
HAL Id: hal-03000163
https://hal.archives-ouvertes.fr/hal-03000163

Submitted on 11 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving mobile app development using transpilers
with maintainable outputs

Vinícius Jorge Vendramini, Alfredo Goldman, Grégory Mounié

To cite this version:
Vinícius Jorge Vendramini, Alfredo Goldman, Grégory Mounié. Improving mobile app development
using transpilers with maintainable outputs. SBES 2020 - 34th Brazilian Symposium on Software
Engineering, ACM, Oct 2020, Natal, Brazil. pp.1-10, �10.1145/3422392.3422426�. �hal-03000163�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362229896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-03000163
https://hal.archives-ouvertes.fr

Improving mobile app development using transpilers with
maintainable outputs

Vinícius Jorge Vendramini
vinivendra@gmail.com

Universidade de São Paulo
São Paulo, Brazil

Alfredo Goldman
gold@ime.usp.br

Universidade de São Paulo
São Paulo, Brazil

Grégory Mounié
Gregory.Mounie@imag.fr
Université Grenoble-Alpes

Grenoble, France

ABSTRACT
Mobile application developers often target both iOS and Android in
an effort to extend their target user base. There are several tools that
can aid this development effort, allowing developers to maintain a
single codebase for both platforms instead of two. These tools often
face a few shortcomings, of which two are noteworthy: they are
hard-to-replace dependencies in the codebase, and often present
some type of obstacle for integrating platform-independent native
code with the shared codebase. The goal of this work is to propose
a new approach to creating cross-platform development tools that
improves on these two aspects, and to analyze the viability of a
real-world implementation of the proposed approach. An analysis
of the current state of the practice indicates cross-platform compil-
ers as a promising direction, and a study is made on the common
concerns and challenges faced when developing these compilers.
Based on these analyses, this work proposes the creation of a com-
piler that translates one platform’s hand-written native code into
maintainable native code for the other platform. The feasibility of
implementating this approach is tested with the development of
a proof-of-concept compiler from Swift to Kotlin. An analysis is
made on the readability of the resulting prototype’s output code, as
well as other relevant metrics. The conclusion is that, while some
trade-offs might be necessary, such an approach is viable if applied
in an adequate ecosystem.

CCS CONCEPTS
• Software and its engineering → Source code generation; •
General and reference → Cross-computing tools and tech-
niques.

KEYWORDS
transpilers, transcompilers, mobile, Swift, Kotlin
ACM Reference Format:
Vinícius Jorge Vendramini, Alfredo Goldman, and Grégory Mounié. 2020.
Improving mobile app development using transpilers with maintainable
outputs. In 34th Brazilian Symposium on Software Engineering (SBES ’20),
October 21–23, 2020, Natal, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3422392.3422426

1 INTRODUCTION
When developing applications (apps) in any environment, it is com-
mon for programmers to target more than one operating system in
an effort to expand their potential user base. In the case of smart-
phones, this usually means offering an app for both Android and

SBES ’20, October 21–23, 2020, Natal, Brazil
2020. ACM ISBN 978-1-4503-8753-8/20/09.
https://doi.org/10.1145/3422392.3422426

iOS. These operating systems can be targeted directly with each
platform’s software development kit (SDK), which is available only
in specific “native” languages: Objective-C and Swift for the iOS
SDK, and Java and Kotlin for the Android SDK.

The lack of a common language with direct access to both plat-
forms’ SDKs means developers cannot trivially write a single code-
base that compiles to both platforms. To ease that task, several
authors have created cross-platform development tools that run the
same code on both platforms using different approaches. Early ver-
sions of these tools created websites stylized look and behave like
native applications, “capitaliz[ing] on the good browser support
of mobile platforms”[17, p. 122] to make their content portable.
Some more modern iterations like ReactNative[10] and Flutter[13]
achieve portability by implementing their own runtime frameworks
that support new languages like JavaScript and Dart on both plat-
forms. Other tools can compile one of Android’s native languages
into Objective-C (like J2ObjC[12]) or LLVM (like Kotlin/Native[21]),
making it available for iOS apps.

All of these approaches have in common the fact that they require
developers to write their programs on top of layers of abstraction
(such as tool-specific languages and libraries) on which the devel-
oper’s code depends. This dependency means the code will not
work if the layers of abstraction are removed, and instead will have
to undergo some sort of migration (which is, in its worst case, a
complete rewrite of the application). Additionally, these layers cre-
ate a gap between shared code and platform-specific code, which
can make it difficult for one to access the other.

These problems are not only theoretical – they have been docu-
mented in both academic research and industry reports (section 2).
Some approaches, however, seem promising for mitigating them.
J2ObjC’s ability to turn Java code into Objective-C code, for in-
stance, may indicate a solution to the dependency issue. Since the
input code can be directly compiled for Android and the output
code for iOS, a developer might theoretically be able to maintain
them without depending on the tool or having to migrate their
code. The main impediment for this is the difficulty in reading and
understanding J2ObjC’s generated Objective-C code in order to
maintain it, as will be shown (section 4.3).

Similarly, KotlinNative’s ability to compile Kotlin code into iOS
libraries may indicate a solution to the issue of integrating native
and platform-specific code. The tool’s generated iOS libraries offer
APIs that include several usability annotations and follow idiomatic
conventions, which contribute to making them easier to call from
platform-specific code. However, this integration only works one
way: KotlinNative’s libraries cannot directly access the native code
that calls them, they can only access native frameworks that have
been compiled separately.

https://doi.org/10.1145/3422392.3422426
https://doi.org/10.1145/3422392.3422426

SBES ’20, October 21–23, 2020, Natal, Brazil Vendramini et al.

This study proposes a new approach to creating cross-platform
development tools, by improving on existing models using strate-
gies discussed in the literature. The suggested improvements enable
a development tool to both avoid becoming a dependency for a
project and offer seamless integration between platform-specific
and shared code.

First, this definition is constructed from an analysis of existing
cross-platform development tools, and the strategies to achieve it
are selected from related practical and academic works (section 2).
Next, the methodology is presented – specifically, how the selected
strategies were used to directly pursue the goals mentioned above
(section 3). Finally, an implementation is presented as a proof of
concept, and there is a discussion on how the strategies were applied
in this case and on the tests performed on the implemented program
(section 4).

2 RELATEDWORKS
2.1 Cross-platform development tools
As the main alternative for native development, tools for the im-
plementation of web apps, hybrid apps, and other non-native ap-
proaches account for numerous practical and academic works in
mobile development.

