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Objective: We investigated how participants controlling a  
humanoid robotic arm’s 3D endpoint position by moving their own 
hand are influenced by the robot’s postures. We hypothesized that 
control would be facilitated (impeded) by biologically plausible (im-
plausible) postures of the robot.

Background: Kinematic redundancy, whereby different arm 
postures achieve the same goal, is such that a robotic arm or pros-
thesis could theoretically be controlled with less signals than consti-
tutive joints. However, congruency between a robot’s motion and 
our own is known to interfere with movement production. Hence, 
we expect the human- likeness of a robotic arm’s postures during 
endpoint teleoperation to influence controllability.

Method: Twenty- two able- bodied participants performed a 
target- reaching task with a robotic arm whose endpoint’s 3D po-
sition was controlled by moving their own hand. They completed 
a two- condition experiment corresponding to the robot displaying 
either biologically plausible or implausible postures.

Results: Upon initial practice in the experiment’s first part, 
endpoint trajectories were faster and shorter when the robot dis-
played human- like postures. However, these effects did not persist 
in the second part, where performance with implausible postures 
appeared to have benefited from initial practice with plausible ones.

Conclusion: Humanoid robotic arm endpoint control is im-
paired by biologically implausible joint coordinations during initial fa-
miliarization but not afterwards, suggesting that the human- likeness 
of a robot’s postures is more critical for control in this initial period.

Application: These findings provide insight for the design of 
robotic arm teleoperation and prosthesis control schemes, in order 
to favor better familiarization and control from their users.

Keywords: motor control, teleoperation, inverse  
kinematics, bio- inspired robotics, embodied cognition

INTRODUCTION

Given its number of joints, an anthropomor-
phic arm typically displays kinematic redun-
dancy whereby there is an infinite number of 
arm postures that correspond to the same end-
point position in the 3D space (Baillieul & 
Martin, 1990). From a robotics- based perspec-
tive, inverse kinematic (IK) solving could be 
used to reduce the dimensionality of the control 
by relying on endpoint coordinates instead of 
joint angles as commands. Such dimensional-
ity reduction could also be very valuable in the 
context of myoelectric prostheses, which use 
muscle activity as command signals to drive the 
artificial limb’s motion. Indeed, compensating 
a higher level of amputation (e.g., humeral or 
shoulder level) requires more artificial degrees 
of freedom (DoF) to be controlled while having 
access to less command signals from residual 
muscles. However, IK solving requires a crite-
rion with which to choose one posture among 
this infinity of available solutions. Regarding 
applications in robotic arm teleoperation or in 
prosthetics, the issue of which criterion to use is 
still open even though an intuitive option would 
consist in selecting human- like joint coordi-
nations. Indeed, such a criterion would ensure 
consistency with the natural motion an anthro-
pomorphic arm is meant to emulate, possibly 
favoring embodiment from the operator as well 
as controllability. However, to our knowledge, 
the influence of joint coordinations on the con-
trol of an artificial limb has yet to be explicitly 
addressed in the literature.
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In this paper, we present an experiment 
where participants performed arm motion to 
drive a robotic arm placed next to them, so 
that its endpoint reached targets in a 3D work-
space located in their field of view. To study the 
role of joint coordinations in this teleoperation 
setup, we designed two different IK solving 
criteria, selecting either biologically plausible 
or implausible postures to be displayed by the 
robot.

In this context, participants observed the 
robot as a humanoid agent moving in relation 
to their own motion, which may have elicited 
embodiment transfer toward the robot (Ogawa 
et al., 2012). Other related works (Imaizumi 
et al., 2016; Kalckert & Ehrsson, 2012; Longo 
et al., 2008) provide a definition of embodi-
ment as a multifaceted phenomenon, its two 
major components being ownership (Is this 
body mine?) and agency (Does this body move 
in accordance with my intentions?). From a 
cognitive perspective, Imaizumi et al. (2016) 
describe ownership as “based on multisensory 
afferent inputs […] which are spatially and tem-
porally congruent” and agency as related to the 
“congruence between a motor prediction based 
on an internal forward model […] and its pre-
dicted sensory feedback.”

