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Abstract. Active user detection is a standard problem that concerns
many applications using random access channels in cellular or ad hoc
networks. Despite being known for a long time, such a detection prob-
lem is complex, and standard algorithms for blind detection have to trade
between high computational complexity and detection error probability.
Traditional algorithms rely on various theoretical frameworks, including
compressive sensing and bayesian detection, and lead to iterative algo-
rithms, e.g. orthogonal matching pursuit (OMP). However, none of these
algorithms have been proven to achieve optimal performance.
This paper proposes a deep learning based algorithm (NN-MAP) able to
improve on the performance of state-of-the-art algorithm while reducing
detection time, with a codebook known at training time.

Keywords: Non-coherent Active User Detection · Machine Learning ·
Massive Random Access

1 Introduction

Massive access in internet of things (IoT)-dedicated radio networks, especially
in 5G, brings several challenges. In this setting, a huge number of sensor nodes
is to be sporadically served within the specific constraints of machine type com-
munication (MTC). These networks will be implemented mainly with low cost
devices, thus having restricted radio functionalities as well as scarce power and
computational resources. Besides, latency, spectrum and energy, must be held
to the same efficiency demands of current communication standards, sometimes
even higher, to fulfil the requirements of the foreseen tactile internet [1]. Uplink
data transmissions from simplified sensor nodes aim at minimising transmission
duration as well as the amount of transmissions, given their finite power re-
sources, but also the small amount of data to be transmitted. A high signalling
overhead would drastically reduce the operational life-time of such devices as
they would spend more time and energy to transmit protocol-related messages
than useful payload data. Unlike current 4G based access procedures, as planned
in narrowband IoT (NB-IoT) (even though new releases provide a shorter access



2 C. Morin et al.

procedure [2]), an "all in one" grant-free uplink message encapsulating access
request, device identifier, and data, would be ideal.

To achieve this grant-free uplink reality, the main challenge is the detec-
tion of the active subset of sensor nodes by the base station (BS), also referred
to as active user detection (AUD). To enable the transmission of users’ identi-
ties despite a high network density, the usage of a dedicated spectrum sharing
technique is required that must be compatible with the rapidly evolving traffic
load within a high number of potential users. Non orthogonal multiple access
(NOMA) [3], and in particular code-domain NOMA, is a good candidate [4] for
such a spectrum sharing technique as it limits collisions for simultaneous trans-
missions without requiring to use an extremely long access sequence for each
user, given the network density.

As a result, all the complexity of the AUD task is pushed to the BS. Avoiding
a handshake procedure requires efficient detection algorithms to retrieve active
users’ identity from a "one shot" access message with limited channel state infor-
mation at the receiver (CSIR). The optimal AUD as described in [5] suffers from
high complexity which does not seem compatible with real time implementation.
An iterative version of the optimal detector, having a lower complexity -but also
lower performance-, is also introduced therein. Developing a high performance
though low complexity detector is crucial for a realistic and efficient AUD im-
plementation. Most efficient algorithms proposed in the literature to cope with
this problem exploit either a Bayesian estimation formalism or the compressive
sensing formulation [6], [7]. Both have many similarities but lead to different
iterative algorithms. Despite their efficiency, none of these algorithms can guar-
antee to achieve the optimal solution as they have to trade their accuracy with
complexity. Therefore, the competition is still open.

