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Abstract. Functional Encryption (FE) has been widely studied in the last decade, as it provides a very
useful tool for restricted access to sensitive data: from a ciphertext, it allows specific users to learn a
function of the underlying plaintext. In practice, many users may be interested in the same function on
the data, say the mean value of the inputs, for example. The conventional definition of FE associates each
function to a secret decryption functional key and therefore all the users get the same secret key for the
same function. This induces an important problem: if one of these users (called a traitor) leaks or sells the
decryption functional key to be included in a pirate decryption tool, then there is no way to trace back its
identity. Our objective is to solve this issue by introducing a new primitive, called Traceable Functional
Encryption: the functional decryption key will not only be specific to a function, but to a user too, in such
a way that if some users collude to produce a pirate decoder that successfully evaluates a function on the
plaintext, from the ciphertext only, one can trace back at least one of them.
We propose a concrete solution for Inner Product Functional Encryption (IPFE). We first remark that the
ElGamal-based IPFE from Abdalla et. al. in PKC ’15 shares many similarities with the Boneh-Franklin
traitor tracing from CRYPTO ’99. Then, we can combine these two schemes in a very efficient way, with
the help of pairings, to obtain a Traceable IPFE with black-box confirmation.

Keywords: Functional Encryption, IPFE, Traceability.

1 Introduction

Public Key Encryption (PKE) enables people to securely communicate and share sensitive data
to others over public channels. Functional Encryption (FE) [SW05,BSW11], proposed by Boneh,
Sahai and Waters, overcomes some limitations of PKE. It allows recipients to recover encrypted
data in a more fine grained manner. Instead of revealing all-or-nothing of the original encrypted
data as in PKE, recipients can get the evaluation of (statistical) functions on the data. As the
function can contain an access control that checks some relation between the identity in the
functional decryption key and the authorized identity in the plaintext, this primitive generalizes
Identity Based Encryption (IBE) and Attribute Based Encryption (ABE), and actually received
a large interest from the community. However, there is still no efficient construction of functional
encryption for general functions. Currently, there are only simple and effective constructions for
linear and quadratic functions [ABDP15,ALS16,BCFG17].

In many practical applications, it is common that people only care about several specific
functions on the data, for example the mean value of the data. Allowing many people to get
access to the same function, with possible malicious users, has not been really covered by the
previous works: the functional decryption key is derived from the function and the master secret
key, but independently of the user. Therefore, all the users are given the same key, and if this
key is leaked, no one can identify the origin of the leakage. The tracing problem becomes critical
for this situation. We define a new primitive, called Traceable Functional Encryption (TFE).

Traitor tracing is a mechanism enabling an authority or an arbitrary party (who is a delegated
party in the system to perform tracing tasks) can identify malicious users (traitors) who possibly
colluded to produce a pirate decoder that behaves the same as a normal decryption. The very
first traitor tracing scheme has been introduced by Chor, Fiat and Naor [CFN94] and made
use of combinatorial tools. The first algebraic traitor tracing scheme has been introduced by
Boneh and Franklin [BF99], and is the basis for many subsequent schemes. A large number of
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schemes, in pairing-based setting or in lattice-based setting, have been introduced, we list a few
of them [KY02,CPP05,BSW06,FNP07,LPSS14,BZ14,NWZ16,ABP+17,GKW18,CVW+18].
A taxonomy of the traitor tracing schemes can be found in [ABP+17,GKW18]. The classical
tracing notion requires that the pirate decoder is able to decrypt random messages for being
traced. In [GKW18], it is shown that there is a flaw in some tracing systems with this notion
and a fix is proposed with a stronger notion which only requires the decoder to distinguish two
messages of its choice. This is a very strong notion and we will consider it in this work.

Concerning advanced primitives, traceability in IBE [ADML+07,Goy07,AHL+08, PT11]
and in ABE [NCD+14,LCW13,LW15a,LW15b] have been considered. Achieving traceability is
usually very expensive. Adding traitor tracing to public-key encryption indeed requires a very
high extra cost: even in the bounded model, the cost grows proportionally with the number
of traitors. Interestingly, in the case of inner-product functional encryption, we can hope for
a better deal. Indeed, in IPFE, as the number of corrupted keys is anyway bounded by the
dimension of the plaintext vector and the ciphertext size is linear in this dimension, we can
hope that adding traceability does not need such a huge extra cost. This is also what we achieve
in this paper: adding certain level of traceability for inner-product functional encryption does
not cost much. We achieve this in the discrete logarithm setting where we can note a clear
similarity in the design of the first inner-product functional encryption scheme [ABDP15] and the
Boneh-Franklin traitor tracing [BF99] and thus can combine them into a traceable inner-product
functional encryption. It leaves as an open problem to get any level of traceability in other
settings of inner-product functional encryption.

We eventually provide a construction for traceable inner-product functional encryption with
black-box confirmation. Our construction is semantically secure in a more general setting than
in IPFE as the adversary can choose both identity and function to query the corresponding
functional secret key. Concerning traceability, it achieves one-target tracing : an adversary A is
allowed to ask secret keys for one target function only, but many identities, and then produces
a pirate decoder for this function. This is a basic step to be able to achieve higher level of
traceability. Note that this is the security level we manage to prove, but this is still an open
problem to prove it secure when the adversary can ask keys for several functions. At least, we
did not find any attack in this stronger setting either.

This notion captures already useful real-life applications: suppose a group of users possesses
decryption keys for the average functionality and leaks them to the pirate, if the pirate can
produce a new decoder for this average function then one can trace one of the traitors. One might
worry that a pirate decoder outputting an altered function (say 2F (x) instead of F (x)) might
not be traced. However, as far as the target function can be computed (from public information)
from the outputted function of the pirate decoder, then the traitors can still be traced. In fact, if
the target function is F ? and if the pirate can output a decoder D that computes F = 2F ? then
the tracer can still consider as if the decoder would output F ? because anyone can compute F ?

from F . More formally, one can define a new decoder D? for F ? (computable from F ) from D
for F and do tracing on D? instead of D. We also notice that one-target tracing defeats cloned
pirate decoders. In fact, the most popular way in practice to produce a pirate decoder is to
clone a legitimate one with its secret key. By using the existing IPFE, one cannot trace a cloned
decoder as the functional secret key does not depend on the identities of users. With one-target
tracing, one can trace back the identity of the users who participated for the cloned decoder.
This is indeed covered by the case that the adversary makes many queries but for one target
function only, as the same function is implemented in the various decoders but for different
identities. Eventually, in the theoretical sense, one-target tracing for IPFE is a stronger model
than a bounded traitor tracing. Indeed if we fix a function (1, x2, . . . , xk), give secret keys for
this function to the users, and then send the message (m, 0, 0, ..., 0), then legitimates users can
decrypt to the message m and the one-target tracing corresponds to a classical traitor tracing.



