
HAL Id: hal-03005449
https://hal.inria.fr/hal-03005449

Submitted on 14 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a formal account for software transactional
memory

Doriana Medić, Claudio Antares Mezzina, Iain Phillips, Nobuko Yoshida

To cite this version:
Doriana Medić, Claudio Antares Mezzina, Iain Phillips, Nobuko Yoshida. Towards a formal account for
software transactional memory. RC 2020 - 12th International Conference on Reversible Computation,
Jul 2020, Oslo, Norway. �hal-03005449�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362229819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03005449
https://hal.archives-ouvertes.fr

Towards a formal account for software
transactional memory?

Doriana Medić1, Claudio Antares Mezzina2, Iain Phillips3, and Nobuko
Yoshida3

1 Focus Team, University of Bologna/Inria, France
2 Dipartimento di Scienze Pure e Applicate, Universitá di Urbino, Italy

3 Imperial College London, United Kingdom

Abstract. Software transactional memory (STM) is a concurrency con-
trol mechanism for shared memory systems. It is opposite to the lock
based mechanism, as it allows multiple processes to access the same set
of variables in a concurrent way. Then according to the used policy, the
effect of accessing to shared variables can be committed (hence, made
permanent) or undone. In this paper, we define a formal framework for
describing STMs and show how with a minor variation of the rules it is
possible to model two common policies for STM: reader preference and
writer preference.

Keywords: STM · Transactions · Concurrency.

1 Introduction

Starting from the 1960s, reversible computing has been studied in several con-
texts ranging from quantum computing [6], biochemical modelling [7], program-
ming [8,9], and program debugging [15,10]. Distributed reversible actions can
be seen as defeasible partial agreements: the building blocks for different trans-
actional models and recovery techniques. The work of Danos and Krivine on
reversible CCS (RCCS) [1] provides a good example: they show how notions
of reversible and irreversible actions in a process calculus can model a primi-
tive form of transaction, an abstraction that has been found useful, in different
guises, in reliable concurrent and distributed programming. Since the seminal
work of [1], other works have investigated the interplay between transactions
and reversibility [2,11] in the area of message passing systems. On the shared
memory side, we just recall the work of [12] where a CCS endowed with a mech-
anism for software transactional memories (STMs) is presented. Another work
about reversibility and a high-level abstraction of shared memory (tuple spaces)
is presented in [16].

? This work has been partially supported by French ANR project DCore ANR-18-
CE25-0007 and by the Italian INdAM – GNCS project 2020 Reversible Concur-
rent Systems: from Models to Languages. We also acknowledge partial support from
the following projects: EPSRC EP/K011715/1, EP/K034413/1, EP/L00058X/1,
EP/N027833, EP/N028201/1, and EP/T006544/1.

2 D. Medić et al.

Software Transactional Memory [3,4] is an elegant way to address the prob-
lem of concurrent programming, by relieving the programmer from the burden of
dealing with locks. The lock-based approach is error prone and usually leads to
deadlocks when the complexity of the system grows. Opposite to the lock-based
approach, STM uses transactions. A transaction is a block of code accessing
shared data which is meant to be executed atomically with an “all or nothing”
policy: that is either all the effects of a transaction have to be visible when it
commits, or none of them has to be visible in case of abortion. This abstrac-
tion allows for multiple transactions to be executed “at the same time”. The
programmer just needs to specify the sequences of operations to be enclosed in
transactions, while the system is in charge of the interleaving between the con-
current transactions. A transaction can either commit and update the system
permanently or abort and discard all the changes done by its execution.

In this work, we are interested in the interplay between reversible comput-
ing and the STM approach to control the concurrent executions. Therefore, we
present a formal framework for describing STMs in a simple shared memory
context. In particular, when a transaction aborts, it is necessary to discard all
the updates that it made and we need to bring the system back to the state
before the execution of the transaction. To accomplish the behaviour above, we
implement a rollback operator following the approach given in [13]. A transac-
tion can access a shared variable either in read or in write mode. Given this,
different policies can be used to regulate the transactions which are accessing
the same value in the shared memory. According to the implemented policy,
some transactions will succeed and some will be aborted. We will show how it is
possible to model writer and reader preference [5] in our framework. Consider
the following C-like code where two functions/threads access the same shared
variables:

int x = 0 ;
int y = 5 ;
int z = 0 ;

void t1 ()
{z = y+x ; }

void t2 ()
{ x = z +1; }

t1 ; t2 t2 ; t1 t1 | t2
z = 5 z = 6 z = 5
x = 6 x = 1 x = 1

All the possible executions of the two functions are reported above: either the
two functions are executed sequentially or are interleaved (leading to an un-
wanted state). If we wrap the two functions into two atomic blocks then the
third behaviour would be automatically ruled out by the system as one of the
two transactions will be aborted depending on the implemented policy.

