
HAL Id: hal-03010676
https://hal.inria.fr/hal-03010676

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Profiles of upcoming HPC Applications and their
Impact on Reservation Strategies

Ana Gainaru, Brice Goglin, Valentin Honoré, Guillaume Pallez

To cite this version:
Ana Gainaru, Brice Goglin, Valentin Honoré, Guillaume Pallez. Profiles of upcoming HPC Ap-
plications and their Impact on Reservation Strategies. IEEE Transactions on Parallel and Dis-
tributed Systems, Institute of Electrical and Electronics Engineers, 2021, 32 (5), pp.1178-1190.
�10.1109/TPDS.2020.3039728�. �hal-03010676�

https://hal.inria.fr/hal-03010676
https://hal.archives-ouvertes.fr


1

Profiles of upcoming HPC Applications
and their Impact on Reservation Strategies

Ana Gainaru, Brice Goglin, Valentin Honoré and Guillaume Pallez (Aupy)

Abstract—With the expected convergence between HPC, BigData and AI, new applications with different profiles are coming to HPC
infrastructures. We aim at better understanding the features and needs of these applications in order to be able to run them efficiently
on HPC platforms.
The approach followed is bottom-up: we study thoroughly an emerging application, Spatially Localized Atlas Network Tiles (SLANT,
originating from the neuroscience community) to understand its behavior. Based on these observations, we derive a generic, yet
simple, application model (namely, a linear sequence of stochastic jobs). We expect this model to be representative for a large set of
upcoming applications from emerging fields that start to require the computational power of HPC clusters without fitting the typical
behavior of large-scale traditional applications.
In a second step, we show how one can use this generic model in a scheduling framework. Specifically we consider the problem of
making reservations (both time and memory) for an execution on an HPC platform based on the application expected resource
requirements. We derive solutions using the model provided by the first step of this work. We experimentally show the robustness of
the model, even with very few data points or using another application, to generate the model, and provide performance gains with
regards to standard and more recent approaches used in the neuroscience community.

Index Terms—stochastic application, execution time, memory footprint, scheduling, checkpointing

F

1 INTRODUCTION

High performance computing platforms are amongst the
most powerful structures to perform heavy-load critical
computations. A typical HPC application is a massively par-
allel code that requires an important number of computing
resources to satisfy its requirement in terms of memory
and computation. Fields such as astronomy and cosmol-
ogy, computational chemistry, earth, particle physics and
climate science have evolved together with the advance of
platform architecture and software stack in order to lever-
age massive levels of parallel processing. Newly emerging
applications move beyond large monolithic codes that use
tightly-coupled, compute-centric algorithms. Fields such as
neuroscience, bioinformatics, genome research, computa-
tional biology are doing exploratory research that embrace
more dynamic, heterogeneous multi-phase workflows using
ad-hoc computations and methodologies. New Machine
Learning (ML) and AI frameworks have become important
tools in exploratory domains. While progresses have been
made over past years to improve these ML techniques, this
progress has induced high requirements in terms of com-
putations. For instance, Deep Learning techniques require
an important training part where the quality of the model
increases with the dataset size.

Hence, such workflows involving ML techniques will
soon target HPC infrastructures that offer high computation
support, as well as high memory and network performance.
However, their profiles differ from classic HPC applications.

• A. Gainaru is with Vanderbilt University & Oak Ridge National Labora-
tory, Knoxville, USA.
V. Honoré, B. Goglin and G. Pallez are with Inria & Université de
Bordeaux, France.

Fig. 1: Memory requests during submission and memory
usage variation for nine representative medical and neuro-
science applications.

Often, the duration of these applications is difficult to es-
timate because they are input-independent. It is common
for such an application to have walltimes between several
hours to days. This characteristic is a real limitation for users
for which requesting the maximum possible walltime often
induces an overestimation that penalizes the total cost of the
request. In addition, the stochastic memory utilization often
requires users to request only high memory nodes for their
execution.

Figure 1 presents the memory requirements and requests
for nine exploratory applications from the medical and
neuroscience department at the Vanderbilt University [29].
The logs are generated for a 6-month period in 2018 running
on their in-house cluster. Users often utilize only fractions
of the requested memory (e.g. MaCRUISE_v3, bedpostx_v2



2

in Figure 1) or end up with their application killed due
to memory underestimation (e.g. dtiQA_v2 and dtiQA_v3).
Users tend to overestimate their resource requirements in
both time and memory, which leads to these application
typically waiting in the scheduler queue for days before
eventually running.

In this work, we study the profile of an exploratory
application from the neuroscience domain with the goal of
understanding the properties and characteristics of these
new frameworks. We are interested in the pure applica-
tion behavior that is non-biased by interference due to
the system or other applications (e.g. congestion due to
shared resources). We focus on the Spatially Localized Atlas
Network Tiles (SLANT) [23] application. This code follows
the typical behavior of the upcoming stochastic applications:
1) its workflow consists of multiple stages and a walltime
between tens of minutes to hours depending on hidden
characteristics in the input MRI; 2) while its peak memory
requirement is predictable,the memory footprint can have
variations of tens of GBs within one execution; 3) its code
is dynamic, in continuous development depending on the
needs of each study. SLANT has an easy to understand
workflow whose input data are simply MRI images, which
makes it ideal for study, but at the same time, it is represen-
tative for many of this new type of HPC applications. For
example the RADICAL-Pilot job system to develop bioin-
formatics workflows is often used to create workflows that
spawn large numbers of short-running processes that can
exhibit highly irregular I/O and computation patterns [33].
Similarly, applications using Adaptive Mesh Refinement
(AMR) methods have been shown to have high unpre-
dictable performance variations based on characteristics of
the input data [45].

Based on our observations of SLANT, we propose a
generic application model where an application is described
as a chain of tasks whose walltimes follow probability distri-
butions. We use this model to estimate the resource request
for SLANT when deployed on an HPC system. We show
that our resource estimator needs only a few runs to learn
the model and to optimize the submission and execution
of these types of applications without any modification to
the batch scheduler or HPC middleware. This is essential
for productivity focused applications since their codes are
in continuous change based on the requirements of each
study. Performance prediction methods can be used by
scientific applications to adjust their resource requirements
during submission. However they tend to work well only
on well known codes that can provide a rich history of
past runs. Our study aims to bridge the gap between the
specific characteristics of exploratory applications and the
strict requirements of HPC batch schedulers that hinder pro-
ductivity and innovation for new computational methods.

The rest of the paper is organized as follows. Section 2
presents the study of the SLANT application and highlights
key characteristics of the behavior of each stage in the
application. Following these observations, Section 3 derives
a new computational model that is used to generate reser-
vation strategies that can be used for deployment on HPC
systems. Section 4 presents an extensive study on the impact
of the new strategies on application and system level metrics
when running on large-scale systems. Finally we present

related works in Section 5 and conclude.

2 CASE STUDY OF A NEUROSCIENCE APPLICA-
TION

In this section, we study thoroughly the performance of
an upcoming HPC application from neuroscience: SLANT,
introduced in Section 2.1. First we make high-level observa-
tions in Section 2.2, then we explain them with lower-level
performance analysis in Section 2.3.

2.1 Spatially Localized Atlas Network Tiles (SLANT)

The study of this work is centered around a specific repre-
sentative neuroscience application: SLANT [22], [23]. This
application performs multiple independent 3D fully con-
volutional network (FCN) for high-resolution whole brain
segmentation. It takes as input an MRI image obtained by
measuring spin–lattice relaxation times of tissues. We use
a CPU version of the application1. There exists different
version of SLANT depending on whether the network tiles
are overlapped or not. Here, we consider the overlapped
version (SLANT-27 [23]) in which the target space is covered
by 3 × 3 × 3 = 27 3D FCN. The application is divided into
three main phases: i) a preprocessing phase that performs
transformations on the target image (MRI is a non-scaled
imaging technique) ii) a deep-learning phase iii) a post-
processing phase doing label fusion to generate the final
application result. Each of the tasks may present run-to-run
variations in their walltime.

