
HAL Id: hal-03019639
https://hal.inria.fr/hal-03019639

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimal Virtual Machines on IoT Microcontrollers: The
Case of Berkeley Packet Filters with rBPF

Koen Zandberg, Emmanuel Baccelli

To cite this version:
Koen Zandberg, Emmanuel Baccelli. Minimal Virtual Machines on IoT Microcontrollers: The Case
of Berkeley Packet Filters with rBPF. PEMWN 2020 - 9th IFIP/IEEE International Conference on
Performance Evaluation and Modeling in Wired and Wireless Networks, Dec 2020, Berlin / Virtual,
Germany. �hal-03019639�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362229581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03019639
https://hal.archives-ouvertes.fr

Minimal Virtual Machines on IoT Microcontrollers:
The Case of Berkeley Packet Filters with rBPF

Koen Zandberg∗, Emmanuel Baccelli∗†

∗Inria, France
†Freie Universität Berlin, Germany

Abstract—Virtual machines (VM) are widely used to
host and isolate software modules. However, extremely
small memory and low-energy budgets have so far
prevented wide use of VMs on typical microcontroller-
based IoT devices. In this paper, we explore the po-
tential of two minimal VM approaches on such low-
power hardware. We design rBPF, a register-based VM
based on extended Berkeley Packet Filters (eBPF).
We compare it with a stack-based VM based on We-
bAssembly (Wasm) adapted for embedded systems. We
implement prototypes of each VM, hosted in the IoT
operating system RIOT. We perform measurements on
commercial off-the-shelf IoT hardware. Unsurprisingly,
we observe that both Wasm and rBPF virtual machines
yield execution time and memory overhead, compared
to not using a VM. We show however that this execu-
tion time overhead is tolerable for low-throughput, low-
energy IoT devices. We further show that, while using
a VM based on Wasm entails doubling the memory
budget for a simple networked IoT application using a
6LoWPAN/CoAP stack, using a VM based on rBPF re-
quires only negligible memory overhead (less than 10%
more memory). rBPF is thus a promising approach to
host small software modules, isolated from OS software,
and updatable on-demand, over low-power networks.

I. Introduction

The availability of cheap low-power microcontrollers and
low-power radios is driving the emergence of the Internet
of Things (IoT). Typical microcontrollers based on archi-
tecture such as Arm Cortex-M are combined with various
sensors/actuators, and with a radio such as Bluetooth
Low-Energy, LoRa or IEEE 802.15.4, on a small Arduino-
like hardware module. This class of embedded hardware [1]
trades off limiting resources (slow processor, kilobytes of
RAM and Flash memory…), for small energy consumption
(in the milliwatt range) and a small price tag (a few
dollars).

In parallel, however, security concerns [2] grow with the
emergence of IoT. Cyberphysical chain reactions [3], or
extended functionality attacks [4] expand the traditional
attack surface of networked systems.

To mitigate such a variety of attacks, specific security
mechanisms are needed at all levels of the system. For
instance, on-going work defines new network protocols and

Acknowledgement: H2020 SPARTA partly funded this work.

workflows aiming to mitigate network- and some software-
based attack vectors [5].

Complementary mechanisms focus on isolating critical
software processes (e.g. access to specific sections of the
address space) from the rest of the application software
running on-board the microcontroller. This facilitates es-
tablishing a root of trust on the microcontroller, which can
bootstrap other security mechanisms.

Concretely, we consider two categories of use-cases:
1) Isolating high-level business logic, updatable on-

demand remotely over the low-power network. This
type of logic is rather long-lived, and has loose (non-
real-time) timing requirements.

2) Isolating debug/monitoring code snippets at low-
level, inserted and removed on-demand, remotely,
over the network. Comparatively, this type of logic is
short-lived and exhibits stricter timing requirements.

One approach is to modify the hardware architecture of
microcontrollers, adding specific hardware mechanisms to
guarantee such isolations. Such hardware functionalities
facilitate establishing a root of trust on the microcon-
troller. Prominent examples of this trend include Trust-
Zone on Arm Cortex-M architectures [6], Sanctum on
RISC-V architectures [7], Sancus2.0 on MSP430 architec-
tures [8].

