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Abstract: This work introduces scheduling strategies to maximize the expected number
of independent tasks that can be executed on a cloud platform within a given budget
and under a deadline constraint. Task execution times are not known before execution;
instead, the only information available to the scheduler is that they obey some (unknown)
probability distribution. The scheduler needs to acquire some information before deciding
for a cutting threshold: instead of allowing all tasks to run until completion, one may
want to interrupt long-running tasks at some point. In addition, the cutting threshold
may be reevaluated as new information is acquired when the execution progresses further.
This works presents several strategies to determine a good cutting threshold, and to decide
when to re-evaluate it. In particular, we use the Kaplan-Meier estimator to account for
tasks that are still running when making a decision. The efficiency of our strategies is
assessed through an extensive set of simulations with various budget and deadline values,
and ranging over 14 probability distributions.
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Ordonnancement de tâches stochastiques à
distribution de probabilité inconnue

Résumé : Ce travail présente des stratégies d’ordonnancement permet-
tant de maximiser le nombre attendu de tâches indépendantes pouvant être
exécutées sur une plateforme de type cloud avec un budget donné et une
contrainte de date limite. Le temps d’exécution des tâches est inconnu, on
sait seulement qu’ils obéissent à une distribution de probabilité (inconnue).
L’ordonnanceur peut décider à tout moment d’interrompre l’exécution d’une
tâche (longue) en cours d’exécution et d’en lancer une nouvelle, mais le bud-
get déjà utilisé pour la tâche interrompue est perdu. Le seuil d’interruption
d’une tâche peut être recalculé au fur et à mesure que l’exécution progresse
globalement. Ce travail présente plusieurs stratégies pour déterminer un
bon seuil d’interruption, et pour décider quand le ré-évaluer. Nous utilisons
l’estimateur de Kaplan-Meier pour prendre en compte les tâches en cours
d’exécution au moment où la décision est prise. L’efficacité de nos stratégies
est évaluée via un vaste ensemble de simulations, avec diverses valeurs de
budget et de date limite, et portant sur 14 distributions de probabilité.

Mots-clés : tâches indépendantes, temps d’exécution stochastiques, or-
donnancement, budget, date limite, estimateur de Kaplan-Meier.



Scheduling stochastic tasks with unknown probability distribution 3

1 Introduction

This paper focuses on the design of scheduling strategies to maximize the
expected number of successfully executed tasks on a cloud platform com-
posed of identical Virtual Machines (VMs, or processors1). The tasks are
independent and their execution times are unknown. The only information
known by the scheduler is that the task execution times are independent and
identically distributed (IID) random variables obeying the same probability
distribution, but this distribution is unknown. The scheduler has both a
deadline constraint d and a budget constraint b. At any time, and on each
enrolled VM, the scheduler can decide whether to interrupt a long-running
task T to start a new task T ′, with the hope that T ′ will have an execution
time shorter than the remaining execution time of T . However, there is a
big risk involved with such a decision because: (i) the time and budget spent
to execute T until its interruption are completely lost; and (ii) T ′ may well
happen to have an execution time longer than the remaining execution time
of T .

In this non-clairvoyant setting, what is the optimal strategy? Intuitively,
the scheduler must first decide how many VMs to enroll. Then, the scheduler
needs to acquire some information about task execution times by letting
several tasks run until completion on each VM. At some point, the scheduler
synthesizes the information acquired so far and will decide for a scheduling
policy. This policy could be either to allow all tasks to run until completion,
or to define a cutting threshold τ after which every long-running task should
be interrupted. The cutting threshold τ can be recomputed dynamically as
the execution progresses until the deadline d is reached or the budget b is
exhausted, whichever comes first. Each of the above decisions involves a
complicated trade-off. The main is to determine when and how to compute
a first cutting threshold τ (with the possibility that τ = +∞, meaning that
all tasks are allowed to run until completion). Again, there is a trade-off.
Deciding for the threshold early can lead to an imprecise estimation because
it is based on little information, but this would avoid to consume a significant
fraction of the deadline and of the budget before interrupting any task. On
the contrary, deciding for the threshold later during the execution leads to
making a more accurate decision, at the risk of having wasted resources
unduly. Altogether, these are several complicated trade-offs to achieve. The
key is to be able to compute a good threshold without bias, and this paper
introduces several strategies to determine a good threshold, and at the right
moment in the execution.

This scheduling problem has the (somewhat non-standard) objective to
maximize the expected number of successful tasks with a given budget and
deadline. Not all tasks will be successfully executed in the end: some tasks

1Throughout the text, we use both terms VM and processor indifferently.
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Scheduling stochastic tasks with unknown probability distribution 4

will be interrupted, and some tasks will never be launched. This problem is
very closely related to imprecise computations [16, 35, 3], particularly in the
context of real-time computations. In imprecise computations, it is not nec-
essary for all tasks to be completely processed to obtain a meaningful result.
Most often, tasks in imprecise computations are divided into a mandatory
and an optional part: while the execution of all mandatory parts is necessary,
the execution of optional parts is decided by the user. Often the user has not
the time or the budget to execute all optional parts, and they must select
which ones to execute. Our work perfectly corresponds to the optimization
of the processing of the optional parts.

Among domains where tasks may have optional parts (or some tasks may
be entirely optional), one can cite recognition and mining applications [41],
robotic systems [28], speech processing [20], and [33] also cites multimedia
processing, planning and artificial intelligence, and database systems. In
these applications, the processing times of the optional parts are of similar
nature but are heavily data-dependent, hence it is very natural to model
them via a probability distribution D. However, this probability distribu-
tion D is unknown before processing, and can be only determined through
sampling many tasks. Unfortunately, in our scheduling problem, letting the
scheduler sample many tasks without interruption to learn, say, the mean
and standard deviation of the distribution, can prove very costly: it will
consume a significant part of the budget and will prove suboptimal for any
distribution requiring a small cutting threshold τ , such as lognormal distri-
butions (see below).

This paper builds upon our previous work [13] where we tackle the dra-
matically simpler problem where the distribution D is known. In that case,
we proposed an analytical method to compute the optimal threshold τ . Sec-
tion 4.1 provides background material on this method. For some distribu-
tions, the optimal strategy is to never interrupt any task (τ = +∞), while
for some others, such as some lognormal distributions, there is an optimal
cutting threshold. Regardless, when the distribution D is known, the ap-
proach in [13] provides an asymptotically optimal solution. The main focus
of this paper is to investigate efficient strategies when the distribution D
is unknown. To the best of our knowledge, this work constitutes the first
attempt to address this challenging problem.

The major contributions of this work are the following:

• We design a set of scheduling heuristics that use different estimators
of the cutting threshold τ , and that refine this estimation periodically
as the execution progresses.

• We show how to use to the Kaplan-Meier estimator [32] to account for
long-running tasks when estimating the threshold τ .

• We introduce several methods for deciding when to recompute the
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Scheduling stochastic tasks with unknown probability distribution 5

threshold

• We report a comprehensive set of simulation results that compare the
heuristics for various budget and deadline values, using up to 14 dif-
ferent probability distributions.