2 Syntax

In this section we give the syntax of our calculus. Let us assume the existence
of the mutually disjoint sets V (a set of variables) and I (a set of transaction
identifiers), ranged over by x, y, z and t, h, respectively.

The syntax of the calculus is given in Figure 1. Write and read access to
the variable x are represented with actions wr(x) and rd(x). The sequential

Towards a formal account for software transactional memory 3

(Actions) α, β ::= wr(x) | rd(x)

(Processes) A,B ::= 0 |
∑
i

αi.Ai

(Expressions) X,Y ::= B | α.X | X;Y | (X | Y) | t : JAKΓ
(Configuration) C ::= X ‖M

(Shared Memory) M ::= 〈x,W,R〉 ‖M

Fig. 1. Syntax

execution of the actions wr(x) and rd(x) together with the choice operator +
build the processes, given with A,B productions. The term t : JAKΓ represents a
transaction, where t is a unique identifier, A is the body of the transaction and
Γ is the set recording the identifiers of the transactions which have the write
access to the variable that transaction t has to read. The idea behind the set Γ is
to allow transaction t to have read access to any variable, but to record the write
access to them. In this way if the transaction that writes on the variable fails,
the transaction that reads the same variable has to fail too. More explanations
will be given in Section 3.

Transactions, together with processes, build expressions. An expression can
be prefixed with the actions wr(x) and rd(x) and we denote it as α.X. Two
expressions X and Y can be executed in parallel, X | Y , or in sequential order
X;Y . We can note that the expression X can be the process that is not inside of
the transaction, and that operation ; allows us to have a transaction followed by
an action (for example t : JAKΓ ; wr(x)). The whole system, called configuration,
is denoted with C and it represents the expressions together with the shared
memory. The shared memory M is made of triples of the form 〈x,W,R〉 for
every variable in the system. In 〈x,W,R〉, x is the variable name, W and R are
the sets recording transactions which had write and read access to x, respectively.
Let us note that we abstract away from the value contained by variables, since
this is not relevant for our framework. We just need to record whether a variable
is read (a transaction reads its value) or modified (a transaction changes its
value).

In order to write expressions in a more compact way, we define the notion of
history context. For instance, having a transaction t : Jwr(x).rd(x1)rd(y).A+BKΓ
we can write it as t : JH[rd(x1)rd(y).A]KΓ where H = wr(x). •+B. Formally:

Definition 1 (History context). A history context H is a process with a hole
•, defined by the following grammar: H ::= • | α. •+A.

3 Semantics

The semantics of our calculus is presented in two steps. First, we give the basic
rules of the framework (common to all the policies) and then, we present the extra
rules, necessary to model reader or writer preference. With reader preference,

4 D. Medić et al.

we intend that reading the value of a variable is always possible, i.e. no read
access should be suspended, unless the write access already took place. Writer
preference, on the other side, allows the write access to the value of a variable
x even if some read access already took place. In this case, all the executing
transactions with the read access to a value x need to be aborted and brought
back to their initial state.

In what follows we provide the auxiliary functions necessary for the semantics
of the calculus: the function which computes the set of the transaction identifiers
of a given expression and the operation which removes transaction identifiers
from the system.

Definition 2 (Set of the transaction identifiers). The set of the transaction
identifiers of a given expression X, written id(X), is inductively defined as:

id(Y | Y ′) = id(Y) ∪ id(Y ′) id(α.Y) = id(Y) id(A) = ∅
id(Y ;Y ′) = id(Y) ∪ id(Y ′) id(t : JAKΓ) = {t}

Definition 3 (Removing of identifiers). The operation of deleting transac-
tion identifier t from the configuration C, denoted as C@t, is defined as follows:

(X ‖M)@t = X@t ‖M@t (α.X)@t = α.(X@t)

(X | Y)@t = X@t | Y@t (t′ : JAKΓ)@t = t′ : JAKΓ\t
(X;Y)@t = X@t;Y@t (〈x,W,R〉 ‖M)@t = 〈x,W \ t, R \ t〉 ‖M@t

When a transaction fails, the effects of the internal computation are undone
and the entire transaction is restarted, that is, brought back to its initial state. As
a consequence, the transactions depending on it are also rolled back. Dependency
between transactions changes with the chosen preference. We shall see more
information about the preferences by the end of this section.