With regard to these definitions, we expected 
our experimental setup to address agency more 
than ownership, because the apparatus mostly 
stimulated the visual modality and provided 
no tactile feedback. In this context, when the 
robot displayed biologically plausible postures, 
the similarity between the robot’s and partic-
ipants’ joint angles may have led the latter to 
feel like they effectively controlled these joints, 
thus reinforcing a sense of agency. Additionally, 
the location mismatch between the robot and a 
participant’s actual body may have disturbed 
ownership without disrupting agency as much 
(Kalckert & Ehrsson, 2012). Regarding actual 
prosthesis use, Imaizumi et al. (2016) stud-
ied how embodiment toward a prosthetic arm 
affects its user’s body posture and reported that 
agency plays a more decisive role than owner-
ship in this mechanism. These works’ findings 
support the rationale that biologically plausible 
joint coordinations would elicit embodiment 
transfer toward the robot more than biologically 

implausible ones, possibly leading to better per-
formance with the former than with the latter. 
Here, we specifically assessed this possibility 
during teleoperation of a robotic arm endpoint 
controlled in order to reach targets in 3D space.

Previous research in cognitive psychology 
provides relevant insight regarding how a par-
ticipant is influenced by motion performed by 
an external agent. In particular, experiments 
by Kilner et al. (2003) and Press et al. (2005) 
investigated if a participant’s own motion is dis-
turbed when observing congruent or incongru-
ent movements performed by another human 
or a robotic arm. While the former reported an 
effect when observing a human but not a robot’s 
motion, the latter supported that visuomotor 
priming can be triggered by a robotic agent, 
and lead to interference with the participant’s 
motion. Additionally, Bouquet et al. (2007) 
addressed how this priming relies on structural 
(e.g., shape, silhouette) or dynamic information 
(e.g., velocity, movement direction) conveyed 
by the moving agent. This study showed that 
the purely dynamic information conveyed by 
shapeless dots is enough to elicit interference 
when these dots exhibit biological motion. In 
the present study, we assessed how such inter-
ference might have an impact in a teleoperation 
context where the robotic arm is directly con-
trolled by movements of the operator’s arm.

In our experiment, both conditions of bio-
logical plausibility of postures convey iden-
tical structural information, given that the 
same robot is used throughout the experiment. 
However, the distinct joint coordinations asso-
ciated with each condition convey different 
dynamic information, as they put the robot’s 
joints in motion at different speeds and possibly 
opposite directions. Obviously, incongruency 
between performed and observed motion is 
more likely to happen when the robot displays 
biologically implausible postures. Therefore, 
we expect participants to perform better when 
the IK solving puts the robot in human- like pos-
tures. Our results confirmed that this was the 
case upon first exposure to our experimental 
conditions, but also revealed that the particular 
condition encountered first influences perfor-
mance obtained with the other condition con-
ducted afterward. In particular, performance 
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in the condition with biologically implausible 
postures was found to have benefited from ini-
tial exposure to the condition with biologically 
plausible ones.

METHODS
Participants

The study was conducted on a set of 22 
able- bodied naive participants (13 male), aged 
19–25 (mean 21.8; SD 1.13). All participants 
were right- handed and had normal or corrected 
to normal vision. None of them suffered from 
any mental or motor disorder that could affect 
their ability to perform the task. The experiment 
duration ranged from approximately 45 to 75 
min, and no participant reported fatigue at the 
end of the experiment.

This study was carried out in accordance 
with the recommendations of the local eth-
ics committee (CPP Île- de- France VII, Ref 
2019- A01051-56). All participants gave writ-
ten informed consent in accordance with the 
Declaration of Helsinki.

