberger
VRPTW instances of class R2

Initial Robust Root Nodes Total Final Time Improv.
Instance

UB bound bound time #R1C number time UB PCDU factor

RC1 2 1 3517.0 3459.6 3498.7 4m26s 338 43 40m29s 3516.9 42m10s 1.0
RC1 2 2 3221.7 3177.8 3206.1 11m52s 522 17 33m38s 3221.6 3h10m 5.7
RC1 2 3 3001.5 2952.1 2982.9 22m40s 630 187 14h41m 3001.4 18h15m 1.2
RC1 2 4 2845.3 2814.4 2831.0 26m52s 361 41 4h58m 2845.2 6h23m 1.3
RC1 2 5 3325.7 3272.9 3312.7 49m59s 678 15 1h22m 3325.6 2h23m 1.7
RC1 2 6 3300.8 3255.3 3295.1 12m30s 468 5 16m35s 3300.7 26m46s 1.6
RC1 2 7 3177.9 3114.7 3151.8 17m14s 554 109 10h46m 3177.8 52h20m 4.9
RC1 2 8 3060.1 3022.6 3047.4 19m03s 614 5 49m56s 3060.0 2h50m 3.4
RC1 2 9 3074.9 3006.6 3035.6 16m42s 464 493 >60h 3074.9 >96h −
RC1 2 10 2990.6 2938.7 2966.4 24m40s 583 683 >60h 2990.6 >96h −

Table 14: Detailed results for 200-customer Gehring and Homberger
VRPTW instances of class RC1

Initial Robust Root Nodes Total Final Time Improv.
Instance

UB bound bound time #R1C number time UB PCDU factor

RC2 2 1 2797.5 2789.4 2797.4 4m11s 38 1 4m11s 2797.4 35m49s 8.6
RC2 2 2 2481.7 2469.5 2477.0 19m21s 183 3 39m25s 2481.6 4h50m 7.4
RC2 2 3 2227.8 2204.7 2227.7 1h54m 308 1 1h54m 2227.7 13h32m 7.1
RC2 2 4 1854.9 1839.7 1848.3 1h33m 196 31 10h52m 1854.8∗ >96h >8.8
RC2 2 5 2493.6 2479.0 2491.4 13m36s 142 1 13m36s 2491.4 1h25m 6.3
RC2 2 6 2496.4 2475.6 2495.1 14m09s 83 1 14m09s 2495.1 1h33m 6.6
RC2 2 7 2287.8 2271.2 2279.0 17m22s 98 11 59m07s 2287.7 8h11m 8.3
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RC2 2 8 2151.3 2140.7 2151.2 29m09s 92 1 29m09s 2151.2 23h05m 47.5
RC2 2 9 2086.7 2056.5 2071.1 1h54m 240 109 59h29m 2086.6∗ >96h >1.6
RC2 2 10 1989.3 1953.2 1955.8 51m23s 12 201 >60h 1989.2 >96h −

Table 15: Detailed results for 200-customer Gehring and Homberger
VRPTW instances of class RC2

Initial Robust Root Nodes Total Final
Instance

UB bound bound time #R1C number time UB

C1 4 1 7138.9 7138.8 7138.8 1m34s 0 1 1m34s 7138.8c

C1 4 2 7113.2 7095.0 7102.2 6m13s 79 3 7m17s 7113.2∗

C1 4 3 6930.0 6919.8 6929.9 12m51s 81 1 12m51s 6929.9∗

C1 4 4 6777.8 6769.6 6777.7 45m22s 118 1 45m22s 6777.7∗

C1 4 5 7138.9 7138.8 7138.8 1m58s 0 1 1m58s 7138.8∗

C1 4 6 7140.2 7140.1 7140.1 2m11s 0 1 2m11s 7140.1∗

C1 4 7 7136.3 7135.9 7136.2 2m27s 0 1 2m27s 7136.2∗

C1 4 8 7107.1 7030.0 7071.2 13m02s 277 61 2h07m 7083.0∗

C1 4 9 6927.9 6888.3 6927.8 22m43s 355 1 22m43s 6927.8∗

C1 4 10 6825.5 6798.8 6819.2 44m59s 347 13 1h02m 6825.4∗

c this instance has been solved before by Kallehauge, Larsen, and Madsen (2006)
Table 16: Detailed results for 400-customer Gehring and Homberger
VRPTW instances of class C1

