
HAL Id: hal-03021960
https://hal.archives-ouvertes.fr/hal-03021960

Submitted on 25 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stackless Processing of Streamed Trees
Corentin Barloy, Filip Murlak, Charles Paperman

To cite this version:
Corentin Barloy, Filip Murlak, Charles Paperman. Stackless Processing of Streamed Trees.
PODS 2021 - Symposium on Principles of Database Systems, Jun 2021, Xi’an, Shaanx, China.
�10.4230/LIPIcs�. �hal-03021960�

https://hal.archives-ouvertes.fr/hal-03021960
https://hal.archives-ouvertes.fr

Stackless Processing of Streamed Trees
Corentin Barloy
ENS de Paris, France
cbarloy@clipper.ens.fr

Filip Murlak
University of Warsaw, Poland
fmurlak@mimuw.edu.pl

Charles Paperman
Université de Lille & INRIA, France
charles.paperman@univ-lille.fr

Abstract
Processing tree-structured data in the streaming model is a challenge: capturing regular properties

of streamed trees by means of a stack is costly in memory, but falling back to finite-state automata
drastically limits the computational power. We propose an intermediate stackless model based on
register automata equipped with a single counter, used to maintain the current depth in the tree.
We explore the power of this model to validate and query streamed trees. Our main result is an
effective characterization of regular path queries (RPQs) that can be evaluated stacklessly—with
and without registers. In particular, we confirm the conjectured characterization of tree languages
defined by DTDs that are recognizable without registers, by Segoufin and Vianu (2002), in the
special case of tree languages defined by means of an RPQ.

2012 ACM Subject Classification Theory of computation → Automata extensions; Theory of
computation → Streaming, sublinear and near linear time algorithms; Theory of computation →
Database query processing and optimization (theory)

Keywords and phrases streaming, querying, XML, JSON, automata, weak validation

Digital Object Identifier 10.4230/LIPIcs...

Funding Filip Murlak: This work was supported by Poland’s National Science Centre grant
2018/30/E/ST6/00042.

1 Introduction

While graph is the new black, tree-structured data has not vanished. It is used both as a
serialization format (Wikipedia, Wikidata, DBLP) and as an exchange format (WSDL and
SOAP rely on XML, the more recent GraphQL prefers JSON). Querying and validation of
tree-structured data continue to be both vital and challenging tasks in data management.
Particularly so, when documents grow too large to fit in memory, and it is time to switch
to streaming; that is, to read the document sequentially, maintaining a concise internal
representation sufficient for the realized task.

According to Palkar et al. [18], exploratory big-data applications running over data in a
semi-structured format, like JSON, can spend 80-90% of their execution time simply parsing
the data. Performance improvements often rely on clever ways to reduce the cost of parsing.
In systems research, two main strategies have been proposed. The first one relies on SAX
(Simple API for XML) parsers: it outsources parsing to the API and deals only with the
resulting events [11, 26]. This allows to factor out the cost of parsing, and may lead to
significant performance gains when multiple queries are executed over the same document [26].
The second approach is to perform parsing and query execution simultaneously, applying
push-down automata as the computation model [17], in the hope that the acquired semantic

© C. Barloy, F. Murlak and C. Paperman;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

orcid...
mailto:cbarloy@clipper.ens.fr
http://orcid.org/0000-0003-0989-3717
mailto:fmurlak@mimuw.edu.pl
http://orcid.org/0000-0002-6658-5238
mailto:charles.paperman@univ-lille.fr
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Stackless

information would help reduce the cost of parsing. When a single query is executed over a
huge document, this may also be highly beneficial [6].

The theoretical take on alleviating the cost of parsing is more radical: since it is so costly,
let us assume that it has been already done for us and the input stream is guaranteed to
be a well-formed document. This may be the case, for instance, if we trust the source of
the document or if we have already processed the document for other purposes. Can this
assumption help process the document more efficiently? This setting was introduced as weak
validation in the seminal work of Segoufin and Vianu [25] on validating a streamed XML
document against a DTD by means of a finite automaton. Despite the significant progress
made in the initial paper and in the follow-up work [1, 5, 24], the general problem of deciding
whether weak validation against a given regular tree language is feasible, remains open.
Incidentally, this question is a special—but disturbingly generic—case of an undecidable
separation problem [13].

A recent trend in data processing is to use hardware acceleration to exploit local parallelism.
Most modern CPU architectures offer SIMD (single instruction multiple data) instructions,
allowing to perform the same operation on multiple data points in one CPU cycle, leading
to what is known as the vectorization of computation. Vectorization in used routinely in
data-intensive applications like multimedia processing [23] or deep learning [8, 27], and is
finding its way to data management, particularly in the sub-field of in-memory databases
[32, 22]. Relevant examples from a related field are the performant regular expression engine
Hyperscan [29] and the competitive engine of the RUST language [10], both relying crucially
on vectorization. In the context of streaming processing of tree-structured data, an early
work on parabix by Cameron et al. studies the use of SIMD instructions to accelerate XML
parsing [4]. More recently, Langdale and Lemire illustrate how the performance of JSON
parsers could be vastly improved by using vectorization [14]. Their experiments confirm
that the cost of parsing is a large fraction of the total cost of query execution, matching
the performance loss with respect to regular expression matching. To get a better feeling
of the room for improvement, let us look at some numbers: the experiments had different
setups, but the orders of magnitude are still of interest. The standard C function memchr
scans memory to find the first occurrence of a given byte; it has been hand-optimized for
various architectures and can be assumed to display the best performance one could hope
for in a streaming task. On a standard laptop computer, it easily reaches 20Gb/s. The
Hyperscan regular expression engine reaches performance of 10Gb/s [29]. Langdale et al. get
up to 3Gb/s when parsing JSON files and selecting some nodes, but selecting alone reaches
10Gb/s [14]. Palkar et al. explicitly put the blame on the incompatibility of pushdown
automata and vectorization [18].

To some extent this is explained by theory. An abstract model of exploiting local
parallelism in streaming algorithms was proposed in [15]: the stream is read in blocks,
each block is processed by a fixed boolean circuit, and the result is fed back to the circuit
together with the next block of the stream. The degree of local parallelism of a language is
measured by the complexity of the circuit needed to recognize the language in the above
model: the higher the complexity, the less local parallelism. As shown in the paper, the
degree of local parallelism of regular languages matches their classical circuit complexity,
and it is plausible that the situation is similar for larger classes of languages. Assuming this
is the case, successful vectorization of XML or JSON parsers might be more tricky than
for regular expression engines: Dyck languages (well-formed multi-bracket expressions) are
TC0-complete [2], but while regular languages may have even higher complexity, the ones
appearing in benchmarks are typically much simpler (for instance, all examples in [10] and

Barloy, Murlak and Paperman XX:3

[31] are in AC0).
All this evidences that stack-based computation is troublesome. At the same time

falling back to finite automata severely limits expressivity, as revealed by the necessary
conditions discovered by Segoufin and Vianu [25]. As a middle ground, we propose to relax
the computational model just so. We allow one counter for maintaining the current depth in
the document, and registers for storing the current depth to be compared with the depths of
later tags. In the resulting model, dubbed depth-register automaton, transitions are performed
at a very low CPU cost with almost no external memory access. The latter depends on the
number of registers; if the number is low enough, it is even possible to keep all the values
within the CPU’s registers and not use external memory at all. Unlike pushdown automata,
the model appears amenable to vectorization and may be hoped to achieve high throughputs,
but a systematic study of this aspect is a matter of future work.

We apply the proposed setting (predominantly) to querying, which—to the best of our
knowledge—has not been studied before from this angle. After a preliminary expressivity
study, we embark on characterizing node-selecting queries that can be realized in our model.
Our first main result is an effective characterization of regular path queries (RPQs) that can
be realized with depth-register automata. As a by-product, we reveal a connection with the
languages of trees in which some (resp. each) leaf is selected by the RPQ. Our second main
result is an analogous characterization for finite automata. The conditions for the unary
query and the two associated tree languages do not conincide any more, but are elegantly
related: the RPQ can be realized iff both languages can be (weakly) recognized. The setting
of the second main result is exactly that of Segoufin and Vianu, and it allows to make some
progress towards solving the original weak validation problem. We develop our results for the
XML encoding of trees, but they adapt smoothly to the less verbose JSON-style encoding.

Organization of the paper.