3

Our Technique. We exploit the similarities between the Boneh and Franklin’s traitor tracing
scheme [BF99] and the Abdalla et. al.’s IPFE scheme [ABDP15] to integrate the Boneh-Franklin
tracing technique into the IPFE scheme of Abdalla et. al. [ABDP15] which allows in particular
to personalize functional decryption keys. Interestingly, our method of personalizing keys and
adding traceability does not need a huge extra cost as it is usually required for others primitives
such as broadcast encryption.

We first informally recall the main ingredients of the IPFE of Abdalla et. al. [ABDP15],
that encrypts a plaintext vector y = (y1, . . . , yk) as follows: the master secret key MSK =

s = (s1, . . . , sk) and the public key PK =
(
G,
(
hi = gsi

)
i∈[k]

)
respectively allow to generate

functional decryption keys and ciphertexts:

skx = 〈s,x〉 =
∑
i∈[k]

si · xi, CTy =
(
gr,
(
hri · gyi

)
i∈[k]

)
.

Here, we are working in a cyclic G of prime order q, with a generator g. The master secret key
MSK is a vector s with components si are taken from Zq. The public key PK consists of k group
elements hi. The vector x = (x1, . . . , xk) with components xi is taken from Zq is used to extract
a functional decryption key skx. A ciphertext, which is generated for a plaintext y, denoted by
CTy. The Decrypt algorithm computes∏

i∈[k]

(
hri · gyi

)xi
×
(
gr
)−skx

=
g〈s,x〉r · g〈x,y〉

g〈s,x〉r
= g〈x,y〉

and gets 〈x,y〉, which is supposed to be relatively small, to allow the computation of the discrete
logarithm.

For the mean value, the vector x is (1, . . . , 1). If many users are interested in the mean
value then they all get the same functional decryption key skx and there will be no way to
trace the source of the leakage if this secret key is used somewhere. In order to personalize
functional decryption keys for each vector x, we have got inspired from the seminal technique of
Boneh-Franklin: we associate to each user a representation of g〈s,x〉 in the basis of

(
bi = gti

)
i∈[k],

with ti is taken from Zq. Therefore, by adding bri in the ciphertext, each user can compute g〈s,x〉r
as above and the decryption works in the same manner. Concretely, each user ID is associated
to a public codeword θID = (θ1, . . . , θk) and then, the personal secret key will be simply set to:
tkx,ID = 〈s,x〉/〈t,θID〉. The master secret key MSK consists of two vectors s = (s1, . . . , sk) and
t = (t1, . . . , tk). The public key PK =

(
G,
(
bi = gti

)
i∈[k],

(
hi = gsi

)
i∈[k]

)
. For each plaintext y,

the ciphertext is
CTy =

((
bri
)
i∈[k],

(
hri · gyi

)
i∈[k]

)
.

The Decrypt algorithm then outputs∏
i∈[k]

(
hri · gyi

)xi
×
∏
i∈[k]

(
bri

)−tkx,IDθi
=
g〈s,x〉r · g〈x,y〉

g〈s,x〉r
= g〈x,y〉.

The use of pairings. The above technique of personalizing secret keys seems to work well as in
the Boneh-Franklin traitor tracing. However, there exists an issue specific to the setting of the
functional encryption, that goes beyond the framework of Boneh-Franklin traitor tracing. Suppose
that we are considering a scheme for two users with identities ID1 and ID2. The first user queries
the secret keys corresponding to vectors x1 and x2 and gets tkx1,ID1 = 〈s,x1〉

〈t,θID1
〉 and tkx2,ID1 =

〈s,x2〉
〈t,θID1

〉 . The second user only queries secret key to vector x1 and gets tkx1,ID2 =
〈s,x1〉
〈t,θID2

〉 . From
these three secret keys tkx1,ID1 , tkx2,ID1 and tkx1,ID2 , it is possible to compute the secret key
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tkx2,ID2 =
tkx2,ID1

·tkx1,ID2

tkx1,ID1
for the vector x2 and identity ID2. To avoid this attack, we will put

the scalar tx,ID in the exponent skx,ID = gtkx,ID and the decryption will then be performed in
the target group of the pairing. The goal of the rest of the paper is to prove this modification
actually leads to a secure scheme.

Enhancing the security of IPFE. It is worth noticing that, by putting the secret key in the
exponent, we may enhance the security of the functional encryption. In the Abdalla et. al.’s
scheme [ABDP15], whenever the adversary queries more than k secret keys, it can get the whole
MSK by solving a system of linear equations. In our scheme, there is no way, unless breaking
discrete logarithm, to get this master key as it is only put in the exponent. We will though not
exploit further this advantage in this work, as we will focus on traceability.

Tracing algorithm. We rely on the classical linear tracing technique but we will adapt this
technique into the functional encryption setting and with the strongest notion of pirate, namely
pirate distinguisher introduced in [GKW18].

Organization. In Section 2, we will recall some classical assumptions (DDH and BDDH), required
for the security of our constructions. In Section 3, we introduce a new concept: Traceable
functional encryption (TFE). We then define security game of TFE against adaptively-chosen
plaintext attacks and security game of the Tracing algorithm. A concrete TFE construction
for inner product will be presented in Section 4. We will prove that our construction achieves
selective security. Section 5 will be intended to present a tracing algorithm which achieves
one-target security as stated in Theorem 13. The black-box confirmation property of the Tracing
algorithm will be proven in the Lemma 11 and 12.

2 Preliminaries

We denote [k] the set of integers between 1 and k. Given two vectors x = (x1, . . . , xk) and
y = (y1, . . . , yk), where xi, yi ∈ Zq for all i ∈ [k], we define 〈x,y〉 =

∑k
i=1 xiyi. Next we recall

classical assumptions as follows.

Definition 1 (Decisional Diffie-Hellman Assumption). Given a cyclic group G = 〈g〉
of prime order q, the Decision Diffie Hellman (DDH) problem consists in distinguishing the
following distributions

D0 = {(ga, gb, gab) | a, b
$← Zq} D1 = {(ga, gb, gc) | a, b, c

$← Zq}.

The distribution D0 consists of Diffie-Hellman tuples whereas D1 consists of random tuples.
Roughly speaking, the DDH problem consists in distinguishing DH tuples from random tuples.
The DDH assumption states that the two above distributions D0 and D1 are indistinguishable.

Let G1,G2,GT be multiplicatively written groups of prime order q, and let g1, g2 be generators
of G1,G2, respectively. We write 1T to denote the unit element of GT . Let e : G1 ×G2 → GT

be a function sending two elements from G1 and G2 into the group GT . We say that the tuple
(G1,G2,GT , q, e) is an asymmetric bilinear group if the following properties hold:

– Bilinearity: for all h1 ∈ G1, h2 ∈ G2 and a, b ∈ Z∗q, we have e(ha1, hb2) = e(h1, h2)
ab.

– Non-degeneracy: e(g1, g2) 6= 1T .
– The function e can be efficiently computed.

