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Non-intrusive and Workflow-aware Virtual
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Anthony, Shihabur Rahman Chowdhury, Student Member, IEEE , Tim Bai,
Raouf Boutaba, Fellow, IEEE , and Jérôme François

Abstract—The simple programming model and very low-overhead I/O capabilities of emerging packet processing techniques
leveraging kernel-bypass I/O and poll-mode processing is gaining significant popularity for building high performance software
middleboxes (aka Virtual Network Functions (VNFs)). However, existing OS schedulers fall short in rightsizing CPU allocation to
poll-mode VNFs due to the schedulers’ shortcoming in capturing the actual processing cost of these VNFs. This issue is further
exacerbated by their inability to consider VNF processing order when VNFs are chained to form Service Function Chains (SFCs). The
state-of-the-art VNF schedulers proposed as an alternative to OS schedulers are intrusive, requiring the VNFs to be built with
scheduler specific libraries or having carefully selected scheduling checkpoints. This highly restricts the VNFs that can properly work
with these schedulers. In this paper, we present UNiS, a User-space Non-intrusive work-flow aware VNF Scheduler. Unlike existing
approaches, UNiS is non-intrusive, i.e., does not require VNF modifications and treats poll-mode VNFs as black boxes. UNiS is also
workflow-aware, i.e., takes SFC processing order into account while scheduling VNFs. Testbed experiments show that UNiS is able to
achieve a throughput within 90% and 98% of that achievable using an intrusive co-operative scheduler for synthetic and real data
center traffic, respectively.

Index Terms—Network Function Virtualization, Service Function Chaining, Scheduling
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1 INTRODUCTION

N ETWORK FUNCTION VIRTUALIZATION (NFV) pro-
poses to decouple Network Functions (NFs) from

purpose-built and expensive hardware middleboxes and run
them as Virtual Network Functions (VNFs) on inexpensive
commodity servers [1]. This paradigm shift from hardware-
centric to software-centric architecture enables the network
operators to lower their capital expenditure by consoli-
dating multiple NFs on the same commodity hardware
and reduce operational expenditure by enabling on-demand
service provisioning leveraging cloud orchestration tech-
nologies [2], [3]. Since its inception in the late 2012, NFV
is experiencing increasing adoption in data centers owned
by large-scale online service providers [4], [5] as well as in
the telecommunications central offices and Internet Service
Provider (ISP) Point-of-Presences (PoPs) transformed into
edge-clouds [6], [7] supporting a wide-range of use-cases.

A significant effort in early NFV research and devel-
opment has been dedicated to close the performance gap
between hardware middleboxes and VNFs running on com-
modity servers [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17]. A fundamental building block of these high perfor-
mance VNFs is the emerging fast packet processing libraries
such as Intel DPDK [18]. DPDK and similar libraries facil-
itate rapid development of user-space programs that can
perform direct packet I/O on the Network Interface Card
(NIC) bypassing the OS kernel, thus incurring very low I/O
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overhead.
These packet processing libraries adopt a poll-mode pro-

gramming model where the VNFs need to continuously poll
the NIC for incoming packets. Poll-mode VNF development
has gained popularity in the last few years because of its
simplicity and lower I/O overhead compared to traditional
interrupt driven I/O model [10], [11], [13], [14]. However,
a major caveat of this model is that the VNFs always utilize
100% CPU due to the continuous polling, even when there are
no packets to process. This makes it difficult to relate CPU
utilization of poll-mode VNFs to their packet processing
cost [19]. Another implication of continuous polling is that
the CPU schedulers in existing OSs become ineffective for
VNF scheduling since they heavily rely on CPU usages
for making scheduling decisions. Furthermore, existing OS
schedulers do not have any interface for specifying the
desired processing order of VNFs. This is particularly im-
portant for scheduling VNFs on a shared CPU core since
network services are typically realized by steering packets
through an ordered sequence of VNFs, also known as a
Service Function Chain (SFC) [20]. Due to these reasons, it
is very common to see that poll-mode VNFs are pinned to
dedicated CPU cores, limiting the number of VNFs that can be
deployed on a machine.

Recently, NFVNice [21], has proposed a poll-mode VNF
scheduling mechanism that assigns CPU shares to VNFs in
proportion to their packet processing cost. NFVNice also
proposes to re-adjust CPU shares allocated to VNFs in an
SFC when packets start dropping along the chain. However,
NFVNice requires VNFs to be built using scheduler pro-
vided libraries to be able to monitor packet drops. Another
VNF scheduling approach is to build the VNFs that can
co-operate with other VNFs sharing a CPU by voluntarily



yielding CPU at some carefully placed scheduling check-
points in the code [22]. However, these solutions are intru-
sive, i.e., require modifications to the VNFs to make them
compatible with the scheduler, thus highly restricting the type
of VNFs that can work properly with the scheduler.

Motivated by the gaps in the state-of-the-art, we set
out to answer the following question: how can we devise a
scheduling mechanism for poll-mode VNFs that does not require
VNF modifications and maximizes the number of VNFs sharing a
CPU core while maintaining a high packet processing through-
put? We answer this question by presenting the design
and implementation of UNiS: a User-space Non-intrusive
Workflow-aware VNF Scheduler that is:

• User-space: works in the user-space and does not
require any kernel modification;

• Non-intrusive: takes a black-box scheduling ap-
proach and does not require VNFs to be built with
any UNiS specific library or to implement any spe-
cific scheduling logic; and

• Workflow-aware: takes SFC processing order into
consideration while scheduling VNFs.

In this paper, we present the design and implementation
of UNiS. We have implemented UNiS in C++ to work
alongside a DPDK-based VNF platform. We have performed
extensive testbed experiments using both synthetic and real
network traces for evaluating UNiS and compare with an
intrusive co-operative VNF scheduler similar to [22]. Our
key finding is that UNiS, despite its black box scheduling
approach, is able to achieve a throughput within 90% (syn-
thetic traffic) and 98% (real traffic) of that achieved using the
co-operative intrusive scheduler.

This work builds on our initial work in [23] and extends
it in several aspects. First, we describe our design goals
and their rationale in a greater detail, and elaborate on the
challenges associated with achieving these goals. In order to
better describe different scheduling scenarios, we augment
the description of scheduling algorithm with illustrative
examples. Then, we elaborate on UNiS’s implementation,
discussing the possible alternatives for implementing differ-
ent UNiS system components and our rationale for choos-
ing a specific one when applicable. We also extend our
evaluation focusing on characterizing the cache access be-
havior and context switch overhead of VNFs scheduled by
UNiS. We provide a better explanation of the performance
gap between UNiS and the compared intrusive scheduling
approach with the aid of these new results. We conduct
another set of new experiments demonstrating the benefits
of the optimization that we have introduced as part of
UNiS. Finally, we extend our discussion of the related works
and contrast UNiS with the state-of-the-art.

The rest of the paper is organized as follows. We begin
with a brief overview of DPDK based packet processing
and process scheduling in Linux kernel in Section 2. Then,
Section 3 presents a motivating experiment demonstrating
the ineffectiveness of existing OS schedulers for scheduling
VNFs in an SFC. We present the design and implementation
of UNiS in Section 4 followed by the experimental results in
Section 5. Section 6 contrasts UNiS with the state-of-the-art
approaches. Finally, we conclude with some future research
directions in Section 7.

2 BACKGROUND

2.1 Packet Processing with DPDK
Intel Data Path Development Kit (DPDK) [18] is a set
of libraries to facilitate fast packet processing in the
user-space. DPDK contains libraries for kernel-bypass
packet I/O, lockless multi-producer multi-consumer circu-
lar queues (DPDK rte ring library), and memory man-
agement (DPDK rte mempool library) among others. The
ring library can be used to create shared memory based
abstractions between packet processors for zero-copy packet
exchange. DPDK also ships with a set of NIC specific poll-
mode drivers (PMDs) for packet I/O to/from the NIC.