Section 2 introduces the computation model and gives a preliminary expressivity study.
Section 3 establishes the characterization theorems. Section 4 explores the connection with
the weak validation problem, explains the adaptation to JSON-style encoding, and points
out key open problems.

2 Computational model

We model tree-structured data as ordered unranked finite trees whose nodes are labelled with
symbols from a finite alphabet Γ. We refer to them simply as trees over Γ. An immediate
subtree of tree T is a subtree rooted at a child of the root of T . A tree language over Γ is a set
of trees over Γ. If L is a language of trees (or words) over Γ, we write Lc for the complement
of this language.

The markup encoding represents trees over Γ as words over the alphabet Γ ∪ Γ̄, where
Γ̄ =

{
ā
∣∣ a ∈ Γ

}
. In the context of the encoding, the elements of Γ and Γ̄ are referred to as

opening and closing tags, respectively. If T is a tree whose root is labelled with a and whose
immediate subtrees are T1, T2, . . . , Tn, then

〈T 〉 = a · 〈T1〉 · 〈T2〉 · · · · · 〈Tn〉 · ā .

For example, aaācc̄ā encodes the tree with a-labelled root whose first child has label a and
second child has label c. If L is a tree language over Γ, we let 〈L〉 =

{
〈T 〉

∣∣ T ∈ L} ⊆ (Γ∪ Γ̄)∗.

XX:4 Stackless

2.1 Depth-register automata
Under the markup encoding, finite automata are unable to check even the simplest properties
of the input document: for instance, determining if one marked node is a child, descendant,
or sibling of another marked node requires a stack—or at least a counter, used to compare
depths of nodes. Realizing multiple such tasks simultaneously seems to lead to multi-counter
automata, which are notoriously hard to analyze. We take a different path: we allow only
one counter, used exclusively to maintain the current depth in the tree, but additionally
equip the automaton with a bounded number of registers, which can be used to store depths
of critical nodes, and compare them later with the current depth. To keep our automata
executable efficiently, we assume that they are deterministic. Thus we arrive at deterministic
input-driven 1-counter automata with registers. ‘Input-driven’ is the standard terminology
for counters or stacks that evolve independently of the state [28, 7]. Here it means that the
counter increases by one with each opening tag read, and decreases by one with each closing
tag read; such automata (without registers) are also called visibly counter automata [1].
Importantly, the only tests allowed on the values stored in registers are order comparisons
with the current depth. We shall refer to such devices as depth-register automata. A formal
definition follows.

I Definition 1. A depth-register automaton A is a tuple

(Γ, Q, qinit , F,Ξ, δ) ,

where Γ is a finite alphabet, Q is a finite set of states, qinit ∈ Q is the initial state, F ⊆ Q is
the set of accepting (final) states, Ξ is a finite set of registers, and

δ : Q× (Γ ∪ Γ̄)× 2Ξ × 2Ξ → 2Ξ ×Q

is the transition function.
A configuration of A is a tuple (q, d, η) ∈ Q × Z × ZΞ, whose components specify the

state, the current depth, and the values stored in the registers, respectively. We call a
configuration (q, d, η) accepting if q ∈ F . The initial configuration is cinit = (qinit , 0, ηinit)
where ηinit(ξ) = 0 for all ξ ∈ Ξ.

The run of A over a word a1a2 . . . an ∈ (Γ ∪ Γ̄)∗ from a configuration (q0, d0, η0) is the
unique sequence of configurations

(q0, d0, η0)(q1, d1, η1) . . . (qn, dn, ηn) ∈
(
Q× Z× ZΞ)∗

such that for each i ∈ {1, 2, . . . , n}, there exists Yi ⊆ Ξ such that

di =
{
di−1 + 1 if ai ∈ Γ ,
di−1 − 1 if ai ∈ Γ̄ ;

δ(qi−1, ai, X
≤
i , X

≥
i) =

(
Yi, qi

)
where

X≤i = {ξ ∈ Ξ
∣∣ ηi−1(ξ) ≤ di} ,

X≥i = {ξ ∈ Ξ
∣∣ ηi−1(ξ) ≥ di} ;

for each ξ ∈ Ξ,

ηi(ξ) =
{
di if ξ ∈ Yi ,
ηi−1(ξ) if ξ /∈ Yi .

Barloy, Murlak and Paperman XX:5

We write c · w for the last configuration of the run on w from c. If c · w = c′, we also write
c
w−→ c′. By the run of A on w we understand the run on w from cinit. We say that w is

accepted by A if cinit · w is accepting. The language recognized by A is the set of words
accepted by A.

Depth-register automata without registers (that is, with Ξ = ∅) are a notational variant
of deterministic finite automata over the alphabet Γ ∪ Γ̄. For such automata we streamline
the notation introduced in Definition 1 by dropping the ingredients associated with Ξ. In
particular, we use states instead of configurations, and write q · w = q′ and q w−→ q′. The
same notation will be applied to finite automata over Γ, not only over Γ ∪ Γ̄.

We shall give examples of depth-register automata in Section 2.2 (Examples 2, 5 and 6),
once we have made precise how they are used to recognize tree languages.

To conclude the discussion of the automata model, let us point out that the kind of
tests allowed on registers is a natural parameter of the definition. For instance, one could
allow testing if the current depth differs from the content of a given register by a specified
constant; this kind of test can be simulated in our model at the cost of using additional
registers. An interesting proper extension is to allow semilinear conditions, like testing
equality modulo a specified constant. Finally, forsaking any hope of decidability of emptiness
(which might be tolerable), one could go up to full arithmetics. Owing to their determinizm,
depth-register automata in all these variants would be efficiently executable in practice, using
only a constant number of variables (possibly just CPU registers). Nevertheless, in this first
study we stick to the minimalist approach.

2.2 Recognizing streamed tree languages

A tree language L over Γ is recognized (under the markup encoding) by an automaton A over
the alphabet Γ ∪ Γ̄ if for each tree t over Γ it holds that A accepts 〈t〉 iff t ∈ L. Equivalently,
L is recognized by A if the language of words accepted by A separates 〈L〉 from 〈Lc〉. A tree
language is stackless if it is recognized by a depth-register automaton, and registerless if it is
recognized by a finite automaton.

Note that the automaton is allowed to accept or reject invalid encodings; that is, elements
of
(
Γ ∪ Γ̄

)∗ \ (〈L〉 ∪ 〈Lc〉
)
. Requiring that all invalid encodings be rejected would lead to

〈L〉 ⊆ (Γ ∪ Γ̄)∗ being recognized by a finite (resp. depth-register) automaton, which is a
much stronger property. In particular, the assumption that 〈L〉 is recognized by a finite
automaton is prohibitively strong, as it implies that the depth of trees in L is bounded [25].
In contrast, a registerless tree language may easily contain trees of unbounded depth: a very
simple example is the set of trees with at least one a-labelled node, which can be recognized
(under the markup encoding) by a finite automaton that moves to an all-accepting sink state
upon reading the opening tag a for the first time.

Registerless tree languages are regular, because a tree automaton can simulate the run of
a finite automaton over the encoding of the tree. Stackless tree languages, in contrast, need
not be regular.

I Example 2. The set of trees over the alphabet {a, b} in which all a-labelled nodes are
at the same depth, can be recognized by a depth-register automaton. The first time the
automaton sees a, it stores the current depth in its only register. Then, every time it sees
a it checks if the current depth is equal to the stored value, and if it is not, it moves to a
rejecting sink state.

XX:6 Stackless

Regularity can be enforced by applying a stack-like policy of using registers. We call a
depth-register automaton restricted if each transition overwrites all stored values strictly
greater than the current depth; that is, if δ(p, a,X≤, X≥) = (Y, q), then X≥ \X≤ ⊆ Y .

I Proposition 3. Restricted depth-register automata recognize regular tree languages.

We conjecture that restricted depth-register automata recognize all regular stackless tree
languages, but it is conceivable that they do not. This is why we work with the unrestricted
model and prove (potentially) stronger inexpressibility results. We stress, however, that all
depth-register automata we construct are restricted. In particular, the characterization in
Theorem 14 is identical for the restricted model, backing up the conjecture.

Regardless of the restriction, stackless tree languages retein the usual closure properties
or regular languages.

I Lemma 4. The classes of registerless and stackless tree languages are both closed under
intersection, union, and complementation.

How far do stackless tree languages go beyond registerless? As first examples, let us see
how depth-register automata can deal with sequences of siblings and the descendent relation.

