
HAL Id: hal-02952741
https://hal.archives-ouvertes.fr/hal-02952741v2

Submitted on 4 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolution in Dynamic Software Product Lines
Clément Quinton, Michael Vierhauser, Rick Rabiser, Luciano Baresi, Paul

Grünbacher, Christian Schuhmayer

To cite this version:
Clément Quinton, Michael Vierhauser, Rick Rabiser, Luciano Baresi, Paul Grünbacher, et al.. Evolu-
tion in Dynamic Software Product Lines. Journal of Software: Evolution and Process, John Wiley &
Sons, Ltd., 2020, �10.1002/smr.2293�. �hal-02952741v2�

https://hal.archives-ouvertes.fr/hal-02952741v2
https://hal.archives-ouvertes.fr

Received 8November 2018; Revised 24 April 2020; Accepted 21May 2020
DOI: xxx/xxxx

RESEARCHARTICLE

Evolution in Dynamic Software Product Lines
Clément Quinton1 | Michael Vierhauser2 | Rick Rabiser3 | Luciano Baresi4 | Paul
Grünbacher5 | Christian Schumayer5

1University of Lille, CRIStAL UMRCNRS 9189,
Inria Lille - Nord Europe. F-59000 Lille, France.
clement.quinton@univ-lille.fr
2Department of Business Informatics –
Software Engineering, Johannes Kepler
University Linz,
Altenberger Str. 69, 4040 Linz, Austria
michael.vierhauser@jku.at
3LIT CPS Lab, Johannes Kepler University Linz
Altenberger Str. 69, 4040 Linz, Austria
rick.rabiser@jku.at
4Politecnico diMilano, Dipartimento di
Elettronica, Informazione e Bioingegneria,
Piazza L. Da Vinci 32, 20133Milano, Italy
luciano.baresi@polimi.it
5CD LabMEVSS, Institute for Software
Systems Engineering, Johannes Kepler
University Linz,
Altenberger Str. 69, 4040 Linz, Austria
paul.gruenbacher@jku.at,
schuhmayer.christian@gmx.at
Correspondence
C. Quinton, clement.quinton@univ-lille.fr

Summary
Many software systems today provide support for adaptation and reconfiguration at runtime, in
response to changes in their environment. Such adaptive systems are designed to run contin-
uously and may not be shut down for reconfiguration or maintenance tasks. The variability of
such systems has to be explicitly managed, together with mechanisms that control their runtime
adaptation and reconfiguration. Dynamic software product lines (DSPLs) can help to achieve this.
However, dealing with evolution is particularly challenging in a DSPL, as changes made at run-
time can easily lead to inconsistencies. This paper describes the challenges of evolving DSPLs
using an example cyber-physical system for home automation. We discuss the shortcomings of
existing work and present a reference architecture to support DSPL evolution. To demonstrate
its feasibility and flexibility, we implemented the proposed reference architecture for two differ-
ent DSPLs: the aforementioned cyber-physical system, which uses feature models to describe its
variability, and a runtimemonitoring infrastructure, which is based on decision models. To assess
the industrial applicability of our approach, we also implemented the reference architecture for
a real-world DSPL, an automation software system for injection molding machines. Our results
provide evidence on the flexibility, performance and industrial applicability of our approach.
KEYWORDS:
Dynamic Software Product Lines, Evolution, Consistency

1 INTRODUCTION
An increasing number of software systems today are adaptive systems that provide runtime adaptation and reconfiguration capabilities to react
to changes in their environment. These systems usually run continuously and cannot be shut down for reconfiguration or maintenance tasks.
For instance, cyber-physical systems must frequently reconfigure their software components at runtime to take into consideration the addition,
removal or update of physical devices. Dynamic Software Product Lines (DSPLs) 1 provide the conceptual framework for managing the variability in
such systems. ADSPL borrows themeans to define andmanage variability from conventional software product lines, but additionally supports sys-
tem reconfiguration at runtime. Similar to conventional software product lines, variabilitymodels in aDSPLdefine the commonalities and variability
of system artifacts with domain-specific properties and dependencies. They describe the possible variants of a system together with constraints
and dependencies and can cover the system’s problem space, i.e., stakeholder needs and desired features, as well as its solution space, i.e., the com-
ponents realizing the solution architecture. The mappings between these two spaces then allows to assemble and configure a product based on
customers’ requirements 2,3. In a DSPL, the variabilitymodel also has to describe how the system can be adapted at runtime.Models providing such
support have been called open variability models 4.
Changes in the requirements and newly emerging technologies lead to the continuous evolution of DSPLs: for example, new features may need

to be added or existing features may need to be removed. Managing evolution is particularly difficult in a DSPL context, as changes are made at

2
runtime, which can easily lead to inconsistencies among running components. Specifically, it is challenging tomaintain the consistency between the
problem space and the solution, the variability model and the running system, as well as the runtime adaptation mechanisms. Many approaches
have been proposed for managing the evolution of software product lines 5, ranging from verification techniques to ensure consistent evolution, to
model-based frameworks dedicated to the evolution of feature-based variability models 6. For example, an interesting research thread proposes
evolution templates for co-evolving a variability model and related software artifacts 3,7,8. Model-checking approaches are used to guarantee the
consistency of a variability model after evolution 9,10. Furthermore, approaches for comparing the set of possible products before and after the
evolution of a product line have been proposed 11,12. These approaches, however, are limited regarding support for DSPL evolution, as they focus
on guaranteeing the consistency of the evolved DSPL variability model but fail to ensure that the evolution is consistent with the DSPLs actual
implementation and adaptationmechanisms.

FIGURE1Overview of different types of changes (manual, or automated) and the respective triggers (triggered by a human, or by the environment)
that can have an impact on the system. Certain scenarios are part of other research areas as well, but a DSPL needs to consider multiple different
scenarios alongside with the PL variability model.

There are three evolution scenarios in a DSPL context (cf. Fig. 1). First, the change and the related adaptation are triggered manually, e.g., when
updating the code base. Second, the change can be performed manually, while the adaptation is automated e.g., in a build automation or DevOps
process. Finally, both the change and the adaptation can be triggered automatically, which is the case for self-adaptive systems where evolving
environment implies a reconfiguration of the system. Besides the area of (dynamic) software product lines, considerable effort has been made in
the domain of (self-)adaptive systems to efficiently adapt to changes in the environment, or recover from errors introduced in a running system.
Examples range from autonomous vehicles or robots 13, to self-managing and self-adapting web services and IoT systems 14. Self-adaptive systems
(often using aMAPE-K 15 approach) react to changes in the environment to, for example, optimize throughput and reduce resource consumption by
updating the configuration or architecture of the system. Automated build and deployment solutions (DevOps) on the other hand are triggered by
(manual) changes in the program’s source code and ensuring proper re-deployment of the system, sometimes in an incremental manner and/or at
runtime. However, while these solutions provide important contributions to (self)-adaptivity and self-repair of systems at runtime, what sets them
apart from aDSPL is their lack of explicitly modeling the variability of the system. This is important as the the running systemmust to be consistent
with its counterpart described, for example, in a featuremodel (cf. Fig. 1).
Existing DSPL approaches are typically based on ad-hoc adaptation mechanisms that need to be maintained manually to keep them consistent

with theproblemand solution spacesduringevolution 16. Proper evolution support is, however, crucial to guarantee the consistencyof theDSPLand
of the (potential) adaptations of the running system 17. Furthermore, existing approaches typically only support one particular variability manage-
ment approach and are not flexible enough to allow their use in different domains and for different types of systems, using diverse implementation

3
techniques. A variability model-agnostic approach is still missing that facilitates the evolution of problem and solution spaces, together with the
runtime adaptation mechanisms, and also checks the consistency of the resulting products. Based on our work on runtime reconfiguration of mon-
itoring systems 18,19 and on the dynamic evolution of the architecture of DSPLs 20, we sketched some general issues related to DSPL evolution in a
short paper 21. The research described here builds on this short paper. Specifically, we developed a flexible approach to support DSPL evolution based
on a reference architecture, that can be implemented to support the evolution of a concrete (type of) DSPL. The reference architecture describes the capa-
bilities needed for detecting changes made to running systems, for automating the update of variability models, and for detecting inconsistencies
among all the relevant elements of a DSPL. Specifically, our reference architecture guides the development of change detection, model update, and
consistency checking solutions to support evolution in a concrete DSPL.
The key contributions of this paper are (i) a flexible approach, based on a reference architecture, to implement evolution support for a DSPL,

(ii) implementations of the reference architecture for two different DSPLs in different domains – one cyber-physical system and one runtimemon-
itoring system, both using different means for variability management, (iii) an evaluation of the feasibility and performance of our approach by
simulating common evolution scenarios for both DSPLs to demonstrate that both implementations are capable of detecting inconsistencies intro-
duced in aDSPLat runtime, and (iv) ademonstrationof the industrial applicability of our approachbyapplying it to a real-world automation software
systemDSPL from the injectionmolding domain.
The rest of the paper is organized as follows. Section 2 provides a brief introduction to DSPLs and introduces a running example. Section 3

discusses important evolution scenarios and their impact on the consistency of a DSPL and summarizes the challenges of DSPL evolution. Section 4
presents a reference architecture for implementing support forDSPL evolution. Section 5 describes our evaluationmethod. Section 6 describes the
implementation of evolution support for two different DSPLs based on the reference architecture and performance experiments we conducted.
Section 7 describes how our proposed reference architecture was implemented for a real-world automation software system from the injection
molding domain by an engineer ofMoldingCompanya. Section 8 discusses our results and elaborates threats to validity. Section 9 discusses related
work, and Section 10 concludes the paper.

2 BACKGROUNDANDRUNNING EXAMPLE
Product line engineering aims at building software systems by reusing common software artifacts across a set of related products 22. Managing the
commonalities and variability of product lines is a cross-cutting concern 22,23. Modelling product line variability concerns the problem space (i.e.,
features and capabilities), the solution space (i.e., components of the solution architecture), and the mapping space (i.e., links between problem and
solution space elements) 24,25.

2.1 Background
A DSPL is a special form of a software product line designed to support runtime variability, that is, adaptation and reconfiguration at runtime.
The DSPL engineering process (Fig. 2) extends the SPL process by adding post-deployment and reconfiguration activities 26. In contrast to SPLs
with variation points bound only at design time DSPLs allow to explicitly bind features at runtime. A variability model then describes all permis-
sible reconfigurations 27, which enable the running system to adapt to changes in the environment, relying, e.g., on context information 28. This
information in turn is captured and analyzed through the use of dedicated tools, which then trigger reconfigurations.
Fig. 2 depicts an abstract system whose variability is described in a feature model. Each feature in the feature model is realized by at least one

related software artifact – e.g., a service or a component – called asset. For the sake of simplicity, we do not include cross-tree constraints in this
figure but want to point out that the architecture described further is well-suited to handle them. Also, we do not assume a 1-to-1 mapping of
problem space features to solution space assets, i.e., one feature can be realized bymultiple assets and several features can be realized by one asset.
This mapping of assets and features – here abstracted using a simple arrow – is typically specified using a dedicated language 24.
Adaptation rules state how the system can evolve. For example, R4 specifies that feature Amust be activated during reconfiguration whenever

condition N is met (selected features are marked with a green check mark). After deploying the initial configuration, changes in the context of the
running system may result in condition N to be met, leading to the inclusion of feature A. All phases of runtime adaptation (analysis, planning and
execution) rely on the variability model. Ensuring its consistency at runtime is thus fundamental for DSPL engineering.

aThe name has been changed to protect the company’s privacy.

