
HAL Id: hal-02992644
https://hal.inria.fr/hal-02992644

Preprint submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Error-Handling Errors: dealing with debugger
bugs in Pharo

Steven Costiou, Thomas Dupriez, Damien Pollet

To cite this version:
Steven Costiou, Thomas Dupriez, Damien Pollet. Handling Error-Handling Errors: dealing with
debugger bugs in Pharo: Preprint from IWST20: International Workshop on Smalltalk Technologies.
2020. �hal-02992644�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362230005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02992644
https://hal.archives-ouvertes.fr

Handling Error-Handling Errors:
dealing with debugger bugs in Pharo

Steven Costiou
steven.costiou@inria.fr

Inria, Univ. Lille, CNRS, Centrale Lille
UMR 9189 – CRIStAL

Lille, France

Thomas Dupriez
tdupriez@ens-paris-saclay.fr

Univ. Lille, CNRS, Centrale Lille, Inria
UMR 9189 – CRIStAL

Lille, France

Damien Pollet
damien.pollet@inria.fr

Univ. Lille, CNRS, Centrale Lille, Inria
UMR 9189 – CRIStAL

Lille, France

Abstract
In Pharo, errors happening during the opening of a debug-
ger provoke error-handling errors. The Pharo system then
drops into a rudimentary emergency evaluator, which pro-
vides extremely limited debugging features. This is a real
problem while developing debuggers, when debuggers are
more subject to bugs. In addition, the Pharo debugging in-
frastructure exposes an heterogeneous, obscure interface
with various usages and users. Therefore, trying to extend
this infrastructure to cope with debuggers bugs is tedious.
In this technical paper, we present Oups1, an improved

debugger infrastructure for Pharo. Oups provides a uni�ed
interface as a single entry point to request the opening of
debuggers. Upon a debugger opening request, Oups uses
interchangeable debugger opening strategies to select which
debugger to open. We implemented a strategy that allows
for the debugging of a failing debugger by other debug-
gers instead of the emergency evaluator. Oups improves
the resilience of the Pharo system for speci�c cases of error-
handling errors that we analyse.

CCS Concepts: • Software and its engineering → Soft-
ware maintenance tools; Error handling and recovery.

Keywords: debugging, debugger, error handling, Pharo

ACM Reference Format:
Steven Costiou, Thomas Dupriez, and Damien Pollet. 2020. Han-
dling Error-Handling Errors: dealing with debugger bugs in Pharo.
In IWST20: International Workshop on Smalltalk Technologies, Sep-
tember 29th and 30th, 2020, Novi Sad, Serbia. ACM, New York, NY,
USA, 8 pages. h�ps://doi.org/10.1145/nnnnnnn.nnnnnnn

1Oups, french for oops, as in "oops, my debugger failed again!"

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The de�nitive Version of Record was published
in IWST20: International Workshop on Smalltalk Technologies, September
29th and 30th, 2020, Novi Sad, Serbia, h�ps://doi.org/10.1145/nnnnnnn.
nnnnnnn.

1 Introduction
In Pharo, an error-handling error is an error that happens
while opening a debugger to handle another error. For exam-
ple, an error occurring while opening the default debugger
cannot be handled by the system. It would result in the open-
ing of the same debugger, which would also encounter that
error, and so on. This typically happens when modifying the
debugger itself. Indeed, debuggers are applications which
need development and maintenance and can contain bugs.
This also happens while working on tools and libraries upon
which debuggers depend. For example, Pharo 9 uses the Spec
framework2 [4, 15] to describe user interfaces. Errors in the
Spec framework impact the Spec debugger, which in turn en-
counters errors. If they occur while the debugger is opening,
these errors cannot be handled. They become error-handling
errors which need to be handled without using the failing
debugger.