However, changing hardware is both (i) more difficult
than upgrading software, and (ii) heavily dependent, by
nature, on a specific hardware architecture. Therefore,
a legitimate question which arises is: what software-only
equivalent can be achieved, to isolate the processes in our
use-cases?

II. Related Work
Different categories of software-based process isolation

techniques have been developed specifically for micro-
controllers. Small virtual machines are used to host and
isolate processes from other processes running on the
microcontroller. For example Darjeeling [9] is a subset of
the Java VM, modified to use a 16 bit architecture, de-
signed for 8- and 16-bit microcontrollers. Another example
is WebAssembly (Wasm [10]), a virtual machine (VM)
specification with a stack-based architecture, designed for
process isolation in Web browsers, which has recently been
ported to microcontrollers [11]. Beyond the low-power IoT

domain, tiny VMs are also used in other contexts for a
long time. For instance JavaCard [12] uses a small Java
VM running on smart cards. Elsewhere, in the Linux
ecosystem, eBPF [13], [14] enables a small VM hosting and
isolating debug and inspection code, in the Linux kernel,
at run-time.

Another type of approach uses scripted logic interpreters
to isolate some processes. For instance, prior work such
as [15] uses a small JavaScript run-time container, hosting
(updateable) business logic, interpreted on-board a micro-
controller, glued atop a real-time OS (RIOT).

Yet another category of solution uses OS-level mecha-
nisms for process isolation. For instance, Tock [16] is an OS
written in the Rust programming language, which offers
strong isolation between its kernel and application logic
processes. However, Tock requires hardware providing an
memory protection unit (MPU) (only some Cortex-M and
RISC-V hardware is supported so far).

The goal we pursue in this paper is to explore in practice
solutions which:

• require minimal memory footprint;
• do not depend on extra hardware-specific mechanisms

to protect memory;
• offer tolerable code execution speed slump;
• require small data transfer over-the-air when isolated

code is updated;
For this purpose, we explore approaches based on virtual

machines. More specifically, we consider two architectures
of VMs: a stack-based VM based on WebAssembly, and
a register-based VM based on eBPF, as described below.
The main contributions of this paper are:

• we design rBPF, an adaptation of eBPF providing a
software-based solution to isolate processes on low-
power microcontrollers;

• we provide the implementation of two open source
prototypes of VMs, using rBPF on one hand, and on
the other hand using Wasm, based on the WASM3
interpreter;

• we evaluate the performance of our rBPF prototype
compared to Wasm, via experiments running the VMs
on real microcontrollers;

• we show that rBPF offers promising perspectives in
terms of smaller memory footprint, we discuss secu-
rity guarantees and potential next steps.

III. Background
A. WebAssembly

WebAssembly (Wasm [10]) is a virtual instruction set
architecture, standardized by the World Wide Web Con-
sortium (W3C), primarily aimed at portable web appli-
cations. The instruction set allows for binaries small in
size, to minimize transfer time to the client. The sandbox
provided by implementations offers strong guarantees on
memory access. Both of these properties aim to ensure
security while requiring only limited memory footprint on
the platform target.

WASI

EMCC

C/C++

Rust

TinyGo

LLVM EmSDK

Wasm
Bytecode

Bindings IoT	Device

Intermediate
compilation

Sandboxed
execution

OS	facilities

VM	sandbox

Fig. 1. Wasm code development and execution workflow with the
WASM3 VM.

The WebAssembly VM uses both a stack and a flat heap
for memory storage. The stack is required by the archi-
tecture, and can be configured to any size. An interface
for allocating heap memory is provided by the standard.
Specification mandates memory allocations in chunks of
64 KiB (pages).

Toolchain & SDK. The full workflow for development
and execution of Wasm applications is depicted in Fig-
ure 1. Wasm uses the LLVM compiler: applications in
any language supported by LLVM are possible, such as
C/C++, D, Rust, and TinyGo among others. A standard-
ized interface is specified for host access in a POSIX-like
way is provided by the WASI standard [17].

Interpreter. Once the Wasm binary is created, it can
be transferred to the IoT device, on which it is interpreted
and executed, as shown in Figure 1. Several interpreters
exist, in this paper we use the WASM3 [11] interpreter,
which uses a two-stage approach: the loaded application
is first transpiled to an optimized executable, which then
can be executed in the interpreter.