I Example 5. Consider a regular language L ⊆ Γ∗ and the set HL of trees over Γ such that
the sequence of labels read from the children of the root forms a word in L. Depending on L,
the tree language HL may be registerless or not. For instance, for L = Γ∗aΓ∗, HL is not
registerless, because a finite automaton cannot determine whether the current tag with label
a belongs to a child of the root. This can be shown easily by pumping, but it also follows
from our general characterization result, Theorem 15 (1), applied to the set of trees that
contain a branch labelled by a word from ΓaΓ∗. In contrast, HL is stackless for all regular
L. Indeed, after reading the first tag (which must be an opening tag in a valid encoding),
the automaton stores the current depth (which is 1) in its only register, and then simulates
the finite automaton recognizing L over all closing tags for which the current depth is equal
to the value stored in the register. This is correct, because in each valid encoding all closing
tags with current depth 1 belong to the children of the root.

I Example 6. Consider the set of trees over the alphabet {a, b, c} where the first a-labelled
node (in the document order) has a b-labelled descendent. To recognize this language, the
automaton should read the input word until it sees a, load the current depth to its only
register, and accept iff it sees the letter b before the current depth drops strictly below the
stored value (this will indicate, that the corresponding closing tag has been read). Now,
consider the set of trees over {a, b, c} where some a-labelled node has a b-labelled descendant.
It suffices to test this property for minimal a-labelled nodes (that is, those without a-labelled
ancestors): if a node has a b-labelled descendent, so do all its ancestors. Hence, to recognize
the described language it suffices to run the automaton described above in a loop, returning
to the initial state whenever the current depth drops strictly below the stored value, until it
accepts.

The main weakness of depth-register automata when applied to processing trees is their
limited ability to handle the child relation, as revealed by the following example.

I Example 7. Consider the language of trees over the alphabet {a, b, c} where some a-labelled
node has a b-labelled child. It might appear that this language is stackless because it is easy
to identify an a-labelled node and a single register is sufficient to identify the tags of its

Barloy, Murlak and Paperman XX:7

children in the encoding. Indeed, this idea can be used to recognize the language of trees
where some minimal a-labelled node has a b-labelled child, just like we did for b-labelled
descendents in Example 6. Without the minimality assumption, however, the subautomaton
searching for b-labelled children needs to be relaunched whenever the opening tag a is read,
which may well happen before the previous instance of the subautomaton terminates. Each
launch requires a new register to store the return point. Because the input tree may contain
arbitrarily long chains of a-labelled nodes, this does not seem feasible with any fixed number
of registers. That it is indeed infeasible follows from the general characterization result
(Theorem 14) we establish in Section 3.

The method from Example 6 can be extended to test the existence of multiple nodes
with specified labels and descendent relationships between them. By a descendent pattern we
shall understand a finite tree over Γ. A tree T contains a descendent pattern π if there exists
a matching function h that maps nodes of π to nodes of T such that for all nodes u, v of π:

the label of u coincides with the label of h(u);
if v is a child of u, then h(v) is a descendent of h(u).

I Proposition 8. For each descendent pattern π, the set of trees containing π is stackless.

Proof. By a slight abuse of the definition of depth-register automata, we shall allow automata
that can stop; that is, in some configurations there may be no transition to take. We prove
by induction on the height of π that there is an automaton Aπ that recognizes trees that
contain π and stops upon reading the closing tag corresponding to the first opening tag of
its input.

If π consists of a single node, the automaton loads into its only register the current depth
before reading any tags, scans the input until the current depth again becomes equal to the
stored value. Then it moves to a state without outgoing transitions that is accepting or not,
depending on whether the automaton has detected a tag with the label from the root of π or
not.

Suppose that the root of π has some children. By the inductive hypothesis, there is an
automaton Aπ′ for each descendent pattern π′ corresponding to an immediate subtree of π.
Let A be the synchronous product of all these automata, recognizing the intersection of the
languages recognized by its components. Like in Example 6, we can assume that the root
of π is matched to a minimal element with the desired label. The automaton Aπ loads the
current depth before reading any tags into its first register, and then processes the input
looking for the first opening tag with the same label as the root of π. If Aπ does not see one
before the current depth is again equal to the stored value, it rejects. If it does find one, it
calls the automaton A using a set of registers excluding the first one and waits until A stops.
If A accepts, Aπ waits until the current depth becomes equal to the value stored in the first
register, and accepts. If A rejects, Aπ moves on to the next opening tag with the same label
as the root of π. J

While the class of stackless tree languages is closed under complement by Lemma 4, it
does not follow that we can handle negative information just as well as positive. We say that
a tree T strictly contains a descendent pattern π if T contains π and the matching function
h additionally satisfies the condition

if v is not a descendent of u, then h(v) is not a descendent of h(u).
The following example shows that Proposition 8 does not extend to this stronger notion.

I Example 9. Consider the pattern π shown in Figure 1a. As is customary, we use double
edges to indicate descendent relationships between nodes. Suppose that the languages of

XX:8 Stackless

b

b

a
b

c

c

(a) Pattern π.

b

b

b

...

b

b

a?

a?

a?

c?

c?

c?

c?

c?
(b) A ‘schema’.

...

b

a?
b

a? c
b

a
b

a? c
b

a? ...
(c) Match.

...

b

a?
b

a? c
b

b

a? c
b

a? ...
(d) No match.

Figure 1 Strict descendent patterns are not stackless.
.

trees strictly containing π is recognized by a depth-register automaton B with m states and
` registers. We shall analyze the behaviour of the automaton B over trees conforming to
the ‘schema’ shown in Figure 1b, which for each n > 2 defines the set Kn of trees that have
the main branch labelled by the word bn, and additionally each b-labelled node may have
a c-labelled child to the right of the main branch, and each internal b-labelled node may
have an a-labelled child to the left of the main branch. For a tree T like this, let wT be the
prefix of 〈T 〉 ending at the opening tag of the deepest b-labelled node. Let cinit be the initial
configuration of B.

For T ∈ Kn, we have that cinit · wT = (q, n, η) for some state q and some η : Ξ →
{0, 1, . . . , n}. That is, m · (n+ 1)` configurations are possible. But there are 2n−2 ways to
choose which b-labelled non-leaf nodes have an a-labelled child, so

∣∣{wT ∣∣ T ∈ Kn

}∣∣ = 2n−2.
Consequently, for sufficiently large n, there exist two different words u and v in {wT

∣∣ T ∈ Kn

}
,

such that cinit · u = cinit · v. Because u 6= v, there exists i ∈ {2, 3, . . . , n− 1} such that for all
S, T ∈ Kn, if u = wS and v = wT , then the ith b-labelled node has an a-labelled child in S
iff it does not have one in T . Let us choose S and T such that in both of them, the (i− 1)st
and the (i+ 1)st b-labelled node has a c-labelled child and there are no other c-labelled nodes,
as shown in Figures 1c and 1d. Clearly, the tree in Figure 1c strictly contains π. It is not
difficult to verify that the one in Figure 1c does not. However, from the definition of S and
T it follows that 〈S〉 = uw′ and 〈T 〉 = vw′ for some w′, and because cinit · uw′ = cinit · vw′,
we conclude that S and T are indistinguishable to B.

Finally, let us point out that the ability to deal with sequences of siblings, demonstrated
in Example 5, is limited to nodes that are close to the root. The following example shows
why.

I Example 10. Even a finite automaton can check if the streamed tree contains two
consecutive siblings with labels a and b: it suffices to check if the read encoding contains the
closing tag ā followed immediately by the opening tag b. Consider, however, the set of trees
that contain three consecutive siblings with labels a, b, c. Arguing like in Example 9 one
can show that this language is not stackless. Dropping the assumption that the siblings are
consecutive, or even that they are ordered as written, does not affect the argument.

Thus, depth-register automata are able to express involved global properties of trees
(Proposition 8), far out of reach of finite automata, yet they cannot handle many properties
that appear local but lose their locality when seen as properties of the encodings (Examples 7

Barloy, Murlak and Paperman XX:9

and 10). Characterizing stackless tree languages seems to be challenging, but in Section 3 we
solve the special case of tree languages defined in terms of properties of branches.