In Smalltalk systems such as Pharo, Squeak, or Cuis, error-
handling errors provoke the opening of an emergency evalua-
tor that blocks the system. This evaluator is rudimentary and
provides a limited set of features. Basically, developers can
revert only the last method change, or evaluate hand-written
Smalltalk code without any tool support (no feedback, no
code completion). It is also hard to understand why the sys-
tem crashed because the emergency evaluator only provides
a limited stack trace.
Developers need more �exibility to cope with error-

handling errors. For example, in Pharo, there is more than
one tool that is capable to debug errors. However, only the
default system debugger is considered for debugging. If this
debugger cannot open because of an internal error, it is not
possible to open another debugger seamlessly. To use another
debugger, developers have to manually set this debugger as
the default system-debugger and reproduce their bug.
However, it is critical for debugger developers to be able

to debug their debugger. When their debugger encounters an
error, they need to use the �rst available debugger that can
help them debug that error. On the other hand, end-users
might not care about debuggers errors. They want to debug
their domain code using the �rst available debugger that can
help, and discard debuggers errors.

2https://github.com/pharo-spec/Spec

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia Steven Costiou, Thomas Dupriez, and Damien Pollet

Such mechanism does not exist in Pharo, and it is hard to
implement in the current debugging infrastructure. There are
multiple entry points in the system to request the opening of
a debugger. These requests go through heterogeneous and
obscure debugging interfaces. Control of debuggers openings
and errors is rigid, scattered in classes of di�erent nature
and responsibilities, within a monolithic infrastructure. In
consequence, it is hard to improve that infrastructure to
better cope with debuggers errors.

In this paper, we present Oups, an improved debugger in-
frastructure for Pharo. Oups provides a single, uni�ed entry
point interface to interact with the debugging infrastructure.
This eases the comprehension and the extensibility of the in-
frastructure. To control the opening of debuggers, Oups uses
debugger opening strategies. Using these strategies, devel-
opers control and customize how debuggers are opened and
how their errors are handled. We implemented a debugger
opening strategy resilient to error-handling errors. When a
debugger fails to open, we look for another debugger in the
system and try to open that debugger instead. In such cases,
domain errors and debuggers errors are debuggable with
real debuggers instead of the limited emergency evaluator.
We �rst review the Pharo debugging infrastructure and

its limitations to deal with error-handling errors, which mo-
tivates our work (Section 2). Then, we describe the Oups
infrastructure (Section 3) and discuss how it improves the
Pharo debugging experience (Section 4). Finally, we discuss
similar work (Section 5) and conclude (Section 6).

2 Background: debuggers openings and
error handling errors in Pharo

In the following, we describe how debuggers are opened in
Pharo and how their errors are handled. Debugger opening
and error-handling errors management blend into the same
infrastructure, that exposes heterogeneous interfaces (Sec-
tion 2.1). In addition, means to debug error-handling errors
are extremely limited (Section 2.2). This makes it di�cult to
develop and to debug debuggers. This drives our motivation
to build a uniform way of opening debuggers and to provide
tools to debug their errors (Section 2.3).

2.1 Opening debuggers: a blurry infrastructure
The current Pharo debugging infrastructure is depicted by
Figure 1. The central point of the infrastructure is theUIMan-
ager class. It is a singleton responsible of managing user inter-
action with the user interface. This class exposes an interface
to open a debugger that is used by system classes: Process,
Warning (a particular exception class), ad-hoc clients (gener-
ally other system tools) and the UIManager itself.
Each Process instance also exposes an interface to start

debugging. This interface is used by system objects, such as
unhandled exceptions and ad-hoc clients, by user interrupts
and by processes themselves.

Both these interfaces are heterogeneous and provide dif-
ferent methods with di�erent input parameters. Objects re-
questing the opening of a debugger use di�erent methods
from this interface. Moreover, they do not always provide all
the necessary parameters. This leads to intermediate method
calls within the interface, adding nil values to �ll the missing
parameters. As a consequence, understanding the �ow of
debuggers openings is complex and tedious.
Finally, text editors directly access the system debugger

and disregard interfaces exposed by UIManager and Process.
This is a special case where users select custom pieces of code
and ask the system to debug it. Text editors apply special
control to the debugged process before opening debuggers.
Because this control behavior is not centralized and exposed
through an API, this leads to code duplication between tools.
Building and contributing system-level debugging tools

is tedious because it requires to interact with this heteroge-
neous infrastructure. The infrastructure is intertwined with
sensible system classes (Process and UIManager) and user
interface classes (text editors). And all these classes apply a
strong control over debugger openings and error handling.
Improving debuggers errors handling requires to modify
code in these classes and sometimes duplicate part of this
code. It leads to the multiplication and the complexi�cation
of interface methods that control debugger openings.

