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Abstract
As applications get developed, bugs inevitably get introduced.
Often, it is unclear why a given code change introduced a
given bug. To find this causal relation and more effectively
debug, developers can leverage the existence of a previous
version of the code, without the bug. But traditional debug-
ging tools are not designed for this type of work, making this
operation tedious. In this article, we propose as exploratory
work the echo-debugger, a tool to debug two different execu-
tions in parallel, and the Convergence Divergence Mapping
(CDM) algorithm to locate all the control-flow divergences
and convergences of these executions. In this exploratory
work, we present the architecture of the tool and a scenario to
solve a non trivial bug.
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1 Introduction
Nowadays, debugging is still a challenge [19, 24] and sources
of hard bugs are numerous [15]. In addition, the distance
between a source code change and the emergence (identi-
fication) of a bug can be large, which makes it difficult to
understand why a given code change caused a given bug [22].
However, in some instances, developers have access to an
interesting source of information to help them: a previous
version of the software not exhibiting the bug [21].

However, having a reference, working, version of the pro-
gram is not a panacea. Without dedicated support, developers
have to run the two versions in separate debuggers, manually
step them in parallel, and visually compare the executions.
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Techniques that compare two similar executions to produce
various results already exist [21]. In general, these techniques
try to isolate the code fragments that are (suspected to be)
responsible of an error. Delta debugging [22, 23] takes two
versions of a program and finds the smallest subset of code
change that turned a given test from green to red. Algorith-
mic debugging [17, 18] tries to isolate faulty code based on
how developers assert the outputs of faulty and successful
executions.

However, these approaches show limits in two scenarios.
First, we might know exactly which code change introduced
the bug and still we cannot understand how it did so. Sec-
ond, when we migrate an application from a version of a
library/framework to another, the code changes can be gigan-
tic. Detecting code differences between a working execution
(using the old version) and a failing execution (using the new
version) might not be useful. The meaning itself of the code
might have changed, things might have been added and others
removed. For instance, when migrating frameworks from a
version of Pharo [3] to another, the base classes and tools of
the language regularly evolve.

In this paper we present Echo-debugging: a technique to
compare the executions of the failing and working version
of the program and find the control-flow differences to help
developers debug the program. The contributions of this paper
are:

• The echo-debugger and its architecture: an interactive
debugger to debug two similar executions running in
different runtimes.

• Convergence Divergence Mapping (CDM), an algo-
rithm that fully runs both executions and compares the
AST nodes they are executing to build a map of when
they diverge and converge in terms of control-flow. The
echo-debugger can then jump the executions to any
event of this map the developer wants to inspect.

In this paper, we first state our problem of comparing two
similar executions, and list the main challenges it involves
(Section 2). We then expose our solution: the echo-debugger,
its architecture, and the CDM algorithm (Section 3 and 4).
We show a concrete example of how to use the echo-debugger
to debug a bug in the Pillar editorial chain code (Section 5).
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We finally discuss our solution (Section 6), similar works
(Section 7), future works (Section 8) and conclude (Section 9).

2 Comparing Two Similar Executions
Problem statement. We have as inputs:

• Two versions of a program. For example before and
after a given commit.

• A statement to execute. The developer is interested in
how the execution of this statement differs between the
two program versions. This will typically be a test that
passes in one program version and fails in the other, but
it can be any statement.

From these inputs, we want a tool that allows the developer
to debug both executions of the statement in a comparative
fashion, and to understand the impact of the source code
differences between the program version.

Difficulties. Here, we list the main challenges our solution
has to overcome.

• Challenge 1: Running two versions of the same pro-
gram in parallel, and controlling them. Our solution
requires the two version of the same program to run
in parallel. This is typically not possible in the same
runtime. Additionally, our solution needs to control and
coordinate the two executions.

• Challenge 2: Comparing objects across executions.
Although the executions are similar, and they create and
manipulate similar objects, the default identity operator
(==) is entirely unusable because the same objects from
different executions are never going to be the same
identity-wise.

• Challenge 3: Comparing control-flows. The intuitive
idea is to find when the executions are doing different
things and when they are doing the same thing. Our
solution needs to define these expressions and use these
definitions to compare the control-flows of the two
executions.
– Challenge 3.1: Finding control-flow divergences.

