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ABSTRACT
Background. Collaborative software development has produced
a wealth of version control system (VCS) data that can now be
analyzed in full. Little is known about the intrinsic structure of
the entire corpus of publicly available VCS as an interconnected
graph. Understanding its structure is needed to determine the best
approach to analyze it in full and to avoid methodological pitfalls
when doing so.

Objective. We intend to determine the most salient network topol-
ogy properties of public software development history as captured
by VCS. We will explore: degree distributions, determining whether
they are scale-free or not; distribution of connect component sizes;
distribution of shortest path lengths.

Method. We will use Software Heritage—which is the largest cor-
pus of public VCS data—compress it using webgraph compression
techniques, and analyze it in-memory using classic graph algo-
rithms. Analyses will be performed both on the full graph and on
relevant subgraphs.

Limitations. The study is exploratory in nature; as such no hy-
potheses on the findings is stated at this time. Chosen graph algo-
rithms are expected to scale to the corpus size, but it will need to
be confirmed experimentally. External validity will depend on how
representative Software Heritage is of the software commons.
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1 INTRODUCTION
The rise in popularity of Free/Open Source Software (FOSS) and
collaborative development platforms [10] over the past decades has
made publicly available a wealth of software source code artifacts
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Figure 1: Data model: a Merkle DAG linking together source
code artifacts commonly found in version control systems.

(source code files, commits with all associated metadata, tagged
released, etc.), which have in turn benefited empirical software
engineering (ESE) and mining software repository (MSR) research.
Version control systems (VCS) in particular have been frequently
analyzed [9] due to the rich view they provide on software evolution
and their ease of exploitation since the advent of distributed version
control systems.

Only very recently systematic initiatives [1, 6, 12] have been
established to gather as much public VCS data as possible in a
single logical place, enabling ESE research at the scale of, ideally,
all publicly available source code artifacts—i.e., our entire software
commons [11]. In this paper we describe how we will conduct the
first systematic exploratory study on the intrinsic structure of source
code artifacts stored in publicly available version control systems.

As corpus we will use Software Heritage and its dataset [1, 15],
which is the largest and most diverse collection of source code
artifacts, spanning more than 5 billion unique source code files
and 1 billion unique commits, collected from more than 80 million
software projects.
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The data model of our corpus is shown in Figure 1. It is a Merkle
DAG [14], fully deduplicated, linking together in a single giant
graph the development histories of all publicly available VCSs. Ac-
tual source code files are represented as blob nodes, their grouping
in source code trees as directory nodes; commit nodes are linked
together by ancestry, supporting forks and N-ary merges; releases
(or “tags”) are also supported; the full states of VCSs is recorded pe-
riodically (similarly to what the Internet Archive wayback machine
does for web pages) and associated to where it has been observed (a
software origin, identified by an URL). We refer the reader to [15]
for full details on the data model.

The study we will conduct will assess the most salient network
topology properties [2] of the Software Heritage corpus as a graph.
Such a systematic analysis is still missing in the literature and is
needed for further empirical software engineering research for
several reasons:

a) Determine the most appropriate large-scale analysis approach.
Most “large-scale” studies of VCSs fall short of the full body of
publicly available source code artifacts and either resort to random
sampling or focus on popular repositories. This is a potential source
of bias, but is understandable for practical reasons. To enable studies
on the entire software commonswe need, in addition to platforms [1,
12], an understanding of its intrinsic structure, to choose the most
appropriate large-scale analysis approach [7, 16] depending on the
study needs. For instance, if the graph is easy to partition into
loosely connected components, then a scale-out approach with
several compute nodes holding in memory graph quasi-partitions
would be best; if the graph is highly connected a scale-up approach
relying on graph compression [3] would be preferable. Similarly,
knowing that most nodes are part of a single gigantic connect
component (CC) would help in avoiding algorithmic approaches
with high complexity on the size of the largest CC.

