
HAL Id: hal-03017666
https://hal.inria.fr/hal-03017666

Submitted on 21 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantifying the Similarity of Non-bisimilar Labelled
Transition Systems

Gwen Salaün

To cite this version:
Gwen Salaün. Quantifying the Similarity of Non-bisimilar Labelled Transition Systems. Science of
Computer Programming, Elsevier, 2021, 202, �10.1016/j.scico.2020.102580�. �hal-03017666�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362229621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03017666
https://hal.archives-ouvertes.fr

Quantifying the Similarity of Non-bisimilar Labelled

Transition Systems

Gwen Salaün

Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIG, F-38000 Grenoble France

Abstract

Equivalence checking is an established technique for automatically verifying
that two behavioural models (Labelled Transition Systems, LTSs) are equiv-
alent from the point of view of an external observer. When these models
are not equivalent, the checker returns a Boolean result with a counterexam-
ple, which is a sequence of actions leading to a state where the equivalence
relation is not satisfied. However, this counterexample does not give any
indication of how far the two LTSs are one from another. One can wonder
whether they are almost identical or totally different, which is quite differ-
ent from a design or debugging point of view. In this paper, we present an
approach for measuring the similarity between two LTS models. The set of
metrics is computed automatically using a tool we implemented. Beyond
presenting the foundations of the proposed solution, we will show how it can
be applied to two concrete application domains for supporting the construc-
tion of IoT applications on the one hand and for contributing to the process
model matching problem on the other.

Key words: Equivalence Checking, Labelled Transition Systems,
Quantitative Analysis, Similarity Measure, Internet of Things, Process
Matching.

1. Introduction

Designing and developing distributed software has always been a tedious
and error-prone task, and the ever increasing software complexity is making
matters even worse. Although we are still far from proposing techniques and
tools avoiding the existence of bugs in a software under development, we

Preprint submitted to Science of Computer Programming November 13, 2020

know how to automatically chase and find bugs that would be very difficult,
if not impossible, to detect manually.

Model checking [1] is an established technique for automatically verify-
ing that a model (Labelled Transition System, LTS), obtained from higher-
level specification languages such as process algebra, satisfies a given tempo-
ral property. Equivalence checking [16] is an alternative solution to model
checking and is very helpful to check that two models (requirements and
implementation for instance) are equivalent from the point of view of an ex-
ternal observer. When these models are not equivalent, the checker returns
a Boolean result with a counterexample, which is a sequence of actions lead-
ing to a state where the equivalence relation is not satisfied. However, this
counterexample does not give any indication of how far the two LTSs are one
from another. One can wonder whether they are almost identical or totally
different, which is quite different from a design or debugging point of view.

In this paper, we propose a set of metrics for quantifying the similarity
of two behavioural models described using LTS. More precisely, our solution
takes as input two LTS models and applies first the partition refinement
algorithm [21, 8] to identify bisimilar and non-bisimilar states between the
two LTSs. Then, we focus on non-bisimilar states and compute a set of
global and local metrics for each couple of non-bisimilar states. This allows
us to build a matrix with a measure between 0 (totally different states) and 1
(bisimilar states) for each couple. To do so, we rely on several criteria such as
the matching of incoming/outgoing transitions, the similarity of neighbour
states, the shortest distance from the initial state, and the distance to the
closest bisimilar state. Once this matrix is computed, we use it to finally
obtain a global measure of similarity of both LTSs. All these measures are
computed automatically using a tool we implemented in Python and applied
on a large set of examples.

Better understanding and measuring the difference between two be-
havioural models can be of interest in many different contexts and application
areas. It can be used for debugging purposes when the counterexample is
not sufficient for detecting the source of the bug, for measuring the distance
between two versions of a software, for process model matching in the con-
text of business process and management, etc. We will show in this paper
how it can be helpful in two different areas: Internet of Things and process
model matching. One of the main challenges in the Internet of Things (IoT)
is to build a new application by composing existing objects or devices. This
application or composition is satisfactory if it conforms to what the user ex-

2

pects from it. These requirements are formalised using an abstract goal in
this work. We will show how we use the proposed measures to compare the
candidate composition and the goal. The quantitative results help in under-
standing what parts of the composition are correct or not with respect to
this goal, and in guiding the user to finally end up with a satisfactory com-
position. As far as process matching is concerned, the goal is to compare two
processes modelled using the BPMN [7] standard notation. This comparison
aims at identifying correspondences and differences between these two mod-
els. This comparison is useful in order to support the evolution process when
updating one process with another one, and to know exactly what differs
between those two before deciding to effectively change one process for the
other. We will see with this second application how our approach can help
for both detecting similar and different parts in the two process models.

An early version of this paper has been published in [26] and has been
significantly extended here as follows:

• a notion of similarity of path has been added as global criteria to obtain
better results;

• several global measures have been implemented;

• a second use case shows the application of our techniques to the process
model matching domain;

• extended experimental results have been carried out for validation of
our approach; and

• the paper has been revised in many places to take the aforementioned
extensions and improvements into account.

The rest of this paper is organized as follows. Section 2 defines LTSs and
the notion of strong bisimulation used in equivalence checking. Section 3
presents the details of our approach to compute both the similarity matrix
and the global measure of similarity. Section 4 illustrates the proposed solu-
tion on two case studies, one from the IoT domain and one from the process
modelling area. Section 5 reviews related work and Section 6 concludes the
paper.