Since the executions both start on the same statement
(the one provided by the developer), their control-
flows are the same. Our solution needs to step them
until their control-flows diverge.

– Challenge 3.2: Finding control-flow convergences.
Challenge 3.1 lets us find the first control-flow diver-
gence, but that may not be good enough to understand
the bug. Maybe the control-flow of the executions re-
converge on a part of the program, and diverge again
later. Our solution needs to recognise if the control-
flow of the executions reconverge after a divergence.

Combining challenge 3.1 and 3.2 means building a map
of when the control-flows of the two executions diverge,
converge, diverge again, converge again...

3 The Echo-Debugger
In this section, we describe our solution to debug two similar
executions side-by-side: the echo-debugger and its architec-
ture.

For clarity in this section, we assume that the developer
is debugging a test, which passes in a given version of the
program, but fails in another. In general the echo-debugger
works to comparatively debug any statement.

3.1 Echo-Debugging Architecture
Figure 1 shows the overall architecture of an echo-debugging
setup.

Figure 1. Echo-Debugging Architecture: One controller run-
time (image) controls the execution of a failing and working
one.

Three Different Runtimes. Because a runtime cannot con-
tain and execute multiple versions of the same code at the
same time (challenge 1), the Echo-Debugging architecture is
made of three runtimes each one running separately. Each of
such runtime runs a different configuration:

• Working runtime. This runtime contains the version
of the code that works as expected by the developer.
For concision, we will call it the W runtime.

• Failing runtime. This runtime contains the version of
the code that does not work as expected by the devel-
oper. For concision, we will call it the F runtime.
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• Controller runtime. This runtime connects to the
other two runtimes to control the executions and collect
data. The developer interacts primarily with this run-
time during the echo-debugging session. For concision,
we will call it the C runtime.

We refer to the working and failing runtime as echo-
runtimes, because they are like echoes of each others: similar,
but not exactly the same.

Sindarin Debugger. In each echo-runtime, we use a Sin-
darin debugger [7] to control the execution of the test. Sin-
darin is a scriptable, UI-less debugger for Pharo. It can be
instantiated on an execution, and its API used to inspect and
manipulate the execution.

Debugger Client/Server. For the communications between
the echo-runtimes and the controller runtime, the echo-
debugger has a companion package with an HTTP-based
client/server communication layer. This layer transmits the
Sindarin commands coming from the echo-debugger to the
Sindarin debuggers in the echo-runtimes, and transmits back
the answers. Some objects returned by the Sindarin API can-
not be serialized/materialized, such as Contexts and Excep-
tions, because they reference objects that cannot be serialized.
We built custom serializations for them, where we instead
serialize a dictionary containing the relevant fields of these
objects, excluding the unserializable ones.

Echo-Debugger. The echo-debugger is what the developer
interacts with. It communicates with the Sindarin debuggers
in the echo-runtimes via the client/server communication
layer. For a more detailed description of the echo-debugger,
see Section 3.2.

Setup process for an echo-debugging session. Finally,
here is the list of steps required to setup an echo-debugging
session.

1. Create three runtimes: Working, Failing and Controller.
2. Load the working version of the code in the working

runtime.
3. Load the failing version of the code in the failing run-

time.
4. Load the echo-debugger and its communication pack-

age1 in all three runtimes.
5. In both echo-runtimes, instantiate a Sindarin debug-

ger [7] on the execution of the test.
6. In both echo-runtimes, run a debugger server for the

Sindarin debugger.
7. In the controller image, run a debugger client, connect

it to both debugger servers over HTTP, and open its UI.

3.2 The Echo-Debugger
The echo-debugger is responsible for controlling and analyz-
ing both echo-executions. Once the echo-debugging session
1https://github.com/dupriezt/DebuggerCommunication

is setup, the developer only interacts with the echo-debugger,
and not directly with the echo-runtimes.

Figure 2 shows the UI of the echo-debugger. It contains
three main zones (from left to right):

• A debugger on the working execution of the test.
• A debugger on the failing execution of the test.
• The control zone containing information and com-

mands specific to the echo-debugger.

The control zone is separated in three areas:

• The status area takes the current AST node of the two
contexts selected in the debuggers and shows whether
they are equal or not.