Initial Robust Root Nodes Total Final
Instance

UB bound bound time #R1C number time UB

C2 4 1 4100.4 4088.4 4100.3 15m08s 35 1 15m08s 4100.3∗

C2 4 2 3914.2 3897.5 3914.1 9h39m 283 1 9h39m 3914.1∗

C2 4 3 3755.3 3722.7 3740.8 60h00m 566 1 >60h 3755.3
C2 4 4 3524.1 3483.3 3498.4 3h00m 288 11 >60h 3524.1
C2 4 5 3923.3 3919.7 3923.2 23m01s 58 1 23m01s 3923.2∗

C2 4 6 3860.2 3843.8 3860.1 39m33s 99 1 39m33s 3860.1∗

C2 4 7 3871.0 3861.6 3870.9 29m47s 82 1 29m47s 3870.9∗

C2 4 8 3773.8 3743.4 3770.6 1h11m 397 9 4h29m 3773.7∗

C2 4 9 3843.8 3782.0 3815.9 4h09m 542 15 >60h 3843.8
C2 4 10 3665.2 3616.9 3656.2 2h33m 682 73 >60h 3665.1

Table 17: Detailed results for 400-customer Gehring and Homberger
VRPTW instances of class C2

Initial Robust Root Nodes Total Final
Instance

UB bound bound time #R1C number time UB

R1 4 1 10313.9 10243.5 10284.1 4m00s 181 25 16m48s 10305.8∗

R1 4 2 8876.0 8776.2 8834.3 17m52s 534 1683 >60h 8876.0
R1 4 3 7794.8 7673.7 7732.2 54m14s 658 327 >60h 7794.8
R1 4 4 7281.8 7182.4 7239.2 2h06m 1095 123 >60h 7281.8
R1 4 5 9188.7 9082.3 9145.8 6m35s 355 2393 >60h 9188.7
R1 4 6 8366.6 8257.8 8314.1 28m04s 596 1139 >60h 8366.6
R1 4 7 7609.1 7489.2 7558.6 1h25m 1020 185 >60h 7609.1
R1 4 8 7253.5 7148.5 7200.0 1h57m 967 147 >60h 7253.5
R1 4 9 8674.8 8545.7 8618.4 13m45s 611 1265 >60h 8674.8
R1 4 10 8088.9 7944.9 8024.2 31m57s 782 611 >60h 8088.9

Table 18: Detailed results for 400-customer Gehring and Homberger
VRPTW instances of class R1
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Initial Robust Root Nodes Total Final
Instance

UB bound bound time #R1C number time UB

R2 4 1 7522.1 7485.3 7520.7 42m42s 96 1 42m42s 7520.7∗

R2 4 2 6482.9 6466.3 6482.8 1h33m 127 1 1h33m 6482.8∗

R2 4 3 5373.0 5349.3 5372.9 6h18m 333 1 6h18m 5372.9∗

R2 4 4 4213.8 4144.1 4169.8 12h06m 1131 15 >60h 4213.8
R2 4 5 6572.1 6498.0 6559.6 10h06m 450 3 >60h 6572.1
R2 4 6 5814.6 5763.1 5811.8 24h11m 1423 3 >60h 5814.6
R2 4 7 4893.6 4843.2 4878.4 15h39m 1492 11 >60h 4893.6
R2 4 8 4001.1 3897.7 3913.9 20h11m 444 9 >60h 4001.1
R2 4 9 6070.3 6001.5 6059.4 3h44m 704 25 58h55m 6067.8∗

R2 4 10 5665.1 5561.6 5619.5 4h09m 758 21 >60h 5665.1

Table 19: Detailed results for 400-customer Gehring and Homberger
VRPTW instances of class R2

Initial Robust Root Nodes Total Final
Instance

UB bound bound time #R1C number time UB

RC1 4 1 8523.0 8368.9 8470.0 16m38s 762 667 >60h 8523.0
RC1 4 2 7887.2 7770.3 7843.0 49m29s 1123 197 >60h 7887.2
RC1 4 3 7525.2 7423.3 7444.7 44m01s 252 269 >60h 7525.2
RC1 4 4 7295.3 7207.8 7242.9 1h43m 805 37 >60h 7295.3
RC1 4 5 8152.4 8033.8 8101.5 44m15s 1115 37 >60h 8152.4
RC1 4 6 8148.6 8005.9 8089.7 47m39s 1192 127 >60h 8148.6
RC1 4 7 7937.0 7830.6 7878.9 48m09s 841 235 >60h 7937.0
RC1 4 8 7765.8 7639.3 7679.0 42m19s 574 201 >60h 7765.8
RC1 4 9 7724.4 7604.8 7639.1 48m15s 455 209 >60h 7724.4
RC1 4 10 7583.2 7479.2 7521.6 1h42m 931 33 >60h 7583.2