3

2. Labelled Transition Systems

In this work, we rely on Labelled Transition System (LTS) as low-level
behavioural model of concurrent programs. An LTS consists of states and
labelled transitions connecting these states.

Definition 1 (LTS). An LTS is a tuple M = (S, s0,Σ, T) where S is a finite
set of state identifiers; s0 ∈ S is the initial state identifier; Σ is a finite set
of labels; T ⊆ S × Σ× S is a finite set of transitions.

A transition is represented as s
l−→ s′ ∈ T , where l ∈ Σ. An LTS can

be produced from a higher-level specification of the system described using
process algebra for instance. Process algebraic specifications can then be
compiled into an LTS using specific compilers. We support nondeterministic
LTSs in this work, that is, there may be several transitions outgoing from a
specific state labelled with the same action.

When comparing two LTSs, we can use different notions of equivalence,
from weak ones such as trace or observational equivalence to stronger ones
such as strong bisimulation. In this work, we chose to use strong bisimula-
tion as originally defined in [16]. Supporting weaker notions of bisimulations
where silent actions are handled separately is part of future work. It is worth
noting that both LTSs are reduced using existing minimization techniques be-
fore comparing them. As we focus on strong bisimulation in this work, LTSs
are minimized modulo strong bisimulation using CADP tools [6] (bcg min).

Definition 2 (Strong Bisimulation). A relation R is a strong bisimulation
between states in S iff for all s1, s2 ∈ S such that R(s1, s2), both conditions
hold:

• (∀b ∈ Σ, t1 ∈ S) (s1, b, t1) ∈ T =⇒ (∃t2 ∈ S) (s2, b, t2) ∈ T ∧R(t1, t2)

• (∀b ∈ Σ, t2 ∈ S) (s2, b, t2) ∈ T =⇒ (∃t1 ∈ S) (s1, b, t1) ∈ T ∧R(t1, t2)

Two states s1 and s2 are strongly bisimilar (written s1 ≈s s2) iff there exists a
strong bisimulation R such that R(s1, s2). Two LTS M1 = (S1, s

0
1,Σ1, T1) and

M2 = (S2, s
0
2,Σ2, T2) are strongly bisimilar (written M1 ≈s M2) iff s01 ≈s s

0
2.

Equivalence checking is usually checked using partition refinement algo-
rithms [21, 8]. These algorithms aim at building the minimal number of
blocks, where a block is a set of (strongly) bisimilar states. One block is

4

called an equivalence class. In order to check whether two LTSs are equiv-
alent, the partition refinement algorithm is called with the union of both
LTSs as input. At the end of this computation, if both initial states are in
the same block, the LTSs are equivalent.

3. Comparing Non-bisimilar States

In this section, we present the measure of similarity between two LTSs.
When comparing both LTSs, if the equivalence checker returns true, it means
that the two LTSs are the same with respect to strong bisimulation. If the
equivalence checker indicates that both LTSs are not strongly bisimilar, our
similarity comes into play to compute further information. More precisely,
in that case, we apply our approach to quantify the difference between the
two subparts of both LTSs that are not equivalent. The measure relies on
two kinds of criteria, namely global and local criteria, which focus on two
non-bisimilar states (one in each LTS). We also present global measures that
give a measure of how far both LTSs are. Finally, we introduce a tool that
allows us to automatically compute all these results.

3.1. Overall Approach

Given two LTSs, we first use the partition refinement algorithm mentioned
in Section 2 to compute bisimilar and non-bisimilar states. Then, we focus
on non-bisimilar states and propose a measure comparing all non-bisimilar
states according to several global and local criteria. These global and local
criteria exploit the different elements present in both LTSs, namely, initial
states, labels, structure of the LTS or position of states in the LTS. For each
couple of non-bisimular states (one non-bisimilar state from each LTS), we
compute a degree of similarity which belongs to [0..1]. All these results are
stored in a matrix where non-bisimilar states of one LTS appear in row and
non-bisimilar states of the other LTS appear in column.

Given two non-bisimilar states s1, s2 where s1 ∈ LTS1 and s2 ∈ LTS2, we
compute the similarity of those states using global and local criteria. Global
criteria aim at considering the structure of both LTSs and looking at the
respective positions of both states in their LTSs. More precisely, there are
three global criteria. The first one computes the distance from the initial
state to the given state in both LTSs and compares those distances. The
second one computes the distance from a given state to the closest bisimilar
state and compares those distances. In both cases, we compute the shortest

5

distance. The third one aims at comparing whether those paths (from the
initial state to the current state or from the current state to the closest
bisimilar state) are similar. To do so we first search for the shortest paths
in both LTSs and we compute the number of common labels out of the total
number of labels, which gives the main part of this similarity measure. We
also add a bonus to this resulting value if the order of labels is the same in
both paths.

There are four local criteria. The first one compares outgoing transitions
to see the number of matching labels. The second does the same with in-
coming transitions. The third one checks whether the nature of states differ
(initial or not). The last one compares the similarity of neighbour states.

Given all these values for a couple of states, we can then compute its
value in the matrix (matrix[s1, s2]). This is obtained by using the weighted
average of these values (e.g., 1/7 or arbitrary weights). Note that these
weights are parameters of our approach. We can decide to change them for
putting more emphasis on labels or on some of the local criteria for instance.
In the results and experiments presented in the paper, we chose equal weights
for these parameters, because, in the context of our application areas (IoT
and process matching), there was no clear argument to emphasis some of the
values with respect to the other ones.