4

S

A

B

C D

Software artifacts

S

A B

C D

Variability model

mapping

Problem
Space

Solution
Space

Design
Time

Run
Time

Adaptation
Rules

R1 R2

R3 R4

S

A B

C D

S

A B

C D

...

if condition N
then activate A

time
t t + 1

context changes,
condition N is met

Initial configuration Reconfiguration

optional
feature
alternative
feature
running
system

A

CC

FIGURE 2DSPL engineering.

2.2 Running Example
To illustrate the challenges and issues facedwhen evolving aDSPL, we introduce a cyber-physical system (CPS) for home automation as an example
of an adaptive system combining both hardware devices and software systems. The CPS consists of smart devices equippedwith sensors and actu-
ators interconnected through a software system. Sensors are used to retrieve information from the environment; reconfiguration plans are then
carried out through the actuators. Fig. 3 depicts an excerpt of the variability model of our CPS, along with related adaptation rules.

CPS

Sensor Actuator

S_Light A_BlindA_Light

On Off Up Down

if luminosity < 40
then turn light on

if luminosity > 80
then close blind
...

FIGURE 3 Excerpt of the variability model of a cyber-physical system and its related adaptation rules.

In this case, a possible reconfiguration action is to switch on light through the actuatorA_Lightwhenever the luminosity in a given room, captured
by sensor S_Light, is lower than 40 lumens, or to close the roller blinds of the window, whenever it is higher than 80 lumens. Obviously, a CPS
automaticallymanaging the luminosity, temperature, humidity, andenergy consumptionof ahome relies onmany suchadaptation rules for different
rooms and devices. Each adaptation rule is thus related to the variability model describing possible reconfigurations of the CPS.

5

3 DSPL EVOLUTION
ADSPL is a long-term investment and is meant to be used over a long period of time. As any other software system, it needs to evolve to meet new
requirements. For instance, new devices may be configured to support new kinds of adaptations or existing reconfiguration mechanisms may be
changed or removed. When evolving a DSPL, developers have to cope with the variability of the different spaces, while ensuring that adaptations
that may occur within the running system are still feasible. Intra-space changes affect only one space while inter-space changes involve different
spaces 3. In addition, runtime changes ofDSPLelements defined at design timeoftenhave an impact on the reconfigurability of the deployed system.
Evolving aDSPL is thus an error-prone and challenging task. This section discusses all the possible changes that can occur in the threemodeling spaces of
the DSPL during evolution and their potential effect on the running system. We present examples of these effects on the runtime adaptations of the CPS
DSPL, and then discuss the related challenges.

3.1 Impact of Evolution
In the following, the variability of the CPS is described using a feature model, the most common approach to model product lines. Although
we describe only one change per space in our examples, the changes can affect the consistency of the overall DSPL. The left-hand side of each
(sub-)figure shows the initial DSPL, and the right-hand side the one after evolution. Elements depicted with square brackets are software artifacts
from the solution space, e.g., components or services. Throughout our examples, we assume that an operation, whose signature is given between
the square brackets, is implemented by these software artifacts. Dashed lines with arrows on both sides represent the mapping between problem
and solution spaces. Rectangles in dashed lines highlight the resulting inconsistencies.

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

Color

(a) Adding an element to the problem space.

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn()

turnLightOff()

Color

CPS

Sensor

A_Light

Actuator

S_Light

setBlue()

Red Blue

setRed()

On Off

turnLightOn()

turnLightOff()

Color

setBlue()

Red

setRed()

(b) Removing an element from the problem space.

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn()

turnLightOff()

Soft Full

(c) Updating an element of the problem space.

FIGURE 4 Problem space evolutions.

6

Problem Space
For instance, in Fig. 4(a) the optional feature Color is added to the system to make the light actuator now configurable by allowing the selection of
a light color. This feature may require specific colored light bulbs. The problem in this case is caused by the missing software artifact that needs to
bemapped to the new feature. In our example,Colormust be defined and included in the adaptation rule, since otherwise theColor feature is empty
(has no associated operation), i.e., the reconfiguration will have no effectb. The problem occurs immediately if the feature is mandatory, or when
activating an optional feature.
Removing a feature can easily impact the consistency of the DSPL. Let us consider a case where the color of the light could have been red or

blue, but the latter cannot be set anymore after evolution, e.g., because of a hardware problem (Fig. 4(b)). If featureColor is involved in an adaptation
rule, e.g., turn on the blue light when it is 07:00 in the morning, then the reconfiguration would fail whenever this condition is met, even though the
related solution space element is available.
A feature, or any other element of the solution space, e.g., a constraint, can also just be updatedc. For example, one can think of a different way

of switching lights on and off. The variability model is updated when feature On is upgraded, as a dimmer now allows the light to be turned on
completely or partially (Full and Softmodes in Fig. 4(c)). Adaptation rules that involve feature On (Fig. 3) need to be updated to reflect this change
and to avoid an inconsistency. Updating the rules is done by setting the correct action to perform, e.g., when the luminosity becomes lower than 40
lumen, turn on the light in soft mode.

Mapping Space

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

(a) Adding an element to themapping space.

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

setSpeed()

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

setSpeed()

(b) Removing an element from themapping space.

CPS

Sensor

A_Light

Up Down

Actuator

S_Light

moveUp() moveDown()stop()

Stop

CPS

Sensor

A_Light

Up Down

Actuator

S_Light

moveUp() moveDown()stop()

Stop

(c) Updating an element of themapping space.

FIGURE 5Mapping space evolutions.

bIn the context of this paper, we consider that a feature is empty when its selection has no effect on the expected adaptation.cAn update is considered as a transaction, that is, a sequence of atomic changes treated as one change (e.g., Add + Rem). The DSPL is thus checked only
once (after the update) instead both after the Add and after the Rem.

7
A new mapping can be added when a feature requires an extension and is then realized by composing two different software artifacts. For

example, Fig. 5(a) considers the case in which the implementation of features Up and Down for blinds requires two software artifacts after evolu-
tion: one for controlling the speed and another one for the direction (we assume both were handled by the same artifact before). If the mapping is
not correctly defined and does not point to any artifact, the adaptation is partially inconsistent, e.g., one can still control the direction (up/down) of
the blinds but not their speed since the related artifact is not mapped correctly.
Removing a mapping element can prevent the proper reconfiguration of the running system. In Fig. 5(b), conversely to the previous scenario,

artifactsmoveUp() andmoveDown() also control the speed after evolution, so the mapping related to speed is removed. In that case, if the software
artifacts are not properly updated, the element of the solution space that controls the speed (setSpeed()) becomes a dead asset.
When updating a mapping, the reference to the element needs to be changed either in the problem space or in the solution space. For example,

Fig. 5(c) illustrates the casewhere artifact Stop(), whichwas initially bound to feature Stop, is nowbound to featureUp: if one pushes buttonUpwhen
the blind moves down, it stops, instead of having a dedicated button Stop. Adaptations related to feature Stopwould now fail, as software artifacts
are no longer bound to this feature. For instance, such an adaptation could require that the blind stops when there is toomuchwind or rain.

Solution Space

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

turnLightSoft()

(a) Adding an element to the solution space.

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

setSpeed()

CPS

Sensor

A_Blind

Up Down

Actuator

S_Light

moveUp() moveDown()

(b) Removing an element from the solution space.

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightOn() turnLightOff()

CPS

Sensor

A_Light

On Off

Actuator

S_Light

turnLightSoft() turnLightOff()

(c) Updating an element of the solution space.

FIGURE 6 Solution space evolutions.

Fig. 6(a) considers a new artifact that implements a soft new way of turning on the light. If this new software artifact should be taken into
consideration for the reconfiguration at runtime, related elements in themapping as well as in the problem spacemust also be added.

8
Removing a software artifact when evolving the solution space can lead to problems when different features share the same artifact. Fig. 6(b)

illustrates this situation as artifact setSpeed() is removed. In this scenario, featureUp no longer needs such an artifact (we suppose this is now imple-
mented by artifactsmoveUp() andmoveDown()). This can result in a partially inconsistent adaptation, i.e., the blind can still move down but the speed
cannot be controlled, which can be an issue.
Finally, Fig. 6(c) illustrates an evolution in the solution space, where the implementation of feature On is changed. After the change, activating

this feature turns on the light in soft mode. Although the resulting reconfiguration turns the light on (in soft mode, but on anyway), this may not be
the expected behaviorwith respect to the semantics of featureOn. The evolved software artifact could also be an implementation that is completely
unrelated to the light system and turns on the TV, thus leading to another inconsistent adaptation.
Table 1 summarizes the different evolution scenarios in the problem and solution spaces and the mapping between the two, with respect to

atomic tasks/changes as discussed above. It further summarizes the possible effects of each change on the consistency of the CPS DSPL and the
impact on the running configuration.

TABLE 1 Changes in different modeling spaces and examples of their potential effect on the CPS DSPL. Add stands for addiction, Rem for removal
and Upd for update.

Change Potential impact on the CPSDSPL

Pro
ble
mS
pac
e Add feature selection will have no effect : the added Color feature (cf. Fig 4(a)) is empty2, i.e., not related to any

solution space element, and selecting it will thus have no effect.
Rem artifact cannot be activated anymore : setBlue() (cf. Fig 4(b)) cannot be activated as it is no longer related to any

problem space element.
Upd feature selectionwill havenoeffect : Soft and Full (cf. Fig 4(c)) are empty features, i.e., not related to any solution

space element, and selecting themwill thus have no effect.

Ma
pp
ing
Spa
ce Add artifact cannot be activated anymore : the Blind speed cannot be controlled (cf. Fig 5(a)) as the new mapping

does not point to a solution space element.
Rem artifact cannot be activated anymore : setSpeed() (cf. Fig 5(b)) cannot be activated as after removing the

mapping, no feature is related with setSpeed() anymore.
Upd feature selection will have no effect : feature Stop (cf. Fig 5(c)) is empty, i.e., not related with any solution space

element, and selecting this feature nowwill not have any effect anymore.

Sol
uti
on
Spa
ce Add artifact cannot be activated anymore : turnLightSoft() (cf. Fig 6(a)) cannot be activated, as no feature is related

to the new solution space element.
Rem runtime adaptation will partly fail : feature Down (cf. Fig 6(b)) is not fully implemented, i.e., the speed can no

longer be controlled as this solution space element has been removed.
Upd unexpected runtime behavior : wrong implementation (asset) for feature On (cf. Fig 6(c)) leads to unexpected

behavior.

3.2 Challenges
The discussed cases show that evolution in DSPLs requires the consideration of multiple aspects 21. We see threemain challenges:

C1: Supporting evolution independently of the domain, implementation technique, or modeling approach. Existing DSPL evolution approaches focus
on a particular variability modeling approach, e.g., feature models 26. In practice, however, different approaches are used 29. Also, different ways of
modeling adaptation rules can be utilized in relation to variabilitymodels. Furthermore, systems are often implemented using various technologies.
The success of an approach for the evolution of DSPLs in practice thus depends on its flexibility to support different modeling and implementa-
tion techniques. This suggests a generic architecture that guides the implementation of concrete solutions, which use specific variability modeling
approaches and adaptationmechanisms.