To be able to identify the state of the internal computation of a trans-
action, we mark it with symbol ∧. For instance, if we consider transaction
t : Jrd(x).rd(y).∧wr(z).wr(x′)KΓ , the actions rd(x) and rd(y) represent the past
of the transaction and the action wr(z) is the next action to be executed.

Now we define our rollback operator which brings a transaction back to its ini-
tial state i.e. the symbol ∧ is placed in the beginning of the transaction and its set
Γ is empty. For instance, if we roll back transaction t : Jrd(x).rd(y).∧wr(z).wr(x′)KΓ ,
we obtain t : J∧rd(x).rd(y).wr(z).wr(x′)K∅. Formally, we have:

Definition 4 (Rollback operator). The rollback operator on the transaction
t : JAKΓ , written roll(t), is defined as: roll(t) = t : J∧AK∅.

In what follows, we give the semantics of our calculus. We shall start by
introducing semantics rules representing the base of our framework (rules that
are common for both models) and then we show the additional rules for each
preference.

The common rules are given in Figure 2. An action executed outside a trans-
action can be seen as an atomic step in which the action is discarded after the

Towards a formal account for software transactional memory 5

(WriteP) wr(x).A+ B ‖ 〈x, ∅, ∅〉 → A ‖ 〈x, ∅, ∅〉

(ReadP) rd(x).A+ B ‖ 〈x, ∅, ∅〉 → A ‖ 〈x, ∅, ∅〉

(Write)
(W ⊆ {t} ∧ R ⊆ {t})

t : JH[∧wr(x).A+ B]KΓ ‖ 〈x,W,R〉 ‖M → t : JH[wr(x).∧A+ B]KΓ ‖ 〈x,W ∪ t, R〉 ‖M

(Read) t : JH[∧rd(x).A+ B]KΓ ‖ 〈x,W,R〉 ‖M → t : JH[rd(x).∧A+ B]KΓ∪(W\t) ‖ 〈x,W,R ∪ t〉 ‖M

(Par)
X ‖M → X

′ ‖M ′
id(X) ∩ id(Y) = ∅

X | Y ‖M → X
′ | Y ‖M ′

(Commit)
t : JA∧KΓ ;Y | X ‖M ∧ Γ = ∅

t : JA∧KΓ ;Y | X ‖M → Y | X@t ‖M@t

(RollR)
t : JAKΓ ‖M → roll(t) ‖M@t ∀ti ti : JAiKΓi∪{t}

t : JAKΓ |
∏
i

ti : JAiKΓi ‖M → roll(t) |
∏
i

roll(ti) ‖ (M@t)@ti

Fig. 2. Common rules for both models

execution (rules WriteP and ReadP). Therefore, there is no need to keep track
of its access to the variable. The only constraint is that they cannot access the
variable while some transaction has read or write access to it.

Rule Write describes when a transaction can modify the content of a vari-
able. To do so, there should not be another transaction which has already ac-
cessed the variable in either writing or reading mode. After the execution, the
identifier t is added to the write access set W of the variable x and the symbol
∧ is moved to the next computational step. Rule Read allows the transaction t
to execute the action rd(x) at any moment. Then the identifier t is added to the
set R of the variable x and the set W \ t is added to the set Γ (if write and read
access to the variable x are in the same transaction t, then it is not necessary to
save the identifier t into a set Γ).

To have a better intuition about these two rules, we give a simple example.
Consider the transaction t with a corresponding shared memory

t : J∧wr(x).rd(y)K∅ ‖ 〈x, ∅, ∅〉 ‖ 〈y, ∅, ∅〉

After executing the write access to the variable x, we obtain the system

t : Jwr(x).∧rd(y)K∅ ‖ 〈x, {t}, ∅〉 ‖ 〈y, ∅, ∅〉

where the pointer ∧ is moved to the next action and the identifier t is added to
the write set of the variable x. Now we can perform the read access to variable
y and we have:

t : Jwr(x).rd(y)∧K∅ ‖ 〈x, {t}, ∅〉 ‖ 〈y, ∅, {t}〉

where the identifier t is added to the read set of the variable y. The set Γ of the
transaction t remains empty since there is no transaction which had write access
to variable y.

