
HAL Id: hal-02987505
https://hal.inria.fr/hal-02987505

Submitted on 3 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LS-CMA-ES: a Second-order algorithm for Covariance
Matrix Adaptation

Anne Auger, Marc Schoenauer, Nicolas Vanhaecke

To cite this version:
Anne Auger, Marc Schoenauer, Nicolas Vanhaecke. LS-CMA-ES: a Second-order algorithm for Co-
variance Matrix Adaptation. PPSN VIII - 8th International Conference on Parallel Problem Solving
from Nature, Sep 2004, Birmingham, United Kingdom. pp.182-191. �hal-02987505�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362230089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02987505
https://hal.archives-ouvertes.fr

LS-CMA-ES: a Second-order algorithm for

Covariance Matrix Adaptation

Anne Auger1, Marc Schoenauer1, Nicolas Vanhaecke2

1 TAO team, INRIA Futurs
LRI, Bât. 490, Université Paris-Sud

91405 Orsay Cedex, France
2 Molecular Physics Department

Fritz-Haber-Institut der Max-Planck-Gesellschaft
Faradayweg 4-6, 14195 Berlin, Germany

Anne.Auger@lri.fr, Marc.Schoenauer@inria.fr, vanhaeck@fhi-berlin.mpg.de

Abstract. Evolution Strategies, Evolutionary Algorithms based on Gaus-
sian mutation and deterministic selection, are today considered the best
choice as far as parameter optimization is concerned. However, there are
multiple ways to tune the covariance matrix of the Gaussian mutation.
After reviewing the state of the art in covariance matrix adaptation,
a new approach is proposed, in which the covariance matrix adapta-
tion method is based on a quadratic approximation of the target func-
tion obtained by some Least-Square minimization. A dynamic criterion
is designed to detect situations where the approximation is not accu-
rate enough, and original Covariance Matrix Adaptation (CMA) should
rather be directly used. The resulting algorithm is experimentally vali-
dated on benchmark functions, performing much better than CMA-ES
on a large class of problems.

1 Introduction

Among the class of Evolutionary Algorithms (EAs), Evolution Strategies (ESs),
based on the so-called Gaussian mutations, are today considered the state-of-
the-art in parameter optimization, i.e. optimization of a function defined on Rn
for some n ≥ 1 [4]. Basic ESs generate λ offspring by mutating the µ parents
(without selection), and then deterministically replace the parents by the µ best
individuals from either the offspring (this variant is then called the (µ, λ)−ES),
or the merge of parents and offspring (and it is then called the (µ+λ)−ES). The
Gaussian mutation operator for this large class of algorithm consists in adding
some Gaussian random noise to the parent, and can be formally written as

µσ,C : X0 7→ X0 + σN(0, C). (1)

where N(0, C) represents one realization of a multivariate Gaussian distribution
with mean 0 and covariance matrix C, a symmetric positive definite matrix, and
σ is a positive real value called the step-size. This distinction can seem arbitrary

(the actual covariance matrix is σC), but it is often convenient to consider that
C is somehow normalized, giving the “direction” in which sampling should occur,
while σ indicates how far the mutation should go in that “direction”.

The performance of the EA is of course highly dependent on the choices of C
and σ, that have to be tuned not only to the problem at hand, but also to the cur-
rent state of the evolution process. Several techniques have been proposed, from
the self-adaptation of the mutation parameters in Evolution Strategies (SA-ES)
[11] to the Covariance Matrix Adaptation (CMA-ES) [7] where the covariance
matrix C is deterministically adapted from the last move of the algorithm. Some
Estimation of Distribution Algorithms [8] can also be considered as pertaining
to the same category of algorithms that repeatedly sample some Gaussian dis-
tribution to generate next test points.

However, we argue in this paper (Section 2) that none of those algorithms
does make an optimal use of all previously sampled points . We then discuss, in
section 3, what the optimal covariance matrix should be, based on the case of
elliptic functions. In Section 4 we propose the LS-CMA-ES algorithm, an ES-
like algorithm that updates the covariance matrix by learning some curvature
information of the fitness function. Finally, Section 5 presents and discusses
experimental results on several benchmark functions from the literature, while
section 6 derives from those results further work that must be done to extend
the proposed method (e.g. to better handle multi-modal cases) and to complete
its assessment.