B. Extended Berkeley Packet Filters
Berkeley Packet Filter (BPF [14]) is a small in-kernel

VM available on most Unix-like operating systems. Its
original purpose was network packet filtering, for example:
only pass to userspace packets matching a set of require-
ments. Within the Linux kernel the VM is extended (to
eBPF) to allow for multiple non-network related purposes.
eBPF provides a small and efficient facility for running
custom code inside the kernel, hooking into various sub-
systems.

The state-of-the-art eBPF architecture is 64-bit register
based VM with a fixed stack. The stack itself is specified as
fixed at 512 B. A heap is not contained in the specification.
As an alternative, the Linux kernel provides an interface to
key-value maps for persistent storage between invocations.
The limited stack size and absence of a heap put only
minimal requirements on the RAM a platform has to
provide for the VM.

The VM itself is inherently suitable for isolating the op-
erating system from the virtualized application: all mem-
ory access, including to the stack, happen via load and
store instructions. Moreover, branch and jump instruc-
tions are also limited, the application has no access to the
program counter and a jump is always direct and relative
to current program counter. The VM does not provide
facilities to directly write the program counter. Both of

LLVM

C/C++

Rust

TinyGo

BPF
Bytecode

OS	facilities
bindings

IoT	Device

Sandboxed
execution

OS	facilities

VM	sandbox

Fig. 2. rBPF code development and execution workflow.

these potential attack surfaces can be implemented with
the necessary checks in place to limit access and execution.

Interfacing with the operating system facilities can be
done by providing the necessary bindings on the device.

Comparing eBPF to WebAssembly. As with We-
bAssembly, eBPF makes use of the LLVM toolchain for
compilation (see Figure 2) thus any language supported
by LLVM can be used and compiled to bytecode. However,
there are differences in terms of architecture, and in
terms of memory model. The architecture of WebAssembly
reduces the size of instructions significantly. On the other
hand, eBPF instructions are always 64 bit in size, filled
with zero bits where a field is not used. The stack-
based with heap memory approach from WebAssembly
put significant requirements on the available RAM. On
the other hand, with eBPF, the few registers combined
with the limited stack put only minimal pressure on the
available RAM.

IV. rBPF Design
The rBPF VM is a variant of the eBPF VM, designed

to be ISA compatible with eBPF. The main difference
between rBPF and eBPF lies in the bindings provided for
access to the operating system facilities and the events
by which execution is triggered. In this paper, we chose
RIOT [18] as OS to host our VM prototype, but this choice
is arbitrary: our approach could apply to another OS in
the same category.

VM integration in the OS. The rBPF virtual ma-
chine is integrated in RIOT as shown in Figure 3. Within
the operating system the VM is scheduled as a regular
thread, restricted by the scheduler to the configured run
priority. The VM does not interfere with real-time thread
execution on the operating system. However, running
real-time constrained applications inside the VM is not
suitable.

As shown in Figure 3, multiple OS event sources can
trigger the execution of an application. For example a
request received on the CoAP server or packets passing
through the network stack. Each of these event types can
trigger a different rBPF application from the application
store, configured by the device administrator. Similar to
eBPF the VM supports both an argument passed to the
application and a return code from the application back to
the calling event. This can be used to communicate vital
execution context with the application and pass a return
value back to the initiator. Further integration with the

bpf_execute()

radio

network	stack CoAP	stack

hook(firewall) hook(coap)

Value	Store

Application	Store

Admin Store

Script
fetch

Isolated	sandbox

Fig. 3. VM integration & sandboxed execution of rBPF in host OS.

ALU

Fetch	&	Decode

Script

BPF

Registers

Stack

...

Program
counter

Load
Store
ACL

		Branch

Check

rBPF	Sandbox

Host
memory

Fig. 4. rBPF execution and memory architecture

operating system is available through function bindings,
including access to facilities relevant to IoT applications
such as sensor values and network packet creation. With
these capabilities the VM application, while isolated from
the operating system, it retains enough flexibility to host
business logic application or simple measure and debug
applications.