• The operations area lists the echo-debugging opera-
tions the developer can perform.

• The navigation map lists the convergence and diver-
gence events between the echo-executions, and allows
the developer to step both debuggers to when these
events happened in the echo-executions.

Remote debuggers. The echo-debugger features a remote
debugger for each echo-execution. These debuggers display
information on the echo-executions, such as the call stack
and the current piece of code being executed. The developer
can use these debuggers to debug the echo-executions as he
would normally debug in a standard debugger, with the added
benefit of having both executions side-by-side in the same
image.

Echo-debugging operations. The echo-debugger provides
operations to control both echo-executions at the same time
and step them to potential places of interest:

• Step both. Step both echo-executions once.
• Step to next divergence. To be used when the echo-

executions are currently convergent. Step both echo-
executions until their next divergence. See Section 4
about the CDM algorithm for more details.

• Step to next convergence. To be used when the echo-
executions are currently divergent. Step both echo-
executions until their next convergence. See Section 4
about the CDM algorithm for more details.

• Analyze executions. Applies the CDM algorithm de-
scribed in Section 4 to populate the navigation map
with all the convergence and divergence events between
the echo-executions.

• Restart. Restarts both echo-executions, to start over.
• Go to. This operation requires that the navigation map

has been populated by analyzing the echo-executions
with the CDM algorithm (Section 4). This operation
restarts both echo-executions and steps them until they
reach the convergence/divergence event that is currently
selected in the navigation map. This operation assumes
the execution is deterministic

https://github.com/dupriezt/DebuggerCommunication
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Figure 2. UI of the echo-debugger, after setting up and connecting to the echo-runtimes. The UI is separated into three columns
showing, from left to right: the working execution, the failing execution, and the control zone. The control zone is itself separated
into three areas: (from top to bottom) the status area, the operations area, and the navigation map.

The Step to next divergence and Step to next convergence
operations directly address challenges 3.1 and 3.2. Analyze
executions is a convenience method to automatically repeat
these two steps on the entire execution. Go to lets the devel-
oper inspect each divergence/convergence event. Restart and
Step both give manual control of the parallel executions to the
developer for closer inspection.

4 The CDM algorithm
In this section, we explain the CDM algorithm, used by the
echo-debugger to spot all the control-flow divergences and
convergence between the echo-executions. We first define
what we mean by convergence and divergence. We then ex-
plain the CDM algorithm. We finally detail a special case
of the algorithm when looking for a convergence, and how
we perform the comparison of AST nodes from different
runtimes.

The goal of the Convergence Divergence Mapping algo-
rithm (CDM) is to fully run both echo-executions, and build
a map of when they diverge and converge in terms of control
flow. This map is a list of divergence and convergence events
in the order in which they occurred during the comparative

execution. Each event stores the number of steps both exe-
cutions took to reach it. An example of such map is shown
in Figure 3. Using this map, the echo-debugger is able to re-
run the echo-executions up until any divergence/convergence
event the developer wants to inspect.

Convergence and divergence of echo-executions. We de-
fine what we mean by convergence and divergence as follows.
The idea is that we have two similar executions, and we want
to know when they are doing the same thing (such as execut-
ing the same methods), and when they are not. At the start,
neither echo-execution has executed anything, and they are
both about to execute the same statement, provided by the
developer. At this stage, they are definitely doing the same
thing. We say they are convergent at that point. Then, as the
echo-executions progress, at some point, they’ll stop doing
the same thing. We detect this by comparing the AST nodes
they are executing. When they start executing different AST
nodes, we say they are now divergent. But we know that prior
to that point, they were doing the same thing, so if we let them
fully step the current method call, the echo-executions will go
back to the caller of that method call, and if at that point they
are about to execute the same AST node, we say they have
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Figure 3. Result of the CDM algorithm on the Pillar config-
uration bug. This is the list of the convergence/divergence
events observed during the echo-execution. The left column
indicates the nature of the event (convergence or divergence).
The middle column indicates the number of steps it has taken
the working echo-execution to reach this event. The right
column indicates the number of steps it has taken the failing
echo-execution to reach this event.

converged. Indeed they were doing the same thing, then they
entered a method call in which they started doing different
thing, but now that method call is over and they are back to
the part where they were doing the same thing. Now that they
have converged, we let them progress until they diverge again,
and converge again, etc, until either execution is over. This
definition of convergence and divergence is the general idea
of the CDM algorithm.