2 State of the Art in Covariance Matrix Learning

Since the early work of Rechenberg and Schwefel, who first used Gaussian mu-
tations to evolve real-valued parameters (see e.g. [3] for a detailed history of
the field), it has been clear that the most critical issue of ESs was the tuning
of the mutation parameters. Initial works were concerned mainly with the step-
size: Rechenberg’s one-fifth rule [9], derived from theoretical considerations on
the progress rate, as well as Schwefel’s first self-adaptive ES [11] were only con-
cerned with the optimal step-size, i.e. considered the covariance matrix to be
the identity matrix. However, Schwefel soon proposed to self-adapt one step-size
per variable, i.e. to use a covariance matrix that is diagonal with positive diag-
onal terms, and further extended the self-adapted parameters to the so-called
correlated mutations, corresponding to the general case of Equation 1 where all
parameters of the covariance matrix C are self-adapted.

The ground idea of self-adaptation for correlated mutations is to rely on mu-
tations of the mutation parameter themselves to adjust the covariance matrix
C. Whereas this clever idea removed the need to manually tune the mutation
parameters, it does not take into account the history of evolution to direct the
search – as did the one-fifth rule for the step-size. From thereon, Hansen and Os-
termeier designed the Covariance Matrix Adaptation-ES (CMA-ES) algorithm

[7], later made more computationally efficient in [6]. The basic idea of CMA is
to deterministically use the the most recent descent direction, i.e. the direction
between the best parents at two consecutive generations: the covariance matrix
C is gradually updated with rank-one matrices whose unique non-zero eigen-
value has as eigenvector the last descent direction (see the complete equations
at lines 8 and 10 of Table 1). In some sense, whereas CMA has been thought
as a derandomized correlated mutation from the ES point of view, it could also
be viewed as a randomized steepest-descent algorithm from the point of view of
standard numerical optimization. Note that the complete CMA algorithm also
includes some derandomized step-size adaptation. However, it has been clearly
experimentally demonstrated (not shown here for space reasons) that this step-
size adaptation is not crucial, as the performances of the algorithms are roughly
the same if the step-size is self-adapted using the standard SA-ES mechanism
(see [11], or line 4 of Table 1, for the formal equation).

Estimation of Distribution Algorithms (EDAs) is a recent paradigm using
similar ideas – at least in the continuous case (see [8] for a survey of the whole
field). EDAs evolve a probability distribution over the search space. The main
loop of an EDA first samples that distribution, then selects some of the samples
according to their fitness, and finally updates the distribution from those selected
individuals. Hopefully, the distribution will gradually concentrate on the optima
of the fitness function. Of course, the update step depends on the model that
has been chosen for the distribution. A typical EDA for parameter optimization
is the EMNA family [8], where the distribution is sought as a multi-variate
Gaussian distribution: the sampling phase of EMNA using such a distribution
is then equivalent to the birth of offspring using Equation 1, and EMNA does
adapt a covariance matrix, similarly to the ES algorithms described above.

On the one hand, EMNA uses many points to refine the covariance matrix
– and hence one could think that it will get a better approximation of the “op-
timal” covariance matrix, if such a thing exists (see Section 3). However, the
selection phase of EMNA (and of most EDAs) is merely binary: if for instance
the best half of the population is selected, individuals get selected without any
reference to their respective fitness. Moreover, in the case where a completely
new covariance matrix is generated from the selected samples, using some Max-
imum Likelihood principle, such a covariance matrix only tries to “explain” the
distribution of sample at hand, without paying any attention to other parts of
the search space, even those that have been visited before. And this situation
is only slightly improved if the covariance matrix is updated from the previous
one at each generation.

Experiments have shown that the best-performing of those algorithms is
clearly the CMA-ES algorithm (see [7] for comparison of SA-ES and CMA-
ES, and [10] for a comparison of CMA-ES with some EDAs) – and the reason
for that seems to be that the covariance matrix is better adapts to teh fitness
landscape. The purpose of this paper is to try to make a better use of all the

points that have been sampled by the algorithm, when updating the covariance
matrix, by learning the local curvature of the target function. But before that,
we need to clarify what could be the ideal covariance matrix within an algorithm
using Gaussian sampling.