2.3 Querying streamed trees
So far we used automata as acceptors, defining languages of trees. However, we can also
use them as node selectors, defining queries over trees. By a query Q of arity k we mean
a function mapping each tree T to a set Q(T) of k-tuples of nodes of T . In the streaming
setting, higher-arity queries are problematic because a streaming algorithm using memory of
size f(n) over inputs of length n cannot return asymptotically more than f(n) · n answers.
This means that handling even very simple queries of arity larger than one in sublinear
memory is impossible without compromising the semantics by applying restrictive selection
strategies [30, 9] or heuristics like load shedding [12]. Moreover, popular query languages
for tree-structured data, like XPath or JSONPath, focus on unary queries. We shall do the
same.

Implementations of unary queries over streamed trees come in two distinct flavours,
corresponding to the two natural moments when one may wish the selected nodes to be
returned: at the opening tag or at the closing tag. Accordingly, we say that an automaton
A pre-selects (resp. post-selects) a node v of a tree T if A is in an accepting state directly
after reading the opening (resp. closing) tag of v. Both approaches have their merits.
Post-selection is more expressive, because it allows to explore the subtree rooted at the given
node. Pre-selection gives more flexibility in the subsequent stages of processing, allowing to
return the whole subtree rooted at the selected node without additional memory cost. In
this work we focus on pre-selection, and leave post-selection for the future. We say that an
automaton A realizes a unary query Q if for every tree T , A pre-selects exactly those nodes
of T that belong to Q(T). We call a unary query stackless (resp. registerless) if it can be
realized by a depth-register automaton (resp. finite automaton).

Practical declarative query formalisms for tree-structured data, like XPath or JSONPath,
treat the context of a node in a symmetric fashion, even if siblings are considered ordered.
The streaming setup, on the other hand, is inherently asymmetric: siblings to the left of the
node to be selected can be accessed freely, but there is no way to access those on the right.
While there exist meaningful queries that could exploit access to the siblings on the left, in
this work we abstract away from this aspect and focus on queries invariant under sibling
order. A query Q is invariant under sibling order if for each bijection f between the nodes of
a tree T and the nodes of a tree T ′ that preserves node labels and the child relation, it holds
that Q(T ′) =

{
f(u)

∣∣ u ∈ Q(T)
}
. Unary queries invariant under sibling order form a rich

class and capture an important segment of user queries, including all vertical XPath queries,
built up from vertical axes (child, descendent, parent, ancestor), label tests, and filters. We
aim at understanding which of them can be implemented over streamed trees using finite or
depth-register automata.

The scope of this task can be narrowed down quickly, as all stackless queries invariant
under sibling order fall within a well-known class of queries. With each regular language
L ⊆ Γ∗, we associate a unary query QL that selects all nodes v such that the path from
the root to v is labelled by a word from L. We call queries of this form regular path queries
(RPQs). They include all XPath queries built up from downward axes (child, descendent)
and label tests, but not those using upward axes (parent, ancestor) or filters.

I Proposition 11. The class of stackless queries invariant under sibling order is contained
in the class of RPQs.

XX:10 Stackless

That is, if a unary query invariant under sibling order is not an RPQ, then it is not
stackless either. In particular, vertical XPath queries cannot be realized by depth-register
automata if they use upward axes or filters. Consequently, understanding which unary queries
invariant under sibling order are stackless or registerless amounts to characterizing stackless
and registerless queries among RPQs, which will be the focus of the remainder of this paper.

I Example 12. Consider the following simple RPQs, expressed in XPath, JSONPath, and
as regular expressions:

XPath /a//b /a/b //a//b //a/b
JSONPath $.a..b $.a.b $..a..b $..a.b
RegEx aΓ∗b a b Γ∗aΓ∗b Γ∗a b
Registerless? 3 7 7 7

Stackless? 3 3 3 7

The first one is registerless: the realizing finite automaton should check that the first opening
tag has label a and then it should accept at each opening tag with label b. On the other
hand, the last RPQ cannot be realized even by a depth-register automaton, because letting
this automaton loop in each accepting state we would obtain an automaton recognizing
the language from Example 7. What about the remaining two RPQs? It will follow from
our general characterization results (Theorems 14 and 15) that they are stackless, but not
registerless.

From the perspective taken in this paper, RPQs and depth-register automata play
asymmetric roles: RPQs represent user queries, and depth-register automata represent their
implementations in the streaming setting. Accordingly, the fundamental question is which
user queries can be implemented; that is, which RPQs are stackless. Nevertheless, one can
also ask which stackless queries are RPQs. This appears challenging in general, but if the
query is given as a restricted depth-register automaton, it is a pleasent exercise in automata
theory, reminiscent of the characterization of tree languages recognizable by deterministic
top-down automata [16].

I Proposition 13. It is decidable if the query realized by a given restricted depth-register
automaton is an RPQ.

Unlike in graph databases, where RPQs are viewed as binary queries selecting suitably
connected pairs of nodes [3], in our setting RPQs are treated primarily as unary queries
selecting nodes suitably connected to the root. But we can also treat them as boolean queries,
defining sets of trees that contain a node—or a leaf—suitably connected to the root. The
leaf variant will be instrumental in the characterization results of Section 3. We write EL for
the set of trees that contain a branch labelled by a word from L, and AL for the set of trees
with all branches labelled by words from L. Note that (AL)c = E(Lc). Languages of the
form AL can express useful and nontrivial schema restrictions, as they are able to specify
which labels are allowed in the children of a node, depending on regular properties of the
path from the root. This will allow us to shed more light on the framework of Segoufin and
Vianu [25] in Section 4.1.

3 Characterization theorems

The characterization theorems rely on four syntactic classes of regular languages: almost-
reversible, hierarchically almost-reversible, E-flat, and A-flat (Definitions 17, 19 and 22).

Barloy, Murlak and Paperman XX:11

For now they can be treated as blackboxes, but let us highlight that their definitions are
based on simple PTIME-testable properties of the minimal automaton, which makes the
characterizations effective. Indeed, also the suitable automata for QL, AL, and EL can be
computed in time polynomial in the size of the minimal automaton of L.

For each theorem we provide a proof outline explaining how to infer the theorem from
the expressibility and inexpressibility results we establish in the remainder of this section.

I Theorem 14. For each regular language L, the following conditions are equivalent:
1. QL is a stackless unary query;
2. EL is a stackless tree language;
3. AL is a stackless tree language;
4. L is hierarchically almost-reversible.

Proof outline. (1) implies (2) because an automaton A realizing QL can be easily turned
into an automaton A′ recognizing EL. A′ behaves like A, but it additionally remembers the
previously read symbol; if the previous symbol was an opening tag, the state is accepting
in A, and the current letter is a closing tag, then A′ moves to an all-accepting sink state.
(2) implies (4) by Lemma 29, and (4) implies (1) by Lemma 21. This shows that (1), (2),
and (4) are equivalent. It follows that (2) and (3) are equivalent, because (AL)c = E(Lc),
the class of stackless tree languages is closed under complementation, and, by Lemma 20, so
is the class of hierarchically almost-reversible languages. J

In the registerless case the picture is more complicated, reflecting the inherent duality of
tree languages of the form AL and EL.

I Theorem 15. Let L be a regular language.
1. EL is a registerless tree language iff L is E-flat.
2. AL is a registerless tree language iff L is A-flat.
3. The following conditions are equivalent:

a. QL is a registerless unary query;
b. EL and AL are registerless tree languages;
c. L is E-flat and A-flat;
d. L is almost-reversible.

Proof outline. (1) follows from Lemmas 24 and 25. (2) follows from (1) because: (AL)c =
E(Lc), the class of registerless tree languages is closed under complementation, and by
Lemma 23, L is A-flat iff Lc is E-flat. For (3), we argue like in Theorem 14 that if QL
is registerless, so is EL. Similarly, if QL is registerless, so is AL; the automaton A′ is
constructed dually: whenever it reads a closing tag immediately after an opening tag while
being in a rejecting state of A, it moves to the all-rejecting sink state ⊥. Hence, (3a) implies
(3b). (3b) is equivalent to (3c) by (1) and (2). (3c) is equivalent to (3d) by Lemma 23. (3d)
implies (3a) by Lemma 18. J

We remark that Theorem 15 is fully compatible with the framework introduced by
Segoufin and Vianu [25]; we discuss the connection in detail in Section 4.1.

3.1 Almost-reversibility
How does one go about evaluating an RPQ with a finite automaton reading the markup
encoding of a tree? Over the leftmost branch this is easy: as long as only opening tags
are read, we simulate the automaton underlying the RPQ over the labels in the tags and

XX:12 Stackless

0 1b
a

a
b

Figure 2 A reversible finite automaton.