Rule Par allows expressions to execute in parallel (in an interleaving fash-
ion) ensuring the uniqueness of the identifier t. By executing its last action, the

6 D. Medić et al.

transaction t can commit if the set Γ is empty, by applying the rule Commit.
After it commits, the execution proceeds with the continuation Y and the iden-
tifier t is deleted from the remaining system. The intuition is that transaction t
can commit if the other transactions, having a write access to the variables that
transaction t read, have been committed. The rollback of the transaction t can
be done with the rule RollR. It will force every transaction in parallel having
the identifier t in their set Γ to roll back too. The intuition is that when the
transaction with wr(x) rolls back, every transaction which has read access to
x should roll back as well. For instance, let us consider the system containing
following transactions:

t : JAKΓ | t1 : JA1K{t} | t2 : JA2KΓ2
such that rd(x) ∈ A1 and t /∈ Γ2

and that transaction t needs to be rolled back. Then, by applying the rule
RollR, we obtain the system:

roll(t) | roll(t1) | t2 : JA2KΓ2

in which transaction t1 is rolled back too since t ∈ Γ1 while t2 remains the same.
Now we can give the rules necessary to model reader and writer preference.

To give a better intuition about the differences between the two models, we use
the example from the introduction as a running example.

Reader preference. To model the reader preference we use the rules from Figure 2
and the rule given below.

(R-RollW)
(W 6⊆ {t} ∨ R 6⊆ {t})

t : JH[∧wr(x).A]KΓ ‖ 〈x,W,R〉 ‖M → roll(t) ‖ 〈x,W,R〉@t ‖M@t

The rollback operator is triggered when the transaction t cannot write on the
variable x (this happens when W 6⊆ {t} or R 6⊆ {t}). With the rule R-RollW
the transaction t goes to the state roll(t), i.e. the initial state of the transaction.
Additionally, the identifier t is removed from every triple of the shared memory.

To illustrate it, we use the example from the introduction, abstracting away
from the read and write values contained in variables and representing accesses
of two threads to the shared memory in our framework with transactions t1 and
t2. Transaction t1 has read accesses to variables y and x and then writes on
variable z, while t2 has read access to variables z and then writes on x. We have
the following system

t1 : J∧rd(y).rd(x).wr(z)]K∅ | t2 : J∧rd(z).wr(x)]K∅ ‖ 〈x, ∅, ∅〉 ‖ 〈y, ∅, ∅〉 ‖ 〈z, ∅, ∅〉

We assume that read accesses are executed in parallel and the obtained system
is

t1 : Jrd(y).rd(x).∧wr(z)]K∅ | t2 : Jrd(z).∧wr(x)]K∅ ‖ 〈x, ∅, {t1}〉 ‖ 〈y, ∅, {t1}〉 ‖ 〈z, ∅, {t2}〉

Now transaction t1 is executing write access to variable z but since in the memory
for variable z we have R 6⊆ {t1} (R = {t2}), the transaction t1 needs to roll back
according to the rule R-RollW, and we have

roll(t1) | t2 : Jrd(z).∧wr(x)]K∅ ‖ 〈x, ∅, ∅〉 ‖ 〈y, ∅, ∅〉 ‖ 〈z, ∅, {t2}〉

where roll(t1) = t1 : J∧rd(y).rd(x).wr(z)]K∅.

Towards a formal account for software transactional memory 7

Writer preference. To model the writer preference we use the rules from Figure 2
and the rules given below.

(W-Pref)
W ⊆ {t} ∧ R 6⊆ {t} ∧ R

′
= R \ t

t : JH[∧wr(x).A+ B]KΓ |
∏
ti∈R′

ti : JAiKΓi ‖ 〈x,W,R〉 ‖M → t : JH[wr(x).∧A+ B]KΓ |∏
ti∈R′

roll(ti) ‖ 〈x,W ∪ t, R〉@ti ‖M@ti

(W-RollW)
(W 6⊆ {t})

t : JH[∧wr(x).A]KΓ ‖ 〈x,W,R〉 ‖M → roll(t) ‖ 〈x,W,R〉@t ‖M@t

The rollback is triggered by the writer only in the case when another trans-
action has write access to the same variable. Therefore the condition on the rule
W-RollW is simply W 6⊆ {t}. The additional rule, with respect to the reader
preference is the rule W-Pref. It allows a transaction to modify the value of a
variable x if other transactions have read access to it. At the same time, all trans-
actions executing in parallel whose identifiers belong to the set R, are requested
to roll back.

To illustrate it, we use the same example as for the reader preference where
read accesses are executed already. Therefore, we have the system

t1 : Jrd(y).rd(x).∧wr(z)K∅ | t2 : Jrd(z).∧wr(x)]K∅ ‖ 〈x, ∅, {t1}〉 ‖ 〈y, ∅, {t1}〉 ‖ 〈z, ∅, {t2}〉

Now we can execute the write access to variable z, since in the rule W-Pref the
condition for the read set R allows a transaction to perform the write access,
and in that case all transactions in parallel having read access to variable z need
to be rolled back. Therefore, transaction t1 executes write access, while t2 will
be rolled back, and we have:

t1 : Jrd(y).rd(x).wr(z)∧K∅ | roll(t2) ‖ 〈x, ∅, {t1}〉 ‖ 〈y, ∅, {t1}〉 ‖ 〈z, {t1}, ∅〉

where roll(t2) = t2 : J∧rd(z).wr(x)]K∅.