Table 20: Detailed results for 400-customer Gehring and Homberger
VRPTW instances of class RC1

Initial Robust Root Nodes Total Final
Instance

UB bound bound time #R1C number time UB

RC2 4 1 6147.4 6120.1 6146.6 3h18m 238 3 3h37m 6147.3∗

RC2 4 2 5407.6 5389.5 5407.5 4h06m 458 1 4h06m 5407.5∗

RC2 4 3 4573.1 4549.6 4573.0 35h25m 1294 1 35h25m 4573.0∗

RC2 4 4 3598.0 3535.9 3535.9 8h25m 0 5 >60h 3598.0
RC2 4 5 5396.7 5363.0 5388.6 4h47m 466 7 >60h 5396.7
RC2 4 6 5332.1 5270.9 5308.5 9h04m 738 3 >60h 5332.1
RC2 4 7 4987.9 4944.9 4968.6 6h08m 453 19 >60h 4987.9
RC2 4 8 4703.2 4602.0 4618.7 4h53m 216 31 >60h 4703.2
RC2 4 9 4519.1 4448.9 4457.0 5h35m 278 21 >60h 4519.1
RC2 4 10 4252.4 4157.0 4157.0 2h11m 0 83 >60h 4252.4

Table 21: Detailed results for 400-customer Gehring and Homberger
VRPTW instances of class RC2

Initial Robust Root Nod. Total Final Time Impr.
Inst. n m

UB bound bound time #R1C num. time UB CM factor

p08 249 2 4372.90 4294.01 4347.67 49m01s 567 29 5h43m 4372.78∗,a − −
p09 249 3 3858.80 3798.47 3849.96 1h34m 650 19 2h25m 3858.66∗ − −
p10 249 4 3631.30 3582.48 3626.26 37m26s 522 3 41m46s 3631.11∗,a − −
p11 249 5 3546.20 3488.64 3540.43 44m15s 597 3 49m46s 3546.06∗,a − −
p13 80 2 1319.10 1318.95 1318.95 1s 0 1 1s 1318.95 31s 17.5
p14 80 2 1360.30 1360.12 1360.12 1s 0 1 1s 1360.12 38s 20.5
p16 160 4 2572.40 2572.23 2572.23 12s 0 1 12s 2572.23 8m27s 39.7

37



p17 160 4 2709.20 2709.09 2709.09 55s 0 1 55s 2709.09 8m07s 8.8
p19 240 6 3827.20 3822.92 3827.06 1m25s 0 1 1m25s 3827.06 37m15s 26.3
p20 240 6 4058.20 4058.07 4058.07 2m30s 0 1 2m30s 4058.07 38m47s 15.5
p22 360 9 5702.30 5693.87 5702.16 2m28s 0 1 2m28s 5702.16∗ − −
p23 360 9 6078.90 6078.75 6078.75 5m52s 0 1 5m52s 6078.75∗ − −
a a solution with smaller value is claimed in Escobar et al. (2014),

however the authors were not able to communicate it to us
Table 22: Detailed results for Cordeau et al. MDVRP instances of class
“p”

Initial Robust Root Nod. Total Final Time Impr.
Inst. n m

UB bound bound time #R1C num. time UB CM factor

pr01 48 4 861.40 861.32 861.32 3s 0 1 3s 861.32 0s 0.03
pr02 96 4 1307.50 1287.52 1307.34 4m18s 110 1 4m18s 1307.34∗ >75h >1042.8
pr03 144 4 1803.90 1773.42 1803.80 10m22s 185 1 10m22s 1803.80 31h11m 180.5
pr04 192 4 2058.50 2029.87 2058.31 22m52s 327 1 22m52s 2058.31∗ >75h >196.7
pr05 240 4 2331.30 2293.32 2318.80 1h14m 628 27 6h19m 2331.20∗ − −
pr06 288 4 2676.40 2635.08 2662.92 1h18m 522 21 6h39m 2676.30∗ − −
pr07 72 6 1089.70 1085.59 1089.56 17s 0 1 17s 1089.56 18m28s 63.8
pr08 144 6 1665.00 1640.18 1664.85 8m42s 105 1 8m42s 1664.85 11h53m 82.0
pr09 216 6 2133.30 2109.20 2133.20 23m06s 242 1 23m06s 2133.20∗ >75h >194.8
pr10 288 6 2868.40 2818.03 2850.68 1h40m 583 77 24h06m 2867.26∗ − −