The rest of the paper is organized as follows. Section 2 surveys related
work. We detail the framework and objective in Section 3. In Section 4,
we provide background on prior strategies for interrupting tasks when the
distribution is known (Section 4.1), together with a set of new results for
Exponential distributions (Section 4.2). We provide new scheduling heuris-
tics when the distribution is unknown in Sections 5 and 6: Section 5 is
devoted to methods for computing the cutting threshold accurately, while
Section 6 focuses on when to recompute it. We compare the heuristics in
Section 7, assessing their performance for an extensive set of simulation pa-
rameters. Finally, we provide concluding remarks and directions for future
work in Section 8.

2 Related work

This work falls under the scope of cloud computing since it targets the ex-
ecution of independent tasks on a cloud platform under deadline and bud-
get constraints. We overview cloud computing in Section 2.1 and bags of
tasks in Section 2.2 Furthermore, task execution times obey a probability
distribution which is unknown before execution, which is closely related to
non-clairvoyant scheduling, which we survey in Section 2.3. Then in Sec-
tion 2.4, we survey the closely related model of imprecise computations.
Finally, we survey in Section 2.5 the Kaplan-Meier estimator, which we use
in our heuristics to estimate task execution times.

2.1 Cloud computing

There exists a huge literature on cloud computing, see the geveral sur-
veys [49, 48, 6, 5]. Resource provisioning and scheduling are key steps to the
efficient execution of workflows on cloud platforms. Singh and Chana pub-
lished a survey devoted solely to cloud resource provisioning [48], that is, the
decision of which resources should be enrolled to perform the computations.
Resource scheduling decides which computations should be processed by each
of the enrolled resources and in which order they should be performed. The
multi-objective scheduling problem that consists in meeting deadlines and
either respecting a budget or minimizing the cost (or energy) has been ex-
tensively studied for deterministic workflows [10, 18, 4, 53, 39, 2, 8, 38, 23],
but has received much less attention in a stochastic context. Indeed, most of
the studies assume a clairvoyant setting: the resource provisioning and task
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Scheduling stochastic tasks with unknown probability distribution 6

scheduling mechanisms know in advance, and accurately, the execution time
of all tasks. A handful of additional studies also consider that tasks may
fail [36, 45]. Among these articles, Poola et al. [45] differ as they assume
that tasks have uncertain execution times. However, they assume they know
these execution times with a rather good accuracy (the standard deviation
of the uncertainty is 10% of the expected execution time). They are thus
dealing with uncertainties rather than a true non-clairvoyant setting. The
work in [11] targets stochastic tasks but is limited to taking static decisions
(no task interruption). Some works are limited to a particular type of ap-
plication like MapReduce [29, 51, 27]. For instance, Tian and Chen [51]
consider MapReduce programs and can either minimize the financial cost
while matching a deadline or minimize the execution time while enforcing a
given budget. Our task model applies to compute-bound tasks because we
do not account for communication times and instead assume that they are
negligible in front of computation times. However, we refine the classical
deterministic model by adding stochasticity to task execution times.

2.2 Bags of tasks

A bag of tasks is an application composed of a set of independent tasks shar-
ing some common characteristics: either all tasks have the same execution
time or they are instances sampled from the same probability distribution.
There exists a survey about resource optimization for bag of tasks applica-
tions [50], but they did not pay attention to the non-clairvoyant case. Sev-
eral works devoted to bag-of-tasks processing explicitly target cloud comput-
ing [25, 9, 43, 14]. Most of them [25, 9, 14] consider the classical clairvoyant
model, in which we know the exact execution time or its distribution, or
the uncertain model, in which we know its range or its standard deviation,
while [43] targets a non-clairvoyant setting (see Section 2.3). Vecchiola et
al. [52] consider a single application comprising independent tasks with dead-
lines but without any budget constraints. In their model, tasks are supposed
to have different execution times but they only consider the average exe-
cution time of tasks rather than its probability distribution (this is left for
future work). Moreover, they do not report on the amount of deadline viola-
tions; their contribution is therefore hard to assess. Mao et al. [40] consider
both deadline and budget constrained provisioning and assume they know
the tasks execution times up to some small variation (the largest standard
deviation of a task execution time is at most 20% of its expected execution
time). Hence, this work is more related to scheduling under uncertainties
than to non-clairvoyant scheduling.

RR n° 9373
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2.3 Non-clairvoyant scheduling

The work surveyed so far assume a fully or semi clairvoyant set of task ex-
ecution times, which is not always true in a realistic scenario. In contrast,
our model considers a fully non-clairvoyant case, in which we have no infor-
mation in advance about the execution times of our bag of tasks. Although
this topic has received less attention, we can still find several references. For
instance, Sungjin et al. [30] and Pawan et al. [47] both worked on online
algorithms. They assume that the size of arriving tasks is not known before
completing them. In [30], a unified model is designed for several different
scheduling problems, while [47] aims at minimizing flow-time and energy. In
the work of Li [34], task execution times are unknown, and the objective is
to minimize the makespan while using one or several multicore processors.
A group of authors [43, 42, 44] has published several studies focusing on
budget-constrained makespan minimization. They do not assume to know
the distribution of execution times but try to learn it on the fly [42, 44].
This work differs from ours as these authors do not consider deadlines. For
instance, in [43], the objective is to try to complete all tasks, possibly using
replication on faster VMs, and, in case the proposed solution fails to achieve
this goal, to complete as many tasks as possible. The implied assumption
is that all tasks can be completed within the budget. We implicitly assume
the opposite: there are too many tasks to complete all of them by the dead-
line, and therefore we attempt to complete as many as possible; we avoid
replication, which would be a waste of resources in our framework.

2.4 Imprecise computations and anytime tasks

Our task model assumes that some tasks may not be executed. This model
is very closely related to imprecise computations [16, 35, 3]. Furthermore,
this task model also corresponds to the overload case of [7] where jobs can be
skipped or aborted. Another related model, is that of anytime tasks [31] where
a task can be interrupted at any time, with the assumption that the longer
the running, the higher the quality of its output. Such a model requires
a function relating the time spent to a notion of reward. Finally, we note
that the general problem related to interrupting tasks falls into the scope
of optimal stopping, the theory that consists in selecting a date to take an
action, in order to optimize a reward [21].

2.5 Kaplan-Meier estimator (KMS)

We will show in Section 5.2 that our problem of estimation of task execution
times is equivalent to a version of survival analysis called survival analysis
with right-censored data. The solution to this problem is a famous statistical
estimator: the Kaplan and Meier estimator [32]. Nowadays, survival analysis
with the Kaplan-Meier estimator is widely used in biostatistics [26, 54, 15],
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Table 1: Summary of notations.

b budget
d deadline
M number of VMs in the platform
D probability distribution of task execution times
µ, σ mean, standard deviation of D

and in a variety of other domains such as engineering [46], economics [37],
etc. A more comprehensive presentation about survival and event history
analysis can be found in [1].

Altogether, the present study appears to be unique because it uses a
fully non-clairvoyant framework and assumes an overall deadline in addition
to a budget constraint. Our previous works [12, 22] had the same setting
under homogeneous [12] or heterogeneous [22] platforms. But in these works,
we assumed that the distribution of execution times was known in advance,
while the key problem studied in the current paper is to learn the distribution
of task execution times on the fly and to decide when interrupting unfinished
tasks.