In practice, several tools enable developers to create cross-platform
apps by developing their code in one of several non-native lan-
guages. For instance, PhoneGap allows users to create “hybrid
applications built with HTML, CSS, and JavaScript”[1]; React Na-
tive enables the creation of apps “using only JavaScript” with “the
same fundamental UI building blocks as regular iOS and Android
apps”[10]; and XMLVM can “cross-compile” an Android applica-
tion so that it will run on iOS[33]. Similarly, the academic litera-
ture includes several studies that propose the creation of develop-
ment tools using new domain-specific languages, such as md2[16],
ScaMo[22], Xmob[11], ICPMD[8], and the Common framework[29,
30].

In a more native setting, JetBrains developed a Kotlin compiler
for iOS called Kotlin/Native[21], which can create iOS libraries with
reasonably idiomatic APIs for Objective-C and Swift. Kotlin/Native
libraries can only access native iOS code that has itself been com-
piled into libraries, which limits the possibilities for native and
non-native code integration. Additionally, because the Kotlin code
is compiled into binary libraries, the iOS version still depends on
Kotlin/Native to be maintained.

Developers at Dropbox have taken a different approach, imple-
menting their shared logic using C++[15]. Because C++ is available
on both platforms, the code can be compiled natively and is main-
tainable without any external dependency; however, it does not
have direct access to the native SDKs (which are only available in
Java, Kotlin, Objective-C and Swift), so it faces the same integration
problems mentioned above. Similarly, developers at Readdle[34]
use Swift code on both iOS and Android, but the Android version
cannot directly access the native SDKs.

Google’s J2ObjC[12] also allows developers to maintain a native
codebase. By translating Java source files into Objective-C, the tool
ensures Android apps do not depend on it to be maintained, as the
Java codebase can be compiled directly. The iOS apps, however,
are built with the translated Objective-C code (which can be “ugly”

and “hard-to-read”[4]) and have to be linked against J2ObjC’s im-
plementation of the Java standard library for iOS, making them
dependent on the tool. That said, J2ObjC’s model seems to show the
most promise in solving these dependency and integration issues,
and therefore was used as a starting point for the proposal in this
work.

2.2 Transpilers
Transpiler is the name given to a compiler that translates code
from a language with a high level of abstraction into another. For
example, while a tool that turns C++ code into machine code might
be called a compiler, one that turns Java code into Objective-C (like
J2ObjC above) might be called a transpiler.

Researchers have been studying transpilers at least since the
1980’s, with the works of Wallis[38] and Albrecht et al.[2] us-
ing Ada. More recently, some studies have also focused on dif-
ferent uses for transpilation, which include performing compiler
optimizations[39], translating between more than two languages
with similar paradigms,[3, 35] and creating new languages that ease
correctness proofs for programs[32].

Some authors, like Huijsman, van Katwijk, Pronk, and Toetenel,
have studied transpilers as a way of helping developers perma-
nently migrate a codebase from one language to another[19]. These
transpilers prioritize their output code’s readability over preserving
the input code’s semantics, a method that allowed developers to
understand the translated code and fix its bugs during the migration
process (but that is not as well-suited for day-to-day compilations).
This model is used today by some transpilers of mobile app lan-
guages, like SwiftKotlin[25] and Kotlift[24].

Other transpilers were designed to be a part of a developer’s
day-to-day compilation cycle, and as such prioritize preserving the
input code’s semantics so that the output code does not have to
be edited after translation. This is the case with J2ObjC. Schaub
and Malloy notably developed a semantics-preserving transpiler
between Java, C++ and Python that aimed to produce readable
code[35]. Their study highlights the importance of choosing input
and output languages with compatible paradigms and semantics,
noting that when “source language features are used [...] that are
not present in the target language, those features must be emulated
[...]; depending on the difficulty of the emulation, the readability
[...] of the resulting code can suffer greatly”[35, p. 6].

Schaub and Malloy also mention that “Ideally, a [...] translation
should map standard library calls for the source language to the
native standard library calls for the target language, rather than
introducing an interoperable library layer”[35, p. 6]. This approach
was used for the GOOL transpiler’s translations[3], which serve as
a direct inspiration for this work.

2.3 Dependency and integration
The two main problems being investigated in this work involve
a tool’s dependency – i.e. the fact that codebases depend on the
tools in order to be maintained – and integration – i.e. the fact that
codebases that use the tools do not have direct access to and from
native code. These problems have been reported both by academic
researchers and by developers working in well-known applications.

Improving mobile app development using transpilers with maintainable outputs SBES ’20, October 21–23, 2020, Natal, Brazil

The dependency issue, for instance, has been documented by
developers at Facebook, who had to “rebuild” their iOS app’s code-
base in 2012[9]; Dropbox, who in 2019 moved from their model
using shared C++ code[15]; and AirBnB, who went from using
ReactNative towards a fully native approach in 2018, saying they
expected the process to take over a year[28].

Similarly, integration issues in tools using non-native approaches
have been well documented in the academic literature[5–7, 18, 20,
23, 27]. In particular, several of these authors describe difficulty
accessing some of the operating system’s functionalities, “such as a
camera or a GPS sensor”[17, p. 122]. More native approaches, how-
ever, have since improved on this panorama (as described above),
making them the basis for this study.

3 METHODOLOGY
Based on the analyzed works, we can properly define the goals of
this work as follows. We propose the creation of a transpiler that:

(1) Prioritizes its output code’s maintainability: generated
output code should be reasonably understandable, such that
a developer that knows the input and output languages and
understands the input code can also reasonably understand
the output code.

(2) Depends only onmaintainable or removable libraries:
generated output code should depend only on libraries that
are small and understandable enough to reasonably be main-
tained or removed by an app’s developers.

(3) Ensures its output code offers idiomatic APIs: gener-
ated APIs should follow common platform and language
conventions and be directly accessible from platform-specific
code, without requiring interoperability layers.

(4) Ensures its output code can directly access platform-
specific code: platform-specific code written in both the
input and output languages should be directly accessible
from the shared code.

A developer that creates an app using a transpiler like this can
switch to a fully native approach trivially, since the codebases and
dependencies for both platforms would be maintainable at all times.
This would avoid the migration issues reported by Facebook[9]
and AirBnb[28], as mentioned above. These goals would also allow
platform-specific code and shared code to integrate seamlessly with
each other, thus solving our two targeted issues (dependency and
integration).

The success of failure of this approach, as with the creation of any
transpiler, is highly dependent on the choice of input and output
languages. In general, transpilers work better when their languages
are more similar, with similar paradigms, memory management
techniques, basic semantics, and even syntactic structure. In the
case of J2ObjC, Java and Objective-C have many aspects that are
alike (such as object-oriented paradigms and reference semantics),
but also some that are different (such as their use of namespaces
and calling conventions) that can make it more difficult to achieve
the goals above.

With this in mind, it was decided that this work’s attempt at
implementing the proposed approach would be a transpiler from

Swift to Kotlin. While these languages have some semantic differ-
ences (whose effects will be discussed later), the similarities in their
paradigms and syntax made them good candidates for this work.