With the recent and growing interest of the community toward machine learn-
ing, and particularly deep learning (DL), it has been shown that its usage can
help to solve complex problems, mainly when defining good models is difficult,
or when the models exist but provide solutions too complex for their exploita-
tion. The scenario presented here falls into the second category, and appear to
be a good candidate to exploit DL. The objective of this paper is to design a
DL receiver for massive NOMA, and more specifically, the AUD in non-coherent
channels. Related studies have been done around this subject, for instance in
[1], [8]. These works are focused on the resource optimisation problem for code
domain NOMA and employ auto-encoder based solutions in both cases. They
show that the encoding and decoding performance can be improved through end-
to-end optimisation. The metrics used there are symbol error rate (SER), sum
rate and convergence rate. In [9], the question of imperfect CSIR is addressed
for power domain NOMA. This paper is also addresses resource allocation op-
timisation.The authors of [10], while also dealing with power domain NOMA,
focus on channel estimation and signal detection in the context of orthogonal
frequency-division multiplexing (OFDM). They propose a comparison with a
successive interference cancellation (SIC) based algorithm and show the inter-
est of the DL approach. The model is nevertheless restricted to two users and
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the channel realisation is fixed in training and testing phases. A preamble and
collision detection scheme based on DL is proposed in [11], where the study is
performed on pre-processed long term evolution (LTE) random access pream-
ble signals: the correlations with the possible Zadoff-Chu sequences are directly
provided to the network. The objective of the authors include the detection
of multiple collisions in order to improve contention resolution, and therefore,
access probability. Whereas the collision study is realised in a massive access
scenario, the detection evaluation is performed with a single user scenario only,
by comparing the missed detection performance of the proposed fully connected
neural network (NN) with other more classic preamble detectors. All these works
are closely related to the use-case of the present paper, but none of them directly
address the task at hand: to the best of our knowledge, this work is the first to
apply DL on non-coherent AUD with code domain NOMA.

The rest of the paper is organised as follows: section 2 presents our model
and the reference schemes to which our approach is compared. Section 3 provides
details on the implementation choice regarding the DL scheme we propose, while
section 4 is dedicated to the evaluation of the solution. Section 5 concludes the
paper.

2 System model for the massive random access

2.1 Non-coherent AUD

The random access channel in massive MTC is important to guarantee a fair
radio medium access. It is herein assumed that the sensor nodes, henceforth
referred to simply as nodes, receive a random code in advance which is used
to send a resource request to the BS they are associated with. In a standard
approach, if two nodes request a resource in the same slot, a collision occurs
and at least one of the two messages is lost. However, with the knowledge of
the codes distributed to the nodes, the BS tries to determine the identity of all
the nodes involved in a request. Such an approach, referred as coded random
access [6], allows to reduce the number of resources reserved for the random
access mechanism and can accelerate the handshake mechanism. Indeed, unlike
the 4G access protocol which the NB-IoT is based on and relying on a pool of
available Zadoff-Chu access sequences, this approach ensures the uniqueness of
the codes employed by the nodes. This fact allows to avoid access code collisions
but also additional steps, known as the contention resolution, dedicated to the
identification of the users in the handshake procedure. It can also be used as
a standalone mechanism in cases where the only one bit is to be transmitted,
then the binary value of the nodes’ activity suffices without needing further
handshake.

In our model, the BS transmits a beacon allowing the nodes to be roughly
synchronised and to control their power such that in average the received power
at the BS is constant for all nodes. However, the instantaneous channel states
are not known, and no pilots are used in this detection phase. The detector thus
operates in non-coherent detection mode [5].



4 C. Morin et al.

We adopt the following notation for the remainder of this work: (U , Φ) is
a measurable space where U denotes the total set of nodes, with cardinality
K=|U| and Φ=P(U) the powerset of U . A node subset is denoted by A ∈ Φ.
For a given random access slot, we note A ∈ Φ a set of active nodes. The
activity rate is assumed low (less than 0.5) implying a sparse transmission set.
We further assume that the node activity follows a Poisson distribution with
mean parameter λ (thus the node activity probability is θ = λ/K). As stated
previously, a unique codebook C is generated and shared among the network
(the transmitters and BS both agree on the codes during an initial association
phase). As a result, each node k owns a dedicated complex Gaussian code ck of
codelength M and unit power.