0

1

2

3

a

b, cb a, c

a, c

b

a, b, c

(a) aΓ∗b

0

1

2

3

a

b, cb

a, c

a, b, c

a, b, c

(b) ab

0

1

2

a

b, c

b

a, c

a, c

b

(c) Γ∗aΓ∗b

0

1

2

a

b, c

b

a

c

a

b, c

(d) Γ∗ab

Figure 3 Languages of increasing hardness over Γ = {a, b, c}.

accept whenever the simulated automaton accepts. When the first closing tag appears, the
simulated automaton should revert to the state before reading the corresponding opening
tag. Our simulation could store a bounded suffix of the run of the simulated automaton, and
use it when closing tags occur, but what shall we do when it is used up? This is clearly not
a sustainable strategy. The task does become feasible if we assume that the previous state
can be determined based on the current state and the last read letter. Automata that have
this property are called reversible.

Recall that in a deterministic automaton letters induce functions mapping states to states.
A deterministic automaton is reversible if every letter induces an injective function (Figure 2).
Equivalently, one may assume that letters induce permutations of states, which implies that
the monoid generated by these functions—with composition as the inner product—is a group.
Reversibility can be studied as a separate notion upon extension to incomplete automata,
where letters induce partial functions over states [20].

The simulation above captures RPQs given by reversible automata, but we can do a bit
more. Consider the automata depicted in Figure 3. None of them is reversible because the
function induced by the letter a is not injective. However, as explained in Example 12, the
automaton in Figure 3a defines a registerless RPQ, while those in Figures 3b to 3d do not.
In order to capture registerless RPQs precisely, we carefully relax the notion of reversibility.

Unlike reversibility itself, its relaxed variant is dependent on which states are accepting.
Let us fix a deterministic automaton A. We say that states p and q are equivalent if for every
word w, p · w ∈ F iff q · w ∈ F . In a minimal automaton, equivalent states are equal. We
say that states p and q are almost equivalent if for every non-empty word w, p · w ∈ F iff
q · w ∈ F . That is, non-empty words do not distinguish almost equivalent states; it follows
immediately that after reading any letter the states become indistinguishable.

I Lemma 16. If states p and q are almost equivalent, then for each letter a, the states p · a
and q · a are equivalent.

Barloy, Murlak and Paperman XX:13

We shall call a state p of automaton A internal if it is reachable from the initial state
via a nonempty word. Note that if all states are reachable, only the initial state can be
non-internal, and it happens only iff it has no incoming transitions.

I Definition 17 (Almost-reversibility). We say that states p and q meet in state r if there
exists a word u such that p · u = q · u = r; we say p and q meet if they meet in some state
r. A deterministic automaton is almost-reversible if every two internal states that meet are
almost equivalent. We call a regular language almost-reversible if its minimal automaton is
almost-reversible.

As intended, the automaton in Figure 3a is almost-reversible, while those in Figures 3b
to 3d are not.

I Lemma 18. If L is an almost-reversible language, then QL is a registerless query.

Proof. Let A be the minimal automaton of L. The simulating automaton B will use the
same states as A together with an additional rejecting sink state ⊥; the initial state and the
set of accepting states are also like in A. When reading opening tags, B follows the transition
relation of A. Upon reading a closing tag ā in a state p, B moves to some internal p′ in A
such that p′ · a is almost equivalent to p. To keep B deterministic, we take the minimal such
p′ according to an arbitrarily chosen order on the states of A. If such a state p′ does not
exists, B moves to ⊥.

Consider an input tree T . For each prefix w of 〈T 〉, let ŵ be the word obtained from w

by successively erasing all two-letter subwords of the form aā for a ∈ Γ. If w ends with the
opening tag of a node x in T , then ŵ is the sequence of labels on the shortest path from the
root of T to x. If w ends with the closing tag of a node x in T , then ŵ is the sequence of
labels on the shortest path from the root of T to the parent of x (if x is the root of T , then
the path is empty). We claim that for every proper nonempty prefix w of 〈T 〉, the state pw
of B after reading w is a an internal state of A that is almost equivalent to the state q

ŵ
of

A after reading ŵ, and if the last letter of w is an opening tag, then pw = q
ŵ
. The claim

immediately implies that B realizes QL, because the first and the last state of B in the run
on 〈T 〉 does not matter.

We prove the claim by induction on |w|. The automaton B begins the computation in
the initial state of A. The first letter of 〈T 〉 is some opening tag a. Because â = a, we have
pa = q

â
and pa is clearly internal. Suppose now that the claim holds for w. If the next letter

after w is an opening tag c, applying Lemma 16 to the almost equivalent states pw and q
ŵ

of A, we get pwc = pw · c = q
ŵ
· c = q

ŵc
, and we are done because q

ŵ
· c is clearly internal.

Suppose that the next letter read by B is a closing tag c̄. We need to prove that there exists
an internal state p′ in A such that p′ · c is almost equivalent to pw, and that every such p′
is almost equivalent to q

ŵc̄
. Consider p′ = q

ŵc̄
. Because wc̄ is a proper prefix of 〈T 〉, the

word ŵc̄ is nonempty; hence, q
ŵc̄

is a internal state of A. We also have q
ŵc̄
· c = q

ŵ
, and we

have assumed that pw and q
ŵ
are almost equivalent; hence, q

ŵc̄
· c is almost equivalent to pw.

So, indeed, q
ŵc̄

is a correct choice for p′. Let us now take any internal p′ with p′ · c almost
equivalent to pw, and prove that p′ is almost equivalent to q

ŵc̄
. As pw and q

ŵ
are almost

equivalent by the induction hypothesis, it follows that so are p′ · c and q
ŵ
. By Lemma 16,

p′ · c · b = q
ŵ
· b = q

ŵc̄
· c · b for each b ∈ Γ. Hence, p′ and q

ŵc̄
meet. We have already argued

that q
ŵc̄

is internal, and p′ is internal by assumption. Because A is almost-reversible, we
conclude that p′ is almost equivalent to q

ŵc̄
. J

XX:14 Stackless

3.2 Hierarchical almost-reversibility
We have already developed intuitions on evaluating RPQs over markup encodings using finite
automata. Can we do more using the depth information and the (limited) ability to process
it offered by the registers? Using one register and an additional component in the state, we
can store the configuration of the simulated automaton in one node on the path from the
root to the current node: we store the depth of this node in the register and the state of the
simulated automaton in the additional component of the state of the simulating automaton.
When the simulation climbs up to this depth again, we know to which state the simulated
automaton should be reverted, regardless of the reversibility assumptions.

Using this feature we can simulate automata whose strongly connected components (SCCs)
are singletons (Figure 3b). Recall that an SCC is a maximal subset X of the state-space such
that every state in X is reachable from every other state in X. If each SCC is a singleton,
then a run may loop in some states it visits, but it never revisits a state it has left. Hence,
in each run there is a bounded number of state changes. The simulating automaton can
then represent the whole run of the simulated automaton over the path from the root to the
current node by means of the list of state changes and depths at which these changes occurred.
Automata with only singleton SCCs capture exactly the class of R-trivial languages, named
after one of Green’s relations from algebraic formal language theory [21]; the intensively
studied piecewise testable languages [19] form a prominent subclass of R-trivial languages.

As we shall see, the potential of register automata is exhausted by the combination of
the above simulation method with the full power of finite automata to simulate a run inside
a single SCC. The class of automata that can be simulated this way is captured by the
following definition.

I Definition 19 (Hierarchical almost-reversibility). A deterministic automaton is hierarchically
almost-reversible, abbreviated as HAR, if every two states from the same SCC that meet
inside this SCC are almost equivalent. A regular language is HAR if its minimal automaton
is HAR.

By design, HAR languages include all almost-reversible languages (Figure 3a), and all
R-trivial languages (Figure 3b), but also the language in Figure 3c which is neither almost-
reversible nor R-trivial. The language in Figure 3d, is not HAR.

As Definition 19 is invariant under the complementation of the automaton, we obtain the
following.

I Lemma 20. The complement of a HAR language is HAR.

Let us see that HAR languages can indeed be handled by depth-register automata.

I Lemma 21. If L is a HAR language, then QL is a stackless query.