Since the similarity of neighbour states uses the matrix itself, we use an
iterative algorithm that stops when the matrix stabilizes. Once the matrix
is computed, we can compute several global measures, which give a degree
of similarity of both LTSs.

In the rest of this section, we explain in more details the metrics used in
this work for computing the similarity measure.

3.2. Global Criteria

The two first global criteria aim at comparing two states s1 ∈ LTS1 and
s2 ∈ LTS2 by looking at their positions in their respective LTSs. We rely
on two measures: (i) comparison of distance from initial states to states
s1 and s2 (dinit), (ii) comparison of distance between s1 and s2 to their
closest bisimilar states (dbis). In both cases, we search for the shortest path,
which is enough to have an estimation of the position in the LTS while
avoiding to analyse all possible paths outgoing of (leading to, respectively)
these states. Both measures are then computed in the same way as follows:
1 − (abs(d1 − d2)/max(d1, d2)), where d1, d2 is the distance from s1, s2 to

6

the closest bisimilar state or from initial states to s1, s2. Function abs is the
absolute value function and max returns the longest distance.

Example. We illustrate with a simple example where we take the shortest
distance from the initial states to two states s1 ∈ LTS1 and s2 ∈ LTS2

(Figure 1). Assume first that d1 = 1 and d2 = 8. In that case dinit =
1− ((8− 1)/8) = 0.125 corresponding to a quite low value for this distance
criterion. Consider now that d1 = 3 and d2 = 5. This results in a highest
value dinit = 1− ((5−3)/5) = 0.6. If we take equal values such as d1 = 4 and
d2 = 4, we obtain the highest value dinit = 1− ((4− 4)/4) = 1, which means
that these two states are not distinguishable with respect to this metric.

Figure 1: Example for the Distance Comparison Criterion.

The third global criterion aims at measuring the similarity of two paths.
Those two paths are taken in both LTSs either from the initial state to the
current state or from the current state to the closest bisimilar state. To
compute this measure, we first extract from both paths all labels involved in
each path and check for common occurrences. A first measure can be taken by
computing the number of labels present in both paths out of the total number
of labels. We also add a bonus to this resulting value if the order of labels
is the same in both paths. Both values are weighted with the largest part of
the weight dedicated to the number of common labels. More formally, this
is computed as follows: ((2∗ common)/total)∗w1 + (ordered/common)∗w2,
where common is the number of common labels, total is the total number
of labels, ordered is the number of ordered labels, and w1, w2 are weights.
Note that if there are several shortest paths between two states, we compute
the path similarity measure for all combinations of two paths (one path from
each LTS) and we keep the highest value. The intuition is that we focus on
the most similar paths, the other ones could be discarded or not used.

7

Example. Assume the two paths given in Figure 2. There are three
common labels (b, e, c) out of 11 labels, resulting in a first similarity value
of (2 ∗ 3)/11 = 0.55. We also compute a bonus in that case because among
these three common labels, two appear in the same order (b, c), resulting in
a value of 2/3 = 0.66. If we use both values given more importance to the
first value (e.g., w1 = 0.9 and w2 = 0.1), we obtain a final path similarity
value of 0.55 ∗ 0.9 + 0.66 ∗ 0.1 = 0.56. Our experience showed that the bonus
should be reasonable, otherwise it takes too much importance on the final
result and makes it irrelevant.

Figure 2: Example for the Path Similarity Criterion.

3.3. Local Criteria

These criteria aim at comparing two states s1 ∈ LTS1 and s2 ∈ LTS2 by
looking at their transitions and states (nature and neighbours). We consider
four local criteria:

• counting the number of matching outgoing transitions

• counting the number of matching incoming transitions

• comparison of nature of states (initial or not)

• comparison of neighbour states

Given two sets of transitions T1 and T2 outgoing from states s1 and s2,
respectively, we compute the similarity of those transitions (mout) as follows:
((number of matching transitions in T1) / |T1| + (number of matching tran-
sitions in T2) / |T2|) / 2. This measure is undefined if there is no outgoing
transitions. The same measure is computed for incoming transitions.

Example. We illustrate with two simple examples where we compare the
transitions outgoing from two states s1 ∈ LTS1 and s2 ∈ LTS2 (Figure 3).
Consider first the two states on the left hand side of Figure 3. We obtain

8

mout = ((1/1) + (1/2))/2 = 0.75 because the transition outgoing from s1 has
a counterpart whereas only one of the two transitions outgoing from s2 has
a matching transition. If we now look at the second example on the right
hand side of Figure 3, we have mout = ((1/2) + (1/2))/2 = 0.5 because from
s1 (s2, respectively), only half of the transitions have a match.

Figure 3: Example for the Transition Matching Criterion.

The nature of two states is simple. If both states are initial or not, we
return 1. Otherwise, they have a different nature (one is initial, the other is
not), and in that case, we return 0.

The fourth metric takes into account the similarity of neighbour states.
The neighbours of a state are all its successor and predecessor states. More
precisely, given two states s1 and s2, this similarity measure (mneig) is ob-
tained by comparing the predecessors of both states, by comparing the suc-
cessors of both states, and by computing the average of all these similarity
measures.