2.2 High-level observations

In recent work [13], observations showed large variations in
execution time of neuroscience applications, complicating
their execution on HPC platforms. We are interested in
verifying and studying this. To do so, we run SLANT on
312 different inputs. These inputs are extracted from OASIS-
3 [28]2and Dartmouth Raiders Dataset (DRD)3 [18] datasets.
We run the application on a Haswell platform composed
of a server with two Intel Xeon E5-2680v3 processors (12
core @ 2,5 GHz). We run the docker image presented in the
Git repository of SLANT-27 using the Singularity container
runtime.

In Figure 2, we confirm the observations about the large
walltime variations. Specifically we can see two categories
of walltimes which correspond to the two datasets: OASIS
inputs have a walltime of 70min±15% and DRD inputs have
a walltime of 125min±30%. The natural questions that arise
are the following:

• Is the walltime variation due to a machine artifact (or is
it due to the quality of the input)?

• Is the walltime variation due to the input size (and can
it be predicted using this information)?

We study these questions in the following experiments.
First we randomly select three inputs of both datasets and

1. The code is freely available at https://github.com/MASILab/
SLANTbrainSeg

2. For this very large dataset, we only used a subset of available data.
3. Available at http://datasets-dev.datalad.org/?dir=/labs/haxby/

raiders

https://github.com/MASILab/SLANTbrainSeg
https://github.com/MASILab/SLANTbrainSeg
http://datasets-dev.datalad.org/?dir=/labs/haxby/raiders
http://datasets-dev.datalad.org/?dir=/labs/haxby/raiders


3

Fig. 2: SLANT application walltime variation for various
inputs.

Fig. 3: Performance variability on identical inputs. Variabil-
ity is studied over five runs.

execute them five times each. We present the results in
Figure 3. We see that the behavior for each input is quite
robust. There are slight variations for DRD inputs, but
nothing of the order of magnitude observed over all inputs.
Hence, it seems that the duration of the execution is mainly
linked to the input.

We then study the variation of walltime as a function
of the input size in Figure 4. We can see that for a given
dataset, the walltime does not seem correlated to the input
size. The corresponding Pearson correlation factors are 0.30
(OASIS) and −0.15 (DRD). The datasets however seem to
have different input types: except for the outlier at 120 MB,
the input sizes of OASIS vary from 0 to 30MB while those
from DRD vary from 45 to 75MB. We present visually the
type of inputs for the two databases in Figure 5. Intuitively,
the performance difference on OASIS versus DRD inputs is
probably due to the resolution quality.

Altogether, we believe we can give these prelimi-
nary observations on these new applications:

1) We confirm the observations of significant varia-
tions in their walltime.

2) These variations are mostly determined by ele-
ments from the input, but are not correlated to the
size of the input (quality and not quantity).

2.3 Task-level observations
Studies using machine learning methods to estimate the
future resource consumption of an application assume a
constant peak memory footprint (e.g. [44]). In this section,
we study more closely the memory behavior of these new
HPC applications.

Fig. 4: Correlation between the size of the input and the
walltime over the 312 runs.

(a) Segmentation for OASIS.

(b) Segmentation for DRD.

Fig. 5: Typical inputs and outputs based on the dataset.

Figure 6 presents the memory footprint of two runs of
the SLANT application, one for each of the input categories.
Note that all other runs follow similar trends, specifically
the peak memory usage is not dependent on the input,
only the time depends (and hence the average memory
utilization). For both profiles, we can see clearly the three
phases of the application (pre-processing, deep-learning,
post-processing). Note that these traces hint at the fact that
the difference in executed time is more linked to a quality
element since there is fewer pre/post-processing time for
OASIS input.

In the following, we focus our discussions on the runs
obtained from the 88 DRD inputs (Figure 6b) because their
pre/post processing steps are more interesting, although the
same study could be done for the OASIS inputs.

These memory footprints show that the runs can be
divided into roughly seven different tasks of “constant”
memory usage:

• pre-processing phase: This phase includes the four first
tasks. The 1st task shows a memory consumption peak
of around 3.5GB for the few first minutes of the ap-
plication execution. The 2nd, 3rd and 4th tasks have
respectively a peak of about 10GB, 6GB and 10GB.

• deep-learning phase: The 5th task, represents the deep-
learning phase. This task presents a periodic pattern
with memory consumption peaks going up to 50GB.
Each pattern is repeated 27 times, corresponding to
the parameterization of the network tiles in SLANT-27
version.

• post-processing phase: The 6th and 7th tasks model the



4

(a) Typical memory profile with OASIS input.

(b) Typical memory profile with DRD input.

Fig. 6: Examples of memory footprints of the SLANT appli-
cation with inputs from each considered dataset. Memory
consumption is measured every 2 seconds with the used
memory field of the vmstat command.

last phase of the application, with a memory peak to
respectively 3.5GB and 10GB.

1 2 3 4 5 6 7

Fig. 7: Job decomposition in tasks based on raw data of a
memory footprint.

In the second step of this analysis we are interested in
the behavior of the job at the task level. We decompose
the job into tasks based on the memory characteristics by
using a simple parser (see Figure 7). This parser returns
the duration of each task within each run based on their
memory footprint. Note that this decomposition can be
incorrect, we discuss this and its implications later.

Using the decomposition in tasks, we can plot the indi-
vidual variation of each task execution time (for simplicity,
we only considered execution time at the minute level) in
Figure 8.

We make the following observations. First, all tasks show
variation in their walltime based on the input run. This
variation differs from task to task. For instance, task #7 has

Fig. 8: Analysis of the task walltime for all jobs (raw data).

Table 1: Pearson Correlation matrix of the walltimes of the
different tasks.

Task Index 1 2 3 4 5 6 7
1 1.000 0.998 -0.308 -0.261 -0.114 -0.039 0.139
2 1.000 -0.293 -0.277 0.142 -0.058 0.159
3 1.000 0.076 0.547 -0.283 0.223
4 1.000 -0.361 0.296 -0.308
5 1.000 -0.568 0.574
6 1.000 -0.475
7 1.000

variations up to 25 minutes while tasks #3 and #4 have less
than 5 minutes difference between runs.

Another observation from the raw data on Figure 8, is
that some tasks present several peaks (tasks #5 and #7).
There may be several explanations to this, from actual task
profile (for instance a condition that adds a lot of work
if it is met), lack of sufficient data for a complete profile,
or finally a bad choice in our task decomposition. Going
further, one may be interested in generating a finer grain
parsing of the application profile to separate these peaks
into individual tasks, based on more parameters than only
the memory consumption. We choose not to do this to
preserve some simplicity to our model. In the following, we
denote by X1, . . . , X7 the random variable that represents
the execution times of the seven tasks.

An important next question is whether they show corre-
lation in their variation. Indeed, given that they are based on
the same input, one may assume that they vary similarly. To
study this, we present in Table 1 their Pearson Correlation
coefficients. We see that only tasks #1 and #2 present a very
high correlation (meaning that their execution times are
proportional), while others have meaningless correlation.
This measure is important as it hints at the independence
of the different execution time variables.