The CDM algorithm. Here is how the CDM algorithm
builds a map with the divergences and convergences between
the echo-executions. It is mostly a direct translation of the
definition of convergence and divergence we gave in the para-
graph above, with the exception of step 2.c.i.

1. The echo-executions start convergent because they have
done nothing yet and are about to execute the same
statement, provided by the developer

2. Repeat until either execution is over:
a. Step to next divergence

• Repeat until the AST nodes the echo-executions
are about to execute are different:
i. Step each echo-execution once

ii. Compare the AST nodes the echo-executions are
about to execute

b. Register a divergence event in the map, with the num-
ber of steps each echo-execution took to reach that
point

c. Step to next convergence
• Repeat until the AST nodes the echo-executions

are about to execute are the same:
i. If the call-stack of both echo-executions do not

have the same size, step the echo-execution with
the longer call stack until its call stack has the

same size as the call stack of the other echo-
execution

ii. Otherwise, if the call stack of the echo-
executions have the same size, step each echo-
execution separately until the size of their call
stack is 1 less

iii. Compare the AST nodes the echo-executions are
about to execute

d. Register a convergence event in the map, with the
number of steps each echo-execution took to reach
that point

Special case when stepping to the next convergence.
Sometimes, the echo-executions diverge but their call-stack
do not have the same size . This can for example happen when
the source code change between the two program versions
turned a normal method into a Virtual Machine primitive
method. When stepping into a primitive method, the VM au-
tomatically executes it and returns to the caller. This means
that the execution with the normal method is currently one-
step-deep into that method, but the other execution is already
back in the caller method. To find a convergence in these
cases, our algorithm only finishes the current method call of
the echo-execution with the longest call stack (See Figure 5).
For comparison, the normal case is shown in Figure 4.

Comparing AST nodes. A fundamental part of the CDM
algorithm is comparing the AST nodes the echo-executions
are executing to determine whether their control-flows have
diverged. Since the goal of the CDM algorithm is to find
control-flow divergences, it also has to take into account the
method and class the AST nodes belong to. For example,
two 1+1 AST nodes are equal (in the = sense), but if they are
from different methods/classes, we consider them different for
the purpose of control-flow. Therefore, the CDM algorithm
requires some form of identity (==) operator to compare the
AST nodes. However, the standard identity operator cannot
be used because the AST nodes to compare are coming from
different runtimes. To get them into the controller runtime for
the comparison, they would have to go through serialisation
and materialisation. These materialised object are always
different with regards to identity. Our solution is to design a
new equality operator on remote AST nodes. This operator
considers the four properties listed below, and compares them
with the equality operator (=). Two remote AST nodes sharing
these properties means that they come from the same method
of the same class, are of the same type and correspond to the
same part of the source code. This fits the need of the CDM
algorithm for an AST node identity operator checking whether
the control-flow of the echo-executions have diverged.

• methodSelector: the name of the method this AST
node is from.

• class: the name of the class the method containing this
AST node is from.
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Figure 4. When the two echo-executions diverge and have
call stacks of the same size, our algorithm steps the echo-
executions to finish the current method call and go back to
the last method call in which the execution were convergent.
It then compares the current AST nodes of the two echo-
executions. If it is the same (as is the case in this figure
where AST node 2 = AST node 2), the echo-executions have
converged. Otherwise, the algorithm repeats the process by
finishing the call to method 2, comparing the current AST
nodes.

• source: the source code covered by this AST node. For
example, Point new for the message node representing
the send of the new message to the Point class.

• nodeType: whether this AST node is a message node,
a literal node...

5 Example: The Pillar Configuration Bug
Pillar2 is a markup syntax and a tool-suite to generate docu-
mentation, books, websites and slides [2, 6]. In this section,
we use the echo-debugger on a simplified version of a bug
encountered in pillar: the pillar configuration bug [5].