Definition 2 (Bilinear Decisional Diffie-Hellman Assumption).
Given an asymmetric bilinear group (G1,G2,GT , q, e), the Bilinear Decisional Diffie-Hellman
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(BDDH) problem consists in distinguishing the following distributions, for generators g1 and g2

D0 =
{(
ga1 , g

b
1, g

a
2 , g

c
2, e (g1, g2)

abc
)
|a, b, c $← Zq

}
D1 =

{(
ga1 , g

b
1, g

a
2 , g

c
2, e (g1, g2)

z) |a, b, c, z $← Zq
}
.

The BDDH assumption states that no PPT adversary can distinguish D0 and D1 with non
negligible advantage.

Lemma 3 (Two-tailed Chernoff Bound). Let X1, X2, . . . , Xn be independent Poisson trials
(yes/no experiments) with success probabilities p1, p2, . . . , pn. Let X =

∑n
i=1Xi and µ =

∑n
i=1 pi.

For 0 < δ < 1, we have

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ
2/3.

3 Traceable Functional Encryption

We begin by describing the syntactic definition of traceable functional encryption (TFE) for
circuits. A functionality (circuit) F ∈ Fλ describes the function of a plaintext that can be
derived from the ciphertext. More precisely, a functionality is defined as follows.
Definition 4. Let Y = {Yλ}λ∈N and S = {Sλ}λ∈N denote ensembles where each Yλ and Sλ is a
finite set. Let F = {Fλ}λ∈N denotes an ensemble where each Fλ is a finite collection of circuits,
and each circuit F ∈ Fλ takes as input a message y ∈ Yλ and outputs F (y) ∈ Sλ.
Definition 5. A traceable functional encryption scheme T − FE for an ensemble F consists of
five algorithms (Setup,Extract,Encrypt,Decrypt,Tracing) defined as follows:
Setup(1λ): Takes as input a security parameter λ and outputs a master key pair (PK,MSK).
Extract(ID,MSK, F ): Given an identity ID of a user, a circuit F ∈ Fλ and the master secret key

MSK, this algorithm outputs an individual functional secret key skF,ID.
Encrypt(PK, y): Takes as input the public key PK and a message y ∈ Yλ, this randomized

algorithm outputs a ciphertext CT.
Decrypt(PK, skF,ID,CT): Given the public key PK, a secret key skF,ID and a ciphertext CT, this

algorithm outputs F (y) ∈ Sλ, if CT encrypts y, or an invalid symbol ⊥.
TracingDF (MSK, F, µ(.), y0, y1): The tracing algorithm takes as input the master secret key MSK,

a circuit F ∈ Fλ, two messages y0, y1 ∈ Yλ which are obtained from DF and a function µ(.)
representing the probability that the decoder can distinguish between the ciphertexts of y0
and of y1. The algorithm interacts with a confiscated pirate decoder DF , as a black-box,
and outputs an identity or an invalid symbol ⊥.

For correctness, we require that for all (PK,MSK)← Setup(1λ), all y ∈ Yλ, each F ∈ Fλ and
all identities ID, skF,ID ← Extract(ID,MSK, F ), if CT ← Encrypt(PK, y), then one should get
Decrypt(PK, skF,ID,CT) = F (y), with overwhelming probability.

Requirement on the pirate decoder
– The classical requirement is that the pirate decoder DF is a device that is able to decrypt

successfully any normal ciphertext generated by the Encrypt algorithm with high probability.
Yet, in another approach, the tracer is only able to interact with DF through an oracle ODF
by sending a message-ciphertext pair (tracing signal) to ODF and gets a response that is a bit
indicating whether DF can successfully decrypt the ciphertext into the provided message
(evaluated with the function F ). We say that the tracing algorithm is executing in minimal
access black-box mode.

ODF (CT, y) =

{
1 if DF (CT) = F (y)

0 otherwise.
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– We consider the same setting for the pirate as in [GKW18]: of course, this is not required
the pirate decoder DF to output entire message (or an indicator bit as in minimal access
model) nor to decrypt with high probability every ciphertexts which are taken from random
messages. Instead, it is enough that the pirate decoder can distinguish the encryption of
two messages y0, y1 which are chosen by itself (see [GKW18]): Adapted from [GKW18], we
define a µ-useful Pirate Distinguisher DF associated to a unique function F as below∣∣∣∣∣∣∣∣∣∣

Pr

DF (CTb) = b :

(MSK,PK)← Setup(·)
{skF,i ← Extract(i,MSK, F )}i∈[n]
(DF , y0, y1)← A(PK, {skF,i}i∈[t])
st. F (y0) 6= F (y1)

b
$← {0, 1},CTb ← Encrypt(PK, yb)

− 1

2

∣∣∣∣∣∣∣∣∣∣
≥ µ(λ),

where the function µ(·) is a non-negligible function in λ.
This very strong notion of Pirate Distinguisher has been introduced in [GKW18]. It requires
the pirate distinguisher to be able to distinguish the encryption of two different messages
y0, y1. To adapt to the functional encryption, as the goal of the pirate is to compute the
function on the message, we require that the pirate distinguisher be able to distinguish the
encryption of y0, y1 such that F (y0) 6= F (y1).
As shown in [GKW18], this notion is stronger than the classical Pirate Decoder which is able
to correctly decrypt random messages with non-negligible probability. When considering the
case of functional encryption, a pirate decoder for a function F is useful if it can compute
F (y) from the encryption of y, for a random message y. Clearly, pirate distinguisher is also
stronger than pirate decoder in this case. Indeed, one can build a distinguisher DF from a
decoder DecF : randomly choose y0, y1 such that F (y0) 6= F (y1), then when receiving the
challenge ciphertext CT, call DecF and check whether this is F (y0) or F (y1) to output the
correct guess, if this is none of them, output a random guess. In this work, we will deal
with this notion of pirate distinguisher which is actually the strongest notion (i.e., minimal
requirement) about the usefulness of pirate decoders.

Security: Indistinguishability. We consider the IND security game between an adversary A and
a challenger B as follows:
Definition 6. A traceable functional encryption scheme T − FE for an ensemble F , T − FE =
(Setup,Extract,Encrypt,Decrypt,Tracing) is semantically secure under chosen-plaintext attacks
(or IND−CPA security) if no PPT adversary has non-negligible advantage in the following game:
– The challenger B runs (PK,MSK) ← Setup(1λ) and the public key PK is given to the

adversary A.
– The adversary adaptively makes secret key queries to the challenger. That is, the adversary
A chooses some pairs of identities ID and functions F ∈ Fλ. A sends them to B and then
obtains skF,ID ← Extract(ID,MSK, F ) from B.

– The adversary A chooses distinct messages y0, y1 ∈ Yλ such that F (y0) = F (y1) for all F
already asked. This restriction is required in all functional encryption to avoid trivial attacks.
Whenever B receives the messages, it randomly picks β $← {0, 1} and then transfers to A a
ciphertext CTβ = Encrypt(PK, yβ).