3 Rationale

The simplest problem, on which the behavior of optimization algorithm can be
studied in great detail, is the sphere model, where the goal is to minimize the
function fS defined by

fs(x) = xTx. (2)

It has been shown numerically [4] that the optimal covariance matrix in that
case is the identity matrix Id. Moreover, some theoretical studies have proved
the convergence of the on (1, λ)− ES, either with a dynamic step-size [2] or in
the case of self-adaptive step-size [1]. From those results, plus the naive consider-
ation of the isotropy of the fitness function itself, we shall from now on suppose
that indeed Id is a good, if not optimal, covariance matrix when optimizing the
sphere function.

But suppose that we now want to minimize the elliptic function fE

fE(x) =
1

2
xTHx, (3)

where H is a symmetric positive definite matrix. The choice of the optimal co-
variance matrix to solve that problem with Evolution Strategies becomes obvious
after a change of variables that will turn this problem into a sphere problem.
Consider the eigen decomposition of H in an orthonormal basis:

H = P T∆∆P (4)

where P is an orthonormal matrix (P−1 = P T) and ∆ a diagonal matrix whose
diagonal terms are the square roots of the eigenvalues of H . Now let W =
∆−1PX . Then simple calculations show that fE(X) = fS(W) and that the
mutation operator given by equation (1) with C = (1

2H)−1 transforms W0 into
W0 +σN(0, Id). Hence, if we consider that Id is the best choice for the covariance
matrix for the sphere problem, then (1

2H)−1 is the best choice for the covariance
matrix for the elliptic problem.

For arbitrary functions, But on the other hand, thanks to Taylor expansion,
all regular functions can be locally approximated by an elliptic function:

f(X) = f(X0)+(X−X0)T∇f(X0)+
1

2
(X−X0)TH(X0)(X−X0)+o(||X−X0||2)

(5)
where ∇f(X0) denotes the gradient of f at point X0 and H(X0) the Hessian
matrix of f at point X0. It hence makes sense to try to use within ESs an

approximation of the Hessian matrix of the function at hand within the mutation
operator. But before proposing a deterministic algorithm using points previously
sampled during evolution to approximate that Hessian matrix, let us first look at
existing methods to derive a covariance matrix in the evolutionary community.

4 The LS-CMA-ES algorithm

The goal of this section is to introduce an algorithm that will try to use an
approximation of the Hessian matrix of the target function as advocated in
section 3: This approximation will be deterministically built using the available
sample points – and later used within the Gaussian mutation 1.

Whereas such strategy is optimal for elliptic functions, it can fail on func-
tions that are “more flat” (e.g. the famous Rosenbrook function), because the
quadratic approximation then becomes very inaccurate. A criterion needs to be
designed to detect such cases and to alternatively use the CMA “steepest descent
update rule” for the covariance matrix.

4.1 Approximating the Hessian matrix

This step of the proposed algorithm aims at learning the local Hessian matrix
of the target function. Starting from the Taylor expansion (see equation 5), and
supposing that we have some sample points of values taken by f , i.e. a set of
points Xk together with their actual fitness f(Xk), located “not too far” from
a given point X0, approximations g and H for both ∇f(X0) and H(X0) can be
easily obtained by solving the linear least-square minimization problem:

min
g∈Rd,H∈S(Rd)

N∑

k=1

(
f(Xk)−f(X0)−(Xk−X0)T g−1

2
(Xk−X0)TH(Xk−X0)

)2

(6)

The unknowns of this problem are g (n unknown parameters), and H (n(n +
1)/2 unknown parameters). As soon as more than n(n+ 3)/2 sample points are
available, the linear system corresponding to equation 6 is overdetermined: the
solution is found by evaluating the pseudo-inverse of this linear system. The cost
of the direct computation of this pseudo-inverse by standard numerical methods
(e.g. directly available in Matlab) is scaling as n6.
Note that if the function f is elliptic, the solution of problem 6 is exactly given
by ∇f(X0) and H(X0), and the least-square value reaches 0. However, in the
general case, denoting by ĝ and Ĥ the solutions of problem 6, the minimum is
not 0. Moreover, a measure of the quality of the approximation of the gradient
and the Hessian matrix can be given by

N∑

k=1

(
f(Xk)− f(X0)− (Xk −X0)T ĝ − 1

2
(Xk −X0)T Ĥ(Xk −X0)

)2

.