Example. Suppose two states s1 ∈ LTS1 and s2 ∈ LTS2 as depicted
in Figure 4. The similarity of neighbour states is computed as follows:
mneig[s1, s2] = (m[s1′, s2′] +m[s1′′, s2′′] +m[s1′′, s2′′′])/3.

Figure 4: Example for the Neighbour Similarity Criterion.

Since the computation of state similarity uses the matrix itself (for neigh-
bour states), we use an iterative algorithm that stops when the matrix sta-

9

bilizes. In practice, the iterative process terminates when the distance δ
between two versions of the matrix goes below a fixed threshold. The dis-
tance between two matrices is obtained by computing the arithmetic mean
of the difference of the two same states in each matrix.

Note that the computation of the matrix always converges to a unique
similarity matrix. This convergence can be proven as achieved in [18] by
using Banach’s fixed point theorem.

3.4. Global Measure

Once the similarity matrix is computed, there are several ways for com-
puting a global score out of the matrix. We present in this section four
options:

• Average of all scores in the matrix (named ”all”). This score is usually
rather low since it is somehow brute force, and keeps in the calculation
all values, even irrelevant ones between completely different states.

• Average of the best score for each row and for each column (named
”best”). This score adopts an optimistic point of view and makes an
attempt at matching states with high scores.

• Average of scores above a threshold (named ”threshold”). In that case,
we keep all values in the matrix above a threshold (e.g., 0.8), assum-
ing that these states are the best matches yet there might be several
possible matches.

• Average of a percentage of the best scores in the matrix (named ”per-
centage”). As an example, we can compute the average of the 20% of
best scores. This option aims at measuring whether the best values are
high or not. There might be a matrix with a good score for average
above threshold, but rather low score if we focus on the 20% of best
scores because most values in the matrix are low. Suppose for example
that there are the following 10 numbers in the matrix: 0.1, 0.2, 0.2,
0.3, 0.35, 0.4, 0.4, 0.45, 0.5, 0.9. Threshold would return 0.9 because
there is a single value above 0.8. However, percentage would return 0.7
because we take 20% of the best values (0.5 and 0.9 concretely) and we
compute the average.

10

Example. Table 1 gives an example of matrix obtained applying the
aforementioned computations. The ”all” global measure indicates that non-
bisimilar states are similar to 38%. This score is rather low due to the
numerous low values appearing in the matrix. The next global values get rid
somehow of states s4, s5 and s6, which clearly have no counterpart in the
other LTS. The ”best” measure returns a similarity percentage of 80% for
non-bisimilar states. The ”threshold” measure returns a similarity percent-
age of 95% (with 0.8 as threshold). This value is very high because there are
only 3 values above 0.8 and these values are actually higher than 0.9. The
”percentage” measure returns a global mesure of 70% (considering 30% of
the best scores). This value is rather low compared to ”best” and ”thresh-
old” because it takes into account more (low) values. If we use the 20% and
10% of best scores, respectively, we obtain 78% and 95% as global similarity
measure, respectively.

s0 s1 s2 s3 s4 s5 s6
s0 0.9 0.05 0.07 0.08 0.11 0.1 0.19
s1 0.18 0.99 0.35 0.32 0.3 0.3 0.36
s2 0.17 0.36 0.98 0.43 0.38 0.36 0.43
s3 0.15 0.32 0.42 0.77 0.58 0.41 0.48

Table 1: Example for the Global Similarity Measure.

3.5. Tool Support

The partition refinement algorithm and the similarity measures (matrix
and global measure) are computed via a tool (DLTS) we implemented in
Python, see Figure 5 for an overview. It takes as input two LTSs specified
in the textual ’aut’ format. In practice, we use the LNT process algebra [4]
for specifying high-level concurrent systems and compile these specifications
to LTSs in ’aut’ format by using CADP compilers [6].

We applied our tool to about 50 examples. Each example consists of a
series of LTS files (at least two and sometimes more than ten) in ’aut’ format.
Each file represents a variant of the first LTS. As a result, there are about
200 ’aut’ files in our repository of examples. During our experiments, we
compared all the files in a given series. It does not make sense to compare
two files in two different series because the results would be so different that it
would not be helpful for validating our approach. Among these 50 examples,

11

Figure 5: Tool Support.

most of them have been handwritten and some of them have been taken
from existing application areas (Internet of Things, Web services, mutual
exclusion protocols).

Experiments were carried out to evaluate the quality of the results using
the well-known precision and recall measures. In this specific context, we
consider the matching of states as basis for these measures. According to
our approach, two states are a correct match if a state cannot obtain a
higher result in the similarity matrix with any other state. For instance,
in Table 1, the couple (s0,s0) is a correct match because the state s0 (row)
obtains its higher value (0.9) with s0 (column). Precision computes the
number of correct matched states out of all matched states detected by our
approach. This allows us to verify that we do not have too many false
positives (irrelevant matched states). Recall corresponds to the number of
correct matched states detected by our approach out of all expected matched
states. This allows us to measure the number of matched states our approach
fails to identify. We have computed the precision and recall measures for
several examples taken from our repository. This was not possible to compute
these measures for all examples of our database because this requires human
expertise and the number of combinations (given 200 examples) is too high.
We observed that precision and recall measures are very high (close to 100%)
for LTSs which are pretty similar, showing in that case the good quality of
our approach. However, when the two compared LTSs are rather different,
these values tend to decrease and even to be low for very different LTSs.