9
C2: Ensuring consistency of models and the running system. The consistency of the DSPL must be checked whenever at least one of the spaces

evolves. Consistency must thus be checked for each space (intra-space consistency) and across spaces (inter-space consistency). For instance,
related elements from different spaces can become inconsistent with the actual software or hardware and prevent the derivation of products,
despite the validity of these products in the variabilitymodel. Althoughpatterns for keeping co-evolving bothmodeling spaces consistent have been
studied 30,31, most approaches so far have focused on the consistency of either the problem space 11,32,33 or the solution space 34. Also, existingwork
focuses on checking the consistency (of models) in software product lines without considering dynamic software product lines: whilemodel consis-
tency is similar in a SPL and a DSPL, consistency checking in a DSPL also needs to take into account the running system. Thus, it must be ensured
that its adaptation rules are still consistent with the variability model and do not violate any possible reconfiguration. Detecting such inconsisten-
cies is not straightforward as adaptation rules are typically defined independently of the variability model using diverse ad-hoc approaches such as
event-condition-action rules 16,35,26.When themodel evolves, the rules should be updated automatically. Also, when evolving rules, themodelmust
potentially also be updated.

C3: Supporting evolution triggered by the running system or the model. The evolution of a DSPL can be driven from two different perspectives. First,
the different spaces can evolve, e.g., a feature might be added to the problem space or a new component might be developed in the solution space
to address new requirements. Whenever one space evolves, the other space must evolve accordingly. Only then a configuration defined in the
problem space can bematerialized by composing elements from the solution space (e.g., Fig. 4(a)–4(c)), and vice versa (e.g., Fig. 6(a)–6(c)). Updating
a running system – to reflect changes made to the modeling spaces also in the running system – can be challenging depending on the technologies
used. Second, the evolutiond of a DSPL can also be driven by the running system: if the system changes both modeling spaces may need to evolve
to reflect these changes. Approaches have been proposed for dealing with the co-evolution of different modeling spaces 3,36, for reflecting system
evolution in themodels 37,38, or vice versa 39. However, they are typically only capable of dealing with a particular set of changes and cannot handle
both evolution betweenmodeling spaces and evolution driven by changes in the system.

4 REFERENCEARCHITECTURE
To address the aforementioned challenges, we present a reference architecture 40 that supports DSPL evolution.

Reference architectures
A number of approaches exist to inform the development of reference architectures 41,42. Following the types of reference architecture proposed
by Angelov et al. 43 we regard our reference architecture as a Type 5. Such architectures are designed to facilitate the design of systems that will
become needed in the future. Our reference architecture defines the key components required in a system implementing it, discusses algorithms
supporting the operation of the components, and presents protocols demonstrating the interactions among the components.
A reference architecture aims at providing guidance (i.e., instructions) on how to actually design a system 44. Our reference architecture (i) is indepen-

dent of specific domains, implementation techniques, ormodeling approaches forDSPLs (cf. challengeC1); (ii) it focuses on ensuring the consistency
of the running systemandof themodels representing theDSPL (cf. challengeC2); and (iii) supporting evolution triggered fromdifferent perspectives
(cf. challengeC3).
The reference architecture is divided into four parts, as depicted in Fig. 7. DSPL Adaptation comprises the adaptation rules defined to auto-

matically adapt the system at runtime. Change Detection and Propagation comprises a component that listens to the running system to detect any
(relevant) change made to the system and subsequently propagates this change to the Model Evolution component. Model Evolution comprises
components to evolve the variability model and/or the adaptation rules based on the changes received from Change Detection and Propagation,
given the specific scenario (see Section 3).Model Consistency uses a consistency checker to ensure that performed evolution operations, especially
if based on human decisions, do not introduce inconsistencies in the DSPL. The parts, each responsible for a given concern in the DSPL evolution
process, and the components they comprise, are described independently of any concrete (modeling) approach and can be implemented for any
systems. Small squares in the components indicatewhere such specific implementations are needed, e.g., to let theModel Updater update the Vari-
abilityModel for a concrete variability modeling approach. In Table 2, we list generic operations for each component, e.g., to listen to changesmade
to the running system and to update the variability models accordingly. These operations can be implemented when creating a concrete solution
for a DSPL. To this end, we describe two different implementations in Section 6 . Below, we describe each part of the reference architecture and
the components it comprises, again referring to the CPS example.

dPlease note that in our approach, an evolution results in a new version of the DSPL. The previous version of the variability model is replaced with the
evolved one and earlier configurationsmay no longer be derivable.

10

FIGURE 7Reference architecture for DSPL evolution.

DSPL Adaptation is responsible for managing all adaptation rules related to the DSPL. The specific way adaptation rules are described depends
on the domain and the implementation of the DSPL. For instance, the rules may be encoded using a domain-specific language that describes event-
condition-action rules 16,35,26. When a change occurs in the running system, the adaptation rules are likely to evolve together with the rest of the
DSPL, e.g., as an adaptation rulemay involve a feature that is no longer present in the variabilitymodel after the change. For example, an adaptation
rule defining the color of the light to be turned on under certain conditions will no longer be valid after the DSPL evolution scenario described in
Fig. 6(b), and thus the rule must be adapted or removed from this component to properly evolve the DSPL (cf. challengesC1 andC2).
Change Detection and Propagation is responsible for detecting and propagating changes in the running system. A State Managermonitors the

running systemand receives notificationswhenever changes occur. This could be achieved either by actively listening to system changes, or by peri-
odically querying the system and calculating changes with respect to a previously observed state.When a change is detected by the State Manager,
it is passed to theModel Updater, which determines relevant update actions for the variability model (cf. challengeC3).
InModel Evolution, the variability model defines all possible configurations for the software managed as DSPL, and thus guides all adaptations,

that is, it switches from one configuration to another given a particular adaptation rule. The variability model can be defined using any available
variability modeling approach 29. Our architecture distinguishes between two types of changes on the variability model: in case of unambiguous
changes – e.g., the CPS system gets a new feature to turn on a green light – the variability model can be updated immediately and automatically: a
new feature Green, can be added as a child of feature Color (cf. Table 1: PS_Add). In practice, however, multiple stakeholders may maintain a DSPL.
This can lead to ambiguous changes, which cannot be resolved automatically. The DSPL maintainer needs to be prompted through an interface –
the Update Resolution UI – to decide on how to react and how to update the variability model by selecting among suggested possible actions or
performing a custom one. For instance, the scenario described in Fig. 4(a) is not trivial, as feature Color can be added as a child of feature A_Light
or of feature On. An ambiguous change can also occur when a new component with a different name substitutes a running component, leading to
semantic issues that could only be solved using ontologies tomap components together, e.g., as in 45.Update Rules help automatemodel updates (cf.
challengeC3). For instance, an update rule may specify that an optional featuremust be added to the variability model as a child of the root feature
if a new optional functionality is available in the system.Whenever a change is ambiguous, the DSPLmaintainer performs amanual evolution using
the Update Resolution UI and can then define a new rule based on the change she has just made. Once stored with the other rules, the rule can be
used to automate future evolution scenarios to avoid possible ambiguity.Update Rules andModel Updater dependon the used approach formodeling
variability. Our architecture provides generic operations (cf. Table 2) that can be implemented for a specific approach, to specify update operations
and update rules, as described in Section 6. The list of possible changes in different modeling spaces (cf. Table 1) is a useful basis to develop update
rules, i.e., changes in problem, mapping, and solution spaces can be automated in reaction to the evolution of the DSPL.

11

TABLE 2Generic operations of our DSPL evolution reference architecture.

Component/Operation Description
StateManager

detectChange(changeEvent) Monitors the running system and listens to any changeEvent, e.g., new compo-
nent deployed to the running system.

notifyChanges(change[]) Periodically sends the list of change[] to theModel Updater.
Model Updater

analyzeChanges() Reacts to notifyChanges(change[]) and analyzes the required changes.
Calls update methods for variability model and/or DSPL adaptation rules
accordingly.

updateVariabilityModel(modelChange) Searches for an update rule matching the required modelChange, e.g., add
feature. If found, it parses the rule to update the model automatically, e.g.,
by adding a feature. If an automatic update is not possible, e.g., in case of
ambiguous changes, the operation prompts the user.

readUpdateRule(rule) Parses the related update rule to infer the proper automatedmodel evolution
to be applied.

updateAdaptationRule(rule, ruleChange) Searches for the DSPL adaptation rule to be evolved and performs the
required ruleChange. E.g., when a feature has been renamed in the model, the
referring adaptation rule needs to bemodified too.

Consistency Checker
parse(model) Loads and reads the variability model.
parse(adaptationRules) Loads and reads the DSPL adaptationRules.
checkConsistency(model) Checks the consistency of the variability model, i.e., checks for issues in differ-

ent modeling spaces and also compares variability model and running system
with each other according to the defined consistency rules.

checkConsistency(adaptationRules) Checks the consistency of the DSPL adaptationRules.
checkConsistency(model, adaptationRules) Checks if the variability model is consistent with the DSPL adaptationRules

ViolationManager
fixInconsistencyInModel(modelChange) Updates themodel to fix an inconsistency. Prompts the user if required.
fixInconsistencyInAdaptationRule(ruleChange) Updates the adaptation rule to fix an inconsistency. Prompts the user if

required.

Model Consistency is essential when dealing with evolution in a DSPL, especially when different people are responsible for different parts of
the system and or variabilitymodels. In our approach, different possible inconsistencies are defined as Consistency Rules (or constraints) that can be
fed to a dedicated Consistency Checker (cf. challenges C2 and C3). The Consistency Checker analyzes the running system together with the variability
model and the adaptation rules to detect any inconsistencies. The Consistency Checker thus needs to interface with the variability model but also
requires status updates of the running system.A consistency rule could, for instance, specify that for each problem space feature there must be
at least one solution space asset realizing that feature, i.e., for each feature at least one component must exist in the system that realizes that feature.
Another rule could define that for each feature selected for the DSPL (i.e., ‘activated’), the respective component realizing the feature must be currently
running (‘active’) in the system. The concrete set of consistency rules will depend on the system and on the modeling approach used, as we will show
in our evaluation.
In case of any detected inconsistencies, aViolationManager prompts the user through a dedicated interface. This could involve critical errors that

must be fixed (e.g., if the removal of an element from the variabilitymodel breaks an existing adaptation rule), but alsominor inconsistencies needing
attention (e.g., if the addition of an asset duplicates an existing one). TheConsistency Checker is thus in charge of detecting structural inconsistencies
after they occurred, while semantic ones (e.g., mapping to the wrong elements) are left to the user. Again, however, ontologies could be applied

12
to also cover at least basic semantic inconsistencies. The different parts of our reference architecture are independent of each other, leaving the
concrete implementation and application scenario to decide the technique ormodeling approach to be used.

5 EVALUATIONMETHOD
We investigate three research questions regarding the feasibility and applicability of our approach. Specifically, we assess the general feasibility
of our approach by implementing it for two different DSPLs, and determine for the two concrete implementations of the reference architecture if
inconsistencies arising from different evolution scenarios are correctly managed. We further show how our reference architecture can be applied
to a real-world DSPL in the domain of automation software for injectionmoldingmachines.