– Adversary A continues making further decryption key queries for other pairs of identities ID
and functions F , and receives skF,ID from B. Again, it is also required that F (y0) = F (y1)
to avoid trivial attacks.

– Adversary A eventually returns a guess β ′ for a bit β and wins if β ′ = β.
A weaker version has been defined, when the messages y0, y1 for the challenge ciphertext are
chosen before the Setup algorithm started, then the T − FE scheme is said selectively-security
against chosen-plaintext attacks, which is denoted by sel−IND−CPA.
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Traceability. The security game between the attacker A and the challenger B takes place as
follows:

1. The challenger B runs (PK,MSK)← Setup(1λ) and the public key PK sent to the adversary
A. B also creates a table T to store pairs of identities of users who queried keys and functions
F , for all F ∈ Fλ. It means that the table T stores (ID, F ). Initially T is set empty.

2. The adversary adaptively makes secret key queries to the challenger. Concretely, the adversary
A chooses some pairs of identities ID and functions F ∈ Fλ to query functional secret keys.
The challenger B stores all these pairs in the table T and replies with the secret keys skF,ID
for those pairs.

3. The adversary A outputs (F ∗,DF ∗) and two messages y0, y1, where DF ∗ is a pirate distin-
guisher for the function F ∗.

4. After receiving the messages y0, y1 from A, the challenger B runs the algorithm
TracingDF∗ (MSK, F ∗, 1µ, y0, y1) and outputs an identity ID∗.

We say that the adversary A wins the game if the output of Tracing is either an invalid symbol
ID∗ = ⊥ or the identity ID∗ did not ask for F ∗: (ID∗, F ∗) 6∈ T .

When the adversary A is allowed to ask secret keys for the only target function F ∗ (but for
any ID), and so for (ID, F ∗), the security of Tracing algorithm will then be called one-target
security.

As explained in the introduction, this one-target security also covers the case where the
adversary outputs any function F such that the target function F ∗ is computable from F with
public information. In such a case, when the pirate outputs the function F and the decoder DF
(together with two messages), one can define a decoder DF ∗ that calls DF and then applies the
computation of F ∗ from F on the output, then do tracing on this DF ∗ , applying also the public
transformation to the messages.

4 Our Inner-Product Functional Encryption

We will describe concretely a traceable functional encryption for inner product scheme (T − FE)
for n users. Let G be a bilinear group of large prime of order q. Additionally, let e : G1×G2 → GT

denote a bilinear map, where G1,G2 and GT are cyclic groups of order q, written multiplicatively.

Setup(1λ, 1k): This algorithm generates a bilinear setting G = (G1,G2,GT , q, e) for sufficiently
large prime order q and g1, g2 respectively are generators of the groups G1 and G2. The
bilinear map e over G1, G2 can be calculated efficiently.
– Randomly choose t1, . . . , tk

$← Zq, set t = (t1, . . . , tk) and b1 = gt11 , . . . , bk = gtk1 .
– For each i ∈ {1, . . . , k}, randomly choose si

$← Zq. We set s = (s1, . . . , sk) and set
G = e(g1, g2) ∈ GT and Hi = Gsi ∈ GT for all i = 1, . . . , k.

– We consider a linear code Γ over the alphabet Zq with n codewords Γ = {θ1, . . . ,θn},
corresponding to n users in our system. Each codeword has the length k.

– The public key is PK =
(
G,Γ, g1, g2, G,H1, . . . , Hk, b1, . . . , bk

)
.

– The master secret key is MSK = {s, t}.
Extract(ID,MSK,x): Takes as input an identity ID, the master secret key MSK and a character-

istic vector x = (x1, . . . , xk) ∈ Zkq . Choose a (new) vector (codeword) θID = (θ1, . . . , θk) ∈ Γ.
A secret key is an element gtkx,ID2 ∈ G2 such that tkx,ID · θID is a representation of g〈s,x〉1 in
the basis of (b1, b2, . . . , bk). That is g

〈s,x〉
1 =

∏k
i=1 b

tkx,IDθi
i = b

tkx,IDθ1
1 · · · btkx,IDθkk . Concretely, set

tkx,ID =
〈s,x〉
〈t,θID〉

and define skx,ID = g
tkx,ID
2 for θID.
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Encrypt(PK,y): Takes as input the public key PK and a message y = (y1, . . . , yk) ∈ Zkq . To
encrypt y, sample r $← Zq and compute

CT = (Hr
1G

y1 , . . . , Hr
kG

yk , br1, . . . , b
r
k).

Decrypt(PK, skx,ID,CT): Takes as input the public key PK, the secret key skx,ID = g
tkx,ID
2 for

θID = (θ1, . . . , θk) and a ciphertext CT, the algorithm computes

E =

(
Hr

1G
y1
)x1 · · · (Hr

kG
yk
)xk

e
((
br1
)θ1 · · · (brk)θk , gtkx,ID2

) .
Finally, it returns the discrete logarithm of E in basis G = e(g1, g2).

Correctness: For all (PK,MSK) ← Setup(1λ, 1k), all y ∈ Zkq and x ∈ Zkp, for skx,ID =

(g
tkx,ID
2 ,θID)← Extract(ID,MSK,x) and CT← Encrypt(PK,y), we have that(

Hr
1G

y1
)x1 · · · (Hr

kG
yk
)xk

e
((
br1
)θ1 · · · (brk)θk , gtkx,ID2

) =
G〈x,y〉 ·

(
Gx1s1+···+xksk

)r
e
(
gt1rθ11 · · · gtkrθk1 , g

〈s,x〉
〈t,θID〉
2

)
=
G〈x,y〉 ·����Gr〈s,x〉

�������
e(g1, g2)

r〈s,x〉
G〈x,y〉 = e(g1, g2)

〈x,y〉.

Theorem 7. The above T − FE achieves the selective security (sel−IND−CPA) under the
BDDH assumption

Proof. We assume that there exists an adversary A can distinguish distributions of ciphertexts
in the real game with non-negligible advantage. We build a simulator B that solves the BDDH
problem. It means that B takes as input a tuple

(
ga1 , g

b
1, g

a
2 , g

c
2, T
)
∈ G2

1×G2
2×GT , it must decide

whether the input is BDDH tuple where T = e (g1, g2)
abc or random tuple where T = e (g1, g2)

z.
We set

D0 =
{(
ga1 , g

b
1, g

a
2 , g

c
2, e (g1, g2)

abc
)
|a, b, c $← Zq

}
D1 =

{(
ga1 , g

b
1, g

a
2 , g

c
2, e (g1, g2)

z) |a, b, c, z $← Zq
}
.

The algorithm B progresses as follows:

– Firstly, B is provided two distinct messages y0 and y1.
– B chooses Γ = {θ1, . . . ,θn} is a linear code of size n and length k, as well as t1, . . . , tk

$← Zq.
Set t = (t1, . . . , tk) and bi = gti1 , for i = 1 to k.