VNFs built using DPDK run in the user-space, bypasses
the kernel and continuously poll the NIC for incoming
packets. Poll-mode I/O in DPDK is a departure from the tra-
ditional interrupt driven I/O, where I/O operations engage
the CPU only when packets become available at the NIC.
When an I/O interrupt occurs, the CPU switches context
from that of the currently running process to that of the
interrupt handler in the kernel, performs packet I/O and
copies the packets from the kernel-space to the user-space.
In contrast, poll-mode I/O always engages a CPU and per-
forms zero copy I/O from the user-space whenever packets
become available. In this way poll-mode I/O obliterates the
need for context switching, executing interrupt handlers,
and copying packets from the kernel- to the user-space.
By eliminating these overhead among others introduced by
interrupts [24], [25], polling incurs very low CPU overhead
and low latency, significantly increasing packet processing
throughput compared to interrupt driven I/O [9]. However,
the major drawback of poll-mode I/O is that packet pro-
cessing applications always keep the CPU busy for polling
the NIC, even when there are no incoming packets.

2.2 Process Scheduling in Linux
Completely Fair Scheduler (CFS) is the default process
scheduler since the Linux kernel version 2.6.23. CFS ensures
fair allocation of CPU time to the processes competing for
a CPU core. CFS achieves this by maintaining the notion of
virtual run time for each competing process and schedules
the process with the least used virtual time to run next. Once
a process is scheduled, it is allocated time slice amount
of time to run until it is preempted. The time allocated to
a process depends on some configurable parameters [26],
namely: (i) sched min granularity ns: minimum dura-
tion a process is allowed to be run on a CPU core before
being preempted, (ii) sched latency ns: minimum period
after which CFS takes a scheduling decision. The scheduling
period (sched period), i.e., the period after which CFS takes
scheduling decisions is set to sched latency ns if the num-
ber of competing processes for a CPU (n tasks) is less than
(sched latency ns/sched min granularity ns), other-
wise, to (n tasks×sched min granularity ns). Each
competing process then gets (sched period / n tasks)
amount of CPU time within a scheduling period.

CFS performs frequent context switches to ensure fair-
ness among competing processes. An alternative sched-
uler in Linux kernel that is work conserving and causes
lesser context switches is the Real Time (RT) scheduler. RT
scheduler prioritizes the completion of individual processes,



rather than ensuring fairness among competing processes.
RT scheduler has two scheduling policies resulting in a
process being preempted only after it has finished (first-
in-first-out (FIFO) policy) or after its allocated time slice
has expired (round-robin policy). Note that in the case
of VNFs, processes running the VNFs are not expected
to terminate by their own, but rather terminate based on
external triggers (e.g., end of service period). Therefore, FIFO
policy as currently implemented in the kernel will keep
running a VNF instance on a shared CPU core indefinitely
and starve the other VNFs sharing the same CPU core.
Therefore, RT scheduler with FIFO policy is not a viable
option to use for scheduling VNFs on a shared CPU core.
RT scheduler with a round-robin policy has a number of
tunable kernel parameters [26]. We are interested in the
sched rr timeslice ms parameter, which determines the
length of time slice a process is allowed to run before the
next one is scheduled in a round-robin fashion.

3 MOTIVATION

We perform an experimental study to demonstrate that
existing OS schedulers fall short of efficiently scheduling
VNFs in an SFC competing for the same CPU core. Note
that this experimental study complements the motivational
experiment presented in [21] by considering a VNF chain as
opposed to individual VNFs sharing a core. For this study,
we developed a lightweight VNF on a DPDK-based NFV
platform [17]. This VNF performs bare-minimal packet pro-
cessing (swaps the source and destination MAC addresses)
to ensure that its processing overhead is not a perfor-
mance bottleneck. The VNFs are chained by using a shared-
memory based zero-copy packet exchange mechanism built
using DPDK rte ring library (similar to [27]). We deploy
an SFC with three such VNFs, where the first two VNFs are
pinned to the same CPU core and the third is pinned to a
different one. The third VNF sends the packets out to the
NIC, hence, was kept isolated from the other two to ensure
there is no interference.

The machine used for this experiment is equipped with
a 3.3 Ghz Intel Xeon E3-1230v3 CPU and a 10 Gbps NIC,
connected directly with a traffic generator without any
interfering switch. We generate traffic with varying packet
sizes using pktgen-dpdk [28]. We use both CFS and RT
scheduler for this study. We express the throughput of the
SFC as the percentage of throughput of obtained from a
baseline scenario. Our baseline scenario uses the same SFC
with each VNF pinned to a different CPU (which was found
to be 10Gbps line rate for the smallest packet size (i.e., 64B
packets)). Since each VNF gets its own dedicated CPU in
the baseline scenario, therefore, this scenario indicates the
maximum achievable throughput of the SFC.

The results of this experiment are presented in Fig. 1. The
first bar for each packet size represents the result obtained
with the default scheduler parameters. For both CFS and RT
scheduler, throughput is significantly low. For 64B packets,
the throughput is ≈1% of line rate and with MTU size
packets, it does not exceed ≈30% of line rate. Note that
bigger packets result in more bytes transferred per second
(bps), hence, the increase in observed throughput. Such poor
performance can be explained as follows. In the case of
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Fig. 1. Packet Processing Performance of SFCs using Linux Schedulers

CFS, the default configuration results in a time slice of
12ms allocated to each VNF during a scheduling period,
which we found to be too long. During this allocated time,
a VNF fills up its outgoing interface very quickly. Since the
outgoing interface becomes full, all the packets processed
afterwards by the VNF are dropped, wasting the work
already done from that point. One solution to this problem is
to increase the size of shared memory backing the interface
between VNFs. However, to avoid packet drop during a
VNF’s allocated time slice, several megabytes of memory
are required for each interface. This is indeed one possible
solution but will severely increase packet processing latency.

We also tune the time slice allocated to VNFs by
changing CFS parameters described in Section 2.2. However,
CFS does not support allocating less than 100µs time slice
to a process. As we can see from Fig. 1(a), even though
throughput increases with reduced time slice, it is still far
from reaching line rate. Similar performance is also ob-
served for the RT scheduler. Tuning RT scheduler parame-
ters does not help much since it is limited to sub-millisecond
time slice. Moreover, it is important to note that neither CFS
nor RT scheduler are able to enforce the VNF execution
order according to the SFC.

This experimental study motivates a further examination
of scheduling in NFV context. The state-of-the-art in NFV
scheduling proposes to build VNFs by linking scheduler
provided libraries [21] or writing the VNF code in a way that
allows VNFs to cooperate together [22]. The main reason
for being intrusive is to provide the scheduler with a better
insight into and more control over VNFs. However, at the
same time being intrusive limits the generality of the solu-
tion. To alleviate this limitation, we address VNF scheduling



using a non-intrusive black box approach and design UNiS to
be also workflow-aware, i.e., preserve VNF execution order in
an SFC for better CPU usage.

4 UNiS: DESIGN AND IMPLEMENTATION

In this section, we present the design of UNiS and describe
how the system components are implemented. We begin by
outlining the assumptions we make about the underlying
NFV platform (Section 4.1) followed by describing our
design goals and the associated challenges (Section 4.2).
Then, we give an overview of the system architecture and
individual components (Section 4.3), present our scheduling
algorithm (Section 4.4) and describe the implementation of
each UNiS’s system component (Section 4.5).

4.1 Assumptions

UNiS is designed for VNFs operating in a poll-mode, i.e.,
continuously polling for incoming packets, rather than op-
erating in an interrupt-driven manner. We assume UNiS
to operate alongside a DPDK based VNF platform such as
the one shown in Fig. 2 (e.g., BESS [10], OpenNetVM [13],
µNF [17], etc.). In this reference platform, the VNFs are
chained using an abstract entity called interface. An interface
is an abstraction over a finite storage with methods for
pushing packets to and pulling packets from it in batches.
A specific implementation of the interface can be based on
virtual Ethernet (veth) pairs, shared-memory, etc. Our only
assumption about the interface is that it can export the num-
ber of outstanding packets/bytes and the actual capacity
of the underlying storage. This is a reasonable assumption
since many existing system tools export similar information
(e.g., veth interfaces shaped by tc subsystem export queue
occupancy information). Another abstract component, flow
classifier, redirects incoming packets to the appropriate SFC
and can be implemented in software [10] or using specific
NIC features [29]. However, UNiS does not depend on any
implementation specific features of the abstract components,
hence, is not tied to any particular implementation.

