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ABSTRACT
A key application of advanced spectroscopy methods is to estimate

equilibrium states of biochemical processes in situ and in vivo. Nev-
ertheless, an often present difficulty is the requirement that the

biochemical process and its environment (such as the substrate)

satisfy special conditions. One means of resolving this issue is to

communicate information about the equilibrium states of the bio-

chemical process to another location, supported via microfluidic

channles within a lab-on-a-chip. In this paper, we develop a sig-

naling strategy and estimation algorithms for equilibrium states

of a biochemical process. For a toggle-switch circuit model impor-

tant in cellular differentiation studies, we study via simulation the

tradeoff between the rate of obtaining spectroscopy measurements

and the estimation error, providing insights into requirements of

spectroscopy devices for high-throughput biological assays.

CCS CONCEPTS
• Applied computing→ Health care information systems; • Com-
putingmethodologies→Model verification and validation;Mix-
ture modeling.
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1 INTRODUCTION
An important question in molecular biology is the dependence of

dynamics for biochemical processes on environmental conditions,

such as temperature of chemical composition. In practice, to address

this question, it is necessary to perform an assay; i.e., measurements

of chemical concentrations under varying conditions [14].

Ideally, biochemical assays are performed in situ or in vivo, allow-
ing observation of the true dynamics. Such measurements require

advanced spectroscopy methods, including Raman or atomic force

microscopy (see, e.g., [24, 32]). However, these methods often re-

quire special environmental conditions, such as well-defined, flat

and non-reactive substrates [13].

When it is not feasible for in situ spectroscopy, a natural solution

is to communicate information about the equilibrium state of the

process to another location and perform measurements there. One

approach to implementing such distributed observation is to house

the biochemical process and spectroscopy on a single chip, known

as a lab-on-a-chip (LoC) or micro total analysis system [10]. In

this setting, communication of information about the equilibrium

state of the biochemical process can be supported via microfluidic

channels.

A number of previous works have investigated microfluidic sys-

tems from a molecular communication perspective. In [20], the

pulse width, pulse delay and pulse amplitude were studied under

a convection-diffusion-reaction channel. In [3, 8], microfluidic cir-

cuits were developed in order to produce a desired pulse shape at

the transmitter and perform detection at the receiver. In [7, 17],

droplet-based microfluidic channels were characterized and the

information capacity evaluated. Further work investigating the in-

formation capacity of microfluidic channels has been carried out

in [4, 5, 11, 15, 19], often under the assumption of laminar flow

modeled by convection-diffusion equations.

In this paper, we consider a biochemical process under observa-

tion contained in a chamber, connected to spectroscopy chamber—

where the quantity of a given chemical species can be directly

observed—via a microfluidic channel, illustrated in Fig. 1. Based

on the observations from the spectroscopy chamber, the aim is to

reliably estimate the equilibrium state of the biochemical process

under investigation.

Figure 1: System Model.

While microfluidic channels often support laminar flow, it is also

true that the small scale of the channel can facilitate rapid diffusion

[29]. For example, diffusion-based microfluidics has a long history

in validating stochastic diffusion models [27]. As such, we focus

microfluidic channels with dynamics purely driven by reactions

and diffusion, without convection.

The absence of convection often means that, under certain re-

versibility conditions on the chemical reactions in the system, that

the statistics for the quantity of molecules in the spectroscopy
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chamber converges to an steady state (not to be confused with the

equilibrium state of the biochemical process under investigation).

Moreover, this steady state can be readily characterized, depending

only on the total quantity of molecules in the system, the reaction

rates, and the volume [2]; all of which can be readily estimated.

As such, it is feasible to utilize observations from the spec-

troscopy chamber in order to estimate the equilibrium state of the

biochemical process when the set of equilibrium states is unknown.

In order to estimate these unknown equilibrium states, we develop

an estimation procedure by exploiting a Gaussian mixture model.

This is feasible due to the fact, shown in the sequel, that the steady

state statistics for the quantity of molecules in the spectroscopy

chamber can be well approximated via a Gaussian distribution.