More precisely, a criterion to detect the cases of poor approximations where
matrix Ĥ should not be used in the mutation will be based on the following
normalized error:

Q =
1

N

N∑

k=1

(f(Xk)− f(X0)− (Xk −X0)T ĝ − 1
2 (Xk −X0)T Ĥ(Xk −X0)

f(Xk)− f(X0)− (Xk −X0)T ĝ

)2

.

(7)
This Q factor is invariant under any dilatation or offset of the target function f .

4.2 Gathering examples

The approximation method described above requires at least n(n2+3)/2 samples
(i.e. points of the search space together with their actual fitnesses). Those sam-
ples will of course be gathered from the points used during evolution. A trade-off
has to be found, however, between the accuracy of the approximation and the
computational effort, as drawing exactly n(n2 + 3)/2 points at every generation
would obviously be far too costly. Hence only points that need to be evaluated
during the normal course of the algorithm will be used, and the approximation
will be based on the most recent visited points. The approximation could nev-
ertheless be computed at every generation, using some sliding window of recent
points. But again, this has a cost, and another trade-off has to be made, comput-
ing a new approximation only at given times, using the same covariance matrix
in between (this is similar to what is done in most pseudo-Newton methods).

4.3 Adapting the step-size

So far, we have only discussed the covariance matrix of the Gaussian mutation
described by Equation 1. However, even with the optimal covariance matrix, an
ES algorithm will never work properly if the step-size is not correctly adapted
too. As mentioned in section 2, CMA-ES has a deterministic update rule for
its step-size, but performs as well with self-adaptive step-size. Moreover, the
transition between Least-Square phases and CMA-phases of the algorithm makes
it difficult to mix the different strategies for the step-size. It was hence decided to
use the standard self-adaptive rule of ES algorithms for the step-size throughout
the LS-CMA-ES algorithm.

4.4 The (1, λ)-LS-CMA-ES

The first complete algorithm based on the ideas developed above is the (1, λ)-
LS-CMA-ES algorithm, whose pseudo-code is given in Table 1, where g is the
generation counter, x(g) the current parent, σ(g) the current step-size, C(g) the
current covariance matrix, and ccov a real parameter that will tune the covariance
matrix update rule. We shall now discuss the different steps in turn.

A (1, λ)-SA-ES. The basis of the LS-CMA algorithm is a standard self-adaptive
Evolution Strategy: Line 4 of Table 1 is the generation of λ offspring using the

Gaussian mutation of equation 1 where- the step-size is a log-normal mutation of
the step-size of the parent. Lines 5 and 6 are the usual evaluation and selection
steps of (1, λ)-ES.

Covariance matrix update. Lines 8 and 10 are the standard covariance matrix
adaptation of the CMA method [6]. However, the computation of the steepest
direction pc must be performed even in LS mode to be accurate if mode must
be switched. In LS mode, the covariance matrix of the mutation is unchanged
(line 9).

Quadratic approximation. Every nupd generations (line 11), the approxima-
tion of the Hessian is computed from equation 6 (line 12). The sample points
have been gathered along evolution (line 7).

If the error on the approximation is below the threshold, then the new ap-
proximation replaces the old one, whether it came from CMA or LS modes, and
mode is turned to LS (line 13). Otherwise, mode is turned to CMA (line 14).
And the main loop resumes (line 16).

Initialization: x(0) ← x0; σ(0) ← σ0; C(0) ← Id; p
(0)
c ← 0; archive ← ∅ Mode ← LS 1

while (not stopping condition) do 2
g ← g + 1 3

Create λ offspring: x
(g+1)
j ← x(g) + σ(g) exp(τÑj(0, 1))Nj(0, C

(g)), j ∈ [1, λ] 4

Evaluate offspring: Compute f(x
(g+1)
j) for all 1 ≤ j ≤ λ 5

Select best offspring x(b): x(g+1) ← x
(g+1)
b ; σ(g+1) ← σ(g) exp(τÑb(0, 1)) 6

Store offspring in archive 7

p
(g+1)
c ← (1 − cc)p(g)