3 Problem definition

We consider a cloud platform composed of M identical virtual machines
(VMs) or processors. The execution time of a task on a VM obeys an un-
known probability distribution D. Without loss of generality, we assume
it costs one budget unit to execute a task for one second on any VM, and
we have a total budget b and an overall deadline d. When considering the
asymptotic behavior of policies, we assume that budget b and deadline d
grow toward infinity, and obey the equation b = Md. Main notations are
summarized in Table 1. We assume executions to be non-preemptive: if the
execution of a task is interrupted, all the work done (and the budget spent)
so far for that task is lost. Our objective is to maximize the total number
of tasks successfully completed under the budget and deadline limits. To
drive the design of our scheduling policies, we use an instantaneous version
of this objective, namely the yield, which is defined as the expected number
of tasks completed per unit of budget spent. This is equal to the expected
success rate per second, as we spend one budget unit per second.

All our scheduling policies are required to have polynomial complexity.
Since a solution to the problem is the list of the tasks that are executed,
either partially or successfully (for each of these tasks, the scheduler made
a decision), the size of the problem is proportional to that number of tasks.

RR n° 9373



Scheduling stochastic tasks with unknown probability distribution 9

This number in turn is proportional to the budget (or deadline), divided
by the expectation of the (unknown) probability distribution D, since the
average execution time until completion of a task is µ(D). Furthermore,
the scheduling policies will make decisions and compute a cutting threshold
several times during the whole execution; we require that the number of
such decisions be constant, and they will typically be taken each time a
prescribed percentage of the budget is spent. The motivation here is to
cap the overhead incurred by the scheduler by forbidding to recompute a
threshold at each execution of a new task.

4 Optimal strategies for known distributions

In Section 4.1, we recall previous results for known distributions, namely
an asymptotically optimal policy for discrete distributions and its extension
to continuous distributions [13, 12]. Then, in Section 4.2, we study the
case where the distribution of task execution times is defined by a bimodal
exponential distribution. This study shows how small changes in distribution
parameters can lead to drastically different optimal scheduling policies.

4.1 Background on previous approaches

A scheduling policy has to decide whether all tasks should be allowed to run
until completion, or whether some tasks should be interrupted and, in the
latter case, which tasks and when? In [13, 12] we provided answers to this
key question. We review the approach to determine a cutting threshold, first
for discrete distributions of task execution times (Section 4.1.1), and then
we move to continuous distributions (Section 4.1.2).

Note that in addition to decide for a cutting threshold, the scheduler
should decide how many processors to enroll. With a budget of b and a
deadline of d, we enroll

⌈
b
d

⌉
processors. The rationale is that this is the

minimum number of processors required to exhaust the budget. Because
the policy on each processor is asymptotically optimal (see below) enrolling
more processors will not be beneficial for large budgets, and could lead to
waste due to budget fragmentation for smaller budgets.

4.1.1 Discrete distributions

We consider a discrete distribution D under which there are k possible task
execution times, w1 < w2 < ... < wk. A task has an execution time wi with
probability pi, with 0 ≤ pi ≤ 1 and

∑k
j=1 pj = 1. The simplest policies that

interrupt task executions are the fixed-threshold strategies. A fixed-threshold
strategy interrupts every not-yet-completed task at a predefined threshold τ ,
i.e., when the task has been executing for a time τ without completing. The
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yield of the fixed-threshold strategy of threshold τ is computed as follows:

Y(τ) =


0 if τ < w1∑I(τ)

j=1 pj∑I(τ)
j=1 pjwj+

(
1−
∑I(τ)
j=1 pj

)
τ

otherwise (1)

where I(τ) is the index of the largest task execution time smaller than or
equal to τ : I(τ) = k if τ ≥ wk, and wI(τ) ≤ τ < wI(τ)+1 otherwise. This
complicated formula has an intuitive explanation: the probability of success
with cutting threshold τ is

∑I(τ)
j=1 pj , and the execution time is averaged as

follows: some tasks have (successfully) executed in wj seconds, with proba-
bility pj , for each j ≤ I(τ), and the remaining tasks have been interrupted
after τ seconds (with the remaining probability

(
1−

∑I(τ)
j=1 pj

)
). The follow-

ing theorem states that the best fixed-threshold strategy is asymptotically
optimal when the platform includes a single processor (M = 1) [13, 12].

Theorem 1. Let τopt = argmaxτ∈{w1,...,wk} Y(τ). If the platform includes a
single processor, the fixed-threshold strategy of threshold τopt is asymptotically
optimal among all possible strategies when the budget tends to infinity (the
deadline being equal to the budget).

With several processors available, we enroll
⌈
b
d

⌉
processors and execute

on each of them the fixed-threshold strategy of threshold τopt.

4.1.2 Continuous distributions

We now consider a continuous distribution D of task execution times whose
cumulative distribution function is F (x) and its probability density function
f(x). The execution time of a task is thus defined by a random variable X
which follows D. With these notations, the probability that the execution
is no longer than a duration t is: P (X ≤ t) = F (t). Then, the equation of
the yield of the fixed-threshold strategy of threshold τ is easily extrapolated
from that for discrete distributions (Equation 1):

Y(τ) = F (τ)∫ τ

0
xf(x)dx+ τ(1− F (τ))

(2)

The optimal threshold is then, like previously:

τopt = argmax
τ

Y(τ).

4.2 New results for exponential distributions

To illustrate the fact that small differences in the distribution of task execu-
tion times can lead to dramatically different optimal policies, we study the

RR n° 9373



Scheduling stochastic tasks with unknown probability distribution 11

case where task execution times follow exponential distributions. We will
study the case where the distribution is either unimodal or bimodal. We will
formally express it as a bimodal case. The unimodal case will appear as a
special case where both modes coincide.

Task execution times are thus defined by a bimodal exponential distri-
bution of parameters λ and µ, chosen with respective weights p and 1 − p,
where 0 ≤ p ≤ 1. In other words, each time we need to generate a new
task execution time, with probability p we generate an execution time using
an exponential distribution of parameter λ and with probability 1 − p we
generate an execution time using an exponential distribution of parameter
µ. Without loss of generality, we assume that µ ≥ λ. A potential problem
with exponential distributions is that task execution times can be arbitrarily
small. This seems unrealistic: independently of the task size, the system
requires some time to load (part of) the code of the task and prepare for ex-
ecution. Furthermore, the possibility of arbitrarily small execution times can
lead to pathological situations (for instance, see Theorem 2 below). There-
fore, one may want to add a positive constant time δ to the sum of the
random variables. (Obviously, one can always set δ = 0 if one does not want
to add such a constant.) In this context, δ can be seen as the lower bound
on any task execution time. Altogether, this leads to the following density
function for the distribution of probability:

f(t) =

{
0 if t < δ

pλe−λ(t−δ) + (1− p)µe−µ(t−δ) otherwise.
(3)

Theorem 2 defines the optimal cutting threshold for a fixed-threshold
strategy for the distribution of task execution times whose density obeys
Equation 3. Its proof can be found in the web supplementary material.

Theorem 2. When task execution times are defined by a bimodal exponential
distribution plus a nonnegative constant, the optimal cutting threshold τopt
and the optimal yield Yopt are as follows:

• If the constant is null (δ = 0)

– If there is a single mode, any value for the threshold is optimal
and Yopt = λ.

– If the two modes are distinct, τopt = 0 (tasks should be interrupted
as soon as possible), and Yopt = pλ+ (1− p)µ.