Proof. Let L be a HAR language and A its minimal automaton. Like before, we construct
a depth-register automaton B that evaluates QL by maintaining a simulation of the run
of A on the word ŵ labelling the path π from the root to the current node. It applies the
method used for R-trivial languages to keep track of the changes of SCCs of A during the
simulated run, and an adaptation of the method for almost-reversible languages to deal with
the segments of the simulated run within a single SCC. After processing a prefix w of the
encoding of the input tree, for each SCC X of A visited during the run on ŵ, except the
current one, the automaton B stores

the depth of the deepest node on the path π whose label was read in a state from X

during the run on ŵ; and

Barloy, Murlak and Paperman XX:15

some state from X that meets in X with the last state from X visited by A in the run
on ŵ.

Additionally, if q is the current state of A after processing ŵ and Y is the SCC of A that
contains q, the automaton B stores some state p ∈ Y that meets with q in Y , and p = q after
reading each opening tag. Initially, p is the initial state i of A, and nothing else is stored.

Suppose that B reads an opening tag a and the current depth is d. Because A is HAR,
the states p and q mentioned above are almost equivalent. As A is minimal, it follows from
Lemma 16 that p · a = q · a. Consequently, p · a is the next state of A. If p · a ∈ Y , we just
replace p with p · a and proceed to the next tag. If p · a belongs to some SCC Z 6= Y , we
also add Y to the list of remembered SCCs, with depth d (loaded to some unused register)
and state p, and continue with Z as the current SCC.

Suppose now that B reads a closing tag ā and the current depth d is greater than or
equal to the maximal recorded depth d′. This indicates that the previous state of A also
belongs to Y . We should now revert A to some state q′ ∈ Y such that q′ · a = q, but we
do not know which one. Even worse, we do not have access to q, but only to some state
p ∈ Y that meets with q in Y . Nevertheless, we can maintain the invariant by picking any
state p′ ∈ Y such that p′ · a ∈ Y is almost equivalent to p. Note first that such states p′ exist
because q′ is one of them: q′ · a = q and from the previous case we know that q and p are
almost equivalent. To keep B deterministic we pick the minimal such p′ according to some
arbitrarily fixed order on the states of A. To prove that every p′ is suitable it suffices to
show that p′ meets with q′ in Y . We know that p · u = q · u ∈ Y for some word u. Because
p′ · a is almost equivalent to p and A is minimal, we get p′ · a · u = p · u = q · u = q′ · a · u,
and we are done. Hence, B can replace p with p′ and proceed to the next tag.

Finally, suppose B reads a closing tag ā and the current depth is strictly smaller than
the greatest recorded depth d′. This indicates that the previous state of A belongs to the
SCC X 6= Y , associated with depth d′. The automaton A should be reverted to the last
state q′ from X visited during the run. The simulation does not have access to q′, but it has
the state p′ recorded for X, and we know that p′ meets with q′ in X. This is sufficient to
maintain the invariant: the automaton B simply replaces p with p′, removes X from the list
of remembered SCCs marking the register storing the associated depth d′ as unused, and
proceeds to the next tag with X as the current SCC. J

3.3 Flatness
Not all finite languages are almost-reversible, as witnessed by the one in Figure 3b. Never-
theless, if L is finite, then AL is registerless. Indeed, a finite automaton can simply simulate
the stack up to the depth bounded by the length of the longest word in L. If an opening tag
is read when the stack is at its maximum depth, the automaton moves to an all-rejecting
sink state. Symmetrically, if L is co-finite (that is, Lc is finite), then EL is registerless. This
motivates the following dual notions.

I Definition 22 (E-flatness and A-flatness). We call a state q acceptive (resp. rejective) if
q · w is accepting (resp. rejecting) for some w ∈ Γ∗. A deterministic automaton is E-flat
(resp. A-flat) if for every internal state p and every rejective (resp. acceptive) state q, if p
meets with q in q, then p is almost equivalent to q. A E-flat (resp. A-flat) language is a
regular language whose minimal automaton is E-flat (resp. A-flat).

Checking that all finite languages (including the one in Figure 3b) are A-flat, and all
co-finite ones are E-flat is an easy exercise. The following lemma, connecting flatness to
almost-reversibility is not hard either (see Appendix D).

XX:16 Stackless

s

tun!

x

un!

x

(a) Tree S.

s

un!

tun!

x

un!

x

(b) Tree S′.

Figure 4 Fooling trees in Lemma 25.

I Lemma 23. Let L ⊆ Γ∗ be a regular language.
1. L is A-flat iff Lc is E-flat.
2. L almost-reversible iff it is both A-flat and E-flat.

More effort is needed to show that E-flatness of L is sufficient to simulate its minimal
automaton faithfully enough to support recognizing EL.

I Lemma 24. If L is an E-flat language, then EL is a registerless tree language.

Like for almost-reversible automata, the high-level idea is to maintain the state of the
simulated automaton up to almost equivalence, except that we should immediately accept
if this state becomes non-rejective. Because the internal structure of E-flat automata is
much richer, we additionally need to keep track of transitions that moved the simulated run
from one SCC to the next one. Taking transitions backwards when processing closing tags
introduces certain ambiguity: the origins of the stored transitions are not single states, but
pairs of states guaranteed to be almost equivalent. Full details can be found in Appendix E.

3.4 Inexpressibility
The results established in this section are proved by pumping simultaneously at the level of
trees and their encodings, which resembles pumping arguments for context free grammars. To
simplify factorizing encodings of trees, for a word w = a1a2 · · · an ∈ Γ∗ we let w̄ = ān · · · ā2 ā1
(note the reversed order). Consider the tree S shown in Figure 4a, keeping in mind that
s, t, u, x are words rather than single letters: each node labelled with a word w represents a
chain of |w| nodes whose labels form the word w. Then,

〈S〉 = sun!xx̄ūn!tt̄un!xx̄ūn!s̄ .

We use S in the proof of the following lemma.

I Lemma 25. For a regular language L, if EL is a registerless tree language, then L is
E-flat.

Proof. Suppose that the minimal automaton A of L ⊆ Γ∗ is not E-flat. Let i be the initial
state of A. Then, there exist words s, t, u ∈ Γ+, x ∈ Γ∗ and states p, q such that i · s = p,
p · u = q · u = q, q · x is rejecting, and p · t is accepting iff q · t is rejecting. It follows that for
each k > 0, sukx ∈ Lc, and st ∈ L iff sukt ∈ Lc.

Consider a deterministic finite automaton B over Γ ∪ Γ̄ with n states. It is well known
that r · wn! = r · w2·n! for each nonempty word w and each state r of B (this is also implied
by Lemma 28 established later in this section).

Barloy, Murlak and Paperman XX:17

Consider the trees S and S′ shown in Figure 4. By the discussion above, exactly one of
those trees belongs to EL. Consider the runs of B on 〈S〉 and 〈S′〉. Suppose that on 〈S〉 we
have

q0
sun!

−−−→ q1
xx̄·ūn!·tt̄·un!xx̄ūn!

−−−−−−−−−−−−→ q2
s̄−→ q3 .

Then, by the choice of n, we have

q0
sun!

−−−→ q1
un!

−−→ q1
xx̄·ūn!·tt̄·un!xx̄ūn!

−−−−−−−−−−−−→ q2
ūn!

−−→ q2
s̄−→ q3 .

It follows that B accepts 〈S〉 iff it accepts 〈S′〉. Consequently, B does not recognize EL. J

The missing implication in Theorem 14 is also proved by pumping, but requires consider-
ably more effort because this time we need to fool a depth-register automaton. Before we
dive into it, we prepare some simple tools helping to analyze runs of such automata; proofs
of the auxiliary lemmas can be found in Appendix F.

For configurations c = (q, d, η) and c′ = (q′, d′, η′) of a depth-register automaton B we
write c ∼ c′ if q = q′.

For −∞ ≤ i ≤ j ≤ ∞, we write c ≈i,j c′ if c ∼ c′ and for each register ξ one of the
following conditions holds:

η′(ξ)− d′ = η(ξ)− d;
η(ξ)− d < i and η′(ξ)− d′ < i and η(ξ) = η′(ξ);
η(ξ)− d > j and η′(ξ)− d′ > j.

We let ‖ε‖ = 0 and inductively ‖wa‖ = ‖w‖ + 1 and ‖wā‖ = ‖w‖ − 1 for all a ∈ Γ and
w ∈ (Γ ∪ Γ̄)∗. For nonempty w we also define

bwc = min
ε 6=u�w

‖u‖ , dwe = max
ε 6=u�w

‖u‖ ,

where u � w means that u is a prefix of w. Note that for all w,

bwc ≤ ‖w‖ ≤ dwe .