Apparatus
The participant was seated on a chair and 

asked to keep a straight back against the back-
rest. Twelve reflective spherical markers were 
attached to the participant’s right arm with the 

help of armbands, so that each segment (upper 
arm, forearm and hand) had a set of four mark-
ers attached to it (Figure 1). In particular, the 
armband worn on the hand placed the partici-
pant’s fingers so that the index was pointing 
forward and the other fingers were curled into 
the palm. Additionally, one of the four markers 
attached to the hand was fixed at the tip of a rod 
aligned with the index. This marker was referred 
to as the driving marker and represented the 
endpoint of the participant’s arm. An optical 
motion tracking system (Optitrack V120 Trio 
& Motive software) was used to compute and 
record at 120 Hz the markers’ positions and seg-
ments’ orientations in the 3D workspace along 
time. A third- party software package (Astanin, 
2016) allowed for real- time processing of the 
retrieved 3D data.

The controlled device was the robotic arm 
Reachy (Mick et al., 2019), designed to be 
employed as a tangible testbed for research 
on human- robot control strategies. This robot 
comprises seven DoF actuated by seven inde-
pendent motors: three at shoulder level (flex-
ion–extension, abduction–adduction, humeral 
rotation), two at forearm level (elbow flex-
ion–extension, pronation–supination), and two 
at wrist level (radial–ulnar deviation, flexion–
extension). Its end- effector is a single piece 

Figure 1. Experimental setup: Both the robot and participant are facing the same way, in front of the targets. 
Credit © Gautier Dufau.
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shaped like a human right hand in the same 
position as the participant’s hand: index point-
ing forward, other fingers curled inside. Its size 
and proportions are similar to those of a human 
adult’s arm, for a length of approximately  
75 cm and a weight of about 1.4 kg.

The robot’s shoulder was fixed on a wall- 
mounted support to the left of the participant. 
Additionally, a thirteenth marker was fixed at 
the tip of the robot’s index and represented its 
endpoint. Both the robot and participant had 
their shoulder placed at a similar height and 
faced the same direction. A set of five virtual 
targets was located in the reachable space of 
the robot’s endpoint. All targets were spheres 
of 25 mm in radius; the target centers’ coor-
dinates relative to the robot’s shoulder center 
are reported in Table 1. Despite marking out 
a 3D zone, these targets were displayed using 
disks of foam padding as seen in Figure 1, in 
order to allow the robot’s endpoint to physically 
enter the target zone. Each disk coincided with 
a target with respect to center coordinates and 
radius, and was placed vertically with the flat 
side facing the chair. In this way, participants 
were able to visually identify the targets’ loca-
tions and size in the workspace. The foam disks 
were held in position with springs so that the 
assembly would not suffer major damage in 
case of shock with the robot, and would bring 
a disk back to its original location afterwards.

Custom software was developed in Python 
to carry out the experiment, record, and process 
data using several packages from the SciPy eco-
system (Virtanen et al., 2020).

Robot Control
In the framework of this experiment, partici-

pants drove the robot’s endpoint by putting their 
own hand in motion in their peripersonal space. 
At any time, the 3D position of the driving 

marker was measured by the motion tracking 
system and used to compute the participant’s 
endpoint’s displacement vector relative to a 
reference position. This displacement vector 
was then scaled based on the participant’s arm 
length and mapped to the robot’s “peripersonal” 
space to determine the instantaneous 3D goal of 
the robot’s endpoint. Commands were then sent 
to the robot’s motors so that it would bring its 
endpoint on this goal.

Given that motors cannot instantly reach 
the angles sent as commands, a short delay 
remained between the robot’s endpoint motion 
and the instantaneous goal’s trajectory. This 
lag was found to usually dwell within the  
350–450 ms interval during the control.

Posture Generation

In order to perform endpoint control on the 
robot, we used the IK solver IKPy (Manceron, 
2015), which can compute a posture (i.e., a set 
of motor angles) that brings the robot’s endpoint 
at a given 3D goal. Considering that the robot 
includes seven DoFs, its kinematic redundancy 
allows for an infinite number of solutions to this 
IK problem. We took advantage of this redun-
dancy to design two posture generation strate-
gies with similar endpoint accuracy but whose 
IK solving is biased toward two different ranges 
of postures. Drawing inspiration from a method 
described by Cruse (1986), we obtained such a 
bias by including a regularization term in the 
cost function underlying the IK solving. This 
term requires fourteen regularization parame-
ters (two for each DoF); in this way, each strat-
egy corresponds to a different set of parameters.