• If the constant is not null (δ > 0)

– If δλp− p(1− p)µ−λµ ≥ 0, then τopt = +∞ (tasks should never be
interrupted), and Yopt =

1

δ+ p
λ

+
(1−p)
µ

.
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– If δλp − p(1 − p)µ−λµ < 0, τopt is the unique solution in ]0; +∞[
of the equation:

p(1− p)µ− λ
λµ

(
−λ
(
1− e−µl

)
+ µe−µl

(
eλl − 1

))
+ δ

(
λp+ µ(1− p)e−(µ−λ)l

)
= 0

(This equation should be solved numerically and its solution should
be injected in Equation 2 to obtain the value of Yopt).

Certainly the most striking (and counter-intuitive) part of this theorem
is the case where δ = 0 (tasks can be arbitrarily small) and when the dis-
tribution is truly bimodal (λ 6= µ and p(1 − p) 6= 0). The result states
that τopt = 0. This means that the lower the threshold, the better. But,
obviously, a task must be launched for having any chance to complete. This
result means that each task should be interrupted as soon as possible if it
has not yet completed. When the constant δ is not null, however small it is,
results are drastically different: depending on the relationships between the
parameters (p, λ, µ, and δ) either no task should be interrupted or there is
a single optimal cutting threshold (and it is not trivial: 0 < τopt < +∞).

One may wonder whether Theorem 2 really matters, that is, whether the
yield significantly varies with the cutting threshold. Consider two equiprob-
able modes (p = 0.5) with a constant δ = 0.001, with λ = 1, and µ = 50.
If we never interrupt tasks the yield is approximatively 1.96. If we interrupt
them with a cutting threshold of 0.01, the yield is 20.35, more than 10 times
larger! There are distributions for which using the optimal cutting threshold
has a dramatic impact on the performance of the system.

5 Threshold estimation for unknown distributions

We have seen in Section 4 that when the distribution of task execution times
is known, the optimal policy is a fixed-threshold strategy that interrupts
tasks, and that the choice of the cutting threshold can have a very significant
impact on the system performance. Now the question is: how do we find the
optimal cutting threshold when the distribution is unknown?

In order to acquire information on the distribution of task execution
times, the single option is to execute some tasks and record their execution
times. We will consider the problem of deciding how many tasks to execute
in Section 6. For the sake of the argument, let us assume that we have
already launched the execution of several tasks, that some executions have
already completed, some are still running, and some were interrupted. For
instance, in the toy example presented on Figure 1 we have two processors,
four tasks, and we want to take a decision at time 20. One task has executed
for 5 seconds, one for 16; two tasks have not yet completed (the tasks in
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red), having run, respectively, for 15 and 4 seconds so far. The question is
then: how do we estimate the distribution of task execution times based on
this data?

Proc 1
Proc 2

time0 5 16 20

Figure 1: Toy example with two processors, two successfully completed tasks
(in blue) and two not-yet-completed tasks (in red) at time 20.

There are two types of approaches. In the first type, we would try to
guess some characteristics of the distribution. For instance, we could claim
that “task execution times likely follow an exponential distribution”. Then,
we would look for the exponential distribution that better fits the data, for
instance using a maximum likelihood estimation. If our initial guess was
lucky, we should end up with a good result. However, the underlying dis-
tribution may be either a lognormal distribution, or a multimodal one, or
even not resemble any of the most used probability distributions. Rather
than relying on potentially unlucky guesses, we aim at designing a robust
approach which would deliver high quality results, regardless of the under-
lying distribution. Therefore, our approach belongs to the second type of
approaches, sometimes called “nonparametric” statistics. We are not going
to make any assumption on the underlying distribution. Section 5.1 details
a naive approach that only considers the execution times of tasks that have
completed. This approach has the advantage of simplicity. However, as ex-
emplified by the toy example on Figure 1, it can ignore a significant share of
the data, and in particular long-running tasks. The question on how to take
into account tasks that have not yet completed has been thoroughly research
in the field of . . .medical research! In Section 5.2, we show that our problem
is exactly the statistical medical problem known as survival analysis with
right-censored data, even if the concepts and wordings are quite different.
We also show how to use its classical solution, the Kaplan-Meier estimator,
to solve our problem more accurately.

5.1 The empirical distribution function

The naive approach only considers the execution times of completed tasks
and uses the associated empirical distribution function [17], along with Equa-
tion (1). Consider an example where there are k different task execution
times, w1 < w2 < ... < wk, and where ni tasks have the execution time wi.
Then, using the empirical distribution function, a task has an execution time
wi with probability pi = ni∑k

j=1 ni
. Using these probabilities, we search in the

set {w1, ..., wk} the value maximizing the yield, using Equation 1.
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Figure 2: Probability of survival (left) and yield (right) for the toy example
of Figure 1 when using the empirical distribution function (blue) or the
Kaplan-Meier estimator (red).

The main advantage of this approach is its simplicity. The toy example
on Figure 1 illustrates its main drawback: there maybe many tasks whose
information is ignored, namely the tasks that have not yet completed. This
drawback induces a bias by ignoring long-running tasks.

5.2 Survival analysis and the Kaplan-Meier estimator

In medical research, biostatisticians have to answer questions like: “What
is the probability that a patient will still be alive 5 years after receiving a
cancer diagnosis?” To answer such a question, biostatisticians analyse the
data of many individual patients. Some of these data will be complete: they
will have both the time of diagnosis and the time of death of the patient.
However, at the time of the analysis, some patients enrolled in the dataset
will still be alive. The status of some other patients may be unknown because
contact with them has been lost (e.g., they have moved away). In both cases
observations are incomplete. One only knows the time of diagnosis and
the last time the patient was known to be alive. Hence, one only knows
a lower bound on the time the patient has survived after the diagnosis.
These incomplete “lower-bound” data are called right-censored data and the
question addressed by biostatisticians is that of survival analysis with right-
censored data. This problem is exactly ours, only the vocabulary changes:

• instead of survival times, we have execution times;
• instead of diagnosis times, we have start times;
• at the time of analysis, instead of patients still alive, we have tasks still

running;
• at the time of analysis, instead of patients with unknown whereabouts,

we have tasks that have been terminated by the scheduler before com-
pletion.

We can therefore use the tool to solve survival analysis with right-censored
data, that is the Kaplan-Meier estimator [32, 1]. We refer the interested
reader to [1] for a thorough overview of survival analysis.
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Consider an example where there are k different task execution times,
w1 < w2 < ... < wk. Here, execution times can be the execution times
of tasks that have completed, like the values 5 and 16 in the example of
Figure 1. They can also be censored execution times, like the values 4 and
15 in that example. Let di be the number of tasks that die at time wi,
that is, the number of tasks whose execution time is exactly wi. Let ri be
the number of individual at risks just prior to time wi, that is, the number
of tasks whose execution time is greater than or equal to wi. The survival
function, S(t), is the probability that life is longer than t: S(t) = Pr(X > t).
The Kaplan-Meier estimator gives us:

S(t) =
∏
wi≤t

(
1− di

ri

)
. (4)

Using this estimator, we can then rewrite Equation 1 as:

Y(t) = 1− S(t)∑I(t)
j=1(S(wi−1)− S(wi))wj + S(wI(t))t

where I(t) is the index of the largest task execution time smaller than or
equal to t: I(t) = k if t ≥ wk, and wI(t) ≤ t < wI(t)+1 otherwise (with w0 = 0
and S(w0) = 1).

