
HAL Id: hal-02948674
https://hal.inria.fr/hal-02948674

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional Encryption for Attribute-Weighted Sums
from k-Lin

Michel Abdalla, Junqing Gong, Hoeteck Wee

To cite this version:
Michel Abdalla, Junqing Gong, Hoeteck Wee. Functional Encryption for Attribute-Weighted Sums
from k-Lin. CRYPTO 2020 - 40th Annual International Cryptology Conference, Aug 2020, Santa
Barbara / Virtual, United States. pp.685-716, �10.1007/978-3-030-56784-2_23�. �hal-02948674�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362229866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02948674
https://hal.archives-ouvertes.fr

Functional Encryption for Attribute-Weighted Sums from k-Lin

Michel Abdalla1,?, Junqing Gong2,??, and Hoeteck Wee1,3,???

1 CNRS, ENS and PSL

michel.abdalla@ens.fr, wee@di.ens.fr
2 East China Normal University

jqgong@sei.ecnu.edu.cn
3 NTT Research

Abstract. We present functional encryption schemes for attribute-weighted sums, where encryption takes as in-

put N attribute-value pairs (xi , zi) where xi is public and zi is private; secret keys are associated with arithmetic

branching programs f , and decryption returns the weighted sum
∑N

i=1 f (xi)zi while leaking no additional infor-

mation about the zi ’s. Our main construction achieves
(1) compact public parameters and key sizes that are independent of N and the secret key can decrypt a ciphertext

for any a-priori unbounded N ;

(2) short ciphertexts that grow with N and the size of zi but not xi ;

(3) simulation-based security against unbounded collusions;

(4) relies on the standard k-linear assumption in prime-order bilinear groups.

— Contents —

§1. Introduction, 1 §2. Technical Overview, 6 §3. Preliminaries, 10 §4. Definitions and Tools, 11 §5. Πone:

One-Slot Scheme, 12 §6. Πext: Extending Πone, 19 §7. Πubd: Unbounded-Slot Scheme, 21 §8. Πmcl: Multi-

Client Scheme, 28 §A. Partial Garbling, 37 §B. Concrete instantiation of Πubd in Section 7, 38

1 Introduction

In this work, we consider the problem of computing aggregate statistics on encrypted databases. Consider a database

of N attribute-value pairs (xi , zi)i=1,...,N , where xi is a public attribute of user i (e.g. demographic data), and zi is

private sensitive data associated with user i (e.g. salary, medical condition, loans, college admissions outcome). Given

a function f , we want to privately compute weighted sums over the zi ’s corresponding to

N∑
i=1

f (xi)zi

We refer to this quantity as an attribute-weighted sum. An important special case is when f is a boolean predicate, so

that the attribute-weighted sum

N∑
i=1

f (xi)zi =
∑

i : f (xi)=1
zi (1)

corresponds to the average zi over all users whose attribute xi satisfies the predicate f . Concrete examples include av-

erage salaries of minority groups holding a particular job title (zi = salary) and approval ratings of an election candidate

amongst specific demographic groups in a particular state (zi = rating). Similarly, if zi is boolean, then the attribute-

weighted sum becomes
∑

i :zi=1 f (xi). This could capture for instance the number of and average age of smokers with

lung cancer (zi = lung cancer).

? Supported by ERC Project aSCEND (H2020 639554) and the French FUI project ANBLIC.
?? Supported by NSFC-ISF Joint Scientific Research Program (61961146004) and the ERC Project aSCEND (H2020 639554). Part of

this work was done while at ENS, Paris.
??? Supported in part by ERC Project aSCEND (H2020 639554).

This work. We study functional encryption (FE) schemes for attribute-weighted sums [39,28,15,26], for a more general

setting where the attribute-value pairs and the output of f are vectors. That is, we would like to encrypt N attribute-

value pairs (xi ,zi)i=1,...,N to produce a ciphertext ct, and generate secret keys sk f so that decrypting ct with sk f returns

the attribute-weighted sum
∑

i f (xi)>zi while leaking no additional information about the individual zi ’s. We want to

support rich and expressive functions f , such as boolean formula and simple arithmetic computation. In addition,

we want simulation-based security against collusions, so that an adversary holding secret keys for different func-

tions learns nothing about the zi ’s beyond the attribute-weighted sums for all of these functions. As articulated [15],

simulation-based security is the right notion for functional encryption applied to real-world data.

In many databases, it is often the case that the size of each attribute-value pair (xi ,zi) is small and a-priori bounded,

whereas the number of slots N is large and a-priori unbounded. This motivates the notion of an unbounded-slot FE

scheme for attribute-weighted sums, where a secret key sk f can decrypt encrypted databases with an arbitrary num-

ber of slots. Indeed, handling arbitrary-sized inputs is also the motivation behind studying ABE and FE schemes for

DFA and NFA [41,9]. In an unbounded-slot FE, key generation and the size of sk f depends only on f and not N . This

provides stronger flexibility than standard ABE and FE (even in the so-called unbounded setting [35,16,27,21]), where

each sk f only works for a fixed N . In practice, this means that we can reuse the same set-up and secret keys across

multiple databases without an a-priori upper bound on the database size N .

1.1 Our Results

We present an unbounded-slot functional encryption scheme for attribute-weighted sums for the class of functions

f captured by arithmetic branching programs (ABP), a powerful model of computation that captures both boolean

formula and branching programs with only a linear blow-up in size. Our construction achieves:

(1) compact public parameters and key sizes that are independent of N ;

(2) short ciphertexts that grow with N and the size of zi but not xi ;

(3) selective4, simulation-based security against unbounded collusions;

(4) relies on the standard k-linear assumption in prime-order bilinear groups.

As with all prior FE schemes that rely on DDH and bilinear groups [3,8,5,36,12,31,32,19], efficient decryption requires

that the output of the computation
∑N

i=1 f (xi)>zi lies in a polynomial-size domain. We also show how to extend our

unbounded-slot scheme to a setting where the database is distributed across multiple clients that do not completely

trust one another [23,20], assuming some simple non-interactive MPC set-up amongst the clients that does not de-

pend on the database and does not require interaction with the key authority.

Prior works. While we regard the unbounded-slot setting as the key conceptual and technical novelty of this work, we

note that FE for attribute-weighted sums for N = 1 already captures many functionalities considered in the literature,

e.g.

(i) FE for inner product [3,8] where f outputs a fixed vector,

(ii) attribute-based encryption (ABE) by taking z to be the payload,

(iii) attribute-based inner-product FE [19,4], where ciphertexts are associated with a public x and a private z, and keys

with a boolean formula g and a vector y, and decryption returns z>y iff g (x) = 1, by taking f (x) := y · g (x), which

can be computed using an ABP.

On the other hand, none of these three classes captures the special case of attribute-weighted sums in (1). We show a

comparison in Fig 1. The more recent works in [31,32] do capture a larger class supporting quadratic instead of linear

functions over z,5 but in a weaker secret-key setting, which is nonetheless sufficient for the application to obfuscation.

Finally, none of these works consider the unbounded-slot setting.

4 We actually achieve semi-adaptive security [18], a slight strengthening of selective security.
5 Note that we can also capture the same class with a quadratic blow-up in ciphertext size.

2

1.2 Our construction

We present a high-level overview of our unbounded-slot FE scheme for attribute-weighted sums. We start with a one-

slot scheme that only handles N = 1, and then “bootstrap” to the unbounded-slot setting. The main technical novelty

of this work lies in the bootstrapping, which is what we would focus on in this section.

A one-slot scheme. In a one-slot FE scheme, we want to encrypt (x,z) and generate secret keys sk f for computing

f (x)>z, while leaking no additional information about z. We adopt the framework of Wee’s [43] (which in turn builds

on [33,40,42,30]) that builds a FE scheme for a closely related functionality f (x)>z
?= 0; the construction also achieves

selective, simulation-based security under the k-Lin assumption in prime-order bilinear groups. We achieve a smaller

ciphertext, and an algebraically more concise and precise description. Our simulator also embeds the output of the

ideal functionality f (x)>z into the simulated sk f . This is in some sense inherent for two reasons: (i) the ciphertext has

a fixed size and cannot accommodate an a-priori unbounded number of key queries [6], (ii) in the selective setting,

we do not know f or f (x)>z while simulating the ciphertext.

The unbounded-slot scheme. A very natural approach is to use the one-slot scheme to compute

f (xi)>zi , i = 1,2, . . . , N (2)

by providing N independent encryptions ctxi ,zi of (xi ,zi). The secret key is exactly that for the one-slot scheme and

therefore independent of N , and decryption proceeds by decrypting each of the N one-slot ciphertexts, and then com-

puting their sum. The only problem with this approach is that it is insecure since decryption leaks the intermediate

summands.

First idea. To avoid this leakage, we would computationally mask the summands using DDH tuples, by using the

one-slot scheme to compute

[f (xi)>zi +wi r], i = 1,2, . . . , N (3)

where

– the wi ’s are sampled during encryption subject to the constraint
∑N

i=1 wi = 0;

– r is fresh per secret key; and

– [·] denotes “in the exponent” of a bilinear group.

Multiplying the partial decryptions yields [
∑

i f (xi)>zi], and we need to perform a brute-force discrete log to recover

the answer. Indeed, we can modify the one-slot scheme to support the functionality in (3), where the one-slot en-

cryption takes as input (xi ,zi‖wi) (where wi is also private) to produce a ciphertext ctxi ,zi ‖wi , and with secret keys

sk f ,r associated with (f ,r). Henceforth, we describe the proof strategy for a single secret key query for simplicity, but

everything we describe extends quite readily to an unbounded number of key queries.

The intuition is that the partial decryptions now yield

(Dec(sk f ,r ,ctx1,z1‖w1), Dec(sk f ,r ,ctx2,z2‖w2), . . . , Dec(sk f ,r ,ctxN ,zN ‖wN))

= ([f (x1)>z1 +w1r], [f (x2)>z2 +w2r], . . . , [f (xN)>zN +wN r]),
DDH≈c ([f (x1)>z1 +w ′

1], [f (x2)>z2 +w ′
2], . . . , [f (xN)>zN +w ′

N]),
∑

w ′
i = 0

≈s ([
∑

i f (xi)>zi +w ′
1], [w ′

2], . . . , [w ′
N]),

As with the one-slot scheme, we need to embed these N partial descriptions into sk f ,r in the proof of security. Trans-

lating this intuition into a proof would then require embedding ≈ N units of statistical entropy into the simulated sk f ,r

in the final game; this means that the size of sk f ,r would grow with N , which we want to avoid!

3

Second idea. Instead, we will do a hybrid argument over the N slots, collecting “partial sums”
∑

i≤η f (xi)>zi (with

1 ≤ η ≤ N) as we go along, which we then embed into the simulated sk f ,r . This proof strategy is in fact inspired by

proof techniques introduced in the recent ABE for DFA from k-Lin [24], notably the idea of propagating entropy along

the execution path of a DFA.

In particular, for N = 3, partial decryption now yields

(Dec(sk f ,r ,ctx1,z1‖w1), Dec(sk f ,r ,ctx2,z2‖w2), Dec(sk f ,r ,ctx3,z3‖w3))

= ([f (x1)>z1 +w1r], [f (x2)>z2 +w2r], [f (x3)>z3 +w3r])
DDH≈c ([f (x1)>z1 + f (x2)>z2 +w1r], [w2r], [f (x3)>z3 +w3r])
DDH≈c ([f (x1)>z1 + f (x2)>z2 + f (x3)>z3 +w1r], [w2r], [w3r])

(4)

where the first
DDH≈c uses pseudorandomness of ([w2r], [r]) and the second uses that of ([w3r], [r]).

Next, we need to design the ciphertext and key distributions for the unbounded-slot scheme so that partial de-

cryption yields the quantities in (4). We begin by defining the final simulated ciphertext-key pair as follows:

(ct∗x1
,ctx2,0‖w2 , . . . ,ctxN ,0‖wN), sk∗f ,r (5)

where

– (ct∗x1
,sk∗f ,r) are obtained using the simulator for the one-slot scheme so that

Dec(sk∗f ,r ,ct∗x1
) = [w1r +∑

i
f (xi)>zi]

That is, we embed [w1r +∑
i f (xi)>zi] into the simulated sk∗f ,r ;

– ctxi ,0‖wi , i > 1 are generated as normal encryptions of (xi ,0‖wi) (instead of normal encryptions of (xi ,zi‖wi)) so

that

Dec(sk∗f ,r ,ctxi ,0‖wi) =Dec(sk f ,r ,ctxi ,0‖wi) = [wi r], i > 1

Here, we use fact that simulated secret keys behave like normal secret keys when used to decrypt normal cipher-

texts.

This distribution can be computed given just
∑

i f (xi)>zi and matches exactly what we need in the final game in (4).

Third idea. Now, consider the following attempt to interpolate between the normal distributions and the simulated

distributions for the case N = 2:

(ctx1,z1‖w1 , ctx2,z2‖w2 , sk f ,r)

≈c (ct∗x1
, ctx2,z2‖w2 , sk∗f ,r), Dec(sk∗f ,r ,ct∗x1

) = [f (x1)>z1 +w1r]

≈c (ct∗x1
, ???, sk∗f ,r),

≈c (ct∗x1
, ctx2,0‖w2 , sk∗f ,r), Dec(sk∗f ,r ,ct∗x1

) = [f (x1)>z1 + f (x2)>z2 +w1r]

where the first row is the real distribution, the last row is the simulated distribution in (5), and the first ≈c follows from

simulation-based security of the one-slot scheme. A natural idea is to replace “???” with a simulated ciphertext ct∗x2
but

this is problematic for two reasons: first, we cannot switch between a normal and simulated ciphertext in the presence

of a simulated key, and second, the simulator can only generate a single simulated ciphertext.

Luckily, we can overcome both difficulties by modifying the unbounded-slot FE scheme to use two independent

copies of the one-slot scheme as follows:

– setup generates two one-slot master public-secret key pairs (mpk1,msk1), (mpk2,msk2);

– to encrypt (xi ,zi)i=1,...,N , we generate ctx1,z1‖w1 w.r.t mpk1 and the remaining ctxi ,zi ‖wi , i = 2, . . . , N w.r.t. mpk2;

– the secret key contains two one-slot secret keys sk f ,r,1,sk f ,r,2 generated for (f ,r) but using msk1,msk2 respectively.

4

Scheme Enc KeyGen Function Security |ct|
OT12, KSW08 [37,38,33] z y z>y

?= 0 AD-IND O(|z|)
ALS16, ABDP15 [3,8] z y z>y AD-IND O(|z|)
W17 [43] x,z f ABP z> f (x)

?= 0 SA-SIM O(|x|+ |z|)
DOT18 [21] x,z f ABP z> f (x)

?= 0 AD-SIM O(|x|+ |z|)
ACGU20, CZY19 [4,19] x,z y, f NC1 f (x) ·z>y AD-IND O(|x|+ |z|)
ACGU20 [4] z1,z2 y1,y2 z>1y1 if z>2y2 = 0 AD-IND O(|z1|+ |z2|)
This work (§5) x,z f ABP z> f (x) SA-SIM O(|z|)

Fig. 1. Comparison of prior public-key schemes with our construction for N = 1. Throughout, x is public and z,z1,z2 are private,

and |ct| omits the contribution from x.

That would in fact be our final construction, where the asymmetry of encryption with respect to the first slot reflects

the asymmetry of the simulated ciphertext in (5). Note that the first issue goes away because we can switch between

a normal and simulated ciphertext w.r.t. mpk2 in the presence of a simulated secret key w.r.t. mpk1; the second goes

away because the two simulated ciphertext correspond to mpk1 and mpk2 respectively. We defer the remaining details

to the technical overview in Section 2 and the formal scheme in Section 7.