For each joint i, the first parameter is a reg-
ular angle αi and the second is a weight wi. As 
a result, for a given posture the total regulariza-
tion term R, added in the cost function, is the 

TABLE 1: 3D Coordinates of the Targets Relative to the Robot’s Shoulder Center

Target 1 2 3 4 5

X—Rightward 0.04 0.2 0.13 −.03 −.12

Y—Forward 0.64 0.63 0.625 0.58 0.6

Z—Upward 0.06 −.1 −.3 −.4 −.15

Note. Values are in meter.
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second- order norm of the weighted vector of 
the deviations to regular angles:

 
R =

√∑
i
(wi (qi − αi))2

  

where qi is the angular position of the joint i.
The set of regular angles defines an “ideal” 

posture toward which the solving will be 
biased; while the weights define the prominence 
of each joint in the total cost. A bigger weight 
on a given joint will result in a bigger impact 
of this joint’s deviation to its regular angle on 
the regularization term. The weights and regular 
angles of each strategy are reported in Table 2.

The first posture generation strategy was 
designed to produce postures that would be 
biologically plausible relative to a human arm’s 
reaching motion. To achieve this, regular angles 
were chosen to define this “ideal” posture so 
that it would be comfortable and appropriate 
as a resting stance for a human, with values far 
enough from joint boundaries (Figure 2(a) and 
(b)). Besides, the weight applied to humeral 
rotation was slightly lower than those of other 
joints, given the lighter effect of this joint’s 
motion on the torques generated by gravity on 
the robot’s actuators. Additionally, the three 
more distal joints of the robot (prono–supina-
tion, wrist flexion–extension, radial–ulnar devi-
ation) were locked in a neutral position during 
the movements.

Conversely, the second strategy was designed 
to produce biologically implausible postures. 
With this aim, regular angles were chosen so 
that joints tend to be put outside of their com-
fortable range or near their angular boundaries. 

In particular, postures generated with this strat-
egy are biased towards bringing the elbow 
inside and displaying excessive supination, 
wrist extension and ulnar deviation (Figure 2(c) 
and (d)). The weights were also set in order to 
favor distal joint deviations over proximal ones 
when choosing the posture among IK solutions.

The first strategy was referred to as the 
“bio” strategy, whereas the second was labeled 
“non- bio” strategy. Please note that these labels 
are used out of convenience rather than to 
emphasize posture generation characteristics. 
In this way, the “bio” shorthand should stand 
for “bio- inspired” instead of “biomimetic” or 
“biological.”

Task
The experiment relied on a target reach- and- 

hold task, where the participant was asked to 
drive the robot in order to bring its endpoint 
inside one of the five spherical targets and hold 
it in for 800 ms. At the beginning of the task, 
the participant’s and robot’s arms were placed 
in the same initial posture: humerus along the 
body, elbow flexed at 90°, vertical hand and 
index finger pointing forward. The beginning of 
the task was triggered by the experimenter and 
indicated to the participant by a short high- pitch 
beep sound. However, the task timer did not 
start until the participant’s index moved further 
than 2 cm from its initial position. Then, the 
participant was given 15 s to complete the task.

During each task, custom software recorded 
the robot’s joint angles measured by embedded 
sensors, as well as the participant’s and robot’s 
endpoint positions and arm links’ orientations 

TABLE 2: Weights and Regular Angles Used to Bias IK Solving

Joint ShFlex ShAbd HumMed ElFlex ForSup UlnDev WrExt

“Bio”

  Weight 0.013 0.013 0.0065 0.013 0.02275 0.026 0.026

  Regular angle 0 20 0 75 0 0 0

“Non- bio”

  Weight 0.0075 0.015 0.0225 0.0075 0.025 0.0225 0.015

  Regular angle 20 5 −25 70 40 25 35

Note. ShFlex = shoulder flexion; ShAbd = shoulder abduction; HumMed = Humeral lateral rotation; ElFlex = 
elbow flexion; ForSup = forearm supination; UlnDev = ulnar deviation; WrExt = wrist extension.
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measured by the motion tracking system. 
Whenever the robot’s endpoint was located 
inside the target zone, an audio cue was played 
continuously, so that the participant was made 
aware that the endpoint was correctly placed. 
If it stayed continuously inside the target for 
800 ms or if the 15 s time limit was reached, 
the task immediately ended and the outcome 
(success or failure) was recorded. At this point, 
the participant stopped having control over the 
robot, which was automatically brought back to 
the initial posture, and a low- pitch beep sound 
indicated the end of the task.