5.1 Application Examples
The first DSPL is a cyber-physical system providing capabilities for controlling and managing home automation devices such as sensors and actua-
tors under certain conditions, e.g., turning off the TV in case no one is watching it 46. To deal with the context-awareness of the devices in use, e.g., a
BelkinWeMo thermostat, adaptation rules are defined andmanaged by controllers deployed on set-top boxes. For instance, an adaptation rule for
this device is if someone turns on the thermostat, send an SMS to registered user #1. Such systems are highly configurable and likely to evolve, as run-
ning devicesmay face failures, or new devicesmay be added to an existing system to provide new functionality. Formore details about the different
spaces of the CPSDSPL, refer to Romero et al. 46.
The secondDSPL is anevent-based runtimemonitoring infrastructureREMINDS 18. REMINDS has a client-server architecture: systemsare instru-

mented using probes that send events and data from the systems to the REMINDS server, which aggregates and distributes these events and data
to registered clients. Clients are, for instance, tools for checking constraints 47 on the expected behavior based on the monitored events or visu-
alization components explaining constraint violations to facilitate diagnosis. In previous work, we emphasized the need for sophisticated runtime
variability management mechanisms 19 and support for automated evolution in REMINDS 21, since a monitoring infrastructure must co-evolve with
the underlying system itmonitors. In the context of this paper, however, we focus on the evolution of the components of REMINDS itself: the probes,
monitored events and data, and constraints being added, modified, or removed at runtime in the REMINDSmonitoring infrastructure.

5.2 ResearchQuestions
RQ1. Is the reference architecture flexible enough to support different DSPL implementations?
To assess the feasibility of the proposed architecture, we implemented it for the two different DSPLs described above. For both DSPLs, we

implemented the components and operations of our reference architecture and created variability models, partly based on existing ones 19. The
two implementations use different technologies and different kinds of variabilitymodels, yet they both complywith the reference architecture. For
example, the CPS DSPL uses Eclipse EMF 48, Java, and extended feature models 32,49, while REMINDS uses Eclipse, Java, and DOPLER 50 decision
models.

RQ2. Howwell do the two reference architecture implementations perform?
To assess howwell the two implementationsmanage inconsistencies to supportDSPL evolution,we simulated scenarios that are likely to happen

in the two applications and evaluated their impact on the respective DSPL, to find out whether each implemented approach is able to detect incon-
sistencies and to react appropriately/fast enough. Table 3 provides an overview of our evaluation setup. We used problem space, mapping space,
and solution space operations to cover a fair range of different possible inconsistencies and picked the following representative scenarios:

1. Scenario 1 (SC1) – A problem space element is removed to constrain possible (re-)configurations of the DSPL. This can result in dead
elements (assets) in the solution space that were related to the removed element of the problem space.

2. Scenario 2 (SC2) – The mapping space is updated after merging two existing assets into a single one. This can result in a problem space
element with no effect (no relation to any solution space element).

3. Scenario 3 (SC3) – A solution space element is added to evolve the system, i.e., a new component can now be configured. If notmapped to an
existing or new problem space element, the new solution space element is dead and cannot be activated at runtime.

For each of these three scenarios we perform 100 changes that lead to an automated update of the respective variability model of the CPS and
REMINDSDSPLs. 99 out of 100 changes lead to correct updateswhile 1 change (randomly, e.g., the 67th change) leads to an incorrect update result-
ing in an inconsistency. For example, an incorrect update operation for scenario SC3 would add the solution space element without also relating it

13

TABLE 3Overview of our evaluation setup.

CPSDSPL 46 REMINDSDSPL 18
FeatureModel DecisionModel
2000 features, 200 adaptation rules, 3000 assets 400 decisions, 1000 assets
SC1: A feature is removed from the featuremodel SC1: A decision is removed from themodel
SC2: An existingmapping (feature to asset) is updated SC2: An existingmapping (asset to decision) is updated
SC3: A new asset is added SC3: A new asset is added to themodel

Runs per scenario: 10
Total number of changes: 1000

Seeded inconsistencies: 1 random defect introduced in every 100 changes

to any problem space element or other element. This simulates an error a user might actually make during DSPL evolution. Indeed, while adding a
solution space element can be automated, the mapping of the new solution space element to an existing or a new problem space element requires
user involvement or at least an update rule as described earlier, and errors can thus easily be introduced.
To evaluate the performance, we measured for the two DSPL implementations the time required to check the consistency after we seeded one

inconsistency. We based our evaluation on significant variability models, e.g., feature models with 2000 features, considered by Berger et al. 51 as
large feature models. For the concrete performance measurements, which are specific for each implementation and were performed on different
machines, please refer to Section 6.

RQ3. Industrial applicability: can the reference architecture be used to support a real-world DSPL implementation?
To assess the applicability of the proposed architecture, we implemented it for a real-world DSPL, i.e., an automation software system for

injection molding machines by an Upper Austrian companye. More specifically, as part of an ongoing project, MoldingCompany is extending the
architecture of its automation software to allow plugging external devices into machines at runtime. The DSPL approach discussed in this paper
was regarded as promising to deal with the identified adaptation and reconfiguration scenarios and to better support new devices and vendors in
the future. The main benefit of the DSPL architecture is the development of a feature base on the machine, which dynamically configures avail-
able features of connected peripheral devices. The project thereby shifts the process of connecting new unknown peripheral devices to machines
from design time (pre-deployment) to runtime (post-deployment). Depending on the capabilities of the connected devices features are enabled
or disabled. Furthermore, the approach allows to activate or deactivate features based on results from monitoring an injection molding machine.
Specifically, an engineer from MoldingCompany developed capabilities for runtime adaptation of the automation software including adaptation
rules guided by the reference architecture presented in this paper andwith advice from the authors. To support the (re-)configuration of the system
at runtime theengineerdevelopeda featuremodel andacomponentmodel to represent the systemcomponents that canbe (de-)activatedor recon-
figured at runtime. In Section 7, we present the created architecture instance, themodels, and theDSPL adaptation rules.We further describe how
our architecture supports future evolution scenarios (e.g., adding new devices) in this domain and report initial feedback from MoldingCompany
engineers.

6 FLEXIBILITY ANDPERFORMANCE (RQ1ANDRQ2)
We implemented and customizedour reference architecture for theCPSandREMINDSDSPL todemonstrate that it is sufficiently flexible to support
different implementations of the various components. Both implementations use different technologies and different kinds of variability models
but comply with the architecture. To find out whether our approach is capable of properly detecting inconsistencies, we performed experiments
that reflect the three previously described evolution scenarios and measured the time f required to check the consistency of each DSPL for which
we implemented our reference architecture.

eDue to non-disclosure agreements we refer to this company as ”MoldingCompany“
fPlease note that the numbers regarding the average evaluation times for the two approaches cannot be comparedwith each other since the approaches

are implemented using different technologies for constraint solving and error reporting. However, the numbers provide a hint on the general performance of
both approaches.

14

6.1 Reference Architecture Implementation for the CPSDSPL
Implementation (RQ1)
We first implemented the reference architecture for the CPS DSPL, which relies on feature models to manage runtime variability and adaptation
rules as described below. Implementing and customizing the reference architecture for the CPS DSPL took about two person-weeks and was done
byonedeveloper.He could reuse initial variabilitymodels of thisDSPL created in earlierwork 46 and a consistency checker developed for a different
project 52. As depicted in Fig. 8(a) , each component of the CPS DSPL conforms to its respective meta-model. It thus provides a flexible means to
define DSPLs for different domains or evolving a given DSPL, by switchingmodel components whenever needed. The CPSDSPL is thus an instance
of the DSPLmeta-models, and is managed through Eclipse and EMF.
Adaptation. Adaptation rules are described in the feature model, such as the one shown in Fig. 8(a). In particular, we rely on extended feature

models, i.e., feature models whose additional information is defined in terms of feature attributes 32,49. Specifically, adaptation rules are defined as
attribute-based constraints. To distinguish between design-time model constraints and runtime adaptation rules, we rely on a slight extension of
the feature meta-model proposed in 52. This extension is twofold and consists of a Boolean attribute, runtime, added to the meta-classes Constraint
and Attribute. The former enables the definition of runtime constraints, i.e., adaptation rules, while the latter is used to define runtime attributes,
i.e., their value will only be taken into consideration at runtime. In practice, attributes and constraints flagged with runtime are not used during the
initial configuration. They become active only once the system is up and running. Runtime attribute values remain unset at design time, and are then
updated at runtime relying on an event listener that listens to changes that occur in the environment of the system.
Change Detection and Propagation.We developed an interface that handles change detection through a monitoring system implementing the

operations proposed in Table 2. Once a change is detected, it is propagated to State Manager that translates this change into twomodels, (i) amodel
fragment that comprises the model element(s) to be updated and (ii) a change model, which is an instance of the change meta-model. The change
meta-model enables the definition of all types of changes, i.e., the addition, update or removal of elements in any space. Once translated, the two
models are used byModel Updater to evolve the relatedmodels accordingly.
Model Evolution.TheModel Updater retrieves themodels related to the change, and evolves themainmodels by relying onupdate rules. It parses

the change model together with the adaptation rules, the mapping space model or the feature model depending on the scenario, and performs the
change. For instance, the change model can describe the removal of an element in the solution space (cf. Table 1: SS_Rem). Whenever the Model
Updater retrieves such a model, it looks for an update rule named removeSSElement in the rules repository. This rule describes the guidelines of a
proper removal, i.e., it removes the solution space element itself and the relatedmapping space elements.
When the change model and the update rule make it feasible, the change is performed automatically, otherwise an output message is displayed

within theEclipse console to involve thedeveloper. For instance, addinganewoption (cf. Table1:PS_Add) for anexisting functionality canbehandled
automatically (i.e., an update rule defines that a newvariant feature f2 is added as a direct child feature of the existing one f1:Add f2 childOf f1), while
moving features may not be straightforward (e.g., the user has to define where to insert the moved feature and move sub-features accordingly).
Once the evolution is performed (either manually by the user – e.g., moving features; or automatically by the framework based on update rules –
e.g., new option), the consistency of the DSPL is checked.
Model Consistency. Once evolved, the feature model is translated into a Constraint Satisfaction Problem (CSP). We then use the Choco CSP

solver 53 (but any Java-based solver would also integrate smoothly, e.g., SAT4J) to check the consistency of the featuremodel. The proposedmodel-
based approach helps ensuring the consistency of the overall DSPL and acts asViolationManager. First, changes are translated intomodel fragments
that conform to the related meta-model and are thus consistent with the rest of the model. Second, models directly refer to other models/model
fragments, ensuring all models are consistent with each other. Indeed, the main issue with most existing feature-based DSPL approaches is that
adaptation rules are defined independently of the feature model. The evolution of a DSPL is thus often error-prone as for such approaches there is
no way to check whether adaptation rules and the feature model are consistent after evolution. Instead, we define adaptation rules as models and
make them refer to features in the feature model, similar, e.g., to Gamez and Fuentes 54 who define adaptation rules in a reconfiguration plan and
relate it to a featuremodel.

Performance evaluation (RQ2)
To assess the performance of our approach we programmatically generated models larger than the models manually created for the CPS. The gen-
eration process produces (i) random features (2000 features) and adaptation rules (200), (ii) 1-2 assets per feature (i.e., a total of 3000 assets), and
thus (iii) one or twomappings per feature. While these models are randomly generated, their size and structure can be compared with real feature
models, e.g., from the operating system domain as reported by Berger et al. 51. For each evolution scenario SC1-SC3, we then performed 99 change
operations leading to valid model updates, and 1 change operation leading to an inconsistency. In addition to checking whether all inconsistencies
were indeed detected we measured the average evaluation time for evaluating consistency after each change. More precisely, we measured the

15

(a) Implementation for CPS

(b) Implementation for REMINDS

FIGURE 8 Implementations of our reference architecture for the CPSDSPL and the REMINDSDSPL.

time required to retrieve the content of all involved EMFmodels, and to check whether all references of a givenmodel are present in other models
or not. All experiments were performed on aMacBook Prowith a 2,6 GHz Intel R©CoreTM i5 processor and 8GB of DDR3 RAM.
By relying on the model-based approach used in the CPS DSPL, all generated inconsistencies were detected and their cause was explained.