Finally, to investigate the distribution of memory usage
overtime, we study the task status at all time (at time t,
which task is being executed). To do so, givenXi (i = 1 . . . 7)
the execution time of task i, we represent in Figure 9 the
functions yi(t) = P

(∑
j≤iXj < t

)
. Essentially, it means

that yi is the probability that task i is finished.
Figure 9 is read this way: the probability that task i is

running at time t corresponds to the distance between the
plots corresponding to task i − 1 and task i. For instance,
at time t = 0 task #1 is running with probability 1. At time
100, tasks #5 to #7 are running (roughly) with respective
probability 0.06, 0.5, 0.38. In addition, with probability 0.06
the job has finished its execution.

This figure is interesting in the sense that it gives task



5

Fig. 9: yi(t) = P
(∑

j≤iXj < t
)

is the probability that task i
is finished at time t (raw data).

properties as a function of time. For instance, given the
memory footprint of each task, one can estimate the proba-
bility of the different memory needs.

3 FROM OBSERVATIONS TO A THEORETICAL
MODEL

Using the observations from Section 2, we now derive a
new computational model. We discuss the advantages and
limitations of this model in Section 3.2.

3.1 Job model
We model an application A as a chain of n tasks:

A = j1 → j2 → · · · → jn,

such that ji cannot be executed until ji−1 is finished. Each
task ji is defined by two parameters: an execution time and
a peak memory footprint. The peak memory footprint of
each task does not depend on the input, and hence can be
written as Mi. The execution time of each task is however
input dependent, and we denote by Xi the random variable
that represents the execution time of task ji. Xi follows a
probability distribution of density (PDF) fi. We also assume
that the Xi are independent.

Finally, the compact way to represent an application is

{(f1,M1), . . . , (fn,Mn)}. (1)

3.2 Discussion

Fig. 10: Interpolation of data from Figure 8 with Normal
Distributions.

To discuss the model, we propose to interpolate the
data from our application with Normal Distributions4. We
present such an interpolation on Figure 10 (data in Table 2).

4. We write that X follows a normal distribution N (µ, σ).

Table 2: Parameters (µ, σ) of the Normal Distributions inter-
polated in Figure 10.

Task ID 1 2 3 4 5 6 7
Mean µ (in sec) 255 871 588 459 3050 804 1130

Std σ (in sec) 96.7 322 76.8 48.1 263 393 568

Fitting to continuous distributions is interesting in terms
of data representation, and offers more flexibility to study
the properties of the application. As we have seen earlier,
Normal Distributions may not be the best candidate for
those jobs (for examples jobs with multiple peaks), but they
have the advantage of being simpler to manipulate. This is
also a good element to discuss the limitations of our model.

Using the interpolations, one can then compute several
quantities related to the problem with more or less precision.
We show how one would proceed in the following.

3.2.1 Task status with respect to time

We can estimate the functions P
(∑

j≤iXj < t
)

represented
in Figure 9, which later helps to guess the task status with re-
spect to time. Indeed, if X1, . . . , Xi are independent normal
distributions of parameters N (µ1, σ1), . . . ,N (µi, σi), then
Yi =

∑
j≤iXj follows N (

∑
j≤i µj ,

√∑
j≤i σ

2
j ). We plot in

Figure 11 the functions fi = P (Yi < t).

Fig. 11: Representation of the cumulative distribution of the
termination time of the 7 tasks over time from raw data.

An important observation from this figure is that even if
the interpolations per task are not perfect, the sum of their
model gets closer with time to actual data. This is further
discussed in Section 4. Obviously this may not be true for
all applications and is subject to caution, however the fact
that initially all models seemed far off on a per task basis
but converged well is positive.

3.2.2 Memory specific quantities
Using this data, one should be able to compute different
grandeurs needed for an evaluation, such as:

• The average memory needed for a run M̄ =∑n
i=1MiE[Xi]/

∑n
i=1 E[Xi]. This quantity may be

useful for co-scheduling schemes in the case of
shared/overprovisionned resources [5], [38];

• Or even arbitrary values such as, the “likely” maximum
memory needed as a function of time.

Mτ (t) = max

Mi|P

∑
j<i

Xj < t ≤
∑
j≤i

Xj

 > τ


(2)



6

We introduce this value as it will be used in Section 4.1.
In addition, the data for the values of Mi can be obtained
with traces of very few executions (since it is not input
dependent).

The fi can also be interpolated from very few executions
with more or less precision. We evaluate this precision here
with the following experiment, presented in Figure 12. We
interpolate from 5, 10, 20, 50 randomly selected (with re-
placement) runs the functions fi and compare (i) the evolu-
tion of M̄ ; and (ii) the maximum memory need t 7→M0.1(t).
Each experiment is repeated 10 times to study the variations.

(a) Average memory M̄ for different number of inputs
over 10 experiments. Red star is M̄ of the original 88
runs.

(b) M0.1 for different number of inputs (avg of 10 exper-
iments).

Fig. 12: The model can help interpolate different quantities
such as average memory (top) or peak memory (bottom).

We observe from Figure 12a that with respect to the
average memory need, increasing the number of data el-
ements does not improve the precision significantly. This
was expected since the only information needed is the
expectation of the random variables, which is a lot easier
to obtain than the distribution. The difference between M̄ as
evaluated and the red star is because of the job modelisation.
Indeed, we consider constant memory per task when it is
not the case. For instance the memory of Task 5 is set at
50GB in the model (and in the computation of M̄ ), when in
practice it fluctuates a lot (and in the measures taken for the
red star).

With respect to the maximum memory requirements
(Figure 12b), it seems that very few runs (5 runs) already
give good performance. This could also be predicted due
to the Maximum function which gives more weight to any
single run.

Obviously this modelization is not perfect and can be
improved depending on the level of precision one needs,
specifically we can see the following caveats:

• The peak memory is different from the average memory
usage (see for instance task #5 in Figure 7), where
the job varies between high-memory needs and low-

memory needs. Hence using peak memory to guess the
average memory may lead to an overestimation of the
average memory (as shown in Figure 12a). To mitigate
this, one may add as a variable the average memory per
task.

• The model assumes that the lengths of the tasks are
independent. However this may not be true as we have
seen in Table 1 where the lengths of tasks #1 and #2 are
highly correlated. In our case, a simple way to fix this
would have been to merge them into a single meta task.
We chose not to do this to study the limits of the model.

• This model is based on the information available today.
Specifically, the jobs here are sequentialized (the depen-
dencies are represented by a chain of tasks). However
we can expect a more general formulation where the
dependencies are more parallel (and hence represented
by a Directed Acyclic Graph instead of a linear chain).

To conclude this section, we have presented a model for
the novel HPC applications that is easy to manipulate but
still seems close to the actual performance. We discussed
possible limitations to this model. In the remainder of the
paper, we present an algorithmic use-case where one may
use this model, and show on experiments that solutions
derived from this model are efficient.

4 IMPACT OF STOCHASTIC MEMORY MODEL ON
RESERVATION STRATEGIES

In this section, we now discuss how our model may be used
to inform on reservation strategies for HPC schedulers.

Reservation strategies were discussed and studied in a
couple of papers to deal with stochastic applications [11],
[32]. Essentially, for an application of unknown execution
time, the strategies provided users with increasingly-long
reservations to use for submission until one was sufficient
to execute the whole job. Gainaru et al. [11] included also
the optional use of checkpointing in order not to waste
what was previously computed. In this work we focus on
reservations where a checkpoint is saved after each reserva-
tion, but the same type of analysis could be done without
checkpointing.

4.1 Algorithmic Framework
A reservation strategy is presented under the form

S = ((R1, T1, C1), (R2, T2, C2), . . . , (Rn, Tn, Cn)) .