4 Conclusion and Future Work

We have presented a framework to express the STM mechanism in a simple
shared memory context. The framework is able to model two different policies
for the execution of the concurrent transactions: writer and reader preference.
Our intention is to start from a simple calculus and then to add in a modular
way: nested transactions, data structures (e.g., C structures) and more complex
scheduling policies. Nested transactions will require to record for each transac-
tion a list of its children transactions. These children inherit the access of the
parent transaction. There exist different policies to deal with nested transactions:
closed nested transactions [17] and open nested transactions [18]. The difference
is that in the first case the parent does not execute till all the children have com-
mitted, while in the second case the parent can commit even before its children.
This may lead to inconsistencies which have to be dealt with compensations.

8 D. Medić et al.

Our ultimate goal is then to prove that the modular framework satisfies the
opacity [14] property, that is, all the execution traces of our semantics, where
the transactional bodies are interleaved, are equivalent to executions in which
transactional blocks are executed as a whole (in a lock-based fashion) without
being interleaved with other transactions.

References

1. V. Danos and J. Krivine. Transactions in RCCS. In: CONCUR - Concurrency The-
ory, LNCS, vol 3170, pp 39–412, San Francisco (2005).

2. I. Lanese, M. Lienhardt, C.A. Mezzina, A. Schmitt and J-B. Stefani. Concurrent
Flexible Reversibility. In: ESOP, LNCS, vol 7792, pp 370–390, Italy (2013).

3. M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. In: Annual International Symposium on Computer Ar-
chitecture, pp 289–300, ACM, San Diego (1993).

4. N. Shavit, D. Touitou. Software transactional memory. In: PODC, pp 204–213.
ACM, New York (1995).

5. P-J. Courtois, F. Heymans and D. L. Parnas. Concurrent Control with “Readers”
and “Writers”. In: Commun. ACM 1971, vol.14, pp 667–668.

6. J. Grattage. A functional quantum programming language. In LICS 2005, pp 249–
258. IEEE Computer Society, Washington (2005).

7. I. Phillips, I. Ulidowski, and S. Yuen. A reversible process calculus and the modelling
of the ERK signalling pathway. In: RC, LNCS, vol 7581, pp 21–232, Denmark (2012).

8. C. Lutz. Janus: a time-reversible language. Letter to R. Landauer., 1986.
9. T. Yokoyama, H. B. Axelsen and R. Glück. Principles of a reversible programming

language. In: Conference on Computing Frontiers, ACM, pp 43–54, Italy (2008).
10. I. Lanese, N. Nishida, A. Palacios, and G. Vidal. Cauder: A causal-consistent re-

versible debugger for Erlang. In: FLOPS, LNCS, vol 10818, pp 24–263, Japan (2018).
11. E. de Vries, V. Koutavas, M. Hennessy. Communicating Transactions. In: CON-

CUR 2010. LNCS, vol 6269, pp 56–583, Heidelberg (2010).
12. L. Acciai, M. Boreale and S. Dal-Zilio. A Concurrent Calculus with Atomic Trans-

actions. In: ESOP, LNCS, vol 4421, pp 48–63, Portugal (2007).
13. I. Lanese, C. A. Mezzina, A. Schmitt and J-B. Stefani. Controlling Reversibility in

Higher-Order Pi. In: CONCUR 2011, LNCS, vol 6901, pp 297–311, Germany (2011).
14. R. Guerraoui, M. Kapalka: On the correctness of transactional memory. In:

PPOPP, pp 175–184. ACM, New York (2008).
15. E. Giachino, I Lanese and C. A. Mezzina: Causal-Consistent Reversible Debugging.

In: FASE 2014, pp 370–384. LNCS, vol 8411, France (2014).
16. E. Giachino, I. Lanese, C. A. Mezzina and F. Tiezzi: Causal-consistent rollback in

a tuple-based language. In: JLAMP, vol 88, pp 99–120, (2017).
17. J. Gray and A. Reuter: Transaction Processing: Concepts and Techniques. (1993).
18. J. E. B. Moss: Open Nested Transactions: Semantics and Support. (2006).

	Towards a formal account for software transactional memory
	Introduction
	Syntax
	Semantics
	Conclusion and Future Work