As a first step to achieve non-intrusive workflow-aware
VNF scheduling, we consider linear SFCs since they cover
a wide-range of use cases [30], [31]. For general SFC for-
warding graphs [32], we need to consider factors such as
the traffic load on different paths of the forwarding graph
besides considering the graph’s structural properties. This
merits a separate investigation that we leave for a future
extension. Also, we assume VNF to CPU mapping for an
SFC is externally computed using one of many available
algorithms [33]. Furthermore, UNiS assumes that a VNF is
not shared by multiple SFCs, which covers a wide range of
use cases according to the NFV research literature [3].

UNiS is intended to be used as a local scheduler for
VNFs deployed on a server inside a data center and does
not consider a data center wide scenario. Indeed, a data
center wide view will result in better scheduling decisions.
However, being first to address VNF scheduling in a non-
intrusive way, UNiS currently focuses on local scheduling
(i.e., an alternative to existing OS kernel and intrusive sched-
ulers). The data center wide case is a challenging problem
of its own and merits independent investigation.

4.2 Design Goals and Challenges

Our objective is to design and implement a scheduler for
poll-mode VNFs, which maximizes the number of unmod-
ified VNFs that can share a CPU while achieving the same
level of performance as any intrusive VNF scheduler. A
major challenge in achieving this objective is to devise a
scheduling mechanism that minimize the wastage of CPU
cycles. CPU cycles can be wasted in two possible ways: (i)
a poll-mode VNF is scheduled on a CPU and there is no
meaningful work to be done, hence, the VNF wastes CPU
cycles by just polling its ingress interface; and (ii) a poll-
mode VNF consumes CPU cycles processing packets, but
there is not enough room in its egress interface, causing
packet drops and wasting the CPU cycles spent in pro-
cessing those dropped packets. Apart from addressing the
aforementioned challenge, we have additional challenges
stemming from the following design goals for UNiS:

Non-intrusive: Prior work on VNF scheduling took an
intrusive approach requiring the VNFs to be built with
scheduler specific libraries. Clearly, this approach has bene-
fits such as the scheduler is able to monitor more parameters
with lesser monitoring overhead (e.g., event-based notifi-
cation of packet drops, processing latency, etc.) provided
by the VNF to the scheduler. However, such requirement
limits the generality of the solution and highly restricts the
types of VNFs that can work properly with the scheduler.
We believe that a better and more generic approach is to
be non-intrusive, which does not require VNFs to be built
with scheduler specific libraries or have carefully placed
scheduling checkpoints inside their code. However, the
major challenge for designing and implementing a non-
intrusive scheduler is that the scheduler has limited infor-
mation about the events taking place inside the VNFs, such
as packet drops, actual packet processing cost, etc.

High usability: Our design goal is not only to eliminate
the requirement of modifying VNFs but also to require min-
imal changes to the OS on which these VNFs are running.
One option for implementing UNiS is to make it part of the
OS kernel by augmenting existing OS schedulers or make
UNiS available as another stand-alone scheduler in the
OS kernel. However, it has several negative consequences
including the slow pace of adaptation for a new scheduler
to existing OSs and the need for users to change their OS
kernel. Therefore, we choose to implement UNiS in the user-
space, increasing its usability. Indeed, UNiS requires OS
support for certain operations, e.g., bring a process into run-
ning state from waiting state. Such OS specific operations
can be abstracted as method invocations to a driver with dif-
ferent implementations based on the available system calls
for an OS. Moreover, being in user-space also allows us to
isolate some CPU cores and let UNiS take control over them,
leaving the rest of the cores to be used by OS schedulers.
However, the challenge in implementing UNiS as a user-
space scheduler is to meet the micro-second scale decision
making requirement for VNF scheduling (as demonstrated
in Section 3) in spite of the additional overhead in accessing
low-level OS/hardware components via system-calls.

SFC-aware: It is crucial to ensure that when a VNF is
scheduled on a CPU core, it has meaningful work to do and
cause minimal waste of CPU cycles (i.e., have enough pack-



ets to process and have enough room in the outgoing inter-
face to push the processed packets). Not scheduling VNFs
in the order they appear in an SFC can result in frequently
scheduling them at times when there is no meaningful work
to perform. Consequently, the chances of wasting CPU cy-
cles increase. Therefore, one of our design goals is to be SFC-
aware, i.e., schedule VNFs with meaningful work to be done
according to their order in the SFC. One approach to make
scheduling SFC-aware is to adapt existing OS schedulers to
enforce VNF execution order according to an SFC, which
is a non-trivial task. The difficulty arises from the fact that
existing OS schedulers (e.g., in Linux) do not provide any
interface for enforcing a specific execution order of VNFs
sharing a CPU core. Therefore, VNF scheduling according
to the workflow of an SFC poses a major challenge.

4.3 System Architecture

syscall

Fig. 2. System Architecture

We design UNiS as a user-space VNF scheduler. This
design choice has several benefits such as increased us-
ability, a faster development cycle and a high portability
across different OSs. UNiS can also co-exist with existing OS
schedulers, allowing them to schedule non-VNF processes.
UNiS is expected to be part of every machine of an NFV
infrastructure (NFVI). This way UNiS compliments existing
NFVI stack responsible for deploying and monitoring VNFs,
and for creating VNF chains.

The system architecture of UNiS is presented in Fig. 2.
UNiS exposes a north-bound interface for the NFV Manage-
ment and Orchestration (MANO) systems (e.g., OSM [34])
so that UNiS can be fed with SFC deployment information
such as VNF to CPU core assignment, configuration of
interfaces that connect the VNFs, etc. This information is
typical to most NFV MANO systems, hence, do not restrict
UNiS’s generality. UNiS leverages the monitoring APIs
exposed by existing NFVI software (e.g., OPNFV [35]) to
monitor the interfaces connecting VNFs. This follows the
ETSI NFV reference architecture [1]. Finally, UNiS uses OS
provided system call APIs to interact with scheduling and
process control subsystem in the kernel for controlling VNF
execution states (e.g., change from running to waiting state).
Apart from the different APIs for interaction, UNiS has four
key components as follows.

4.3.1 Cycle Estimator
The cycle estimator is responsible for profiling the VNFs and
estimate their processing cost in terms of packet processing
latency. Packet processing cost of a VNF depends on a num-
ber of factors such as packet size, VNF configuration, packet
content, etc. [36], [37], [38]. An ideal cycle estimator should
be able to take all such factors into account and provide an
accurate estimate. Estimated cost of a VNF is then used as
an input to the scheduling algorithm for determining the
time slice allocated to that VNF.

4.3.2 Interface Monitor
UNiS considers the VNFs as black box and relies on exter-
nally monitoring the interfaces connecting the VNFs to track
a VNF’s packet processing progress. The interface monitor
assumes that the underlying NFVI exports the following
statistics: (i) number of outstanding packets in an interface
connecting two VNFs; (ii) maximum number of packets
an interface can hold. This information is generic and are
commonly exported by existing Linux system tools. Note
that with the availability of a richer set of statistics from the
interface monitor, e.g., packet drop rate, incoming rate, etc.,
UNiS can improve its scheduling decisions.

4.3.3 Timer Subsystem
Besides continuously monitoring the interfaces at a regular
interval, UNiS also requires time accounting mechanism
to decide if a VNF has exhaused its allocated time slice.
The timer subsystem maintains a high precision timer in
the user-space used for triggering events such as interface
monitoring, VNF preemption, etc.

4.3.4 Process Controller
This component interacts with the underlying OS to control
the execution state of VNFs (e.g., to start a waiting process or
to preempt a running process). It should provide a efficient
and reliable user-space mechanism that has low overhead
and works under high frequency invocations. Since there
are usually multiple ways in implementing the process
controller, even on the same OS, this component should
be able to support multiple implementations. As a result,
it hides the underlying OS specific details from UNiS and
porting UNiS to a different OS only requires adding another
implementation with the corresponding system calls for the
target OS to the existing process controller component.