The multi-client setting. Now, consider a setting where the database (xi ,zi)i=1,...,N are distributed across multiple

clients that do not completely trust one another [23,20]; in practice, the clients could correspond to hospitals hold-

ing medical records for different patients, or colleges holding admissions data. It suffices to just consider the setting

with N clients where client i holds (xi ,zi). Note that to produce the ciphertext in our unbounded-slot FE scheme, it

suffices for the N clients to each hold a random private wi (per database) subject to the constraint
∑

wi = 0, which

is simple to generate via a non-interactive MPC protocol where each client sends out additive shares of 0 [13]. More-

over, generating the wi ’s can take place in an offline, pre-processing phase before knowing the database, and does

not require interacting with the key generation authority. Moreover, our unbounded-slot FE scheme also achieves a

meaningful notion of security, namely that if some subset S of clients collude and additionally learn some sk f , they will

not learn anything about the remaining zi ’s apart from
∑

i∉S f (xi)>zi (that is, the attribute-weighted sum as applied to

the honest clients’ inputs); security is simulation-based and also extends to the many-key setting. In order to achieve

this, we require a slight modification to the scheme to break the asymmetry with respect to the first slot: to encrypt

(xi ,zi), client i samples random z′i , w ′
i and publishes a one-slot encryption of (xi ,z′i‖w ′

i) under mpk1 and another of

(xi ,z− z′i‖wi −w ′
i) under mpk2. This readily gives us a multi-client unbounded-slot FE for attribute-weighted sums;

we refer the reader to Section 8 for more details of the definition, construction and proof.

1.3 Discussion

Additional related works. As noted earlier in the introduction, our unbounded-slot notion is closely related to uni-

form models of computation with unbounded input lengths, such as ABE and FE for DFA and NFA [41,24,9,10]. At a

very high level, our construction may be viewed as following the paradigm in [9,10] for building ABE/FE for uniform

models of computation by “stitching” together ABE/FE for the smaller step functions; in our setting, the linear relation

between the step functions and the overall computation makes “stitching” much simpler. The way we use two copies

of the one-slot scheme is also analogous to the “two-slot, interweaving dual system encryption” argument used in the

previous ABE for DFA from k-Lin in [24], except our implementation is simpler and more modular.

On selective vs adaptive security. We believe that selective, simulation-based security already constitutes a meaning-

ful notion of security for many of the applications we have in mind. For instance, in medical studies, medical records

and patient conditions (the xi ,zi ’s) will not depend –not in the short run, at least– adaptively on the correlations (the

5

Scheme |ct| |sk| Assumption

Πone (§ 5) n′+2k +1 (k +1)nm + (2k +1)m + (k +1)n′ k-Lin

n′+3 2nm +3m +2n′ SXDH

Πubd (§ 7, § B) n′N + (3k +1)N (2k +2)nm + (4k +2)m + (2k +2)n′+k k-Lin

n′N +4N 4nm +6m +4n′+1 SXDH

Fig. 2. Summary of ciphertext and key sizes of our one-slot scheme Πone and unbounded-slot scheme Πubd. Recall that n = |x| =
|xi |, n′ = |z| = |zi |, m is proportional to the size of f and N is the number of slots. In the table, we count the number of group

elements in G1 (resp. G2) in the column |ct| (resp. column |sk|). Note that SXDH=1-Lin.

functions f ’s) that researchers would like to investigate. Nonetheless, we do agree that extending our results to achieve

adaptive security is an important research direction. Concretely,

– Can we show that the one-slot scheme achieves simulation-based, adaptive security in the generic group model,

as has been shown for a large class of selectively secure ABEs [11]?

– Can we construct an adaptively secure unbounded-slot FE for arithmetic branching programs with compact ci-

phertexts without the one-use restriction from k-Lin? We conjecture that our transformation from one-slot to

unbounded-slot preserves adaptive security. Solving the one-slot problem would require first adapting the tech-

niques for adaptive simulation-based security in [21,7], and more recent advances in [34] to avoid the one-use

restriction.

Open problems. We conclude with two other open problems. One is whether we can construct (one-slot) FE for

attribute-weighted sums from LWE, simultaneously generalizing prior ABE and IPFE schemes from LWE [25,14,8];

an affirmative solution would likely also avoid the polynomial-size domain limitation. Another is to achieve stronger

notions of security for the multi-client setting where the wi ’s could be reused across multiple databases.

Organization. We provide a more detailed technical overview in Section 2. We present preliminaries, definitions and

tools in Sections 3 and 4. We present our one-slot scheme and an extension in Sections 5 and 6, and the unbounded-

slot scheme and the multi-client extension in Sections 7 and 8.

2 Technical Overview

We proceed with a more technical overview of our construction, building on the overview given in Section 1.2, and giv-

ing more details on the one-slot scheme. We summarize the parameters of the one-slot and unbounded-slot scheme

in Fig 2.

2.1 One-slot scheme

Notation. We will make extensive use of tensor products. For instance, we will write the linear function x1U1 + x2U2

as

(U1‖U2)

(
x1I

x2I

)
= (U1‖U2)

((
x1

x2

)
⊗ I

)

This allows us to concisely and precisely capture “compilers” where we substitute scalars with matrices, as well as the

underlying linear relations, which may refer to left or right multiplication, and act on scalars or matrices.

6

Partial garbling. Recall the starting point for ABE for ABP as an “arithmetic secret-sharing scheme” that on input an

ABP f :Zn
p →Zp and a secret z ∈Zp , outputs m affine functions `1, . . . ,`m :Zn

p →Zp such that for all x ∈Zn
p :

– (correctness) given `1(x), . . . ,`m(x) along with f ,x, we can recover z if f (x) 6= 0.

– (privacy) given `1(x), . . . ,`m(x) along with f ,x, we learn nothing about z if f (x) = 0.

In particular, the coefficients of the functions `1, . . . ,`m depends linearly on the randomness used in secret sharing.

Partial garbling generalizes the above as follows: on input an ABP f : Zn
p → Zn′

p , outputs m + 1 affine functions

`0,`1, . . . ,`m such that for all x ∈Zn
p ,z ∈Zn′

p :

– (correctness) given `0(z),`1(x), . . . ,`m(x) along with f ,x, we can recover f (x)>z.

– (privacy) given `0(z),`1(x), . . . ,`m(x) along with f ,x, we learn nothing about z apart from f (x)>z.

Henceforth, we will use t>(L1(x⊗ Im)+L0) ∈Zm
p to denote the m linear functions `1(x), . . . ,`m(x),6 where t ←Zm+n′−1

p

corresponds to the randomness used in the secret sharing; L1 ∈ Z(m+n′−1)×mn
p ,L0 ∈ Z(m+n′−1)×m

p depends only on the

function f , and m is linear in the size of the ABP f .

Basic scheme. We rely on an asymmetric bilinear group (G1,G2,GT ,e) of prime order p where e :G1×G2 →GT . We use

[·]1, [·]2, [·]T to denote component-wise exponentiations in respective groups G1,G2,GT [22]. Our starting point is the

following scheme7:

mpk = (
[w]1, [u]1, [v]1

)
and msk= (

w, u, v
)

(6)

ctx,z = (
[s]1, [z+ sw]1, [s(u>x+ v)]1

) ∈Gn′+2
1

sk f = (
[t+w]2, [t>L1 +u>(In ⊗ r>)]2, [t>L0 + vr>]2, [r]2

)
where

w ←Zn′
p ,u ←Zn

p , v ←Zp ,t ←Zm+n′−1
p ,r ←Zm

p

Decryption uses the fact that

t>(L1(x⊗ Im)+L0) = (t>L1 +u>(In ⊗ r>)) · (x⊗ Im)+ (t>L0 + vr>)− (u>x+ v) · r> (7)

which in turn uses (In ⊗ r>) · (x⊗ Im) = x · r>. Using the pairing and the above relation, we can recover

[z− st]T , [st>(L1(x⊗ Im)+L0)]T

We can then apply reconstruction “in the exponent” to recover [f (x)>z]T and thus f (x)>z via brute-force DLOG.

Security in the secret-key setting. The scheme as written already achieves simulation-based selective security in the

secret-key, many-key setting (that is, against an adversary that does not see mpk); this holds under the DDH assump-

tion in G2. We sketch how we can simulate (ctx,z,sk f) given x, f , f (x)>z; the proof extends readily to the many-key

setting. The idea is to program

w̃ = z+ sw, ṽ = s(u>x+ v)

6 As an example with n = 2,m = 3, we have(
a11x1 +a12x2 +b1, a21x1 +a22x2 +b2, a31x1 +a32x2 +b3

)
= (a11, a21, a31, a12, a22, a32)

((x1

x2

)
⊗ I3

)
+ (b1,b2,b3)

7 The scheme in [43] has a larger ciphertext of the form: ctx,z =
(

[s]1, [z+ sw]1, [s(u+ vx)]1
) ∈Gn+n′+1

1 .

7

In addition, using (7), we can rewrite (ctx,z,sk f) as

ctx,z = (
[s]1, [w̃]1, [ṽ]1

) ∈Gn′+2
1

sk f = (
[t+ s−1(w̃−z)]2, [û>]2, [t>(L1(x⊗ Im)+L0)− û> · (x⊗ Im)+ s−1ṽr>]2, [r]2

)
where û> := t>L1 +u>(In ⊗ r>). Under the DDH assumption in G2, we know that8

[u>(In ⊗ r>)]2, [r>]2,u ←Zn
p ,r ←Zm

p

is pseudorandom, which means that [û>]2, [r>]2 is pseudorandom.

We can therefore simulate (ctx,z,sk f) as follows: on input µ= f (x)>z,

1. run the simulator for partial garbling on input f ,x,µ to obtain (p>
1,p>

2);

2. sample s ←Zp ,w̃ ←Zn′
p , ṽ ←Zp , û ←Zmn

p ;

3. output

ctx,z = (
[s]1, [w̃]1, [ṽ]1

) ∈Gn′+2
1

sk f = (
[−p1 + s−1w̃]2, [û>]2, [p>

2 − û> · (x⊗ Im)+ s−1ṽr>]2, [r]2
)

Looking ahead, we note that the above analysis extends to the k-Lin assumption, at the cost of blowing up the

width of u, v,r> by a factor of k. In the analysis, we use the fact that under k-Lin over G2, ([u>(In ⊗R)]2, [R]2) is pseudo-

random where u ←Zkn
p ,R ←Zk×m

p .

The compiler. To obtain a public-key scheme secure under the k-Lin assumption, we perform the following substitu-

tions to (6), following [43,17]:

s 7→ s>A> ∈Z1×(k+1)
p

w> 7→ W ∈Z(k+1)×n′
p

u> 7→ U ∈Z(k+1)×kn
p

v 7→ V ∈Z(k+1)×k
p

t> 7→ T ∈Z(k+1)×(m+n′−1)
p

r> 7→ R ∈Zk×m
p

That is, we blow up the height of w>,u>, v,t> by a factor of k +1, and the width of u>, v,r by a factor of k. The proof of

security follows the high-level strategy in [43]:

– We first switch [s>A>]1 in the ciphertext with a random [c>]1.

– We decompose sk f into two parts, A>sk f ,c>sk f , corresponding to component-wise multiplication by A>,c> respec-

tively, using the fact that (A|c) forms a full-rank basis.

– We simulate A>sk f using (mpk, f), and simulate the ciphertext and c>sk f as in the secret-key setting we just de-

scribed.

We refer the reader to Section 6 to see how the construction can be extended to handle the “extended” functionality in

(3); an overview is given at the beginning of that section.

2.2 Unbounded-slot scheme

We refer the reader to Section 1.2 for a high-level overview of the unbounded-slot scheme, and proceed directly to

describe the construction and the security proof.

8 Recall that if we write u = (u1, . . . ,un), then u>(In ⊗ r>) = (u1r>, . . . ,un r>).

8

Enc1(x1,z1‖−w2 −w3), Enc2(x2,z2‖w2), Enc2(x3,z3‖w3)

KeyGen1(f , [r]2), KeyGen2(f , [r]2)

SIM-1≈c Enc∗1 (x1) , Enc2(x2,z2‖w2), Enc2(x3,z3‖w3)

KeyGen∗1 ((f , [r]2), [f (x1)>z1 −w2r −w3r]2) , KeyGen2(f , [r]2)

SIM-2≈c Enc∗1 (x1), Enc∗2 (x2) , Enc2(x3,z3‖w3)

KeyGen∗1 ((f , [r]2), [f (x1)>z1 −w2r −w3r]2), KeyGen∗2 ((f , [r]2), [f (x2)>z2 +w2r]2)

DDH≈c Enc∗1 (x1), Enc∗2 (x2), Enc2(x3,z3‖w3)

KeyGen∗1 ((f , [r]2), [f (x1)>z1 + f (x2)>z2 −w2r −w3r]2), KeyGen∗2 ((f , [r]2), [w2r]2)

SIM-2≈c Enc∗1 (x1), Enc2(x2,0‖w2) , Enc2(x3,z3‖w3)

KeyGen∗1 ((f , [r]2), [f (x1)>z1 + f (x2)>z2 −w2r −w3r]2), KeyGen2(f , [r]2)

SIM-2≈c Enc∗1 (x1), Enc2(x2,0‖w2), Enc∗2 (x3)

KeyGen∗1 ((f , [r]2), [f (x1)>z1 + f (x2)>z2 −w2r −w3r]2), KeyGen∗2 ((f , [r]2), [f (x3)>z3 +w3r]2)

DDH≈c Enc∗1 (x1), Enc2(x2,0‖w2), Enc∗2 (x3)

KeyGen∗1 ((f , [r]2), [f (x1)>z1 + f (x2)>z2 + f (x3)>z3 −w2r −w3r]2), KeyGen∗2 ((f , [r]2), [w3r]2)

SIM-2≈c Enc∗1 (x1), Enc2(x2,0‖w2), Enc2(x3,0‖w3)

KeyGen∗1 ((f , [r]2), [f (x1)>z1 + f (x2)>z2 + f (x3)>z3 −w2r −w3r]2), KeyGen2(f , [r]2)

Fig. 3. Summary of game sequence for N = 3. In the figure,
SIM-b≈c indicates that this step uses the simulate-based semi-adaptive

security of (Encb ,KeyGenb).

The construction. We run two copies of the one-slot scheme, which we denote by

(Encb ,KeyGenb) = (Enc(mpkb , ·),KeyGen(mskb , ·)), b = 1,2

We denote the corresponding simulators by (Enc∗b ,KeyGen∗b). Informally, we have

(Encb(x,z‖w),KeyGenb(f , [r]2)) ≈c (Enc∗b (x),KeyGen∗b ((f , [r]2), [f (x)>z+wr]2))

Then, Enc,KeyGen in the unbounded-slot scheme are given by

Enc((xi ,zi)i) = Enc1(x1,z1‖−∑
i∈[2,N] wi), Enc2(x2,z2‖w2), · · · ,Enc2(xN ,zN‖wN)

KeyGen(f) = KeyGen1(f , [r]2),KeyGen2(f , [r]2), [r]2

The final simulator is given by:

Enc∗((xi)i) = Enc∗1 (x1), Enc2(x2,0‖w2), · · · ,Enc2(xN ,0‖wN)

KeyGen∗(f ,µ) = KeyGen∗1 ((f , [r]2), [µ−∑
i∈[2,N] wi r]2),KeyGen2(f , [r]2)

As a sanity check, observe that decrypting Enc∗((xi)i) using KeyGen∗(f ,
∑

i f (xi)>zi) returns
∑

i f (xi)>zi .

Proof overview. For simplicity, we focus on the setting N = 3 with one secret key query in Fig 3 where in
DDH≈c , we

use pseudorandomness of ([w1r]2, [r]2) and ([w2r]2, [r]2) respectively; in
SIM-1≈c and

SIM-2≈c , we use simulation-based

semi-adaptive security of (Enc1,KeyGen1) and (Enc2,KeyGen2), respectively.

In the setting for general N and Q secret key queries,

9

– we will invoke simulation-based security of (Enc1,KeyGen1) once, and that of (Enc2,KeyGen2) for 2(N −1) times,

while using the fact that both of these schemes are also secure against Q secret key queries;

– in
DDH≈c , we will rely on pseudorandomness of {[wi r j]2, [r j]2)} j∈[Q] for i ∈ [2, N].

3 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random from a finite set S. We use ≈s to denote

two distributions being statistically indistinguishable, and ≈c to denote two distributions being computationally in-

distinguishable. We use lower case boldface to denote column vectors and upper case boldcase to denote matrices.

We use ei to denote the i ’th elementary column vector (with 1 at the i ’th position and 0 elsewhere, and the total length

of the vector specified by the context). For any positive integer N , we use [N] to denote {1,2, . . . , N } and [2, N] to denote

{2, . . . , N }.

The tensor product (Kronecker product) for matrices A = (ai , j) ∈Z`×m , B ∈Zn×p is defined as

A⊗B =

a1,1B, . . . , a1,m B

. . . , . . . , . . .

a`,1B, . . . , a`,m B

 ∈Z`n×mp . (8)

Arithmetic Branching Programs. A branching program is defined by a directed acyclic graph (V ,E), two special ver-

tices v0, v1 ∈ V and a labeling function φ. An arithmetic branching program (ABP), where p is a prime, computes a

function f : Zn
p → Zp . Here, φ assigns to each edge in E an affine function in some input variable or a constant, and

f (x) is the sum over all v0-v1 paths of the product of all the values along the path. We refer to |V |+ |E | as the size of f .