Depending on the scenario, the time required to check the consistency of theCPSDSPL varies from0.75msup to 8.5mson average (0.75ms for SC1,
1.3ms for SC2, and8.5ms for SC3). Details on the evaluation times for the three scenarios are presented in Figure 9 (a–c).Weobserved that the time

16
required to check the consistency is negligible and is not a threat to the scalability of the model-based support in the CPS implementation of our
reference architecture. The main advantage of our implementation is that the Consistency Checker can rely on methods from the EMF API to load
and parse themodels.While for SC1 and SC2 only 2 elements of the DSPL are involved (featuremodel and adaptation rules for SC1, featuremodel
andmappings for SC2), SC3 requires the featuremodel, themappings, and the assets to be loaded, parsed and checked,which explains the increased
time for checking the consistency for SC3 (Fig. 9 (c)). Overall, our empirical evaluation indicates that our approach is well-suited for dealing with
DSPLs with a substantial number of features, adaptation rules, and assets.

 0

 5

 10

 15

 20

SC-1

Ev
al

ua
tio

n
Ti

m
e

[m
s]

(a) CPS - SC1

 0

 5

 10

 15

 20

SC-2

Ev
al

ua
tio

n
Ti

m
e

[m
s]

(b) CPS - SC2

 0

 5

 10

 15

 20

SC-3

Ev
al

ua
tio

n
Ti

m
e

[m
s]

(c) CPS - SC3

FIGURE 9 Average consistency constraint evaluation times when detecting seeded inconsistencies (1 out of 100 change operations) for 1000
performed changes for 3 scenarios for the CPS implementation of our reference architecture.

6.2 Reference Architecture Implementation for the REMINDSDSPL
Implementation (RQ1)
To support DSPL evolution for REMINDS, which uses decision models to manage variability, we have implemented our reference architecture as
described below (cf. Fig. 8(b)). Implementing and customizing the reference architecture for the REMINDSDSPL also took about two person-weeks
and was done by one of the main developers of REMINDS. He could reuse initial variability models of REMINDS created in earlier work 19 and a
consistency checker developed for a different project 55.
Adaptation. In our earlierwork,wedevelopedanapproach for variabilitymanagement that provided the startingpoint for our implementationof

the reference architecture to support the reconfiguration of REMINDS at runtime 19. Specifically, we describe the variability of the key components
of REMINDS (probes, event types, constraints) using decision-oriented DOPLER variability models 50.
In DOPLER, decisions define configuration options (to be set by end users or programmatically via the DOPLER API). The decision type defines

what values can be set on decisions (Boolean, string, number, or enumeration). A decision can depend on other decisions hierarchically, if it needs
to be made before other decisions, or logically, if the answer affects other decisions. Decisions are related to assets in DOPLER models (this is the
problem to solution space mapping): answering decision questions allows selecting and (re-)configuring components. Assets in DOPLER models
represent the core product line artifacts (e.g., software components) in the solution space. Assets can depend on each other functionally (e.g., one
asset requires another asset) or structurally (e.g., if an asset is part of a another asset), i.e., assets can have solution space dependencies. Using
DOPLER, users can create domain-specific meta-models to define the asset types, attributes, and dependencies for their domain or system. In the
REMINDS case study, for instance, the asset types are probe, event type, and constraint. They have different attributes and are related to each other,
specifically, probes provide events of different types and constraints check events.
Users or programs can set decision values for decisions defined in the DOPLER variability model, thereby (de-)activating probes, constraints,

and related event types at runtime through an interface that connects DOPLER and REMINDS. Decisions thus represent the possible adaptations
that can be made at runtime, i.e., the adaptation rules. If, for instance, a REMINDS probe is used to instrument an archiving component (persistence
management) of a system, the decision could be calledmonitoring_archiving, with the question ‘Do you want to monitor the archiving process?’, and
related to the archiving probe represented by an asset in the DOPLERmodel with name archiving_probe. More examples can be found in 19.

17
ChangeDetection andPropagation.TheREMINDS frameworkprovides interfaces for retrieving state informationof the elements of the running

monitoring infrastructure (i.e., probes, constraints, event types) to determine whether the elements are active or inactive, and also for retrieving
information on elements being added, removed or modified. We developed the component State Manager of our reference architecture to imple-
ment these interfaces. It keeps track of the current state of the elements in the runningREMINDS infrastructure, periodically checkswhich elements
have been added, removed ormodified, and forwards this information to componentModel Updater.
Model Evolution.We implemented the Model Updater as an Eclipse Plug-in in the DOPLER variability modeling IDE 50. It is triggered by State

Managerwhenever a change in REMINDS occurs. Based on Update Rules,Model Updater checks whether update actions can be performed automat-
ically or user input is required. More specifically, our implementation of theModel Updater distinguishes unambiguous and ambiguous changes. In
case of unambiguous changes, an update is triggered directly by theModel Updater to automate the changes to the variabilitymodel. For ambiguous
changes, user feedback is required. In such cases, the Update UI (a simple EclipseWizard) is triggered, allowing the user to select a particular reso-
lution strategy. For example, when a probe is removed from REMINDS, an update rule could specify to simply remove the respective asset from the
variabilitymodel. However, as the assetmight bemapped to one ormore othermodel elements, e.g., decisions, it will typicallymake sense to involve
the user via theUpdate UI and ask her to decide whether to really remove the asset together with all mappings to it.
Model Consistency. To check model consistency, we rely on an existing Consistency Checker 55 that allows to check the consistency of a deci-

sion model and arbitrary artifacts based on consistency rules (not to be confused with the constraints used by REMINDS to check system behavior
at runtime). For the purpose of the REMINDS case study we extended this existing Consistency Checker to check the conformance between the
DOPLER variabilitymodel and REMINDS.We implemented the consistency rules for REMINDS as an extension of the existingConsistency Checker in
Java. Facades provide access to the DOPLER variability model on the one hand – to retrieve model elements such as assets and decisions – and to
REMINDS on the other hand - to retrieve registered and running probes and constraints. Internally, the Consistency Checker employs an incremental
approach 56 thus reducing the overhead and providing instant feedback to users on emerging violations.

FIGURE 10DOPLER IDE showing constraint violations (upper part) and currently activated constraints (lower part).

The Violation Manager is integrated within the DOPLER IDE and retrieves information on occurring inconsistencies from the Consistency Ch-
ecker. It reports details to the user on the violation of each consistency rule, e.g., the origin within the model and the cause of the violation. In case
of a possible resolution a (semi-)automated fix can be applied to the model. In the mentioned example of adding a new asset to the variability
model due to a new probe added to REMINDS, the Consistency Checker (i) immediately detects this asset as dead if it has not also been mapped
to a decision as described above, and (ii) informs the user about this inconsistency via the Violation Manager. Fig. 10 depicts a screenshot of the
DOPLERmodeling IDE showing constraint violations (upper part) and currently active consistency rule (lower part). Different types of violation are

18
highlighted differently depending on their severity (e.g., Errors vs. Warnings). The engineer can review each violation and navigate to its origin for
an in-depth inspection, e.g., of the model element not defined properly. Up to this point we have not implemented support for automatically fixing
detectedmodel inconsistencies. This is part of our future work.

Performance evaluation (RQ2)
For the simulation, we extended the existing DOPLER variability model 19 with additional elements through duplication of existing ele-
ments, i.e., we generated additional decisions and assets to produce a model with overall 1000 assets and 400 decisions, which how-
ever has the same structure as the manually created original model. This by far exceeds the typical size of decision models which
can be expected in a typical industrial scenario 50. We assessed whether the inconsistencies where detected, instrumented the Consis-
tency Checker to measure evaluation times and eventually calculated the average evaluation time per scenario. In this case, the eval-
uation time is the time required to evaluate a single constraint instance, more precisely, the time the method evaluate() needs to
complete, return ‘consistent’ or ‘inconsistent’, and generate violations which are then forwarded to the user interface. We performed
the evaluation runs using the latest version of the DOPLER IDE and Eclipse 3.8 on a standard Desktop machine with an Intel R©
CoreTM i5 CPU@2.60GHz 16GBRAM runningWindows 10 64-Bit.
For all three scenarios all seeded inconsistencies were detected. Depending on the type of check performed, the evaluation times vary between

3ms and 600ms on average (3.0ms for SC-1, 609ms for SC-2, and 6.74ms for SC-3). Details on the evaluation times for the three scenarios are
presented in Figure 11 (a–c). For SC-1 and SC-3 the average evaluation times per constraint instance are below 7ms while for SC-2 the average
evaluation time rises above 600ms. This increased evaluation time is due to the fact that the constraint for this scenario requires evaluating all
mappings between problem and solution space, i.e., all assets linked to decisions. DOPLERwas not optimized for querying suchmappings in the first
place resulting in the need to iterate over all assets contained in the variability model to evaluate the constraint. This is the reason for the higher
evaluation time for this constraint. Optimizing the access to decisions and assets in DOPLER would greatly reduce the resulting evaluation time
and could easily resolve this issue. However, in all the three scenarios, the time needed to report the inconsistency to the user is still acceptable and
allows for (almost) instant feedback.

 0

 5

 10

 15

 20

SC-1

Ev
al

ua
tio

n
Ti

m
e

[m
s]

(a) REMINDS - SC1

 0

 500

 1000

 1500

 2000

SC-2

Ev
al

ua
tio

n
Ti

m
e

[m
s]

(b) REMINDS - SC2

 0

 5

 10

 15

 20

SC-3

Ev
al

ua
tio

n
Ti

m
e

[m
s]

(c) REMINDS - SC3

FIGURE 11 Average consistency constraint evaluation times when detecting seeded inconsistencies (1 out of 100 change operations) for 1000
performed changes for 3 scenarios for the REMINDS implementation of our reference architecture.

7 INDUSTRIAL APPLICABILITY (RQ3)
To assess the applicability of our proposed architecture, we instantiated it for a real-world DSPL, i.e., MoldingCompany’s automation software
system for injection molding machines. Plastic products range from small everyday life-products such as toothbrushes or toys, up to big products
such aswater pipes or garbage containers. Injectionmolding is amanufacturingmethodwherematerial (e.g., thermoplastic polymer) is heated until
it is molten and injected into a mold cavity, where the part is cooled and hardened. Injection molding machines are widely used to produce plastic

19
products formanydifferentmarkets. Example areas include automotive (car body, interior, glazing), packaging (containers, buckets, pallets),medical
(healthcare, diagnostics) or teletronics (mobile communication, displays).
In the injection molding industry, various peripheral devices with different capabilities are mounted on a single machine to satisfy different

requirements. For instance, in the temperature control process, specific parts of the machine have to be heated to a defined temperature, while
other machine parts have to be cooled down. This can be achieved with peripheral temperature control devices provided by external manufactur-
ers. For many years, the approach to connect peripheral devices has been to use a serial interface and a standardized, manufacturer-dependent
protocol. Recently, the Euromap council proposed the standardized interface based on theOPCUnified Architecture (OPCUA) to better copewith
this situation. OPC UA is a machine-to-machine communication protocol for industrial automation developed by the OPC Foundationg. The stan-
dard Euromap 82 and Euromap 82.1 define an OPC UA Information model, e.g., for temperature control devices and peripheral devices in general.
MoldingCompany uses OPCUA to connect and switch amongmultiple peripheral devices via an Ethernet connection. This allows for dynamic vari-
ability (i.e., reconfiguration at runtime) and provides the technical foundation for applying our DSPL architecture in an industrial context. As part of
our evaluation, an engineer of MoldingCompany created a feature model describing the Temperature Control Device (TCD) capabilities for Mold-
ingCompany’s injectionmolding machines. According to this model (and its mapping to OPCUA nodes) we can dynamically identify which OPCUA
nodes are available on a connected device (nodes are defined as mandatory/optional). When specific nodes are present, features can be enabled.
The values of OPCUA nodes are the basis for adaptation rule checks performed during runtime.