The strategy would then be executed as follows: ini-
tially, the user asks to the system a reservation of length
R1 + T1 + C1 (time to restart from previous checkpoint,
the estimated walltime and the time to checkpoint at the
end of the reservation). During the initial R1 units of time,
the application gathers the data needed for its computation.
Then, during a time T1 it executes. If the walltime is smaller
than T1, then the user saves the output data and the run
ends. Otherwise, at the end of these T1 units of time, the
application checkpoints its current state during the C1 units
of time.

• If C1 is enough to perform the checkpoint, then the user
repeats the previous step with a reservation of length
R2 + T2 + C2.



7

Time

Single reservation 160

Two reservations
C if t ≤ 115115

45RC if t > 115115

Fig. 13: Illustration of reservation strategies for the SLANT
application. In the second strategy, depending on the actual
length t of the execution, we execute or not the second reser-
vation. In practice, those reservations are computed using the
distributions and interpolation from Section 3

• If C1 is not enough to perform the checkpoint, then
the user repeats the previous step with a reservation of
length R1 + T1 + T2 + C2.

Figure 13 shows an illustration of such a procedure for
the SLANT application. The first strategy (top one) is com-
posed of one reservation: ((0, 160, 0)). The application com-
putes during a time T1 = 160 min, sufficient to run any in-
stance of the application. The second strategy (bottom one)
is composed of two reservations: ((0, 115, C), (R, 45, 0)).
During the first reservation, the application can spend up
to T1 = 115min in computation. After T1 units of time,
a checkpoint of the application progress is performed and
takes C units of time. If the actual execution time of SLANT
is such that t ≤ 115min, then this first reservation was
sufficient and we stop (and the total reservation is better
than the first strategy). However, if t > 115 min, the second
reservation is required. It starts by a restart overhead, which
represents the time to read the checkpoint from disks. Then
the application can be executed for 45min more, which
guarantees application termination. In this case, the total
reservation time is worse than the first strategy. To deter-
mine the size of the reservations, we use the distribution of
application walltime.

Finally, we associate to each (Ri, Ti, Ci) in S a memory
request Mi that corresponds to an estimation of the min-
imum amount of memory for the application not to fail
during this reservation. Typically, this value is the maximum
peak of the reservation during its computation of Ti units
of time. This can be obtained by tracking the progress of the
application over reservations. Then, using the likely maxi-
mum memory needed as presented in Fig 12b, one is able to
estimate the maximum memory need of the application.

4.2 Evaluated algorithms
In this work we compare three algorithms to compute the
reservation strategies. All these strategies are based from the
same input: k previous runs of the application (in practice
we use k = 5, 10, 20, 50).

• ALL-CKPT [11, III.D]: This computes the optimal so-
lution to minimize the expected total reservation time
when all reservations are checkpointed and when the
checkpoint cost is constant. We take the maximum
memory footprint over the execution as the basis for
the checkpoint cost.

• MEM-ALL-CKPT: it is an extension of ALL-CKPT based
on Section 3.1. Specifically it uses M0.1 (defined in
Eq. (2)) as the basis for the checkpoint cost function.

The complete procedure of this extension is described
below.

• NEURO [13], [29]: This is the algorithm used by the neu-
roscience department at Vanderbilt University. In their
algorithm, they use the maximum length of the last k
runs as their first reservation. If it is not enough they
multiply it by 1.5 and repeat the procedure. To be fair
with the other strategies, we added a checkpoint to this
strategy. Hence the length of the second reservation (T2)
is only 50% of the first one (T1), so that T1+T2 = 1.5T1.
We use the maximum size of a checkpoint as checkpoint
cost. For completeness, we have also added a strategy
that uses average length instead of maximum length.
We denote it by NEURO-AVG.

The strategies of both ALL-CKPT and MEM-ALL-CKPT
assume that we have a discrete distribution of execution
time for the application. Hence they start by a modeling phase
using the k inputs. In order to do so, we fit the walltime of
the k runs to a normal distribution. We then discretize it
into n equally spaced values (we use n = 1000 here) on the
truncated domain [0, Q(10−7)] (where Q(ε) is the ε quantile
of the distribution). In addition we then model a checkpoint
cost via a simple latency/bandwidth model, where given
a latency l and a bandwidth b, the checkpoint time for a
volume of data V is C(V ) = l + V/b.

After discretization we obtain a random variable Y ∼
(vi, Ci, fi)1≤i≤n, such that for 1 ≤ i ≤ n, P (Y = vi) = fi.
The cost to perform a checkpoint at time vi is Ci =
C(M0.1(vi)) for MEM-ALL-CKPT. We assume the cost to
restart is constant R. Finally, we apply the following dy-
namic programming procedure to Y (v0 = 0), which gives
the following expected cost for all-checkpoint strategies:
SMAC(n)= 0 (init)

SMAC(i) = min
i+1≤j≤n

(
SMAC(j)+ (R+(vj−vi)+ Ci) ·

n∑
k=i+1

fk

)

MEM-ALL-CKPT and ALL-CKPT are then the associated so-
lutions to SMAC(0) (depending on the checkpoint function).
The associated reservation strategies can be computed in
O(n2) time.

4.3 Experimental Setup

All code and data for this Section are publicly available for repro-
ducibility5. The execution of the application is performed on
the Haswell platform. The k inputs chosen for the modeling
phase used to derive the algorithms are picked uniformly at
random with replacement in the DRD set. The evaluation is
performed on the set of 88 inputs from DRD. All evaluations
are repeated 10 times.

4.3.1 Checkpointing

SLANT is currently available within a Docker image. We
used the CRIU external library [40] to perform system level
checkpointing of the Docker container without changing
the code of SLANT. With each execution of SLANT we are

5. https://github.com/anagainaru/ReproducibilityInitiative/tree/
master/2020_tpds

https://github.com/anagainaru/ReproducibilityInitiative/tree/master/2020_tpds
https://github.com/anagainaru/ReproducibilityInitiative/tree/master/2020_tpds


8

running a daemon in charge of triggering checkpoints at the
times given by our strategy.

Actual checkpointing could not be used on the Haswell
platform because Docker is not available there and we also
do not have the required credentials require by CRIU. Hence
we also used the KNL platform composed of a 256-thread
Intel Knights Landing processor (Xeon Phi 7230, 1.30GHz,
Quadrant/Cache mode) with 96GB of main memory. This
KNL platform is too slow to perform thorough experiments
but Docker checkpointing is supported. Hence experiments
on KNL were performed using the checkpoint times (corre-
sponding to the right memory footprint) from that platform
and simulated checkpoints (based on the KNL checkpoints)
for the Haswell machine. Before doing so, we verified that
the memory footprint was identical over the different phases
between the two platforms (Figure 18). To evaluate the
latency and bandwidth we use the dd unix command with
characteristics typical for the CRIU library (multiple image
files in Google protocol buffer format6).

4.3.2 Performance Evaluation
Given a reservation strategy consisting of two reservations
(R1, T1, C1), (R2, T2, C2) and an application of walltime t,
s.t. T1 < t ≤ T1 + T2, we define:

1) Its total reservation time: (R1+T1+C1)+(R2+T2+C2).
2) Its system utilization, i.e. its walltime divided by its

reservation time:
t

R1 +R2 + T1 + T2 + C1 + C2
;

3) In addition, if we define M1 and M2 the memory
requested for the reservations, we can define the
weighted requested memory as:

(R1 + T1 + C1) ·M1 + (R2 + T2 + C2) ·M2

R1 +R2 + T1 + T2 + C1 + C2
.

Intuitively this is the total memory used by the different
reservations normalized by time.