2.2 Error handling errors and their recovery
Error-handling errors happen when the debugger cannot be
opened after an exception is raised. For example, a bug in the
debugger opening code prevents the debugger to open. Con-
sequently, the debugger cannot open to debug its own error.
The system signals a debugger error then raises a primitive
error, which opens an emergency evaluator (Figure 1).

The emergency evaluator starts by giving a printed repre-
sentation of the last 20 elements of the call stack (Figure 2).
All other debugging information is dumped. Because it is
only printed, a lot of contextual information is lost. It is hard,
and sometimes impossible, to understand clearly why the
system crashed. This is the only information developers have
to devise what to do in the emergency evaluator.
The emergency evaluator (Figure 3) is a trivial read-eval-

print-loop systemwith only three features. First, it can simply
discard the error-handling error, providing the system can
continue to work. Second, it allows developers to revert the
last method change in the system. The idea is to recover from
a fatal method change that provoked the error-handling error.
But it only reverts the last modi�ed method in the system
and it cannot go beyond that. If the buggy method is not the
last modi�ed one, but another one modi�ed much before, the
revert command is of no help. Finally, it is possible to execute
custom code, for example to manually recompile the buggy
method. This is tedious and error-prone, as developers have
to guess the problematic method, remember its original class
name, the methods source code and they have to rewrite it

Handling Error-Handling Errors IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

UIManager

open debugger
Exception
handler

Default
Debugger

signal
debugger error

debugger opening

unhandled
exception

Emergency
Evaluatorprimitive

error

(ad-hoc clients)
Calypso
Renraku

...Warning
(exception)Context

Exceptions

User Interrupts

(ad-hoc clients)
ProcessBrowser

Job
...

Process

debug process
 request

open debugger
 request

exception handling
interaction

1

2

3

Text editors

direct debugger
 opening

Figure 1. The Pharo debugger opening process, handled by the user interface manager: multiple clients, di�erent APIs. If the
opening of a debugger (1) encounters an error (2), the system falls back to the emergency evaluator (3).

without making any mistake. Although this is possible for
simple methods, it does not scale to complex or subtile code.
In addition, the emergency evaluator does not provide any
support to write or to execute code (no code-completion and
no feedback after an execution).

Figure 2. Emergency evaluator with a debugger error’s stack
trace. It does not �t the screen and part of the trace is lost.

Figure 3. The emergency evaluator. Sometimes it is unable
to revert the last method change and is not helpful.

2.3 Motivation: debugging debuggers errors
As debugger developers, we need to debug our debuggers
errors. However, the emergency evaluator is too limited to
cope with those errors. Due to the limited infrastructure, we
cannot simply debug our debugging tools using another tool,
even if other debuggers are present in the system.
Changing the default debugger in the system settings af-

ter a debugger error is not su�cient. Once we get in the
emergency evaluator, that debugger error and its context
are lost. We need to quit everything, to change the default
debugger, and try to reproduce the debugger problem to
debug it with the other debugger. This is a show-stopper,
as it is often precious to debug an error at the moment it
happens [2] instead of trying to reproduce it later (which
may be hard [5, 8, 9, 16]). This impacts end-user developers,
who cannot debug their domain errors if the default debug-
ger encounter errors. They also have to change the default
debugger in the settings, and try to reproduce their domain
error. In addition, debugger developers cannot introduce
safely new debugging tools without risking to block users.
Trying to solve these problems in the current infrastruc-

ture is hard. To insert a simple variation in how errors-
handling errors are dealt with, we need to deeply modify
multiple debugger opening methods and their interactions
in sensible system classes. Therefore, we aim at:

1. A clean, simpli�ed and uni�ed debugger opening in-
frastructure to facilitate debugger development, exten-
sion and experimentation,

2. as much as possible, neutralize debuggers errors by
using other working debuggers to:
• allow debugger developers to seamlessly debug de-
buggers errors when they occur,

• allow end-user developers to seamlessly focus on
the debugging of their domain errors.