The cycle estimator and the interface monitor together
help UNiS to achieve the first design goal of being non-
intrusive. As mentioned earlier, UNiS is designed to be
a user-space scheduler, in this way achieving the second
design goal of being highly usable. The timer subsystem
aids in achieving the same goal by enabling UNiS to make
scheduling decisions in micro-second timescale. Finally, the
UNiS leverages the process controller component to enforce
a desired VNF execution order during scheduling, achieving
the third design goal of being SFC-aware.

4.4 Scheduling Algorithm
At the core of UNiS, a scheduling algorithm makes schedul-
ing decisions for each CPU core. The scheduling algorithm
leverages the components of UNiS to monitor the system,
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Fig. 3. UNiS scheduling: an illustrative example

determines which VNF to run next and the time slice
allocation, and acts upon the VNFs to start/stop them. Some
research has been dedicated to address VNF scheduling
from a theoretical perspective [39], [40], [41], [42], [43],
[44] focusing on devising an offline execution schedule.
However, they are not suitable for taking online scheduling
decisions at micro-second time scale, which is a key re-
quirement in UNiS. Therefore, we develop a lightweight yet
effective scheduling algorithm for UNiS based on estimated
time slice allocation and occupancy of the interfaces con-
necting VNFs in an SFC. Before describing the algorithm in
detail, we first formally define the VNF scheduling problem
(Section 4.4.1). Then, we present the algorithm (Section 4.4.2)
followed by its running time analysis (Section 4.4.3).

4.4.1 Problem Statement

Let, C represent the set of CPU cores on a machine. Each
CPU core i ∈ C has a wait queue WQi for holding yet to
be scheduled VNFs. F and S represent the set of VNFs and
SFCs, respectively. As mentioned earlier, we consider each
SFC, s ∈ S , to be an ordered and linear sequence of VNFs
from F . An assignment function A : F → C maps VNFs
from the SFCs to CPU cores on one or more machines. We
assume that the wait queues are initialized with the VNFs
mapped to the corresponding CPU cores.

The problem takes as input the set of CPU cores C , the
initialized wait queues, ∀i ∈ C : WQi, and the interval T .
The VNF scheduling problem seeks to periodically decide
(i.e., every T time units) which VNF from each wait queue
should be scheduled on the corresponding CPU core for
execution and for how long. The objective is to maximize
the throughput of the SFCs by minimizing wastage of CPU
cycles due to dropped packets and idle VNFs.

4.4.2 Algorithm Description

When an external orchestrator invokes UNiS’s northbound
API with VNF to CPU mapping for an SFC request, UNiS
takes the VNFs in the order they appear in the SFC and
places them in their corresponding CPU’s wait queues. We

initialize the CPU wait queue in such order for enforc-
ing SFC-awareness, which is one of our design goals as
described in Section 4.2. In other words, when VNF fa
appears before VNF fb in an SFC, then placing fa before
fb in the same wait queue ensures that SFC execution
order is maintained while scheduling VNFs from that wait
queue. Note that we do not enforce any ordering between
VNFs belonging to different SFCs since that is not required
for enforcing SFC-awareness. It is possible that because of
resource constraints and the placement algorithm used, the
external orchestrator maps multiple non-consecutive VNFs
from the SFC on the same CPU core. For instance, for an
SFC A → B → C → D, the orchestrator can map non-
consecutive VNFs A, C, D on CPU core 0. In such cases,
UNiS will initialize the corresponding CPU’s wait queue
following the relative order of VNFs in the SFC, e.g., in the
order A, C, D for CPU core 0. Note that the initialization
step is performed before UNiS enters the main scheduling
loop presented in Algorithm 1. In the following, we will use
this aforementioned SFC and the mapping on CPU core 0 as
a running example.

Algorithm 1: UNiS Scheduling Loop
Input: C = Set of CPU cores; T = monitoring interval;

timer subsystem, process controller, monitor =
Handler to UNiS system components

1 function ScheduleVNFs()
2 timer subsystem.monitoring timer.start(T )

/* The system is initialized by running the
first VNF in every CPU core’s wait queue
and creating corresponding per CPU core
timers. */

3 while true do
/* Take scheduling decision every T µs */

4 if timer subsystem.monitoring timer.is expired()
== false then continue

/* Iterate over each CPU core and check if
a new VNF can be scheduled */

5 foreach core ∈ C do
6 f ← core.cur vnf
7 if core.timer.is expired() or

monitor.num pkts(f.ingress) ≤ θmin or
monitor.num pkts(f.egress) ≥ θmax then

/* Iterate over the wait queue (WQ)
and find a VNF that has
meaningful work to do */

8 core.WQ.push(f )
9 N ← core.WQ.pop()

10 while (f 6= N ) and
(monitor.num pkts(N .ingress) ≤ θmin or
monitor.num pkts(N .egress) ≥ θmax) do

11 core.WQ.push(N )
12 N ← core.WQ.pop()

/* Allocate time slice for the
candidate VNF. */

13 time slice← cost estimator.get cost(N ) * γ
* monitor.pkt cap(N .egress)

14 if f 6= N then
15 process controller.deactivate(f )
16 process controller.activate(N )
17 core.cur vnf← N
18 core.timer.reset(time slice)
19 timer subsystem.monitoring timer.reset(T )

The pseudo-code of UNiS’s main scheduling loop



is presented in Algorithm 1. Before entering the main
loop (line 3), it deploys the first VNF in each CPU’s
wait queue and creates corresponding per core timer by
leveraging the timer subsystem. The time slice allo-
cated to a VNF v is computed as: complexity(v) ∗ γ ∗
interface capacity(v.egress), where complexity(.) gives
us the estimated per packet processing time required by
v (profiled by UNiS’s cycle estimator component), and
interface capacity(.) gives us an interface’s capacity to hold
packets. This equation ensures that a VNF is given suffi-
cient time to fill up its egress interface as close as possible
to its full capacity, thereby maximizing throughput. The
parameter γ ∈ [0, 1] is used for leaving some head-room
in the interface to account for deviation of actual packet
processing cost from the estimation. Once the initial VNFs
are deployed, UNiS starts monitoring the system and takes
scheduling decision every T µs. Fig. 3(a) gives an example
of the status of the timer and per CPU core wait queue after
the first VNF A is scheduled on CPU core 0. In this case, the
timer will expire after time tsA, setting the expired flag to
true. Until the timer expires, VNFs C and D will remain in
CPU core 0’s wait queue.

During each scheduling interval, UNiS first checks if any
of the CPUs has an expired timer, i.e., the scheduled VNF
needs to be preempted (line 7). Note that the incoming traf-
fic rate is not considered during time slice computation
because the incoming rate of the SFC might be different from
the incoming rate at each ingress interface of a VNF (e.g., a
firewall VNF dropping packets will change the incoming
rate of subsequent VNFs in that SFC). Therefore, there can
be situations where a VNF does not have sufficient packets
to process (i.e., ingress interface has less than θmin packets),
or the outgoing interface is close to becoming full (i.e., egress
interface has more than θmax packets outstanding), even
if the time slice has not expired. We account for these
conditions when determining if the currently scheduled
VNF should be preempted or not (line 7).

When Algorithm 1 decides to preempt the currently
scheduled VNFs on a CPU core, i.e., when line 7 evaluates
to true, it iterates over that CPU core’s wait queue and
finds a candidate VNF for scheduling that has more than
θmin packets in its ingress and less than θmax packets in
its egress interfaces (lines 8 – 14). Such selection criteria
avoids wasted CPU cycles and unnecessary context switches
by ensuring that a scheduled VNF has meaningful work
to do. We refer to this added optimization as the interface
occupancy based optimization and experimentally show its
benefits in Section 5.7. This optimization aids in achieving
our design goal of being SFC-aware. Once Algorithm 1
finds a candidate VNF, it leverages the process controller
to preempt the current VNF and schedule the next one.