We illustrate our approach via an example based on a self-actuating

toggle switch circuit, which plays an important role in cellular dif-

ferentiation [21]. A key feature of the toggle switch circuit is that it

can admit tristability; that is, the circuit can produce three distinct

equilibrium states. We numerically investigate the performance of

our approach in estimation of the set of unknown states. In partic-

ular, we obtain tradeoffs between the number of required samples

on the probability an equilibrium state is misidentified (called a

clustering error), and on the mean-square error of the estimated

equilibrium states. These results provide guidelines for the required

rate of spectroscopy measurements for high-throughput biological

assays.

2 SYSTEM MODEL
2.1 Biochemical Assay Setup
Consider a microfluidic chip consisting of two chambers and a

microchannel, as illustrated in Fig. 1. The first chamber houses the

biochemical process under investigation. This chamber is separated

from the microchannel by two gates. The first gate is opened once

the biochemical process reaches an equilibrium state, allowing

molecules S1 from the first chamber to diffuse inside. The second

gate acts as a filter, allowing only a further information-carrying

molecule S2, distinct from any of the molecules produced by the

biochemical process, to pass through. After a short period of time,

the first gate is closed, allowing no further molecules from the

biochemical process to enter the beginning of the microchannel.

We expect that such gates can be implemented using microfiltration

techniques [31].

When molecules of species S1 from the biochemical process

enter the beginning of the microchannel, they are able to react

to form information-carrying molecules of species S2 (detailed in

Sec. 2.2). The molecules of S2 can then pass through the second gate
and diffuse through the remainder of the microchannel towards the

spectroscopy chamber.

Within the spectroscopy chamber, the molecules of S2 can then

react to form molecules of species S3 (detailed in Sec. 2.2). Be-

tween the microchannel and the spectroscopy chamber is a third

gate, which prevents molecules of species S3 to pass back into the

microchannel, while allowing molecules of species S2.
The spectroscopy chamber is equipped with a spectroscopy de-

vice able to passively count how many molecules of species S3 are

present. The precise form of the spectroscopy device depends on

the species S3. The spectroscopy device then passes the count to

an external processor, which is used to estimate the quantity of

molecules of S1 which were present initially at the beginning of

the microchannel between the first and second gates.

A concrete example of this setup can be developed for detec-

tion of autoinducer molecules arising in bacteria colonies for the

purpose of quorum sensing. In this case, each bacteria forms a bio-

chemical switch; able to produce either a small or large quantity

of autoinducer molecules depending on the density of the bacteria

colony.

In order to observe the quantity of autoinducer, Raman spec-

troscopy has been exploited in [24] for bacteria colonies in situ. This
previous work does not consider distributed spectroscopy; i.e., the

spectroscopy is performed in the same chamber as the biochemical

process. Nevertheless, it is feasible that, equipped with a LoC, the

spectroscopy could be performed in a separate chamber. In fact,

Raman spectroscopy has been proposed as a means of cooperative

in-vivo sensing in [16]. We also highlight that a distributed imple-

mentation is likely to be necessary for other systems, where the

spectroscopy method may perturb the biochemical process or the

detection chamber requires special preparation (such as in force

spectroscopy [13]).

2.2 Dynamics of the Microfluidic Channel
The portion of the first chamber used to produce signalingmolecules,

the microchannel, and the detection chamber are assumed to form

a domain Ω ⊂ R𝑑 , 𝑑 ∈ {1, 2, 3} with smooth boundary 𝜕Ω. Con-
sider the discretization of Ω into 𝑁 volume elements (voxels) each

of volume 𝑉vox, with the subdomain forming voxel 𝑖 denoted by

V𝑖 , 𝑖 = 1, . . . , 𝑁 . Here, volume is interpreted as length in R1, area
in R2, and volume in R3.

The portion of the first chamber housing the biochemical pro-

cess used to produce the signaling molecules has volume 𝑉Tx. The

production of signaling molecules is achieved via the unimolecular

reactions

S1 → S2
S2 → S1 .