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia Steven Costiou, Thomas Dupriez, and Damien Pollet

Exception Handler

DebuggerSystem

Warning
(exception)

Context

Exceptions

User Interrupts

ad-hoc clients

DebugRequest

open debugger
 request

Oups internal
interaction

Text editors

TDebugger

request
users

Debugger 1

...

Debugger n

uses
Trait

debugger selection
strategy

select debugger
in

selected debugger

open debugger

Exception handler

{D}
{D}

Emergency
Evaluator

primitive
error

submit

UIManager

External class
or interaction

request
UI mode

Figure 4. The Oups debugger infrastructure.

3 The Oups debugger infrastructure
Oups is a debugger infrastructure for Pharo, unifying means
to request the opening of debuggers and allowing for the
debugging of debugger errors. The infrastructure and how
it works is described in Figure 4. In this section, we describe
the Oups infrastructure. We detail the debugger selection
strategy, i.e. how a debugger is chosen over another to debug
a particular error. We �nally explains how it handles error-
handling errors, also called meta-errors, and which types of
meta-errors Oups is resilient to.

3.1 Infrastructure overview
The Oups infrastructure mediates between Pharo’s program
execution and development environment layers. At the ex-
ecution level, it acts as the ultimate error handler. At the
tooling level, it ensures that any error that bubbles up that
far is gracefully passed on to a debugger.

The Oups infrastructure is composed of �ve elements: de-
bug requests, the TDebugger trait, debugger system, debugger
selection strategies and debugger failures. Figure 5 shows the
�ow of an error through these elements, under ordinary
circumstances (i.e., without error-handling errors).
Debug requests: to open a debugger, the system creates a
debug request object and submits it to the debugger sys-
tem. Listing 1 shows an example of system code sending
a debug request. The information passed to the debug re-
quest depends on the reason for debugging, as described
in Section 2.1, but includes at least either an exception

Process>>#debugException: anException

(DebugRequest newForException: anException)

process: self; submit.

Listing 1. Example of sending a debug request.

or a process. By �lling up implicit information from the
context, debug requests provide a single abstraction to
the debugger system thereby unifying the multiple entry
points of the legacy architecture.

The TDebugger trait: it is a stateful trait [14] providing
a debugger opening interface methods and an instance
variable for debugger priority con�guration. Any class can
use this trait to be recognized as a debugger by the sys-
tem. The provided interface methods ensure that debugger
classes are usable by the infrastructure.

Debugger system: it is the entry point into the debugging
tool layer. Its instances handle debug requests according
to the system state and con�guration. First, before open-
ing a debugger, the Debugger System object queries the
UI Manager. If interactive debugging is not enabled, the
debug request concludes there and the error is logged (e.g.,
if the system is running headless). Second, the debugger
system collects the list of users of TDebugger (i.e., each de-
bugger class) and sorts them based on their per-debugger
user-de�ned priority. Then, a debugger selection strategy
selects a debugger from that list to open the error. Finally,
the debugger system ensures that the debug request is
handled reliably. If an exception is raised within the de-
bugger system itself, or if the debugger selection strategy
fails to select a debugger, then the original error is handled
by the emergency evaluator .

Debugger selection strategy: it is the object responsible
for selecting a debugger from a given list of debuggers,
and for opening the error with it. The debugger infrastruc-
ture implements a default strategy (Section 3.2) which is
interchangeable with user-de�ned strategies.