The proof-of-concept transpiler was itself implemented in Swift,
and is called Gryphon. The strategies below illustrate ways in which
Gryphon’s design builds on J2ObjC’s. Most of them were (either
directly or indirectly) inspired by transpilers from the literature.

Strategies for improving code maintainability:

Avoiding significant structuralmodifications: occasionally,
transpilers need to significantly modify the structure of the input
code in order to guarantee the same behavior in the output code
(see J2ObjC’s example in section 4.3). That can lead to problems
such as misplaced comments, variable names that do not make
sense when out of order, etc. Structural modifications in Gryphon
are limited to changes that do not modify blocks of statements,
such as:

• adding declarations, like automatic implementations of Swift’s
rawValue initializers for Kotlin’s enum classes;

• moving entire declarations, like placing Swift’s static func-
tions inside Kotlin’s companion objects;

• or changing a declaration’s interface, like turning Swift’s
“var description” into Kotlin’s “fun toString()”.

Idiomatic translations: input and output languages often have
different conventions and mechanisms concerning how to execute
certain tasks, how to name certain structures, etc. Some of these
differences require changes because they can affect the code’s be-
havior: in the example above, Swift’s “var description” has to
be translated as Kotlin’s “fun toString()” because these are the
interfaces that are accessed when an instance has to be turned into
a string.

Other cases involve more aesthetic changes that have the same
behavior but can make the output code easier to understand by
conforming to community conventions. For instance:

// Swift
guard x != nil else {

return
}

// Kotlin translation (Swift-like)
if (x != null) {

return
}

// Kotlin translation (idiomatic)
x ?: return

Style: certain aspects of coding style can be applied to the output
code after the translation using tools called linters (for instance,
the Kotlin community has a linter called ktlint[31]). Some coding
style aspects that are not enforced by a language’s linter can be
enforced by the transpiler. For instance, ktlint does not check for
the maximum number of characters in a line of code, but Gryphon
can limit this by adding newlines when translating function calls,
closure declarations, etc.

SBES ’20, October 21–23, 2020, Natal, Brazil Vendramini et al.

Comments: source code comments are kept during the transla-
tion and placed somewhere as similar to the input code as possible.
Albrecht et al.[2] perform this task with mixed results by linking
comments to nearby statements so that they move along with the
code they (hopefully) refer to; inspired by that, Gryphon turns com-
ments into their own statements, which allows them to be moved
cohesively or independently as needed.

Formatting: any additional formatting details should be mim-
icked in each case whenever possible. This includes factors like the
amount of whitespace separating groups of statements or declara-
tions, consistently labeling parameters in function calls, etc.

Names: the names of types, variables, and other declarations
stay the same whenever possible. This rule takes less precedence
over others (for instance, names can be capitalized or otherwise
changed to become more idiomatic), but these modifications take
care not to change or lose the meanings of the given names.

Strategies for improving library maintainability:

Size: any libraries necessary for the input and output codes to
compile were be designed to be as small as possible, to make it
easier for developers to maintain or remove them at will.

Transpiler libraries for both languages: transpilers that do
not prioritize maintainability often provide a library only for the
output language. This allows their users to write the input code
without having to learn to use any transpiler-specific libraries, but
it also limits the transpiler developers to having access to custom
code only in the output language. Gryphon does not abide by this
restriction: since the transpiler’s libraries are designed specifically
to be small and maintainable, it is considered acceptable that the
transpiler’s users learn to use them. This provides some leeway
on the implementation that allows for a more effective the use of
the other strategies, particularly when translating references to the
languages’ standard libraries.

Native translations: similar languages may also have similar
standard libraries, which may allow references to the input lan-
guage’s library to be translated to references to the output lan-
guage’s library. This ideawas implemented in theGOOL transpiler[3],
which used files written in a domain-specific language to specify
mappings for classes and methods. A similar strategy was used
for Gryphon, with the difference that the mappings were written
directly in the input language, which allows them to be defined
for arbitrarily complex Swift expressions (instead of just class and
method names). Similarly, the method for specifying their Kotlin
translations was made more complex by allowing them to be de-
clared both as literal strings or as more complex structures – which
can give Gryphon valuable information on the translations to avoid
bugs:

// Swift expression
_string.formIndex(before: &_index)
// Kotlin translation
"_index -= 1"

// Swift expression
_string1.replacingOccurrences(

of: _string2, with: _string3)
// Kotlin translation
Template.call(.dot(

"_string1", "replace"), ["_string2", "_string3"])

// Swift expression
Range<String.Index>(uncheckedBounds:

(lower: _index1, upper: _index2))
// Kotlin translation
Template.call("IntRange", ["_index1", "_index2"])

Strategies for improving access in platform-specific code to shared
declarations:

Readable API:. in addition to the idiomatic translations men-
tioned before, any declarations that are accessible to the platform-
specific code (that is, all declarations that are notmarked as private)
need to offer readable and idiomatic APIs. This includes details like
the translation of function labels: Swift’s convention is that they
should form a sentence-like function call, but Kotlin’s convention
is that they correspond to the parameter names used in the imple-
mentation:

// Swift
func addOne(to number: Int) -> Int {
return number + 1

}
addOne(to: 10)

// Kotlin
fun addOne(number: Int): Int {

return number + 1
}
addOne(number = 10)

Gryphon keeps track of all function declarations (and their pa-
rameters’ internal names) in order to translate function calls cor-
rectly when they show up in the same file or in other files.

Access control: access control modifiers are translated into their
Kotlin counterparts in most cases; when there is no counterpart
(e.g. some uses of Swift’s fileprivatemodifier have no equivalent
translation in Kotlin), Gryphon defaults to the next less restrictive
option. This avoids platform-specific code accessing a declaration it
should not onmost cases while also avoiding compilation errors due
to inaccessible declarations on the edge cases. Gryphon also omits
the access control keywords whenever possible to avoid cluttering
the output code.

Open and final: translations for classes and their members
include open or final modifiers to avoid platform-specific code
creating subclasses where it should not. These modifiers are also
omitted whenever possible to avoid cluttering the output code.

Strategies for improving access in shared code to platform-specific
declarations:

Mappings: any platform-specific declarations that have the
same APIs on both platforms can be trivially accessed by trans-
lated code. When the APIs are different, the same mapping system

Improving mobile app development using transpilers with maintainable outputs SBES ’20, October 21–23, 2020, Natal, Brazil

used for translating references to the Swift standard library can
be used by developers to define translations from input to output
APIs.