Protocol
Before the experiment started, the experi-

menter explained that during the control, the 

robot’s endpoint was put in motion in accordance 
to the measured motion of the participant’s hand. 
No further detail was provided to the participant 
regarding the posture generation or use of IK. 
After placing the recording devices, the exper-
imenter introduced the task and described how 
the targets were virtual spheres displayed using 
disks of same radius. In this way, the participant 
was made aware of the goal, success conditions, 
and parameters of the experiment. Additionally, 
the experimenter demonstrated a “mock trial” 
by moving the robot manually while it was 
turned off, to introduce the task proceedings and 
corresponding audio cues. Participants did not 
perform any training or mock trial before the 
experiment started and had no previous experi-
ence with the robot’s control system.

Figure 2. Average robot postures at the time of the first entry in the third target’s zone. (a) and (b): with “bio” 
strategy. (c) and (d): with “non- bio” strategy.
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An experimental phase repeated thirty tri-
als of this task during which the posture gen-
eration strategy remained the same. Over a 
single phase, the target order was shuffled in a 
block- randomized fashion, so that two consec-
utive trials never corresponded to the same tar-
get. This order was common to all participants 
and phases. Each participant involved in the 
experiment performed two phases, one for each 
posture generation strategy, for a total of sixty 
trials. The phase order was shuffled so that half 
of the participants performed their first experi-
mental phase using the “bio” strategy (Group I) 
while the other half began with the “non- bio” 
strategy (Group II). This experimental design is 
illustrated in Figure 3.

Data Analysis

At the end of the participant inclusion period, 
the recorded data were processed to allow for 
analysis. Due to measurement noise, the record-
ings from seventy- four trials (5.6% of the total 
dataset) were too heavily disrupted to allow for 
relevant data to be computed. Consequently, 
these trials were excluded from further analy-
ses, while the rest of the trials formed the valid 
dataset.

Within the valid dataset, the success rate was 
found to be consistently excellent (>95%) over 
the population of participants, regardless of the 
posture generation strategy. This result confirms 
that the task was not too difficult for the par-
ticipants but also highlights the need for other 

Figure 3.  Experimental design: the pool of participants is divided in two groups of same size, each 
corresponding to a different order of experimental conditions.
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criteria to evaluate how well they performed 
during the experiments.

In this way, we designed several quantita-
tive metrics to assess the performance achieved 
during the task by addressing various dimen-
sions of motor performance. These metrics 
were then used to compare the two posture gen-
eration strategies based on how well the partici-
pants controlled the robot.

 ● Approach Speed (AS)—This metric evaluates 
how fast the participants managed to drive the 
robot toward the target. For a given trial, provided 
the endpoint entered the target zone at least once, 
it is possible to determine the approach time that 
is, time elapsed since the starting zone’s exit until 
the first entry in the target zone. Out of 1,246 
valid trials, there was only one during which the 
target zone was never entered and for which no 
approach time could be determined. However, 
given that targets were placed at various distances 
from the starting zone, this time measurement is 
not appropriate as a target- independent metric. 
Instead, we used the approach speed, which is 
defined, for each target that was reached, as the 
ratio of the distance to the target by the approach 
time.

 ● Path Shortness (PS)—This metric addresses 
trajectory control and stability by evaluating the 
distance traveled by the robot’s endpoint during 
a task, regardless of its duration. Indeed, an 
excessively long path can be associated with a 
poorer control of the robot, as it would be caused 
by wide deviations from the shortest path, or 
numerous goings and comings around the target. 
Path shortness is defined as the ratio of the total 
length of the endpoint’s path by the length of the 
shortest path to the target.