(1)

In particular, the transmitter produces information-carryingmolecules

of species S2 by the first reaction in (1). In general, a more complex

reaction pathway may be present; however, we assume in this case

that the intermediate reactions occur rapidly as is common, for

example, in enzyme-based reactions. We also note that unimolecu-

lar reactions are capable of modeling the dynamics of a range of

biochemical systems [28].

We assume that molecules of species S1 produced in the trans-

mitter are not capable of diffusing into the channel. On the other

hand, this is possible for species S2.
In the detection chamber, with volume 𝑉Rx (not necessarily the

same as𝑉Tx), molecules of species S2 are able to generatemolecules

of species S3 via

S2 → S3
S3 → S2 .

(2)

The molecules of S3 are then used for the purpose of spectroscopy

(e.g., Raman or force spectroscopy) in the detection chamber. We

assume that the spectroscopy is passive, which means that no

molecules of S3 are removed by the detection process. As such,

the detection process can be viewed as a passive receiver, which
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has been considered in previous work on molecular communica-

tions in different contexts (see, e.g., [23]).

In order to capture the effect of small quantities of each chemi-

cal species in the system (i.e., S1, S2, S3), we consider a stochastic
model for the dynamics. To formally describe the setup, we intro-

duce the following notation. Let 𝑀𝑙
𝑖
(𝑡), 𝑙 = 1, 2, 3, 𝑖 = 1, . . . , 𝑁

denote the random variable for the number of molecules of species

S1, S2 orS3 in voxel 𝑖 at time 𝑡 . DenoteM𝑖 (𝑡) = [𝑀1
𝑖
(𝑡), 𝑀2

𝑖
(𝑡), , 𝑀3

𝑖
(𝑡)]

as the state vector in voxel 𝑖 and the matrix consisting of all state

vectors by M(𝑡) = [M1 (𝑡), . . . ,M𝑁 (𝑡)]. The probability that M(𝑡)
has value m at time 𝑡 is then denoted by

𝑃 (m, 𝑡) = Pr(M(𝑡) = m|M(0) = m0), (3)

whereM(0) is the initial quantity of molecules of each species in

each voxel. In the present context, the M(0) is dependent on the

equilibrium state of the biochemical process under observation.

Since each reaction is unimolecular, it follows that in each reac-

tion the number of molecules of the three species involved can only

increase or decrease by one. Let 1𝑙
𝑖
be the state where the number

of molecules in all voxels is zero, except for species 𝑙 in voxel 𝑖 . That

is, M(𝑡) + 1𝑙
𝑖
means that the number of molecules of species 𝑙 in

voxel 𝑖 is increased by one.

A popular model for stochastic dynamics of molecules is the

reaction-diffusion master equation (RDME) [18], also utilized in

the context of molecular communications in [6]. In this model, the

diffusive jump rate is denoted by ^𝑙
𝑖 𝑗
for each individual molecules

of the 𝑙-th species moving from voxel 𝑗 into voxel 𝑖 , with ^𝑖𝑖 =

0, 𝑖 = 1, . . . , 𝑁 . In particular, the probability per unit time that a

molecule of S𝑙 diffuses from voxel 𝑗 to voxel 𝑖 at time 𝑡 is given

by ^𝑙
𝑖 𝑗
𝑀𝑙
𝑗
(𝑡). We expect that in many microfluidic systems, ^𝑙

𝑖 𝑗
is

constant for a given species S𝑙 over all voxels 𝑖, 𝑗 . Nevertheless, it
is also possible to consider spatially inhomogeneous diffusion [2].

In the case of mass-action kinetics and first-order reactions, the

probability per unit time that a molecule of S𝑙 in voxel 𝑖 reacts at

time 𝑡 is given by 𝑎𝑙
𝑖
𝑀𝑙
𝑖
(𝑡) with rate constants 𝑎𝑙

𝑖
. In general, the re-

action rate is dependent on the voxel index. The net change of each

chemical species due to the reaction with substrate S𝑙 is expressed
via the column vector 𝝂𝑙 ∈ N2. The term 𝝂𝑙1𝑖 indicates thatM(𝑡)
changes by 𝝂𝑙 in the 𝑖-th voxel. In order to model production of

S1, S2, S3 in the transmitter and receiver, we assume that for the

voxels 𝑖 comprising the transmitter and the receiver 𝑎𝑙
𝑖
= 𝑎𝑙 , while

𝑎𝑙
𝑖
= 0 for voxels comprising the channel.