The definition extends in a coordinate-wise manner to functions f :Zn
p →Zn′

p . Henceforth, we use FABP,n,n′ to denote

the class of ABP f :Zn
p →Zn′

p .

We note that there is a linear-time algorithm that converts any boolean formula, boolean branching program or

arithmetic formula to an arithmetic branching program with a constant blow-up in the representation size. Thus,

ABPs can be viewed as a stronger computational model than all of the above. Recall also that branching programs and

boolean formulas correspond to the complexity classes LOGSPACE and NC1 respectively.

3.1 Prime-order Bilinear Groups

A generatorG takes as input a security parameter 1λ and outputs a descriptionG := (p,G1,G2,GT ,e), where p is a prime

of Θ(λ) bits, G1, G2 and GT are cyclic groups of order p, and e :G1 ×G2 →GT is a non-degenerate bilinear map. We re-

quire that the group operations in G1, G2, GT and the bilinear map e are computable in deterministic polynomial time

in λ. Let g1 ∈G1, g2 ∈G2 and gT = e(g1, g2) ∈GT be the respective generators. We employ the implicit representation of

group elements: for a matrix M over Zp , we define [M]1 := g M
1 , [M]2 := g M

2 , [M]T := g M
T , where exponentiation is carried

out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T . We recall the matrix Diffie-Hellman (MDDH)

assumption on G1 [22]:

Assumption 1 (MDDHd
k,` Assumption) Let k,`,d ∈ N. We say that the MDDHd

k,` assumption holds if for all PPT ad-

versaries A, the following advantage function is negligible in λ.

Adv
MDDHd

k,`

A
(λ) := ∣∣Pr[A(G, [M]1, [MS]1) = 1]−Pr[A(G, [M]1, [U]1) = 1]

∣∣
where G := (p,G1,G2,GT ,e) ←G(1λ), M ←Z`×k

p , S ←Zk×d
p and U ←Z`×d

p .

The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [22] showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHd

k,` ∀ k,d ≥ 1,`> k

with a tight security reduction. (In the setting where `≤ k, the MDDHd
k,` assumption holds unconditionally.)

We state the following lemma implied by MDDH1
k,Q .

10

Lemma 1. For all Q ∈N and µ1, . . . ,µQ ∈Zp , we have{
[−w>r j]2, [µ j +w>r j]2, [r j]2

}
j∈[Q]

≈c
{

[µ j −w>r j]2, [w>r j]2, [r j]2
}

j∈[Q]

where w,r j ←Zk
p for all j ∈ [Q]. Concretely, the distinguishing advantage is bounded by 2 ·AdvMDDH1

k,Q

B
(λ).

Proof. This follows from MDDH1
k,Q assumption stating that {[w>r j]2, [r j]} j ≈ {[r̂ j]2, [r j]2} j with r̂ j ← Zp for all j ∈ [Q]

and change of variables: r̂ j 7→ r̂ j −µ j or all j ∈ [Q]. ut

4 Definitions and Tools

In this section, we formalize functional encryption for attribute-weighted sums, using the framework of partially-

hiding functional encryption [26,43,15].

4.1 FE for Attribute-Weighted Sums

Syntax. An unbounded-slot FE for attribute-weighted sums consists of four algorithms:

Setup(1λ,1n ,1n′
) : The setup algorithm gets as input the security parameter 1λ and function parameters 1n ,1n′

. It

outputs the master public key mpk and the master secret key msk.

Enc(mpk, (xi ,zi)i∈[N]) : The encryption algorithm gets as input mpk and message (xi ,zi)i∈[N] ∈ (Zn
p ×Zn′

p)?. It outputs

a ciphertext ct(xi ,zi) with (xi) being public.

KeyGen(msk, f) : The key generation algorithm gets as input msk and a function f ∈FABP,n,n′ . It outputs a secret key

sk f with f being public.

Dec((sk f , f), (ct(xi ,zi), (xi)i∈[N])) : The decryption algorithm gets as input sk f and ct(xi ,zi) along with f and (xi)i∈[N]. It

outputs a value in Zp .

Correctness. For all (xi ,zi)i∈[N] ∈ (Zn
p ×Zn′

p)? and f ∈FABP,n,n′ , we require

Pr

Dec((ct(xi ,zi), (xi)i∈[N]), (sk f , f)) =∑
i∈[N] f (xi)>zi :

(mpk,msk) ← Setup(1λ,1n ,1n′
)

sk f ←KeyGen(msk, f)

ct(xi ,zi) ←Enc(mpk, (xi ,zi)i∈[N])

= 1.

Remark 1 (Relaxation of correctness.). Our scheme only achieves a relaxation of correctness where the decryption

algorithm takes an additional bound 1B (and runs in time polynomial in B) and outputs
∑

i∈[N] f (xi)>zi if the value

is bounded by B . This limitation is also present in prior works on (IP)FE from DDH and bilinear groups [3,8,5,36,12],

due to the reliance on brute-force discrete log to recover the answer “from the exponent”. We stress that the relaxation

only refers to functionality and does not affect security.

Security definition. We consider semi-adaptive [18] (strengthening of selective), simulation-based security, which

stipulates that there exists a randomized simulator (Setup∗,Enc∗, KeyGen∗) such that for every efficient stateful ad-

versary A,

1N ←A(1λ);

(mpk,msk) ← Setup(1λ,1n ,1n′
);

(x∗i ,z∗i)i∈[N] ←A(mpk);

ct∗ ←Enc(mpk, (x∗i ,z∗i)i∈[N]);

output AKeyGen(msk,·)(mpk,ct∗)

≈c

1N ←A(1λ);

(mpk,msk∗) ← Setup∗(1λ,1n ,1n′
,1N);

(x∗i ,z∗i)i∈[N] ←A(mpk);

ct∗ ←Enc∗(msk∗, (x∗i)i∈[N]);

output AKeyGen∗(msk∗,(x∗i)i∈[N],·,·)(mpk,ct∗)

11

such that whenever A makes a query f to KeyGen, the simulator KeyGen∗ gets f along with
∑

i∈[N] f (x∗i)>z∗i . We use

AdvFE
A (λ) to denote the advantage in distinguishing the real and ideal games.

One-slot scheme. A one-slot scheme is the same thing, except we always have N = 1 for both correctness and security.

4.2 Partial Garbling Scheme

The partial garbling scheme [30,43] for f (x)>z with f ∈FABP,n,n′ is a randomized algorithm that on input f outputs an

affine function in x,z of the form:

p>
f ,x,z =

(
z>− t>,t>(L1(x⊗ Im)+L0)

)
where L0 ∈ Z(m+n′−1)×mn

p ,L1 ∈ Z(m+n′−1)×m
p depends only on f ; t ← Zm+n′−1

p is the random coin and t consists of the

last n′ entries in t, such that given (p>
f ,x,z, f ,x), we can recover f (x)>z, while learning nothing else about z.

Lemma 2 (partial garbling [30,43]). There exists four efficient algorithms (lgen,pgb, rec,pgb∗) with the following prop-

erties:

– (syntax) on input f ∈FABP,n,n′ , lgen(f) outputs L0 ∈Z(m+n′−1)×mn
p ,L1 ∈Z(m+n′−1)×m

p , and

pgb(f ,x,z;t) = (
z>− t>, t>(L1(x⊗ Im)+L0)

)
pgb∗(f ,x,µ;t) = (−t>, t>(L1(x⊗ Im)+L0)+µ ·e>

1

)
where t ∈Zm+n′−1

p and t consists of the last n′ entries in t and m are linear in the size of f .

– (reconstruction) rec(f ,x) outputs d f ,x ∈Zn′+m
p such that for all f ,x,z,t,

p>
f ,x,zd f ,x = f (x)>z

where p>
f ,x,z = pgb(f ,x,z;t).

– (privacy) for all f ,x,z,

pgb(f ,x,z;t) ≈s pgb
∗(f ,x, f (x)>z;t)

where the randomness is over t ←Zm+n′−1
p .

Extension. We will also rely on an extra property of the above construction to handle shifts by δ ∈ Zp , namely that,

given

p>
f ,x,z, δ

= (
z>− t>,t>(L1(x⊗ Im)+L0)+ δ ·e>

1

)
together with (f ,x), we can recover f (x)>z+δ, while learning nothing else about z,δ. That is, for all f ,x,z and δ ∈Zp :

– (reconstruction)

(pgb(f ,x,z;t)+ (0, δ ·e>
1))d f ,x = f (x)>z+ δ

– (privacy)

pgb(f ,x,z;t)+ (0, δ ·e>
1) ≈s pgb

∗(f ,x, f (x)>z+ δ ;t)

where the randomness is over t ←Zm+n′−1
p .

See Section A for more detail about Lemma 2 and the extension.

5 Πone: One-Slot Scheme

In this section, we present our one-slot FE scheme for attribute-weighted sums. This scheme achieves simulation-

based semi-adaptive security under k-Linear assumptions.

12

5.1 Construction

Our one-slot FE scheme Πone in prime-order bilinear group is described as follows.

– Setup(1λ,1n ,1n′
): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A ←Z(k+1)×k
p and W ←Z(k+1)×n′

p , U ←Z(k+1)×kn
p , V ←Z(k+1)×k

p

and output

mpk= (
G, [A>]1, [A>W]1, [A>U]1, [A>V]1

)
and msk= (

W, U, V
)
.

– Enc(mpk, (x,z)): Sample s ←Zk
p and output

ctx,z =
(

[s>A>]1, [z>+s>A>W]1, [s>A>U(x⊗ Ik)+s>A>V]1
)

and x.

– KeyGen(msk, f): Run (L1,L0) ← lgen(f) where L1 ∈ Z(m+n′−1)×mn
p ,L0 ∈ Z(m+n′−1)×m

p (cf. Section 4.2). Sample T ←
Z

(k+1)×(m+n′−1)
p and R ←Zk×m

p and output

sk f =
(

[T+W]2, [TL1 +U(In ⊗R)]2, [TL0 +VR]2, [R]2
)

and f

where T refers to the matrix composed of the right most n′ columns of T.

– Dec((sk f , f), (ctx,z,x)): On input key:

sk f =
(

[K1]2, [K2]2, [K3]2, [R]2
)

and f

and ciphertext:

ctx,z =
(

[c>0]1, [c>1]1, [c>2]1
)

and x

the decryption works as follows:

1. compute

[p>
1]T = e([c>1]1, [In′]2) ·e([c>0]1, [−K1]2) (9)

2. compute

[p>
2]T = e([c>0]1, [K2(x⊗ Im)+K3]2) ·e([−c>2]1, [R]2) (10)

3. run d f ,x ← rec(f ,x) (cf. Section 4.2), compute

[D]T = [(p>
1,p>

2)d f ,x]T (11)

and use brute-force discrete log to recover D as the output.

Correctness. For ctx,z and sk f , we have

p>
1 = z>−s>A>T (12)

p>
2 = s>A>TL1(x⊗ Im)+s>A>TL0 (13)

(p>
1,p>

2)d f ,x = f (x)>z (14)

Here (14) follows from the fact that

(p>
1,p>

2) = pgb(f ,x,z; (s>A>T)>) and d f ,x = rec(f ,x)

and reconstruction of the partial garbling in (9); the remaining two equalities follow from:

(12) z>−s>A>T = (z>+s>A>W) · In′ −s>A> · (T+W)

(13) s>A>TL1(x⊗ Im)+s>A>TL0 = s>A> · ((TL1 +U(In ⊗R))(x⊗ Im)+ (TL0 +VR)
)− (

s>A>U(x⊗ Ik)+s>A>V
) ·R

in which we use the equality (In ⊗R)(x⊗ Im) = (x⊗ Ik)R. This readily proves the correctness.

13

Remark 2 (Comparison with W17 [43]). The ciphertext in [43] contains a term of the form

[x>⊗s>A>V+s>A>U]1 ∈Gkn
1 in the place of [s>A>U(x⊗ Ik)+s>A>V]1 ∈Gk

1

where U ← Z
(k+1)×kn
p ,V ← Z

(k+1)×k
p . The secret key sizes in both our schemes and that in [43] are O(mn +n′). In our

scheme, the multiplicative factor of n comes at the cost of a smaller ciphertext. In [43], the multiplicative factor of n

comes from a locality requirement that each column of L1(x⊗ Im)+L0 depends on a single entry of x, which can be

achieved generically at the cost of a blow-up of n. We remove the locality requirement in our scheme.

Security. We have the following theorem with the proof shown in the subsequent subsection.

Theorem 1. Our one-slot scheme Πone for attribute-weighted sums described in this section achieves simulation-based

semi-adaptive security under the MDDH assumption in G1 and in G2.

5.2 Simulator

We start by describing the simulator.

– Setup∗(1λ,1n ,1n′
): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A ←Z
(k+1)×k
p and W ←Z

(k+1)×n′
p , U ←Z

(k+1)×kn
p , V ←Z

(k+1)×k
p

c ←Zk+1
p w̃ ←Zn′

p , ṽ ←Zk
p

and output

mpk= (
G, [A>]1, [A>W]1, [A>U]1, [A>V]1

)
and msk∗ = (

W, U, V, w̃, ṽ, c,C⊥,A,a⊥)
where (A|c)>(C⊥|a⊥) = Ik+1. Here we assume that (A|c) has full rank, which happens with probability 1−1/p.

– Enc∗(msk∗,x∗): Output

ct∗ = (
[c>]1, [w̃>]1, [ṽ>]1

)
and x∗.

– KeyGen∗(msk∗,x∗, f ,µ ∈Zp): Run

(L1,L0) ← lgen(f) and ((p∗
1)>, (p∗

2)>) ← pgb∗(f ,x∗,µ).

Sample û ←Znm
p , T ←Z

(k+1)×(m+n′−1)
p and R ←Zk×m

p and output

sk∗f =
(

C⊥ · sk∗f [1]+a⊥ · sk∗f [2], [R]2
)

and f (15)

where

sk∗f [1] = (
[A>T+A>W]2, [A>TL1 +A>U(In ⊗R)]2, [A>TL0 +A>VR]2

)
sk∗f [2] = (

[−(p∗
1)>+ w̃>]2, [û>]2, [(p∗

2)>− û>(x∗⊗ Im)+ ṽ>R]2
)

Here T refers to the matrix composed of the right most n′ columns of T. That is,

sk∗f =

[C⊥(A>T+A>W) +a⊥(−(p∗

1)>+ w̃>)]2,

[C⊥(A>TL1 +A>U(In ⊗R)) +a⊥(û>)]2 , [R]2

[C⊥(A>TL0 +A>VR) +a⊥(
(p ∗

2)>− û>(x∗⊗ Im)+ ṽ>R
)
]2

Remark 3 (decryption checks). As a sanity check, we check that an adversary cannot use the decryption algorithm to

distinguish between the real and simulated output.

Observe that when we decrypt the simulated ciphertext ct∗x∗ ←Enc∗(msk∗,x∗) with the simulated secret key sk∗f ←
KeyGen∗(msk∗,x∗, f , f (x∗)>z∗), the sk∗f [1] part cancels out and leaves just the sk∗f [2] part since

c>C⊥ = 0,c>a⊥ = 1

14

and we end up with ((p∗
1)>, (p∗

2)>)d f ,x∗ = f (x∗)>z∗ where ((p∗
1)>, (p∗

2)>) ← pgb∗(f ,x∗, f (x∗)>z∗).

Similarly, when we decrypt a normal ciphertext ctx,z ←Enc(mpk, (x,z)) corresponding to any (x,z) with a simulated

secret key, the sk∗f [2] part cancels out and leaves just the sk∗f [1] part since

A>C⊥ = I,A>a⊥ = 0.

We end up with (p>
1,p>

2)d f ,x = f (x)>z where (p>
1,p>

2) = pgb(f ,x,z; (s>A>T)>) as in the real Dec algorithm.

5.3 Proof

With our simulator, we prove the following theorem which implies Theorem 1.

Theorem 2. For all A, there exist B1 and B2 with Time(B1),Time(B2) ≈Time(A) such that

AdvΠone
A

(λ) ≤Adv
MDDH1

k,k+1

B1
(λ)+Adv

MDDHn
k,mQ

B2
(λ)+1/p

where n is length of public input x∗ in the challenge, m is the parameter depending on size of function f and Q is the

number of key queries.