Fig. 3(b) gives an example when VNF C at the front
of the wait queue satisfies the selection criteria for getting
scheduled next. In this case, the currently scheduled VNF
A is pushed to the back of the wait queue, and VNF C is
removed from the wait queue and scheduled on CPU core
0. Fig. 3(c) gives another example where VNF C at the front
of the wait queue does not satisfy the selection criteria. In
this case, we first push A to the back of the wait queue.
Then we keep removing VNFs from the front of the queue
and test if it satisfies the selection criteria. If the selection

criteria is not satisfied then the removed VNF is pushed to
the back of the wait queue. We repeat this process until a
suitable VNF is found. In this example, VNF D is the first
VNF that satisfies the selection criteria, hence, is scheduled
on CPU core 0 by setting the appropriate timer and flag.

4.4.3 Algorithm Running Time
During each interval, Algorithm 1 iterates over all the VNFs
in the wait queue of each CPU core to identify VNFs that can
be scheduled. Therefore, the algorithm requires O(|WQi|)

iterations for each CPU core i ∈ C or O(

|C|∑
i=1

|WQi|) total

iterations. Since
|C|∑
i=1

|WQi| ≤
∑
∀s∈S

|s|, the running time of

Algorithm 1 becomes O(
∑
∀s∈S

|s|).

4.5 Implementation
We have implemented a prototype of UNiS in C++ to work
alongside a DPDK-based implementation of the reference
NFV platform from Fig. 2. The reference NFV platform uses
DPDK PMDs for packet I/O, rte ring and hugetlbfs [45]
to create shared memory between VNFs facilitating zero-
copy packet exchange. In our implementation, this shared
memory based interface has the capacity to hold 2048 packet
references at a time and facilitates I/O in batches of up to
64 packets (i.e., batch size = 64). In the implementation of
UNiS scheduling algorithm, we set γ to 0.75 so that a newly
scheduled VNF gets sufficient time to fill its egress interface
with a substantial number of packets and avoid overflow or
packet drop due to any inaccuracy in packet processing cost
estimation. We set θmin to (batch size - 8), and θmax to
interface capacity(v.egress)∗γ for a VNF v. Note that we
experimentally evaluate the impact of changing γ on SFC
throughput in Section 5.7. In the following, we describe the
implementation of UNiS system components in detail.

4.5.1 Cycle Estimator
We currently implement the Cycle Estimator to statically
profile a VNF by pushing a batch of 64B packets into the
ingress interface of a VNF and then polling the egress
interface to capture the batch back, and measures the time
elapsed in between. During the estimation process, the VNF
is given a dedicated CPU core without other VNFs sharing
it. This estimated cost is not the exact representation of
actual processing cost since I/O from and to the interfaces is
included in the estimated cost. Furthermore, the actual cost
depends on many factors such as packet size, VNF config-
uration, content of the packets, etc. To offset the impact of
inaccuracies in the estimated cost we introduce the interface
occupancy based optimization in Algorithm 1 to fine tune
the effective time slice and leave dynamic adaptation of
processing cost as a future work.

4.5.2 Interface Monitor
As mentioned earlier, the underlying NFV platform uses a
shared memory based zero-copy abstraction to implement
the interfaces facilitating VNF chaining. The NFV MANO
system provides UNiS with SFC information that contains



the configuration of the interfaces (e.g., name of the shared
memory region created by the external orchestrator and
the interface memory capacities). After initialization, the
Interface Monitor uses rte ring library to periodically read
the ring occupancy. The aforementioned mechanism does
not limit the generality of our solution. Similar APIs also
exist for other Linux subsystems, e.g., interfaces controlled
by Linux tc also export similar information.

4.5.3 Timer Subsystem
We leverage DPDK’s rte timer library [46] for high preci-
sion time keeping in the user-space. Under the hood, this
library uses the High Precision Event Timer (HPET), a hard-
ware timer integrated to majority of chipsets. In the absence
of HPET, this library uses the CPUs Time Stamp Counter
(TSC) registers to provide a reliable time reference. Timers
created by rte timer use a callback mechanism to set a
shared variable indicating timer expiration. We periodically
poll the shared variable to check for timer expiry and trigger
the necessary scheduling events. Currently, we poll the
timer every 1µs, hence, can trigger events at 1µs granularity.
Before settling on rte timer, we also explored integrating
libevent [47], another library for implementing the timer
subsystem. However, our early experiments demonstrated
that libevent is unable to provide the micro-second level
precision that we needed.

4.5.4 Process Controller
A key challenge in implementing process controller in the
user-space is to ensure a low overhead in switching pro-
cesses. We explored a few different approaches for im-
plementing the process controller including linux control
group (cgroup), POSIX signals, and using scheduler priority
parameter (sched priority) in RT scheduling with round
robin policy. In the following, we describe our experience
with different implementation approaches and the ratio-
nale for resorting to using scheduler priority parameter for
changing execution state of VNFs.

Linux cgroup is typically used to limit and isolate re-
source (e.g., CPU, memory, disk I/O, and network) usage of
a group of competing processes. However, we found that
assigning relative CPU shares between processes under a
control group did not provide a precise control over the
execution duration of VNFs, which is fundamental to ensure
VNFs do not execute for too long to start dropping packets.

POSIX signal allows a user-space process to send signals
to another process or a thread. In our case, we found SIGSTOP
and SIGCONT signals to be of particular interest. SIGSTOP
instructs the operating system to stop a process for later
resumption, and SIGCONT instructs the operating system
to continue the execution of a process. Our experiment
with the POSIX signal was successful when scheduling
two processes with a relatively large time slice. However,
this approach did not work properly with more than two
processes and with a smaller time slice. Our conclusion is
that POSIX signals can not handle the high frequency (a few
µs interval) invocations required for UNiS.

The final mechanism we implemented and also our
mechanism of choice for UNiS is the following. We set
the kernel to use RT scheduler with round robin policy.
With this setup, RT scheduler schedules the process with

the highest priority at any given time and puts the rest in
waiting state. When a different process is given the highest
priority, RT scheduler swaps the current process with the
new highest priority process. This way, we are able to con-
trol the execution state of VNFs. Furthermore, this approach
was able to sustain the high frequency process switching as
required by UNiS. Note that VNFs are switched after every
time slice or less, which is computed by UNiS and much
smaller than the one assigned by RT scheduler. Therefore,
RT scheduler does not have any side-effect on scheduling
decisions taken by UNiS.

5 PERFORMANCE EVALUATION

We evaluate the performance of UNiS through testbed
experiments. In the following, we first describe our experi-
ment setup in Section 5.1. Then, we present our evaluation
results on the effectiveness of UNiS’s scheduling based on
the following scenarios: (i) SFC with fixed and uniform cost
VNFs (Section 5.2), (ii) SFC with fixed but non-uniform cost
VNFs (Section 5.3), and (iii) SFC with variable cost (traffic
dependent) VNFs (Section 5.4), and (iv) one or more SFCs
deployed across multiple CPU cores (Section 5.5). We also
present additional evaluation results that (i) give insight
into why UNiS achieves lower throughput compared to
the intrusive approach in certain cases (Section 5.6) and
(ii) demonstrates the benefits of interface occupancy based
optimization (Section 5.7). We conclude this section with a
discussion on cost vs. benefit of using intrusive and non-
intrusive approach (Section 5.8).

5.1 Experiment Setup

5.1.1 Testbed

Our testbed consists of two physical machines with identical
configuration connected back to back without any interfer-
ing switch. One machine acts as the device under test and
hosts the VNFs and UNiS, while the other one is used for
traffic generation. Each machine is equipped with a DPDK
compatible Intel X710-DA 10 Gbps NIC (flow-control dis-
abled to prevent sending pause frames), 3.3 Ghz 4-core Intel
Xeon E3-1230v3 CPU (CPU scaling governor set to perfor-
mance), and 16 GB of memory (4GB allocated to hugepages).
When running UNiS, we isolate all the CPU cores except
core 0 from the kernel scheduler and use them for VNF
deployment, in this way eliminating any conflict between
the kernel scheduler and UNiS. We use DPDK version 17.05
on Ubuntu 16.04LTS with kernel version 4.10.0-42-generic.
We also disable Address Space Layout Randomization to
ensure consistent hugepage mapping across the VNFs.