In the RMDE model, the probability distribution 𝑃 (m, 𝑡) evolves
according to the system of differential equations given by

d𝑃 (m, 𝑡)
d𝑡

=

𝑁∑
𝑖=1

𝑁∑
𝑗=1

2∑
𝑙=1

(
^𝑙𝑖 𝑗 (𝑚

𝑙
𝑗 + 1)𝑃 (m + 1𝑙𝑗 − 1𝑙𝑖 , 𝑡)

−^𝑙𝑗𝑖𝑚
𝑙
𝑖𝑃 (m, 𝑡)

)
+
𝑁∑
𝑖=1

2∑
𝑙=1

(
𝑎𝑙𝑖 (𝑚

𝑙
𝑖 + 1)𝑃 (m − 𝝂𝑙1𝑖 , 𝑡)

−𝑎𝑙𝑖𝑚
𝑙
𝑖𝑃 (m, 𝑡)

)
. (4)

The sums in (4) correspond to net changes in probability per unit

time due to diffusion and reactions, respectively. We refer the reader

to [30] for further details.

The system of ordinary differential equations in (4) corresponds

to the Kolmogorov forward equation for a continuous-time Markov

chain; that is, the evolution of the system state is Markovian. In our

setting, the Markov chain corresponding to the RDME is irreducible

and positive recurrent. Therefore, a stationary distribution exists

and is given by [9]

𝜋 (m) = lim
𝑡→∞

Pr(M(𝑡) = m|M(0) = m0) . (5)

3 MOLECULAR COMMUNICATION SCHEME
3.1 Signaling
We are concerned with the scenario that the system is reset for each

experiment; i.e., when the biochemical process is exposed to new en-

vironmental conditions, such as concentrations of input molecules

or temperatures. In particular, no molecules of species S1, S2 or S3
are present in the channel nor the spectroscopy chamber at time

𝑡 = 0.
After an external stimulus is introduced, we assume that the bio-

chemical process converges rapidly to an equilibrium state indexed

by an element of {1, . . . , 𝐾}. For example, in the case of a unique

equilibrium state (e.g., if the process is governed by a deficiency

zero chemical reaction network [12]), 𝐾 = 1. On the other hand, if

the biochemical process is bistable (e.g., in quorum sensing [22]),

𝐾 = 2. Larger numbers of equilibrium states can occur if the under-

lying chemical reaction network has more complex structure [21],

as will be considered in Sec. 5.

An equilibrium state corresponds to a concentration of S1 de-

noted by𝐶𝑖 , 𝑖 = 1, . . . , 𝐾 . As such, the quantity of S1 in the entrance
to the microchannel is given by

Δ𝑖 = 𝐶𝑖𝑉Tx . (6)

The index of the equilibrium state is denoted by 𝑖 ∈ {1, . . . , 𝐾}.
At a time 𝛿 shortly after the biochemical process reaches equilib-

rium, a quantity of S1 is present in the beginning of the microchan-

nel, depending on equilibrium state of the biochemical process. In

particular, assuming that the equilibrium state of the biochemical

process is indexed by 𝑖 ,

𝑁Tx,1 (𝛿) = 𝑁Tx,1 + Δ𝑖 , (7)

where Δ𝑖 corresponds to the quantity of molecules of S1 in the

beginning of the microchannel, as defined in (6). We note that

𝛿 > 0 is chosen to be a sufficiently small period of time such that

no reactions occur in the beginning of the microchannel.

The key idea behind our approach is that for sufficiently large𝑇𝑠 ,

the total number of molecules of species S2 and S3 in the detection

chamber at the time of sampling will be approximately drawn from

the stationary distribution of the RDME. As such, if the stationary

distribution is known, then reliable detection of the equilibrium

state for the biochemical process can be obtained.