– B finds a (k − 1)-basis of subspace (y0 − y1)
⊥ because the adversary A can only ask secret

keys for vectors x in (y0−y1)
⊥. We denote this basis by (z1, . . . ,zk−1). For i = 1, . . . , k− 1,

B randomly chooses ui
$← Zq.

– We consider the canonical basis (e1, . . . , ek) of Zkq . A linear transformation from basis
(z1, . . . ,zk−1, (y0 − y1)) to (e1, . . . , ek) is given by: ei = αi (y0 − y1) +

∑k−1
j=1 λi,jzj, where

the coefficients αi, λi,j can be found efficiently by B. Note that 〈ei,y0−y1〉 = αi×||y0−y1||2.
Then α =

∑
i αiei = 1/||y0 − y1||2 ×

∑
i〈ei,y0 − y1〉ei = 1/||y0 − y1||2 × (y0 − y1).

– From the challenge tuple, and random scalars u1, . . . , uk−1
$← Zq, set G = e(g1, g

c
2) and

Hi = e
(
(ga1)

αi · g
∑k−1
j=1 ujλi,j

1 , gc2

)
= e(g1, g

c
2)
aαi+

∑k−1
j=1 ujλi,j = Gaαi+

∑k−1
j=1 ujλi,j
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for i = 1, . . . , k, which implicitly defines si = aαi +
∑k−1

j=1 ujλi,j. The public key is set to

PK =
(
G,Γ, g1, g2, H1, . . . , Hk, b1, . . . , bk

)
.

– For any vector x = (x1, . . . , xk) ∈ (y0−y1)
⊥, B computes κx = 〈s,x〉 =

∑k−1
j=1

∑k
i=1 xiujλi,j

and, for identities ID, skx,ID = g
tkx,ID
2 , where tkx,ID =

κx
〈t,θID〉

. It sends the value gtkx,ID2 to A.

Vector θID is a codeword in Γ.
– The challenger randomly picks β $← {0, 1} and, from the challenge tuple where T is

the last element in GT , gives A a ciphertext CT = (ct1, . . . , ct2k), where ctj = Tαj ·
e
( (
gb1
)∑k−i

i=1 uiλj,i , gc2

)
·Gyβ,j and ctj+k =

(
gb1
)tj , for j = 1, . . . , k.

– At the end, the adversary outputs his guess β′ for β. If β′ = β then B returns 1 for “BDDH
tuple”. Otherwise returns 0 for “random tuple”. We will show that B can break BDDH
assumption. To do so, we need to prove that the difference below is negligible∣∣∣Pr[B(D0) = 1]− Pr[B(D1) = 1]

∣∣∣
=
∣∣∣Pr[β = β′ | T = e (g1, g2)

abc]− Pr[β = β′ | T = e (g1, g2)
z]
∣∣∣.

We find that:

1. When T = e (g1, g2)
abc then we have ctj = Tαj · e

( (
gb1
)∑k−1

i=1 uiλj,i , gc2

)
·Gyβ,j = Hb

jG
yβ,j , for

j = 1, . . . , k. Therefore

CT =
(
Hb

1G
yβ,1 , . . . , Hb

kG
yβ,k , bb1, . . . , b

b
k

)
.

It implies that B perfectly simulates the real game. Since A can break the semantic security
with non-negligible probability, we have Pr[β = β′ | T = e (g1, g2)

abc] = Adv(A) + 1/2.
2. When T = e(g1, g2)

z = Gv is random element, the challenger will send A the ciphertext of
message yβ + vα = yβ + v/||y0 − y1||2 × (y0 − y1) = µy0 + (1− µ)y1, for some random
µ ∈ Zq. This makes β perfectly unpredictable: Pr[β = β′ | T = e (g1, g2)

z] = 1/2.

We conclude the advantage is non-negligible as∣∣∣Pr[β = β′ | T = e (g1, g2)
abc]− Pr[β = β′ | T = e (g1, g2)

z]
∣∣∣

=
∣∣∣Adv(A) + 1

2
− 1

2

∣∣∣ = Adv(A).

5 Black-Box Confirmation Traitor-Tracing

This section will be devoted to present a black-box confirmation traitor-tracing algorithm. The
purpose of this algorithm is to verify sets of secret keys which are suspected by a Tracer. The
tracing algorithm takes as input the master secret key MSK and it can access the table T (see
the Tracing security game) to take a set of secret keys for which it wants to check its suspicion.
We will use the scalar form tkx,ID of the secret keys instead of the group element form skx,ID.
But as we only consider possible legitimate secrete keys in this form, the scalars are known to
the authority.

5.1 Notations

Suppose that Tracer is provided a set of t secret keys (for the suspected traitors), say Ksuspect =
{tk1, . . . , tkt} which are derived from a fixed vector x = (x1, . . . , xk). Here, we have slightly
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abused the notation, as we are in the one-target security. When the vector x is explicit, we use
the notation {tk1, . . . , tkt} instead of {tkx,1, . . . , tkx,t}, the pirate decoder Dx is replaced by D
and we use integers to represent identities of users. A codeword will be θi which is attached to
a user with identity i. The goal of the Tracer is to verify whether there is any traitor in Ksuspect.
Before go further we need to define some notations.

– Set Ki = {tk1, . . . , tki} ⊆ Ksuspect, for all i ∈ [t] and K0 = ∅.
– We define spaces of tracing signals (ciphertexts) Tr0,Tr1, . . . ,Trt such that each signal from

Tri can be decrypted successfully by any secret key in Ki. More concretely, for each i from 0
to t, the tracing signal for a message y = (y1, . . . , yk) is taken from the distribution Trxi (y)
(or Tri(y) for simplicity, when x is explicit) that is defined as follows{(

Ha
1G

y1 , . . . , Ha
kG

yk , gz11 , . . . , g
zk
1

) ∣∣∣∣∣ a $← Zq, z
$← Zkq ,

〈z, tkjθj〉 = a〈s,x〉,∀j ∈ [i]

}
,

where z = (z1, . . . , zk). G,H1, . . . , Hk are group elements of GT and belong to the public
key PK. Set Q(a) = e(g1, g2)

a〈s,x〉, as s and x are fixed.
– Every user j with secret key in Ki can output the same

(Ha
1G

y1)x1 · · · (Ha
kG

yk)xk

e(g
〈z,θj〉
1 , g

tkj
2 )

=
P(y, a)
Q(a)

,

where P(y, a) = (Ha
1G

y1)x1 · · · (Ha
kG

yk)xk = Q(a)×G〈y,x〉.
– Define distribution of normal ciphertext for a message y = (y1, . . . , yk), denoted Norm(y):

randomly draw r
$← Zq and output ciphertext (Hr

1G
y1 , . . . , Hr

kG
yk , br1, . . . , b

r
k).