As mentioned previously, the received messages are considered synchronous
and a perfect average power control allows the messages to be received with an
average signal-to-noise ratio (SNR) ρ. The BS possesses N antennas while the
nodes have a single antenna. Transmissions are subject to a flat Rayleigh block
fading channel, modelled as a random vector hk ∼ NC (0, IN ) of size N where IN
is the identity matrix of dimension n and NC (0, ·) indicates a complex standard
Gaussian distribution. The receiver noise introduces an additive white Gaussian
noise (AWGN), modelled as a random vector z ∼ NC (0, INM ) of size NM . It
should be noted that neither the BS nor the transmitting nodes are aware of the
actual channel realisations, but only know the channel statistics, as described
above. For a given active node k, the channel coefficients hm,n are constant
with respect to (w.r.t.) to m and are independent and identically distributed
(i.i.d.) w.r.t. n. This means that the message is sent over a narrowband channel,
typically a single carrier in an OFDM frame, as defined in NB-IoT for MTC.
The proposed model is similar to the one used in [5], [7].

Let y ∈ CNM denote the received signal, ρ the targeted SNR and ⊗ the
Kronecker product. The received signal is then given by:

y =
∑
k∈A

√
ρ(IN ⊗ ck)hk + z. (1)

The BS performs an AUD given y and prior knowledge, restricted to the
codebook, the activity probability law and the statistical CSIR. The AUD algo-
rithm is performed on a non-coherent channel, since no pilots are used for prior
channel estimation. Let Â denote the detected active node subset. To evaluate
the performance of the algorithm, the following metrics will be used: codeset
error rate (CER), user error rate (UER), misdetection rate (MDR) and false
alarm rate (FAR), according to the following definitions:

MDR : ε̄md=Ek
[
P[k 6∈ Â|k ∈ A]

]
(2)

FAR : ε̄fa=Ek
[
P[k ∈ Â|k 6∈ A]

]
(3)

UER : ε̄s = ε̄md · θ + ε̄fa · (1− θ) (4)

CER : ε̄C=p[Â 6= A]. (5)
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The MDR (resp. FAR) corresponds to the false negative (resp. false positive)
rate. The UER combines these errors to compute an average individual error
rate. In addition, the CER is a system level error rate, that counts the rate of
non-perfect codeset detection.

2.2 MAP detectors

Let yn ∈ CM denote the received signal on antenna n and CA ∈ CM×ω the
codeset of a given node subset A whose cardinality is ω. Its singular value de-
composition (SVD) is written CA = VΓU, where V ∈ CM×M and U ∈ Cω×ω

are unitary matrices. Γ ∈ CM×ω is composed of the singular values γ on its
diagonal. From (2.1), following [5], the likelihood of a codeset is given by:

p(y|A) =

N∏
n=1

1

πM |σ|
exp

(
‖ỹn‖22−‖yn‖

2
2

)
, (6)

where σ ∈ CM×M is σ = ρCAC
H
A + IM and ỹn is the projection of yn onto the

codeset CA space, and is defined as:

ỹn= diag

(√
ρ|γ1|2

1 + ρ|γ1|2
, · · · ,

√
ρ|γM |2

1 + ρ|γM |2

)
VHyn. (7)

The maximum likelihood estimate (MLE) has been used in [5] to estimate the
active set. Since we know the prior probability on (U , Φ), related to the Poisson
distribution, a maximum a posteriori (MAP) detector can be defined and is
optimal w.r.t. to the Bayes risk minimisation, when defined from the CER.

Definition 1 (C-MAP estimate). The C-MAP estimate of the codeset detec-
tion problem is given by:

ÂC = arg min
A∈Φ

p[A 6= A|y] (8)

= arg max
A∈Φ

p(y|A)p(A), (9)

where ÂC is the detected subset, given the received signal y, from the knowledge
of the codebook C, the Gaussian distributions of the channels hk and noise z.

In addition, the prior probability is given by P(A) = λ|A| · (1− λ)|U|−|A|.

But if the objective is to minimize the user error rate, the Bayes risk is modified
and leads to the following estimate.