I Lemma 26. Suppose that c1 ≈i,j c2. For every word w such that i ≤ bwc ≤ dwe ≤ j, it
holds that c1 · w ≈i−‖w‖,j−‖w‖ c2 · w.

A word x ∈ (Γ ∪ Γ̄)+ is descending if 1 = bxc ≤ dxe = ‖x‖ and it is ascending if
−1 = dxe ≥ bxc = ‖x‖. Descending words generalize words from Γ+, and ascending words
generalize words from Γ̄+. For i, j ∈ Z∞ = Z ∪ {−∞,∞} we let

[i, j] = {k ∈ Z∞
∣∣ i ≤ k ≤ j} , (i, j] = {k ∈ Z∞

∣∣ i < k ≤ j} ,

and analogously for [i, j) and (i, j).

I Lemma 27. Let ci = (qi, di, ηi) with i ∈ [1; 4] be configurations of a depth-register
automaton B and let y, z ∈ (Γ ∪ Γ̄)+ be descending words such that c1

y−→ c2
z−→ c3

y−→ c4. If
img(η1) ⊆ (−∞; d1] and c1 ∼ c3, then img(η4) ∩ (d1; d2] = ∅.

I Lemma 28. Let B be a depth-register automaton with k states and ` registers, and let
n ≥ k · (`+ 1). For every configuration c = (q, d, η) of the automaton B and every descending
or ascending word x ∈ (Γ ∪ Γ̄)+, if

img(η) ∩
[
d+

⌊
x3·n!⌋ ; d+

⌈
x3·n!⌉] = ∅ ,

then

XX:18 Stackless

1. c · xn! ∼ c · xn! · xn!; and
2. c · xn! · xn! ≈bxn!c−‖xn!‖,dxn!e−‖xn!‖ c · xn! · xn! · xn!.

I Lemma 29. For each regular language L, if EL is a stackless tree language, then L is
HAR.

Proof. Again, we prove the contrapositive. Suppose L ⊆ Γ∗ is not HAR. Then, its minimal
automaton A admits states p, q, and r in the same SCC Y such that for some word u and
some non-empty word t, we have r = p ·u = q ·u and p · t is accepting and q · t is non-accepting
(in particular, p 6= q). Then, there exist v and w such that r · v = p and r · w = q. Finally,
by minimality, all states are reachable from the initial state, so there exists a word s such
that i · s = r. Because Y contains two different states, it is a non-trivial SCC. Consequently,
for each state p′ ∈ Y there exists a nonempty looping word; that is, a word w′ 6= ε such
that p′ · w′ = p′. By appending suitable looping words if necessary, we can assume that the
words s, u, v, w are nonempty as well. Additionally, it will be convenient to assume that
|u| ≥ |t|; this can be ensured by appending |t| copies of the appropriate looping word to u.
The resulting fragment of the automaton A is shown in the top left corner of Figure 5. We
have

s(wu+ vu)∗vt ⊆ L , s(wu+ vu)∗wt ⊆ Lc .

Consider a depth-register automaton B over Γ ∪ Γ with k states and ` registers. Let
n = k · (`+ 1). We shall construct a fooling pair of trees by unravelling the fooling gadget.
The trees are shown in Figure 5. The original tree R, is build from: (i) a tree R0 consisting
of a single branch labelled by the word s, (ii) trees R1, . . . , R2·n!+1 that are isomorphic copies
of the same tree, and (iii) a tree R2·n!+2 consisting of a single branch labelled by the word
wt. Each branch of R is labelled by a word from s(wu + vu)∗wt ⊆ Lc, which means that
R /∈ EL. The pumped tree R′ is obtained by inserting an additional segment labelled by
(uv)n! in Rn!+1, just before the branching; we will write R′n!+1 for thus modified Rn!+1.
The modification introduces a branch labelled by a word from s(wu + vu)∗vt ⊆ L, which
means that R′ ∈ EL. We will show that the automaton B cannot distinguish 〈R〉 from
〈R′〉, by analyzing the respective runs in parallel. The crucial moments of the analysis will
be configurations ci = (qi, di, ηi), c′i = (q′i, d′i, η′i), and c′′i = (q′′i , d′′i , η′′i), depicted (with the
exception of c6) in brown in Figure 5: configurations to the left of edges are visited when
going down and those to the right when going up.

Let x be the prefix of 〈R1〉 ending at the opening tag of the rightmost leaf of R1. Because
|t| ≤ |u|, the rightmost branch of R1 is at least as long as both other branches, which implies
that x is descending. Clearly, so is y = wu(vu)2·n! ∈ Γ+. Consider the following initial
segments of the runs of B over 〈R〉 and 〈R′〉:

c0
sxn!

−−−→ c1
yn!

−−→ c2
w−→ c3

(uv)2·n!

−−−−−→ c4
u−→ c5

yn!−1

−−−→ c6
y−→ c7 ,

c0
sxn!

−−−→ c1
yn!

−−→ c2
w−→ c3

(uv)3·n!

−−−−−→ c′4
u−→ c′5

yn!−1

−−−→ c6
y−→ c′7 .

Let δ = |(uv)n!|. As all words over the arrows are descending, we have

img(ηi) ⊆ [−∞; di] , img(η′j) ⊆ [−∞; d′j] , d′j = dj + δ (1)

for all i ∈ [0; 7] and j ∈ [4; 7]. Condition (1) allows us to apply Lemma 28 to configuration c3
and the descending word uv, and conclude that c4 ≈1−δ,0 c

′
4. By (1), this can be strengthened

to c4 ≈1−δ,∞ c′4. By Lemma 26, we get

c7 ≈1−‖(uv)n!u·yn!‖,∞ c′7 . (2)

Barloy, Murlak and Paperman XX:19

s
c0 c13

(wu(vu)2·n!)n!

w

t

(1)

u(vu)2·n!

(wu(vu)2·n!)n!

wt

u(vu)2·n!

(wu(vu)2·n!)n!

wu

...

(wu(vu)2·n!)n!

w

t

(n! + 1)

(uv)2·n!

u

(wu(vu)2·n!)n!

wt

(uv)2·n!

u

(wu(vu)2·n!)n!

wu

c1

c2

c3

c4

c5

c7

c12

c11

...

(wu(vu)2·n!)n!

w

t

(2 · n! + 1)

u(vu)2·n!

(wu(vu)2·n!)n!

wt

u(vu)2·n!

(wu(vu)2·n!)n!

wu

c8

c9

wt

c10

s
c0 c′′13

(wu(vu)2·n!)n!

w

tu(vu)2·n!

(wu(vu)2·n!)n!

wt (1)

u(vu)2·n!

(wu(vu)2·n!)n!

wu

...

(wu(vu)2·n!)n!

w

(uv)n!

t

(n! + 1)

(uv)2·n!

u

(wu(vu)2·n!)n!

wt

(uv)2·n!

u

(wu(vu)2·n!)n!

wu

c1

c2

c′′12c3

c′4

c′5

c′7

c′12

c′11

...

(wu(vu)2·n!)n!

w

t

(2 · n! + 1)

u(vu)2·n!

(wu(vu)2·n!)n!

wt

u(vu)2·n!

(wu(vu)2·n!)n!

wu

c′8

c′9

wt
c′10

i r

p

q

s

v u

w u

t

Figure 5 Non-HAR gadget and fooling trees in Lemma 29.

XX:20 Stackless

Applying Lemma 28 to c2 and y, we get c2 ∼ c6. Hence, we can apply Lemma 27 to
configurations c2, c5, c6, c7 and descending words y and yn!−1. Combining the result with (2),
we get

img(η7) ∩
(
d2; d5

]
= ∅ , img(η′7) ∩

(
d2; d′5

]
= ∅ . (3)

Consequently, from (2) we can also conclude

c7 ≈1−‖yn!+1‖,∞ c7 . (4)

Let y′ = wu(vu)3·n! and take x0 such that y2·n!+1 · x0 = x. Consider

c0
sxn!

−−−→ c1
yn!·y·yn!

−−−−−−→ c7
x0−→ c8

xn!−1

−−−→ c9
x−→ c10 ,

c0
sxn!

−−−→ c1
yn!·y′·yn!

−−−−−−→ c′7
x0−→ c′8

xn!−1

−−−→ c′9
x−→ c′10 .