b) Avoidmethodological pitfalls. The same understanding is needed
to avoid making strong assumptions on what constitutes “typical”
VCS data. These pitfalls have been warned against since the early
days of GitHub [10], but that have not been quantified yet. The
extent to which repositories on popular forges correspond to “well
behaved” development repositories, as opposed to be outliers that
are not used for software development or are built just to test the
limits of hosting platforms or VCS technology is unknown. In our
experience GitHub alone contains repositories with very weird arti-
facts (commits with one million parents or mimicking bitcoin min-
ing in their IDs, the longest possible paths, bogus timestamps [16],
etc.). How many statistically relevant outliers of this kind exist is
unknown and needs to be documented as reference knowledge to
help researchers in the interpretation of their empirical findings.

c) Improve our understanding of our daily objects of study. More
generally, in empirical software engineering we are collectively
studying artifacts that naturally emerge from the human activity
of software development. As it is commonplace in other sciences
(and most notably physics), we want to study the intrinsic network
properties of the development history of our software commons
just because the corpus exists, it is available, and it is challenging
to do so. The resulting findings might be also practically useful, but
in spite of that we will obtain a more deep understanding of the
nature of objects we study daily than what is known today.

Table 1: Corpus size as a graph (release: 2018-09-25).

Nodes

origins (ori) 85 M
snapshots (snp) 57 M
releases (rel) 9.9 M
commits (cmt) 1.1 B
directories (dir) 4.4 B
files 5.0 B

≈ 11 B

Edges

ori→snp 74 M
snp→cmt 616 M
cmt→cmt 1.2 B
cmt→dir 1.2 B
dir→dir 49 B
dir→file 113 B

≈ 165 B

2 RESEARCH QUESTIONS
Specifically we will perform an exploratory study, with no predeter-
mined hypotheses, and answer the following research questions:

RQ1 What is the distribution of indegrees, outdegrees and local
clustering of the public VCS history graph? Which laws do
they fit?
How do such distributions vary across the different graph
layers—file system layer (files + directories) v. history layer
(commits + releases) v. origin layer.

RQ2 What is the distribution of connected component sizes for
the public VCS history graph? How does it vary across graph
layers?

RQ3 What is the distribution of shortest path lengths from roots
to leaves in the recursive layers (commits and directories) of
public VCS history graph.

3 VARIABLES
We define the following subsets of the starting corpus:

• full corpus: the entire Software Heritage graph dataset
• filesystem layer: full corpus subset consisting of file and
directory nodes only, and edges between them

• history layer : full corpus subset consisting of commit and
releases only, and edges between them

• commit layer : subset of the history layer consisting of commit
nodes only, and edges between them

• hosting layer: full corpus subset consisting of origins and
snapshost nodes only, and edges between them

For each corpus we will measure the following variables:

• indegree distribution: for each node the number of edges
pointing to it

• outdegree distribution: for each node the number of edges
starting from it

• local undirected clustering distribution: for each node the
number of edges between nodes pointing to or from it (=
local clustering coefficient without dividing it by the number
of possible egdes between its neighbors)

• CC size distribution: the size, in number of nodes, of each
connected component in the underlying undirected graph
of the input corpus

• (for the filesystem and commit layers only) path length distri-
bution: distribution of the length of shortest paths between
all root (indegree=0) nodes and all leave (outdegree=0) nodes
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4 MATERIAL

Dataset. We intend to use the Software Heritage graph dataset [15]
as corpus for the planned experiments. The main reasons for this
choice are that: (1) it is the largest dataset about publicly software
development history (see Table 1 for its size characteristics as a
graph); (2) it is available as open data in various formats,1 including
a simple nodes/edges graph representation; (3) it has been chosen
as topic for the MSR 2020 Mining Challenge,2 hence we expect
that by the time experiments will be run the body of related work
around it will be substantial.

Software. We will use swh-graph [3] and WebGraph [4] to pro-
duce and exploit compressed graph representations of the input
corpus (see Section 5 for details). Statistical analyses will be per-
formed using popular SciPy [13] components (NumPy, Pandas, . . . ).
All developed custom code and derived data will be released as a
complete replication package.