Definition 2 (U-MAP estimate). The U-MAP estimate of the codeset de-
tection problem is given by:

ÂU = ∪k∈U {k|δk(y) = 1} , (10)
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with δ the delta function and where δk(y) = 1 is given by:

δk(y) =


1 if

∑
A∈Φ;
k∈A

p(y|A)p(A) >
∑
A∈Φ;
k/∈A

p(y|A)p(A)

0 else
. (11)

Let us prove that U-MAP is optimal with respect to the UER metric. PMD(k|y)
and PFA(k|y), the probability of Missed Detection, respectively False Alarm, of
a user k given a received signal y are given by:

PMD(k|y) =
∑
A∈Φ;
k∈A

1[k/∈Â(y)]p(A|y) = 1[k/∈Â(y)]

∑
A∈Φ;
k∈A

p(A|y), (12)

and

PFA(k|y) =
∑
A∈Φ;
k/∈A

1[k∈Â(y)]p(A|y) = 1[k∈Â(y)]

∑
A∈Φ;
k/∈A

p(A|y). (13)

Minimising the UER thus corresponds to performing a binary test for each user,
by comparing PMD(k|y) and PFA(k|y):

δk(y) = 1 if
∑
A∈Φ;
k∈A

p(A|y) >
∑
A∈Φ;
k/∈A

p(A|y). (14)

Then, having p(A|y) ∝ p(y|A)p(A), the decision given in (11) is optimal.
To compute the estimate given either by eq. (9) or (11), each element of

the power set Φ has to be evaluated, making such kind of AUD non feasible for
computational reasons.

2.3 It-MAP detector

As an alternative to these solution with prohibitive computational complexity,
many iterative algorithms have been proposed in the literature [12],[5],[7]. Fol-
lowing the work presented in [5], the Iterative-MAP (It-MAP) is herein proposed
as a reference solution, built as an approximation of C-MAP. The philosophy of
It-MAP is similar to that of a Successive Interference Cancellation (SIC) as it
processes the received signal y iteratively and retrieves a new detected user at
each iteration i based on the assumption of the previous Â at i − 1. Even if
the detected subset is built iteratively, the detection rule is based on the MAP
criteria given by eq. (9) for each i, with a search restricted on some elements of
Φ. More precisely, the evaluated subsets Ai ∈ Φi are built from the previously
detected subset Âi−1 as follows:

Φi = ∪k∈{U\Âi−1,∅}
{
Âi−1, k

}
(15)
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The It-MAP detection stops as soon as two successive iterations provide the
same detected subset, i.e., Âi−1 = Âi.

The architecture of this MAP-based AUD algorithm makes its complexity
lower than the computation requirement of the MAP, but at the cost of a re-
duced accuracy since the iterative detection makes the It-MAP prone to error
propagation. This fact let room for other AUD algorithms seeking for a bet-
ter complexity-accuracy trade-off. As DL is envisioned to accommodate well to
large scale problems, a blind AUD based on DL is thus presented in the following
section and will be compared to the C-MAP, U-MAP and It-MAP detectors.

3 A neural network based algorithm

3.1 The NN-MAP estimate

Definition 3 (NN-MAP estimate). A NN-MAP architecture for the AUD
problem is defined as follows. The inputs to the NN-MAP detector come from y,
from eq. (1), and ρ (in dB) as a side information. It outputs a vector p of length
K containing the estimated probability that each node is active. That probability
is obtained by using a sigmoid activation function at the end of the network and
is compared with a vector of ground truth labels t of the same length through a
binary cross-entropy loss function L to optimise the network’s parameters:

L(t,p) = −
K∑
k=1

tk · log (pk) + (1− tk) · log (1− pk) (16)

During the training phase, the average cost over all tuples (Ai,yi,pi) is :

L̄ =
1

I

∑
i

L(t(Ai),pi), (17)

where I is the mini-batch size.
After training, the soft probabilities are converted to hard decisions using a

threshold: a user k is considered active if pk > 0.5.

This choice is justified by the following theorem.

Theorem 1. For a non-coherent AUD problem, the solution that minimizes the
cost function given by (17) converges to the U-MAP estimate of definition 2 if
the dataset is large enough.