We illustrate this estimator with the toy example of Figure 1:

wi di ri 1− di
ri

∏
j≤i

(
1− dj

rj

)
4 0 4 1 1

5 1 3 2
3

2
3

15 0 2 1 2
3

16 1 1 0 0

The resulting function is presented in red on the left-hand side of Fig-
ure 2, alongside the probabilities associated to the empirical distribution
function (in blue). Red ticks indicate the presence of censored data. For
the empirical distribution function, the probability that the execution time
of a task exceeds 5 seconds is 50%, while it is 66.6% for the Kaplan-Meier
estimator. When we plug these different probability functions in Equation 1,
we obtain the yields depicted on the right-hand side of Figure 2. In this toy
example, the empirical distribution function claims that the optimal cutting
threshold is 5, when the survival analysis claims that it is 16.

Note that, in the product of Equation (4), only the times corresponding
to actual (non-censored) execution times matter. Execution times that only
correspond to censored times each contribute a value of 1 in the product
(see the table above). Note also that if there is no censored data, we have
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ri−1 − ri = di−1 and S(t) simplifies into

S(t) =
∏
wi≤t

ri − di
ri

=
∏
wi≤t

ri+1

ri
=

rj
r0

where j is the smallest index such that wj > t. In other words, when there is
no censored data, the empirical distribution function and the Kaplan-Meier
estimator coincide.

We can use the survival function to compute the mean and variance of
the execution times. Recall that S(t) = Pr(X > t), hence Pr(X = wj) =
Pr(X ∈]wj−1, wj ]) = S(wj−1) − S(wj)) for 1 ≤ j ≤ k (with w0 = 0 and
S(w0) = 1, as stated above). We derive that:

µ = E[X] =

k∑
j=1

(S(wj−1)− S(wj))wj + S(wk)wk.

σ2 = E[X2]− E[X]2

=
k∑
j=1

(S(wj−1)− S(wj))w2
j + S(wk)w2

k − µ2

6 Taking decisions

In Section 5, we have shown how we can use data from the execution of tasks
to define the best cutting threshold. In this section we focus on how and
when to acquire the data needed to compute a cutting threshold, possibly
many different times as the execution progresses.

In order to acquire information on the distribution of task execution
times, the only solution is to execute some tasks and to record their exe-
cution times. In this process, we have to make a classical trade-off. On
the one hand, we should execute a sufficiently large number of tasks until
completion, in order to be sure that the set of observed execution times is
indeed representative of the underlying distribution. On the other hand, we
should execute as few tasks as possible before making a decision, to avoid
wasting a significant share of the budget on running tasks until completion
if the optimal threshold is a “short” one. We start by designing policies that
try to guess the good tradeoff before launching any task. Then, we present
a policy that tries to automatically infer that tradeoff.

6.1 One-size-fits-all policies

The simplest strategies will try to guess, without interrupting any task, the
“right” tradeoff. Consider a strategy that spends 10% of the overall budget
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running tasks up to completion before computing the optimal threshold: it
can still hope to achieve a 90% overall efficiency. Indeed, it can achieve
such a good performance just by applying the optimal policy for the actual
distribution of task execution times during the remaining 90% of the budget.
As this looks promising, this is the basis of our first two strategies:

1. we pick a priori a percentage p;

2. we run tasks on processors until we have spent the fraction p× b of the
overall budget;

3. we compute the cutting threshold either using the empirical distribu-
tion function for strategy Empirical, or survival analysis for strategy
Survival;

4. we then apply the cutting threshold on all tasks until the budget is
exhausted.

For 2), recall that we enroll
⌈
b
d

⌉
processors, hence up to rounding artefacts,

the fraction pb of the whole budget is spent when the fraction pd of the
deadline is reached on each processor.

When the task average execution time is large and the observation budget
pb is small, it may happen that no task has completed when the observation
budget is exhausted. In such a case, we delay the computation of the thresh-
old to after having spent 2pb, and so on if this extended budget is also too
small.

There are two obvious limitations to these first two strategies. First, once
a threshold is computed, it is applied until the end. However, in the mean-
time, new tasks complete and some are interrupted, and we gather more in-
formation on the distribution. We should take the new available information
into account. We propose to do that periodically, each time we have spent
another fraction pb of the budget, by recomputing the threshold considering
all the available data. This gives us two new strategies PerEmpirical and
PerSurvival.

The second limitation is due to the fact that when we compute the thresh-
old, we have no idea how much the accumulated data is representative of the
actual distribution of execution times. Therefore, we have no idea of the qual-
ity of the threshold that we compute. To remedy this, in the next section,
we propose to automatically infer when to stop observing the distribution
and to compute the threshold.

6.2 Automatic inference

We do not want to compute the threshold before ascertaining that the data
we have acquired on the distribution of task execution times is “good enough”.
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However, we do not want to spend the whole budget trying to acquire in-
formation. Hence we decide to rely on two parameters fixed a priori: a
percentage pmax of the overall budget and a precision ε. The precision ε will
guarantee that we have a good enough approximation of the data distribution
because the mean value and standard deviation of the empirical distribution
function have converged (up to the precision ε). In addition, the percentage
pmax will be a large value guaranteeing that in extreme cases, we will even-
tually take a decision before running out of the budget. We will compute the
threshold as soon as one of the two following conditions is met: either ob-
serving convergence of the empirical distribution function, or having spent a
fraction pmax b of the overall budget. In practice, each time a task completes,
we recompute the mean value and standard deviation of the distribution. If
both new values have a relative difference less than ε from previous ones, we
assume the approximation of the distribution to have converged.

Once we have computed a cutting threshold, say after having spent a bud-
get qb, we recompute it periodically each time we have spent max{0.01, q}b
of the budget. We add the max for the cases where the budget is very
large and the convergence very fast, in order to keep the number of deci-
sions constant (as stated in Section 3). Obviously the new strategy can be
implemented for both the empirical distribution function and the survival
analysis. However, because of the superiority of the survival analysis (shown
in Section 7), we implement it only for survival analysis, leading to the new
strategy AutoPerSurvival.

7 Experiments

This section assesses the performance of the different strategies introduced in
the previous sections. The experimental settings are detailed in Section 7.1,
and results are presented in Section 7.2. All strategies were implemented in
R. The corresponding source code, and all the data, are publicly available
in [24].

7.1 Experimental methodology

The default settings are as follows. The deadline d can take the values 5,
10, 50, and 100. The cloud platform is composed of M = 10 identical VMs,
each with a unitary cost. As stated in Section 3, the budget b is defined
as b = Md. Then, the budget b is evenly shared among the VMs which all
execute tasks until the deadline d. As discussed in Section 4.1, recall that a
typical configuration enrolls

⌈
b
d

⌉
VMs.

We use different standard probability distribution functions to gener-
ate task execution times, namely uniform, exponential, log-normal, half-
normal, truncated normal (truncated on [0,+∞)), gamma, inverse-gamma,
and Weibull distributions. In addition, multimodal distributions have been
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advocated to model jobs, file and object sizes [19]. Therefore, we also con-
sider two types of bimodal distributions, either based on truncated normal
distributions or on exponential distributions. For all the bimodal distribu-
tions, the two modes are equiprobable. For four of the distributions, we
consider two different sets of parameters to illustrate different potential be-
haviors associated to the same type of distribution. These distributions are
the gamma distribution, the log-normal, the bimodal exponential, and the
bimodal truncated normal. To enable a direct comparison between all differ-
ent distributions, we choose their parameters so that all distributions achieve
a mean equal to 1. The detailed parameters of the distributions are presented
in Table 2. Due to space limitation, we will sometimes only report here the
performance of 6 of these 14 distributions. The performance of the other
distributions can be found in the web supplementary material.