Hardware. We expect to be able to run all experiments on a single
server equipped with 24 Intel Xeon 2.20 GHz CPUs and 750GB of
RAM, which is already available to us.

5 EXECUTION PLAN
We will follow the experiment protocol described below.

a. Retrieve the most recent version of the Software Heritage
graph dataset [15] available, falling back to the one available at
the time of writing (2018-09-25) if no newer releases have been
published.

b. Compress the textual node/graph representation of the full
dataset to a compact representation of its structure (which ignores
all node metadata except node types) using swh-graph. Repeat for
each subgraph of interest (see Section 3 for details). This step is
expected to take about a week for the full graph and proportionally
less time for the various subgraphs.

c. (RQ1) Compute indegrees, outdegrees and local clustering for
all nodes in the graph, for all relevant (sub)graphs, exploiting the
WebGraph [4] API with custom Java code.

d. (RQ2) Compute all connected components on all relevant
(sub)graphs using well known algorithms [8] that can be imple-
mented with custom Java code as visits (BFS or DFS) on the Web-
Graph graph representations. A full graph visit is expected to take
a few hours, scaling down linearly for subgraphs. [3]

e. (RQ3) For each subgraph of interest (e.g., the file system layer
composed only of files and directory nodes), for all root nodes (e.g.,
source code root directories), create a shortest path spanning tree to
all leaves (e.g. file or directory nodes with no children). Then export
all path lengths. This can be implemented with custom Java code
realizing Dijkstra’s algorithm on top of theWebGraph API. We have
no precise estimate of how long this step will take; it will take more
than a single full graph visit, due to paths that will be re-explored,
but it should remain manageable. Thread-base parallelization is an
option in case we need to speed up this step.

1https://annex.softwareheritage.org/public/dataset/graph/, retrieved 2020-01-09
2https://2020.msrconf.org/track/msr-2020-mining-challenge, retrieved 2020-01-09

6 ANALYSIS PLAN
6.1 Descriptive statistics
We will analyze the raw data obtained from the execution plan
according to the following analysis protocol.

a. (RQ1) We will plot indegree/outdegree/local clustering dis-
tributions as histograms, one histogram per distribution and per
(sub)graph (see Section 3 for details).

• One figure per distribution and graphwill be produced, show-
ing both the raw histogram (i.e., for each degree/clustering
value observed, the number of nodes with that value) as well
as the cumulative distribution function (CDF) given by the
number of nodes whose degree/clustering is greater than
or equal to a given value. One or more scales among lin-lin,
lin-log, log-lin, log-log scales will be used, depending on
presentation needs.

• Each distribution will be qualitatively discussed by com-
paring it with a generic distribution functions (power law,
exponential law, Poisson law).

• In case they arise, the presence of outliers or other statistical
anomalies with respect to more regular regions of the dis-
tribution will be highlighted (e.g., change of law, change of
slope, . . . ), and may lead to specific investigations to deter-
mine their nature.

b. (RQ1) The nature of the tail of each distribution will be sys-
tematically analyzed and discussed.

• The first observed criterionwill be the amplitude of the range
of degree values, expressed in decades.

• Then, we will use the discrete maximum likelihood estimator
(MLE) to determine the scaling parameter [5, Eq. 3.7].

𝛼 (𝑑𝑚𝑖𝑛) = 1 + 𝑛
[
𝑛∑︁
𝑖=1

ln
𝑑𝑖

𝑑𝑚𝑖𝑛

]−1
where 𝑑𝑖 , 𝑖 = 1, . . . , 𝑛 are the observed degree values such
that 𝑑𝑖 ≥ 𝑑𝑚𝑖𝑛 .
Without prejudging, nor speculating whether the distribu-
tions will match power laws or not, we limit ourselves to the
first step of the methodology proposed in [5, Box 1], using
the above estimator which depends on an arbitrary degree
threshold 𝑑𝑚𝑖𝑛 , beyond which the behaviour of the distri-
bution is ignored, like a probe through the whole range of
degrees.
The plot is displayed in log-lin scale over the degree range.
Lacking precise information on the results at this stage, as
well as knowledge about the impact of possible atypical
events in the observed distributions, it is premature to plan
to implement the subsequent steps of the aforementioned
methodology.

c. (RQ2) We will display connected component size, focusing on
VCS origins that contain at least one commit, as a set of histograms.