c +

√
cc(2−cc)
σ(g) (x(g+1) − x(g)) 8

if in LS mode C(g+1) ← C(g) 9

else (CMA mode) C(g+1) ← (1 − ccov)C(g) + ccovp
(g+1)
c (p

(g+1)
c)T 10

if (g mod nupd =0) 11

Compute ĝx(g) , Ĥx(g) from n2 recent archived samples solving Eq. 6 12

if (Q(ĝx(g) , Ĥx(g)) < Qth mode ← LS; C(g+1) ← (1
2
Ĥx(g))−1 13

else mode ← CMA 14
end if 15
end while 16

Table 1. Pseudo code for the (1, λ)-LS-CMA-ES algorithm

The parameters. The values of some parameters of the LS-CMA-ES algorithm
have to be manually fixed. The following values, either from [11] or [6] when
relevant, or adjusted by trial-and-error during preliminary runs, have been used
in all experiments of Section 5. The number of offspring λ was set to 10 for
the LS-CMA-ES and to 4 + b3 ∗ log(N)c for the CMA algorithm, cc and ccov,
the relaxation parameters, to respectively 4

n+4 and 2
(n+
√

2)2
[6]. The update

parameter of the self-adaptive log-normal mutation of the step-size, τ , was set to
1√
n

[11]. The threshold Qth on the approximation error for the Hessian matrix

that will decide to switch back and forth between LS mode and pure CMA
mode, was set to 10−3, after intensive monitoring on the elliptic and Rosenbrook
functions. Finally, nupd was set to 100 with of course a possibly delay in the first
update in order to have n2 samples available for the first update.

5 Experimental Results

This section presents the first results obtained using the (1, λ)-LS-CMA-ES algo-
rithm. It will be compared to the best-performing to-date algorithm in the class
of ES-like algorithms (i.e. relying on repeated Gaussian mutations), the original
CMA algorithm, as described in [6], using the original implementation that the
first author kindly makes available [5]. Two variants of CMA are used, the best
performing CMA, that uses bλ2 c parents as default value, and a (1, λ)-CMA, for
a fair comparison, as no experiment has yet been performed on multi-membered
LS-CMA-ES. The analytical form of all test function is given in Table 5.

Results: First, the elliptic function felli and the Rosenbrock function fRos have
been intensively tested. A priori, if our hypothesis of section 3 about the op-
timality of (1

2H)−1 as covariance matrix is correct, the LS-CMA-ES method
should perform very well on the elliptic function. Rosenbrock function, on the
other hand, is quite different, and behaves more like |x|6 close to the optimum.
The approximation error Q defined in Equation 7 should hence be larger.

All tests have been performed 100 times independently, from the same initial
position (5, 5, . . . , 5). At each generation, the minimum, median and maximum
values out of the 100 runs have been gathered, and are shown on Figure 1.

The results for felli are very clear, and match our expectations: the three
groups of three different lines, from left to right are respectively the min, median
and max for LS-CMA-ES, then the min, median and max for pure CMA and
finally the min, median and max for (1, λ)-CMA. The variance is very small
for all three algorithms. For both CMA-ES algorithms, the flat plateau before
actually diving toward 0 is the time necessary to learn the correct covariance
matrix – while LS-CMA-ES has it all right from the beginning, whatever the
dimension (only the minimum number of sample points before the first matrix
can be learned makes a small difference). Note, however, that such plateaus
can result in a huge difference of actual results in practice, when the stopping
criterion is likely to be driven by the computational cost when the actual value
of the minimum is generally unknown.

The picture is somewhat different with the Rosenbrock function – which is
not unimodal, and has a very flat region between the local optimum and the
global optimum. First, only the min and median values have been plotted. For
both 20 and 50 dimensions, the first three lines from left to right are the min
values of, respectively, LS-CMA-ES, pure CMA and (1, λ)-CMA. Next three lines
are the median value for, respectively, the pure CMA, the (1, λ)-CMA and the
LS-CMA-ES. As can be seen in dimension 50, the median run of LS-CMA-ES
did not converge to the right minimum and the fitness value stayed above 1.

function evaluations
0 51. 10 52. 10

-3010

-2010

-1010

010

1010 felli dim=50

function evaluations

51. 10 53. 10

-3010

-2010

-1010

010

felli dim=70

function evaluations

41. 10 43. 10 45. 10 47. 10

-2010

-1010

010
frosen dim=20

function evaluations

51. 10 53. 10

-2010

-1010

010

frosen dim=50

Fig. 1. Comparative on-line results for the elliptic function in dimensions 50 and 70
(above) and for the Rosenbrook function in dimensions 20 and 50 (below). See text for
line labels.