FIGURE 12 Implementation of our reference architecture for the injectionmolding automation system ofMoldingCompany.

Figure 12 depicts our DSPL reference architecture instantiated for the MoldingCompany case study. The engineer used the same approach as
we used for the CPS DSPL described above in Section 6.1. We describe the feature model and the adaptation rules the industrial engineer devel-
oped using our reference architecture. We cannot provide details of the component model and the mapping of features to components due to
non-disclosure agreements, but we present general numbers and specific examples below. The middleware implemented by the engineer uses the
adaptation rules and the component model to perform (re-)configuration of the system at runtime. The other parts of the reference architecture
are the same as for the CPS instance described above.

ghttps://opcfoundation.org/

https://opcfoundation.org/

20

FIGURE 13 FeatureModel for injectionmolding automation system temperature control devices DSPL.

FIGURE 14 Two example adaptation rules based on features of the temperature control devices featuremodel.

Figure 13 depicts the feature model for the temperature control device and Figure 14 shows two example adaptation rules. The first rule is for
the temperature alarm feature.Given that temperaturemonitoring is available, it can trigger alarmsof different severity (i.e., a positive integer value
greater than zero). The second rule is related to the EcoMode feature, which allows to dynamically determine the best valve position for the water
distribution system and the TCD pump speed set value to ensure optimal power usage. When the EcoMode feature is activated, the pump speed
is determined automatically and the input field on the visualization is deactivated, indicating that it can currently not be changed manually. The
adaptation rule defines that the connected TCD must be set to Used (activated by the operator) and the OperatingMode must not be 0 (switched
off/ready) or 8 (connection problem/undefined). The ForceManual Boolean, whichwould deactivate the automatic calculation if set to true,must be
false. Finally, the water distribution system component must be switched on, which is determined by the Boolean value bOn. Overall, the engineer
created 25 adaptation rules (for 15 features), which are in turnmapped to 78 solution space components.
Whilewedid not use the entire reference architecture in this example due to the focus on themodeling and adaptation capabilities, wewere able

to reuse the consistency checking and model update parts from the CPS example. We received initial positive feedback, regarding the approach,
fromMoldingCompany. Specifically, they confirmed that without the DSPL approach it took developers several days until a prototype was running
for every newdevice. TheDSPL architecture, on the other hand, reduced the time necessary to implement a similar device of an established product
line (e.g., a new TCD of a different manufacturer) to approximately one working day. Our experience with our industrial partner thus shows the

21
usefulness and applicability of our approach in a real-world scenario from the injection molding machines domain, in addition to the two DSPLs
previously described.

8 DISCUSSIONANDTHREATS TOVALIDITY
Our evaluation demonstrates that our reference architecture was a useful basis to implement support for DSPL evolution in at least two different
cases (RQ1) in two different domains. Both implementations exhibit significant differences: one uses amodel-driven, feature-based approach (CPS)
and the other one a tool-driven, decision-oriented approach (REMINDS). However, both implementations rely onEclipse (RCPor EMF) and Java, and
different technologies – specifically, technologies not supporting component-based or object-oriented development – could make the implemen-
tation of our reference architecture significantly more difficult. In the two presented cases, based on our reference architecture and the proposed
generic operations, each implementation has been done by one person in a rather short time, i.e., around twoweeks.
Wealso provide initial evidence on the practicality of our reference architecture by implementing a real-worldDSPL from the domain of automa-

tion software for injectionmoldingmachines, whichwas not done by the developers of the reference architecture, but by an industrial engineer. He
could reuse several components from the CPS DSPL, which further demonstrates its feasibility. Initial feedback is very promising but more work is
needed, particularly to better demonstrate the evolution support of our approach in practical scenarios.
Overall, the reference architecture was very useful to guide the implementation of evolution support for three different DSPLs in different

domains. This was only possible because we kept the description of the reference architecture components, their interactions, and the operations
rather abstract. However, this also has the drawback, that the implementation effort for each DSPL is significant, even if one can reuse existing
models and tools as described above. It would thus make sense to further automate this process of implementing the reference architecture, e.g.,
by providing several template implementations for different types of variability models. Also, the actual reference architecture implementation
process needs to be better formalized. Even though the reference architecture components and the generic operations support the implementa-
tion, the concrete activities and their inputs and outputs should bemademore explicit.

Internal Validity. Since both approaches build on prior work and tools, which had partly been implemented by the authors, we cannot claim that
all parts have been implemented from scratch. However, both the original solutions have been adapted and extended significantly to fit the needs
of the CPS and REMINDSDSPLs. In both cases, it took less than twoweeks to implement the components State Manager andModel Updater, and the
facades to interact with the running systems. Two of the authors implemented extensions to their own architecture basing their work on existing
tool environments that have been published before 52,50 and using the reference architecture to guide their extensions of these existing environ-
ments.While other developers could follow a different implementation approach, we still thinkwe could sufficiently demonstrate the flexibility and
practicality of our approach. Our reference architecture worked for two quite different modeling approaches.While we cannot guarantee it would
work for any given approach or technology, we believe that following the architecture can guide developers in creating DSPL evolution support as
we could initially demonstrate with our industrial applicability study.
Considering the evaluation runs, we measured how well our consistency checker implementations work, which indicates their scalability. How-

ever, we randomly generated large variability models – though based on real, smaller models such as the one described in 19 – which might still not
correctly reflect how such models would really look like in practice. Also, we randomly seeded selected inconsistencies in the three evolution sce-
narios representing one edit per space. In practice, manymore scenarios are possible andmight occur in all the three spaces (even in combination),
making the exhaustiveness of the experiments difficult to reach. We thus cannot claim our approach scales in any possible case, but we can still
argue that we found initial evidence for its scalability and flexibility.

External validity refers to howwell data, processes, theories can be applied to other domains and application scenarios and how generalizeable
the results and findings are. With the presented reference architecture we aim to provide a generic architecture that can be applied to different
domains and technologies. Applying our reference architecture to other approaches will require detailed knowledge about the specific system
and the respective variability management approach. In terms of industrial applications, are confident that the three instances of the reference
architecture (one of whichwas a large industrial system) provide evidence that the reference architecture can be easily adopted for different types
of systems and different types DSPLs, meaning different types of variability modeling and management approaches. Regarding our evaluation, we
have performed lab experiments for two different implementations of the reference architecture both representing large-scale systems.While we
can not claim full generalizability in terms of performance and scaleability of the approach,wehowever, are confident think that this provides a solid
basis for the applicability of the approach. Further work will be needed assessing the applicability and performance characteristics for different
types of systems.

22

9 RELATEDWORK
We discuss related research on DSPLs, on the evolution of SPLs and variability models, on checking the consistency of (product line) models, and
particularly on evolution in DSPLs. Table 4 summarizes the different concerns addressed by the approaches discussed in this section and shows
whether they are addressed in terms of problem or solution space (PS and SS), Traceability during SPL evolution or comparison of the set of Products
or Configurations before and after evolution. A checkmark indicates whether the approach proposes solutions or deals with the different criteria.

TABLE 4Overview of the discussed approaches.

Approach SPL Evolution Model-Checking DSPL evolution
PS SS Traceability PS SS Products PS Configurations

Arcega et al. 57 X X

Capilla et al. 58 X X

Czarnecki and Pietroszek 59 X X

Deng et al. 60 X X

Elsner et al. 61 X X

Font et al. 39 X

Gamez and Fuentes 54,62 X X X

Guo et al. 9 X

Helleboogh et al. 63 X

Mauro et al. 64 X X X X

Mende et al. 65 X

Murta et al. 66 X X X

Neves et al. 12,8 X X X

Passos et al. 7 X X

Quinton et al. 10 X

Seidl et al. 3,67 X X X

Thüm et al. 11 X

Dynamic software product lines. As modern systems demand more and more post-deployment activities and runtime capabilities, several DSPL
approaches have emerged in the last decade to deal with these requirements 26. For instance, some authors have proposed to leverage techniques
from service-oriented architectures to build service-oriented DSPLs, i.e., DSPLs built by composing services 68,69 or, similarly, aspect-oriented
DSPLs 70. Recently, Bashari et al. 71 proposed a classification of various DSPL implementations and compared their adaptation mechanisms. Ben-
como et al. 16 discuss these different approaches for building a DSPL and show that these supposed DSPLs were not as ‘dynamic’ as expected.
They also point out the need to cope with uncertainty at runtime by providing support for the DSPL evolution. This motivates our own work to
provide such evolution support. In a similar study, Bencomo et al. 72 discuss different techniques for modeling variability at runtime together with
existing approaches for adapting system configurations at runtime (e.g., using adaptation rules or goals). We also make use of adaptation rules, e.g.,
described as extended featuremodels in our CPSDSPL case study and described as DOPLER decisions in our REMINDSDSPL case study.

23
Evolution of software product lines and variability models. Dynamic software product line approaches often build on traditional software product

line solutions. Naturally, it makes sense to discuss the support for evolution in traditional SPLs as a basis to discuss support for the evolution of
DSPLs (see below). Many product line approaches assume that activities in domain and application engineering can take a fairly stable product
line for granted. However, real-world product lines inevitably and continuously evolve. Managing evolution is thus success-critical, particularly in
model-based approaches to ensure consistency after changes to meta-models, models, and actual artifacts. Several authors 73,74 have stressed the
importance of approaches for product line evolution to avoid the erosion of a product line, i.e., the deviation from the product line model up to the
point where key properties no longer hold.
Several approaches have been proposed for managing the evolution of software product lines 5, ranging from verification techniques to ensure

consistent evolution, to model-based frameworks dedicated to the evolution of feature-based variability models 6. For example, an interesting
research thread proposes evolution templates for co-evolving a variability model and related software artifacts 3,7,8. Such templates can be com-
pared with the update rules we have developed in our approach. Deng et al. 60 describe a model-driven product line approach that focuses on the
issue of domain evolution and product line architectures. They discuss several challenges for the evolution of model-driven software product line
architectures and present their solution for supporting evolution with automated domain model transformations. Such transformations could also
be useful in our context to realize the update rules to support the evolution of the variability models in our DSPLs when applying model-driven
techniques. Another example is thework byMende et al. 65, who present tool support for the evolution of software product lines based on the grow-
and-prune model. They support identifying and refactoring code that has been created by copy and paste and which might be moved from product
level to product line level. Refactoring of a DSPL is not the scope of our work, and should rather be avoided at runtime, if at all possible, as it can
too easily lead to many inconsistencies. However, if necessary, the work and tool by Mende et al. could be useful to support refactoring the DSPL
code. Font et al. 39 propose an approach that compares, aggregates and resolves input models (models describing products) to create a CVL vari-
abilitymodel. This approach can also be used to evolve the existing variabilitymodel by taking into consideration a new inputmodel. Our CPSDSPL
case study also describes changes as models, however, not as CVL models but as two feature models: a model fragment that comprises the model
element to be updated and a changemodel, which is an instance of the changemeta-model.
Another important research thread deals with the evolution of the variability defined for a software product line. Some authors surveyed

different approaches and terminologies 75, while others propose a taxonomy of evolution operations in different modeling spaces 76. We built on
this work when describing the evolution operations in DSPLs. Neves et al. 12 propose a SPL evolution approach that preserves the original behavior
of evolving product lines, i.e., products that could be generated before evolution can still be generated after the evolution. This of course is only
possible if restricting the removal of certain needed features, which makes the process easier but also constitutes a limitation of this approach.
To keep a configuration consistent with a feature model even after evolution of the latter, Gámez et al. 54 present an approach that automatically
evolves the configuration with respect to the changes performed in the model while also taking into consideration the possible cardinalities. Such
an approach is also useful in a DSPL context, with the main difference being that automatically evolving the configuration would have to be done
(also) at runtime. Seidl et al. 67 introduce Hyper feature models, capable of versioning the features and their constraints to maintain evolution
traceability over time and guarantee the compatibility of one version of a featurewith versions of another one. Feature traceability is thus a central
concern in SPL evolution approaches, and has been shown to be essential in a feature-oriented project 77. Our work was largely inspired by this
earlier work on evolving software product lines, andwe extended this work by considering runtimemanagement of such evolution.