To account for possible effects of phase order 
on the results, we conducted a four- class anal-
ysis by combining groups and experimental 
phase (Table 3). Each class includes data from 
eleven participants and is labeled according 
to the posture generation strategy (B and NB, 
respectively, standing for “bio” and “non- bio”) 
and phase position (1 and 2, respectively, stand-
ing for first and second position).

We performed Kruskal–Wallis tests on the 
results from the two quantitative metrics to 

detect significant differences between classes. 
In all the cases where these tests indicated their 
existence, post hoc Mann–Whitney tests were 
performed to identify the pairs of classes pre-
senting such differences. Bonferroni correction 
was applied accordingly, as multiple tests were 
carried out simultaneously. All relevant sta-
tistical values from these tests are reported in 
Table 4.

RESULTS
Participants’ Arm Postures

The participants’ joint angles were com-
puted offline based on the recorded orientations 
of each link of the arm, while the robot’s joint 
angles were recorded based on the measure-
ments by the actuators’ embedded sensors.

A qualitative analysis of the robot’s joint 
angles confirmed that overall, the “bio” and 
“non- bio” strategies generated different pos-
tures for the robotic arm, as shown by the angle 
distributions at the time of the first entry in the 
target, illustrated in Figure 4. This difference 
is especially striking for the three more distal 
joints, as they were locked at a neutral zero 
angle in “bio” condition, and primarily encour-
aged for large deviation in “non- bio” condition.

Besides, this analysis revealed that the par-
ticipants’ joint angle distributions remained 
markedly similar over both experimental condi-
tions. Median angles and amplitudes appeared 
to be quite close between “bio” and “non- bio” 
conditions for each of the seven joints.

Finally, this analysis allowed us to verify 
that the “bio” strategy generated postures simi-
lar to those of a human arm. Angle distributions 
between participants and robot in “bio” condi-
tion were found to be roughly similar for shoul-
der flexion and elbow flexion, while forearm 
supination, ulnar deviation, and wrist extension 
were centered on angles close to 0° for both 

TABLE 3: Four- Class Design Used to Carry Out 
Data Analysis

“Bio” strategy
“Non- Bio” 
strategy

Group I B1 NB2

Group II B2 NB1
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robot and participants. However, differences are 
noticeable for shoulder abduction and humeral 
rotation, indicating that some regularization 
parameters could be refined to produce more 
human- like postures.

Performance Metrics
Even though approach time was not consid-

ered a dependent variable, it was summarily 

analyzed to provide reference data. Its values 
ranged from 0.66 s to 12.92 s, with an average 
approach time of 2.87 s.

Regarding approach speed (Figure 5, left), 
the analysis revealed that approach periods 
were significantly slower when participants 
performed their first phase in “non- bio” con-
dition. Indeed, the approach speed for class 
NB1 (median AS 7.47 cm/s) proved to be 

Figure 4. Distributions of participants’ and robot’s joint angles at the time of the first entry in the target, with 
each posture generation strategy. Blue: participant; Purple: robot. Solid: “bio” condition; hatch pattern: “non 
bio” condition. ShFlex = shoulder flexion; ShAbd = shoulder abduction; HumMed = humeral lateral rotation; 
ElFlex = elbow flexion; ForSup = forearm supination; UlnDev = ulnar deviation; WrExt = wrist extension.