Indeed, for all three algorithms, some of the 100 runs did not converge to the
global optimum. More precisely, this concerns, for LS-CMA-ES, pure CMA and
(1, λ)-CMA, 25 (resp. 12 and 22) runs in dimension 20, and 65 (resp. 15 and 20)
runs in dimension 50.

Furthermore, a detailed investigation of the approximation error shows that
LS is active at the beginning of evolution, far from the flat optimum, and boosts
the search there. As the individuals get closer to the minimum, the approxima-
tion error increases, and at some point the algorithm switches to CMA, some-
times keeping its advance (e.g. for the runs who gave the min values), sometimes
not. Some better tuning of the error threshold might prevent this to happen, but
more detailed investigations are needed to understand why CMA catches up.

Several other functions, also used in [7, 6] (except for fexp), have been in-
vestigated to further validate those first conclusions. Some off-line results are
summarized in table 5. The tendencies observed on the elliptic and Rosenbrock
functions are indeed confirmed: fcigar, ftablet and fcigtab are elliptic functions,
on which LS-CMA-ES definitely outperforms even the complete CMA; On the
other hand, fdiff−pow is and fexp are not elliptic, fexp is even “infinitely flat”
(all derivatives are 0 at the minimum), and the results are similar to those on the
Rosenbrock function in terms of switching between LS mode and CMA mode.
However, as these functions are unimodal, no premature convergence takes place.

LS-CMA-ES CMA-ES (1, λ)− CMA

Function min med max min med max min med max

felli =
� n
i=1(106)

i−1
n−1x2

i 0.51 0.57 0.72 2.05 2.15 2.26 2.9 3.0 3.1

fRos =
� n−1
i=1 100(x2

i − xi+1)2 + (xi − 1)2 0.98 6.03 – 1.4 2.3 – 1.4 3.1 –

fcigtab = x2
1 +

� n−1
2 104x2

i + 108x2
n 0.53 0.61 0.70 1.45 1.52 1.58 2.36 2.47 2.57

ftablet = 106x2
1 +

� n
2 x

2
i 0.42 0.50 0.56 1.61 1.71 1.78 3.4 3.7 3.9

fcigar = x2
1 +

� n
2 106x2

i 0.45 0.51 0.57 0.90 0.95 1.01 1.04 1.08 1.1

fdiff−pow =
� n

1 |xi|
2+10 i−1

n−1 1.53 2.14 3.66 1.18 1.36 1.58 1.53 2.14 2.66
fexp = exp(||x||2)− 1 0.22 0.29 0.31 0.27 0.29 0.32 0.35 0.40 0.45
Table 2. Off-line results for different test functions in dimension 20. The figures are
the number of function evaluations (unit = 104) before the algorithm reached 10−10

(or – when it never did within 105 evaluations.

Discussion: Those experimental results show an outstanding improvement of
performance for LS-CMA-ES over pure CMA-ES on elliptic functions. This
should not be too surprising if referring to classical methods of numerical op-
timization: Whereas the CMA-ES can be seen as a steepest descent technique,
where the covariance matrix is updated using the previous descent direction (see
Section 2), the LS-CMA-ES can be considered similar to second-order quasi-
Newton techniques, i.e. relying on local curvature information to find out next
points to sample.

Yet, the improvement has only be demonstrated on unimodal or quasi-unimodal
functions – and the niche for Evolutionary Algorithms is global optimization in
multi-modal context. However, the exploitation phase of EAs is important too,
and many refinements of ES algorithms have concentrated on that. As for explo-
ration, it is generally emphasized in the early generations, when the step-sizes
are still large enough, by using more than one parent. At the moment, only
(1, λ)-LS-CMA-ES have been experimented with, and for few values of λ. It is
expected that using multiple parents within LS-CMA-ES will increase its perfor-
mance, for multi-modal problems, of course, including the Rosenbrock function,
but also on non-elliptic unimodal problems, where at the moment if performs
better than the corresponding (1, λ)-CMA.