5.1 Starting Knowledge about the Pillar Configuration
Bug

Pillar uses nested configurations to store properties such as
the authors, title, default folder and options for the generation
given by the users. In addition, each file may override new
properties (such as authors in a collection of articles). Each
configuration is an environment i.e., a dictionary of properties,
and has a parent configuration. Asking a configuration for a
given key key1 is done by sending the message key1 to the
configuration. This message is meant not to be understood by
2https://github.com/pillar-markup/pillar

Figure 5. When the two echo-executions diverge and have
call stacks of different size, our algorithm only finishes the
current method call of the echo-execution with the longest
call stack.

the configuration, to call its doesNotUnderstand: method 3. The
doesNotUnderstand: method calls the lookupProperty: method
of the configuration. The lookupProperty: methods performs
the lookup in the property dictionary of the configuration. If
this dictionary does not contain key1, then the lookupProperty:
method of the parent configuration is called...

5.2 The test and the source code change
The test we are interested in is shown in listing 1. In this
test, we create a first configuration c1 (line 3) and set the
value of its mySetting key to 0 (line 4). We then create a
second configuration c2 (line 5) and declare c1 as its parent
configuration (line 6). Finally, we assert that the value of
configuration c2 for the mySetting key should be 0, because it
should inherit this value from c1.

1 PCBTest>>
#testChildConfigurationLooksUpParentConfiguration

2 | c1 c2 |
3 c1 := PCBConfig new.
4 c1 mySetting: 0.
5 c2 := PCBConfig new.
6 c2 parentConfig: c1.
7 self assert: c2 mySetting equals: 0

Listing 1. Test highlighting the Pillar Configuration Bug

3This implementation was changed and is not available anymore in recent
Pillar distributions because it was a bad idea according to Pillar maintainers.

https://github.com/pillar-markup/pillar
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Figure 6. Echo-debugger opened on the Pillar Configuration Bug.

This test originally passes, but fails after the following
source code change: the developer adds an instance variable
to the PCBConfig class, with a getter and a setter method. With-
out knowing that the name was already used for a property,
the developer names this variable mySetting. After this change,
the test fails, with the message that the property mySetting of
c2 is nil instead of 0. The test fails because the lookup of my-
Setting on c2 now returns the value of the mySetting variable
(nil) instead of calling the doesNotUnderstand: method as it
used to.

5.3 Echo-debugging the Pillar Configuration Bug
Setup. We run three Pharo runtimes in which we loaded the

Pillar program 4 and the echo-debugger with its companion
communication packages5. We then have:

Working runtime. A working runtime in which no
other code is loaded.
Failing runtime. A failing runtime in which in addition
we loaded the breaking changes6.
Controller runtime. A controller runtime. This is
from this controller runtime that we will drive the echo-
debugging session.

4https://github.com/dupriezt/PillarConfigBug_Working
5https://github.com/dupriezt/DebuggerCommunication
6https://github.com/dupriezt/PillarConfigBug_Failing

After connecting the runtimes and launching the echo-
debugger, as described in the setup process detailed in Sec-
tion 3.1, we see the echo-debugger UI shown in Figure 6.

Running the CDM algorithm. In the control zone, click-
ing the analyze execution button triggers the CDM algorithm
described in Section 4. The result of the CDM algorithm is
shown in Figure 3.

Investigating the echo-executions. Now we explain step
by step how the echo-executions help us find the root cause
of the problem. Figure 7 contains the relevant screenshots for
the steps listed below, marked in bold in the text.

1. Starting Point. This is the setup code that has been
executed to instantiate a Sindarin debugger on the test
execution. The highlighted statement, about to be exe-
cuted, is the test execution itself. In this figure and all
the similar ones, the working execution is shown on the
left, while the failing execution is shown on the right.

2. We step both echo-executions to the First Divergence.
The W execution is in a doesNotUnderstand: method,
while the F execution is in the mySetting: setter method
that was added by the source code change. On the Par-
ent of these Stack Frames, we see that the test exe-
cutions are setting the value of the mySetting property
in configuration c1. We deduce that the configuration
did not understand the mySetting: message in the W
execution, but it did in the F execution. The developer

https://github.com/dupriezt/PillarConfigBug_Working
https://github.com/dupriezt/DebuggerCommunication
https://github.com/dupriezt/PillarConfigBug_Failing
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Figure 7. Investigating the echo-executions of the Pillar Configuration Bug
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already expects this, since he just added the mySetting:
setter method on purpose.