Following the discussion in Section 4.2 about avoiding arbitrarily small
task execution times, we add a constant δ = 0.05 to all randomly gener-
ated task execution times. Therefore, for all the distributions under study,
execution times will always have an average value of 1.05.

For each simulation setting, we generate 1000 random instances (i.e., sets
of task execution times). In addition, we compare the result of the proposed
strategies with two reference heuristics. NeverInterrupt is the baseline
heuristic which let all tasks run up to completion. Oracle knows in advance
the distribution used to generate task execution times and computes the op-
timal threshold using that knowledge. Oracle is thus an upper bound on
the performance of any strategy. Therefore, the closer to Oracle’s perfor-
mance, the better the heuristic.

7.2 Results

We present the experimental results in two steps. First in Section 7.2.1,
we present results for the one-size-fits-all heuristics: Empirical, Survival,
PerEmpirical and PerSurvival, for all the distributions. PerSurvival
turns out to be the best of the 4 heuristics in almost all studied cases. This is
why, in Section 7.2.2, we compare PerSurvival and AutoPerSurvival.

Before assessing the performance of the heuristics, we consider the distri-
butions under study. Figure 3 presents, for each distribution, the theoretical
yield achievable as a function of the cutting threshold. In Figure 3, we have
ordered the distributions by non-increasing values of their cutting threshold.
One can see that different distributions, or the same distribution with differ-
ent parameters, lead to different shapes of the yield function. For the first
distributions in the figure, tasks should never be interrupted. For the fol-
lowing distributions, tasks should be interrupted, and sometimes quite early.
Table 3 reports the optimal cutting threshold for each distribution. This va-
riety of situations makes it challenging to determine a good cutting threshold
when the distribution is unknown. In the remainder of this section, in order
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Figure 3: Theoretical yield when varying cutting threshold for each distri-
bution.
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Figure 4: Ratio to Oracle of number of tasks successfully executed using
different heuristics when varying pfor each distribution (1/3).
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Figure 5: Ratio to Oracle of number of tasks successfully executed using
different heuristics when varying pfor each distribution (2/3).
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Figure 6: Ratio to Oracle of number of tasks successfully executed using
different heuristics when varying pfor each distribution (3/3).
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Table 2: Symbol and parameters for the distributions used in the simulations.
(For all distributions µ is the mean and σ the standard deviation, except for
the truncated normal and half-normal distributions where µ and σ are the
mean and standard deviation of the original normal distribution.)
Symbol Distribution Parameters

double_exp(λ1, λ2) Bimodal exponential λ1 = 1
1.005 ≈ 0.995, λ2 = 1

0.995 ≈ 1.005
λ1 = 1

0.1 = 10, λ2 = 1
1.9 ≈ 0.526

double_truncnorm(µ1, σ1, µ2, σ2) Bimodal truncated normal µ1 = 0.5, σ1 ≈ 0.534, µ2 = 1, σ2 ≈ 1.068
µ1 = 0.01, σ1 ≈ 0.178, µ2 = 1, σ2 ≈ 1.782

exp(λ) Exponential λ = 1
gamma(k, θ) Gamma k = 1, θ = 1

k = 1
3 ≈ 0.333, θ = 3

hnorm(σ) Half-normal σ =
√

π
2 ≈ 1.253

invgamma(α, β) Inverse Gamma α = 7
3 ≈ 2.333, β = 4

3 ≈ 1.333
lnorm(µ, σ) Log-normal µ = 1, σ = 0.5

µ = 1, σ = 3
truncnorm(µ, σ) Truncated normal µ = 0.8, σ ≈ 0.754
unif(a, b) Uniform a = 0, b = 2
weibull(k, λ) Weibull k ≈ 0.411, λ = 1

Γ(1+ 1
k )
≈ 0.324

to ease the comparison of the behaviors of the different strategies for the
different distributions, all graphs and tables report results with distributions
ordered as in Figure 3.

7.2.1 One-size-fits-all heuristics

In Figures 4, 5, and 6, we plot the ratio of the number of tasks successfully
executed by each heuristic, over the value achieved by Oracle. Hence, the
closer to 1, the better. We plot the performance of each heuristic while vary-
ing the percentage p of the budget spent for the observation phase (namely
p = 1%, 2.5%, 5%, 10%, 15%, or 20%), and for the four different values of
the budget b.

We observe that the performance of the different heuristics is strongly
correlated to the shape of the yield functions, as illustrated by Figure 3. In
particular, the performance of the heuristics evolve according to our ordering
of the distributions. When the optimal threshold is infinite (i.e., for unif(0,2),
truncnorm(0.8, 0.75), lnorm(1,0.5), hnorm(1.25), double_truncnorm(0.5,0.5,0.53,1,1.07),
double_exp(0.5,1,1.01), exp(1) and gamma(1,1) ), NeverInterrupt has
the same performance as Oracle. Also, the performance of the other
heuristics increases with p. This is easily explained, since the behavior of
the heuristics during the observation phase is, by definition, that of Nev-
erInterrupt. Moreover, the longer the observation phase, the higher the
probability that the accumulated data will be of good quality and lead to
deriving an efficient threshold.

When the optimal threshold is finite (i.e., for invgamma(2.33,1.33), gamma(0.33,3),
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Table 3: Optimal cutting threshold for each distribution

Distribution Optimal Threshold

unif(0,2) ∞
truncnorm(0.8, 0.754) ∞
lnorm(1,0.5) ∞
hnorm(1.253) ∞
double_truncnorm(0.5,0.534,1,1.068) ∞
double_exp(0.995,1.005) ∞
exp(1) ∞
gamma(1,1) ∞
invgamma(2.333,1.333) 1.842
lnorm(1,3) 0.300
double_truncnorm(0.01,0.178,1,1.782) 0.290
double_exp(10,0.526) 0.180
gamma(0.333,3) 0.110
weibull(0.411,0.324) 0.090

lnorm(1,3), double_truncnorm(0.5,0.01,0.18,1,1.78), double_exp(0.5,10,0.53)
and weibull(0.41,0.32)), NeverInterrupt performs predictably worse. The
lower the optimal threshold, the lower the performance of NeverInter-
rupt. Also, the larger the budget, the lower the performance of Nev-
erInterrupt, even if the decrease is not always significant. For the other
heuristics, the best value for p decreases. This is once again easily explained,
because with larger values of p, the observation phase is longer, and thus the
budget spent in a suboptimal mode is larger. The graphs are not decreasing
from the start because a significant number of tasks must complete to make
a decision close to the optimal one, rather than one that is heavily influenced
by the random nature of the very few completion times available.