We present in Figure 14 several performance criteria
to compare the different algorithms. We first discuss from
a high level before entering specifics. Overall using the
improved model from Section 3 to design the reservation
algorithm allows to improve performances on all fronts.
In addition, this model does not use much data, since
performance with k = 5 are almost as good as performance
with k = 50. This is an important result which shows the
robustness of the model designed to the various approxi-
mations that are made (independence of variables etc). For
completeness, it should be noted that in an HPC machine,
utilization is a more global measure that is better than the
one described here thanks to optimization strategies such as
reshuffling or backfilling when a job terminates early. For
this work we focus at the single application perspective in
order to be able to interpret the performance precisely.

Figure 14a presents the results for the total reservation
time metric. NEURO and NEURO-AVG have an higher reser-
vation time, which can be expected because they are naive
strategies. An interesting observation is that more data does
not help it (on the contrary). This is due to the fact that with

6. https://developers.google.com/protocol-buffers

(a) Average reservation time.

(b) Average utilization.

(c) Weighted average memory.

Fig. 14: Performance of the different algorithms for various
criteria.

more data the strategy includes more outliers, and since the
initial reservation uses the maximum length, it guarantees
an overestimation every time. MEM-ALL-CKPT performs
better than all ALL-CKPT, but the difference is not large.
This is probably due to a better estimation of the reservation
time for the checkpoint. The observations are similar for the
utilization (Figure 14b), for similar reasons.

Finally, Figure 14c plots the weighted average requested
memory. ALL-CKPT and NEURO are not memory-aware,
and hence assume a constant memory footprint of 51GB
throughout execution. In this figure we are more interested
by the performance of MEM-ALL-CKPT. The gain is ∼ 8%
and corresponds to the runs that needed to use a second
reservation (the first one always cover task #5 and hence
also has a peak memory of 51GB).

To finish this Section, we would like to point out
what we believe is an essential point on the robustness
of our model. One can notice that ALL-CKPT is actually
the solution MEM-ALL-CKPT when the number of tasks is
severely underestimated (essentially estimated to a single
task). This is actually a strong argument to make for our so-
lution where, even an unprecise/wrong estimation is robust
enough (loss within 4% in reservation time /utilization and

https://developers.google.com/protocol-buffers


9

10% in memory). Of course, the more precise the model,
the better the results are as is shown by the performance
of MEM-ALL-CKPT. A better, task-level, estimation can also
lead to other benefits. We discuss them in the next section.

4.3.3 Going further
The next step would be to see how one could deduce a new
and improved algorithm by using the task-level informa-
tion. Specifically, looking at Figure 12a, the natural intuition
is to make a first reservation of length 25 min (guaranteed
to finish before the memory intensive task #5), allowing it to
be a cheaper solution memory-wise.

We study the new version of MEM-ALL-CKPT:
MEM-ALL-CKPTV2 that incorporate this additional reser-
vation. In this solution, if task #4 finishes before these 25
minutes, we cannot start task #5 since we do not have
enough memory available, hence we checkpoint the output
and waste the remaining time. We plot in Figure 15 the total
reservation time and weighted average requested memory
for ALL-CKPT and MEM-ALL-CKPTV2. Note that the better
performance for 5 inputs in the right plot is not statistically
significant due to small amount of selected inputs.

Fig. 15: Weighted average requested memory for ALL-CKPT
and MEM-ALL-CKPTV2

We see that now that MEM-ALL-CKPTV2 can gain∼ 25%
of memory in average in comparison with ALL-CKPT, at no
cost reservation-wise. This shows that an application model
can offer an optimized strategy when applied to scheduling
strategies. In addition, by leveraging the knowledge that
task #5 has a huge memory peak in comparison with the
other, we are able to optimize the memory usage of reserva-
tions for which the probability of running task #5 is unlikely.

4.4 Extension to other applications
In this section, we verify that the model constructed based
on SLANT also works easily on another application. We
used the same evaluation pipeline7 using a second CPU
application, MaCRUISE [20], [21]. Note that this application
takes two inputs, the OASIS input and the output of the
SLANT application previously studied. The pipeline con-
sists of:

• Running the application k times on the Haswell plat-
form;

• Generating a task model and distribution based on
those k inputs;

7. The code is freely available at https://github.com/MASILab/
MaCRUISE

Table 3: Mean time and Peak Memory of the different tasks
of MaCRUISE application.

Task ID 1 2 3
Mean time (in min) 50 66 181

Std (in min) 12 12.5 43
Peak Memory (GB) 7.5 5.5 2.75

• Generating different solutions via the algorithmic
framework, and evaluating those on the Haswell plat-
form (the evaluation is performed on 46 inputs).

Fig. 16: Representation of the cumulative (full) and esti-
mated cumulative (dashed) distribution of the termination
time of the 3 tasks over time from raw data.

Figure 16 presents the cumulative distribution of the
termination of the three tasks (the notations used are the
same as in the previous section). It allows to evaluate the
wall time variation of MaCruise (given by the plot y3):
it fluctuates between 2h and 5h. Obviously, the memory
footprint and tasks are different than SLANT, we summarize
for each task their attribute in Table 3.

Figure 17 presents experimental results performed in
the same framework as the ones presented in Figure 14.
(NEURO-AVG is not presented: it gives similar results to
NEURO). Overall the results are very positive as they con-
firm the trend observed in the previous analysis: the solu-
tion using the modelization is efficient even with very few
information (5 inputs). The performance of MEM-ALL-CKPT
compared to ALL-CKPT is not significantly better due to the
very low memory cost of all the tasks.

Fig. 17: Performance of the different algorithms for various
criteria for MaCRUISE application.

4.5 Transfers to other architectures
We showed that the MEM-ALL-CKPT reservation strategy
may guide users in requesting resources (time and mem-

https://github.com/MASILab/MaCRUISE
https://github.com/MASILab/MaCRUISE


10

ory) using as little as 5 training data containing detailed
information about memory utilization. However, it is often
the case that users are only able to extract aggregated infor-
mation about their application’s memory utilization when
running on a cluster. The common practice for users [29]
is to develop and test an application on a local server
before deploying it to larger systems. In this section, we are
interested to study how well the strategy transfers between
different architectures. For this purpose, we consider we are
training the MEM-ALL-CKPT strategy using the Haswell
platform presented in Section 2.2 and use the generated
reservations to submit the same applications on the KNL
platform presented in Section 4.3.1 where we are only
allowed to submit an application and read its output. The
output of the SLANT application, in addition to information
about the brain segmentation, also includes execution time
information for the pre-processing, deep-learning and post-
processing stages. The deep-learning phase is computation
intensive and thus has a relatively constant slowdown (2.3x-
2.5x) on the KNL machine. The pre-processing and post-
processing phases depend heavily on the quality of the
input MRI and have smaller and variable slowdowns (1x-
1.6x). Based on these number we use a simple strategy
that scales the reservations given by the algorithms by
1.7 (corresponding to the average slowdown in the total
execution time). In addition, it scales the initial reservation
of MEM-ALL-CKPTV2 by 1.1 (to guarantee that it happens in
the pre-process step). Figure 18 presents such a translation.

(a) Execution on the Haswell plat-
form.

(b) Execution on the KNL plat-
form.

Fig. 18: Memory footprint of SLANT on the platforms.
Vertical lines indicate the reservations given by the
MEM-ALL-CKPTV2 using the Haswell platform and scaled
for the KNL platform.

We made experiments on 10 randomly chosen input
datasets and observed that the memory footprint executions
on the two machines typically have different properties (the
7 tasks start and different moments of time, have different
durations and different memory consumption as seen in Fig-
ure 18). However, the generated reservations have similar
properties (e.g. in Figure 18, reservation #1 requires 13 GB
of memory for 18% of the total walltime for the Haswell
platform and 14 GB for 13% of the total walltime for the
KNL; #2 needs 50GB for around 65% of the walltime for
both platforms; and #3 and #4 require a little over 10GB for
the remaining walltime).