12

As far as performance is concerned, it takes less than a second to compute
the matrix (and all global measures) for LTSs involving tens of states and
transitions. However, it takes several minutes to compute these outputs for
LTSs involving thousands of states and transitions. This comes from both
the computation of the partition refinement algorithm and from the matrix
computation. The good point is that our approach does not target large
LTSs but rather small ones as we will show in the next section with two
real-world case studies taken from different application domains.

The tool and all the examples used for validation purposes are available
online [27].

4. Applications

In this section, we illustrate with two possible applications of the measure
of similarity between LTSs, namely the design of IoT applications and the
matching of business process models.

4.1. Composition of IoT Objects

When composing devices and software (object for short in the rest of this
section) for building IoT application, each object must exhibit the actions it
can execute as well as the order in which these actions must be triggered.
Such a public interface can be described using an LTS, as proposed in [10, 9],
where labels on transitions correspond to these actions. Two objects interact
one with another by synchronizing on same action name (synchronous binary
communication model).

Given such a behavioural model for objects, the overall objective is to
build a satisfactory composition of objects that satisfies a given goal. The
goal is an abstract specification of what the user expects from the resulting
composition. It can be modelled using an LTS too using interactions as labels
(synchronization of actions) as suggested in [5]. A composition is satisfactory
if it satisfies the goal. This can be verified using first the synchronous product
to build a unique LTS out of a set of object LTSs, and then comparing
the resulting LTS with the goal LTS using equivalence techniques (strong
bisimulation here).

This case study aims at building a new IoT application for home security
and more precisely for home intrusion detection. The goal of this application
is given in Figure 6 using an LTS, which indicates that when a move is

13

detected, the camera is turned on, an alert message is sent to a mobile phone,
and the light in the house is switched on.

Figure 6: Case Study: Goal.

Usually, in order to build an application satisfying these requirements,
the end-user needs a recommender system listing all objets available nearby
with their interface. We assume here that after this task the four objects
given in Figure 7 are selected as possible candidates. There is first a security
sensor that detects movement in the house. When a movement is detected
it turns the video on and sends an alert message to a mobile phone. Once
the alert is over, the sensor reinitializes and turns the video off. The second
object is a connected light that can be repeatedly switched on and off. The
third object is a security camera whose video can be activated or not. When
activated, watching the video is possible. Finally, the final object is a home
security app that can be installed on a smartphone. This app is triggered
when receiving an alert. Then, there are several functionalities available for
the user such as watching the video or switching the light on/off. Once the
alert is over, the app allows the user to initialize it again.

Figure 7: Case Study: Objects.

The next question is the following: are we sure that this selection of ob-
jects does satisfy the given abstract goal? This is when equivalence checking
comes into play. From the objects given in Figure 7, we can build the result-
ing LTS using the classic parallel composition operator available in process
algebra or the synchronous product of communicating automata. Here, we
synchronize two objects on same actions. If an action in one object does not

14

have any counterpart in another object, this is an independent evolution. As
a result we obtain the LTS (generated with CADP) depicted in Figure 8.

Figure 8: Case Study: Composition LTS.

We now compare both LTSs (goal, Figure 6, and composition LTS, Fig-
ure 8) using the DLTS tool. Table 2 shows the resulting matrix obtained
after four iterations. The comparison method also indicates that all states
are non-bisimilar. The global similarity measure (average of best scores) re-
turns a value of 76%, indicating that both LTSs are not totally different and
exhibit portions of their behaviours that are very similar. By looking more
carefully at the matrix given in Table 2, we can see that the first three states
are very similar with values higher than 80%. But then, most values are very
low. If we look at the states in the composition LTS, we understand that
this is due to actions present in the objects and their composition that are
not taken into account by the abstract goal (e.g., lightoff, videooff).

There are now several options. One can try another selection and com-

15

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
s0 0.97 0.18 0.17 0.17 0.16 0.17 0.47 0.16 0.35 0.22 0.17
s1 0.18 0.86 0.36 0.33 0.3 0.31 0.3 0.3 0.29 0.68 0.33
s2 0.17 0.38 0.88 0.43 0.37 0.39 0.35 0.36 0.34 0.33 0.72
s3 0.19 0.34 0.45 0.77 0.44 0.59 0.4 0.43 0.4 0.37 0.38
s4 0.4 0.42 0.48 0.58 0.62 0.74 0.55 0.58 0.52 0.5 0.48

Table 2: Case Study: First Similarity Matrix.

bination of objects. Another option is to go further in the analysis and
comprehension of the current solution. As far as the latter is concerned, we
can decide to refine the goal by integrating the missing actions, or we can
keep the abstract goal as is and hide in the composition LTS these irrelevant
actions. We decide to go for this final option by hidding the actions where
light and camera are switched off (lightoff and videooff). Figure 9 shows
the resulting LTS (generated with CADP) where hidden actions have been
removed for the sake of readability.

Figure 9: Case Study: Composition LTS (V2).