Table 23: Detailed results for Cordeau et al. MDVRP instances of class
“pr”

Initial Robust Root Nodes Total Final
Instance n m

UB bound bound time #R1C number time UB

pr01 48 4 1380.90 1377.09 1380.77 19s 0 1 19s 1380.77∗

pr02 96 4 2304.00 2283.37 2303.89 2m51s 23 1 2m51s 2303.89∗

pr03 144 4 2575.50 2538.93 2565.67 19m01s 248 7 24m12s 2574.56∗

pr04 192 4 3450.00 3396.73 3432.33 42m22s 453 9 1h47m 3449.84∗

pr05 240 4 4377.50 4288.21 4332.64 46m35s 442 217 >60h 4375.67
pr06 288 4 4422.20 4326.08 4329.25 21m45s 21 353 >60h 4421.95
pr07 72 6 1890.00 1868.89 1889.82 6m30s 0 1 6m30s 1889.82∗

pr08 144 6 2971.20 2933.81 2962.61 25m44s 222 7 32m37s 2969.92∗

pr09 216 6 3536.30 3511.38 3527.76 1h00m 239 5 1h03m 3536.20∗

pr10 288 6 4639.80 4537.82 4559.48 48m34s 246 297 >60h 4639.80

Table 24: Detailed results for Cordeau and Laporte SDVRP instances

Initial Robust Root Nodes Total Final
Instance n

UB bound bound time #R1C number time UB

CMT6 50 555.60 540.52 555.43 7s 49 1 7s 555.43∗

CMT7 75 909.80 898.95 909.68 4s 35 1 4s 909.68∗

CMT8 100 866.10 842.15 857.86 6m48s 319 17 54m47s 865.94∗

CMT9 150 1162.70 1133.47 1153.37 7m58s 429 447 13h48m 1162.55∗,b

CMT10 199 1396.00 1368.79 1387.35 16m22s 579 443 17h29m 1395.85∗

CMT13 120 1541.30 1458.00 1475.23 10m39s 281 149 >60h 1541.30
CMT14 100 866.50 851.24 866.37 45m22s 318 1 45m22s 866.37∗

b solution with value 1158.41, claimed in Dell’Amico et al. (2016), is infeasible
(different rounding convention was used)

Table 25: Detailed results for Christofides et al. DCVRP instances
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Initial Robust Root Nodes Total Final
Instance n m

UB bound bound time #R1C number time UB

DLP 75 20 3 453 448.43 452.85 0s 6 1 0s 452.85∗

DLP 92 35 3 565 553.05 559.82 4m58s 110 5 9m39s 564.39∗

DLP 93 39 3 1037 1011.57 1023.69 12s 46 11 1m39s 1036.99∗

DLP 94 46 5 1379 1369.07 1378.25 17s 42 1 17s 1378.25∗

DLP 55 56 3 10245 10134.23 10244.34 38s 29 1 38s 10244.34∗

DLP 52 59 3 4028 3912.72 3931.40 2m59s 53 11 12m57s 4027.27∗

DLP 10 69 4 2108 2048.67 2060.75 3m00s 77 13 18m38s 2107.55∗

DLP 39 77 5 2922 2874.88 2902.55 6m03s 302 25 28m47s 2918.87∗

DLP 70 78 4 6685 6561.07 6659.88 5m02s 252 3 13m53s 6684.56∗

DLP 82 79 3 4767 4630.03 4648.96 1m10s 107 123 1h12m 4718.27∗

DLP 08 84 3 4592 4569.97 4591.75 2s 0 1 2s 4591.75∗

DLP 36 85 6 5685 5610.15 5684.62 1m29s 115 1 1m29s 5684.62∗

DLP 43 86 7 8738 8686.41 8737.02 43s 31 1 43s 8737.02∗

DLP 01 92 4 9211 8974.44 9081.63 10m33s 158 3 24m37s 9210.14∗

DLP 11 95 4 3368 3288.08 3296.82 3m19s 31 9 20m54s 3367.41∗

Table 26: Detailed results for Duhamel et al. HFVRP instances with up
to 100 customers