One particular aspect of the LS-CMA-ES that cannot be seen on the plots of
Section 5 is the computational cost: as mentioned in Section 4.1, direct solution
of the least-square linear system theoretically scales like n6. Thanks to Matlab
efficient implementation, it was nevertheless possible to go up to dimension 70
(overhead costs for one approximation on a 3.0GHz Pentium roughly take 1,
280 and 1320 seconds for dimensions 20, 50 and 70). A first remark is that
in high dimensions, this additional cost could be greatly reduced by using an
iterative method to solve Equation 6. Furthermore, when solving very costly
real-world problems, e.g. in CFD domain, where the computation of a single
fitness value can take up to a few hours, the approximation overhead will be
negligible compared to the gain of a few fitness computation.

6 Conclusion

This paper has introduced LS-CMA-ES, the first second-order evolutionary algo-
rithm for parameter optimization. Initial results have demonstrated the efficiency
of this algorithm on a large class of (quasi-)unimodal functions, where the best
CMA-ES algorithm is outperformed by several orders of magnitude on elliptic
problems. Moreover, a dynamic criterion allows the algorithm to switch back to
CMA when the second-order approximation is poor, resulting in better results
than the one-parent CMA-ES on “more flat” functions, as far as the best runs
are concerned. There remains a lot of room for improvement of the proposed
algorithm. First, its parameters (e.g. the number of offspring) needs to be fine-
tuned. Next, there might exist some CMA-like update rule for the step-size to
tackle premature convergence problems like observed on Rosenbrock function.
Finally, the multi-membered version of the algorithm will be investigated, to
address multi-modal problems. We do believe that this algorithm is a signifi-
cant step forward in Evolutionary Parameter Optimization, and will be able to
combine the accuracy of the best deterministic methods with the global search
capabilities of Evolutionary Algorithms.

References

1. A. Auger. Convergence Results for (1,λ)-SA-ES using the Theory of ϕ-irreducible
Markov Chains. In Th. Bäck and M. Schoenauer, editors, Wokshop on Evolutionary
Algorithms – ICALP 2003, Eindhoven, The Netherlands, July 2003.

2. A. Auger, C. Le Bris, and M. Schoenauer. Dimension-independent Convergence
Rate for Non-isotropic (1, λ)−ES. In E. Cantu-Paz et al., editor, GECCO’2003,
pages 512–524. LNCS 2723 and 2724, Springer Verlag, 2003.

3. T. Bäck, F. Hoffmeister, and H.-P. Schwefel. A survey of Evolution Strategies. In
R. K. Belew, L. B. Booker, editors, ICGA’91, pages 2–9. Morgan Kaufmann, 1991.

4. Th. Bäck and H.-P. Schwefel. An Overview of Evolutionary Algorithms for Pa-
rameter Optimization. Evolutionary Computation, 1(1):1–23, 1993.

5. N. Hansen. CMA-ES for Noisy Optimization: Implementations in Matlab.
http://www.bionik.tu-berlin.de/user/niko/cmaes inmatlab.html.

6. N. Hansen, S. Müller, and P. Koumoutsakos. Reducing the Time Complexity of the
Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES).
Evolutionary Computation, 11(1):1–18, 2003.

7. N. Hansen and A. Ostermeier. Completely Derandomized Self-Adaptation in Evo-
lution Strategies. Evolutionary Computation, 9(2):159–195, 2001.

8. P. Larranaga and J. A. Lozano. Estimation of Distribution Algorithms. A New
Tool for Evolutionary Computation. Kluwer Academic Publishers, 2001.

9. I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzip-
ien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart, 1973.

10. N. Hansen D. Büche J. Ocenasek S. Kern, S.D. Müller and P. Koumoutsakos.
Learning Probability Distributions in Continuous Evolutionary Algorithms - A
Comparative Review. In Th. Bäck and M. Schoenauer, editors, Wokshop on Evo-
lutionary Algorithms – ICALP 2003, Eindhoven, The Netherlands, July 2003.

11. H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons,
New-York, 1981. 1995 – 2nd edition.