Proof. By incorporating (16) into (17), and permuting the sums w.r.t. i and k,
one can write:

L̄ =
∑
k∈U

L̄(k), (18)

with :

L̄(k) = −
I∑
i=1

1[k∈Ai]
log (pk(yi)) +1[k 6∈Ai]

log (1− pk(yi)) . (19)
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Then if the tests are randomly selected according to the prior probability P(A),
one have:

L̄∗(k)= lim
I→∞

L̄(k) (20)

=− EA,Y
[
1[k∈A] log (pk(y)) +1[k 6∈A] log (1− pk(y))

]
. (21)

Finally, using the decomposition L̄∗(k) =
∫
Y L̄
∗(k|y) · fY (y) · dy, one gets:

L̄∗(k|y)=− P (k|y) · log (pk(y)) + (1− P (k|y)) · log (1− pk(y)) . (22)

The minimum of (17) is asymptotically achieved if the NN returns for each
observation y, the output p which minimizes (22) for any user k, independently.

Thanks to the convexity of this function w.r.t. pk(y) it is straightforward to
show that the global cost function is minimal when pk(y) = P (k|y), which is
nothing but the posterior probability. Therefore, if the learning phase succeeds
to find a set of parameters for the NN such that the output probability vec-
tor converges to the posterior probability distribution, the U-MAP estimate is
achieved by selecting at the output all the nodes k with pk ≥ 0.5. Clearly, the
NN architecture approximates the U-MAP.

It is worth mentioning that there is no guarantee that a NN can achieve this
global optimum. This theorem only claims that the objective function based on
the cross-entropy is well-posed w.r.t. the U-MAP problem.

3.2 The NN-MAP system parameters

In this paper, the NN architecture and hyper parameters have been empirically
optimised as follows, for a scenario chosen with K = 10, M = 8, N = 4, λ = 4.
One random codebook is generated and reused for all subsequent training for a
fair comparison of the performance thus obtained. Unless specified otherwise, all
figures correspond to this scenario.

Architecture type : The observation vector y is a combination of random Gaus-
sian variables related to the properties of the codebook, channel realisations and
noise. The unique correlation may come from the codebook, which is selected
randomly. As such, the correlations are low and convolutional layers are not
mandatory. In addition, we don’t assume in this model any correlation in the
data transmissions, neither between nodes, nor over time. Under these assump-
tions, a recurrent layer is not necessary. Consequently, the chosen architecture
is a fully-connected neural network.

Layers: A set of networks was trained with an increasing amount of dense layers
and a constant amount of units in each one, from 3 to 12. The search was not
expanded above due to lack of significant improvement. Finally, the 5 layers
network was selected.
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Units: The number of units per layer was set to be proportional to K, M , and
N so it can scale according to scenario complexity. The proportionality factor
was chosen by increasing it by powers of 2 from 1 to 128. Performance stopped
increasing after 4, so this is what is used in the following.

−5 0 5 10 15 20 25 30
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10−2

10−1
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SNR (dB)

U
E

R

10± 0
10± 4

10± 16

10± 4 capped

Fig. 1. Network trained on examples with uniform SNR. Mean is kept at 10 dB and
range is varied. For the capped line, the SNR value input to the NN at test time is
limited to the training range.

SNR range: Training data is generated with a given ρ, which is also input to the
NN. It is therefore necessary to determine the values that will be used to train
the network with. Indeed, ρ can have a big impact on the overall performance
of the trained network: a too low value could generate a very noisy signal from
which the NN would fail to learn anything. A too high SNR would not help the
NN to learn to cope with noise. In our approach, the training dataset is generated
with a range of SNR values, distributed uniformly over a specified interval. To
find out a good interval, the impact of two parameters is evaluated: the range of
the interval (Fig.1) and the mean of that interval. In those two cases, NN shows
good performance only inside the SNR interval used for training, with a rapid
decrease outside.

Note that when a NN has to work above its learned range, it appears more
efficient to limit the SNR values input to the range bounds. This is highlighted
in the curve ( ), where the NN learned in the range 10± 4 and performs well
at SNR above 14 dB. This is not the case for low SNR values, where the NN
learned in the range 10± 16 outperforms all other curves.

The most important parameters of the NN used in this paper are summarized
in Table 1.