Initial Robust Root Nodes Total Final
Instance n m

UB bound bound time #R1C number time UB

DLP 90 102 4 2347 2249.36 2257.75 5m05s 136 655 40h29m 2278.05∗

DLP 17 105 3 5363 5278.74 5326.71 2m50s 131 7 3m30s 5362.83∗

DLP 84 105 4 7228 7117.02 7142.28 2m02s 136 19 21m01s 7227.88∗

DLP 81 106 4 10687 10483.95 10521.23 3m06s 182 313 5h36m 10583.50∗

DLP 2B 107 6 8463 8300.92 8332.22 4m17s 37 1639 >60h 8463.00
DLP 07 108 4 8090 8009.35 8049.38 3m51s 104 19 12m07s 8071.97∗

DLP 87 108 4 3754 3658.33 3692.55 6m32s 236 7 29m51s 3753.87∗

DLP 47 111 5 16157 15971.69 16123.03 3m54s 250 5 5m49s 16156.12∗

DLP 48 111 5 21310 21041.94 21228.34 19m51s 321 7 28m25s 21257.38∗

DLP 61 111 3 7293 6997.61 7027.77 3m15s 33 1435 >60h 7293.00
DLP 12 112 4 3544 3410.14 3410.14 1m53s 0 25 1h39m 3543.99∗

DLP 30 112 3 6314 6185.97 6207.60 4m11s 186 1489 31h29m 6278.62∗

DLP 2A 113 6 7794 7708.25 7793.16 1m42s 77 1 1m42s 7793.16∗

DLP 53 115 3 6435 6281.51 6376.47 12m26s 209 31 2h14m 6434.83∗

DLP 05 116 5 10877 10764.90 10869.04 29s 30 1 29s 10869.04∗

DLP 13 119 5 6697 6618.19 6649.75 5m20s 160 1261 >60h 6696.43
DLP 06 121 8 11689 11618.62 11682.98 2m37s 53 1 2m37s 11682.98∗

DLP 03 124 4 10710 10635.69 10669.77 55s 106 5 1m13s 10709.66∗

DLP 83 124 4 10020 9871.11 9899.78 2m33s 127 59 51m57s 10001.80∗

DLP 68 125 4 8971 8799.96 8852.89 5m39s 192 89 3h00m 8889.03∗

DLP 74 125 5 11587 11543.40 11563.64 41s 78 7 4m18s 11586.58∗

DLP 21 126 3 5140 5079.13 5110.52 8m11s 289 11 25m05s 5139.84∗

DLP 26 126 5 6434 6352.66 6382.52 6m00s 230 453 10h10m 6406.16∗

DLP 88 127 5 12389 12328.90 12385.74 29s 25 1 29s 12385.74∗

DLP 16 129 6 4157 4000.74 4006.42 4m33s 16 1573 >60h 4157.00
DLP 51 129 3 7722 7628.81 7666.22 10m11s 123 3 29m17s 7721.47∗

DLP 31 131 8 4092 4045.03 4083.80 15m20s 284 5 18m24s 4091.52∗

DLP 40 132 5 11119 10974.62 11015.52 2m32s 160 317 2h59m 11056.13∗

DLP 89 134 5 7087 6982.53 7023.43 4m11s 239 1027 >60h 7087.00
DLP 41 135 7 7598 7444.36 7444.36 4m48s 0 3305 >60h 7598.00
DLP 34 136 6 5748 5700.07 5727.33 7m35s 306 27 1h10m 5739.02∗

DLP 60 137 4 17037 16768.33 16934.97 5m40s 285 37 44m38s 17012.42∗

DLP 73 137 5 10196 10138.46 10174.15 57s 88 3 2m07s 10195.33∗

DLP 28 141 5 5531 5478.74 5499.59 4m24s 208 4705 >60h 5525.90
DLP 25 143 6 7207 7030.07 7042.25 5m46s 100 959 >60h 7207.00
DLP 85 146 4 8774 8690.09 8726.51 7m27s 295 111 2h40m 8763.90∗
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DLP 79 147 4 7260 7132.58 7165.36 8m22s 187 21 1h13m 7257.97∗

DLP 66 150 4 12784 12484.59 12587.01 8m31s 104 999 >60h 12776.24

Table 27: Detailed results for Duhamel et al. HFVRP instances with
101–150 customers

Initial Robust Root Nodes Total Final
Instance n m

UB bound bound time #R1C number time UB

DLP 69 152 4 9148 9003.97 9086.90 7m52s 335 147 3h36m 9127.16∗

DLP 76 152 8 11995 11900.23 11933.72 5m28s 212 1195 >60h 11994.22
DLP 56 153 4 31031 30571.34 30764.30 8m26s 250 1591 58h50m 30905.95∗