5.1.2 VNFs and Workload

We use two types of VNF in our experiments: (i) fixed cost
VNF: whose packet processing cost is fixed and does not
depend on packet size, (e.g., similar to a layer 2-4 firewall),
and (ii) variable cost VNF: whose packet processing cost is
a function of packet size (e.g., a WAN optimizer performing
payload compression). For fixed cost VNFs we use the
same lightweight VNF described in Section 3 and add some
imitated workload to emulate three different levels of packet



processing cost, namely, light (50 cycles/packet), medium
(150 cycles/packet), and heavy (250 cycles/packet).

We profile the fixed cost VNFs by pushing smallest size
(64B) packets and measuring the packet processing latency,
and use this as their cost during scheduling. We profile the
variable costs VNF using varying packet sizes ranging from
the smallest size (64B) to MTU size (1500B) and consider the
average packet processing latency over all sizes as their cost.

We use pktgen-dpdk [28] and Moongen [48] for through-
put and latency measurements, respectively. For through-
put measurement, we generate traffic with different packet
sizes, i.e., ranging from smallest size (64B) to MTU sized
(1500B) packets with pktgen-dpdk. We also use a real data
center traffic trace (UNI1 traces [49] from a campus data
center study conducted as part of [50], exhibiting a bi-
modal packet size distribution) to evaluate the effectiveness
of UNiS under realistic traffic load. During latency mea-
surement, we set the packet size to 128B and packet rate
to 80% of the maximum sustainable throughput for that
deployment scenario.

5.1.3 Compared Approaches

We compare UNiS with an intrusive co-operative schedul-
ing approach similar to [22]. In the intrusive approach, the
VNF is designed to voluntarily yield CPU to other compet-
ing VNFs after processing a certain number (k) of batches of
packets (we experimentally found 8 to be a good choice for
k). Due to the voluntary yields, the time slice allocated to
VNFs by RT scheduler does not have any impact on VNF
performance. Note that cooperative scheduling does not
always guarantee VNF execution order according to an SFC.
Therefore, we repeat each experiment with the intrusive
approach for 5 times and report average result across all
runs to minimize impact of any such non-determinism. In-
deed, NFVNice [21] is a better candidate for comparing with
UNiS. However, neither the NFVNice scheduler source code
nor the specilized libraries that VNFs should be built with
for working with NFVNice (i.e., libnf ) were available at the
time of writing this paper. The NFVNice paper also lacked
implementation details required to properly implement it
from scratch. Therefore, we resorted to comparing UNiS
with the aforementioned intrusive cooperative scheduler.

5.1.4 Evaluation Metrics

Throughput and Latency: We measure the packet pro-
cessing throughput and packet processing latency of VNFs
scheduled using both UNiS and the intrusive approach.
We represent throughput as packets per second (pps) when
using fixed packet size, or bits per second (bps) when using
a mix of different packet sizes. For latency, we report the
average with 5th and 95th percentile values in µs.

VNF density: VNF density of a scheduling approach is
measured by fixing a target throughput and determining the
maximum length of an SFC (i.e., number of VNFs) that can
be deployed on a single CPU to sustain that throughput.
This metric demonstrates a scheduling approach’s ability
to pack as many VNFs to a CPU core while maintaining a
target throughput.
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Fig. 4. Throughput of SFC with fixed and uniform cost VNFs

5.2 SFC with fixed and uniform cost VNFs

Our first set of experiments evaluate the deviation of the
non-intrusive scheduling approach from the intrusive ap-
proach in terms of throughput. We deploy SFCs of different
lengths composed from identical VNFs with fixed packet
processing cost (all light VNFs) on a single CPU core and
present throughput results for the smallest (i.e., 64B) packet
size in Fig. 4(a). Up to an SFC of length 4, both the intrusive
approach and UNiS are able to sustain line rate throughput.
From length 5 and beyond, throughput drops below line
rate and UNiS is not able to match that of the Intrusive ap-
proach. However, the deviation from the Intrusive approach
was no more than 10% over all chain lengths. Note that
the lighter the VNF the more the impact of any inaccuracy
in time slice allocation. Therefore, this scenario with light
VNFs measures the worst case performance deviation. In re-
ality, with increasing VNF processing cost we expect the gap
to be smaller. We confirm this hypothesis through another
set of experimental results presented in Fig. 4(b), where we
have the identical setup as before but use medium VNFs
instead of the light ones. Since the VNFs are heavier, they
cannot reach line rate processing in any case. However, the
key observation here is that with increased packet process-
ing cost UNiS’s performance deviation from the intrusive
approach is almost negligible (<2.5%).

We designed UNiS for high throughput and not for low
latency. However, we still perform a set of experiments to
measure the extent of latency incurred by the packets and
present the results in Fig. 5. For SFCs with light and medium
VNFs we observe an increased packet processing latency
when VNFs are scheduled by UNiS compared to using
the intrusive approach. Because of yielding the CPU after
processing small number of batches, the intrusive approach
avoids queue buildups, hence, the lower latency compared
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Fig. 5. Latency of SFC with fixed and uniform cost VNFs

to UNiS. In case of light VNFs, packets experienced 14µs
additional latency on average compared to the intrusive
approach as shown in Fig. 5(a). SFC with medium VNFs
also exhibit similar behavior, however, exhibiting a smaller
latency gap between UNiS and the intrusive approach.
This is because queue buildup in the interfaces connecting
VNFs have higher sensitivity to allocated CPU time for light
VNFs compared to medium VNFs. Since light VNFs process
packets faster, the interfaces connecting VNFs tend to fill up
faster as well. As a result, the currently chosen monitoring
interval by the Interface Monitor combined with the dis-
crepancy between estimated and actual packet processing
cost can cause light VNFs to populate more than γ fraction
of their interface capacity before they are preempted. This
increases queuing delay in the interfaces. However, due to
the higher packet processing cost, queue buildup is not as
sensitive in medium VNFs, hence, the reduced gap between
the intrusive approach and UNiS.
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For SFC composed of heavy VNFs, we observe an oppo-
site pattern, i.e., average packet processing latency is lower
when VNFs are scheduled by UNiS compared to using
intrusive approach. This is because the intrusive approach
is seldom schedules VNFs not according to their order in
the SFC. Because of out of order execution, packets have to
stay longer in the interfaces until the appropriate VNF is
scheduled to process them. Unlike light and medium VNFs,
heavy VNFs have higher packet processing cost leading to
larger CPU time allocation during each scheduling round,
which amplifies the penalty of such out of order execution.

In Fig. 6, we present VNF density with varying tar-
get throughput. We conduct the experiment by using all

three flavors of VNFs, i.e., light, medium, and heavy. UNiS
achieves nearly identical VNF density compared to the in-
trusive approach, deviating less than 10% in few scenarios.

5.3 SFC with fixed but non-uniform cost VNFs
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In our next scenario, we deploy SFCs of different lengths
with an alternating sequence of medium and heavy VNFs,
i.e., the VNFs at odd positions are the medium ones and
at even positions are the heavy ones. The goal of this
experiment is to demonstrate the effectiveness of UNiS
in handling heterogeneity in an SFC. The results of this
experiment are presented in Fig. 7. Our observe that UNiS
is able to sustain a throughput that only deviates less than
2% from that of the intrusive approach for all chain lengths.

5.4 SFC with variable cost (traffic dependent) VNFs
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TABLE 1
Results for Multiple SFCs across Multiple CPUs

Configuration No. of VNFs No. of VNFs No. of VNFs Throughput – Throughput –
in SFC on CPU core-1 on CPU core-2 Intrusive (Mpps) UNiS (Mpps)

(a) S1 = 3 S1 = 3 – S1 = 5.31 S1 = 5.30
S2 = 1 S2 = 1 S2 = 5.31 S1 = 5.21

(b) S1 = 4 S1 = 3 S1 = 1 S1 = 5.24 S1 = 5.10
S2 = 4 S2 = 1 S2 = 3 S2 = 5.24 S2 = 5.14

(c) S1 = 8 S1 = 4 S1 = 4 S1 =5.41 S1 = 5.34

Previous experiments have not considered variable pro-
cessing cost of a VNF based on traffic characteristics. How-
ever, many VNFs that operate on payloads can exhibit
different processing costs depending on the packet size
(e.g., WAN Optimizers [51], Application Firewalls [52]). To
demonstrate the effectiveness of UNiS for such cases, we
deploy SFCs composed of chains of VNFs whose packet
processing cost is a function of packet size, i.e., variable cost
VNFs as described in Section 5.1.2. We play a real traffic
trace containing packets of different sizes [50] and report
the throughput in Fig. 8. For this scenario, UNiS performs
very close to the intrusive approach, deviating less than 2%
for all chain lengths. The packet sizes in the traffic trace
follow a bi-modal distribution with most packets closer to
200 and 1400 bytes [50]. Consequently, the variable cost
VNFs behave similar to medium and heavy VNFs in most
cases. As observed earlier, UNiS’s performance gap with
the intrusive approach is smaller for medium and heavy
VNFs compared to that for light VNFs. Hence, the small
performance gap for real traffic traces on variable cost VNFs.