Consistency checking. Approaches for model-checking are often used to guarantee the consistency of a variability model after evolution 9,10. For
example, Czarnecki et al. 59 present a feature-based approach using model templates that supports defining consistency constraints using OCL.
Elsner et al. 61 present an incremental approach for checking consistency during derivation in multi product line environments. We also support
defining consistency constraints in differentways, depending on the implementation of our reference architecture. Approaches such as the ones by
Czarnecki et al. and Elsner et al. could thus also be applied in our context. Due to the fact that we have to deal with consistency checking at runtime,
an incremental approach is preferable (cf. our REMINDS case study).
Existingwork also addresses the issue of consistency betweenmodels and code in product lines. For instance,Murta et al. 66 present an approach

for ensuring consistency of architectural models and the corresponding implementation during evolution. The approach supports arbitrary evolu-
tion policies and is based on recording changes in a configuration management system. In our context, we also have to analyze the actual DSPL’s
code to detect inconsistencies (cf. our reference architecture) and an approach such as the one byMurta et al. could be adapted to ourDSPL context.
Approaches for comparing the set of possible products before and after the evolution of a product line have also been proposed 11,12. In addition

to these ‘classic’ consistency-checking approaches, we also provide in our architecture a means to check the validity of adaptation rules together
with the different models and thus ensure proper runtime reconfigurations.

Evolution of dynamic software product lines. What Knauber 78 pointed out over 12 years ago – that it is easier to plan and evolve a product line for
anticipated variability proactively, but it is rather complicated and hard to support unanticipated reactive product line evolution – still holds today,

24

particularly for dynamic software product lines. Indeed, current approaches supporting product line evolution 5 have not specifically been designed
to support the evolution of aDSPL and tomaintain its consistency at both design and runtime. Existing research only recently started to investigate
evolution in a DSPL context, and especially its impact on the running system.
Helleboogh et al. 63 proposed the notion of meta-variability to support evolution in DSPLs. A meta-variability model is used to describe the way

the variability can evolve at runtime, while ameta-variabilitymeta-model defines the relationships between the variability and themeta-variability
models. The implementation of a reference architecture for the CPS DSPL also relies on change meta-models. Capilla et al. 26,58 use super-types to
automate the modification of variants in a feature model at runtime. A new variant can be added to an existing variation point as long as it belongs
to the same super type as the variant to be replaced. Such rules are very useful to support DSPL evolution and could be realized in our context via
our update rules concept. Arcega et al. 57 propose evolution strategies to migrate from the current version of a configuration space to an evolved
one in a DSPL. Their approach thus enables the current running configuration tomatch the new configuration space.
However, these approaches are often limited to a given set of changes and focus on evolving the configuration space and relatedmodels without

considering other concerns (e.g., system-driven evolution, solution space elements, constraint-checking at runtime), and also do not deal with adap-
tation rules. Mauro et al. 64 propose ametamodel to keep track of the feature model versions when evolving the DSPL. They rely on the DarwinSPL
tool suite to handle evolutionsmade by theDSPLmaintainer. That is, they propose their ownModel Updater component and the related GUI to deal
with non-trivial evolution scenario. Their approach is thus compliant with our proposed reference architecture.

10 CONCLUSIONSANDFUTUREWORK
In many domains, systems need to run continuously and may not be shut down for reconfiguration or maintenance tasks even if they require con-
stant adaptations to react to changes in their environment. To manage the variability and support the runtime reconfiguration of such adaptive
systems, DSPL approaches have been proposed. Usually built as a long-term investment, a DSPL has to evolve continuously to meet new require-
ments. While the evolution of SPLs has been widely studied, little support exists for the challenging process of evolving a DSPL while maintaining
its consistency and preserving the runtime adaptation capabilities of themanaged system.
In this paper, we proposed a reference architecture for dealing with the evolution of DSPLs.We first described the possible evolution scenarios,

explained what inconsistencies could result from such scenarios, and then presented the main components of our reference architecture, along
with generic operations that can be implemented for a concrete DSPL. To assess the flexibility of our approach, we investigated the use of the
reference architecture in two concreteDSPLs (a cyber-physical system and a runtimemonitoring infrastructure) andwe conducted experiments to
provide evidence on the performance of our approach for these two implementations regarding detection of inconsistencies. Through an industrial
collaboration, we also demonstrated the usefulness of our approach in real-world scenarios. Further studies should be conducted to demonstrate
the approach is suitable for diverse DSPLs.
Although the reference architecture presented in this paper is well-suited to detect inconsistencies resulting from the evolution of both the

DSPL models or the running system, we only considered in our evaluation changes that originate from monitoring the running system. A possible
improvement for future work would thus be to also deal with unsynchronized configurations, i.e., running configurations derived from a previous
version of the DSPL architecture. We also plan to improve our approach by leveraging learning-based mechanisms for those ambiguous changes
that require human intervention. Indeed, suchmanual changes could be ‘learned’ and be used later to automatically support similar evolutions. Our
approachcouldalsobeextended toenableprevious configurations tobe (re-)derivedevenafter evolution, e.g., by exploiting traceabilitymechanisms
from version control management tools. Also, we plan to involve users responsible for maintaining DSPLs and get their feedback on the usefulness
of our approach.

ACKNOWLEDGMENTS
The work by the Italian authors (when the work described in this paper started, the first author was still working at Politecnico di Milano) has been
supported by project EEB – Edifici A Zero Consumo Energetico In Distretti Urbani Intelligenti (Italian Technology Cluster For Smart Communities)
– CTN01_00034_594053. Regarding the work by the Austrian authors the financial support by the Austrian Federal Ministry for Digital and Eco-
nomicAffairs, theNational Foundation forResearch, Technology andDevelopment, andPrimetals Technologies is gratefully acknowledged.Michael
Vierhauser’s work has also been supported by the Austrian Science Fund (FWF) under Grant No. J3998- N31.

25

References
1. HincheyM, Park S, Schmid K. Building Dynamic Software Product Lines. IEEE Computer 2012; 45(10): 22–26.
2. Berg K, Bishop J,Muthig D. Tracing Software Product Line Variability: FromProblem to Solution Space. In: SAICSIT ’05. South African Institute
for Computer Scientists and Information Technologists; 2005; Republic of South Africa: 182–191.

3. Seidl C, Heidenreich F, Aßmann U. Co-evolution of Models and Feature Mapping in Software Product Lines. In: ACM; 2012; Salvador, Brazil:
76–85.

4. Capilla R, Bosch J, Kang K. Systems and Software Variability Management: Concepts, Tools and Experiences. Springer . 2013.
5. Marques M, Simmonds J, Rossel PO, Bastarrica MC. Software product line evolution: A systematic literature review. Information and Software
Technology 2019; 105: 190–208.

6. Pleuss A, Botterweck G, Dhungana D, Polzer A, Kowalewski S. Model-driven Support for Product Line Evolution on Feature Level. Journal of
Systems and Software 2012; 85(10): 2261–2274.

7. Passos L, Guo J, Teixeira L, Czarnecki K,Wąsowski A, Borba P. Coevolution of Variability Models and Related Artifacts: A Case Study from the
Linux Kernel. In: ACM; 2013; Tokyo, Japan: 91–100.

8. Neves L, Borba P, Alves V, et al. Safe Evolution Templates for Software Product Lines. Journal of Systems and Software 2015; 106(C): 42–58.
9. Guo J, Wang Y, Trinidad P, Benavides D. ConsistencyMaintenance for Evolving FeatureModels. Expert System Applications 2012; 39(5): 4987–
4998.

10. Quinton C, Pleuss A, Le Berre D, Duchien L, Botterweck G. Consistency Checking for the Evolution of Cardinality-based Feature Models. In:
ACM; 2014; Florence, Italy: 122–131.

11. ThümT,BatoryD,KastnerC.ReasoningAboutEdits toFeatureModels. In: IEEEComputer Society; 2009;Vancouver, BritishColumbia,Canada:
254–264.

12. Neves L, Teixeira L, Sena D, Alves V, Kulezsa U, Borba P. Investigating the Safe Evolution of Software Product Lines. In: ACM; 2011; Portland,
Oregon, USA: 33–42.

13. Cheng BH, Eder KI, GogollaM, et al. Usingmodels at runtime to address assurance for self-adaptive systems. In: Springer. 2014 (pp. 101–136).
14. ProvoostM,Weyns D. DingNet: a self-adaptive internet-of-things exemplar. In: IEEE. ; 2019: 195–201.
15. Corporation I. An Architectural Blueprint for Autonomic Computing. tech. rep., IBM; 2005.
16. BencomoN, Lee J, Hallsteinsen SO. HowDynamic is your Dynamic Software Product Line?. In: ; 2010; Jeju Island, Korea: 61–68.
17. ShariflooAM,MetzgerA,QuintonC, Baresi L, Pohl K. Learning andEvolution inDynamic SoftwareProduct Lines. In: ACM; 2016; Austin, Texas:

158–164.
18. Vierhauser M, Rabiser R, Grünbacher P, Seyerlehner K, Wallner S, Zeisel H. ReMinds: A Flexible Runtime Monitoring Framework for Systems

of Systems. Journal of Systems and Software 2016; 112: 123–136.
19. Rabiser R, Vierhauser M, Grünbacher P. Variability Management for a Runtime Monitoring Infrastructure. In: ACM; 2015; Hildesheim,

Germany: 35–42.
20. Baresi L, Quinton C. Dynamically Evolving the Structural Variability of Dynamic Software Product Lines. In: Inverardi P, Schmerl BR., eds. Pro-

ceedings of the 10th IEEE/ACM International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2015)IEEE; 2015;
Florence, Italy: 57–63.

21. Quinton C, Rabiser R, Vierhauser M, Grünbacher P, Baresi L. Evolution in Dynamic Software Product Lines: Challenges and Perspectives. In:
ACM; 2015; Nashville, USA: 126–130.