• As above, both raw distribution functions and cumulative
distributions will be displayed.

• To characterize the aggregation process into connected com-
ponents as nodes of different types, or at different depths,
are added to the corpus:

https://annex.softwareheritage.org/public/dataset/graph/
https://2020.msrconf.org/track/msr-2020-mining-challenge
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– We will produce histograms showing the raw distribution
and CDF, for each layer and depth within each layer.

– For each of them, we will produce a table summarizing
the number of isolated origins and size of the largest con-
nected component.

– We will quantitatively compare the distribution functions
by displaying the Kolmogorv-Smirnov distance between
them, weighted by connected component sizes expressed
as the number of origin nodes they contain.

d. (RQ3)Wewill display the distribution of root-leaf shortest path
lengths for the recursive layers of the public VCS corpus (commit
and filesystem layers), as a pair of histograms.

• As before, both raw and cumulative distribution functions
will be displayed and discussed.

6.2 Practical significance of the findings
RQ1’s answers will provide information on how the public VCS
graph compares with other naturally occurring graphs in collabo-
ration, such as the social network graphs or the graph of the Web.
While seemingly only of theoretical significance, degree distribu-
tions and derived properties such as graph density directly impact
on the practical exploitability of graphs of this scale. For instance
graphs with fat-tailed degree distributions compress better than
others. We know from previous work [3, 16] how well the full VCS
graph compress, but a systematic study of related properties for
the subgraphs we intend to address here is still missing.

Findings related to RQ2 will directly tell how to best approach
full-scale analyses of the various corpuses. If, for instance, it will
turn out that 80% of the nodes are part of a gigantic component,
than distributed approaches will be generally difficult to implement,
due to entanglement and the pseudo-random nature of identifiers in
Merkle DAG. Opposite considerations will apply for a more uniform
distribution of CC sizes.

Finally, RQ3’s answers will tell what’s the average path depths in
the recursive layers of the public VCS corpus, which is practically
useful for several analysis needs. The average commit length is
a limiting factor in analyses based on git blame, as we need to
travel back development history to attribute files (if not SLOC) con-
tributions. Similar considerations apply to average path lengths (in
the filesystem layer), when we need to attribute files or directories
to originating commits, for analysis or provenance tracking needs.

7 LIMITATIONS
Exploratory nature of the study. The study we propose is exploratory
in nature, hence we state no hypotheses on the findings at this stage.
This is intended, as the intrinsic structure of the public VCS corpus
has never been characterized before at the extent we propose.

Algorithmic feasibility. With its 10+ B nodes and 160+ B edges the
corpus we plan to study is a substantial graph for graph practition-
ers standards; not as big as the graph of the Web, but significantly
larger than most benchmarks used in the field. At this scale, algo-
rithms with super-linear complexity are generally considered non
practically applicable.

Our algorithmic approaches for RQ1 and RQ2 have linear com-
plexity; the approach for RQ3 is super linear, but we are restricting

it to selected subgraphs and we expect it to exhibit enough shar-
ing/caching to be practically treatable. We do not expect it to be
the case but if, due to either algorithmic of technological considera-
tions, any specific sub-experiment will turn out to be not practically
feasible, we will resort to uniform random sampling.

External validity. Due to organic crawling lag, Software Heritage
does not capture the full extent of publicly available VCSs. Hence
we do not claim being able to characterize the intrinsic structure of
the entire history of publicly available software development. The
chosen dataset is nonetheless the best publicly accessible option
available today to researchers. It is also well representative of the
most popular development forge(s) in use today. As such we expect
that the network topology findings of this study will provide useful
insights to researchers and practitioners in the field.
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