Debugger failures: these objects are exceptions created
when the infrastructure is con�gured to debug error-
handling errors. When a debugger encounters an error

Handling Error-Handling Errors IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

while opening, a DebuggerFailure exception is instanti-
ated and signaled. A debugger failure references:
• the debugger that failed to open the original error: it is
used by debugger selection strategies to avoid opening
recursively the same faulty debugger,

• the original error with its interrupted context: if the
debugger error is �xed, the debugger failure is resumed
and the �xed debugger opens the original error.

The infrastructure is con�gurable either to focus on the
debugging of user-level code, or to handle debugger failures
to allow for the debugging of debugger errors. In addition,
the debugger infrastructure interacts with two elements from
the Pharo system:
The UI Manager: a system class responsible for de�ning
how to communicate various UI events to the user. An
interactive and graphical UI Manager will allow Oups to
open a graphical debugger. A non-interactive command-
line UI Manager will log the error instead.

The Emergency Evaluator: a rudimentary tool to recover
from error-handling errors (described in section 2.2).

3.2 Debugger selection strategies
Debugger selection strategies are responsible of opening de-
buggers. Developers build these strategies to control and
extend how debuggers are opened by the infrastructure. A
strategy takes as input a list of sorted debuggers and a debug-
ger opening request. The strategy determines which debug-
ger in that list is eligible to the request. It then selects one
of these debuggers and uses it to open the request. In this
section, we describe the default debugger opening strategy
in the case where there is no debugger error. The variation
in case of debugger errors is described in Section 3.3.
Debugger Selector is the default debugger opening strat-

egy of Oups. To determine which debugger is eligible, this
strategy �rst considers that there is always an exception
associated to a debug request. When that is not the case (e.g.,
upon a debugIt action), an ad-hoc exception is created for
the context to debug. Second, each debugger is asked if it
can handle the request. For example, a debugger for unit
test errors will decline handling requests that do not come
from test executions. Third, the exception is asked if it can
be handled by the debugger. By default, any exception can be
handled by any debugger, except for debugger failures. The
�rst debugger that is eligible to the request is selected and
opened. If no debugger is eligible, the emergency evaluator
is used as a last resort.
As an example, imagine we are handling an error in a

system containing two debuggers A and B. Debugger A is
a high priority debugger specialized in debugging unit test
failures. Debugger B is a general purpose debugger. Debug-
ger Selector will receive as input an array of two debuggers
{A. B} sorted by priority. The strategy will check if the �rst
debugger A is eligible. If the execution to debug is not that

of a unit test failure, the specialized debugger A will declare
itself unable to handle the request. Then debugger B will be
examined and will declare itself able to handle the request, as
general purpose debuggers are typically able to handle any
requests. If the exception of the request is not a debugger
failure, that exception will declare itself to be handle-able by
debugger B. As B is the �rst eligible debugger found by the
strategy, the strategy will open the debug request with B.

Figure 5. The sequence of actions from the signaling of an
exception to the opening of a debugger, when no error occur.

3.3 Handling meta-errors in Oups
In this section, we describe how the infrastructure copes
with error-handling errors. Because these errors are due to
debuggers errors, we call them meta-errors. We call original
error the error that the system was handling when the meta-
error occurred. We identify eight types of meta-errors:

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia Steven Costiou, Thomas Dupriez, and Damien Pollet

1. An error occurs in the exception mechanism,
2. an error occurs in the creation of a debug request,
3. an error occurs in the code of the debugger system,
4. an error occurs in the UI Manager,
5. an error occurs in the debugger opening strategy,
6. an error occurs in the opening of the debugger selected

by the debugger opening strategy,
7. an error occurs in the emergency evaluator,
8. the debugger opening strategy does not �nd any de-

bugger eligible to the debug request.

Oups is not resilient to meta-errors of type (1), (2) and
(7). In other words, it assumes that a) no error occurs in the
exception mechanism, b) no error occurs in the creation of
a debug request and c) no error occurs in the emergency
evaluator. Oups is resilient to all the other types of meta-
errors, which are debuggable.