Note that this yields a tight security reduction to the k-Lin assumption. Before we proceed to describe the game se-

quence and proof, we state the following lemma we will use.

Lemma 3 (statistical lemma). For any full-rank (A|c) ∈Z(k+1)×k
p ×Zk+1

p , we have

{
A>W, c>W : W ←Z(k+1)×k

p

}≡ {
A>W, w̃> : W ←Z(k+1)×k

p , w̃ ←Zk
p

}
.

Game sequence. We use (x∗,z∗) to denote the semi-adaptive challenge and for notational simplicity, assume that all

key queries f j share the same parameter m. We prove Theorem 2 via a series of games.

Game0: Real game.

Game1: Identical to Game0 except that ct∗ for (x∗,z∗) is given by

ct∗ = (
[c>]1, [(z∗)>+ c> W]1, [c> U(x∗⊗ Ik)+ c> V]1

)
where c ←Zk+1

p . We claim that Game0 ≈c Game1. This follows from MDDH1
k,k+1 assumption:

[A>]1, [s>A>]1 ≈c [A>]1, [c>]1 .

In the reduction, we sample W,U,V honestly and use them to simulate mpk and KeyGen(msk, ·) along with [A>]1;

the challenge ciphertext ct∗ is generated using the challenge term given above. See Lemma 4 for details.

Game2: Identical to Game1 except that the j -th query f j to KeyGen(msk, ·) is answered by

sk f j =
(

C⊥ · sk f j [1]+a⊥ · sk f j [2], [R j]2
)

with

sk f j [1] = (
[A>T j +A>W]2, [A>T j L1, j +A>U(In ⊗R j)]2, [A>T j L0, j +A>VR j]2

)
sk f j [2] = (

[c>T j +c>W]2, [c>T j L1, j +c>U(In ⊗R j)]2, [c>T j L0, j +c>VR j]2
)

where (L1, j ,L0, j) ← lgen(f j), T j ← Z
(k+1)×(m+n′−1)
p , R j ← Zk×m

p , c is the randomness in ct∗ and C⊥,a⊥ are defined

such that (A|c)>(C⊥|a⊥) = Ik+1 (cf. Setup∗ in Section 5.2). By basic linear algebra, we have Game1 =Game2.

15

Game3: Identical to Game2 except that we replace Setup,Enc with Setup∗,Enc∗ where ct∗ is given by

ct∗ = (
[c>]1, [w̃>]1, [ṽ>]1

)
and replace KeyGen(msk, ·) with KeyGen∗3 (msk∗, ·), which works as KeyGen(msk, ·) in Game2 except that, for the

j -th query f j , we compute

sk f j [2] = (
[t̃>j − (z∗)>+ w̃>]2 , [t̃>j L1, j + ũ> (In ⊗R j)]2, [t̃>j L0, j −ũ>(In ⊗R j)(x∗⊗ Im)+ ṽ>R j]2

)
where w̃, ṽ are given in msk∗ (output by Setup∗) and ũ ←Zkn

p ,t j ←Zm+n′−1
p , R j ←Zk×m

p . We claim that Game2 ≈s

Game3. This follows from the following statement: for any full-rank (A|c), we have

(A>U,c>U, A>W,c>W, A>V,c>V, A>T j ,c>T j)

≡ (A>U, ũ> , A>W, w̃>− (z∗)> , A>V, ṽ>− ũ>(x∗⊗ Ik) , A>T j , t̃>j)

which is implied by Lemma 3. See Lemma 5 for details.

Game4: Identical to Game3 except that we replace KeyGen∗3 with KeyGen∗4 which works as KeyGen∗3 except that, for

the j -th query f j , we compute

sk f j [2] = (
[t̃>j − (z∗)>+ w̃>]2, [t̃>j L1, j + û>

j]2, [t̃>j L0, j − û>
j (x∗⊗ Im)+ ṽ>R j]2

)
where û j ← Znm

p and R j ← Zk×m
p . We claim that Game3 ≈c Game4. This follows from MDDHn

k,mQ assumption

which tells us that {
[ũ>(In ⊗R j)]2, [R j]2

}
j∈[Q] ≈c

{
[û>

j]2 , [R j]2
}

j∈[Q]

where Q is the number of key queries. See Lemma 6 for details.

Game5: Identical to Game4 except that we replace KeyGen∗4 with KeyGen∗; this is the ideal game. We claim that

Game4 ≈s Game5. This follows from the privacy of partial garbling scheme in Section 4.2. See Lemma 7 for de-

tails.

We use AdvxxA (λ) to denote the advantage of adversary A in Gamexx.

5.4 Lemmas

We prove the following lemmas showing the indistinguishability of adjacent games listed above. This completes the

proof of Theorem 2.

Lemma 4 (Game0 ≈c Game1). For all A, there exists B1 with Time(B1) ≈Time(A) such that

|Adv1
A(λ)−Adv0

A(λ)| ≤Adv
MDDH1

k,k+1

B1
(λ).

Proof. Recall that we replace s>A> with c> ←Z
1×(k+1)
p in ct∗ in Game1. We prove the lemma from MDDH1

k,k+1 as-

sumption:

[A>]1, [s>A>]1 ≈c [A>]1, [c>]1

where s ←Zk
p and c ←Zk+1

p . On input [A>]1, [c>]1 where

c> = s>A> or c> ← Z
1×(k+1)
p ,

the algorithm B1 samples msk= (W,U,V) and proceeds as follows:

– simulate mpk using msk and [A>]1;

16

– on input the semi-adaptive challenge (x∗,z∗), output the challenge ciphertext

ct∗ = (
[c>]1, [(z∗)>+c>W]1, [c>U(x∗⊗ Ik)+c>V]1

)
using [c]1 and msk;

– we answer all key queries honestly using msk.

Observe that, when c> = s>A> , the simulation is identical to Game0; when c> ← Z
1×(k+1)
p , the simulation is identical

to Game1. This proves the lemma. ut

Lemma 5 (Game2 ≈c Game3). For all A, we have Adv3
A(λ) ≈Adv2

A(λ).

Proof (of Lemma 5). Recall that the difference between the two games lies in ct∗ and sk f j [2]: instead of computing

ct∗ = (
[c>]1, [(z∗)>+c>W]1 , [c>U(x∗⊗ Ik)+c>V]1

)
sk f j [2] = (

[c>T j +c>W]2 , [c>T j L1, j + c>U (In ⊗R j)]2, [c>T j L0, j + c>VR j]2
)

in Game2, we compute

ct∗ = (
[c>]1, [w̃>]1, [ṽ>]1

)
sk f j [2] = (

[t̃>j − (z∗)>+ w̃>]2 , [t̃>j L1, j + ũ> (In ⊗R j)]2, [t̃>j L0, j −ũ>(In ⊗R j)(x∗⊗ Im)+ ṽ>R j]2
)

in Game3.

This follows readily from the following statement, which in turn follows from Lemma 3: for all x∗,z∗,

(A>U, c>U , A>W, c>W , A>V, c>V , A>T j , c>T j)

≡ (A>U, ũ> , A>W, w̃>− (z∗)> , A>V, ṽ>− ũ>(x∗⊗ Ik) , A>T j , t̃>j)

where U,W,V,w̃, ṽ are sampled as in Setup∗ and ũ ← Zkn
p ,T j ← Z

(k+1)×(m+n′−1)
p , t̃ j ← Zm+n′−1

p . We clarify that in the

semi-adaptive security game, (x∗,z∗) are chosen after seeing A>U,A>W,A>V. Since the two distributions are identi-

cally distributed, the distinguishing advantage remains 0 even for adaptive choices of x∗,z∗ via a random guessing

argument.

Finally, note that A>U,A>W,A>V,A>T j are used to simulate mpk, sk f j [1], whereas the boxed/gray terms are used to

simulate sk f j [2]. This readily proves the lemma. ut

Lemma 6 (Game3 ≈c Game4). For all A, there exists B2 with Time(B2) ≈Time(A) such that

|Adv4
A(λ)−Adv3

A(λ)| ≤Adv
MDDHn

k,mQ

B2
(λ)

where n is length of public input x in the challenge, m is the maximum size of function f and Q is the number of key

queries.

Proof. Recall that the differences between the two games is that we replace ũ>(In ⊗R j) with û>
j in sk f j [2] for all

j ∈ [Q]. We prove the lemma from MDDHn
k,mQ assumption which implies that

{
[ũ>(In ⊗R j)]2 , [R j]2

}
j∈[Q] ≈c

{
[û>

j]2 , [R j]2
}

j∈[Q] (16)

where ũ ←Zkn
p , R j ←Zk×m

p , û j ←Znm
p . To see that MDDHn

k,mQ implies (16), we write

ũ> = (ũ>
1, . . . , ũ>

n) ∈ (Z1×k
p)n and û>

j = (û>
j ,1, . . . , ũ>

j ,n) ∈ (Z1×m
p)n ,∀ j ∈ [Q]

and restate (16) as follows:

[MS]2, [M]2 ≈c [U]2, [M]2

17

where

S = (ũ1| · · · |ũn) ←Zk×n
p , M =

R>

1
...

R>
Q

←Z
mQ×k
p , U =

û1,1 · · · û1,n

...
...

ûQ,1 · · · ûQ,n

←Z
mQ×n
p ,

this is exactly that MDDHn
k,mQ assumption states.

We proceed to prove the lemma from (16). On input
{
[t>j]2, [R j]2

}
j∈[Q] where

t>j = ũ>(In ⊗R j) or t>j = û>
j ,

the algorithm B works as follows:

Setup. Run Setup∗ honestly with output

mpk= (
G, [A>]1, [A>W]1, [A>U]1, [A>V]1

)
and msk∗ = (

W, U, V, w̃, ṽ, c,C⊥,A,a⊥)
and return mpk to A.

Challenge. On the semi-adaptive challenge (x∗,z∗), output Enc∗(msk∗,x∗).

Key queries. On input the j -th key query f j , we sample T j ← Z
(k+1)×(m+n′−1)
p , t̃ j ← Zm+n′−1

p and want to return sk f j

combined from the components below via (15):

sk f j [1] = (
[A>T j +A>W]2, [A>T j L1, j +A>U(In ⊗R j)]2, [A>T j L0, j +A>VR j]2

)
sk f j [2] = (

[t̃>j − (z∗)>+ w̃>]2, [t̃>j L1, j + t>j]2, [t̃>j L0, j − t>j (x∗⊗ Im)+ ṽ>R j]2
)

where

t>j =
 ũ>(In ⊗R j) , KeyGen∗3

û>
j , KeyGen∗4

Here sk f j [1] can be simulated using msk∗ and [R j]2 given out in the input; sk f j [2] can be simulated using msk∗,

[R j]2 and the challenge term [t>j]2 in the input.

Observe that

– when t>j = ũ>(In ⊗R j) , we simulate KeyGen∗3 during Key queries and the simulation is identical to Game3;

– when t>j = û>
j , we simulate KeyGen∗4 during Key queries and the simulation is identical to Game4.

This proves the lemma. ut
Lemma 7 (Game4 ≈s Game5). For all A, we have Adv5

A(λ) ≈Adv4
A(λ).

Proof. Recall that the difference between the two games lies in sk f j [2]: instead of computing

sk f j [2] = (
[t̃>j − (z∗)> + w̃>]2, [t̃>j L1, j + û>

j]2, [t̃>j L0, j − û>(x∗⊗ Im) + ṽ>R]2
)

in KeyGen∗4 (i.e., Game4), we compute

sk f j [2] = (
[t̃>j + w̃>]2, [û>

j]2, [t̃>j (L1, j (x∗⊗ Im)+L0, j)+e>
1 · f j (x∗)>z∗− û>

j (x∗⊗ Im) + ṽ>R]2
)

in KeyGen∗ (i.e., Game5). By change of variable û>
j 7→ û>

j − t̃>j L1, j for all j ∈ [Q] in Game4, we can rewrite in the form:

sk f j [2] = (
[−p>

j ,1 + w̃>]2, [û>
j]2, [p>

j ,2 − û>
j (x∗⊗ Im)+ ṽ>R]2

)
where

(p>
j ,1,p>

j ,2) ←
 pgb(f j ,x∗,z∗; t̃ j) in Game4

pgb∗(f j ,x∗, f j (x∗)>z∗; t̃ j) in Game5

Then the lemma immediately follows from the privacy of underlying partial garbling scheme which means pgb(f j ,x∗,z∗) ≈s

pgb∗(f j ,x∗, f j (x∗)>z∗). ut

18

6 Πext: ExtendingΠone

In this section, we extend our one-slot FE scheme Πone in Section 5 to handle the randomization offsets w>r. The

scheme achieves simulation-based semi-adaptive security under k-Linear assumption.

Extension. The extended scheme is the same as a one-slot FE for attribute-weighted sums, except we replace func-

tionality ((x,z), f) 7→ f (x)>z with

((x,z‖w), (f , [r]2)) 7→ [f (x)>z+w>r]T

where w,r ∈Zk
p . That is, we make the following modifications:

– Enc takes z‖w instead of z as the second input;

– KeyGen,KeyGen∗ takes (f , [r]2) instead of f as input;

– in correctness, decryption computes [f (x)>z+w>r]T instead of f (x)>z;

– in the security definition, A produces (x∗,z∗‖w∗) instead of (x∗,z∗), and KeyGen∗ gets [f (x∗)>z∗+(w∗)>r]2 instead

of f (x∗)>z∗.

In particular, correctness states that:

Dec(Enc(mpk, (x,z‖w)),KeyGen(msk, (f , [r]2))) = [f (x)>z+w>r]T

Construction overview. To obtain a scheme with the extension, the idea —following the IPFE in [8]— is to augment

the previous construction Πone with [A>W0]1 in mpk, [w> + s>A>W0]1 in the ciphertext, and [W0r]2 in the secret key.

During decryption, we will additionally compute

e([w>+s>A>W0]1, [r]2) ·e([s>A>]1, [W0r]2)−1 = [w>r]T

This works for correctness, but violates security since the decryptor learns both [f (x)>z]T and [w>r]T instead of just

the sum. To avoid this leakage while preserving correctness, we will carefully embed W0r into the secret key for Πone,

while relying on the extension of the garbling scheme for handling shifts to argue both correctness and security, cf.

Section 4.2.

6.1 Our scheme

Scheme. Our extended one-slot FE scheme Πext in prime-order bilinear group is described as follows. The boxes

indicate the changes from the scheme in Section 5.1.

– Setup(1λ,1n ,1n′
): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A ←Z(k+1)×k
p and W ←Z(k+1)×n′

p , W0 ←Z(k+1)×k
p , U ←Z(k+1)×kn

p , V ←Z(k+1)×k
p

and output

mpk= (
G, [A>]1, [A>W]1, [A>U]1, [A>V]1, [A>W0]1

)
and msk= (

W, U, V, W0
)
.

– Enc(mpk, (x,z‖w)): Sample s ←Zk
p and output

ctx,z,w = (
[s>A>]1, [z>+s>A>W]1, [s>A>U(x⊗ Ik)+s>A>V]1, [w>+s>A>W0]1

)
and x.

– KeyGen(msk, (f , [r]2)): Run (L1,L0) ← lgen(f) where L1 ∈ Z(m+n′−1)×mn
p ,L0 ∈ Z(m+n′−1)×m

p (cf. Section 4.2). Sample

T ←Z
(k+1)×(m+n′−1)
p and R ←Zk×m

p and output9

sk f ,r =
(

[T+W]2, [TL1 +U(In ⊗R)]2, [TL0 − W0r ·e>
1 +VR]2, [R]2

)
and (f , [r]2)

where T refers to the matrix composed of the right most n′ columns of T.

9 We use r instead of [r]2 in the subscript here and note that the function is described by (f , [r]2) rather than (f ,r).

19

– Dec((sk f ,r, (f , [r]2)), (ctx,z‖w,x)): On input key:

sk f ,r =
(

[K1]2, [K2]2, [K3]2, [R]2
)

and (f , [r]2)

and ciphertext:

ctx,z‖w = (
[c>0]1, [c>1]1, [c>2]1, [c>3]1

)
and x

the decryption works as follows:

1. compute

[p>
1]T = e([c>1]1, [In′]2) ·e([c>0]1, [−K1]2) (17)

2. compute

[p>
2]T = e([c>0]1, [K2(x⊗ Im)+K3]2) ·e([−c>2]1, [R]2) · e([c>3]1, [r ·e>

1]2) (18)

3. run d f ,x ← rec(f ,x) (see Section 4.2), output

[D]T = [(p>
1,p>

2)d f ,x]T (19)

Simulator. The simulator for Πext is as follows. The boxes indicate the changes from the simulator for Πone in Sec-

tion 5.2.