3.2 Statistics for the Quantity of S3

Wenow seek to obtain a good approximation for the statistics for the

quantity of S3; i.e., 𝑁3 (𝑇𝑠 ). Suppose that the measurement process

results in the production of Δ𝑖 at the transmitter. Then, by the
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analytical and empirical evaluation in [2], the following assertion

provides an accurate characterization for sufficiently large 𝑇𝑠 .

Assertion 1. Let 𝑁3 (𝑇𝑠 |𝑖) denote the number of molecules of S3
in the system at time𝑇𝑠 given an equilibrium state of the biochemical
system 𝑖 corresponding to a measurement of Δ𝑖 defined in (6). Then,

𝑁3 (𝑇𝑠 |𝑖) ∼ N (`𝑖 , `𝑖 ), (8)

where `𝑖 > 0 is a known constant, only dependent on the volume of
the enclosing container and not the specific geometry, and N(`, 𝜎2)
denotes the Gaussian law with mean ` and variance 𝜎2. In particular,

`𝑖 =
𝑎1

𝑎2

Δ𝑖 𝑉Rx

𝑁𝑉vox

1 + 𝑎1

𝑎2
𝑉Tx+𝑉Rx

𝑁𝑉vox

. (9)

Under the assumption that 𝑎1 = 𝑎2 and 𝑉Tx = 𝑉Rx,

`𝑖 =
Δ𝑖𝑉Rx

𝑁𝑉vox + 2𝑉Rx
. (10)

So far, we have assumed that𝑇𝑠 is sufficiently large such that the

steady state of the RDME is approximately reached. However, it is

also desirable to obtain multiple observations per symbol in order

to improve the detection performance. In this case, the time interval

between samples is smaller and independence cannot be guaranteed

from mixing properties of the RDME Markov chain. Nevertheless

the convergence is rapid, as can be verified numerically.

Let 𝑁𝑠 be the maximum number of independent samples that

the receiver can observe per measurement; e.g., due to time con-

straints. Under the assumption of independent observations and

the Gaussian law in Assertion 1, it is possible to reduce the variance

by averaging these observations via

𝑁Rx,3 =
1

𝑁𝑠

𝑁𝑠∑
𝑗=1

𝑁Rx,3 (𝑡 𝑗 |𝑖) (11)

where 𝑡 𝑗 ∈
{
𝑡1, 𝑡2, . . . , 𝑡𝑁𝑠

}
, where 𝑡 𝑗 > 𝑇𝑠 . Then the correspond-

ing distribution of the averaged observations 𝑁Rx,3 (𝑇𝑠 |𝑖) can be

written as

𝑁Rx,3 (𝑇𝑠 |𝑖) ∼ N
(
`𝑖 ,

`𝑖

𝑁𝑠

)
. (12)

4 BIOLOGICAL ASSAYS VIA EQUILIBRIUM
SIGNALING

The aim of this work is to establish a communication mechanism

to detect the equilibrium state of the biochemical process from a

distributed detection chamber. While the problem bears similarities

with standard formulations of molecular communication systems—

namely, that an element discrete set of states (or messages) is to be

detected—there are two key differences.

One difference is that each equilibrium state is not in general

equally likely to arise. This is due to the fact that the equilibrium

state depends on the environmental input of the biochemical pro-

cess and different equilibrium states are associated to a larger set of

the inputs. The consequence of this is that the average probability

of error is not an appropriate performance metric. Instead, the error

for each equilibrium state is a more useful metric.

Perhaps the most significant difference is that the set of equilib-

rium states is not necessarily known before the experiment begins.

This may be due to limited pre-trials, which were only able to iden-

tify a subset of the equilibrium states of the biochemical process. In

this section, we develop a detection strategy, when both the number

and value of the states are not known.

4.1 Equilibrium State Estimation
Even if none of the equilibrium states are known in a system, using

Assertion 1, the concentration of the biochemical system can be

estimated. We seek to both identify the set of equilibrium states and

also estimate the equilibrium states arising from each measurement.

To do so, we model the observations from a number of experiments

(corresponding to changes in the environment) as a Gaussian mix-

ture [25]. This is motivated by the fact that the observation in the

detection chamber is Gaussian conditioned on the equilibrium state,

with statistics given in (12).