4 Results
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Table 1. Summary of network and training parameters

Parameter Value
Layers 5

Units 4×K ×M ×N

Learning rate 1× 10−3

Optimiser Adam
Batch size 4096

Training iterations 100000

Training SNR values 10 dB± 16 dB
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U-MAP UER
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SNR (dB)

NN FAR
It-MAP FAR
U-MAP FAR

NN MDR
It-MAP MDR
U-MAP MDR

Fig. 2. Performance comparison between C-, U-, It- and NN-MAP algorithms for code-
set and user error rates.

Comparison between the different algorithms: The different algorithms defined
in the previous section are compared for the chosen scenario (K = 10, M = 8,
N = 4, λ = 4).

As shown in Fig. 2, the trained NN-MAP outperforms It-MAP, especially at
high SNR w.r.t. UER and CER metrics as well. The performance of NN-MAP
bridges half of the gap with the MAP’s optimal given either with C-MAP or
U-MAP. In addition, as can be seen in Fig.2, NN-MAP outperforms It-MAP for
both MDR and FAR criteria. It is worth noting however that It-MAP achieves
a MDR lower than FAR while it is the opposite for NN-MAP. Note that this
trade-off may be easily tuned with NN-MAP. Indeed, in (22), we proved the
relationship between the MAP and the loss function. It is known that the MAP
solution is optimal only if mis-detection and false alarm errors have the same
cost. However, it is known that the relative weight of these errors can be tuned to
achieve any point of the ROC curve of the detector [13]. For the NN-MAP, one
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Fig. 3. It-MAP and NN-MAP are set and trained with λ = 4. A test time, active user
number is not random and varied from 1 to 8.

have two options to balance MDR and FAR: the cross-entropy can be modified
or the hard decision threshold can be tuned.

All algorithms tested in this paper assume the knowledge of λ as a prior
information. Fig.3 shows how It-MAP and NN-MAP perform when the actual
number of users deviates from the expected value (the actual number of active
users is indicated in the legend). It-MAP outperforms NN-MAP only for 1 active
user. It is interesting to mention that a method to increase the performance of
NN-MAP in that regard could be to either train it with several values of λ, or to
use a uniform distribution instead of the distribution associated to the Poisson
distribution assumption.

Analysis on larger scenarios: In Fig.4, the performance results of It-MAP and
NN-MAP are given when K = 20. Note that in this scenario, both U-MAP and
C-MAP are not computable in reasonable time. There, NN-MAP outperforms
It-MAP, since it provides a gain in terms of UER without compromising on the
CER.

Computational considerations: On top of performance increases, the NN ap-
proach also provides a reduction of computation times as shown in table 4,
where CPU executions are single thread and the GPU execution allows a batch
size of 10000. The source of this reduction is twofold: a less complex computa-
tion through simple add and multiply operations, without branching leads to a
reduced load and smoother execution on the system, and it also creates the ca-
pability to massively parallelise batches of computations in an efficient manner.
The second aspect is most prevalent in the present case: the It-MAP rests on
sequential operations with nested loops that create inefficiencies through CPU
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Fig. 4. Performance comparison between NN-MAP and It-MAP algorithms for codeset
and user error rates on a scenario with more potential users: K = 20.

branch prediction misses and are not trivial to convert to parallel computation,
and so, to offload to high performance accelerators such as a GPU.

Table 2. Average example processing time for a scenario with K = 10, M = 8, N = 4,
λ = 4.

MAP CPU It-MAP CPU NN CPU NN GPU
159ms 8.25ms 3.6ms 542 ns

5 Conclusion

In this paper, we have proposed to use DL for the non-coherent AUD problem
based on coded domain NOMA. We have proposed a NN-MAP detector which
minimises asymptotically the MAP cost function. We have shown that this ap-
proach improves on the performance of state-of-the-art iterative algorithms by
a factor of 5 in some scenarios, especially w.r.t. the UER metric. Moreover, as
it also reduces the algorithmic complexity, this work shows the interest of using
DL for such a task even though more work still needs to be done to improve the
scalability of the architecture to very large sets of nodes as expected for massive
access IoT.
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