3. We step both echo-executions to the First Conver-
gence. We see that after the execution of the mySetting:
message was different between the echo-executions,
they reconverge at the next statement of the test method.
Notice that the W execution took 106 steps to reach
this convergence, while the F execution only took 9.

4. We step both echo-executions to the Second Diver-
gence. Here, the F execution is about to execute the
whole assertion of the test, while the W execution is in
a doesNotUnderstand method. To have a better look, we
can Restart both echo-executions and step them until
they reach the step just before this divergence event
(114 steps for the W execution, 17 for the F execution).
We see that both executions were about to execute the
c2 mySetting statement of the test assertion. We deduce
that this call resulted in a doesNotUnderstand: in the
W execution, while it resulted in the mySetting getter
method being called in the F execution. Using the de-
buggers, we separately inspect the two echo-executions
from this point. In the W execution, doing a few steps
shows the configuration c2 not understanding the mes-
sage mySetting, looking up its property dictionary, and
delegating the lookup to its parent configuration. In the
F execution, we inspect the c2 configuration object to
find that the value of its mySetting instance variable is
nil.

5. We found the cause of the bug: adding a getter for
mySetting on the pillar configuration class caused it to
understand the mySetting message. This prevented the
property lookup from escalading to the parent configu-
ration.

6 Discussion
State differences. A limitation of our solution is that it

only considers differences between the echo-executions in
terms of control-flow. While such differences are important
and helpful, differences in terms of state may also be very
helpful to the developer. For example, recognizing when the
echo-executions have the same control-flow but act on objects
with different states.

Back-in-time debugging. After the CDM algorithm pre-
sented in Section 4 has fully run both executions to detect
when divergence and convergence events occur, the echo-
debugger restarts the echo-executions and steps them forward
to reach the events the developer wants to inspect. This is a
rudimentary form of back-in-time debugging, which assumes
that the echo-executions are deterministic. More advanced
techniques of back-in-time debugging [8, 11, 13, 16] could
be used to remove this assumption.

Optimization of the CDM algorithm. In this paragraph,
we discuss an implementation detail that proved critical in
terms of performance. While our initial implementation of the
CDM algorithm was almost instantaneous for small execu-
tions (around 250 steps), it was very slow for larger executions
(more than 1 hour for around 5 million steps). The biggest
performance bottleneck were the HTTP requests between
the controller and echo-runtimes. The naïve implementation
of the CDM algorithm sends many small HTTP requests to
the echo-runtimes. Among others, one request per step, one
request per AST node comparison to get the AST node, and
one request each time the size of the call stack is needed.
To reduce the number of HTTP requests necessary, we sim-
plified the data needed by the CDM algorithm running in
the controller runtime. With this simplification, we no longer
need the echo-executions to run in parallel. Instead, the echo-
runtimes fully run their echo-executions locally, collecting
the necessary data, and then send this data in big batches to
the controller runtime. The controller runtime then performs
the CDM algorithm offline on the data.
Data simplification: since the CDM algorithm only compares
AST nodes to each other, it does not need the full dictionary
representation of these nodes, and can work simply with the
hashes of these representations. Also, the CDM algorithm
does not need the complete call-stacks of the echo-executions,
it only needs their size. With these two simplifications, the
echo-runtimes fully run their echo-execution locally with no
intervention from the controller runtime. After each execution
step, they log a) the hash of the dictionary representation of
the current AST node and b) the size of the call-stack.
These optimizations reduced the time necessary to run the
CDM algorithm on an execution around 5 million steps long
from more than an hour to 2 minutes.

7 Related Works
Test inputs. Palikareva et al., [14] describe a technique

called Shadow symbolic execution, designed to generate test
inputs that cover new program behavior introduced by a patch.
This technique symbolically executes a test in both program
versions (before and after the patch) and compares these
executions to find test inputs that lead to new behavior in the
patched program and should be tested. This technique requires
the developer to manually annotate the program to merge the
old and new versions of the code. The Echo-Debugger does
not have this requirement.