We made experiments on multiple applications using
different number of inputs for the training. The experimen-
tal workflow consists of 3 steps: (i) we run applications
on the Haswell platform and use 5, 10, 20, 50 inputs to
compute the reservations based on MEM-ALL-CKPTV2 and
ALL-CKPT; (ii) we make 5 runs on random inputs on the

Fig. 19: Weighted average memory request for the
MEM-ALL-CKPT and ALL-CKPT for the original runs on the
Haswell platform and on the KNL when using the scaled
reservations.

KNL and gather the walltime for each stage in order to
compute the scaling factor; (iii) we submit new runs on the
KNL using the scaled reservations and record the walltime
and requested memory for each reservation (10 runs for
each experiment). For each reservation we are requesting
an upper-bound on the expected memory (15GB for reser-
vations that include the pre-process and post-process and
51GB for the ones including the segmentation stage). Fig-
ure 19 presents the weighted average memory requests for
the MEM-ALL-CKPTV2 and ALL-CKPT for the original runs
on the Haswell platform and for the runs on the KNL when
using the scaled reservations on the same set of applications.

The runs on the KNL platform have an overall higher
memory footprint (5% in the worse case) than the runs
on the Haswell platform since the scaling factors are cho-
sen so that they do not overlap the segmentation phase.
We expect other opportunistic strategies based on scaling
factors for each task to give even better results. The total
reservation time difference is only of a few minutes to a
walltime of more than 3 hours caused by the unnecessary
scaling of the checkpoint/restart times. Overall, the average
requested memory is 20%-25% smaller when using our
strategy even when using a simple scaling strategy. Note
that these experiments are done on small systems where
we control the interference of the system in order to better
understand the connection between individual runs on each
architecture without influence from system level variation.
More experiments and more complex solutions based on
current research in cross platform execution transfers [48]
can be investigated in the future.

5 RELATED WORK

Variation in resource requirements is a known fact for HPC
even for existing traditional applications. It can be at-
tributed to several factors: randomized algorithms, inherent
job variability (e.g. depending on input data), resource shar-
ing and interferences, OS jitter, etc. Inherent job variability
is the topic of this work and includes iterative methods that
work towards convergence [45] through discrete steps or
studies that trigger an in-depth analysis of subproblems
based on certain observations. Those will experience vari-
ability in both execution time and memory consumption.



11

It has also been recently observed in machine learning
framework on GPUs [30]. Other system constraints such as
I/O interference [10] or including consideration of network
traffic, power limits or concurrency tuning in the HPC
middleware [39], can also become a significant reason for
performance variability. Although we could include them
in our model, we chose to focus on application-specific
variations, a new trend in HPC, and separate their impact
from the hardware constraints.

Resource overestimation during submission is a typical
strategies for HPC applications since the cost of getting
your application killed due to underestimation is very high.
This overestimation directly impacts the performance of
batch schedulers. To deal with this, typical batch schedulers
such as Slurm, Torque or Moab combine simple resource
reservation schemes with backfilling [31], [36], [43]. Users
are expected to provide the resource requirements when
submitting jobs (most typically walltime and node charac-
teristics, like memory, GPU type, etc). However, as was re-
cently empirically showed by Gainaru et al. [12], the runtime
overestimation due to the inherent structure of stochastic
jobs can impact both system utilization and user response
time by 25-30%. Several authors aim at improving the use
of batch scheduler in the presence of uncertainty on the
runtimes. Zrigui et al. [50] discussed using online learning
to improve the performance of batch schedulers by a simple
classification of jobs into two categories, small and large.
Big-data frameworks such as MapReduce [9] and Dryad [25]
rely on schedulers (e.g. YARN [46] and Mesos [19]) with
distinct features such as fairness or resource negotiation to
manage the workload. However accurate application needs
must be known to the scheduler. The presented strategies
aim at providing hints to the user so they can optimize
their submissions, but also to these communities since their
schedulers may use user-given execution-time distributions
of tasks to implement their own sequence of reservation
with checkpointing.

To provide solutions in the presence on uncertain exe-
cution time, some work focus on optimizing the expected
response time of applications by performing distribution
fitting [6], [16], [26], [35], [37]. They assume a well-known
probability distribution of the job execution time. These
ideas were extended to provided near-optimal reservation
strategies in both HPC and cloud systems [3] for a set of
stochastic jobs with backfilling [12], and later with optional
checkpointing [11]. These work do not consider a task model
for the stochasticity of the application because they simply
focused on the execution time (flat memory model). Our
work extends the ideas from these papers in Section 4.1 by
developing a stochastic task model which allows to study a
memory footprint model.

While our work focuses on working with the uncertainty
of execution time, another complementary direction is to try
to remove this uncertainty by predicting the execution time.
The predictive methods based on machine learning, often
rely on supervised inductive learning over historical log
files on large-scale compute clusters, using either predicted
memory usage of the jobs or predicted the execution time
of the jobs and assume a large set of training data. Tanash
et al. [44] use five types of regression algorithms on a large
dataset (millions of entries) containing past executions of

applications on their internal cluster and predict both the
memory and the processing time of future runs. Andresen
et al. [1] combines CPU and GPU execution historic logs and
generate observations that help users or administrators to
classify jobs into equivalence classes by likelihood of failure.
Kumar et al. [27] use a predictive scheme for identifying
small walltime jobs. In a similar approach, Gaussier et
al. [15] introduced several machine learning methods for
predicting the class of execution (small/large) for HPC
application with the goal of improving scheduling and
backfilling algorithms. Closer to our study, Matsunaga and
Fortes [32] focus on two bioinformatics applications. Their
method is capable of increasing the accuracy of predicting
the job execution time, memory and space usage, but re-
quires a large training set. Unlike these studies, our applica-
tions are extremely dynamic with their codes in continuous
change. Thus they require a strategy that not only is capable
of dealing with stochasticity in memory and execution time,
but can learn the behavioral pattern of the application fast.

Checkpoint-restart is an obvious way to deal with
stochastic applications and/or platform unavailability [24],
[47]. Insufficient reservations or failures are mitigated by
recovering a checkpoint that was periodically saved. Com-
puting the optimal checkpointing interval was the target of
a lot of work [8], [24], [49] to ensure a good probability of ap-
plication success without spending to much time/resources
for checkpointing.

Checkpointing may be performed either by the appli-
cation itself explicitly modifying the code to work with a
user level checkpoint library (like FTI [4]) or by linking
an external library. We focus on this latter case because
it generally does not require to modify the application.
BLCR [17] was a popular solution but it does not seem to
be maintained anymore and does not support containers
as far as we know. DMTCP [2] is a more recent alter-
native that has good support for parallel HPC jobs and
may be integrated with Slurm [42]. However it lacks con-
tainer supports. Hence we rather used CRIU8 which is well
supported in the upstream Linux kernel and has support
for checkpointing containers [34], [40]. However Docker
container support [7] seems still experimental. Our work is
actually not strongly tied with CRIU. Hence we may revise
our choice in the future if target applications require MPI
support or do not need containers. Checkpointing GPU-
enabled applications is difficult without a way to save the
internal GPU state. Although some proxy-based approaches
have been proposed [14], most actual implementations still
rely on application-specific modification [41] which is not
applicable to our study. Moreover using GPUs in Docker
requires adhoc solutions such as NVIDIA-Docker that do
not support checkpointing currently.

6 CONCLUSION

The new wave of HPC applications are using exploratory
codes designed with a focus on productivity that do not
fit the traditional cloud/HPC models. These applications
present high variability in their resource utilization through-
out time as well as between multiple runs on different input

8. https://criu.org

https://criu.org


12

files. These applications are currently penalized by current
schedulers since they do not fit the normal tightly coupled
scientific applications nor they are small enough to be used
by the backfilling mechanism: the wait time to be scheduled
for execution in a cluster for neuroscience applications can
typically reach days.