Manual translations: in cases where the shared code should
behave differently in each platform, a manual translation system
can use special comments to arbitrarily ignore Swift statements or
insert Kotlin statements. Specifically, this system can be used to
ignore calls to iOS-only APIs and insert calls to Android-only APIs:

// Swift
iOSOnlyFunction() // pegasus ignore
// pegasus insert: androidOnlyFunction()
let language = "Swift" // pegasus value: "Kotlin"

// Kotlin (Gryphon translation)
androidOnlyFunction()
let language = "Kotlin"

This system can also be used to fix limitations on Gryphon’s
current translation system, such as adding override keywords to
methods that satisfy protocol requirements (the information for
which is not trivially available in Swift).

4 RESULTS
As a proof-of-concept implementation for this work, Gryphon is
an open source project and is available on GitHub[37]. The studies
discussed in this section were performed on a closed beta version
(v0.3). Gryphon has since been released to the public, and its up-
dates are downloaded by dozens of users weekly (according to
GitHub’s traffic data for the repository).

As mentioned before, it is important to study what effects the
strategies outlined in this work might have had on Gryphon’s
design. The studies below aim to do that by considering different
metrics that are used in related works, such as the performance
of the output code, the support of different features in the input
language, etc.

4.1 Bootstrapping
Some early studies on Gryphon’s viability involved attempts to
translate parts of open-source iOS apps into corresponding parts of
their Android versions. These attempts largely failed because of the
difficulty in finding appropriate candidates. There were few well-
known apps using Swift and Kotlin and that open-source enough
of their codebases to compile and run all automated tests, and
those that existed tended to have different architectures for iOS
and Android (meaning the translated code would not fit with the
rest of the Android application).

Instead, Gryphon’s own source code proved to be a viable target
for translation. It had been implemented using Swift features that
were mostly already supported, meaning relatively little adaptation
was required. Possibly the greatest challenge was that, because the
transpiler was still being developed, it did not include some features
it needed to translate itself – and every feature implemented meant
more code that needed to be translated.

This process of having a compiler or transpiler work on its own
code is known as bootstrapping. Once the bootstrapping process

Table 1: Number of source lines of code (SLOC) in the Swift
and Kotlin versions of the Gryphon codebase.

Swift project Kotlin project
SLOC in shared files 11 397 10 986
% of total 97.78% 98.11%
SLOC in platform-specific files 259 212
% of total 2.22% 1.89%
Total SLOC 11 656 11 198

Table 2: Number of source lines of code (SLOC) with man-
ual translation comments in the Swift project. Includes lines
that are inserted, ignored or replaced, or lines with annota-
tions like open and override.

Inserted Ignored Replaced Annotated Total
SLOC 74 23 12 243 352
% of total 0.65% 0.20% 0.11% 2.14% 3.09%

had been implemented, the automated unit, integration and accep-
tance tests were translated by hand into Kotlin so that they could
test the translated code. This then became part of the day-to-day
testing cycle: run the automated tests on the Swift codebase, trans-
late the codebase into Kotlin, then run the same automated tests
on the Kotlin version.

This way, the bootstrapping process helps check if the transpiler
works as intended: it ensures that enough Swift features are sup-
ported to translate its own source code, and it ensures that the
behavior of the output code is the same as that of the input code to
the extent that it passes the same automated tests.

Table 1 provides numbers on the amount of source lines of code
involved in both the translated and platform-specific source files.
The codebase includes 11 397 lines of code in files that it automat-
ically translates to Kotlin (representing 97.78% of the total) and
259 (2.22%) in files that are exclusive to the Swift version (whose
Kotlin counterparts aremanuallymaintained). The translated Kotlin
version is made up of 10 986 lines of code from translated files (repre-
senting 98.11% of the Kotlin codebase) and 212 (1.89%) from Kotlin-
exclusive files.

Most of the translated files in the Swift version use manual trans-
lation comments, as detailed in table 2. Of the 11 397 source lines
of code in those files, 352 of them (3.09%) use these mechanisms.
This includes 74 manual insertions; 23 manual deletions; and 255
comments used for different tasks, such as adding override anno-
tations to satisfy protocol conformances, etc. Further development
efforts have since decreased these numbers by automatically han-
dling some of these cases.

These line counts were done by removing all lines that were
empty or contained only comments, as well as 9 lines of Kotlin code
that were used only for calling the tests. It is worth noting that
some translations to Kotlin result in more lines of code than their
Swift counterparts, while the contrary is less common. The slight
reduction on the number of lines of code in the Kotlin version (table

SBES ’20, October 21–23, 2020, Natal, Brazil Vendramini et al.

Table 3: Frequency of statement types in Gryphon’s code-
base.

Amount Statement name
2698 Variable Declaration
2168 Expression Statement
1795 Comment Statement
1378 Return Statement
1120 If Statement
831 Assignment Statement
697 Function Declaration
143 Class Declaration
107 For Each Statement
79 Initializer Declaration
40 Continue Statement
31 Throw Statement
30 While Statement
27 Break Statement
23 Struct Declaration
20 Do Statement
20 Catch Statement
18 Companion Object
15 Switch Statement
12 Defer Statement
12 Import Declaration
5 Enum Declaration
1 Protocol Declaration

1) is likely due to other factors such as differences in code styles, in
the amounts of newlines, etc.

Gryphon’s required libraries are comprised of one Swift file and
one Kotlin file, to be added to the iOS and Android apps respec-
tively. The Swift file contains 649 lines of code, including 227 lines
implementing the 105 standard library translations, and 422 imple-
menting wrappers for collections. With regard to maintainability,
the 227 lines implementing translations have no behavior and can
be deleted safely; and the 422 lines of wrappers include only one-
line methods1 that redirect to calls to native implementations.

The Kotlin file focuses on providing Kotlin implementations of
some Swift algorithms that were deemed too complex or too verbose
to replicate inline without the aid of additional implementations. It
contains 60 lines of code divided into seven methods. Three of these
methods, like their Swift counterparts, contain exactly one line of
code; three of them comprise an implementation of the quicksort
algorithm; and one searches for a character in a string.

Table 3 and table 4 show how many statements, declarations
and expressions of each kind are currently present in Gryphon’s
source code. They give a sense of what kinds of Swift features are
currently supported and how often they appear. Some of them have
noteworthy details or explanations, described below.

Expression Statement: corresponds to an expression that acts
as a standalone statement - e.g. calling a function like print("Hello!").
1There are three methods with 5 lines that are exceptions to this rule. These methods
are used to implement covariant casts for the data structures: they check if the casted
element types are compatible subtypes, and return either the successfully casted type
or nil accordingly.

Table 4: Frequency of expression types in Gryphon’s code-
base.

Amount Expression name
17106 Declaration Reference Expression
4592 Dot Expression
4268 Call Expression
3457 Tuple Expression
3436 Literal String Expression
2647 Binary Operator Expression
2022 Type Expression
1712 Template Expression
1341 Literal Int Expression
900 Nil Literal Expression
830 Tuple Shuffle Expression
687 Array Expression
452 Literal Bool Expression
339 Interpolated String Literal Expression
276 Closure Expression
235 Subscript Expression
166 Literal Code Expression
148 Prefix Unary Expression
137 Literal Character Expression
119 Optional Expression
85 Dictionary Expression
63 Force Value Expression
61 Parentheses Expression
47 If Expression

Comment Statement: a “fake” statement created to contain a
source comment.