Table 3 gives the similarity matrix computed by comparing the goal (Fig-
ure 6) with this second composition LTS (Figure 9). All states are non-
bisimilar but the global measure (average of best scores) increases to 89%.
The matrix shows very similar states for the three first states (s0, s1, s2) and
lower values for the remaining states (s3, s4). This is quite normal because
the two LTSs exhibit several differences in states s3 and s4: (i) the goal is
non-looping whereas all objects can loop forever and so the composition LTS,
(ii) the reinit and watch actions were not made explicit in the goal but they
totally make sense, and (iii) the lightup action is in sequence in the goal
whereas it can be repeated in the composition. It is worth noting that these
differences make the equivalence not satisfied, but once better understood
using our measures, there are no real problems from a functional perspec-
tive. Therefore, although the two LTSs are not bisimilar, the end-user could

16

be satisfied by the proposed composition of objects and accept it as a correct
solution for his/her application.

s0 s1 s2 s3
s0 0.9 0.18 0.17 0.15
s1 0.05 0.99 0.36 0.32
s2 0.07 0.35 0.98 0.43
s3 0.08 0.33 0.44 0.79
s4 0.26 0.37 0.47 0.72

Table 3: Case Study: Second Similarity Matrix.

Last but not least, the user can take advantage of the first LTS gener-
ated for the initial composition (Figure 8) where all possible executions are
enumerated to verify additional properties (absence of deadlocks, a certain
action is always reachable, some action occurs after another one, etc.). This
can be achieved using temporal logic and model checking (we use MCL [14]
and the CADP model checker [6], respectively, in this work).

4.2. Matching of Process Models

Business process modeling (BPM) is the activity of representing processes
of an enterprise, so that the current process may be understood, analysed
and improved. Business Process Model and Notation (BPMN) is a graphical
representation for specifying business processes. The latest version is BPMN
2.0 and was published as an ISO standard a few years ago [7]. BPMN is a
workflow-based graphical notation and is now being used by most business
experts and analysts.

In this context, one of the central issues aims at providing techniques for
comparing two versions of a process model. Comparing processes is useful for
tackling several problems such as process reconfiguration or evolution [12],
process harmonization [31] or effective search [13]. Comparison of process
models involves matching, that is, the detection of correspondences between
activities. In this section, we will show how the computation of bisimilar
states help to detect such correspondences. Our measure of similarity goes
farther by also focusing on the differences between both models and quanti-
fying these differences.

We use as example in this section a process modelling an online booking
system (Figure 10), similar to an example presented in [22]. Note that in

17

BPMN, X within a diamond states for an exclusive choice. In the figure, the
first occurrence of this choice corresponds to a join pattern whereas the sec-
ond occurrence corresponds to a split pattern. In this BPMN process, a client
can first submit a request and receive an answer. Depending on this answer,
(s)he can either decide to submit another request, choose to quit (abort), or
make a booking. In this last case, the client also makes a payment to confirm
his/her booking. This BPMN process can be automatically transformed to
an equivalent LTS using existing tools such as VBPMN [11, 12].

Figure 10: Process Model (V0): BPMN Process (left) and LTS Model (right).

Assume we want to improve this first process by using a connected mode
in order to identify precisely the client and thus simplify the payment task.
As a result, we obtain the process given in Figure 11 where the first activity
corresponds now to this identification step (login).

Figure 11: Process Model (V1): BPMN Process (left) and LTS Model (right).

When we compare these two versions of the BPMN process, our similar-
ity measure indicates that just one LTS (the one for V1) has non-bisimilar
states. More precisely all states in the LTS for the V0 process have bisimi-
lar counterparts in the LTS for the V1 process whereas state s0 in V1 LTS
is not bisimilar to any state in V0 LTS. This is normal because this initial
state with one outgoing transition labelled with ”login” is the only difference
between these two models.

18

Let us introduce a new extension of the BPMN process introduced before-
hand. Assume that now after deciding to book some good, the application
also stores the transaction in a database (log activity) as shown in Figure 12.

Figure 12: Process Model (V2): BPMN Process (left) and LTS Model (right).

We apply again our tool to compare versions V1 and V2 of the BPMN
process. We obtain as result the matrix given in Table 4. As far as global
measures are concerned, 69% of states are non-bisimilar and those states are
similar to 89% (average of best scores) and to 95% (average of best scores
above threshold of 0.8). The matrix shows that most non-bisimilar states
(s0, s1, s2, s4) are very similar with high values for couples (si,si) where
i ∈ {0, 1, 2, 4}. The matrix also highlights the main difference between these
two models, consisting of the addition of the ”log” activity. Indeed, state s5
in V2 LTS has no counterpart with V1 LTS, and this is why this state only
exhibits low values (less than 0.44) in the matrix for all states from V1 LTS.

s0 s1 s2 s4 s5
s0 0.99 0.3 0.43 0.28 0.29
s1 0.31 0.95 0.45 0.35 0.4
s2 0.43 0.44 0.99 0.53 0.37
s4 0.29 0.42 0.5 0.88 0.44

Table 4: Case Study: Similarity Matrix for BPMN Processes (V1 vs. V2).

Finally, as noticed at the end of Section 4.1, one can make use of model
checking tools in order to verify properties of interest on any of the LTS
obtained during the comparison process.

19

5. Related Work

Comparing automata-based models using equivalence techniques is not a
new problem. It was studied for instance in the context of the composition
of web services, see, e.g. [28, 2]. Observational equivalence was used in [28]
for checking that two versions of a service composition were the same. In [2],
the authors proposed one compatibility definition based on bisimulation tech-
niques for checking whether two web services can interact properly. In this
work, our focus is on quantitative aspects of non-equivalent behavioural mod-
els.