22. Clements P, Northrop L. Software Product Lines: Practices and Patterns. Addison-Wesley Professional . 2001.

26
23. Pohl K, Böckle G, Linden v. dFJ. Software Product Line Engineering: Foundations, Principles and Techniques. Springer-Verlag . 2005.
24. Zschaler S, Sánchez P, Santos JP, et al. VML* - A Family of Languages for VariabilityManagement in Software Product Lines. In: Springer; 2009;

Denver, CO, USA: 82–102.
25. Apel S, Kästner C. AnOverview of Feature-Oriented Software Development. Journal of Object Technology 2009; 8(5): 49–84.
26. Capilla R, Bosch J, Trinidad P, Ruiz-Cortés A, Hinchey M. An Overview of Dynamic Software Product Line Architectures and Techniques:

Observations fromResearch and Industry. Journal of Systems and Software 2014; 91: 3–23.
27. HincheyM, Park S, Schmid K. Building Dynamic Software Product Lines. Computer 2012; 45(10): 22–26.
28. Hallsteinsen S, HincheyM, Park S, Schmid K. Dynamic Software Product Lines. Computer 2008; 41(4): 93–95.
29. Czarnecki K, Grünbacher P, Rabiser R, Schmid K, Wąsowski A. Cool Features and Tough Decisions: A Comparison of Variability Modeling

Approaches. In: ACM; 2012; Leipzig, Germany: 173–182.
30. Tartler R, Lohmann D, Sincero J, Schröder-Preikschat W. Feature consistency in compile-time-configurable system software: facing the linux

10, 000 feature problem. In: ; 2011; Salzburg, Austria: 47–60.
31. Passos L, Teixeira L, Dintzner N, et al. Coevolution of variability models and related software artifacts. Empirical Software Engineering 2015:

1–50.
32. Benavides D, Segura S, Ruiz-Cortés A. Automated analysis of feature models 20 years later: A literature review. Information Systems 2010;

35(6): 615–636.
33. Botterweck G, Pleuss A. Evolution of Software Product Lines. In: Mens T, Serebrenik A, Cleve A., eds. Evolving Software SystemsSpringer Berlin

Heidelberg. 2014 (pp. 265–295).
34. McGregor J. The Evolution of Product Line Assets. Tech. Rep. CMU/SEI-2003-TR-005, Software Engineering Institute, Carnegie Mellon

University; Pittsburgh, PA: 2003.
35. Lemos dR, others . Software Engineering for Self-Adaptive Systems: A Second Research Roadmap. In: Lemos dR, Giese H, Müller H, Shaw M.,

eds. Software Engineering for Self-Adaptive Systems IISpringer Berlin Heidelberg. 2013 (pp. 1–32).
36. Borba P, Teixeira L, Gheyi R. A Theory of Software Product Line Refinement. Theor. Comput. Sci. 2012; 455: 2–30.
37. Acher M, Cleve A, Collet P, Merle P, Duchien L, Lahire P. Reverse Engineering Architectural Feature Models. In: Springer-Verlag; 2011; Essen,

Germany: 220–235.
38. She S, LotufoR, Berger T,Wąsowski A, Czarnecki K. Reverse Engineering FeatureModels. In: ACM; 2011;Waikiki, Honolulu, HI, USA: 461–470.
39. Font J, BallarínM,HaugenØ, Cetina C. Automating theVariability Formalization of aModel Family byMeans of CommonVariability Language.

In: ; 2015; Nashville, Tennessee, USA: 411–418.
40. Bass L, Clement P, Kazman R. Software Architecture in Practice (2nd Edition). Addison-Wesley Professional . 1998.
41. Nakagawa EY, Oquendo F, BeckerM. RAModel: A ReferenceModel for Reference Architectures. In: ; 2012: 297–301.
42. GalsterM, Avgeriou P. Empirically-grounded Reference Architectures: A Proposal. In: ACM; 2011: 153–158.
43. Angelov S, Grefen PWPJ, Greefhorst D. A classification of software reference architectures: Analyzing their success and effectiveness. In: ;

2009: 141–150.
44. Weinreich R, Buchgeher G. Automatic reference architecture conformance checking for soa-based software systems. In: IEEE; 2014; Sydney,

Australia: 95–104.
45. QuintonC,HadererN,RouvoyR,DuchienL. TowardsMulti-cloudConfigurationsUsingFeatureModels andOntologies. In:ACM;2013;Prague,

Czech Republic: 21–26.

27
46. Romero D, Quinton C, Duchien L, Seinturier L, Valdez C. SmartyCo: Managing Cyber-Physical Systems for Smart Environments. In: Weyns D,

Mirandola R, Crnkovic I., eds. Proceedings of the 9th European Conference on Software Architecture (ECSA 2015)Springer; 2015;Dubrovnik/Cavtat:
294–302.

47. Vierhauser M, Rabiser R, Grünbacher P, Egyed A. Developing a DSL-Based Approach for Event-Based Monitoring of Systems of Systems:
Experiences and Lessons Learned. In: ACM; 2015; Lincoln, Nebraska, USA: 715–725.

48. Steinberg D, Budinsky F, PaternostroM,Merks E. EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional. 2nd ed. 2009.
49. Bąk K, Czarnecki K,Wąsowski A. Feature andMeta-Models in Clafer: Mixed, Specialized, and Coupled. In: Malloy B, Staab S, Brand v. dM., eds.

Proceedings of the 4th International Conference on Software Language Engineering (SLE 2011)Braga, Portugal: SpringerBerlinHeidelberg. 2011 (pp.
102–122).

50. Dhungana D, Grünbacher P, Rabiser R. The DOPLERMeta-Tool for Decision-Oriented Variability Modeling: AMultiple Case Study. Automated
Software Engineering 2011; 18(1): 77–114.

51. Berger T, She S, Lotufo R, Wąsowski A, Czarnecki K. A Study of Variability Models and Languages in the Systems Software Domain. IEEE
Transactions on Software Engineering 2013; 39(12): 1611–1640.

52. Quinton C, Romero D, Duchien L. SALOON: a Platform for Selecting and Configuring Cloud Environments. Software: Practice and Experience
2016; 46(1): 55–78.

53. Prud’hommeC, Fages JG, Lorca X. Choco3 Documentation. TASC, INRIA Rennes, LINACNRSUMR6241, COSLING S.A.S.; 2014.
54. Gamez N, Fuentes L. Software Product Line Evolution with Cardinality-Based Feature Models. In: Springer Berlin Heidelberg; 2011; Pohang,

South Korea: 102–118.
55. Vierhauser M, Grünbacher P, Heider W, Holl G, Lettner D. Applying a Consistency Checking Framework for Heterogeneous Models and

Artifacts in Industrial Product Lines. In: ; 2012; Innsbruck, Austria: 531–545.
56. Egyed A. Instant consistency checking for the UML. In: ACM. ; 2006; Shanghai, China: 381–390.
57. Arcega L, Font J, Haugen Ø, Cetina C. Achieving Knowledge Evolution in Dynamic Software Product Lines. In: IEEE; 2016; Osaka, Japan: 505–

516.
58. Capilla R, Valdezate A, Díaz FJ. A Runtime VariabilityMechanism Based on Supertypes. In: ; 2016: 6-11
59. Czarnecki K, Pietroszek K. Verifying feature-based model templates against well-formedness OCL constraints. In: ACM; 2006; Portland,

Oregon, USA: 211–220.
60. Deng G, Schmidt DC, Gokhale A, Gray J, Lin Y, Lenz G. Evolution in model-driven software product-line architectures. In: Tiako P., ed.Designing

Software-intensive SystemsIdea Group Inc. (IGI). 2008 (pp. 1280–1312).
61. Elsner C, Lohmann D, Schröder-Preikschat W. Fixing Configuration Inconsistencies across File Type Boundaries. In: IEEE CS; 2011; Oulu,

Finland: 116–123.
62. Gamez N, Fuentes L. Architectural evolution of FamiWare using cardinality-based feature models. Information and Software Technology 2013;

55(3): 563 - 580. Special Issue on Software Reuse and Product Linesdoi: https://doi.org/10.1016/j.infsof.2012.06.012
63. Helleboogh A, Weyns D, Schmid K, Holvoet T, Schelfthout K, Van Betsbrugge W. Adding Variants on-the-fly: Modeling Meta-Variability in

Dynamic Software Product Lines. In: ; 2009; San Francisco, CA, USA: 18–27.
64. Mauro J, Nieke M, Seidl C, Yu IC. Context-aware reconfiguration in evolving software product lines. Science of Computer Programming 2018;

163: 139 - 159. doi: https://doi.org/10.1016/j.scico.2018.05.002
65. MendeT, Beckwermert F, KoschkeR,MeierG. Supporting the grow-and-prunemodel in software product lines evolution using clone detection.

In: IEEE CS; 2008: 163–172.
66. Murta LG, VanDerHoekA,WernerCM.ArchTrace: Policy-Based Support forManaging EvolvingArchitecture-to-Implementation Traceability

Links. In: ACM; 2006; Tokyo, Japan: 135–144.

http://dx.doi.org/ https://doi.org/10.1016/j.infsof.2012.06.012
http://dx.doi.org/https://doi.org/10.1016/j.scico.2018.05.002

28
67. Seidl C, Schaefer I, Aßmann U. Integrated Management of Variability in Space and Time in Software Families. In: ACM; 2014; Florence, Italy:

22–31.
68. GomaaH, Hashimoto K. Dynamic Software Adaptation for Service-oriented Product Lines. In: ACM; 2011;Munich, Germany: 35:1–35:8.
69. Baresi L, Guinea S, Pasquale L. Service-Oriented Dynamic Software Product Lines. Computer 2012; 45(10): 42–48.
70. Parra C. Towards Dynamic Software Product Lines: Unifying Design and Runtime Adaptations. Thesis. Université des Sciences et Technologie de Lille

- Lille I, 2011.
71. BashariM, Bagheri E, DuW.Dynamic Software Product Line Engineering: A Reference Framework. International Journal of Software Engineering

and Knowledge Engineering 2017; 27: 191-234. doi: 10.1142/S0218194017500085
72. BencomoN, Hallsteinsen S, De Almeida ES. A View of the Dynamic Software Product Line Landscape. Computer 2012; 45(10): 36–41.
73. Deelstra S, SinnemaM, Bosch J. Variability assessment in software product families. Information and Software Technology 2009; 51(1): 195–218.
74. Johnsson S, Bosch J. Quantifying software product line ageing. In: ; 2000; Limerick, Ireland: 27–32.
75. Elsner C, Botterweck G, Lohmann D, Schröder-Preikschat W. Variability in Time - Product Line Variability and Evolution Revisited. In:

Universität Duisburg-Essen; 2010; Linz, Austria: 131–137.
76. Schmid K, Eichelberger H. A Requirements-Based Taxonomy of Software Product Line Evolution. Electronic Communications of the EASST 2007;

8: 1–13.
77. Passos L, Czarnecki K, Apel S,Wąsowski A, Kästner C, Guo J. Feature-oriented Software Evolution. In: ACM; 2013; Pisa, Italy: 17:1–17:8.
78. Knauber P.Managing the Evolution of Software Product Lines. In: Springer; 2004;Madrid, Spain.

How to cite this article: C. Quinton., M. Vierhauser, R. Rabiser, L. Baresi, P. Grünbacher, and C. Schumayer (2018), Evolution in Dynamic Software
Product Lines, Journal of Software: Evolution and Process , 2020;00:1–6.

http://dx.doi.org/10.1142/S0218194017500085

	Evolution in Dynamic Software Product Lines
	Abstract
	Introduction
	Background and Running Example
	Background
	Running Example

	DSPL Evolution
	Impact of Evolution
	Challenges

	Reference Architecture
	Evaluation Method
	Application Examples
	Research Questions

	Flexibility and Performance (RQ1 and RQ2)
	Reference Architecture Implementation for the CPS DSPL
	Reference Architecture Implementation for the ReMinds DSPL

	Industrial Applicability (RQ3)
	Discussion and Threats to Validity
	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