If Statement: encompasses several variations of an if state-
ment in Swift, including common ifs and elses; if lets and
if case lets; and guards. In particular, if lets may be trans-
lated as multiple statements in Kotlin, given the need to declare the
variables before testing them.

// Swift
if let userName = networkResult {

// ...
}

// Kotlin (Gryphon translation)
val userName: String? = networkResult
if (userName != null) {
// ...

}

Throw, Do andCatch Statements: exception handling in Swift
is performed in a similar manner to Kotlin. Notably, Kotlin is more
permissive in its syntax and does not require users to annotate
functions declarations with throws or individual calls to these
functions with try. This means that many of Swift’s exception
annotations can be omitted in Kotlin while maintaining the same
semantics.

Improving mobile app development using transpilers with maintainable outputs SBES ’20, October 21–23, 2020, Natal, Brazil

// Swift
func dangerousFunction() throws {
throw MyError()

}

do {
try dangerousFunction()

}
catch let error {
print(error)

}

// Kotlin (Gryphon translation)
internal fun dangerousFunction() {
throw MyError()

}

try {
dangerousFunction()

}
catch (error: Exception) {

println(top-level)
}

Enum and Struct Declarations: Swift’s structs are trans-
lated as Kotlin’s data classes; common enums are translated as
enum classes; and enums with associated values are translated
as sealed classes. Each of these translations has similar mean-
ings and behaviors, but they differ in their semantics – while Swift’s
types are passed by value, Kotlin’s types are passed by reference.
This difference can cause differences in behavior when the types
are mutable, which can lead to bugs. Gryphon tries to avoid these
bugs raising warnings when developers declare mutable members
on structs and enums. The warnings can also be silenced, allow-
ing developers to proceed once they are aware of the risks. This
problem is inevitable given the semantics of the two languages, but
it might be avoided with different language combinations.

Array and Dictionary expressions: Similarly, Swift’s Array
and Dictionary collections are passed by value, while Kotlin’s
corresponding Lists and Maps are passed by reference. The initial
attempt to solve this problem involved recreating Swift’s behavior
in Kotlin: if the collections were copied every time a new refer-
ence was created, the behavior would be consistent. However, this
approach could significantly hurt performance.

Swift leverages its automatic reference countingmechanism to im-
plement a copy-on-write optimization: collections are only copied
when they are about to me mutated and the language knows that
more than one reference is pointing to the collection; otherwise,
Swift only copies the reference to the collection. Kotlin uses a
garbage collector instead of automatic reference counting, meaning
it does not have the necessary information on the amount of refer-
ences to make the same optimization2. Because of this, Gryphon
takes the opposite approach: it mimics Kotlin’s behavior in Swift
by providing wrappers to Swift’s collections that are passed by
2Kotlin does have access to Java’s CopyOnWriteArrayList, but that class implements a
different algorithm than Swift and is meant for specific use cases, as specified in its
documentation[26].

reference. These wrappers leverage Swift’s metaprogramming ca-
pabilities to provide exactly the same API as the collections they
wrap, making them more user friendly.

Switch Statement: Swift’s switch statements are translated
into when statements, which can be used as expressions in Kotlin.
This enables Gryphon to translate some switch statements idiomat-
ically – for instance, when returning a value from a function:

// Swift
func isXZero(x: Int) -> Bool {

switch x {
case 0: return true
default: return false
}

}

// Kotlin (Gryphon translation)
internal fun isXZero(x: Int): Boolean {

return when (x) {
0 -> true
else -> false

}
}

Declaration Reference Expression: Roughly corresponds to
when a variable or instance of any type is referenced, hence its high
frequency in table 4.

Closure Expression: Swift’s closures are translated into lamb-
das in Kotlin. This includes the translation of anonymous parame-
ters when possible (i.e. Swift’s $0 to Kotlin’s it). One of the chal-
lenges with this translation involves returning from closures: while
return statements exit the closure in Swift, they exit the innermost
function declaration in Kotlin. To get the same behavior, Gryphon
currently scans the function that is calling the lambda and adds
explicit labels to any return statements it finds.

// Swift
[1, 2, 3].map { return $0 + 1 }

// Kotlin (Gryphon translation)
listOf(1, 2, 3).map { return@map it + 1 }

Tuple Expression: Swift supports tuples as native types, func-
tioning similarly to anonymous structs; Kotlin does not support
tuples natively, but it does offer a Pair type in its standard library
that serves as a translation for tuples with two elements. Tuples
are also used to list parameters in most function calls.

// Swift
let tuple: (Int, Int) = (1, 2)
print(tuple.0)
print(tuple.1)

// Kotlin (Gryphon translation)
val tuple: Pair<Int, Int> = Pair<Int, Int>(1, 2)
println(tuple.first)
println(tuple.second)

SBES ’20, October 21–23, 2020, Natal, Brazil Vendramini et al.

Tuple Shuffle Expression: appear when on function calls that
include parameters with default values (which can be omitted) or
variadic parameters (which can receive multiple values). In par-
ticular, the Kotlin translation has to omit labels before variadic
parameters on function calls.

// Swift
func tupleShuffle(a: Int, b: Int..., c: Int = 0) {
}

tupleShuffle(a: 1, b: 1, 2, 3)
tupleShuffle(a: 1, b: 1, 2, 3, c: 1)

// Kotlin (Gryphon translation)
fun tupleShuffle(a: Int, vararg b: Int, c: Int = 0) {
}

tupleShuffle(1, 1, 2, 3)
tupleShuffle(1, 1, 2, 3, c = 1)

Literal Code Expression: an expression corresponding to code
that has been literally translated or inserted into the output. This
means both code that a developer inserted manually and trans-
lations that involve literal code, such as references to the Kotlin
standard library.

Optional Expression: Optional expressions specifywhen a value
with an optional type (i.e. a type that can either be present or be
null) is being evaluated. Their translation is particularly compli-
cated in optional evaluation chains, which have to be propagated
from Swift to Kotlin.

If Expression: If statements in Kotlin can be used as expressions;
this is particularly useful in this case because it allows Swift’s
ternary operator to be translated (since Kotlin itself does not support
a similar operator).

// Swift
let language = isIniOS ? "Swift" : "Kotlin"

// Kotlin (Gryphon translation)
val language: String = if (isIniOS) { "Swift" } else

{ "Kotlin" }↩→

4.2 Benchmarks
In order to ensure the proof-of-concept transpiler could be used to
generate output code with reasonably acceptable performance, a
series of benchmark tests were used. The benchmarks were taken
from the Computer Languages Benchmark Game’s catalog, which
has been used previously in other research[14]. It provides a set of
toy programs implemented in different programming languages,
which notably include Swift and Java.