Brumley et al., [4] solve logical formulae created from
two different implementations of the same protocol (for ex-
ample HTTP) to find deviations: inputs such that the output
of the two implementations are semantically different. This
technique produces inputs generating deviations between two
implementations. By contrast, the Echo-Debugger is a tool to
explore how two programs deviate on a given execution.
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Delta Debugging and compared execution. Zeller [22,
23] presents the Delta debugging algorithm. This algorithm
takes 2 versions of a program, and a test that was passing in
the old version, but is failing in the new version. Delta de-
bugging uses a divide-and-conquer approach to try multiple
subsets of the code change and find the smallest subset that
turns the test from green to red.

Abramson et al., [1] propose relative debugging, a para-
digm where the developer formulates a set of equality asser-
tions about key data structures in the old and new versions of
a program. The relative debugger is responsible for executing
the two program versions in parallel and report any difference
between the marked data structures. The two major differ-
ences with the Echo-Debugger are that 1) relative debugging
deals with state differences while the Echo-Debugger deals
with control-flow differences and 2) relative debugging re-
quires manual interventions of the developer to mark the data
structures they want to compare, and at which lines of code
in the two programs to perform the comparison.

In the WhyLine [9, 10] tool, the developer asks questions
about a recorded execution. The tool exploit traces to answer
the questions, and tell why a particular variable has or has not
a given value. Recorded divergences and convergences in the
echo-debugger could be leveraged to ask questions about the
execution in order to bring a better understanding of why two
execution diverge.

Pinocchio [20] is a proof-of-concept implementation of a
first-class code interpreter. Developers subclass the default in-
terpreter to add behaviors to the code execution. An example
use case is the creation of a parallel debugger, running two
interpreters in parallel and comparing their state after each
step. As opposed to the Echo-Debugger, the two interpreters
of Pinocchio runs in the same runtime, and can only compare
two executions on the same code base.

Algorithmic debugging. Algorithmic debugging is a tech-
nique proposed in 1982 by E. Y. Shapiro in the context of
logic programming [17, 18]. Algorithmic debugging requires
an oracle to compare execution outputs. These techniques
try to isolate faulty code based on how developers assert the
outputs of faulty and successful executions. An oracle could
be used in the echo-debugger, to ask the developer to assert
if a given convergence or divergence is normal or not (e.g.,
between two program versions). This would help to focus on
convergences and divergences that are relevant for the user,
and ignore mundane differences like semantic-preserving
refactoring.

8 Future Work
As future work to expand the echo-debugger presented in this
paper, we identified 3 main axis.

State Differences. The Echo-debugger presented in this
paper focuses on control-flow differences between the echo-
executions. Another dimension in which two executions can
differ is state (for example in the content of their variables).
Incorporating state differences into the Echo-debugger, possi-
bly inspired by the work of Henry Liberman [12], will make
it paint a more complete picture of the differences between
the executions.

Automated Setup. Setting up an echo-debugging session
is a multi step process that can be tedious. An improvement
axis consists in developing an automated setup tool to create
the three runtimes, load the echo-debugger and its dependen-
cies, run the debugger servers and client, and link them over
HTTP. This tool could for example take as input a link to a
git repository and two commit ids.

Using a Back-in-time Debugger as Back-end. Back-in-
time debuggers are specifically designed to allow faithful
replays of executions. The Echo-debugger requires this fea-
ture, and currently implements it by naïvely replaying the
executions. This works for deterministic, isolated executions,
but not for more complex executions. Using a back-in-time
debugger as back-end will lift this limitation of the Echo-
Debugger.

9 Conclusion
In this paper, we tackled the challenge of debugging two simi-
lar executions in parallel. We proposed the echo-debugger: an
interactive debugger to debug two similar executions running
in different runtimes. We also proposed the Convergence Di-
vergence Mapping algorithm (CDM), an algorithm that fully
runs both executions and compares the AST nodes they are
executing to build a map of when they diverge and converge in
terms of control-flow. This map records how many steps each
echo-execution took to reach each event. The echo-debugger
can then restart the echo-executions and step them to any
event of this map the developer wants to inspect. We showed
on an example how the echo-debugger helps finding the cause
of a vicious bug.

The main limitation of the echo-debugger is that it focuses
on the control-flow differences between the executions, but
ignores the potential difference of state. This constitutes the
main improvement direction of the echo-debugger. Addition-
ally, since the echo-debugger should be able to replay an
execution, the execution should be deterministic. Combining
it with a back-in-time debugger would lift this limitation.
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