When the budget is large with respect to the average task execution time
(e.g., b = 1000), many tasks complete before the end of the observation phase
and we can deduce a relatively precise threshold. Hence, the four heuristics
perform globally well. For instance, when p = 10%, all heuristics achieve a
performance that is at least 90% that of Oracle, whatever the distribution.
For some distributions, some heuristics achieve a performance of 95% of this
theoretical optimal. This is true even for distributions that, theoretically,
need to be cut early, such as Weibull. Because we have enough budget to
obtain high-quality threshold after the observation period (which costs 10%
of the budget), for the rest of the execution time (90% of the budget), we
achieve a performance close to the optimal. Therefore the overall results are
very good although we do not interrupt tasks during the observation phase.
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When the budget is either b = 500 or b = 1000, PerSurvival achieves
the best performance, or a performance equivalent to that of the best of
the four heuristics, except for the inverse-gamma distribution. For inverse-
gamma, PerSurvival is sometimes very slightly below PerEmpirical for
the same percentage p. However, these two heuristics achieve the same peak
performance for that distribution.

On the contrary, when the budget is small with respect to the average
task execution time (e.g., b = 50), the performance of all heuristics worsens.
When b = 50 and p = 10%, each of the 10 processors executes tasks for
only 0.5 seconds during the observation phase. Hence, the threshold should
be computed after very few tasks are completed, if any. It should therefore
not be a surprise that the results are then far from optimal. The best per-
formance is achieved either for the distributions which have a small optimal
threshold —and then the performance is rather good whatever the value of
p— or when the value of p is large —which compensates from the fact that
the budget is small. PerSurvival remains the best heuristic when b = 100;
when b = 50 there is no obvious heuristic of choice.

In conclusion, when the budget b is large with respect to the average task
execution time, the four basic and periodic heuristics achieve a good perfor-
mance (at least 90% of the optimal) if we choose carefully the parameter p
(e.g., p = 10%). Then, among the four heuristics, PerSurvival achieves
the best performance overall and also in most instances. When the budget
is small, the performance of the heuristics worsens. The main reason is that
for a same value of p, there are no longer enough completed tasks to make a
relevant decision with respect to the threshold. When the budget is small,
p should be large if tasks should never be interrupted and p should be small
if tasks must be interrupted quickly. Obviously, before running any task we
do not know what the average task execution time will be, what the cutting-
threshold will be and hence, how to adequately chose the value of p. The
AutoPerSurvival policy aims at alleviating this problem.

7.2.2 AutoPerSurvival vs. PerSurvival

In Figures 7, 8 and 9, we compare the performance of AutoPerSurvival
for different values of pmax (namely pmax= 10%, 20%, 30%, 40%, or 50%)
when varying ε (namely, ε= 0.0010, 0.0025, 0.0050, 0.0100, 0.0250, 0.0500,
and 0.1000). We added the performance of PerSurvival using different
values for p as a reference.

In all graphs, we observe that the performance of AutoPerSurvival
is influenced by the interplay of the two parameters ε and pmax. When the
value of ε is very small, we need a very large (in expectation) number of
launched tasks to meet the ε criteria. This, in turn, will require to spend a
large amount of budget for the observation phase. If ε is sufficiently small, on
most instances this requirement will exceed the upper limit set by pmax on the
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Figure 7: Number of successfully executed tasks for each distribution us-
ing AutoPerSurvival (different pmax when varying ε) and PerSurvival
(different p) (1/3).
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Figure 8: Number of successfully executed tasks for each distribution us-
ing AutoPerSurvival (different pmax when varying ε) and PerSurvival
(different p) (2/3).
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Figure 9: Number of successfully executed tasks for each distribution us-
ing AutoPerSurvival (different pmax when varying ε) and PerSurvival
(different p) (3/3).
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budget spent during the observation phase. Hence, if ε is sufficiently small,
the behavior of AutoPerSurvival is only dictated by the value of pmax.
For instance, when b = 50, this is the case for the uniform distribution when
ε ≤ 0.0050, and for the Weibull distribution when ε ≤ 0.0025. However,
when the value of ε gets larger, convergence is reached sooner. Then an
approximation of the data distribution deemed “good enough” (with respect
to ε) is obtained before spending a share pmax of the budget. In that case,
pmax does not play any role, and only ε has an influence on the observation
period, and thus on the performance. For instance, when b = 100, this is the
case for lnorm(1,3) when ε ≥ 0.0250. However, for the uniform distribution
when b = 100, note that pmax = 10% still plays a role when ε = 0.1000
which explains why AutoPerSurvival (10%, 0.1000) has a performance
lower than that of the other AutoPerSurvival variants.

Furthermore, we see that the evolution of the performance depends upon
the optimal cutting threshold. When the optimal cutting threshold is infi-
nite, the smaller ε, the better the performance. Indeed, during the observa-
tion period, the optimal NeverInterrupt strategy is implemented, and,
later on, the cutting-threshold strategy is applied. This is particularly true
when we have enough time before convergence (large values of pmax and of
b). In such a case, there is no performance penalty in having a large ob-
servation period during which tasks are not interrupted. In contrast, for
distributions with a short optimal cutting threshold, small ε values (and
longer observation periods) waste more budget without interrupting tasks,
and the performance decreases when ε decreases.

Globally, when the budget and deadline are large enough, AutoPer-
Survival (when ε ≤ 0.0100) performs similarly to PerSurvival, and they
both have a good performance (larger than 90%). In this case, all pmax val-
ues perform equally well. However, when the budget and deadline decrease,
we already know that PerSurvival performs worse, and we observe that
the performance of AutoPerSurvival is strongly correlated to the value
of pmax and ε. Among the parameters tested, AutoPerSurvival (40%,
0.01) is a good choice, because it can successfully execute more than 77%
of the tasks of the optimal heuristic Oracle, regardless of the distribution
and the budget (deadline) values. In other words, using AutoPerSurvival
(40%, 0.01) will always lead to good results, contrarily to all one-size-fits-all
heuristics.

7.2.3 Stability of performance while varying µ, σ, and M

Figures 10 and 11 assess the performance of the different heuristics under a
log-normal distribution of task execution times when b = 1000 (Figure 10)
and b = 50 (Figure 11) for different values of the average task execution time
(µ), of the standard deviation (σ,) and of the number of VMs in the platform
(M). We use a log-normal distribution because it has been advocated to
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Figure 10: Number of successfully executed tasks for the different heuristics
with a budget b = 1000 when task execution times follow a log-normal dis-
tribution. Unless otherwise specified, the expectation is µ = 1, the standard
deviation is σ = 3, and the number of VMs is M = 10.
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Figure 11: Number of successfully executed tasks for the different heuristics
with a budget b = 50 when task execution times follow a log-normal distri-
bution. Unless otherwise specified, the expectation is µ = 1, the standard
deviation is σ = 3, and the number of VMs is M = 10.
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model file sizes [19], and thus task costs can also be assumed to follow this
distribution. For the heuristics, we choose the parameters which achieved the
best performance in the previous simulations: AutoPerSurvival is used
with the parameters pmax = 40% and ε = 0.01. For the four one-size-fits-all
strategies, we use the same value to define the observation phase: p = 10%.

In Figure 10, as the budget is big enough (b = 1000), all heuristics
perform similarly and close to the optimal in all configurations. AutoPer-
Survival may perform slightly better than the four other heuristics in most
of the cases but the differences are minimal.