The purpose of this study was to analyze the performance char-
acteristics of code that had not been specifically optimized (as
performance-critical code can be implemented in platform-specific
files). Therefore, heavily-optimized examples were discarded, leav-
ing five programs: binary-trees, fannkuch-redux,mandelbrot, n-body,
and spectral-norm. Four versions were created for each program:
hand-written Swift and Kotlin, and Gryphon-compatible Swift and

Table 5: Swift benchmarks run times. Times are in seconds,
as an average of 600 executions. Slowdowns represent how
much slower (or faster, if negative) the Gryphon version is.

Benchmark Hand-written Gryphon Slowdown
Binary trees 3.55 3.53 0.56%
Fannkuch 9.18 9.14 0.43%
Mandelbrot 3.77 3.78 -0.39%
NBody 3.99 3.99 -0.07%
Spectral norm 2.88 2.87 0.55%

Table 6: Kotlin benchmarks run times, analogous to table 5.

Benchmark Hand-written Gryphon Slowdown
Binary trees 3.94 3.94 -0.14%
Fannkuch 2.30 2.27 1.27%
Mandelbrot 4.38 4.36 0.24%
NBody 5.76 5.65 1.94%
Spectral norm 7.85 7.62 3.01%

its Kotlin translation. Comparing the hand-written versions with
the Gryphon versions enabled an analysis of Gryphon’s impact on
performance.

The benchmarks were executed 600 times for each version of
each program. All of the data from the experiments, as well as the
source codes for the benchmarks, are publicly available[36].

The results are summarized on tables 5 and 6. Notably, times
for the Gryphon-compatible Swift version ranged from a 0.39%
speedup to a 0.56% slowdown, and times for the Gryphon-translated
Kotlin version ranged from a 0.14% speedup to a 3.01% slowdown.
These numbers are interpreted here as an indication that if any
performance regressions did happen they are likely to be acceptable
to most users.

4.3 Maintainability
Formally testing the maintainability of the proof-of-concept’s out-
put would involve testing how well production code for realistic
applications can be modified and evolved by developers over time,
which is outside of the scope of this work. Rather, the focus here is
on the code’s perceived readability, as well as on numerical analyses
related to both its size and how much of it can be translated.

An early attempt at determining readability involved an online
survey, which asked participants to rate the readability of the same
algorithm implemented in Swift, Kotlin, Java and Objective-C, in-
cluding versions that used Gryphon. This survey was not answered
by enough developers for a statistically significant result, and so
it is not included in this text, but the results are available in the
accompanying material. In particular, comments on the survey sug-
gested developers’ main concerns were the chosen language and
the algorithm’s documentation.

Following these experiments, a handful of the authors’ colleagues
and peers suggested that Gryphon’s readability improvements
would be self-evident in comparison with a transpiler that did not
prioritize readability. As such, the code snippets below compare a
translation using Gryphon with one using J2ObjC (which served as

Improving mobile app development using transpilers with maintainable outputs SBES ’20, October 21–23, 2020, Natal, Brazil

the main basis for Gryphon’s development). It is worth remarking
that the intent here is not to criticize J2ObjC, which has been a
valuable part of the mobile development ecosystem, but to highlight
a specific contribution made in this work.

Consider the definition of an empty class called Hello. Xcode,
the main development environment for iOS projects, creates two
Objective-C files, one for the implementation and one for the inter-
face (lightly edited below).

// Objective-C interface (Xcode template)

NS_ASSUME_NONNULL_BEGIN
@interface Hello : NSObject
@end
NS_ASSUME_NONNULL_END

// Objective-C implementation (Xcode template)

#import "Hello.h"
@implementation Hello
@end

Similarly, we could define an empty Hello class in Java as fol-
lows:

// Java

class Hello { }

J2ObjC translates this Java class into an Objective-C implemen-
tation file and an interface file. The interface file contains 21 source
lines of code, and the implementation file contains 33. Below are
some snippets of this translation (edited for brevity):

// Objective-C interface (J2ObjC translation)

@interface Hello : NSObject
#pragma mark Package-Private
- (instancetype)init;
@end

J2OBJC_EMPTY_STATIC_INIT(Hello)
FOUNDATION_EXPORT void Hello_init(Hello *self);
FOUNDATION_EXPORT Hello *new_Hello_init(void)

NS_RETURNS_RETAINED;
FOUNDATION_EXPORT Hello *create_Hello_init(void);
J2OBJC_TYPE_LITERAL_HEADER(Hello)

// Objective-C implementation (J2ObjC translation)

@implementation Hello

J2OBJC_IGNORE_DESIGNATED_BEGIN
- (instancetype)init {

Hello_init(self);
return self;

}
J2OBJC_IGNORE_DESIGNATED_END

+ (const J2ObjcClassInfo *)__metadata {
static J2ObjcMethodInfo methods[] = {

{ NULL, NULL, 0x0, -1, -1, -1, -1, -1, -1 },
};
#pragma clang diagnostic push
#pragma clang diagnostic ignored

"-Wobjc-multiple-method-names"
#pragma clang diagnostic ignored

"-Wundeclared-selector"
methods[0].selector = @selector(init);
#pragma clang diagnostic pop
static const J2ObjcClassInfo _Hello =

{ "Hello", NULL, NULL, methods, NULL, 7, 0x0,
1, 0, -1, -1, -1, -1, -1 };

return &_Hello;
}

@end

void Hello_init(Hello *self) {
NSObject_init(self);

}

Hello *new_Hello_init() {
J2OBJC_NEW_IMPL(Hello, init)

}

Hello *create_Hello_init() {
J2OBJC_CREATE_IMPL(Hello, init)

}

J2OBJC_CLASS_TYPE_LITERAL_SOURCE(Hello)

In Gryphon’s case, the input and output code for an empty class
would be as follows:

// Swift
class Hello { }

// Kotlin (Gryphon translation)
internal open class Hello {
}

Similarly, J2ObjC requires users to link their iOS apps against a
reimplementation of Java’s standard library in Objective-C; com-
paratively, Gryphon requires two files that together total just over
700 source lines of code.

5 CONCLUSIONS
This work proposed an approach to creating a mobile develop-
ment tool that avoids the dependency and integration issues as
detailed. The proposed approach involves creating a transpiler that
produces readable output code, depends on maintainable libraries,
and provides seamless integration between shared code and native
code.