Recall that a Gaussian mixture model is defined by a probability

density function of the form

𝑓𝐺𝑀 (𝑥 ;𝝅 , 𝝁,𝝈)) =
𝑁∑
𝑖=1

𝜋𝑖𝑔(𝑥 ; `𝑖 , 𝜎2𝑖 ), (13)

where

𝑔(𝑥 ; `, 𝜎2) = 1
√
2𝜋𝜎2

exp

(
− (𝑥 − `)2

2𝜎2

)
. (14)

In the Gaussian mixture model, the parameters 𝝁 correspond to the

estimated values of the equilibrium states, 𝝈 corresponds to the

standard deviation associated to each cluster, and 𝝅 corresponds to

the weight associated to each cluster, which is related to how likely

it is that a point belongs to each cluster.

To estimate the Gaussian mixture model parameters, the stan-

dard method is based on the expectation-maximization algorithm.

Suppose 𝐷 measurements—corresponding to different perturba-

tions of the biochemical process, distinct from the number of sam-

ples 𝑁𝑠—are taken. Then under the assumption there are 𝐾 clusters,

the inner loop in Algorithm 1 details the expectation-maximization

procedure (i.e., the E-step and the M-step).

The parameters 𝛾𝑖
𝑗
estimate the likelihood that measurement 𝑖

is associated to cluster 𝑗 , which provides the basis for clustering

the observations. In particular, measurement 𝑖 is associated to the

cluster 𝑗 = argmax𝑘 𝛾
𝑖
𝑘
.

However, when the biochemical process under observation is not

well understood, it may not be clear how many equilibrium points

and hence which cluster size 𝐾 should be chosen. In order to select

the cluster size𝐾 , we exploit the Akaike information criterion (AIC)

[1], detailed in line 9 of Algorithm 1. In particular, AIC is given by

𝐴𝐼𝐶 = 2𝐾 − 2𝐿 (15)

where 𝐿 represents the maximized log likelihood function given

in line 8 of Algorithm 1. As detailed in Algorithm 1, the GMM

is applied for different values of 𝐾 (corresponding to a different

number of equilibrium states). The value of 𝐾 then corresponds to

the minimum AIC.
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The AIC can be replaced by the Bayesian Information Criterion

(BIC) [26], given by

𝐵𝐼𝐶 = 𝐾 log(𝐷) − 2𝐿. (16)

This can be implemented in Algorithm 1 by replacing the AIC in

line 9 with the BIC.

Algorithm 1 GMM Clustering Algorithm

1: For 𝐾 = 1 : 𝐾𝑚𝑎𝑥
2: Initialize: ^̀1:𝐾 , 𝜎21:𝐾 , ^𝜋1:𝐾
3: While not converged

4: 𝜙 𝑗 ∼ N( ^̀𝑗 , 𝜎2𝑗 ) 𝑗 = 1 : 𝐾

5: E-step : 𝛾𝑖
𝑗
=

𝜋 𝑗𝜙 𝑗 (𝑥𝑖 )∑𝐾
𝑘=1 𝜋𝑘𝜙𝑘 (𝑥𝑖 )

𝑗 = 1 : 𝐾, 𝑖 = 1 : 𝐷

6: M-step : ^̀𝑗 =

∑𝐷
𝑖=1 𝛾

𝑖
𝑗
𝑥𝑖∑𝐷

𝑖=1 𝛾
𝑖
𝑗

𝜎2
𝑗
=

∑𝐷
𝑖=1 𝛾

𝑖
𝑗 (𝑥𝑖−^̀𝑗 )2∑𝐷
𝑖=1 𝛾

𝑖
𝑗

𝑗 = 1 : 𝐾

𝜋 𝑗 =

∑𝐷
𝑖=1 𝛾

𝑖
𝑗

𝐷
7: End while

8: 𝐿 =
∑𝐷
𝑖=1 log

∑𝐾
𝑗 𝜋 𝑗𝜙 𝑗 (𝑥𝑖 )