– For i = 0, . . . , t, we set pi = Pr[D(CT) = b | b $← {0, 1},CT ← Tri(yb)], where y0,y1 are
chosen by D. When i = 0, in Tri(yb), a and z are perfectly independent, and so under the
DDH assumption, the Ha

i hides the yb,i. So we have p0 = 1/2 + negl(λ).

Definition 8. A tracing traitor algorithm is black-box confirmation if it satisfies:

1. Confirmation: If suspected set of users actually contains the entire set of traitors then
output of Tracing algorithm always returns at least an identity i such that tki ∈ Ksuspect is
guilty. Formally, with the condition KD ⊆ Ksuspect, the Tracing algorithm returns at least an
identity i such that the secret key tki ∈ Ksuspect as guilty. We denote by KD a set of secret
keys used to build the pirate decoder D.

2. Soundness: The honest users will never be accused if the Tracing algorithm outputs an
identity as guilty; it is impossible for traitors to deceive Tracing algorithm to blame innocent
users. Said differently if Tracing algorithm outputs an identity i such that tki is guilty then
tki ∈ KD.

5.2 Tracing Algorithm

Tracing algorithm needs to use following lemmas.

Lemma 9. Under the DDH assumption in G1, no adversary corruping t users 1, . . . , t can
distinguish the distribution of tracing signals Trt(y) with the distribution of normal ciphertexts
Norm(y), for any adversarially chosen y.

Proof. Suppose that an adversary A can distinguish the distribution of tracing signals Trt(y)
with the distribution of normal ciphertexts Norm. We will build a simulator B breaks the DDH
assumption in G1. The simulator has inputs: 4-tuples (g1, g2, u1, u2) ∈ G4

1, where g2 = gc1 and c
is unknown. It decides whether this is a DDH tuple or a random tuple:
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1. Take randomly t codewords θ1, . . . ,θt from the code Γ.
2. Take randomly A from Zq such that gA1 g2 6= 1.
3. Take randomly a = (a1, . . . , ak), e = (e1, . . . , ek)

$← Zkq such that 〈θi,a− Ae〉 = 0, for all
i = 1, . . . , t.

4. Set bi = gai1 g
ei
2 , for all i = 1, . . . , k.

5. Take randomly α = (α1, . . . , αk)
$← Zkq such that 〈α,a− Ae〉 = 0. Take randomly g2

$← G2

and it sets g1 = gA1 g2, G = e(g1, g2). We set Hi = e(uA1 u2, g2)
αi for all i ∈ [k]. The public

key is PK = (G,Γ, g1, g2, G,H1, . . . , Hk, b1, . . . , bk), where G is a bilinear group.

6. The simulator B calculates secret key for queries (x, i), tkx,i =
〈α,x〉
〈θi, e〉

, for i ∈ [t] and

functions x then gives all gtkx,i2 to the adversary A. It is clear that tkx,iθi is a representation
of (gA1 g2)〈α,x〉 in the base (b1, . . . , bk) .

7. Take randomly a $← Zq. The simulator constructs the ciphertext for a message y as below

CT = (Ha
1G

y1 , . . . , Ha
kG

yk , (ua11 u
e1
2 )a, . . . , (uak1 u

ek
2 )a),

where y = (y1, . . . , yk).
8. Send the ciphertext CT to the adversary A. If A decides the ciphertext comes from normal

distribution (i.e. A returns 1) then B returns “DDH tuple”, else returns “random tuple”.

We first show that the public key PK which is generated by the simulator B is indistinguishable
from the corresponding public key in the real algorithm.

– We will prove that distribution of tuples (b1, . . . , bk) ∈ Gk
1 is uniform. Indeed, , write bi = gti1

then, for each (t+ k)-tuple (0, t1, . . . , tk) where t1, . . . , tk
$← Zq and 0 = (0, . . . , 0) ∈ Ztq the

below system of equations has a solution

. . . θ1 . . . . . . −Aθ1 . . .
...

...
...

...
...

...
. . . θt . . . . . . −Aθt . . .
1 . . . 0 c . . . 0
... . . . ...

... . . . ...
0 . . . 1 0 . . . c


×
(
a
e

)
=


0
t1
...
tk

 .

We denote by Γ0 a matrix with its rows are vectors θ1, . . . ,θt. The rank of this matrix is t.
Indeed, it is equivalent that (

Γ0 −AΓ0

Ik cIk

)
×
(
a
e

)
=

(
0
t

)
has solutions. Here Ik is the (k × k)-unit matrix. We set

Ω =

(
Γ0 −AΓ0

Ik cIk

)
.

Since A is chosen such that 1 6= gA1 g2 = gA+c1 , ((t + k) × 2k)-matrix Ω has rank k + t.
Therefore, dim ImΩ = rank Ω and the dimension of KerΩ = 2k− (k+ t) = k− t. Therefore,
the above system of linear equations with unkowns (a, e) exists a solution. It implies that
(b1, . . . , bk) is uniform over Gk

1.
– Concerning Hi, in the real game Hi = e(g1, g2)

αi for randomly chosen but known g1, g2 while
in the simulation game, Hi = e(uA1 u2, g2)

αi for randomly chosen A and (αi)i in a span of
dimension k − 1. Under the DDH in the G1, uA1 u2 is indistinguishable from random, and
thus Hi follows from a correct distribution in the computational sense.



12

We now show that, for any adversarially chosen y, if (g1, g2, u1, u2) ∈ G4
1 is a DDH tuplee

then the ciphertext is a normal ciphertext of y and when it is a random tuple then the ciphertext
comes from Trt(y). Therefore, if the adversary can distinguish these two distributions then B
can break the DDH assumption in G1: |Pr[B(D0) = 1]− Pr[B(D1) = 1]| is non-negligible. By
definition, it is equivalent to∣∣∣∣Pr[A(CT) = 1 | (g1, g2, u1, u2)

$← D0]− Pr[A(CT) = 1 | (g1, g2, u1, u2)
$← D1]

∣∣∣∣
is non-negligible. Here, CT is a ciphertext generated as in Step 7. We find that:

1. When (g1, g2, u1, u2)
$← D0, we will prove that

Pr[A(CT) = 1 | (g1, g2, u1, u2)
$← D0] = Pr[A(CT) = 1 | CT $← Norm].