TABLE 4: Summary of Statistical Tests Performed on the Two Quantitative Metrics

Metric
Kruskal–Wallis 

tests

Mann–Whitney tests—Bonferroni Correction: 0.0083

B1 vs NB1 B1 vs B2 B1 vs NB2 NB1 vs B2 NB1 vs NB2 B2 vs NB2

Approach 
speed

H = 41.619 U 57,613 45,803 47,563 36,113 37,827 52,646

p = 4.8336e-9 p 1.1929e-6 0.25967 0.94837 4.8890e-9 1.9555e-6 0.23560

Path 
shortness

H = 42.471 U 39,000 53,461 43,698 64,000 53,339 40,252

p = 3.1874e-9 p 2.8017e-4 0.021966 0.091978 1.6845e-10 0.031764 2.5091e-5

Note. Significant differences are indicated by p values in bold.
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significantly different from those of every other 
class (median AS >8.9 cm/s, p < .0001). In par-
ticular, when comparing classes B1 and NB1, 
that is, first phases of each group, this result 
suggests that the “bio” strategy makes it easier 
for participants to get accustomed to the robot’s 
control. As such a difference is not found for 
second phases that is, between classes B2 and 
NB2, this may indicate that this effect decreases 
or even disappears after a period of initial 
exposure to the robot’s control. We refer to 
this period as the familiarization period, which 
obviously takes place during the first experi-
mental phase, but does not correspond to a dis-
tinct block of trials intended for participants to 
train on the task.

Regarding path shortness (Figure 5, right), 
significant differences were found between 
pairs B1 and NB1 (p = 2.8017e-4), NB1 and 
NB2 (p = 1.6845e-10), and NB2 and B2 (p = 
2.5091e-5). In particular, endpoint paths were 
found to be significantly longer for class NB1 
(median PS 2.71) than for class B1 (median PS 

2.35), suggesting that the “non- bio” strategy 
elicits poorer robot control in the beginning 
of the experiment. Conversely, endpoint paths 
were shorter for class NB2 (median PS 2.22) 
than for class B2 (median PS 2.56). This may 
reveal that during their final phase, participants 
in Group I benefited from having used the “bio” 
strategy beforehand, whereas the performance 
of participants in Group II was impaired from 
having completed their first phase in “non- bio” 
condition.

DISCUSSION

Provided that posture similarity may increase 
the sense of agency (Imaizumi et al., 2016) and 
that incongruent movements were found to 
interfere with our own movement production 
(Bouquet et al., 2007; Press et al., 2005), we 
expected performance in robotic arm teleopera-
tion to be affected by the biological plausibility 
of the postures used to operate it. Our results 
show that this is the case upon initial exposure 

Figure 5. Boxplots of performance results based on approach speed (left) and path shortness (right). Red 
= Group I; gold = Group II. Solid = “bio” strategy; hatch pattern = “non- bio” condition. **p < .001; ***p < 
.0001.
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to the task, as participants performing their first 
phase in “bio” condition achieved better control 
(i.e., shorter paths and faster approach periods) 
than participants performing their first phase 
in “non- bio” condition. However, no similar 
effect was found when comparing performance 
in “bio” and “non- bio” conditions upon second 
exposure to the task, after a substantial famil-
iarization has occurred in the initial phase con-
ducted with the other condition. With regard 
to our hypothesis that a discrepancy between 
participants’ and robot’s postures would inter-
fere with the control, this suggests that such 
an interference takes place more prominently 
during initial exposure to a novel control sys-
tem, when familiarization occurs. This is con-
sistent with findings reported by Dragan and 
Srinivasa (2014) showing that familiarization 
to a robotic arm motion can improve its predict-
ability when natural movements are used, but 
that this mechanism saturates when using less 
natural movements. During the second phase 
of our experiment, participants may also have 
relaxed to the natural tendency we have to fix-
ate the endpoint of an observed arm (Matarić 
& Pomplun, 1998), thereby not paying as much 
attention to the robot’s postures as during the 
first phase where it was found to influence 
their performance. This appears consistent with 
several participants reporting that they did not 
notice a change in the robot’s behavior between 
the two phases.

Additionally, when comparing performance 
obtained in the same condition but at a differ-
ent phase of the experiment, our results indicate 
that the “non- bio” condition elicited better per-
formance when employed in the second phase 
than in the first phase. Conversely, performance 
results were found to be similar between partic-
ipants performing the “bio” strategy in the first 
or second phase. This suggests that participants 
performing the “non- bio” condition in the sec-
ond phase have benefited from their previous 
experience with the “bio” strategy, whereas 
participants that performed the “bio” condition 
in the second phase did not benefit from, and 
may even have been hindered by, their previous 
experience with the “non- bio” condition. The 
condition in which the participants built their 
sensorimotor model of the robot’s teleoperation 

system may therefore be more critical than the 
joint coordinations used later on. Such interpre-
tation of these findings accord with the guid-
ance effect originally found in an observational 
paradigm (Badets & Blandin, 2004; Deakin & 
Proteau, 2000) where participants efficiently 
perform a motor skill when they have previ-
ously watched a relevant model of this skill. 
Accordingly, observing a model can improve 
the construct of a motor skill’s cognitive repre-
sentation that, in turn, efficiently guides subse-
quent physical practice.