In [29], the authors measure the similarity of Labelled Transition Systems
(LTSs) with respect to a simulation and a bisimulation notion inspired from
the equivalence relations. The measuring techniques use weighted quantita-
tive functions which consist in a simple (not iterative), forward and parallel
traversal of two LTSs. This work does not return any global similarity mea-
sure and the differences which distinguish one entity from another.

In [15, 17], the authors rely on a similarity flooding algorithm for comput-
ing the matrix of correspondences between models. A forward and backward
similarity propagation is used in [15] to compare data structures described
with directed labelled graphs. However, the tool does not enable a fully auto-
mated matching because the user should manually adjust some matches. The
match operator introduced in [17] measures the similarity between different
versions of software units described using Statecharts. The similarity mea-
suring combines a set of static and behavioural matchings. The behavioural
matching is computed using a flooding algorithm and relies on the bisimula-
tion notion presented in [29]. Flooding algorithms were also used for measur-
ing the compatibility of behavioural models of web services in [19, 20]. Our
iteration process is very similar to similarity flooding algorithm but tackles
the problem with a different angle by focusing only on non-bisimilar states.

The simulation preorder is extended in [3] to a quantitative setting. It
presents three notions of distances (correctness, coverage, robustness), which
resides in making each player of a simulation game pay a certain price for
his/her choices. These distances are comparable to the global measures pro-
posed in this paper. There is no local criterion used in their work.

In [32], the authors present an approach (SpecDiff) to compute the dif-
ferences between two LTSs obtained by compilation from CSP, representing
the evolving behaviors of a concurrent program. SpecDiff considers LTSs as
Typed Attributed Graphs (TAGs), in which states and transitions are en-

20

coded in finite dimensional vector spaces. It then computes a maximum com-
mon subgraph of two TAGs, which represents an optimal matching of states
and transitions between two LTSs. This approach aims at pairing states and
transitions for debugging purposes whereas we analyze the structure of both
LTSs without mandatorily finding a match. Moreover, our approach is more
general-purpose and not only designed for program debugging.

The approach in [30] aims at comparing state machines in terms of their
language (the externally observable sequences of events that are permitted
or not), and in terms of their structure (the actual states and transitions
that govern the behaviour). The language comparison exploits model-based
testing approach. The structure comparison uses what we call local criteria
in our paper, by looking at the similarity of surrounding transitions and
source/target states. They do not rely on any notion of distances as we did
to compare the situation of both states in their respective LTSs. They do
not focus on non-bisimilar states only as we do. As far as application is
concerned, they apply their approach to reverse-engineering state machines
from program traces.

A distance between processes modelled as trees is defined in [23, 24] by
computing the costs to transform one of the trees into the other. This notion
of distance between processes is defined using coinduction. This approach ap-
plies in the case of both finite and infinite trees. The notion of k-bisimulation
was introduced in [25]. It considers weak bisimulation and more specifically
the weak equivalence notion introduced by Milner in [16]. K-bisimulation
measures the number of actions to be hidden for establishing weak equiva-
lence between two processes modelled using LTSs. Thoses measures are less
precise than ours since they do not give any detailed measure of distance
among the states of both LTSs. It is closer to our global measures of simi-
larity, which gives a rough estimation of how far the two LTSs are one from
another.

6. Concluding Remarks

We have presented in this paper a set of metrics that allows us to quantify
the difference between the non-bisimilar parts of two LTSs. This similarity
measure combines global and local criteria for computing a matrix that com-
pares all non-bisimilar states in both LTSs. The computed matrix is used in
a second step for computing global measures of similarity that are helpful to
distinguish totally different LTSs and almost bisimilar ones. Our approach

21

is implemented in a tool and was applied on a set of about 200 LTSs for
validating the ideas. Beyond that, we applied our solution to two concrete
application areas, namely the design of IoT applications by composition of
objects and the matching of business process models. These two case studies
show how our similarity measure can be used in practice to solve concrete
problems.

As far as future work is concerned, we plan to extend our work to support
other notions of bisimulations. Another perspective aims at taking advantage
of all the values gathered in the similarity matrix to refine our comprehension
of the differences between the two LTSs and extract more outputs from the
matrix. Finally, as a long term perspective, we would like to work on the
optimization of the tool support to make our approach scalable on large LTSs
consisting of possibly millions of states/transitions.

Acknowledgments

We are grateful to Frédéric Lang for his help and expertise on bisimulation
and equivalence checking.

References

[1] Baier, C., Katoen, J., 2008. Principles of Model Checking. MIT Press.

[2] Bordeaux, L., Salaün, G., Berardi, D., Mecella, M., 2004. When are Two
Web Services Compatible?, in: Proc. of TES’04, Springer. pp. 15–28.

[3] Cerný, P., Henzinger, T.A., Radhakrishna, A., 2010. Simulation Dis-
tances, in: Proc. of CONCUR’10, Springer. pp. 253–268.

[4] Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Lang, F., McK-
inty, C., Powazny, V., Serwe, W., Smeding, G., 2018. Reference Manual
of the LNT to LOTOS Translator (Version 6.7). INRIA/VASY and
INRIA/CONVECS, 153 pages.