– Setup∗(1λ,1n ,1n′
): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

A ←Z
(k+1)×k
p and W ←Z

(k+1)×n′
p , W0 ←Z(k+1)×k

p , U ←Z
(k+1)×kn
p , V ←Z

(k+1)×k
p

c ←Zk+1
p w̃ ←Zn′

p , w̃0 ←Zk
p , ṽ ←Zk

p

and output

mpk = (
G, [A>]1, [A>W]1, [A>W0]1 , [A>U]1, [A>V]1

)
msk∗ = (

W, W0 , U, V, w̃, w̃0 , ṽ, c,C⊥,A,a⊥)
where (A|c)>(C⊥|a⊥) = Ik+1. Here we assume that (A|c) has full rank, which happens with probability 1−1/p.

– Enc∗(msk∗,x∗): Output

ct∗ = (
[c>]1, [w̃>]1, [ṽ>]1, [w̃>

0]1
)

and x∗.

– KeyGen∗(msk∗,x∗, (f , [r]2), [µ]2): Run

(L1,L0) ← lgen(f) and ([(p∗
1)>]2, [(p∗

2)>]2) ← pgb∗(f ,x∗, [µ]2).

Here, we use the fact that pgb∗(f ,x∗, ·) is an affine function. Sample û ←Znm
p , T ←Z

(k+1)×(m+n′−1)
p and R ←Zk×m

p

and output

sk∗f ,r =
(

C⊥ · sk∗f ,r[1]+a⊥ · sk∗f ,r[2], [R]2
)

and (f , [r]2) (20)

where

sk∗f ,r[1] = (
[A>T+A>W]2, [A>TL1 +A>U(In ⊗R)]2, [A>TL0 − A>W0r ·e>

1 +A>VR]2
)

sk∗f ,r[2] = (
[−(p∗

1)>+ w̃>]2, [û>]2, [(p∗
2)>− û>(x∗⊗ Im)− w̃>

0r ·e>
1 + ṽ>R]2

)
Here T refers to the matrix composed of the right most n′ columns of T. That is,

sk∗f ,r =

[C⊥(A>T+A>W) +a⊥(−(p∗

1)>+ w̃>)]2,

[C⊥(A>TL1 +A>U(In ⊗R)) +a⊥(û>)]2 , [R]2

[C⊥(A>TL0 − A>W0r ·e>
1 +A>VR) +a⊥(

(p ∗
2)>− û>(x∗⊗ Im)− w̃>

0r ·e>
1 + ṽ>R

)
]2

20

6.2 Analysis

The proof of correctness and security are the same as before in (12) and Lemma 4,6, with the following modifications

(indicated by the boxes):

– In the proof of correctness, we have

[p>
2]T = e([c>0]1, [K2(x⊗ Im)+K3]2) ·e([−c>2]1, [R]2) · e([c>3]1, [r ·e>

1]2)

= [s>A>TL1(x⊗ Im)− s>A>W0r ·e>
1 +s>A>TL0]T · [w>r ·e>

1 +s>A>W0r ·e>
1]T

= [s>A>TL1(x⊗ Im)+s>A>TL0 + w>r ·e>
1]T

and we rely on reconstruction with shift w>r.

– In Lemma 5, we also use
Game2︷ ︸︸ ︷

(A>W0,c>W0) ≡
Game3︷ ︸︸ ︷

(A>W0,w̃>
0 − (w∗)>) .

– Game3, we have:

sk f j ,r j [2] = (
[t̃>j − (z∗)>+ w̃>]2, [t̃>j L1, j + ũ>(In ⊗R j)]2, [t̃>j L0, j−ũ>(In ⊗R j)(x∗⊗ Im)− w̃>

0r j ·e>
1 + ṽ>R j]2

)
– Game4, we have:

sk f j ,r j [2] = (
[t̃>j − (z∗)>+ w̃>]2, [t̃>j L1, j + û>

j]2, [t̃>j L0, j − û>
j (x∗⊗ Im)− w̃>

0r j ·e>
1 + ṽ>R j]2

)
– In Lemma 7, recall that the difference between the two games lies in sk f j ,r j [2]:

sk f j ,r j [2] = (
[−p>

j ,1 + w̃>]2, [û>
j]2, [p>

j ,2 − û>
j (x∗⊗ Im)− w̃>

0r j ·e>
1 + ṽ>R]2

)
where we use

(p>
j ,1,p>

j ,2) ←
pgb(f j ,x∗,z∗; t̃ j)+ (0, (w∗)>r j ·e>

1) in Game4

pgb∗(f j ,x∗, f j (x∗)>z∗+ (w∗)>r j ; t̃ j) in Game5

7 Πubd: Unbounded-Slot Scheme

In this section, we describe our unbounded-slot FE scheme. We give a generic transformation from scheme Πext in

Section 6 and present a self-contained description of the scheme in Section B.

7.1 Scheme

LetΠext = (Setupext,Encext,KeyGenext,Decext) be the extended one-slot FE scheme in Section 6. Our unbounded-slot

FE scheme Πubd is as follows:

– Setup(1λ,1n ,1n′
): Run

(mpk1,msk1) ← Setupext(1λ,1n ,1n′
); (mpk2,msk2) ← Setupext(1λ,1n ,1n′

)

and output

mpk= (mpk1,mpk2) and msk= (msk1,msk2).

– Enc(mpk, (xi ,zi)i∈[N]): Sample

w2, . . . ,wN ←Zk
p ,

compute

ct1 ← Encext(mpk1, (x1,z1‖−∑
i∈[2,N] wi))

cti ← Encext(mpk2, (xi ,zi‖wi)), ∀i ∈ [2, N]

and output

ct(xi ,zi) = (ct1, . . . ,ctN) and (xi)i∈[N].

21

– KeyGen(msk, f): Pick r ←Zk
p , compute

sk f ,1 ←KeyGenext(msk1, (f , [r]2)); sk f ,2 ←KeyGenext(msk2, (f , [r]2))

and output

sk f = (sk f ,1,sk f ,2, [r]2) and f .

– Dec((sk f , f), (ct(xi ,zi), (xi)i∈[N])): Parse ciphertext and key as

sk f = (sk f ,1,sk f ,2, [r]2) and ct(xi ,zi) = (ct1, . . . ,ctN).

We proceed as follows:

1. Compute

[D1]T ←Decext
(
(sk f ,1, (f , [r]2)), (ct1,x1)

)
; (21)

2. For all i ∈ [2, N], compute

[Di]T ←Decext
(
(sk f ,2, (f , [r]2)), (cti ,xi)

)
; (22)

3. Compute

[D]T = [D1]T · · · [DN]T (23)

and output D via brute-force discrete log.

Correctness. For ct(xi ,zi) with randomness w2, . . . ,wN and sk f with randomness r, we have

D1 = f (x1)>z1 −∑
i∈[2,N] w>

i r (24)

Di = f (xi)>zi +w>
i r, ∀i ∈ [2, N] (25)

D = ∑
i∈[N] f (xi)>zi (26)

Here (24) and (25) follow from the correctness of Πext and the last (26) is implied by (24) and (25). This readily proves

the correctness.

Security. We have the following theorem with the proof shown in the subsequent subsection.

Theorem 3. Assume that extended one-slot schemeΠext achieves simulation-based semi-adaptive security, our unbounded-

slot FE scheme Πubd described in this section achieves simulation-based semi-adaptive security under the k-Linear as-

sumption in G2.

7.2 Simulator

Let (Setup∗ext,Enc
∗
ext,KeyGen

∗
ext) be the simulator for Πext, we start by describing the simulator for Πubd. As written,

the adversary needs to commit to the length N in advance; this is merely an artifact of our formalization of simulation-

based security, and can be avoided by having Enc∗ pass auxiliary information to KeyGen∗.

– Setup∗(1λ,1n ,1n′
,1N): Sample

w2, . . . ,wN ←Zk
p ,

run

(mpk1,msk∗1) ← Setup∗ext(1λ,1n ,1n′
); (mpk2,msk2) ← Setupext(1λ,1n ,1n′

)

and output

mpk= (mpk1,mpk2) and msk∗ = (msk∗1 ,msk2,w2, . . . ,wN).

22

– Enc∗(msk∗, (x∗i)i∈[N]): Compute

ct∗1 ←Enc∗ext(msk∗1 ,x∗1) and cti ←Encext(mpk2, (x∗i ,0‖wi)), ∀i ∈ [2, N]

and output

ct∗ = (ct∗1 ,ct2, . . . ,ctN) and (x∗i)i∈[N].

– KeyGen∗(msk∗, (x∗i)i∈[N], f ,µ ∈Zp): Pick r ←Zk
p , compute

sk∗f ,1 ← KeyGen∗ext(msk∗1 ,x∗1 , (f , [r]2), [µ−∑
i∈[2,N] w>

i r]2)

sk f ,2 ← KeyGenext(msk2, (f , [r]2))

and output

sk∗f = (sk∗f ,1,sk f ,2, [r]2) and f .

7.3 Proof

With our simulator, we prove the following theorem which implies Theorem 3.

Theorem 4. For all A, there exist B1 and B2 with Time(B1),Time(B2) ≈Time(A) such that

AdvΠubd
A

(λ) ≤ (2N −1) ·AdvΠext
B1

(λ)+ (N −1) ·AdvMDDH1
k,Q

B2
(λ)

where Q is the number of key queries and N is number of slots.

Game sequence. We use (x∗1 ,z∗1 , . . . ,x∗N ,z∗N) to denote the semi-adaptive challenge and prove Theorem 4 via the fol-

lowing game sequence summarized in Fig 4, where

Game0 ≈c Game1 =Game2.0 ≈c Game2.1 ≈c Game2.2 ≈c Game2.3

. . .

=GameN .0 ≈c GameN .1 ≈c GameN .2 ≈c GameN .3

Game0: Real game.

Game1: Identical to Game0 except for the boxed terms below:

– we generate mpk= (mpk1,mpk2) and msk= (msk∗1 ,msk2) where

(mpk1,msk∗1) ← Setup∗ext(1λ,1n ,1n′
) ; (mpk2,msk2) ← Setupext(1λ,1n ,1n′

)

– the challenge ciphertext for (x∗1 ,z∗1 , . . . ,x∗N ,z∗N) is ct∗ = (ct∗1 ,ct2, . . . ,ctN) where

ct∗1 ←Enc∗ext(msk∗1 ,x∗1) ; cti ←Encext(mpk2, (x∗i ,z∗i ‖wi)), ∀i ∈ [2, N]

– the key for the j -th query f j is sk f j = (sk∗f j ,1 ,sk f j ,2, [r j]2) where

sk∗f j ,1 ←KeyGen∗ext
(
msk∗1 ,x∗1 , (f j , [r j]2), [f j (x∗1)>z∗1 −∑

i∈[2,N] w>
i r j]2

)
sk f j ,2 ←KeyGenext(msk2, (f j , [r j]2));

where w2, . . . ,wN ←Zk
p and r j ←Zk

p for all j ∈ [Q]. We claim thatGame0 ≈c Game1. This follows from the simulation-

based semi-adaptive security of Πext. See Lemma 8 for more details.

Gameη.0 for η ∈ [2, N]: Identical to Game1 except for the boxed terms below:

23

– the challenge ciphertext for (x∗1 ,z∗1 , . . . ,x∗N ,z∗N) is ct∗ = (ct∗1 ,ct2, . . . ,ctN) where

ct∗1 ←Enc∗ext(msk∗1 ,x∗1); cti ←
Encext(mpk2, (x∗i , 0 ‖wi)) i ∈ [2,η−1]

Encext(mpk2, (x∗i , z∗i ‖wi)) i ∈ [η, N]

– the key for the j -th query f j is sk f j = (sk∗f j ,1,sk f j ,2, [r j]2) where

sk∗f j ,1 ←KeyGen∗ext
(
msk∗1 ,x∗1 , (f j , [r j]2), [

∑
i∈[η−1] f j (x∗i)>z∗i −∑

i∈[2,N] w>
i r j]2

)
sk f j ,2 ←KeyGenext(msk2, (f j , [r j]2));

where w2, . . . ,wN ←Zk
p and r j ←Zk

p for all j ∈ [Q].

Gameη.1 for η ∈ [2, N]: Identical to Gameη.0 except for the boxed terms below:

– we generate mpk= (mpk1,mpk2) and msk= (msk∗1 , msk∗2) where

(mpk1,msk∗1) ← Setup∗ext(1λ,1n ,1n′
); (mpk2,msk∗2) ← Setup∗ext(1λ,1n ,1n′

)

– the challenge ciphertext for (x∗1 ,z∗1 , . . . ,x∗N ,z∗N) is ct∗ = (ct∗1 ,ct2, . . . ,ctη−1, ct∗η ,ctη+1, . . . ,ctN) where

ct∗1 ←Enc∗ext(msk∗1 ,x∗1) and

cti ←Encext(mpk2, (x∗i ,0‖wi)) i ∈ [2,η−1]

ct∗η ←Enc∗ext(msk∗2 ,x∗η) i = η
cti ←Encext(mpk2, (x∗i , z∗i ‖wi)) i ∈ [η+1, N]

– the key for the j -th query f j is sk f j = (sk∗f j ,1, sk∗f j ,2 , [r j]2) where

sk∗f j ,1 ←KeyGen∗ext
(
msk∗1 ,x∗1 , (f j , [r j]2), [

∑
i∈[η−1] f j (x∗i)>z∗i −∑

i∈[2,N] w>
i r j]2

)
sk∗f j ,2 ←KeyGen∗ext(msk∗2 ,x∗η , (f j , [r j]2), [f j (x∗η)>z∗η +w>

ηr j]2)

where w2, . . . ,wN ← Zk
p and r j ← Zk

p for all j ∈ [Q]. We claim that Gameη.0 ≈c Gameη.1. This follows from the

simulation-based semi-adaptive security of Πext. See Lemma 9 for more details.

Gameη.2 for η ∈ [2, N]: Identical to Gameη.1 except for the boxed terms below:

– the key for the j -th query f j is sk f j = (sk∗f j ,1,sk∗f j ,2, [r j]2) where

sk∗f j ,1 ←KeyGen∗ext
(
msk∗1 ,x∗1 , (f j , [r j]2), [

∑
i∈[η] f j (x∗i)>z∗i −∑

i∈[2,N] w>
i r j]2

)
sk∗f j ,2 ←KeyGen∗ext(msk∗2 ,x∗η , (f j , [r j]2), [w>

ηr j]2)

where w2, . . . ,wN ←Zk
p and r j ←Zk

p for all j ∈ [Q]. We claim that Gameη.1 ≈c Gameη.2. This follows from Lemma 1

w.r.t. wη and f j (x∗η)>z∗η which is implied by MDDH1
k,Q assumption: for all f j ,x∗η ,z∗η ,

{ sk∗f j ,1︷ ︸︸ ︷
[−w>

ηr j]2,

sk∗f j ,2︷ ︸︸ ︷
[f j (x∗η)>z∗η +w>

ηr j]2, [r j]2
}

j∈[Q]

≈c
{

[f j (x∗η)>z∗η −w>
ηr j]2, [w>

ηr j]2, [r j]2
}

j∈[Q]

(27)

where wη,r j ←Zk
p for all j ∈ [Q]. See Lemma 10 for more details.

Gameη.3 for η ∈ [2, N]: Identical to Gameη.2 except for the boxed terms below:

24

– we generate mpk= (mpk1,mpk2) and msk= (msk∗1 , msk2) where

(mpk1,msk∗1) ← Setup∗ext(1λ,1n ,1n′
); (mpk2,msk2) ← Setupext(1λ,1n ,1n′

)

– the challenge ciphertext for (x∗1 ,z∗1 , . . . ,x∗N ,z∗N) is ct∗ = (ct∗1 ,ct2, . . . ,ctη−1, ctη ,ctη+1, . . . ,ctN) where

ct∗1 ←Enc∗ext(msk∗1 ,x∗1) and

cti ←Encext(mpk2, (x∗i ,0‖wi)) i ∈ [2,η−1]

cti ←Encext(mpk2, (x∗η ,0‖wη)) i = η
cti ←Encext(mpk2, (x∗i , z∗i ‖wi)) i ∈ [η+1, N]

– the key for the j -th query f j is sk f j = (sk∗f j ,1, sk f j ,2 , [r j]2) where

sk∗f j ,1 ←KeyGen∗ext
(
msk∗1 ,x∗1 , (f j , [r j]2), [

∑
i∈[η] f j (x∗i)>z∗i −∑

i∈[2,N] w>
i r j]2

)
sk f j ,2 ←KeyGenext(msk2, (f j , [r j]2))

where w2, . . . ,wN ← Zk
p and r j ← Zk

p for all j ∈ [Q]. We claim that Gameη.2 ≈c Gameη.3. This follows from the

simulation-based semi-adaptive security ofΠext with the fact f j (x∗η)>0+w>
ηr = w>

ηr. See Lemma 11 for more details.