It is worth noting that only two out of many 
possible posture generation strategies were 
assessed in this study. In particular, the corre-
sponding two sets of regularization parameters 
were chosen for the satisfying tradeoff they 
offered between posture biasing, IK accuracy, 
and robot safety. Using the same IK solving 
method, other tradeoffs could be considered to 
achieve higher similarity or, conversely, higher 
dissimilarity with human postures when choos-
ing regularization parameters. Additionally, 
such dissimilarity could be achieved through 
many different classes of postures, of which 
the one generated in our “non- bio” condition is 
merely an example. In this way, an alternative 
“non- bio” strategy biasing the solving toward 
a different class of biologically implausible 
postures could have led to more marked inter-
ference between robot and human motion, pos-
sibly accentuating the observed differences in 
performance.

It is also worth noting that although our fix-
ation of the three most distal joints at 0° was 
well centered on the participants’ actual arm 
movements for these joints (Figure 4), it is con-
ceivable that this strict fixation has increased 
the predictability of the robotic arm behavior 
to a point that might have contributed to the 
observed pattern of results. This could be tested 
in the following work by maintaining high 
predictability despite non- biological postures, 
for instance by fixating these distal joints at 
implausible angles.

In practical terms, our results provide a basis 
for recommendations for the design of robotic 
arm teleoperation as well as upper- limb pros-
theses control systems. Although a prosthesis 
could obviously not be controlled with a valid 
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end- effector as in our current robotic arm tele-
operation setting, the multiple artificial joints it 
contains could still benefit from a dimension-
ally reduced control strategy associated with 
partly automated kinematic control. In fact, to 
overcome the difficult issue of controlling more 
joints with less remaining muscles associated 
with high amputations, control schemes exploit-
ing residual stump movements and kinematic 
regularities during natural reaching movements 
are being proposed (Kaliki et al., 2013; Merad 
et al., 2020). Following recent progresses in 
computer vision augmented with gaze infor-
mation, contextual information about the goal 
of movement (e.g., the object to grasp) could 
also be determined automatically (González- 
Díaz et al., 2019; Pérez de San Roman et al., 
2017), and might be used for robotic arm con-
trol in combination with IK solving (Mick et al., 
2019). For those options or others, our results 
indicate that control schemes driving multiple 
joints at once should favor biologically plausi-
ble joint coordination, as this might facilitate 
controllability through congruency with motor 
intentions from a natural, valid arm’s sensorim-
otor model, and possibly through embodiment 
via the sense of agency.

CONCLUSION
Humanoid robotic arm endpoint control is 

impaired (i.e., longer paths and slower approach 
periods) by biologically implausible joint coor-
dinations experienced during the familiariza-
tion period but not afterwards. This suggests 
that the human- likeness of a robot’s postures 
is more critical for the control in this initial 
familiarization period. These findings provide 
insight for the design of robotic arm teleoper-
ation and prosthesis control schemes, in order 
to favor better familiarization and control from 
their users.

ACKNOWLEDGEMENTS
The authors would like to thank Benjamin 

Camblor and Christophe Halgand for their 
inputs regarding data analysis.

KEY POINTS

 ● Selecting biologically implausible postures to 
drive the robot was detrimental to its control 

by the participants while they are getting accus-
tomed to the system’s functioning.

 ● The human- likeness of robot postures is more 
critical in this familiarization period, as it affects 
later performance.

 ● It is preferable that arm prosthesis control 
schemes that involve multijoint control through 
IK solving favor biologically plausible joint 
coordinations.
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