Meta-errors of type (3), (4) and (5) are handled by an excep-
tion handler installed at the entry point of the DebuggerSys-
tem class. When this handler catches an exception, it means
the debugger infrastructure is broken and cannot be used. In
this case, the handler opens either the original error or the
meta-error (depending on the infrastructure con�guration)
with the emergency evaluator.

Meta-errors of type (6) mean that the selected debugger
to open the original error is broken. If the infrastructure is
con�gured to focus on user-level errors, it simply ignores
the meta-error. The Debugger Selector strategy then tries
to open the original error with the next eligible debugger.
If the infrastructure is con�gured to debug meta-errors, a
DebuggerFailure is instantiated and signaled as an unhan-
dled exception. The debugger system handles the resulting
debug request like any other. However, because debugger
failures reference the debugger from which their meta-error
originated, Debugger Selector handles them di�erently. It
considers failed debuggers referenced by debugger failures
as non-eligible (see section 3.2). This prevents recursively
trying to open the same failing debugger, while allowing the
debugging of a failed debugger with another debugger.
The infrastructure only allows for the debugging of a

singlemeta-error within the same process. The �rst debugger
that breaks is debuggable, but not other debuggers that would
fail while trying to debug that �rst debugger. Meta-*-meta-
errors, if they do exist, are discarded by the infrastructure.
Finally, meta-errors of type (8), i.e., when the debugger

selection strategy does not �nd any eligible debugger to
open, are handled by simply opening the original error with
the emergency evaluator.

4 Evaluation
In this section, we compare Pharo with and without Oups
in terms of which types of meta-errors they can debug. We
then illustrate Oups through a few example scenarios.

Table 1. Improvements in meta-error debuggability
Meta-error in: Pharo Pharo+Oups

(1) the exception mechanism 7 7

(2) the creation of a debug request N.A. 7

(3) debugger system 7 * E.E.
(4) the UI Manager 7 E.E.
(5) the debugger selection strategy E.E.** E.E.
(6) a debugger opening E.E. 3

(7) the emergency evaluator 7 7

(8) no debugger found E.E.** E.E.

3 Debuggable with a working debugger.
7 Cannot be debugged.

E.E. Debugging falls back to the emergency evaluator.
N.A. Not applicable: Pharo does not implement debug requests.
* Part of the UI Manager analogous to the debugger system.
** Debugger lookup, analogous to the selection strategies.

4.1 Comparing the debuggability of meta-errors in
Pharo with and without Oups

Self-supporting programming environments like Squeak or
Pharo include many opportunities to shoot yourself in the
foot [13]. Thanks to a few mechanisms and design choices,
these environments are surprisingly reliable. While not fool-
proof in themselves, these mechanisms allow for the recov-
ering from some of the meta-errors de�ned in Section 3.3.
Table 1 summarises how Pharo copes with meta-errors,

with and without Oups. We observe that Oups cannot do
much for errors that occur either too early during exception
handling at the execution level (1, 2), or too late in the emer-
gency evaluator (7) which is already a last ditch tool. How-
ever, Oups does improve the system’s resilience to problems
occurring at the platform level when opening debuggers. In
cases 3& 4, Oups drops into the emergency evaluator instead
of the system entering an in�nite error-handling recursion.
We consider this as an incremental improvement. First, it
concerns system code that is not likely to change often. Sec-
ond, as an example of Kent Beck’s advice3 “make the change
easy (warning: this may be hard), then make the easy change”,
it could be ported back to Pharo without the rest of Oups.
Case 6 is the real bene�t of Oups, because it makes the

debugger less special to the system. Working on a debugger
with Oups becomes more like application development.

4.2 Example scenarios
This section shows the Oups infrastructure in practice. In
each case, the debugger selector picks between a high pri-
ority debugger A and a low priority one B. We describe
what happens when user code divides by zero, depending
on whether A fails or not and on the con�guration of Oups.
No debugger crash. The high priority debugger A is se-

lected and opens successfully. The user debugs the division
by zero with debugger A.

3h�ps://twi�er.com/KentBeck/status/250733358307500032

https://twitter.com/KentBeck/status/250733358307500032

Handling Error-Handling Errors IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

Crash, but focus on domain errors. Debugger A fails
while opening: Oups falls back to debugger Bwhich opens
successfully. The user debugs the division by zero with B.