The application running inside the VM is expected to be
short-lived, updating an intermediate result or formatting
a response to a request. To provide persistent data between
these short-lived invocations a key-value store is available.
An application can read and write values to both a global
and a per-script local storage. Counters or aggregate
sensor values can be stored for retrieval in a subsequent
execution or queried from outside the VM by the operating
system.

VM execution sandboxing. The VM is based on an
iterative loop design, iterating over the application instruc-
tions depicted in Figure 4, which shows the interaction
between the instructions, sandbox guards, and the host
address space. Both the registers and the application stack
reside in the memory of the host. Depending on the in-
struction to be executed, different protection mechanisms
are activated. Two main protection mechanism are in place
to isolate the code executed in the VM.

First, the host address space is isolated from the sand-
box by access policies loaded in the VM. Every memory
access, including stack reads and writes, are subjected

these access policy rules. Different address space sections
can be configured to allow reads, writes or both by the
caller of the VM. This offers minimal overhead for memory
access while providing the guarantees required for the
sandbox.

Second, protections on the code executed ensure the
VM does not start executing code outside the supplied
application, such as gadgets deployed by an attacker.
The mechanism works by guarding the branch and jump
instructions, ensuring that the destination is not outside
the application address space. As the eBPF ISA imple-
mented does not support indirect jump instructions and no
program counter register is available, the only mechanism
to modify the virtual program counter is via the already
guarded direct branch and jump instructions. While the
lack of an indirect jump instruction does somewhat limit
the flexibility of the applications, it ensures that all jump
destinations are known before executing the application,
making a preflight validation of all jump instructions a
viable option.

V. Experimental setup
We carry out our measurements on popular, commercial

off-the-shelf IoT hardware: a Nordic nRF52840 Develop-
ment Kit, which provides a typical microcontroller (Arm
Cortex-M4) with 256 KB RAM, 1 MB Flash, and a
2.4 GHz radio transceiver compatible both with IEEE
802.15.4, and Bluetooth Low-Energy. This hardware is also
available for reproduceability on open access testbeds such
as IoT-Lab [19].

On this platform, we perform two types of benchmarks.
First, we perform embedded computing hosted in the VM,
to get an idea of basic VM performance. Then, we perform
further benchmarks involving IoT networking capabilities
used from within the VM.

A. Computing Benchmark Setup
First, we benchmark a setup consisting of a Fletcher32

checksum algorithm [20]. The Fletcher32 checksum algo-
rithm requires a mix of mathematical operations memory
reads and branches, containing a loop over input data.
Benchmark results consist of the impact of the VM on the
operating system in the additional memory required to
include it. For the VMs themselves, the execution speed
and the size of compiled applications loaded into the VM
is measured.

B. Networked Benchmark Setup
Next, we construct a setup involving a simple IoT

networked application as case study. The VM hosts high-
level logic, and this loaded application is updateable over
the network. The functionality mimics that studied in
prior work [15] using small JavaScript run-time containers
hosting application code on top of RIOT. The hosted
logic has access to both the CoAP stack and the high-
level sensor interface (SAUL) provided by RIOT [18].

The VM execution is triggered by a CoAP request and
the operating system expects a formatted CoAP response
payload or an error code from the application loaded in
the VM. The goal is to load an application into the VM
that, when triggered by a CoAP request, reads a sensor
value and constructs a full CoAP payload as response to
the requester.

VI. Experimental Measurements
Using our experimental setup, we carried out an initial

set of measurements comparing rBPF and WASM3. With
each prototype, we measured the performance of VM logic
when it hosts the same Fletcher32 checksum. While this
example is specific and artificial, it is a good guinea pig to
get an idea of what to expect in general. The Fletcher32
checksum algorithm requires a mix of mathematical oper-
ations memory reads and branches, containing a loop over
input data.

First and foremost as visible in Table I, we observe that
the Flash memory footprint of the interpreter WASM3 is
15 times bigger than the rBPF interpreter. To get a per-
spective: relatively to the whole firmware image (assum-
ing simple business logic and a CoAP/UDP/6LoWPAN
network stack) adding an rBPF VM represents negligible
Flash memory overhead (less than 10% increase), whereas
adding a Wasm VM more than doubles the size of the
firmware image.