We propose a novel approach to extract a generic model
of their runtime behavior with stochastic execution times
and memory footprints. In this work, we provided a first
demonstration of what such an extraction would look like
along with scheduling techniques to use this model. This
work focused on a specific class of applications (linear
dependencies between jobs, memory footprint independent
of the input), run on dedicated HPC machines. We selected
for this study a neuroscience application to demonstrate the
benefits of such a method, but we believe our approach is
general and can be applied to a large set of applications
including the ones using AMR based methods or from
fields using highly dynamic and complex workflows, like
bioinformatics or phylogeny.

In the framework of this study, we then demonstrated
the robustness of the model that can be generated even
from very few inputs (five previous runs!). This good per-
formance may be a good indicator that the learning could
be done “on-the-fly", for applications whose code may be
dynamic. Further investigations into this need to be done
to verify that this robustness holds for a wider class of
applications.

We hope that this proof of concept can open larger
studies to show whether this can be generalized to larger
classes of application (such as non linear workflow models,
varying level of parallelism). We believe that the model may
be used to optimize their execution on large-scale clusters by
guiding the resource reservation and checkpointing strate-
gies. Ultimately, this could help to optimize the utilization
of resources of current HPC schedulers.

Obviously, to further demonstrate this, one would need
to account for other sources of variability in a more complete
execution model such as shared resources (shared nodes,
I/O congestion, etc). We plan to further investigate more
complex methods of optimization in the future. Finally, we
also believe the application behavioral model can be bene-
ficial in understanding the needs of these applications and
can guide the design of future middleware for HPC systems
(including the I/O and memory management frameworks).

REFERENCES

[1] D. Andresen, W. Hsu, H. Yang, and A. Okanlawon. Machine
learning for predictive analytics of compute cluster jobs. CoRR,
abs/1806.01116, 2018.

[2] J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent
checkpointing for cluster computations and the desktop. In 2009
IEEE International Symposium on Parallel & Distributed Processing
(IPDPS’09), pages 1–12, Rome, Italy, 2009. IEEE.

[3] G. Aupy, A. Gainaru, V. Honoré, P. Raghavan, Y. Robert, and
H. Sun. Reservation Strategies for Stochastic Jobs. In IPDPS
2019 - 33rd IEEE International Parallel and Distributed Processing
Symposium, pages 166–175, Rio de Janeiro, Brazil, May 2019. IEEE.

[4] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka. Fti: High performance fault
tolerance interface for hybrid systems. In SC ’11: Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, 2011.

[5] J. Breitbart, S. Pickartz, S. Lankes, J. Weidendorfer, and A. Monti.
Dynamic co-scheduling driven by main memory bandwidth uti-
lization. In 2017 IEEE International Conference on Cluster Computing
(CLUSTER), pages 400–409, 2017.

[6] J. Bruno, P. Downey, and G. N. Frederickson. Sequencing tasks
with exponential service times to minimize the expected flow time
or makespan. Journal of the ACM, 28(1):100–113, 1981.

[7] Y. Chen. Checkpoint and Restore of Micro-service in Docker
Containers. In 2015 3rd International Conference on Mechatronics
and Industrial Informatics (ICMII 2015). Atlantis Press, 2015/10.

[8] J. T. Daly. A higher order estimate of the optimum checkpoint
interval for restart dumps. Future Generation Comp. Syst., 22(3):303–
312, 2006.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, Jan. 2008.

[10] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir.
Scheduling the i/o of hpc applications under congestion. In 2015
IEEE International Parallel and Distributed Processing Symposium,
pages 1013–1022. IEEE, 2015.

[11] A. Gainaru, B. Goglin, V. Honoré, G. Pallez, P. Raghavan, Y. Robert,
and H. Sun. Reservation and Checkpointing Strategies for Stochas-
tic Jobs. In IPDPS 2020 - 34th IEEE International Parallel and
Distributed Processing Symposium, New Orleans, United States,
May 2020.

[12] A. Gainaru, G. Pallez, H. Sun, and P. Raghavan. Speculative
scheduling for stochastic HPC applications. In ICPP, 2019.

[13] A. Gainaru, H. Sun, G. Aupy, Y. Huo, B. A. Landman, and
P. Raghavan. On-the-fly scheduling versus reservation-based
scheduling for unpredictable workflows. Int. J. High Perf. Com-
puting Applications, 2019.

[14] R. Garg, A. Mohan, M. Sullivan, and G. Cooperman. Crum:
Checkpoint-restart support for cuda’s unified memory. In 2018
IEEE International Conference on Cluster Computing (CLUSTER),
pages 302–313, 2018.

[15] E. Gaussier, J. Lelong, V. Reis, and D. Trystram. Online tuning of
easy-backfilling using queue reordering policies. IEEE Transactions
on Parallel and Distributed Systems, 29(10):2304–2316, 2018.

[16] A. Goel and P. Indyk. Stochastic load balancing and related
problems. In FOCS, pages 579–586. ACM, 1999.

[17] P. H. Hargrove and J. C. Duell. Berkeley lab checkpoint/restart
(BLCR) for Linux clusters. Journal of Physics. Conference Series, 46,
9 2006.

[18] J. Haxby, J. S. Guntupalli, A. Connolly, Y. Halchenko, B. Conroy,
M. Gobbini, M. Hanke, and P. Ramadge. A common, high-
dimensional model of the representational space in human ventral
temporal cortex. Neuron, 72:404–16, 10 2011.

[19] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In 8th USENIX Conf.
Networked Systems Design and Implementation, pages 295–308, 2011.

[20] Y. Huo, A. Carass, S. M. Resnick, D. L. Pham, J. L. Prince, and B. A.
Landman. Combining multi-atlas segmentation with brain surface
estimation. In Medical Imaging 2016: Image Processing, volume 9784,
page 97840E. International Society for Optics and Photonics, 2016.

[21] Y. Huo, A. J. Plassard, A. Carass, S. M. Resnick, D. L. Pham, J. L.
Prince, and B. A. Landman. Consistent cortical reconstruction and
multi-atlas brain segmentation. NeuroImage, 138:197–210, 2016.

[22] Y. Huo, Z. Xu, K. Aboud, P. Parvathaneni, S. Bao, C. Bermudez,
S. M. Resnick, L. E. Cutting, and B. A. Landman. Spatially
localized atlas network tiles enables 3d whole brain segmentation
from limited data. In A. F. Frangi, J. A. Schnabel, C. Davatzikos,
C. Alberola-López, and G. Fichtinger, editors, Medical Image Com-
puting and Computer Assisted Intervention – MICCAI 2018, pages
698–705, Cham, 2018. Springer International Publishing.

[23] Y. Huo, Z. Xu, Y. Xiong, K. Aboud, P. Parvathaneni, S. Bao,
C. Bermudez, S. M. Resnick, L. E. Cutting, and B. A. Landman. 3d
whole brain segmentation using spatially localized atlas network
tiles. NeuroImage, 194:105 – 119, 2019.

[24] T. Hérault and Y. Robert, editors. Fault-Tolerance Techniques for
High-Performance Computing. Springer Verlag, 2015.

[25] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Dis-
tributed data-parallel programs from sequential building blocks.
In 2nd ACM SIGOPS/EuroSys European Conf. Computer Systems,
2007.

[26] J. Kleinberg, Y. Rabani, and E. Tardos. Allocating bandwidth for
bursty connections. In STOC, pages 664–673, 1997.