Crash, and debugging meta-errors. Debugger A fails
while opening, and Oups is con�gured to debug
meta-errors. Oups raises a debugger failure exception
referencing A and its error. That debugger failure
triggers a new debug request, but for which debugger
A is ineligible, so Oups selects B. The user debugs the
debugger A error with debugger B. If the debugger A
error is �xed and the execution proceeds, the original
opening of debugger A resumes. The user now debugs
the division by zero with debugger A.

5 Related Work
The moldable debugger [1] is the current Pharo debugger. It
implements an algorithm to select the best suited debugger
for a particular context (e.g., unit tests). It not resilient to
meta-errors, and works in parallel to the Pharo debugger
infrastructure which makes it di�cult to extend. Squeak
has projects that contain separate system tools [13]. Upon a
tool failure, it is possible to lookup in other projects to �nd
another debugger. In Kansas [12] users develop in worlds.
When a world breaks, another one is created from which the
�rst world can be repaired. Kansas cannot be debugged if that
ability to create new worlds breaks. Similarly, Sindarin [3]
is a debugger scripting API for Pharo. If a debugging tool
breaks, Sindarin operators allows developers to debug an
execution without tooling support. However, if a Sindarin
operator breaks then the debugging API is inoperable.

Other recovery tools could be envisioned. Remote debug-
ging infrastructures [6, 7] deport tools in another system. If
a remote tool breaks, it could theoretically be debugged from
another remote debugger. In contrast, the ability to load dif-
ferent versions of the same code in the same image [11] could
enable the debugging of a tool by another version of itself.
Object-centric debugging [10] can scope breakpoints to a
single instance of a debugger. Another instance of the same
debugger can then debug the other. This enables putting
breakpoints in debuggers but does not apply to meta-errors.

6 Conclusion and future work
In this paper we presented Oups, a debugger infrastructure
for Pharo. Oups simpli�es debugger openings by providing
a uni�ed interface to open debuggers on errors. It is exten-
sible through a mechanism of interchangeable strategies to
control how to select and open debuggers. It improves the
debuggability of debugger errors by automatically selecting
another debugger upon the failing of a �rst debugger.
We de�ned meta-errors as errors that occur while a pre-

vious error is being handled. Oups increases the number of
meta-errors that can be debugged with regards to the current
Pharo debugger infrastructure.

One limitation of Oups is its inability to recover from error-
handling errors occurring outside Oups or after Oups itself
failed. As future work, we plan to improve the debuggability
of such errors. We also plan a survey-based empirical study
on the impact of Oups on developers’ daily work.

References
[1] Andrei Chiş, Tudor Gîrba, and Oscar Nierstrasz. 2014. The Moldable

Debugger: A Framework for Developing Domain-Speci�c Debuggers.
In Software Language Engineering. Springer, 102–121. h�ps://doi.
org/10.1007/978-3-319-11245-9_6

[2] Steven Costiou. 2018. Unanticipated behavior adaptation : application
to the debugging of running programs. Theses. Université de Bretagne
occidentale - Brest. h�ps://tel.archives-ouvertes.fr/tel-02082447

[3] Thomas Dupriez, Guillermo Polito, Steven Costiou, Vincent Aranega,
and Stéphane Ducasse. 2019. Sindarin: A Versatile Scripting API for
the Pharo Debugger. In DLS’19, Dynamic Language Symposium.

[4] Johan Fabry and Stéphane Ducasse. 2017. The Spec UI Framework.
Square Bracket Associates. 84 pages. h�p://books.pharo.org

[5] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer,
Robert Deline, and Gina Venolia. 2013. Debugging revisited: Toward
understanding the debugging needs of contemporary software devel-
opers. In 2013 ACM/IEEE international symposium on empirical software
engineering and measurement. IEEE, 383–392.