ROM size RAM size
WASM3 Interpreter 64 KiB 85 KiB
rBPF Interpreter 4 364 B 660 B
Host OS Firmware (without VM) 52 760 B 14 856 B

TABLE I
Memory requirements for WASM3 and rBPF interpreters.

Second, we give an initial measure of the data that needs
transfer over the network when modular software update
is performed (when VM logic is updated). With the results
as in Table II, we observe that Wasm script size seem
somewhat smaller than rBPF script size (approximately
30% less in this case). The native C compilation shows the
size of the code if the library is compiled into the device
firmware itself and is not network updateable.

code size time
Native C 74 B 27 µs
WASM3 322 B 980 µs
rBPF 456 B 1 923 µs

TABLE II
Size and performance of different targets for the

fletcher32 algorithm

Third, we compare the penalty in terms of execution
time for VM logic. We measured the performance of
Fletcher32 computation on a sample input string of 361 B,
with each VM. We observe that execution is longer with

the rBPF VM, than with the Wasm VM (2 times longer).
Both VMs perform significantly slower than native exe-
cution, with WASM3 approximately 35 times slower and
rBPF around 70 times slower. While this relative overhead
is significant, the absolute overhead is not significant for
hosted logic that is not computation-intensive. Furthe-
more, in terms of instructions, rBPF still enables 1.3M
instructions per seconds – enough for a low-power IoT
device, which is generally not required to process ultra-
high data throughput.

Based on these preliminary measurements, we can con-
clude that rBPF seems to offer acceptable performance
in general, and in particular a very substantial advantage
in terms of Flash memory footprint compared to Wasm.
Hence, a VM approach based on rBPF seemed promising,
and we have thus fleshed out our prototype further, to per-
form additional experiments with IoT use-cases involving
a CoAP network stack, which next we report on.

A. rBPF with Logic involving IoT Networking
We here reproduce a use-case described in prior

work [15], whereby high-level logic involving CoAP net-
working is executed by the VM. More precisely, we evalu-
ated the performance the hosted code shown in Listing 1.
The application requests a measurement value from the
first sensor and stores the value in a CoAP response.
The functions called from the application are provided as
bindings by the host operating system and exposed to the
VM. We implemented the CoAP bindings and as well as
the bindings to the high-level sensor interface (SAUL) as
depicted in Figure 3.

int coap_resp(bpf_coap_ctx_t *gcoap)
{

/* Find first sensor */
bpf_saul_reg_t *sens = bpf_saul_reg_find_nth(1);
phydat_t m; /* measurement value */

if (!sens ||
(bpf_saul_reg_read(sens, &m) < 0)) {

return ERROR_COAP_INTERNAL_SERVER;
}

/* Format the CoAP Packet */
bpf_gcoap_resp_init(gcoap, COAP_CODE_CONTENT);
bpf_coap_add_format(gcoap, 0);
ssize_t pdu_len = bpf_coap_opt_finish(gcoap,

COAP_OPT_FINISH_PAYLOAD);

/* Add the sensor as payload */
uint8_t *payload = bpf_coap_get_pdu(gcoap);
pdu_len += bpf_fmt_s16_dfp(payload, m.val[0],

m.scale);
return pdu_len;

}

Listing 1. Example networked sensor read application

When compiled, the size of the bytecode is 296 B.
The overhead of the full script execution, including the
execution of the function calls, is 94 µs. The additional
overhead caused by the VM is negligible, when compared
to network latencies of several milliseconds.

The size of the full firmware image is 69 KiB, including
the rBPF interpreter. While the Flash memory required
for the core rBPF interpreter is identical to the previous
example (see Table I), there is however an 80 B increase in
Flash size due to the additional bindings to the CoAP and
sensor interfaces. The RAM requirements are increased by
16 B for an additional memory access region, used to allow
access to the CoAP packet.