Figure 11 presents the more interesting case of a small budget b = 50
with respect to the average task execution time. The first row of subgraphs
show the influence of the average task execution time, µ, on the performance
of heuristics. Remark that for b = 50, p = 10%, andM = 10, the observation
phase for one-size-fits-all heuristics only lasts for 0.5 second, during which
one expects that very few processors will be able to complete a task. This
gets even more true when µ increases, and explains that the performance
of the heuristics is decreasing. Nevertheless, the performance of AutoP-
erSurvival decreases more slowly than that of the other heuristics. For
instance, when µ = 3, the four one-size-fits-all heuristics already achieve a
rather bad performance while AutoPerSurvival remains quite close to the
optimal. The fact that AutoPerSurvival automatically adapts the length
of its observation phase to the quality of the information that it gathers (here
mainly the number of tasks that complete), enables it to achieve a graceful
degradation of performance.

The second row of subgraphs shows the impact of the standard deviation
σ. When σ varies, the optimal cutting-threshold varies. This is illustrated
by the performance of NeverInterrupt which decreases when σ increases,
showing that the optimal threshold also decreases. All heuristics have similar
performance when σ = 3 and σ = 5. However, only AutoPerSurvival
achieves near optimal performance when σ = 1.

The third row of subgraphs show that varying the number of VMs has no
significant impact on the performance of the heuristics: all scenarios achieve
near optimal performance. Overall, AutoPerSurvival (40%, 0.01) is a
very robust heuristic, which overcomes the other heuristics in all settings,
and which, in the most adverse scnearios, exhibits a graceful degradation of
performance with respect to the theoretical optimal.

7.2.4 Conclusion

To summarize our findings, we finally present two tables showing the number
of tasks completed by each heuristic for each distribution expressed as a
fraction of the optimal performance (of Oracle). We present results for
a large budget (Table 4 of the web supplementary material, b = 1000 and
d = 100) and a small one (Table 5, b = 50 and d = 5) with respect to the
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Table 4: Ratio to Oracle of number of tasks completed for each heuristic
and each distribution with µ = 1, b = 1000 and d = 100.

NeverInterrupt AutoPerSurvival (40%,0.01) PerSurvival (10%) Survival (10%) PerEmpirical (10%) Empirical (10%)

unif(0,2) 1.0000 0.9217 0.9880 0.9887 0.9873 0.9881
truncnorm(0.8, 0.754) 1.0000 0.9170 0.9911 0.9914 0.9913 0.9914
lnorm(1,0.5) 1.0000 0.9186 0.9894 0.9909 0.9903 0.9909
hnorm(1.253) 1.0000 0.9168 0.9920 0.9920 0.9903 0.9903
double_truncnorm(0.5,0.534,1,1.068) 1.0000 0.9127 0.9881 0.9873 0.9860 0.9859
double_exp(0.995,1.005) 1.0000 0.9360 0.9690 0.9379 0.9370 0.9367
exp(1) 1.0000 0.9388 0.9685 0.9352 0.9362 0.9367
gamma(1,1) 1.0000 0.9391 0.9669 0.9397 0.9381 0.9391
invgamma(2.333,1.333) 0.9350 0.9512 0.9876 0.9871 0.9897 0.9881
lnorm(1,3) 0.5345 0.9620 0.9464 0.9352 0.9344 0.9351
double_truncnorm(0.01,0.178,1,1.782) 0.5023 0.9470 0.9338 0.9229 0.9259 0.9259
double_exp(10,0.526) 0.3610 0.9522 0.9236 0.9151 0.9169 0.9162
gamma(0.333,3) 0.8440 0.9711 0.9810 0.9801 0.9803 0.9799
weibull(0.411,0.324) 0.2296 0.9613 0.9183 0.9108 0.9109 0.9109

Table 5: Ratio to Oracle of number of tasks succeeded for each heuristic
and each distribution with µ = 1, b = 50 and d = 5

NeverInterrupt AutoPerSurvival (40%,0.01) PerSurvival (10%) Survival (10%) PerEmpirical (10%) Empirical (10%)

unif(0,2) 1.0000 0.8872 0.4659 0.4522 0.4513 0.4775
truncnorm(0.8, 0.754) 1.0000 0.8904 0.4089 0.4002 0.3981 0.4288
lnorm(1,0.5) 1.0000 0.9230 0.3620 0.3646 0.3633 0.3667
hnorm(1.253) 1.0000 0.8874 0.6046 0.5701 0.5974 0.6146
double_truncnorm(0.5,0.534,1,1.068) 1.0000 0.8881 0.4989 0.4818 0.4940 0.5088
double_exp(0.995,1.005) 1.0000 0.9086 0.7846 0.7552 0.7927 0.8172
exp(1) 1.0000 0.9235 0.7973 0.7456 0.7916 0.8010
gamma(1,1) 1.0000 0.9221 0.8033 0.7604 0.8133 0.8203
invgamma(2.333,1.333) 0.9858 0.9647 0.4729 0.4738 0.4790 0.4788
lnorm(1,3) 0.6865 0.8896 0.9238 0.9048 0.9484 0.9493
double_truncnorm(0.01,0.178,1,1.782) 0.5233 0.7794 0.9190 0.8831 0.9386 0.9420
double_exp(10,0.526) 0.4107 0.7725 0.9190 0.8925 0.9068 0.9057
gamma(0.333,3) 0.8513 0.9599 0.9658 0.9592 0.9603 0.9610
weibull(0.411,0.324) 0.3291 0.7995 0.9198 0.9014 0.8802 0.8711

average task execution time (µ = 1). Obviously, we use the same heuristic
parameters than previously: ε = 0.01, pmax = 40%, and p = 10%.

Table 4 shows that, with large values of budget and deadline, all heuristics
perform well. Indeed, with the chosen parameters all heuristic achieve at
least 91% of the performance of the optimal. Among the one-size-fits-all
heuristics, PerSurvival performs best and is the most robust, but the
difference between these heuristics is not always significant. On average the
performance of AutoPerSurvival and PerSurvival are pretty similar.

Table 5 presents the result when budget and deadline are small. In
this case all one-size-fits-all heuristics achieve very low performance, below
40% for each of them (for the log-normal distribution). On the contrary,
AutoPerSurvival always achieves good to very good performance: its
worse case is 79% of the optimal. Once again, this shows the great robustness
of AutoPerSurvival (40%, 0.01).

8 Conclusion

In this work, we have studied the problem of maximizing the number of
tasks successfully executed on a cloud platform under deadline and bud-
get constraints. When task execution times obey a probability distribution
that is known before execution, previous results showed that long-running
tasks must be interrupted at some optimal cutting threshold τ , and pro-
vided techniques to determine its value. Some probability distributions call
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for a very short threshold τ while others have a large or infinite one. The
main difficulty in this study is that the probability distribution of task exe-
cution times is unknown to the scheduler. We designed a set of scheduling
heuristics to estimate the cutting threshold τ , some of which making use of
the Kaplan-Meier estimator. We also assessed different decision mechanisms
to recompute the threshold as the execution progresses. On the practical
side, extensive simulations show that our best heuristic AutoPerSurvival
(40%, 0.01) achieves good performance for a wide spectrum of probability
distributions and parameter sets. In the worst scenario, it can execute 79%
of tasks that an omniscient oracle (knowing the distribution) would be able
to complete.

Future work will be dedicated to considering heterogeneous VMs, still
under the assumption that the distribution of task execution times is un-
known on the different VMs. Indeed, some cloud providers provide different
categories of VMs with different computer power and nominal cost, and
execution times are not directly proportional to cost nor power. This het-
erogeneity will dramatically complicate the selection of a good VM subset,
and the estimation of the cutting threshold on each of them.
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