Here we have Game2.0 = Game1 and Gameη.0 = Gameη−1.3 for all η ∈ [3, N]. Note that GameN .3 corresponds to the

output of the simulator in the ideal game. We summarize the game sequence in Fig 4.

7.4 Lemmas

We prove the following lemmas showing the indistinguishability of adjacent games listed above. This completes the

proof of Theorem 4.

Lemma 8 (Game0 ≈c Game1). For all A, there exists B1 with Time(B1) ≈Time(A) such that

|Adv1
A(λ)−Adv0

A(λ)| ≤AdvΠext
B1

(λ).

Proof. Recall that the difference lies in msk1, ct1 and sk f j ,1:

– in Game0, we compute them by (Setupext,Encext,KeyGenext) ;

– in Game1, we compute them by (Setup∗ext,Enc
∗
ext,KeyGen

∗
ext) .

The lemma follows from the simulation-based semi-adaptive security of Πext, cf. Section 4. The algorithm B1 works

as follows:

Initialize. Get �mpk from the challenger, run

(mpk2,msk2) ← Setupext(1λ,1n ,1n′
)

and return (�mpk,mpk2) to A.

Challenge. On the challenge message (x∗1 ,z∗1 , . . . ,x∗N ,z∗N) from A, pick w2, . . . ,wN ← Zk
p , submit (x∗1 ,z∗1‖−

∑
i∈[2,N] wi)

to the challenger and get ĉt. Run

cti ←Encext(mpk2, (x∗i ,z∗i ‖wi)), ∀i ∈ [2, N]

and return ct∗ = (ĉt,ct2, . . . ,ctN) to A.

Key queries. On input the j -th key query f j , sample r j ←Zk
p , and compute

sk f j ,2 ←KeyGenext(msk2, (f j , [r j]2)).

Send a key query (f j , [r j]2) to the challenger and get back ŝk j . Output sk f j = (ŝk j ,sk f j ,2, [r j]2).

25

Game ct∗ sk f Remark

ct1 cti ,1 < i < η ctη cti ,η< i ≤ N sk f ,1 sk f ,2

0 real: x∗1 ,z∗1‖−
∑

wi real: x∗i ,z∗i ‖wi real: real: Real game

1 sim : x∗1 real: x∗i ,z∗i ‖wi sim : [f (x∗1)>z∗1 −∑
w>

i r]2 real: Πext

η.0 sim: x∗1 real: x∗i , 0‖wi real: x∗η ,z∗η‖wη real: x∗i ,z∗i ‖wi sim: [
∑

i<η f (x∗i)>z∗i −∑
w>

i r]2 real:

η.1 sim: x∗1 real: x∗i ,0‖wi sim : x∗η real: x∗i ,z∗i ‖wi sim: [
∑

i<η f (x∗i)>z∗i −∑
w>

i r]2 sim : [f (x∗η)>z∗η +w>
ηr]2 Πext

η.2 sim: x∗1 real: x∗i ,0‖wi sim: x∗η real: x∗i ,z∗i ‖wi sim: [
∑

i≤η f (x∗i)>z∗i −∑
w>

i r]2 sim: [w>
ηr]2 MDDH

η.3 sim: x∗1 real: x∗i ,0‖wi real : x∗η , 0‖wη real: x∗i ,z∗i ‖wi sim: [
∑

i≤η f (x∗i)>z∗i −∑
w>

i r]2 real : Πext

N .3 sim: x∗1 real: x∗i ,0‖wi sim: [
∑

i∈[N] f (x∗i)>z∗i −∑
w>

i r]2 real : Simulator

Fig. 4. Game sequence for Πubd with η ∈ [2, N], where Game2.0 =Game1,Game3.0 =Game2,3, . . . ,GameN ,0 =GameN−1,3. Each cell is in the format “xxx:yyy” where xxx ∈ {real,sim}

indicates whether the ciphertext/key component is generated using real algorithm or simulator and yyy gives out the information fed to algorithm/simulator. Throughout, the first

input to KeyGenext/ KeyGen∗ext for generating sk f ,1 is (f , [r]2); the same applies to sk f ,2. The sum of w>
i r is always over i ∈ [2, N].

26

Analysis. Observe that

– when (�mpk,m̂sk) = (mpk1, msk1) ← Setupext (1λ,1n ,1n′
) and

ĉt← Encext(mpk1, (x∗1 ,z∗1‖−
∑

i∈[2,N] wi))

ŝk j ← KeyGenext(msk1, (f j , [r j]2)) , ∀ j ∈ [Q]

the simulation is identical to Game0;

– when (�mpk,m̂sk) = (mpk1, msk∗1) ← Setup∗ext (1λ,1n ,1n′
) and

ĉt← Enc∗ext(msk∗1 ,x∗1)

ŝk j ← KeyGen∗ext
(
msk∗1 ,x∗1 , (f j , [r j]2), [f j (x∗1)>z∗1 −∑

i∈[2,N] w>
i r j]2

)
, ∀ j ∈ [Q]

the simulation is identical to Game1.

This readily proves the lemma. ut

Lemma 9 (Gameη.0 ≈c Gameη.1). For all A and all η ∈ [2, N], there exists B1 with Time(B1) ≈Time(A) such that

|Advη.1
A

(λ)−Adv
η.0
A

(λ)| ≤AdvΠext
B1

(λ).

Proof. Recall that the difference lies in msk2, ctη and sk f j ,1:

– in Gameη.0, we compute them by (Setupext,Encext,KeyGenext) ;

– in Gameη.1, we compute them by (Setup∗ext,Enc
∗
ext,KeyGen

∗
ext) .

The lemma follows from the simulation-based semi-adaptive security of Πext, cf. Section 4. The algorithm B1 works

as follows:

Initialize. Get �mpk from the challenger, run

(mpk1,msk∗1) ← Setup∗ext(1λ,1n ,1n′
)

and return (mpk1,�mpk) to A.

Challenge. On input the challenge message (x∗1 ,z∗1 , . . . ,x∗N ,z∗N) from A, pick w2, . . . ,wN ←Zk
p , submit (x∗η ,z∗η‖wη) to the

challenger and get back ĉt. Compute

ct∗1 ←Enc∗ext(msk∗1 ,x∗1); cti ←

Encext(mpk2, (x∗i ,0‖wi)) i ∈ [2,η−1]

ĉt i = η
Encext(mpk2, (x∗i , z∗i ‖wi)) i ∈ [η+1, N]

and output ct∗ = (ct∗1 ,ct2, . . . ,ctN).

Key queries. On input the j -th key queries f j , sample r j ←Zk
p and compute

sk∗f j ,1 ←KeyGen∗ext
(
msk∗1 ,x∗1 , (f j , [r j]2), [

∑
i∈[η−1] f j (x∗i)>z∗i −∑

i∈[2,N] w>
i r j]2

)
.

Send a key query (f j , [r j]2) to the challenger and get back ŝk j . Output sk f j = (sk∗f j ,1, ŝk j , [r j]2).

27

Analysis. Observe that,

– when (�mpk,m̂sk) = (mpk2, msk2) ← Setupext (1λ,1n ,1n′
) and

ĉt← Encext(mpk2, (x∗η ,z∗η‖wη)) , ŝk j ← KeyGenext(msk2, (f j , [r j]2)) , ∀ j ∈ [Q]

the simulation is identical to Gameη.0;

– when (�mpk,m̂sk) = (mpk2, msk∗2) ← Setup∗ext (1λ,1n ,1n′
) and

ĉt← Enc∗ext(msk∗2 ,x∗η) , ŝk j ← KeyGen∗ext(msk∗2 ,x∗η , (f j , [r j]2), [f j (x∗η)>z∗η +w>
ηr j]2) , ∀ j ∈ [Q]

the simulation is identical to Gameη.1.

This readily proves the lemma. ut

Lemma 10 (Gameη.1 ≈c Gameη.2). For all A and all η ∈ [2, N], there exists B2 with Time(B2) ≈Time(A) such that

|Advη.2
A

(λ)−Adv
η.1
A

(λ)| ≤ 2 ·AdvMDDH1
k,Q

B2
(λ)

where Q is the number of key queries.

Proof. Recall that the difference lies in sk∗f j ,1 and sk∗f j ,2. We prove the lemma using Lemma 1 w.r.t. wη and f j (x∗η)>z∗η .

On input ([t j ,1]2, [t j ,2]2, [r j]2), the reduction B2 sample wi ←Zk
p for i ∈ [2, N] \ {η} and run

(mpk1,msk∗1) ← Setup∗ext(1λ,1n ,1n′
); (mpk2,msk∗2) ← Setup∗ext(1λ,1n ,1n′

);

this allows us to simulate mpk and create challenge ciphertext. Here we crucially use the fact that we do not need wη

when generating the ciphertext. For the j -th key queries f j , we compute

sk∗f j ,1 ←KeyGen∗ext
(
msk∗1 ,x∗1 , (f j , [r j]2), [

∑
i∈[η−1] f j (x∗i)>z∗i −∑

i∈[2,N]\{η} w>
i r j + t j ,1]2

)
sk∗f j ,2 ←KeyGen∗ext(msk∗2 ,x∗η , (f j , [r j]2), [t j ,2]2)

using the term in the input and output sk f j = (sk∗f j ,1,sk∗f j ,2, [r j]2). This proves the lemma. ut

Lemma 11 (Gameη.2 ≈c Gameη.3). For all A and all η ∈ [2, N], there exists B1 with Time(B1) ≈Time(A) such that

|Advη.3
A

(λ)−Adv
η.2
A

(λ)| ≤AdvΠext
B1

(λ).

Proof. The proof is analogous to that for Lemma 9 with the following modifications: B1 submits (x∗η ,0‖wη) to the

challenger during Challenge, so that

– when (�mpk,m̂sk) = (mpk2, msk2) ← Setupext (1λ,1n ,1n′
) and

ĉt← Encext(mpk2, (x∗η ,0‖wη)) , ŝk j ← KeyGenext(msk2, (f j , [r j]2)) , ∀ j ∈ [Q]

the simulation is identical to Gameη.3;

– when (�mpk,m̂sk) = (mpk2, msk∗2) ← Setup∗ext (1λ,1n ,1n′
) and

ĉt← Enc∗ext(msk∗2 ,x∗η) , ŝk j ← KeyGen∗ext(msk∗2 ,x∗η , (f j , [r j]2), [w>
ηr j]2) , ∀ j ∈ [Q]

the simulation is identical to Gameη.2. ut

8 Πmcl: Multi-Client Scheme

In this section, we introduce the notion of multi-client unbounded-slot FE for attribute-weighted sums and provide a

generic scheme Πmcl based on Πext as in Πubd. We refer the reader to Section 1.2 for a quick introduction.

28

Overview. For simplicity, we consider one client per slot, though the definition and the construction extend readily to

the setting where there are fewer clients than slots, where the complexity of the one-time secret key generation grows

only with the number of clients and not the number of slots.

Comparison with prior works. We proceed to comparisons with the notion of multi-client FE in prior works [23,1,2]:

– Each client in our scheme does not have any long-term secret key for encryption from the authority; they merely

see a mpk from the authority.
– Instead, a group of clients generate a set of one-time secret keys by themselves for each encryption; the distribu-

tion is independent of the databases and does not require interaction with the authority. We consider only static

corruption of clients that leak the one-time key.
– The one-time secret keys also rule out mix-and-match attacks amongst the ciphertexts, which limit the power of

the adversary.

Overview of the construction. Roughly speaking, we would like to show that the unbounded-slot FE scheme Πubd in

the previous section satisfies the following property: for all S ([N], we can simulate

mpk,ct,sk f , (wi)i∈S

given
∑

i∉S f (xi)>zi . That is, the leakage on (zi)i∉S is bounded by the attribute-weighted sums computed over these

entries in the database. Turns out this is indeed true if 1 ∉ S so that w1 remains hidden, via a straight-forward adapta-

tion of the previous proof. To avoid this restriction on S, we need to modify the scheme to break the asymmetry of the

construction w.r.t. the first slot.

8.1 Definition

A multi-client unbounded-slot FE for attribute-weighted sums is the same as an unbounded-slot FE for the same

function class with the following changes:

– OTSKGen takes input 1λ,1N and outputs (otski)i∈[N].
– Enc takes input mpk, (x,z) and an additional input otsk.
– Dec takes input (sk f , f) and (cti ,xi)i∈[N].

Both correctness and security can be adapted from those for unbounded-slot FE, see below.

Correctness. For all N , (xi ,zi)i∈[N] and for all f ∈FABP,n,n′ , we require

Pr

Dec((sk f , f), (cti ,xi)i∈[N]) =∑N
i=1 f (xi)>zi :

(mpk,msk) ← Setup(1λ,1n ,1n′
)

(otski)i∈[N] ←OTSKGen(1λ,1N)

sk f ←KeyGen(msk, f)

cti ←Enc(mpk,otski , (xi ,zi)), i ∈ [N]

= 1.

Security definition. We consider semi-adaptive, simulation-based security, which stipulates that there exists a ran-

domized simulator (Setup∗,OTSKGen∗,Enc∗,KeyGen∗) such that for every efficient stateful adversary A,

(1N ,S) ←A(1λ);

(mpk,msk) ← Setup(1λ,1n ,1n′
);

(x∗i ,z∗i)i∉S ←A(mpk);

(otski)i∈[N] ←OTSKGen(1λ,1N);

ct∗i ←Enc(mpk,otski , (x∗i ,z∗i)), i ∉ S;

output AKeyGen(msk,·)((otski)i∈S , (ct∗i)i∉S)

≈c

(1N ,S) ←A(1λ);

(mpk,msk∗) ← Setup∗(1λ,1n ,1n′
,1N ,S);

(x∗i ,z∗i)i∉S ←A(mpk);

(otski)i∈S ←OTSKGen∗(msk∗);

(ct∗i)i∉S ←Enc∗(msk∗, (x∗i)i∉S);

output AKeyGen∗(msk∗,(x∗i)i∉S ,·,·)((otski)i∈S , (ct∗i)i∉S)

such that whenever A makes a query f to KeyGen, the simulator KeyGen∗ gets f along with

∑
i∉S f (x∗i)>z∗i . We use

AdvMCFE
A

(λ) to denote the advantage in distinguishing the real and ideal games.

29

8.2 Construction

Scheme. Assume Πext = (Setupext,Encext,KeyGenext,Decext) be the extended one-slot scheme in Section 6. Our

multi-client unbounded-slot FE Πmcl is similar to Πubd in Section 7:

– Setup,KeyGen as in Πubd.

– OTSKGen(1λ,1N): Sample wi ←Zk
p for all i ∈ [N] subject to the constraint

∑
i∈[N] wi = 0 and output

(otski = wi)i∈[N].

– Enc(mpk,otsk, (x,z)): Parse otsk= w. Sample z′ ←Zn′
p , w′ ←Zk

p and compute

ct1 ← Encext(mpk1, (x,z′‖w′))

ct2 ← Encext(mpk2, (x,z−z′‖w−w′))

and output

ct= (ct1,ct2) and x.

– Dec((sk f , f), (cti ,xi)i∈[N]): Parse ciphertext and key as

sk f = (sk f ,1,sk f ,2, [r]2) and cti = (cti ,1,cti ,2),∀i ∈ [N].

We proceed as follows:

1. For all i ∈ [N], compute

[Di ,1]T ← Decext
(
(sk f ,1, (f , [r]2)), (cti ,1,xi)

)
;

[Di ,2]T ← Decext
(
(sk f ,2, (f , [r]2)), (cti ,2,xi)

)
;

2. Compute

[D]T = ∏
i∈[N]

([Di ,1]T · [Di ,2]T)

and output D via brute-force discrete log.