Here, as an additional point of comparison, we can refer
to similar logic hosted in a small embedded JavaScript
run-time container with RIOT bindings, studied and
measured in [15] on similar hardware (a Arm Cortex-
M microcontroller). These measurements show that sim-
ilar logic requires 156 KiB for the JavaScript engine, on
top of the 59 KiB used by RIOT, and the hosted code
(script) size which was around 1 KiB. Note furthermore
that these JavaScript containers did not specific memory
isolation guarantees, as does rBPF. We can thus conclude
that rBPF offers much better prospects than embedded
JavaScript run-time containers too, in terms of memory
requirements, hosted logic size (and network traffic over-
head required to transmit VM updates).

VII. Discussion & Next Steps
a) Inherent Limitations with a VM: By construction,

a VM causes execution overhead, and thus increased power
consumption, for logic executed within the VM. Measuring
the full impact of the VM on power consumption is a
complex task. However, this impact is mitigated by two
factors. On one hand, depending on the characteristics
of the logic executed in the VM, this overhead may be
negligible. Here, we gear the VM towards hosting simple
scripts, implementing short decision steps rather than
lengthy bulk data processing. In such cases, the additional
power consumed is not substantial. On the other hand,
smaller script size decreases drastically the energy needed
otherwise to transfer software updates – especially com-
pared to an alternative such as firmware updates, as shown
in [15].

b) Decreasing Wasm RAM usage: WebAssembly has
large RAM requirements: 64 KiB memory pages incre-
ment is big for microcontrollers. The WASM3 interpreter
also adds an intermediate compile step, which increases
speed, and collaterally RAM usage, by another 10 KiB.
We thus cannot conclude just yet on how useful Wasm
really is for low-power IoT. An adaptation skipping this
step and/or using smaller memory pages increments could
reduce RAM requirements. Next steps here could also
include trying out other Wasm interpreters, such as for
instance Wasm-micro-runtime [21] and WARDuino [22].

c) Improving rBPF execution time overhead: If exe-
cution time overhead is an issue, an option is to design
from scratch a solution going beyond software-only, using
hardware MPU or even an MMU as base. Another option
is adding an intermediate transpilation technique to rBPF
(similar to what is used by WASM3) translating the raw

eBPF instructions to a format more suitable for direct con-
sumption on the system. A more advanced step would be
to translate these, ahead-of-time, into native instructions
on the embedded device.

d) Decreasing rBPF script size overhead: The rBPF
VM implementation is designed as a secure sandbox for
running untrusted code on small embedded devices while
adhering to the already defined eBPF ISA. It can be
seen from the application script sizes that the current
implementation are relative big compared to applications
compiled to WebAssembly. As the eBPF instructions are
fixed in size and can contain a lot of unused bit fields
depending on the exact instruction, compressing them
with well known algorithms can solve this downside. Ini-
tial measurements show that Heatshrink [23], an LZSS-
based [24] compression library suitable for small embedded
systems, can reduce the application size by 60 % depend-
ing on the application surpassing similar WebAssembly
applications.

e) Extending rBPF sandboxing guarantees: The cur-
rent use case of rBPF targets execution of small-sized
business logic and debug applications. However the current
VM design does not limit the actual execution time of the
application: a virtualised application can keep the system
busy without limitations, possibly draining the battery of
the IoT device. A potential next step could be to cap the
CPU time which a single invocation of the virtual machine
can occupy.

VIII. Conclusion
In this paper we have designed, implemented and stud-

ied experimentally two minimal virtual machines tar-
geting low-power, microcontroller-based IoT devices. We
designed rBPF, a register-based VM hosted in RIOT, and
an interpreter, based on Linux’s extended Berkeley Packet
Filters. We compared its performance, experimentally on
commercial IoT hardware, to an approach hosting and
isolating logic in an embedded WebAssembly virtual ma-
chine. We show that, compared to WebAssembly and to
prior work on small run-time containers for interpreted
logic, rBPF is a promising approach to host and isolate
small software modules, yielding acceptable overhead in
execution time, and very small memory overhead (approx.
10%) for a typical IoT application.

References
[1] C. Bormann et al., RFC 7228: Terminology for con-

strained node networks, IETF Request For Comments,
2014.

[2] N. Neshenko et al., “Demystifying IoT Security: an Ex-
haustive Survey on IoT Vulnerabilities and a First Em-
pirical Look on Internet-scale IoT Exploitations,” IEEE
Communications Surveys & Tutorials, 2019.