5.5 Multiple SFCs and Multiple CPUs
This evaluation scenario is intended to validate if UNiS
causes any starvation while scheduling one or more SFCs
spanning multiple CPUs. We deploy two SFCs (indicated
by S1 and S2) consisting of all medium VNFs (i.e., CPU
limited) using the configurations described in Table 1. In
configuration (a), there are multiple SFCs deployed on a
single CPU core. With the Intrusive approach, both SFCs
achieve equal throughput of 5.31Mpps for 64B packets. We
also observe a near equal throughput distribution across S1
and S2 for UNiS, indicating no SFC is starving for CPU.
Configuration (b) has two SFCs deployed across two CPU
cores and each CPU core hosts VNFs from two SFCs. Similar
to (a), the intrusive approach shows equal throughput for
both SFCs. We also observe similar behavior in this case
for UNiS, validating the fact that no starvation is occurring
when CPU cores are hosting VNFs from multiple SFCs
and SFCs are deployed across multiple CPU cores. Finally,
configuration (c) has one SFC deployed across multiple CPU
cores and here we see that UNiS’s achieved throughput
deviates less than 1.3% from that of the intrusive approach.

5.6 Investigation into UNiS’s Throughput Gap
Recall from Section 5.2 that we observed up to 10% through-
put gap between UNiS and the intrusive approach for an
SFC solely composed of light VNFs sharing a CPU core. To
better understand the reason behind this gap, we measure

several system-level metrics including the number of con-
text switches, cache miss ratio and CPU cycles consumed by
VNFs, which are known to have a major impact on system
performance. We conducted experiments with varying SFC
lengths up to 5 and observed similar trends for all lengths.
Therefore, we only report our findings for length 5.

In our compared intrusive approach from Section 5.1.3,
the VNF voluntarily yields CPU after processing every k
batches of packets, which was set to 8 in all the previous
experiments. However, the value of k heavily influences the
number of times a VNF process switches context and also
the cache access pattern. To better compare UNiS with the
intrusive approach we also vary the value of k and show the
performance difference with UNiS as well. In the following,
we use the term kbatch-n to refer to an intrusive scheduling
scenario with the value of k set to n. Note that kbatch-24 has
the closest behavior to UNiS since both of them try to fill up
75% capacity of the interfaces connecting adjacent VNFs.
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Fig. 9. Throughput for different kbatch-n scenarios and UNiS

In Fig. 9, we present throughput measurements (using
smallest sized packets) for different kbatch-n scenarios and
for UNiS. In Fig. 9(a), we see that both kbatch-16 and kbatch-
24 scenarios have lower throughput than kbatch-8, i.e., our
default intrusive scheduling scenario. Whereas in Fig. 9(b),



we observe an opposite trend, i.e., increasing the value of k
resulting in a higher throughput. This suggests that there
are different factors influencing the performance of SFC
composed from light VNFs and from medium VNFs. In both
cases UNiS has lower throughput than kbatch-8 scenario and
the throughput gap is more evident for SFC composed of
light VNFs compared to the one with medium VNFs.

We first look at the number of context switches experi-
enced by each VNF along the chain. We measure context
swtiches using the perf [53] tool and report results averaged
over 25 runs in Fig. 10. As we can see, UNiS causes less
than half context switches compared to kbatch-8, the default
intrusive scheduling scenario. This finding is rather counter-
intuitive since we expect better throughput with lesser
number of context switches, therefore, this result alone is
insufficient to explain the throughput gap.
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To investigate further, we measure the CPU cycles con-
sumed by each of the VNFs within a 1-second time window
using perf and identify the slowest VNF, i.e., the VNF
getting the least fraction of CPU cyles in the SFC. We report
the CPU cycles consumed by the slowest VNF averaged
over 25 runs in Fig. 11. We focus on the slowest VNF in the
chain since this VNF limits the throughput of the SFC. As
we can see from Fig. 11, despite the lesser number of context
switches, within a 1-second time window the slowest VNF
in UNiS, kbatch-16, and kbatch-24 get marginally more CPU
cycles than kbatch-8, i.e., the default intrusive scheduling
scenario. This suggests that the savings from the reduced
number of context switches is not significant enough to
substantially improve packet processing throughput.

Finally, we analyze the cache access pattern of the VNFs
and present the results in Fig. 12 in terms of percentage of

cache misses over total cache references for each of the VNF
along the chain (measured using perf and averaged over 25
runs). We observe that UNiS and intrusive approach with
larger k exhibit more cache misses across the VNFs along the
chain. The first three VNFs in the chain have higher cache-
miss percentage because they are still warming the cache.
A closer look into the last VNF in the chain reveals that
UNiS’s cache-miss percentage (9.8%) is almost double than
that of the default intrusive scheduling scenario (4.9%). This
behavior is attributed to UNiS processing more number
of batches of packets during each scheduling round than
the default intrusive scenario. Processing more batches also
increases the chances of evicting previously cached packets
from the CPU cache hierarchy. This increase in cache misses
combined with not so significant savings in CPU cycles from
context switches contribute to reducing packet processing
throughput of UNiS when scheduling light VNFs.
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In terms of the number of context switches and CPU
cyles consumed, we observe similar behavior for an SFC
composed of medium VNFs (Fig. 13). However, the process-
ing cost of medium VNF is significantly high to dominate
over cache miss penalty, therefore, increased CPU cycles



translate into increased packet processing throughput as can
be seen by comparing Fig. 9(b) and Fig. 13(b). In summary,
processing more batches of packets during a scheduling
interval can reduce context switches at the expense of
increasing cache miss percentage. CPU bound VNFs are
not significantly affected by an increased cache miss rate.
However, cache miss penalty can outweigh the gains from
reduced context switches for VNFs that are not CPU bound.
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fixed cost VNFs

5.7 Benefits of Occupancy based Optimization
We perform experiments with and without the interface
occupancy based optimization (described in Section 4.4) and
show its effectiveness in offsetting the impact of any inaccu-
racy in processing cost estimation of VNFs. We evaluate this
impact in the following two scenarios.

The first scenario is similar to the one in Section 5.4. We
deploy an SFC consisting of variable cost VNFs and play
real traffic traces from [50]. We measure packet processing
throughput with and without the interface occupancy based
optimization in UNiSand present the results in Fig. 14. In
this case, the allocated time slice can sometimes overflow
the interface when the processing cost is low (small packet
size), or produce less batches of packets when the process-
ing cost is high (large packet size). As we can see from
Fig. 14, the added optimization results in as much as ≈10%
performance improvement, which is relatively significant in
absolute terms when packets are being processed at a rate
of tens or hundreds Gbps.

In the second scenario, we deploy an SFC of length 5, all
of its constituent VNFs sharing a single CPU core. We vary
the allocated time slice to the VNFs from a value large
enough to fill only 25% of the interface to a value that can fill
125% the interface, i.e., will cause packet drop. We evaluate
UNiS with and without the interface occupancy based opti-
mization for both light and medium VNFs. The experiment
result with UNiS without the optimization in Fig. 15(a)
shows that allocating a small time slice does not have
a significant impact on SFC throughput. However, when
the allocated time slice becomes larger than the time it
takes to fill the whole interface (125% interface capacity),
throughput of both the light and medium SFC experience a
sharp drop of 12% and 22%, respectively. In the case of UNiS
with the interface occupancy based optimization (Fig. 15(b)),
there is no sharp performance drop when the allocated
time slice is either too small or too large for both light
and medium VNFs. This demonstrates the effectiveness of
the interface occupancy based optimization in offsetting the
impact of inaccurate time slice allocation.