Correctness. Correctness uses

∑
i∈[N]

f (xi)>zi =
∑

i∈[N]

(Di ,1︷ ︸︸ ︷
f (xi)>z′i + (w′

i)>r+
Di ,2︷ ︸︸ ︷

f (xi)>(zi −z′i)+ (wi −w′
i)r

)
which in turn uses

∑
wi = 0.

Security. We prove the following theorem.

Theorem 5. Assume that extended one-slot scheme Πext achieves simulation-based semi-adaptive security, our multi-

client unbounded-slot FE schemeΠmcl described in this section achieves simulation-based semi-adaptive security under

the k-Linear assumption in G2.

Both simulator and proof are analogous to those of Πubd in Section 7 with a high-level idea as follows. WLOG, assume

S̄ = [N ′] for some N ′ < N . We can rewrite ct1 = (ct1,1,ct1,2) as

Encext(mpk1, (x∗1 ,z∗1 −z′1‖w1 −w′
1)), Encext(mpk2, (x∗1 ,z′1‖w′

1))

30

by relying on the entropy in z′1,w′
1. For notational simplicity, for the rest of the overview, we assume w′

i = 0 and z′i = 0 for

all i ∈ S̄; the general case follows readily. That is, we only rely on the entropy in the (z′i ,w′
i)’s to rewrite ct1 = (ct1,1,ct1,2).

We now have:

ct∗i = (ct∗i ,1,ct∗i ,2) =
{
Encext(mpk1, (x∗1 ,z∗1‖w1)), Encext(mpk2, (x∗1 ,0‖0)) i = 1

Encext(mpk1, (x∗i ,0‖0)), Encext(mpk2, (x∗i ,z∗i ‖wi)) 1 < i ≤ N ′

We can then basically follow the idea for Πubd in Section 7 by the following observation:

ct∗1,1 =Encext(mpk1, (x∗1 ,z∗1‖w1)), {ct∗i ,2 =Encext(mpk2, (x∗i ,z∗i ‖wi))}1<i≤N ′

looks like a ciphertext in Πubd and KeyGen is exactly the same as in Πubd. We note that:

– in the simulator and throughout the proof, we don’t change

ct∗1,2 =Encext(mpk2, (x∗1 ,0‖0)), {ct∗i ,1 =Encext(mpk1, (x∗i ,0‖0))}1<i≤N ;

and the reduction can always simulate them using mpk1,mpk2;

– As before, the proof also use the fact that for all i ∈ [2, N ′] and µ ∈Zp , it holds that

{[−w>
i r j]2, [µ+w>

i r j]2, [r j]2} j∈[Q] ≈c {[µ−w>
i r j]2, [w>

i r j]2, [r j]2} j∈[Q]

here we crucially relies on the fact that i ∉ S and wi is not leaked to the adversary; otherwise the above statement

does not hold.

In the actual proof with general S, instead of enumerating over i ∈ [2, N ′] in the games, we enumerate i ∈ S̄ \{i∗} where

i∗ = min{S̄}.

8.3 Simulator

Let S be the set indicating corrupted clients and i∗ := min{S̄}, that is, the smallest value outside S. (Simulation is trivial

if S = [N].) We describe the simulator for Πmcl using the simulator for Πext, i.e., (Setup∗ext,Enc
∗
ext,KeyGen

∗
ext), as in

Section 7.2; also, the adversary needs to commit to the length N in advance.

– Setup∗(1λ,1n ,1n′
,1N ,S): Sample

z′1, . . . ,z′N ←Zn′
p , w′

1, . . . ,w′
N ←Zk

p and w1, . . . ,wN ←Zk
p such that

∑
i∈[N]

wi = 0;

run

(mpk1,msk∗1) ← Setup∗ext(1λ,1n ,1n′
); (mpk2,msk2) ← Setupext(1λ,1n ,1n′

)

and output

mpk= (mpk1,mpk2) and msk∗ = (msk∗1 ,msk2, (wi ,w′
i ,z′i)i∈[N],S).

– OTSKGen∗(msk∗): Parse msk∗ = (msk∗1 ,msk2, (wi ,w′
i ,z′i)i∈[N],S) and output (otski = wi)i∈S .

– Enc∗(msk∗, (x∗i)i∉S): Compute

{
ct∗i∗,1 ←Enc∗ext(msk∗1 ,x∗i∗), ct∗i∗,2 ←Encext(mpk2, (x∗i∗ ,z′i∗‖w′

i∗)),

ct∗i ,1 ←Encext(mpk1, (x∗i ,z′i‖w′
i)), ct∗i ,2 ←Encext(mpk2, (x∗i ,−z′i‖wi −w′

i)), ∀ i ∈ S̄ \ {i∗}

and output

(ct∗i = (ct∗i ,1,ct∗i ,2))i∈S̄ and (x∗i)i∈S̄ .

31

– KeyGen∗(msk∗, (x∗i)i∉S , f ,µ ∈Zp): Pick r ←Zk
p , compute

sk∗f ,1 ← KeyGen∗ext
(
msk∗1 ,x∗i∗ , (f , [r]2), [µ− f (x∗i∗)>z′i∗ −w′

i∗r−∑
i∈[N]\{i∗} w>

i r]2
)

sk f ,2 ← KeyGenext(msk2, (f , [r]2))

and output

sk∗f = (sk∗f ,1,sk f ,2, [r]2) and f .

Remark 4 (decryption). Observe that when we decrypt the simulated ciphertexts:

(ct∗i ,1,ct∗i ,2)i∈S̄ ←Enc∗(msk∗, (x∗i)i∉S) and (ct∗i ,1,ct∗i ,2) ←Enc(mpk,otski , (x∗i ,z∗i)), ∀i ∈ S

with the simulated secret key (sk∗f ,1,sk∗f ,2, [r]2) ←KeyGen∗(msk∗, (x∗i)i∉S , f ,
∑

i∉S f (x∗i)>z∗i), we get

Di∗,1 =∑
i∉S f (xi)>z∗i − f (x∗i∗)>z′i∗ + (wi∗ −w′

i∗)>r, Di∗,2 = f (x∗i∗)>z′i∗ + (w′
i∗)>r,

Di ,1 = f (x∗i)>z′i + (w′
i)>r, Di ,2 =− f (x∗i)>z′i + (wi −w′

i)>r, ∀ i ∈ S̄ \ {i∗}

Di ,1 = f (x∗i)>z′i + (w′
i)>r, Di ,2 = f (x∗i)>(z∗i −z′i)+ (wi −w′

i)>r, ∀ i ∈ S

and end up with

D = ∑
i∈[N]

(Di ,1 +Di ,2) = ∑
i∈[N]

f (x∗i)>z∗i + ∑
i∈[N]

w>
i r = ∑

i∈[N]
f (x∗i)>z∗i

Furthermore, with the corruption of (otski = wi)i∈S , we can recover∑
i∉S

(Di ,1 +Di ,2)+∑
i∈S

w>
i r = (

∑
i∉S

f (x∗i)>z∗i +∑
i∉S

w>
i r)+∑

i∈S
w>

i r = ∑
i∉S

f (x∗i)>z∗i

Similarly, when we decrypt normal ciphertexts

(cti ,1,cti ,2) ←Enc(mpk,otski , (x∗i ,z∗i)), ∀i ∈ [N]

with the simulated secret key (sk∗f ,1,sk∗f ,2, [r]2), we get

Di ,1 = f (x∗i)>z′i + (w′
i)>r, Di ,2 = f (x∗i)>(z∗i −z′i)+ (wi −w′

i)>r,∀ i ∈ [N]

and end up with
∑

i∈[N] f (x∗i)>z∗i .

8.4 Proof sketch

Let S ([N] be the set of corrupted clients and i∗ := min{S̄}, that is, the smallest value outside S. We use (x∗i ,z∗i)i∉S

to denote the challenge. Our proof basically follows the proof for Πubd in Section 7 with an extra games and some

modifications below. Also see a summary of game sequence in Fig 5.

An extra game: Game0′ . After Game0, we introduce an extra game where we generate ct∗i∗ = (cti∗,1,cti∗,2) as follows:

cti∗,1 ←Encext(mpk1, (x∗i∗ , z∗i∗ −z′i∗‖wi∗ −w′
i∗)), cti∗,2 ←Encext(mpk2, (xi∗ , z′i∗‖w′

i∗))

instead of

cti∗,1 ←Encext(mpk1, (x∗i∗ , z′i∗‖w′
i∗)), cti∗,2 ←Encext(mpk2, (x∗i∗ , z∗i∗ −z′i∗‖wi∗ −w′

i∗))

We can show Game0 ≈s Game0′ by the change of variables: z′i∗ 7→ z∗i∗ −z′i∗ and w′
i∗ 7→ wi∗ −w′

i∗ .

32

Modifications. Now we have

ct∗i =
{

cti∗,1 ←Encext(mpk1, (x∗i∗ ,z∗i∗ −z′i∗‖wi∗ −w′
i∗)), cti∗,2 ←Encext(mpk2, (x∗i∗ ,z′i∗‖w′

i∗)) i = i∗

cti ,1 ←Encext(mpk1, (x∗i ,z′i‖w′
i)), cti ,2 ←Encext(mpk2, (x∗i ,z∗i −z′i‖wi −w′

i)) i ∈ S̄ \ {i∗}

and then our game sequence mirrors that for Πubd in Section 7: we have

– Gamei∗ in the place of Game1; and

– Gameη.0,Gameη.1,Gameη.2,Gameη.3 enumerating over η ∉ S̄ \ {i∗} instead of η ∈ [2, N].

Among all games, we make changes to master key pair ((mpk1,mpk2), (msk1,msk2)), secret keys sk f j = (sk f j ,1,sk f j ,2)

and (cti∗,1, (cti ,2)i∈S̄\{i∗}) which involves (x∗i ,z∗i)i∉S ; note that, we will never change (cti∗,2, (cti ,1)i∈S̄\{i∗}). In more detail,

– in Gamei∗ , we have (mpk1,msk∗1) ← Setup∗ext(1λ,1n ,1n′
) and compute

cti∗1 ←Enc∗ext(msk∗1 ,x∗i∗),

sk f j ,1 ←KeyGen∗ext
(
msk∗1 ,x∗i∗ , (f j , [r j]2), [f j (x∗i∗)>z∗i∗ − f j (x∗i∗)>z′i∗ +w>

i∗r− (w′
i∗)>r]2

)
instead of having (mpk1,msk1) ← Setup∗ext(1λ,1n ,1n′

) and computing

cti∗1 ←Encext(mpk1, (x∗i∗ ,z∗i∗ −z′i∗‖wi∗ −w′
i∗)), sk f j ,1 ←KeyGenext(msk1, (f j , [r]2))

The simulation-based security ofΠext ensures that Game0′ ≈c Gamei∗ . The proof is analogous to that of Lemma 8.

– in Gameη.0, we compute

cti ,2 ←Encext(mpk2, (x∗i , −z′i ‖wi −w′
i)),∀i ∉ S ∧ i < η

sk f j ,1 ←KeyGen∗ext
(
msk∗1 ,x∗i∗ , (f j , [r j]2), [

∑
i∉S,i<η f j (x∗i)>z∗i − f j (x∗i∗)>z′i∗ − (w′

i∗)>r−∑
i∈[N]\{i∗} w>

i r]2
)

– in Gameη.1, we have (mpk2,msk∗2) ← Setup∗ext(1λ,1n ,1n′
) and compute

ctη,2 ←Enc∗ext(msk∗2 ,x∗η),

sk f j ,2 ←KeyGen∗ext
(
msk∗2 ,x∗η , (f j , [r j]2), [f j (x∗η)>z∗η − f j (x∗η)>z′η+w>

ηr− (w′
η)>r]2

)
instead of having (mpk2,msk2) ← Setup∗ext(1λ,1n ,1n′

) and computing

ctη,2 ←Encext(mpk2, (x∗η ,z∗η −z′η‖wη−w′
η)), sk f j ,2 ←KeyGenext(msk2, (f j , [r]2))

The simulation-based security ofΠext ensures thatGameη.0 ≈c Gameη.1. The proof is analogous to that of Lemma 9.

– in Gameη.2, we compute

sk f j ,1 ←KeyGen∗ext
(
msk∗1 ,x∗i∗ , (f j , [r j]2), [

∑
i∉S,i≤η f j (x∗i)>z∗i − f j (x∗i∗)>z′i∗ − (w′

i∗)>r−∑
i∈[N]\{i∗} w>

i r]2
)

sk f j ,2 ←KeyGen∗ext
(
msk∗2 ,x∗η , (f j , [r j]2), [− f j (x∗η)>z′η+w>

ηr− (w′
η)>r]2

)
We have Gameη.1 ≈s Gameη.2. This follows from (27) as in Section 7. Here we crucially use the fact that wη is not

leaked to the adversary; the statement (27) does not hold for wi with i ∈ S.

– in Gameη.3, we have (mpk2,msk2) ← Setup∗ext(1λ,1n ,1n′
) and compute

ctη,2 ←Encext(mpk2, (x∗η ,−z′η‖wη−w′
η)), sk f j ,2 ←KeyGenext(msk2, (f j , [r]2))

We have Gameη.2 ≈Gameη.3 and the proof is analogous to that for Gameη.1 ≈Gameη.2 from the simulation-based

security of Πext.

Note that, in the proof, the reduction always knows (x∗i ,z′i ,w′
i)i∈[N] and can simulate (cti∗,2, (cti ,1)i∈S̄\{i∗}) using (mpk1,mpk2).

33

Game cti∗,1 cti ,1, i ∈ S̄ \ {i∗}, i < η ctη,1 cti ,1, i ∈ S̄ \ {i∗}, i > η sk f ,1 Remark

cti∗,2 cti ,2 ctη,2 cti ,2 sk f ,2

0 real: x∗i∗ ,z′i∗‖w′
i∗ real: x∗i ,z′i ‖w′

i real: Real game

real: x∗i∗ ,z∗i∗ −z′i∗‖wi∗ −w′
i∗ real: x∗i ,z∗i −z′i ‖wi −w′

i real:

0′ real: x∗i∗ ,z∗i∗ −z′i∗‖wi∗ −w′
i∗ real: x∗i ,z′i ‖w′

i real: change of variables

real: x∗i∗ ,z′i∗‖w′
i∗ real: x∗i ,z∗i −z′i ‖wi −w′

i real:

i∗ sim : x∗i∗ real: x∗i ,z′i ‖w′
i sim : [f (x∗i∗)>z∗i∗ −δ′−

∑
w>

i r]2 δ′ = f (x∗i∗)>z′i∗ + (w′
i∗)>r

real: x∗i∗ ,z′i∗‖w′
i∗ real: x∗i ,z∗i −z′i ‖wi −w′

i real: Πext

η.0 sim: x∗i∗ real: x∗i ,z′i ‖w′
i real: x∗η ,z′η‖w′

η real: x∗i ,z′i ‖w′
i sim: [

∑
i∉S,i<η f (x∗i)>z∗i −δ′−∑

w>
i r]2

real: x∗i∗ ,z′i∗‖w′
i∗ real: x∗i , −z′i ‖wi −w′

i real: x∗η ,z∗η −z′η‖wη−w′
η real: x∗i ,z∗i −z′i ‖wi −w′

i real:

η.1 sim: x∗i∗ real: x∗i ,z′i ‖w′
i real: x∗η ,z′η‖w′

η real: x∗i ,z′i ‖w′
i sim: [

∑
i∉S,i<η f (x∗i)>z∗i −δ′−∑

w>
i r]2 Πext

real: x∗i∗ ,z′i∗‖w′
i∗ real: x∗i ,−z′i ‖wi −w′

i sim : x∗η real: x∗i ,z∗i −z′i ‖wi −w′
i sim : [f (x∗η)>z∗η − f (x∗η)>z′η− (w′

η)>r+w>
ηr]2

η.2 sim: x∗i∗ real: x∗i ,z′i ‖w′
i real: x∗η ,z′η‖w′

η real: x∗i ,z′i ‖w′
i sim: [

∑
i∉S,i≤η f (x∗i)>z∗i −δ′−∑

w>
i r]2 MDDH

real: x∗i∗ ,z′i∗‖w′
i∗ real: x∗i ,−z′i ‖wi −w′

i sim: x∗η real: x∗i ,z∗i −z′i ‖wi −w′
i sim: [− f (x∗η)>z′η− (w′

η)>r+w>
ηr]2

η.3 sim: x∗i∗ real: x∗i ,z′i ‖w′
i real: x∗η ,z′η‖w′

η real: x∗i ,z′i ‖w′
i sim: [

∑
i∉S,i≤η f (x∗i)>z∗i −δ′−∑

w>
i r]2 Πext

real: x∗i∗ ,z′i∗‖w′
i∗ real: x∗i ,−z′i ‖wi −w′

i real : x∗η ,−z′η‖wη−w′
η real: x∗i ,z∗i −z′i ‖wi −w′

i real :

max{S̄}.3 sim: x∗i∗ real: x∗i ,z′i ‖w′
i sim: [

∑
i∉S f (x∗i)>z∗i −δ′−∑

w>
i r]2 δ′ = f (x∗i∗)>z′i∗ + (w′

i∗)>r

real: x∗i∗ ,z′i∗‖w′
i∗ real: x∗i ,−z′i ‖wi −w′

i real: Simulator

Fig. 5. Game sequence for Πmcl over η ∈ S̄ \ {i∗} in an ascending order where i∗ = min{S̄}. Each cell has two rows corresponding to cti ,1 and cti ,2, respectively. Each row is in the

format “xxx:yyy” where xxx ∈ {real,sim} indicates whether the ciphertext/key component is generated using real algorithm or simulator and yyy gives out the information fed to

algorithm/simulator. Throughout, the first input to KeyGenext/ KeyGen∗ext for generating sk f ,1 is (f , [r]2); the same applies to sk f ,2; the sum of w>
i r is always over i ∈ [N] \ {i∗}.