[3] S. Soltan, P. Mittal, and H. V. Poor, “BlackIoT: IoT
Botnet of high wattage devices can disrupt the power
grid,” in Proc. USENIX Security, vol. 18, 2018.

[4] E. Ronen and A. Shamir, “Extended functionality at-
tacks on IoT devices: The case of smart lights,” in IEEE
EuroS&P, 2016.

[5] H. Tschofenig and E. Baccelli, “Cyberphysical security
for the masses: A survey of the internet protocol suite
for internet of things security,” IEEE Security & Privacy,
vol. 17, no. 5, pp. 47–57, 2019.

[6] S. Pinto and N. Santos, “Demystifying Arm TrustZone:
A Comprehensive Survey,” ACM Computing Surveys
(CSUR), vol. 51, no. 6, pp. 1–36, 2019.

[7] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Min-
imal hardware extensions for strong software isolation,”
in 25th USENIX Security Symposium.

[8] J. Noorman et al., “Sancus 2.0: A low-cost security
architecture for iot devices,” ACM TOPS, 2017.

[9] N. Brouwers et al., “Darjeeling, a feature-rich vm for the
resource poor,” in ACM SenSys, 2009.

[10] A. Haas et al., “Bringing the web up to speed with
WebAssembly,” in Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, 2017, pp. 185–200.

[11] V. Shymanskyy. (Oct. 2020). “WASM3: A high Perfor-
mance WebAssembly Interpreter Written in C,” [Online].
Available: https://github.com/wasm3/wasm3.

[12] S. Identity, “The impact of java card technology yester-
day and tomorrow: Safran identity & security celebrates
20 years with the java card forum. press release,” 2018.

[13] S. McCanne and V. Jacobson, “The BSD Packet Filter:
A New Architecture for User-level Packet Capture,” in
USENIX, vol. 46, 1993.

[14] M. Fleming, “A Thorough Introduction to eBPF,” Linux
Weekly News, 2017.

[15] E. Baccelli et al., “Scripting Over-The-Air: Towards Con-
tainers on Low-end Devices in the Internet of Things,”
in IEEE PerCom, Mar. 2018.

[16] A. Levy et al., “Multiprogramming a 64kb computer
safely and efficiently,” in ACM SOSP, 2017.

[17] W3C. (Oct. 2020). “WASI: libc Implementation for We-
bAssembly,” [Online]. Available: https : //github . com /
WebAssembly/wasi-libc.

[18] E. Baccelli et al., “RIOT: an Open Source Operating
System for Low-end Embedded Devices in the IoT,”
IEEE Internet of Things Journal, 2018.

[19] C. Adjih et al., “FIT IoT-LAB: A Large Scale Open
Experimental IoT Testbed,” in IEEE WF-IoT, 2015.

[20] J. Fletcher, “An arithmetic checksum for serial transmis-
sions,” IEEE Transactions on Communications, 1982.

[21] Bytecode Alliance. (Oct. 2020). “WebAssembly Micro
Runtime (WAMR),” [Online]. Available: https://github.
com/bytecodealliance/wasm-micro-runtime.

[22] R. Gurdeep Singh and C. Scholliers, “Warduino: A dy-
namic webassembly virtual machine for programming
microcontrollers,” in ACM SIGPLAN, 2019.

[23] Atomic Object. (Dec. 2015). “Heatshrink: data compres-
sion library for embedded/real-time systems,” [Online].
Available: https://github.com/atomicobject/heatshrink.

[24] J. A. Storer and T. G. Szymanski, “Data compression via
textual substitution,” vol. 29, no. 4, pp. 928–951, Oct.
1982. doi: 10.1145/322344.322346.

https://github.com/wasm3/wasm3
https://github.com/WebAssembly/wasi-libc
https://github.com/WebAssembly/wasi-libc
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/atomicobject/heatshrink
https://doi.org/10.1145/322344.322346

	Introduction
	Related Work
	Background
	WebAssembly
	Extended Berkeley Packet Filters

	rBPF Design
	Experimental setup
	Computing Benchmark Setup
	Networked Benchmark Setup

	Experimental Measurements
	rBPF with Logic involving IoT Networking

	Discussion & Next Steps
	Conclusion