[6] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2018. Out-
Of-Place debugging: a debugging architecture to reduce debugging
interference. The Art, Science, and Engineering of Programming 3, 2
(Nov. 2018). h�ps://doi.org/10.22152/programming-journal.org/
2019/3/3

[7] Nick Papoulias, N. Bouraqadi, Marcus Denker, Stéphane Ducasse, and
Luc Fabresse. 2015. Mercury: Properties and Design of a Remote
Debugging Solution using Re�ection. Journal of Object Technology
(2015). h�ps://hal.inria.fr/hal-01185730

[8] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert
Hirschfeld. 2017. Studying the advancement in debugging practice
of professional software developers. Software Quality Journal 25, 1
(2017), 83–110. h�ps://doi.org/10.1007/s11219-015-9294-2

[9] Eric S Raymond and Guy L Steele. 1996. The new hacker’s dictionary.
Mit Press.

[10] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. 2012. Object-
Centric Debugging. In Proceeding of the 34rd international conference
on Software engineering (Zurich, Switzerland) (ICSE ’12). h�ps://doi.
org/10.1109/ICSE.2012.6227167

[11] Théo Rogliano, Guillermo Polito, and Pablo Tesone. 2019. Towards
easy program migration using language virtualization. In International
Workshop of Smalltalk Technology 2019. Köln, Germany. h�ps://hal.
archives-ouvertes.fr/hal-02297756

[12] Randall B. Smith, Mario Wolczko, and David Ungar. 1997. From Kansas
to Oz: collaborative debugging when a shared world breaks. Commun.
ACM 40, 4 (April 1997), 72–78. h�ps://doi.org/10.1145/248448.
248461

[13] Marcel Taeumel and Robert Hirschfeld. 2016. Evolving User Interfaces
From Within Self-supporting Programming Environments: Exploring
the Project Concept of Squeak/Smalltalk to Bootstrap UIs. In Proceed-
ings of the Programming Experience 2016 (PX/16) Workshop. 43–59.

[14] Pablo Tesone, Stéphane Ducasse, Guillermo Polito, Luc Fabresse, and
Noury Bouraqadi. 2020. A new modular implementation for Stateful
Traits. Science of Computer Programming (2020).

[15] Benjamin van Ryseghem, Stéphane Ducasse, and Johan Fabry. 2012.
Spec, a framework for the speci�cation and reuse of UIs and their
models. In Proceedings of ESUG International Workshop on Smalltalk
Technologies (IWST 2012) (Ghent, Belgium) (IWST ’12). ACM, Gent,
Belgium, 2:1–2:14. h�ps://doi.org/10.1145/2448963.2448965

https://doi.org/10.1007/978-3-319-11245-9_6
https://doi.org/10.1007/978-3-319-11245-9_6
https://tel.archives-ouvertes.fr/tel-02082447
http://books.pharo.org
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://hal.inria.fr/hal-01185730
https://doi.org/10.1007/s11219-015-9294-2
https://doi.org/10.1109/ICSE.2012.6227167
https://doi.org/10.1109/ICSE.2012.6227167
https://hal.archives-ouvertes.fr/hal-02297756
https://hal.archives-ouvertes.fr/hal-02297756
https://doi.org/10.1145/248448.248461
https://doi.org/10.1145/248448.248461
https://doi.org/10.1145/2448963.2448965

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia Steven Costiou, Thomas Dupriez, and Damien Pollet

[16] Andreas Zeller. 2009. Why programs fail: a guide to systematic debug-
ging. Elsevier.

	Abstract
	1 Introduction
	2 Background: debuggers openings and error handling errors in Pharo
	2.1 Opening debuggers: a blurry infrastructure
	2.2 Error handling errors and their recovery
	2.3 Motivation: debugging debuggers errors

	3 The Oups debugger infrastructure
	3.1 Infrastructure overview
	3.2 Debugger selection strategies
	3.3 Handling meta-errors in Oups

	4 Evaluation
	4.1 Comparing the debuggability of meta-errors in Pharo with and without Oups
	4.2 Example scenarios

	5 Related Work
	6 Conclusion and future work
	References