DLP 86 153 5 9028 8935.26 8957.90 8m23s 274 249 8h45m 9020.63∗

DLP 37 161 5 6851 6751.15 6787.92 7m57s 354 2017 >60h 6838.72
DLP 64 161 3 17136 16552.72 16552.72 6m38s 25 995 >60h 17135.16
DLP 24 163 4 9102 8990.07 8990.07 3m26s 0 1907 >60h 9102.00
DLP 57 163 4 44782 44302.32 44409.19 8m53s 194 1565 >60h 44782.00
DLP 29 164 4 9143 9044.54 9078.84 9m59s 182 43 2h18m 9132.03∗

DLP 09 167 5 7604 7543.04 7563.84 12m52s 274 135 2h16m 7599.72∗

DLP 35 168 6 9556 9492.98 9521.16 2m55s 114 3 3m17s 9522.45∗

DLP 45 170 3 10477 10294.91 10343.43 8m34s 124 929 >60h 10477.00
DLP 80 171 3 6817 6712.75 6716.88 8m39s 29 219 13h07m 6816.89∗

DLP 44 172 3 12192 11895.60 11895.60 12m31s 19 1187 >60h 12192.00
DLP 54 172 4 10352 10089.37 10089.37 7m45s 21 1323 >60h 10352.00
DLP 67 172 5 10885 10604.14 10662.94 9m53s 233 325 23h44m 10772.81∗

DLP 63 174 5 19952 19670.12 19799.92 8m54s 108 97 5h24m 19890.65∗

DLP 14 176 4 5645 5511.85 5511.85 4m37s 0 1023 >60h 5639.98
DLP 42 178 7 10818 10615.08 10615.08 7m00s 0 889 >60h 10805.94
DLP 02 181 4 11676 11603.82 11632.01 4m27s 104 25 9m34s 11649.81∗

DLP 04 183 4 10749 10582.45 10673.39 9m41s 277 985 13h53m 10714.84∗

DLP 95 183 2 6176 6100.98 6119.06 6m53s 290 1709 >60h 6170.20
DLP 71 186 3 9835 9711.77 9771.86 10m30s 292 87 4h08m 9798.06∗

DLP 72 186 4 5904 5780.39 5831.66 9m35s 322 365 31h31m 5870.43∗

DLP 50 187 6 12371 12035.29 12035.29 9m56s 0 1521 >60h 12371.00
DLP 15 188 7 8221 8083.44 8083.44 3m27s 0 873 >60h 8221.00
DLP 33 189 7 9411 9248.07 9283.05 9m51s 135 1129 >60h 9333.39
DLP 77 190 3 6917 6821.36 6826.04 7m49s 10 1215 >60h 6917.00
DLP 78 190 4 7036 6899.96 6899.96 6m40s 0 1099 >60h 7036.00
DLP 59 193 6 14283 13786.96 13786.96 23m42s 0 737 >60h 14283.00
DLP 91 196 4 6375 6228.90 6244.50 10m26s 157 1167 >60h 6348.36

Table 28: Detailed results for Duhamel et al. HFVRP instances with
151–200 customers

Initial Robust Root Nodes Total Final
Instance n m

UB bound bound time #R1C number time UB

DLP 23 203 4 7742 7590.28 7603.76 8m46s 70 1043 >60h 7742.00
DLP 38 205 5 11195 11048.66 11092.13 14m28s 375 869 >60h 11195.00
DLP 58 220 6 23371 22800.97 22800.97 36m42s 10 969 >60h 23371.00
DLP 27 220 5 8423 8315.95 8343.41 10m15s 174 687 >60h 8423.00
DLP 65 223 3 13044 12648.64 12648.64 41m17s 24 657 >60h 13044.00
DLP 19 224 5 11687 11503.00 11526.84 8m25s 98 1053 >60h 11687.00
DLP 62 225 5 23011 22594.36 22645.25 13m36s 47 1047 >60h 22987.90
DLP 22 239 2 13069 12923.02 12956.02 13m12s 357 1193 >60h 13050.00
DLP 32 244 8 9383 9205.76 9235.38 14m29s 108 695 >60h 9383.00
DLP 49 246 8 16182 15681.80 15681.80 15m27s 0 735 >60h 16182.00
DLP 46 250 5 24567 23856.71 23856.71 14m14s 21 913 >60h 24567.00
DLP 18 256 5 9653 9491.55 9547.80 22m29s 519 1159 >60h 9649.05

Table 29: Detailed results for Duhamel et al. HFVRP instances with
more than 200 customers
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