Indeed, suppose that (g1, g2, u1, u2) = (g1, g2, g
z
1, g

z
2), where z is unknown. The ciphertexts

in Step 7 is then:

CT =
(
Ha

1G
y1 , . . . , Ha

kG
yk , (ua11 u

e1
2 )a, . . . , (uak1 u

ek
2 )a
)

=
(
Ha

1G
y1 , . . . , Ha

kG
yk , (gza11 gze12 )a, . . . , (gzak1 gzek2 )a

)
=
(
Ha

1G
y1 , . . . , Ha

kG
yk , (ga11 ge12 )z·a, . . . , (gak1 gek2 )z·a

)
=
(
Ha

1G
y1 , . . . , Ha

kG
yk , bz·a1 , . . . , bz·ak

)
,

which is in the space of normal ciphertext. It is sufficient thus to show that, with the
decryption with the secret key tkx,i, the decryption will gives G〈x,y〉. Indeed,

E =

(
Ha

1G
y1
)x1 · · · (Ha

kG
yk
)xk

e
((
ua11 u

e1
2

)aθ1 · · · (uak1 uek2 )aθk , gtkx,i2

)
=
G〈x,y〉 · e(uA1 u2, g2)ax1α1 · · · e(uA1 u2, g2)axkαk

e
((

gA1 g2

)za〈e,θ〉
, g
〈x,α〉
〈θ,e〉
2

)
=
G〈x,y〉 · e(gA1 g2, g2)azx1α1 · · · e(gA1 g2, g2)azxkαk

e
((

gA1 g2

)za〈e,θ〉
, g
〈x,α〉
〈θ,e〉
2

)
=
G〈x,y〉 · e(gA1 g2, g2)az〈x,α〉

e
((

gA1 g2

)za〈e,θ〉
, g
〈x,α〉
〈θ,e〉
2

) = G〈x,y〉.

2. When (g1, g2, u1, u2)
$← D1, we will prove that

Pr[A(CT) = 1 | (g1, g2, u1, u2)
$← D1] = Pr[A(CT) = 1 | CT $← Trt].

Indeed, suppose that (g1, g2, u1, u2) = (g1, g2, g
γ1
1 , g

γ2
2 ), where γ1 6= γ2 and g2 = gc1. The

ciphertexts in Step 7 is then:

CT =
(
Ha

1G
y1 , . . . , Ha

kG
yk , (ua11 u

e1
2 )a, . . . , (uak1 u

ek
2 )a
)

=
(
Ha

1G
y1 , . . . , Ha

kG
yk , (gγ1a11 gγ2e12 )a, . . . , (gγ1ak1 gγ2ek2 )a

)
=
(
Ha

1G
y1 , . . . , Ha

kG
yk , g

a(γ1a1+cγ2e1)
1 , . . . , g

a(γ1ak+cγ2ek)
1

)
=
(
Ha

1G
y1 , . . . , Ha

kG
yk , gz11 , . . . , g

zk
1

)
,
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where zi = a(γ1ak + cγ2ek) for all i ∈ [k].
We show that for any traitor with the key tkx,i, i = 1 to t, it decrypts to the same message.
Indeed:

E =

(
Ha

1G
y1
)x1 · · · (Ha

kG
yk
)xk

e
((

gγ1a11 gγ2e12

)aθ1 · · · (gγ1ak1 gγ2ek2

)aθk , gtkx,i2

)
=
G〈x,y〉 · e(uA1 u2, g2)ax1α1 · · · e(uA1 u2, g2)axkαk

e
(
g
〈a,θ〉aγ1
1 g

〈e,θ〉aγ2
2 , g

〈x,α〉
〈θ,e〉
2

)
=
G〈x,y〉 · e(gAγ11 gγ22 , g2)

ax1α1 · · · e(gAγ11 gγ22 , g2)
axkαk

e
(
g
〈e,θ〉aAγ1
1 g

〈e,θ〉aγ2
2 , g

〈x,α〉
〈θ,e〉
2

)
=
G〈x,y〉 · e(gAγ11 gγ22 , g2)

a〈x,α〉

e
((

gAγ11 gγ22

)a〈e,θ〉
, g
〈x,α〉
〈θ,e〉
2

) =
G〈x,y〉 · e(gAγ11 gγ22 , g2)

a〈x,α〉

e
(
gAγ11 gγ22 , g2

)a〈x,α〉 = G〈x,y〉.

Here θi = (θ1, . . . , θk).
Finally, we will prove that the distribution of ciphertext CT is uniform over the space of
signals Trt. It requires that the system of equations Γ0 −AΓ0

Ik cIk
aγ1Ik acγ2Ik

× (a
e

)
= γ

is consistent, where γ is a fixed vector in Zt+2k
q . It is equivalent that the below (t+ 2k, 2k)-

matrix 

. . . θ1 . . . . . . −Aθ1 . . .
...

...
...

...
...

...
. . . θt . . . . . . −Aθt . . .
1 . . . 0 c . . . 0
... . . . ...

... . . . ...
0 . . . 1 0 . . . c
aγ1 . . . 0 acγ2 . . . 0
... . . . ...

... . . . ...
0 . . . aγ1 0 . . . acγ2


has full rank (i.e. rank = 2k). Indeed, This is straightforward because the last 2k rows of
the above matrix are linear independent due to γ1 6= γ2.

We conclude that∣∣ Pr [ B(D0) = 1]− Pr[B(D1) = 1]
∣∣

= |Pr[A(CT) = 1 | CT $← Normal]− Pr[A(CT) = 1 | CT $← Trt]| = Adv(A),

which is non-negligible. ut

Lemma 10 (Hybrid Lemma). Considering the one-target security for an adversarially chosen
target function x. Under the DDH assumption over group G1, for all 1 ≤ i0 ≤ t, no adversary
can distinguish the distribution of tracing signals Tri0(y) with the distribution of Tri0−1(y) unless
it owns the secret key ski0.
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Proof. Suppose that an adversary A can distinguish the distribution of tracing signals Tri0 with
Tri0−1. We build a simulator B that breaks DDH assumption. The simulator has input a 4-tuple
(g1, g2, u1, u2) ∈ G4

1, where g2 = gc1 and c is unknown. It must output “DDH tuple” or “random
tuple”.

1. Take randomly t codewords θ1, . . . ,θt from the code Γ corresponding to t traitors and also
take t codewords θ(s)1 , . . . ,θ

(s)
t from the code Γ corresponding to t suspected users. We are

considering the adversary A does not know the secret key ski0 or the pirate decoder does
not contain skx,i0 in itself.

2. Take randomly A from Zq such that gA1 g2 6= 1.
3. Take randomly a = (a1, . . . , ak), e = (e1, . . . , ek)

$← Zkq such that 〈θi,a− Ae〉 = 0, for all
i = 1, . . . , t, 〈θ(s)i ,a− Ae〉 = 0, for all i = 1, . . . , t, i 6= i0 and 〈θ(s)i0 ,a− Ae〉 6= 0.

4. Set bi = gai1 g
ei
2 , for all i = 1, . . . , k. Take randomly v = (v1, . . . , vk)

$← Zkq such that
〈θ(s)i ,v〉 = 0, for all i = 1, . . . , i0.