The viability of implementing this approach was tested with a
proof-of-concept transpiler, which was then compared with J2ObjC

SBES ’20, October 21–23, 2020, Natal, Brazil Vendramini et al.

as the next-best alternative for solving these issues. The relative
simplicity and readability that were demonstrated indicate that
programs that use Gryphon can depend relatively little on the tran-
spiler: the output code is reasonably readable and concise, and
the transpiler’s libraries are reasonably maintainable or removable.
Additionally, the transpiler’s generated APIs and its manual trans-
lation mechanisms allow for seamless integration with native code.
Finally, quantitative tests indicate that pursuing these goals did
not cause significant regressions in other aspects of the translation
process, like the generated code’s performance.

Recommended directions for further works involve other im-
plementations of this approach (especially using other language
combinations that might fare better in some semantic aspects) and
testing this approach inmore realistic situations, particularly involv-
ing real mobile apps (so that there may be a better understanding
of its limitations).

ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001

REFERENCES
[1] Adobe. [n.d.]. Adobe PhoneGap. Retrieved on 2020-06-15, from https://phonegap.

com.
[2] P.F. ALBRECHT, P.E. GARRISON, S.L. GRAHAM, R.H. HYERLE, P. IP, and B.

KRIEG-BRÜCKNER. 1980. Source-to-source Translation: Ada to Pascal and Pascal
to Ada. In Proceedings of the ACM-SIGPLAN Symposium on Ada Programming
Language (Boston, Massachusetts) (SIGPLAN ’80). ACM, New York, NY, USA,
183–193. https://doi.org/10.1145/948632.948658

[3] P. ARRIGHI, J. GIRARD, M. LEZAMA, and K. MAZET. 2014. The GOOL System:
A Lightweight Object-oriented Programming Language Translator. In Proceedings
of the 9th International Workshop on Implementation, Compilation, Optimization
of Object-Oriented Languages, Programs and Systems PLE (Uppsala, Sweden)
(ICOOOLPS ’14). ACM, New York, NY, USA, Article 5, 7 pages. https://doi.
org/10.1145/2633301.2633306

[4] T. BALL. 2013. cfront: a J2ObjC Inspiration. Retrieved on 2020-06-15, from
http://j2objc.blogspot.com/2013/09/cfront-j2objc-inspiration-developers.html.

[5] N. BARTH. 2014. Análise Comparativa de Ferramentas de Desenvolvimento de
Aplicativos Móveis Multiplataforma. Bachelor’s thesis. Universidade Regional de
Blumenau.

[6] A. CHARLAND and B. LEROUX. 2011. Mobile Application Development: Web
vs. Native. Queue 9, 4, Article 20 (April 2011), 9 pages. https://doi.org/10.1145/
1966989.1968203

[7] L. CORRAL, A. SILLITTI, and G. SUCCI. 2012. Mobile Multiplatform Develop-
ment: An Experiment for Performance Analysis. Procedia Computer Science 10
(2012), 736 – 743. https://doi.org/10.1016/j.procs.2012.06.094

[8] W.S. EL-KASSAS, B.A. ABDULLAH, A.H. YOUSEF, and A.WAHBA. 2014. ICPMD:
Integrated cross-platform mobile development solution. In 2014 9th International
Conference on Computer Engineering Systems (ICCES). 307–317. https://doi.org/
10.1109/ICCES.2014.7030977

[9] Facebook. 2012. Under the hood: Rebuilding Facebook for iOS. Retrieved on
2020-06-15, from https://www.facebook.com/notes/facebook-engineering/under-
the-hood-rebuilding-facebook-for-ios/10151036091753920.

[10] Facebook. 2020. React Native. Retrieved on 2020-06-15, from https://facebook.
github.io/react-native/.

[11] O. LE GOAER and S. WALTHAM. 2013. Yet Another DSL for Cross-platforms
Mobile Development. In Proceedings of the First Workshop on the Globalization
of Domain Specific Languages (Montpellier, France) (GlobalDSL ’13). ACM, New
York, NY, USA, 28–33. https://doi.org/10.1145/2489812.2489819

[12] Google. [n.d.]. J2ObjC: Overview. Retrieved on 2020-06-15, from https:
//developers.google.com/j2objc.

[13] Google. 2020. Flutter. Retrieved on 2020-06-15, from https://flutter.dev.
[14] I. GOUY. [n.d.]. The Computer Language Benchmarks Game. Retrieved on 2020-

06-15, from https://benchmarksgame-team.pages.debian.net/benchmarksgame/
sometimes-people-just-make-up-stuff.html.

[15] E. GUTHMANN. 2019. The (not so) hidden cost of sharing code between iOS and
Android. Retrieved on 2020-06-15, from https://blogs.dropbox.com/tech/2019/08/
the-not-so-hidden-cost-of-sharing-code-between-ios-and-android/.

[16] H. HEITKÖTTER, T.A. MAJCHRZAK, and H. KUCHEN. 2013. Cross-platform
Model-driven Development of Mobile Applications with Md2. In Proceedings of
the 28th Annual ACM Symposium on Applied Computing (Coimbra, Portugal) (SAC
’13). ACM, New York, NY, USA, 526–533. https://doi.org/10.1145/2480362.2480464

[17] H.HEITKÖTTER, S. HANSCHKE, and T.A. MAJCHRZAK. 2013. Evaluating Cross-
Platform Development Approaches for Mobile Applications. In Web Information
Systems and Technologies. Springer Berlin Heidelberg, Berlin, Heidelberg, 120–
138.

[18] A. HOLZINGER, P. TREITLER, and W. SLANY. 2012. Making Apps Useable on
Multiple Different Mobile Platforms: On Interoperability for Business Application
Development on Smartphones. In Multidisciplinary Research and Practice for
Information Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 176–189.

[19] R.D. HUIJSMAN, K.J. VAN KATWIJK, C. PRONK, and W.J. TOETENEL. 1987.
Translating Algol 60 Programs into Ada. Ada Lett. VII, 5 (September 1987), 42–50.
https://doi.org/10.1145/36077.36080

[20] S. JIANG. 2016. Comparison of Native, Cross-Platform and Hyper Mobile Develop-
ment Tools Approaches for iOS and Android Mobile Applications. Bachelor’s thesis.
Department of Computer Science and Engineering, University of Gothenburg.

[21] Kotlin. [n.d.]. Kotlin/Native. Retrieved on 2020-06-15, from https://kotlinlang.
org/docs/reference/native-overview.html.

[22] D. MACOS and A. SOLYMOSI. 2013. ScaMo: Realisation of an OO-functional
DSL for cross platform mobile applications development. AIP Confer-
ence Proceedings 1558, 1 (2013), 327–331. https://doi.org/10.1063/1.4825490
arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.4825490

[23] R. MADAUDO and P. SCANDURRA. 2013. Native versus Cross-platform frame-
works for mobile application development. In VIII Workshop of the Italian Eclipse
Community.

[24] Moshbit. 2020. Kotlift. Retrieved on 2020-06-15, from https://github.com/moshbit/
Kotlift.