5.8 Discussion: Cost vs. Benefit

Results from our testbed experiments suggest that even
with a non-intrusive approach, UNiS is able to schedule
VNFs in an SFC to achieve a comparable performance to
that of an intrusive approach. Intrusive approaches such as
co-operative scheduling and the one described in [21] have
the benefit of lower monitoring overhead. For instance, a
co-operative VNF will have carefully designed scheduling
points where it yields the CPU to the other ones, thus
alleviating the need for continuously monitoring it. Another
example is, for a method similar to [21], the VNF can notify
the scheduler about packet drop events, therefore, event
based monitoring can be performed instead of continuous
monitoring. However, the price to pay here is the lack of
generality of the approach. In contrast, for an effective non-
intrusive approach, the system needs to be monitored at a
finer time-scale, resulting in additional resource consump-
tion. For instance, we needed to dedicate a CPU core in
UNiS for high-precision time keeping and monitoring. This
is the cost for achieving a generic scheduler capable of
working with a wider range of VNFs.

6 RELATED WORKS

Scheduling has been extensively studied in various areas
of systems and networking such as cluster scheduling [54],



[55], [56], packet scheduling [57], [58], flow scheduling [59],
[60] among others. What makes NFV scheduling different
from other areas is that VNF processing cost depends on
a multitude of factors including packet size, packet arrival
rate, VNF configuration, and packet contents to name a few.
In contrast, in other areas that are close to NFV schedul-
ing (e.g., packet/flow scheduling, joint compute-network
scheduling) processing costs are more predictable and usu-
ally depend on lesser number of variables (e.g., flow com-
pletion time depends on the volume of data and available
bandwidth). In this section, we discuss recent developments
in scheduling with a particular focus on NFV and contrast
UNiS with the state-of-the-art. We also briefly discuss the
research literature on a related area, namely, VNF processing
cost estimation.

6.1 Analytical Models for NFV Scheduling
There has been substantial developments in addressing VNF
scheduling from a theoretical point of view using different
methodologies [39], [40], [41], [42], [43], [61], [62], [63],
[64]. Riera et al., presents one of the early integer program
formulation for scheduling VNFs on a set of servers [39],
which is limited in scalability. Mijumbi et al., presents an
optimization model to jointly map and schedule VNFs
on physical machines [40]. They also propose to use a
tabu search meta-heuristic to address the limited scalability
of the optimization model. An extension to the previous
problem that also jointly considers routing between VNFs
was studied in [42]. The authors proposed to use a mixed
integer linear program to optimally solve the problem and
then use column generation [42] to improve the scalability
of their solutions. Other variants of the VNF scheduling
problem have been studied with different objectives (e.g.,
minimizing service latency [41]) and have been solved using
methods such as game theory [43], [44]. In contrast to the
aforementioned works, which assumed VNF placement to
be given, Zheng et al., considered jointly optimizing VNF
placement and scheduling network flows to be processed at
the VNFs [63]. However, these optimization models are suit-
able for devising an offline schedule of VNFs for processing
network flows. They do not meet the micro-second scale
scheduling decision making requirement of VNF scheduling
systems such as UNiS or NFVNice [21] that replace existing
OS schedulers.

In contrast, UNiS’s focus is to serve as a viable alterna-
tive to local OS schedulers for VNF scheduling capable of
taking scheduling decision at very short time scale. A re-
lated but different problem is addressed in [61]. It proposes
an analytical model for scheduling network flows to be
processed inside VNFs while ensuring fairness. A theoret-
ical model focusing on processor sharing among VNFs in a
single server is presented in [62]. Their objective is to reduce
the time an outgoing NIC remains idle. In contrast, our
objective is to pack as many VNFs as possible on the CPU
cores and achieve comparable throughput to an intrusive
scheduling mechanism.

6.2 Systems for NFV Scheduling
Flurries [27] and NFVNice [21] are two notable systems pro-
posed for NFV scheduling. Flurries proposes a system for

hybrid poll-mode and interrupt driven execution of DPDK
based VNFs and combines that with using RT kernel sched-
uler. With this combination Flurries is able to significantly
increase VNF density on a physical machine. In contrast,
NFVNice [21] proposes a back-pressure based mechanism to
slow down an SFC by setting Explicit Congestion Notifica-
tion (ECN) bit inside packets when VNFs experience packet
drops. A complimentary work presented in [65] showed that
the cost of dropping a packet can be different depending
on the stage of SFC processing the packet was dropped.
However, NFVNice did not take such differential packet
drop cost into account. Both Flurries and NFVNice take
an intrusive approach towards scheduling, i.e., they require
the VNFs to be built with scheduler provided library to get
a better insight into the VNFs or assume usage of certain
mechanisms by the VNFs (e.g., set ECN bit in packet). An-
other approach is to write VNFs from scratch to co-operate
with other VNFs for better scheduling (similar to [22]). This
usually results in fewer context switches, however, requires
carefully placed scheduling checkpoints inside the VNF
code. These intrusive approaches limit the VNFs that can
be used with a scheduler. In contrast, we adopt a black box
approach in UNiS to work with a wider range of VNFs.

6.3 VNF processing cost estimation

An orthogonal but related area of research is on estimating
the processing cost of VNFs. Indeed, the more accurately
we can estimate VNF processing costs, the better schedulers
will be able to right size CPU time allocation to competing
VNFs. In the state-of-the-art literature, most approaches for
cost estimation are offline [37], [38], [66], [67], i.e., the VNF is
tested in a controlled environment with different workloads
before being deployed in production. VNF processing cost
depends on a multitude of factors such as packet size dis-
tribution, packet inter-arrival time, packet content, among
others [36], [37], [38]. Therefore, the actual VNF processing
cost during live operation can deviate from the cost esti-
mated in a controlled environment. Furthermore, estimating
processing cost of poll-mode VNFs through existing bench-
mark techniques is difficult because they always consume
100% CPU. More recently, Gupta et al., have proposed to use
hardware counters in modern CPUs to estimate processing
cost of poll-mode VNFs [19]. Their preliminary results on a
limited set of VNFs are promising and opens a promising
research direction. Another orthogonal issue is to identify
the appropriate cost metric for VNFs. In the current research
literature a wide range of metrics have been used such as
CPU overhead [21], cache miss overhead [38], and context
switching overhead [68], among others.

In this work, we consider the CPU overhead translated
into packet processing latency as our cost metric. Similar
to most of the benchmark approaches, we also take an
offline approach to cost estimation. However, We introduced
the interface occupancy based optimization as a means to
mititgate the impact of any inaccuracies in cost estimation.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented the design and implemen-
tation UNiS, a user-space non-intrusive workflow-aware



VNF scheduler. UNiS does not require any kernel modifi-
cation, treats poll-mode VNFs as a black box, and consid-
ers VNF execution order in an SFC for scheduling. UNiS
advances the state-of-the-art in VNF scheduling by being
non-intrusive, i.e., not requiring any changes to the VNFs
for them to properly work with the scheduler. We compare
our implementation of UNiS with an intrusive co-operative
scheduler on a testbed. Experimental results are promising
and demonstrate that even with a black box approach UNiS
is able to achieve a comparable performance to that of
intrusive schedulers that have better insights into the VNFs.

Building on these promising results, our next goal is
to extend UNiS for considering SFCs with arbitrary graph
structure deployed across multiple machines in a data cen-
ter. Another research direction is to focus on dynamically
adjusting CPU time allocation during live VNF operation
while considering factors such as packet size distribution
and packet inter-arrival time. In this way, we can more accu-
rately allocate CPU time to VNFs and further reduce wasted
CPU cycles and fragmentation. In its current form, UNiS
considers only one quality of service (QoS) parameter, i.e.,
packet processing throughput. Extending UNiS to consider
other QoS parameters such as end-to-end latency of SFCs
for supporting ultra-low latency network slicing is another
promising research direction.
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