13

[27] R. Kumar and S. Vadhiyar. Identifying quick starters: Towards
an integrated framework for efficient predictions of queue waiting
times of batch parallel jobs. In W. Cirne, N. Desai, E. Frachtenberg,
and U. Schwiegelshohn, editors, Job Scheduling Strategies for Parallel
Processing, pages 196–215, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[28] P. J. LaMontagne, T. L. Benzinger, J. C. Morris, S. Keefe, R. Horn-
beck, C. Xiong, E. Grant, J. Hassenstab, K. Moulder, A. Vlassenko,
M. E. Raichle, C. Cruchaga, and D. Marcus. Oasis-3: Longitudinal
neuroimaging, clinical, and cognitive dataset for normal aging and
alzheimer disease. medRxiv, 2019.

[29] B. Landman. Medical-image Analysis and Statistical Interpretation
(MASI) Lab. https://my.vanderbilt.edu/masi/.

[30] S. Li, T. Ben-Nun, S. D. Girolamo, D. Alistarh, and T. Hoefler. Tam-
ing unbalanced training workloads in deep learning with partial
collective operations. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
45–61, 2020.

[31] D. A. Lifka. The ANL/IBM SP Scheduling System. In JSSPP, pages
295–303, 1995.

[32] A. Matsunaga and J. A. B. Fortes. On the use of machine learning
to predict the time and resources consumed by applications. In
2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, pages 495–504, 2010.

[33] A. Merzky, M. Santcroos, M. Turilli, and S. Jha. Radical-pilot:
Scalable execution of heterogeneous and dynamic workloads on
supercomputers. CoRR, abs/1512.08194, 2015.

[34] A. Mirkin, A. Kuznetsov, and K. Kolyshkin. Containers check-
pointing and live migration. In In Ottawa Linux Symposium, 2008.

[35] R. H. Möhring, A. S. Schulz, and M. Uetz. Approximation in
stochastic scheduling: The power of LP-based priority policies.
Journal of the ACM, 46(6):924–942, 1999.

[36] A. W. Mu’alem and D. G. Feitelson. Utilization, Predictability,
Workloads, and User Runtime Estimates in Scheduling the IBM
SP2 with Backfilling. IEEE Trans. Parallel Distrib. Syst., 12(6):529–
543, 2001.

[37] J. Niño Mora. Stochastic scheduling. Encyclopedia of Optimization,
pages 3818–3824, 2009.

[38] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R.
De Supinski. Exploring hardware overprovisioning in power-
constrained, high performance computing. In Proceedings of the
27th international ACM conference on International conference on
supercomputing, pages 173–182, 2013.

[39] T. Patki, J. J. Thiagarajan, A. Ayala, and T. Z. Islam. Performance
optimality or reproducibility: That is the question. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[40] S. Pickartz, N. Eiling, S. Lankes, L. Razik, and A. Monti. Mi-
grating linux containers using criu. In M. Taufer, B. Mohr, and
J. M. Kunkel, editors, High Performance Computing, pages 674–684,
Cham, 2016. Springer International Publishing.

[41] B. Pourghassemi and A. Chandramowlishwaran. cudacr: An
in-kernel application-level checkpoint/restart scheme for cuda-
enabled gpus. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pages 725–732, 2017.

[42] M. Rodríguez, J. Moríñigo, and R. Mayo-García. When you have
a hammer, everything looks like a nail - Checkpoint/restart in
Slurm. SLURM User Group 2017.

[43] J. Skovira, W. Chan, H. Zhou, and D. A. Lifka. The EASY -
LoadLeveler API Project. In JSSPP, pages 41–47, 1996.

[44] M. Tanash, B. Dunn, D. Andresen, W. Hsu, H. Yang, and A. Okan-
lawon. Improving hpc system performance by predicting job
resources via supervised machine learning. In Proceedings of the
Practice and Experience in Advanced Research Computing on Rise of
the Machines (Learning), PEARC ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[45] C. T. Vaughan and S. D. Hammond. Evaluating production
load balancing functions for adaptive mesh schemes using mini-
applications. Technical report, Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), 2017.

[46] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache
hadoop yarn: Yet another resource negotiator. In the 4th Annual
Symposium on Cloud Computing, pages 5:1–5:16, 2013.

[47] K. Wolter, editor. Stochastic Models for Fault Tolerance, Restart,
Rejuvenation, and Checkpointing. Springer Verlag, 2010.

[48] L. T. Yang, Xiaosong Ma, and F. Mueller. Cross-platform perfor-
mance prediction of parallel applications using partial execution.
In SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Super-
computing, pages 40–40, 2005.

[49] J. W. Young. A first order approximation to the optimum check-
point interval. Comm. ACM, 17(9):530–531, 1974.

[50] S. Zrigui, R. de Camargo, D. Trystram, and A. Legrand. Improving
the performance of batch schedulers using online job size classifi-
cation. 2019.

Ana Gainaru is a computer scientist in the CSM
division Oak Ridge National Laboratory, work-
ing on performance optimization for large scale
scientific applications and on profiling, manag-
ing, and analyzing large-scale data designing for
highly irregular big data workflows. She has over
eight years experience in HPC working primarily
on optimizing the execution of scientific applica-
tions at every level of the software stack, from
data-aware runtime design to scheduling, fault
tolerance and code optimization. She did her

PhD studies at the University of Illinois at Urbana- Champaign. She has
served on numerous program committees for international conferences,
has been a reviewer for several HPC international journals. She served
as the Poster co-chair for SC’18 and Tutorial vice-chair for SC’20.

Brice Goglin is a research scientist at Inria
Bordeaux – Sud-Ouest. He earned his PhD at
École normale supérieure de Lyon (France) in
2005. He then worked for Myricom, inc. (Oak
Ridge, TN) as a software architect for low latency
networks. His research interests at Inria now in-
clude the management of data locality in many-
core HPC platforms as well as high performance
I/Os. He is the main developer of hwloc, the
de-facto standard library for managing hardware
topology and locality information in parallel ap-

plications.

Valentin Honoré obtained his PhD in October
2020 from University of Bordeaux. His research
focuses on optimizing various application pro-
files on HPC infrastructures. His current works
include designing and evaluating in situ process-
ing models that can help reducing the execu-
tion time of large workflows. He also works on
scheduling problems related to new application
profiles such as stochastic applications, coming
from emerging fields such as Neuroscience.

Guillaume Pallez is a tenured researcher at
Inria Bordeaux – Sud-Ouest. His research in-
terests include algorithm design and scheduling
techniques for parallel and distributed platforms
(data-aware scheduling, stochastic scheduling
etc). Among other roles, he served as the Tech-
nical Program vice-chair for SC’17, and co-
general chair of ICPP’22. He was a recipi-
ent of the 2019 IEEE TCHPC Early Career
researcher award. See http://people.bordeaux.
inria.fr/gaupy/ for further information.

https://my.vanderbilt.edu/masi/
http://people.bordeaux.inria.fr/gaupy/
http://people.bordeaux.inria.fr/gaupy/

	Introduction
	Case study of a Neuroscience Application
	Spatially Localized Atlas Network Tiles (SLANT)
	High-level observations
	Task-level observations

	From observations to a theoretical model
	Job model
	Discussion
	Task status with respect to time
	Memory specific quantities


	Impact of Stochastic Memory Model on Reservation Strategies
	Algorithmic Framework
	Evaluated algorithms
	Experimental Setup
	Checkpointing
	Performance Evaluation
	Going further

	Extension to other applications
	Transfers to other architectures

	Related Work
	Conclusion
	References
	Biographies
	Ana Gainaru
	Brice Goglin
	Valentin Honoré
	Guillaume Pallez