9: 𝐴𝐼𝐶𝐾 = 2𝐾 − 2𝐿
10: End for

11: Return 𝐾𝑜𝑝𝑡 = min𝐾 𝐴𝐼𝐶𝐾 , ^̀1:𝐾𝑜𝑝𝑡

5 EVALUATION IN REALISTIC
BIOCHEMICAL PROCESSES

5.1 Self Activating Toggle Switch Circuits
Gene regulatory networks play a key role in cellular differentia-

tion. In particular, the decision networks often heavily rely on a

regulatory motif in which the proteins of two genes act as mutually

inhibiting transcription factors [21]. It is often the case that one or

both genes also act as self-activating transcription factors, leading

to a self-activating toggle switch. A key example is the (CDX2-

OCT3/4) pair [21], which is associated with the differentiation of

embryonic stem cells.

An important feature of self-activating toggle switches is that

they can admit tristability. That is, three distinct stable equilibrium

states are present. Moreover, the occurrence of distinct equilibrium

states varies from one equilibrium state to another. As a conse-

quence, some equilibrium states can be much rarer than others.

We consider an experiment where the goal is to identify the

equilibrium states corresponding to different initial conditions of a

self-activating toggle switch, when none, some, or all equilibrium

states are known. In particular, the system consists of two transcrip-

tion factors and two noncompetitive binding sites, which facilitate

transcription of proteins A and B.
The self-activating toggle switch is governed by the system of

ordinary differential equations [21]

d𝑐A
d𝑡

= 𝐺A (𝑐A, 𝑐B) − 𝑘A𝑐A

d𝑐B
d𝑡

= 𝑔B (𝑐B, 𝑐A) − 𝑘B𝑐B, (17)

where the mean transcription rate of X is given by

𝐺X (𝑐A, 𝑐B)
= (𝑔X,AB + 𝑔X,A𝐻− (𝑐B))𝐻+ (𝑐A) + 𝑔X,B + 𝑔X,0𝐻− (𝑐B), (18)

with transcription rates for each promoter state given by 𝑔X,A ≫
𝑔X,0, 𝑔X,B ≪ 𝑔X,0, 𝑔X,AB ≈ 𝑔X,0, and the dynamics are governed

by the Hill functions

𝐻− (𝑐A) =
1

1 + 𝑐𝑛A
A

𝐻+ (𝑐A) = 1 − 𝐻− (𝑐A) . (19)

Fig. 2a plots the equilibrium states arising from the model in

(17) with parameters detailed in the figure. Observe that the system

is tristable, with three equilibrium states that occur with different

frequencies. Moreover, each equilibrium state does not occur with

the same frequency.

We now evaluate the performance of each algorithm in Section 4

for the biochemical process defined by (17) with parameters the

same as given in Fig. 2. Fig. 2b shows the probability that an ob-

servation is incorrectly clustered. Since, no equilibrium states are

initially known to the receiver, In order to estimate the equilibrium

states and identify which equilibrium state each observation should

be assigned to, we utilize Algorithm 1. In this case, the clustering

error is the proportion of points that are not associated with the

cluster with mean closest to the true equilibrium state for the point.

In Fig. 2c the estimation error of the equilibrium states are given.

Observe that the estimation error for all states as the number of

samples increases. As expected, the estimation error measured by

the normalized mean-square error (NMSE) decreases as the number

of samples increases.

6 CONCLUSION
Advanced spectroscopy methods provide a means of passively esti-

mating the number of molecules of a given chemical species. One

application is to investigate the equilibrium behavior of a range of

biochemical processes. However, spectroscopy devices may require

special conditions to operate, which are not consistent with normal

behavior of the biochemical process. In this case, it is desirable to

exploit LoC technology to measure chemical signals in a location

away from where the biochemical process.

In order to do so, it is necessary to introduce a communication

channel and a means of characterizing the statistics for the number

of molecules in the external spectroscopy chamber. In this paper,

we have proposed an approach exploiting the steady state behavior

of reaction-diffusion systems. We have shown that this approach

yields reliable estimates of equilibrium states, even if the full set of

possible equilibrium states is not known.
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