[5] Durán, F., Salaün, G., Krishna, A., 2019. Automated Composition,
Analysis and Deployment of IoT Applications, in: Proc. of TOOLS
2019, Springer. pp. 252–268.

22

[6] Garavel, H., Lang, F., Mateescu, R., Serwe, W., 2013. CADP 2011:
A Toolbox for the Construction and Analysis of Distributed Processes.
STTT 15, 89–107.

[7] ISO/IEC, 2013. International Standard 19510, Information technology
– Business Process Model and Notation.

[8] Kanellakis, P.C., Smolka, S.A., 1990. CCS Expressions, Finite State
Processes, and Three Problems of Equivalence. Inf. Comput. 86, 43–68.

[9] Krishna, A., Pallec, M.L., Mateescu, R., Noirie, L., Salaün, G., 2019a.
IoT Composer: Composition and Deployment of IoT Applications, in:
Proc. of ICSE’19, Montreal, IEEE / ACM. pp. 19–22.

[10] Krishna, A., Pallec, M.L., Mateescu, R., Noirie, L., Salaün, G., 2019b.
Rigorous Design and Deployment of IoT Applications, in: Proc. of For-
maliSE’19, ACM.

[11] Krishna, A., Poizat, P., Salaün, G., 2017. VBPMN: Automated Verifi-
cation of BPMN Processes, in: Proc. of IFM’17, Springer. pp. 323–331.

[12] Krishna, A., Poizat, P., Salaün, G., 2019c. Checking business process
evolution. Sci. Comput. Program. 170, 1–26.

[13] Kunze, M., Weidlich, M., Weske, M., 2011. Behavioral similarity - A
proper metric, in: Proc. of BPM’11, Springer. pp. 166–181.

[14] Mateescu, R., Thivolle, D., 2008. A Model Checking Language for Con-
current Value-Passing Systems, in: Proc. of FM’08, Springer.

[15] Melnik, S., Garcia-Molina, H., Rahm, E., 2002. Similarity Flooding:
A Versatile Graph Matching Algorithm and Its Application to Schema
Matching, in: Proc. of ICDE’02, IEEE Computer Society. pp. 117–128.

[16] Milner, R., 1989. Communication and Concurrency. Prentice Hall.

[17] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.,
2007. Matching and Merging of Statecharts Specifications, in: Proc. of
ICSE’07, IEEE Computer Society. pp. 54–64.

23

[18] Ouederni, M., Fahrenberg, U., Legay, A., Salaün, G., 2017. Compati-
bility Flooding: Measuring Interaction of Services Interfaces, in: Proc.
of SAC’17, ACM. pp. 1334–1340.

[19] Ouederni, M., Salaün, G., Pimentel, E., 2010. Quantifying Service
Compatibility: A Step beyond the Boolean Approaches, in: Proc. of
ICSOC’10, Springer. pp. 619–626.

[20] Ouederni, M., Salaün, G., Pimentel, E., 2011. Measuring the Compat-
ibility of Service Interaction Protocols, in: Proc. of SAC’11, ACM. pp.
1560–1567.

[21] Paige, R., Tarjan, R.E., 1987. Three Partition Refinement Algorithms.
SIAM J. Comput. 16, 973–989.

[22] Poizat, P., Salaün, G., 2012. Checking the realizability of BPMN 2.0
choreographies, in: Proc. of SAC’12, ACM. pp. 1927–1934.

[23] Romero-Hernández, D., de Frutos-Escrig, D., 2012. Defining Distances
for All Process Semantics, in: Proc. of FMOODS/FORTE’12, Springer.
pp. 169–185.

[24] Romero-Hernández, D., de Frutos-Escrig, D., 2014. Coinductive Defi-
nition of Distances between Processes: Beyond Bisimulation Distances,
in: Proc. of FORTE’14, Springer. pp. 249–265.

[25] Ruvo, G.D., Lettieri, G., Martino, D., Santone, A., Vaglini, G., 2015. k-
Bisimulation: A Bisimulation for Measuring the Dissimilarity Between
Processes, in: Proc. of FACS’15, Springer. pp. 181–198.

[26] Salaün, G., 2019. Quantifying the similarity of non-bisimilar labelled
transition systems, in: Proc. of FOCLASA’19, Springer. pp. 211–225.

[27] Salaün, G., 2020. DLTS Tool and Examples.
http://convecs.inria.fr/people/Gwen.Salaun/Tools/dlts.zip.

[28] Salaün, G., Bordeaux, L., Schaerf, M., 2004. Describing and Reasoning
on Web Services using Process Algebra, in: Proc. of ICWS’04, IEEE.
pp. 43–50.

[29] Sokolsky, O., Kannan, S., Lee, I., 2006. Simulation-Based Graph Simi-
larity, in: Proc. of TACAS’06, Springer. pp. 426–440.

24

[30] Walkinshaw, N., Bogdanov, K., 2013. Automated Comparison of State-
Based Software Models in Terms of Their Language and Structure. ACM
Trans. Softw. Eng. Methodol. 22, 13:1–13:37.

[31] Weidlich, M., Mendling, J., Weske, M., 2011. A foundational approach
for managing process variability, in: Proc. of CAiSE 2011, Springer. pp.
267–282.

[32] Xing, Z., Sun, J., Liu, Y., Dong, J.S., 2011. Differencing Labeled Tran-
sition Systems, in: Proc. of ICFEM’11, Springer. pp. 537–552.

25