[25] A.G. OLLOQUI. 2020. SwiftKotlin. Retrieved on 2020-06-15, from https://github.
com/angelolloqui/SwiftKotlin.

[26] Oracle. 2019. Java SE 12 & JDK 12 Documentation: CopyOnWriteArrayList. Avail-
able on https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/
concurrent/CopyOnWriteArrayList.html, retrieved on 2020-06-15.

[27] M. PALMIERI, I. SINGH, and A. CICCHETTI. 2012. Comparison of cross-platform
mobile development tools. In 2012 16th International Conference on Intelligence in
Next Generation Networks. 179–186. https://doi.org/10.1109/ICIN.2012.6376023

[28] G. PEAL. 2018. React Native at Airbnb. Retrieved on 2020-06-15, from https:
//medium.com/airbnb-engineering/react-native-at-airbnb-f95aa460be1c.

[29] J. PERCHAT, M. DESERTOT, and S. LECOMTE. 2013. Component based Frame-
work to Create Mobile Cross-platform Applications. Procedia Computer Science 19
(2013), 1004 – 1011. https://doi.org/10.1016/j.procs.2013.06.140 The 4th Interna-
tional Conference on Ambient Systems, Networks and Technologies (ANT 2013),
the 3rd International Conference on Sustainable Energy Information Technology
(SEIT-2013).

[30] J. PERCHAT, M. DESERTOT, and S. LECOMTE. 2014. Common framework: A
hybrid approach to integrate cross-platform components in mobile application.
Journal of Computer Science 10 (November 2014), 2165–2181.

[31] Pinterest. 2020. ktlint: An anti-bikeshedding Kotlin linter with built-in formatter.
Retrieved on 2020-06-15, from https://github.com/pinterest/ktlint.

[32] D.A. PLAISTED. 2013. Source-to-source translation and software engineering.
Journal of Software Engineering and Applications 6, 04 (2013), 30.

[33] A. PUDER and O. ANTEBI. 2013. Cross-Compiling Android Applications to iOS
and Windows Phone 7. Mobile Networks and Applications 18, 1 (February 2013),
3–21. https://doi.org/10.1007/s11036-012-0374-2

[34] Readdle. 2018. Swift for Android: Our Experience and Tools. Retrieved on 2020-06-
15, from https://blog.readdle.com/why-we-use-swift-for-android-db449feeacaf.

[35] S. SCHAUB and B.A. MALLOY. 2016. The Design and Evaluation of an Interop-
erable Translation System for Object-Oriented Software Reuse. Journal of Object
Technology 15, 4 (2016).

[36] V. VENDRAMINI. 2019. Research data on the Gryphon transpiler. https://doi.
org/10.5281/zenodo.3489737 Retrieved on 2020-08-11, from https://github.com/
vinivendra/GryphonResearch.

[37] V. VENDRAMINI. 2020. Gryphon: The Swift to Kotlin translator. https://doi.
org/10.5281/zenodo.3489740 Retrieved on 2020-08-11, from https://github.com/
vinivendra/Gryphon.

[38] P.J.L. WALLIS. 1985. Automatic Language Conversion and Its Place in the Transi-
tion to Ada. In Proceedings of the 1985 Annual ACM SIGAda International Confer-
ence on Ada (Paris, France) (SIGAda ’85). Cambridge University Press, New York,
NY, USA, 275–284. https://doi.org/10.1145/324426.324399

[39] Q. YI. 2012. POET: A scripting language for applying parameterized source-to-
source program transformations. Software: Practice and Experience 42 (June 2012).
https://doi.org/10.1002/spe.1089

https://phonegap.com
https://phonegap.com
https://doi.org/10.1145/948632.948658
https://doi.org/10.1145/2633301.2633306
https://doi.org/10.1145/2633301.2633306
http://j2objc.blogspot.com/2013/09/cfront-j2objc-inspiration-developers.html
https://doi.org/10.1145/1966989.1968203
https://doi.org/10.1145/1966989.1968203
https://doi.org/10.1016/j.procs.2012.06.094
https://doi.org/10.1109/ICCES.2014.7030977
https://doi.org/10.1109/ICCES.2014.7030977
https://www.facebook.com/notes/facebook-engineering/under-the-hood-rebuilding-facebook-for-ios/10151036091753920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-rebuilding-facebook-for-ios/10151036091753920
https://facebook.github.io/react-native/
https://facebook.github.io/react-native/
https://doi.org/10.1145/2489812.2489819
https://developers.google.com/j2objc
https://developers.google.com/j2objc
https://flutter.dev
https://benchmarksgame-team.pages.debian.net/benchmarksgame/sometimes-people-just-make-up-stuff.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/sometimes-people-just-make-up-stuff.html
https://blogs.dropbox.com/tech/2019/08/the-not-so-hidden-cost-of-sharing-code-between-ios-and-android/
https://blogs.dropbox.com/tech/2019/08/the-not-so-hidden-cost-of-sharing-code-between-ios-and-android/
https://doi.org/10.1145/2480362.2480464
https://doi.org/10.1145/36077.36080
https://kotlinlang.org/docs/reference/native-overview.html
https://kotlinlang.org/docs/reference/native-overview.html
https://doi.org/10.1063/1.4825490
https://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.4825490
https://github.com/moshbit/Kotlift
https://github.com/moshbit/Kotlift
https://github.com/angelolloqui/SwiftKotlin
https://github.com/angelolloqui/SwiftKotlin
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/CopyOnWriteArrayList.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/concurrent/CopyOnWriteArrayList.html
https://doi.org/10.1109/ICIN.2012.6376023
https://medium.com/airbnb-engineering/react-native-at-airbnb-f95aa460be1c
https://medium.com/airbnb-engineering/react-native-at-airbnb-f95aa460be1c
https://doi.org/10.1016/j.procs.2013.06.140
https://github.com/pinterest/ktlint
https://doi.org/10.1007/s11036-012-0374-2
https://blog.readdle.com/why-we-use-swift-for-android-db449feeacaf
https://doi.org/10.5281/zenodo.3489737
https://doi.org/10.5281/zenodo.3489737
https://github.com/vinivendra/GryphonResearch
https://github.com/vinivendra/GryphonResearch
https://doi.org/10.5281/zenodo.3489740
https://doi.org/10.5281/zenodo.3489740
https://github.com/vinivendra/Gryphon
https://github.com/vinivendra/Gryphon
https://doi.org/10.1145/324426.324399
https://doi.org/10.1002/spe.1089

	Abstract
	1 Introduction
	2 Related Works
	2.1 Cross-platform development tools
	2.2 Transpilers
	2.3 Dependency and integration

	3 Methodology
	4 Results
	4.1 Bootstrapping
	4.2 Benchmarks
	4.3 Maintainability

	5 Conclusions
	Acknowledgments
	References