5. Take randomly α = (α1, . . . , αk)
$← Zkq such that 〈α,a− Ae〉 = 0 and 〈α,v〉 = 0.

6. When B receives a target function x from A. It calculates τi =
〈α,x〉
〈θi, e〉

, for i = 1, . . . , t and

then give all gτi2 to the adversary A to create a Pirate Decoder Dx. Moreover, τ (s)i =
〈α,x〉
〈θ(s)i , e〉

,

for i = 1, . . . , i0− 1. It is clear that τiθi and τ
(s)
i θ

(s)
i are representations of (gA1 g2)〈α,x〉 in the

base (b1, . . . , bk).
7. Take randomly G,H1, . . . , Hk

$← GT , a
$← Zq. When the simulator receives a message y, it

constructs the ciphertext

CT = (Ha
1G

y1 , . . . , Ha
kG

yk , gv11 u
a1
1 u

e1
2 , . . . , g

vk
1 u

ak
1 u

ek
2 ),

where y = (y1, . . . , yk). It then sends the ciphertext to the adversary A. If A returns the
ciphertext comes from Tri0(y) distribution then B returns DDH tuple, else returns random
tuple.

By the similar argument as in Lemma 9, the ciphertext CT in Step 7 of the algorithm B comes
from the distribution Tri0(y) if the input of B is actually DDH tuples and from the distribution
Tri0−1(y) otherwise. ut

Based on the lemmas 9 and 10, we can design a tracing algorithm that relies on the linear
technique tracing:

– Initial step: Tracer constructs distributions of tracing signal Trt, . . . ,Tr0.
– Do experiments on the pirate distinguisher D finitely many times. We start testing D by

taking tracing signals CT from the distribution Trt. We measure the rate that D outputs
correctly his guess, denoted by p̃t. Experiments can be done because we can prove that the
pirate distinguisher cannot distinguish distributions Trt and Norm (see Lemma 9).

– At step i, for i = t− 1, . . . , 0. We do experiment on the pirate distinguisher D with tracing
signals taken from Tri. From Lemma 10, the pirate distinguisher cannot see any change from
previous step i+ 1 to this step i unless it holds the secret key tki+1. More formally, we also
measure the rate p̃i that D outputs correctly his guess and show that if D does not contain
tki+1 then there is no significant difference between p̃i+1 and p̃i.

– At the final step, D will be tested with tracing signals taken from Tr0. D answers correctly
only negligibly close to 1/2.

– We output the traitor i such that the gap between p̃i and p̃i−1 is the largest value among all
indices i.
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Below, we present the tracing algorithm in more details. We note that y0,y1 are vectors which
are chosen by the pirate distinguisher D.

For i = t downto 0, do the following:
1. Let cnt← 0.
2. For j = 1 to N = 8λt2/µ, do the following:

i. b $← {0, 1}.
ii. CT

$← Tri(yb).
iii. Send CT to D. If D(CT) = b then cnt← cnt+ 1.

3. End for.
4. Let p̃i be the fraction of times that D did the correct guess. We have p̃i = cnt/N .

End for.
Output identities i such that |p̃i − p̃i−1| ≥

µ(λ)

4t
.

Below, we state and prove confirmation and soundness property of our Tracing algorithm.

Lemma 11 (Confirmation property). The Tracing algorithm has the confirmation property
under the DDH assumption in G1.

Proof. We want to prove that in the case of that all the traitors are in the set of suspected users,
i.e. KD ⊆ Ksuspect, the Tracing algorithm always returns the identity of a guilty. It means that
the output of Tracing algorithm is not empty with high probability. We denote A an adversary
who used the secret keys in KD to output the pirate distinguisher D. Since the adversary A can
create a µ-useful pirate distinguisher D, it implies that

∣∣pNorm − 1
2

∣∣ ≥ µ(λ), where

pNorm = Pr

D (CTb) = b :

(MSK,PK)← Setup(·)
{ski ← Extract(i,MSK,x)}i∈[n]
(D,y0,y1)← A(PK, {ski}i∈[t])

st. 〈x,y0〉 6= 〈x,y1〉
b

$← {0, 1},CTb ← Norm(PK,yb)

 .

We denote S the set of indices i ∈ [t] such that |pi − pi−1| > µ(λ)/4t. The set S is well
defined in the sense that S 6= ∅. Indeed, as we know that p0 is negligibly close to 1/2, and
Lemma 9 showed that no adversary A can distinguish the distribution Norm from Trt, then
|pt−p0| ≥ µ(λ)−negl(λ) > µ(λ)/2. Then, there exists an index i such that |pi−pi−1| > µ(λ)/2t.
Thus S is a non empty set. Applying Chernoff bound for all i ∈ S, we have on experimental
probabilities

Pr

[
|p̃i − p̃i−1| <

µ(λ)

4t

]
≤ negl(λ),

Therefore, with overwhelming probability, there exists an index i such that

|p̃i − p̃i−1| ≥
µ(λ)

4t
.

The latter is thus returned with overwhelming probability.
ut

Lemma 12 (Soundness property). The Tracing algorithm has the soundness property under
the DDH assumption in G1.
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Proof. We now prove the soundness property of Tracing algorithm. Suppose that the Tracing
algorithm outputs an identity j, where tkj ∈ Ksuspect, we will prove that tkj ∈ KD. According to
Chernoff bound, thanks to N = 8λt2/µ(λ) to calculate p̃i, for all i, we have

Pr

[
|p̃i − pi| >

µ(λ)

16t

]
< 2 · e−λ/64.

Therefore, with high probability we have |p̃i − pi| ≤ µ(λ)/16t, for all i = 0, . . . , t.
By definition, whenever the Tracing algorithm outputs j as a guilty, we have |p̃j − p̃j−1| ≥

µ(λ)/4t, and thus |pj − pj−1| ≥ µ(λ)/8t. In other words, the pirate distinguisher can distinguish
the two tracing signals Trj and Trj−1 with advantage at least µ(λ)/8t. It implies that D contains
the secret key tkj, tkj ∈ D. This follows from the fact that if D does not know the secret key
tkj , tkj 6∈ D, the two tracing signals Trj and Trj−1 are indistinguishable. More concretely, under
the hardness of the DDH problem in group G1, it is impossible for the pirate to distinguish Trj
and Trj−1 without tkj. This is stated and proved in Lemma 10. ut

Theorem 13. Under the DDH assumption, our tracing scheme is one-target security in black-
box confirmation model.

Proof. We recall that in the black-box confirmation model we will verify a set suspected secret
keys Ksuspect = {tk1, . . . , tkt} which are also derived from the vector x. We will prove that
Tracing algorithm always outputs an identity of a traitor whenever KD ∩ Ksuspect 6= ∅. It means
that Tracer always wins in the game with the pirate distinguisher D. Indeed, we consider the
following two cases:

– In the first case KD ⊆ Ksuspect. It means that all traitors are in suspicious set Ksuspect.
Tracing algorithm will output a guilty identity i by the confirmation property. According to
soundness property, the identity is a traitor (tki ∈ KD).

– In case KD 6⊆ Ksuspect and KD ∩ Ksuspect 6= ∅. Because KD ∩ Ksuspect 6= ∅, tracing algorithm
will output an identity i so that ski ∈ Ksuspect. It implies i is a traitor (tki ∈ KD) by the
soundness property. ut
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