34

References

1. M. Abdalla, F. Benhamouda, and R. Gay. From single-input to multi-client inner-product functional encryption. In S. D. Gal-

braith and S. Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 552–582. Springer, Heidelberg, Dec. 2019.

2. M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner. Decentralizing inner-product functional encryption. In D. Lin and

K. Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 128–157. Springer, Heidelberg, Apr. 2019.

3. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for inner products. In J. Katz,

editor, PKC 2015, volume 9020 of LNCS, pages 733–751. Springer, Heidelberg, Mar. / Apr. 2015.

4. M. Abdalla, D. Catalano, R. Gay, and B. Ursu. Inner-product functional encryption with fine-grained access control. Cryptology

ePrint Archive, Report 2020/577, 2020.

5. M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product functional encryption from pairings. In J. Coron and

J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 601–626. Springer, Heidelberg, Apr. / May 2017.

6. S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption: New perspectives and lower bounds. In

R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 500–518. Springer, Heidelberg, Aug. 2013.

7. S. Agrawal, B. Libert, M. Maitra, and R. Titiu. Adaptive simulation security for inner product functional encryption. In A. Kiayias,

M. Kohlweiss, P. Wallden, and V. Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 34–64. Springer, Heidelberg, May

2020.

8. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from standard assumptions. In

M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, Aug. 2016.

9. S. Agrawal, M. Maitra, and S. Yamada. Attribute based encryption (and more) for nondeterministic finite automata from LWE.

In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 765–797. Springer, Heidelberg,

Aug. 2019.

10. S. Agrawal, M. Maitra, and S. Yamada. Attribute based encryption for deterministic finite automata from DLIN. In D. Hofheinz

and A. Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 91–117. Springer, Heidelberg, Dec. 2019.

11. M. Ambrona, G. Barthe, R. Gay, and H. Wee. Attribute-based encryption in the generic group model: Automated proofs and

new constructions. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 2017, pages 647–664. ACM Press,

Oct. / Nov. 2017.

12. C. E. Z. Baltico, D. Catalano, D. Fiore, and R. Gay. Practical functional encryption for quadratic functions with applications to

predicate encryption. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 67–98. Springer,

Heidelberg, Aug. 2017.

13. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed com-

putation (extended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

14. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and D. Vinayagamurthy. Fully key-

homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In P. Q. Nguyen and E. Oswald, editors, EU-

ROCRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

15. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In Y. Ishai, editor, TCC 2011, volume 6597

of LNCS, pages 253–273. Springer, Heidelberg, Mar. 2011.

16. Z. Brakerski and V. Vaikuntanathan. Circuit-ABE from LWE: Unbounded attributes and semi-adaptive security. In M. Robshaw

and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 363–384. Springer, Heidelberg, Aug. 2016.

17. J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via predicate encodings. In E. Oswald and

M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624. Springer, Heidelberg, Apr. 2015.

18. J. Chen and H. Wee. Semi-adaptive attribute-based encryption and improved delegation for Boolean formula. In M. Abdalla

and R. D. Prisco, editors, SCN 14, volume 8642 of LNCS, pages 277–297. Springer, Heidelberg, Sept. 2014.

19. Y. Chen, L. Zhang, and S.-M. Yiu. Practical attribute based inner product functional encryption from simple assumptions.

Cryptology ePrint Archive, Report 2019/846, 2019.

20. J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentralized multi-client functional encryption for inner

product. In T. Peyrin and S. Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 703–732. Springer,

Heidelberg, Dec. 2018.

21. P. Datta, T. Okamoto, and K. Takashima. Adaptively simulation-secure attribute-hiding predicate encryption. In T. Peyrin and

S. Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 640–672. Springer, Heidelberg, Dec. 2018.

22. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for Diffie-Hellman assumptions. In R. Canetti and

J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg, Aug. 2013.

35

23. S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-S. Zhou. Multi-input functional encryp-

tion. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer, Heidelberg,

May 2014.

24. J. Gong, B. Waters, and H. Wee. ABE for DFA from k-lin. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II,

volume 11693 of LNCS, pages 732–764. Springer, Heidelberg, Aug. 2019.

25. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits. In D. Boneh, T. Roughgarden, and

J. Feigenbaum, editors, 45th ACM STOC, pages 545–554. ACM Press, June 2013.

26. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits from LWE. In R. Gennaro and M. J. B. Robshaw,

editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg, Aug. 2015.

27. R. Goyal, V. Koppula, and B. Waters. Semi-adaptive security and bundling functionalities made generic and easy. In M. Hirt

and A. D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 361–388. Springer, Heidelberg, Oct. / Nov. 2016.

28. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of encrypted data.

In A. Juels, R. N. Wright, and S. De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press, Oct. / Nov. 2006.

Available as Cryptology ePrint Archive Report 2006/309.

29. Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect randomizing polynomials. In P. Widmayer,

F. T. Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz, and R. Conejo, editors, ICALP 2002, volume 2380 of LNCS, pages 244–256.

Springer, Heidelberg, July 2002.

30. Y. Ishai and H. Wee. Partial garbling schemes and their applications. In J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Koutsoupias,

editors, ICALP 2014, Part I, volume 8572 of LNCS, pages 650–662. Springer, Heidelberg, July 2014.

31. A. Jain, H. Lin, C. Matt, and A. Sahai. How to leverage hardness of constant-degree expanding polynomials overa R to build iO.

In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 251–281. Springer, Heidelberg, May

2019.

32. A. Jain, H. Lin, and A. Sahai. Simplifying constructions and assumptions for iO. IACR Cryptology ePrint Archive, 2019:1252,

2019.

33. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions, polynomial equations, and inner products. In

N. P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 146–162. Springer, Heidelberg, Apr. 2008.

34. L. Kowalczyk and H. Wee. Compact adaptively secure ABE for NC1 from k-lin. In Y. Ishai and V. Rijmen, editors, EURO-

CRYPT 2019, Part I, volume 11476 of LNCS, pages 3–33. Springer, Heidelberg, May 2019.

35. A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption. In K. G. Paterson, editor, EUROCRYPT 2011,

volume 6632 of LNCS, pages 547–567. Springer, Heidelberg, May 2011.

36. H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In J. Katz and H. Shacham, editors,

CRYPTO 2017, Part I, volume 10401 of LNCS, pages 599–629. Springer, Heidelberg, Aug. 2017.

37. T. Okamoto and K. Takashima. Adaptively attribute-hiding (hierarchical) inner product encryption. In D. Pointcheval and

T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 591–608. Springer, Heidelberg, Apr. 2012.

38. T. Okamoto and K. Takashima. Efficient (hierarchical) inner-product encryption tightly reduced from the decisional linear

assumption. IEICE Transactions, 96-A(1):42–52, 2013.

39. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,

pages 457–473. Springer, Heidelberg, May 2005.

40. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In S. Halevi, editor,

CRYPTO 2009, volume 5677 of LNCS, pages 619–636. Springer, Heidelberg, Aug. 2009.

41. B. Waters. Functional encryption for regular languages. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417

of LNCS, pages 218–235. Springer, Heidelberg, Aug. 2012.

42. H. Wee. Dual system encryption via predicate encodings. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 616–637.

Springer, Heidelberg, Feb. 2014.

43. H. Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I,

volume 10677 of LNCS, pages 206–233. Springer, Heidelberg, Nov. 2017.

36

A Partial Garbling

The following is a restatement of the partial garbling schemes in [30,43] using our notation.

Basic lemma. We review the following lemma for f (x)>z with f ∈FABP,n,n′ which is a subclass of ABP; this shows that

we can use the computation of determinant to model the computation of f (x)>z.

Lemma 12 ([29,30]). Given f ∈FABP,n,n′ and (x,z) ∈Zn
p ×Zn′

p , we can efficiently compute a matrix Lx,z ∈Z(m+n′)×(m+n′)
p

over Zp with m depending on f such that

– detLx,z = f (x)>z;

– each entry of Lx,z is an affine function in x,z;

– Lx,z contains only -1’s in the second diagonal and 0’s below the second diagonal.

Specifically, Lx,z is obtained by removing the column corresponding to v0 and the row corresponding to v1 in the matrix

A− I where A is the adjacency matrix of ABP.

In particular, the matrix Lx,z has the following form where we have an affine function in x for each ∗:

Lx,z =

∗ ∗ ∗ ∗ ∗ ∗
−1 ∗ ∗ ∗ ∗ ∗

. . . ∗ ∗ ∗ ∗
−1 ∗ ∗ ∗

−1 z1

. . .
...

−1 zn′

We use Lx to denote the matrix obtained by removing the last column from Lx,z. Note that Lx only depends on x and

f ∈FABP,n,n′ .

Partial Garbling Scheme. We now review the partial garbling scheme [30,43] for f (x)>z. We first introduce a family of

matrices of dimension m +n′:

T =
{(

Im+n′−1 t

1

)
: t ∈Zm+n′−1

p

}
and state the following properties:

1. ∀T ∈T, we have det(T) = 1;

2. ∀T ∈T, we have {T
(

t
1

)
: t ←Zm+n′−1

p } ≡s {
(

t
1

)
: t ←Zm+n′−1

p };

3. ∃T ∈T such that Lx,zT = (Lx|e1 · f (x)>z) for Lx,z shown above.

The partial garbling scheme is as follows:

– partial garbling for f ,x,z:

p f ,x,z = Lx,z
(

t
1

)
(28)

with random coin t ←Zm+n′−1
p .

– reconstruction: we can recover f (x)>z by computing det
(
Lx|p f ,x,z) since

det
(
Lx|p f ,x,z) = det

(
Lx,zT

)= detLx,z = f (x)>z (29)

for some T ∈T; here we rely on the property 1 and Lemma 12.

– privacy: given f (x)>z, we simulate

(Lx|e1 · f (x)>z)
(

t
1

)
, t ←Zm+n′−1

p . (30)

Here we rely on property 2, 3 and Lemma 12.

37

Algorithm lgen and pgb,pgb∗. Let

– Lx ∈Zm×(m+n′−1)
p be the matrix obtained by removing the last n′ rows from Lx;

– t ∈Zn′
p is a vector consisting of the last n′ entries of t;

we can rewrite

p>
f ,x,z = (p>

1,p>
2) = (z>− t>,t>L

>
x). (31)

Here we also make a transpose for notational convenience in the context of functional encryptions. Furthermore,

since each entry in L
>
x is an affine function in x, we can write

L
>
x = L1(x⊗ Im)+L0 (32)

where L1 is formed from n matrices of size (m+n′−1)×m, the i th of which consists of coefficients of xi in each entries

of L
>
x and L0 includes the constant term in each entry. Note that L1 and L0 only depend on f . In Lemma 2, we let

– lgen output the input-independent matrices L1,L0 on input f ;

– pgb,pgb∗ output (28) and (30) using L1,L0 applying (31) and (32).

Then, it is straightforward to verify the privacy of our extension with shift in Section 4.2 from concrete expressions.

Algorithm rec. Computing det
(
Lx|p f ,x,z) in (29) for reconstruction is computing a linear function in p f ,x,z by cofactor

expansion. In Lemma 2, we let rec output this linear function, represented by a vector d f ,x, and we have p>
f ,x,zd f ,x =

f (x)>z. Furthermore, it is not hard to see that (0,e>
1)d f ,x = 1 which is sufficient to verify the reconstruction of our

extension with shift in Section 4.2.

B Concrete instantiation ofΠubd in Section 7

We show the concrete instantiation of Πubd in Section 7 with our concrete scheme Πext in Section 6.

– Setup(1λ,1n ,1n′
): Run G= (p,G1,G2,GT ,e) ←G(1λ). Sample

Ab ←Z(k+1)×k
p and Wb ←Z(k+1)×n′

p , Ub ←Z(k+1)×kn
p , Vb ,W0,b ←Z(k+1)×k

p , ∀b ∈ {1,2}

and output

mpk = (
G, {[A>

b]1, [A>
b Wb]1, [A>

b Ub]1, [A>
b Vb]1, [A>

b W0,b]1}b∈{1,2}
)

msk = {Wb , Ub , Vb , W0,b }b∈{1,2}.

– Enc(mpk, (xi ,zi)i∈[N]): Sample

w2, . . . ,wN ←Zk
p and s1, . . . ,sN ←Zk

p

and output

ct{xi ,zi } =
({

[s>1A>
1]1, [z>1 +s>1A>

1W1]1, [s>1A>
1U1(x1 ⊗ Ik)+s>1A>

1V1]1, [−∑
i∈[2,N] w>

i +s>1A>
1W0,1]1

}{
[s>i A>

2]1, [z>i +s>i A>
2W2]1, [s>i A>

2U2(xi ⊗ Ik)+s>i A>
2V2]1, [w>

i +s>i A>
2W0,2]1

}
i∈[2,N]

)
and (xi)i∈[N].

– KeyGen(msk, f): Run (L1,L0) ← lgen(f) where L1 ∈ Z(m+n′−1)×mn
p ,L0 ∈ Z(m+n′−1)×m

p (cf. Section 4.2). Sample Tb ←
Z

(k+1)×(m+n′−1)
p ,Rb ←Zk×m

p for b ∈ {1,2} and r ←Zk
p and output

sk f =
(

{[Tb +Wb]2, [Tb L1 +Ub(In ⊗Rb)]2, [Tb L0 −W0,b r ·e>
1 +Vb Rb]2, [Rb]2}b∈{1,2}, [r]2

)
and f

where Tb refers to the matrix composed of the right most n′ columns of Tb .

38

– Dec((sk f , f), (ct(xi ,zi), (xi)i∈[N])): On input key:

sk f =
(

{[K1,b]2, [K2,b]2, [K3,b]2, [Rb]2}b∈{1,2}, [r]2
)

and f

and ciphertext:

ct(xi ,zi) =
(

{ [c>0,i]1, [c>1,i]1, [c>2,i]1, [c>3,i]1 }i∈[N]
)

and (xi)i∈[N]

the decryption works as follows:

1. compute

[p>
1,1]T = e([c>1,1]1, [In′]2) ·e([c>0,1]1, [−K1,1]2)

[p>
2,1]T = e([c>0,1]1, [K2,1(x1 ⊗ Im)+K3,1]2) ·e([−c>2,1]1, [R1]2) ·e([c>3,1]1, [r ·e>

1]2)

2. for all i ∈ [2, N], compute

[p>
1,i]T = e([c>1,i]1, [In′]2) ·e([c>0,i]1, [−K1,2]2)

[p>
2,i]T = e([c>0,i]1, [K2,2(xi ⊗ Im)+K3,2]2) ·e([−c>2,i]1, [R2]2) ·e([c>3,i]1, [r ·e>

1]2)

3. for all i ∈ [N], run d f ,xi ← rec(f ,xi) (see Section 4.2), compute

[Di]T = [(p>
1,i ,p>

2,i)d f ,xi]T

4. compute

[D]T = [D1]T · · · [DN]T

and output D via brute-force discrete log.

39

	Introduction
	Technical Overview
	Preliminaries
	Definitions and Tools
	one: One-Slot Scheme
	ext: Extending one
	ubd: Unbounded-Slot Scheme
	mcl: Multi-Client Scheme
	Partial Garbling
	Concrete instantiation of ubd in Section 7