Note that condition (1) holds for all i, j ∈ [8; 10]. From (4) via Lemma 26 we get

c10 ≈1−‖yn!+1wuxn!‖,∞ c′10 . (5)

Applying Lemma 28 to configuration c0 · s and the descending word x, we get c1 ∼ c9.
Applying Lemma 27 to configurations c1, c8, c9, c10 and the descending words x and xn!, and
combining the result with (5), we get

img(η10) ∩ (d1; d8] = ∅ , img(η′10) ∩ (d1; d′8] = ∅ . (6)

Hence, we can strengthen (5) to

c10 ≈1−‖xn!+1‖,∞ c′10 . (7)

Let x̄ = ūw̄ȳ2·n!+1; that is, xx̄ = 〈R1〉. Consider

c10
wtt̄w̄·x̄n!·ūw̄ȳn!·ū−−−−−−−−−−−→ c11

(v̄ū)2·n!

−−−−−→ c12
w̄·ȳn!·x̄n!·s̄−−−−−−−→ c13 ,

c′10
wtt̄w̄·x̄n!·ūw̄ȳn!·ū−−−−−−−−−−−→ c′11

(v̄ū)2·n!

−−−−−→ c′12
(v̄ū)n!

−−−−→ c′′12
w̄·ȳn!·x̄n!·s̄−−−−−−−→ c′′13 .

We have d′i = di + δ for i ∈ [10; 12] and d′′i = di for i ∈ [12; 13]. By Lemma 26, we have
c12 ≈1−‖w‖,∞ c′12. As from (6) it follows that img(η12) ∩ (d1; d12) = img(η′12) ∩ (d1; d′12) = ∅,
we also have

c12 ≈0,∞ c′12 . (8)

Applying Lemma 28 to configuration c′11 and the ascending word v̄ū, we get c′12 ≈0,δ−1 c
′′
12.

In combination with (8) this implies c12 ≈0,δ−1 c′′12. Because d12 = d′′12, it follows that
c12 ≈−∞,δ−1 c

′′
12. By Lemma 26, this implies c13 ∼ c′′13. J

4 Discussion

4.1 Tree languages defined by DTDs
Our characterization results shed some light on the registerlessness of DTDs, studied in [25]
(called recognizability there). A DTD D over Γ consists of an initial symbol a0 ∈ Γ and, for
each a ∈ Γ, a production of the form a→ La where La is a regular language over Γ (typically

Barloy, Murlak and Paperman XX:21

c

ã

a b

a a

ac
a b

b

a

a b

(a) Original automaton.

0

1

2

b, c a

c

a

b

a, b, c

(b) Minimal automaton.

Figure 6 Automata corresponding to the specialized DTD a → (a+ b+ ã)∗, b → (a+ b+ ã)∗,
ã → c∗, c → (a+ b)∗ with alphabet projection a 7→ a, ã 7→ a, b 7→ b, c 7→ c.

represented as a regular expression). It defines the set of trees T over Γ that have a0 in the
root and for each a-labelled node v in T , the labels of v’s children read from left to right
form a word in La. A specialized DTD over Γ consists of a DTD D′ over Γ′ and an alphabet
projection π : Γ′ → Γ; the language it defines is the projection of the language defined by D′
to the alphabet Γ.

Languages of the form AL capture (resp. capture precisely) all tree languages definable
by DTDs (resp. specialized DTDs) using only productions of the forms

a→ (b1 + · · ·+ bn)∗ , a→ (b1 + · · ·+ bn)+ .

This is a severely restricted, yet non-trivial and practically relevant, special case of the setting
considered in [25]. Let us refer to such DTDs as path DTDs. A path DTD is almost an
automaton recognizing allowed paths: use (specialized) symbols as states, add a transition
from a to each bi over symbol bi (or its projection π(bi) in the case of specialized DTDs), and
let a be accepting if the production uses ∗, and non-accepting if it uses + (see Figure 6a).

It can be shown that under restriction to path DTDs, the first necessary condition for
registerlessness proposed in [25] reduces to the assumption that the corresponding automaton
is HAR, and the second one amounts to A-flatness. Segoufin and Vianu show that the first
necessary condition is also sufficient under the restriction to fully-recursive DTDs, which
correspond to automata that have only two non-trivial SCCs: one contains the initial state,
and the other is an all-rejecting sink. For such automata, HAR is equivalent to A-flat, which
makes their result a special case of Theorem 15 (2) (in the limited special case of path DTDs).
Segoufin and Vianu also conjecture, that the two necessary conditions together are sufficient
for all DTDs. Theorem 15 (2) confirms this conjecture in the special case of path DTDs. Let
us remark that A-flatness works also for languages defined by specialized path DTDs, but the
corresponding automaton must be determinized and minimized before the criterion is applied,
as witnessed by the specialized DTD in Figure 6 which gives an A-flat non-deterministic
automaton, which is not A-flat any more after determinizing and minimizing.

4.2 A different encoding of trees
An alternative way to serialize tree-structured data, used for instance in JSON, is the term
encoding, in which the information about the label is included only in opening tags. For
instance, instead of abaāaāb̄cc̄ā we would have a{b{a{}a{}}c{}}, where a{ , b{ , c{ are
opening tags, and } is the universal closing tag. Streaming processing under this encoding is

XX:22 Stackless

harder, but analyzing it is easier. An effective characterization of regular tree languages that
are registerless under the term encoding is given in [1].

Our treatment can be easily adapted to the term encoding by adjusting the definition of
when two states meet: we say that states p and q blindly meet in state r if there exist words
u1, u2 ∈ Γ∗ such that |u1| = |u2| and p · u1 = q · u2 = r. By replacing ‘meet’ with ‘blindly
meet’ in Definitions 17, 19 and 22, we get the definitions of the syntactic classes of blindly
almost-reversible, blindly HAR, blindly A-flat, and blindly E-flat word languages. Theorems 14
and 15 then hold for the term encoding with all syntactic classes of word languages replaced
by their blind analogues (see Appendix G). Based on this, it can be checked by direct
examination of the automata in Figure 3 that also under the term encoding, the first RPQ
from Example 12 is registerless, the following two are stackless but not registerless, and
the last one is not stackless. Nevertheless, ‘blind’ classes are much more restricted than
their originals: all R-trivial languages are blindly HAR, but the possibilities of backtracking
inside an SCC are very limited. For example, the minimal automaton shown in Figure 2 is
reversible, but not blindly-HAR; this means that the language (b∗a b∗a b∗)∗ this automaton
recognizes is registerless under the markup encoding, but not even stackless under the term
encoding. This is the cost of succinctness.

4.3 Outlook
In this work we have proposed an intermediate model for processing streamed trees, increasing
the expressive power of finite automata considerably while sparing us the maintenance of the
stack. We have effectively characterized unary RPQs that can be realized in this model, and
those that can be realized by finite automata. The latter leads to a partial solution of the
weak validation problem posed by Segoufin and Vianu [25].

The weak validation problem remains the most intriguing theoretical challenge in the
area. Other salient problems are to characterize (effectively) stackless tree languages among
regular ones and, conversely, regular tree languages among stackless ones. The former is more
relevant for query and schema processing, but the latter may provide some useful insights as
well.

Solving these problems for all regular tree languages might be very hard, but for more
restricted, yet practically relevant, subclasses it might be easier. For instance, it would be
very useful to be able to decide if a given XPath expression is stackless or registerless (both as
a boolean query and as a unary query). Examples 7, 9 and 10 suggest that stackless XPath
expressions would have to use child, next-sibling, following-sibling, and negation extremely
cautiously, but this might be alleviated by including schema information into the setting.

Applying our results on the term encoding to JSON would also involve incorporating
rudimentary schema information, as in JSON siblings either have different labels, or have no
labels at all.

Finally, a major question is how to vectorize. A first step would be to uncover the local
parallelism of pushdown and depth-register automata, in the spirit of [15]. Closing the
distance to actual applications will require replacing circuits with a more faithful abstraction
of the capabilities of CPUs.

References
1 Vince Bárány, Christof Löding, and Olivier Serre. Regularity problems for visibly pushdown

languages. In Proc. STACS 2006, pages 420–431. Springer, 2006. doi:10.1007/11672142_34.
2 David A. Mix Barrington and James C. Corbett. On the relative complexity of some languages

in NC1. Inf. Process. Lett., 32(5):251–256, 1989. doi:10.1016/0020-0190(89)90052-5.

https://doi.org/10.1007/11672142_34
https://doi.org/10.1016/0020-0190(89)90052-5

Barloy, Murlak and Paperman XX:23

3 Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets. Querying Graphs.
Morgan & Claypool Publishers, 2018. doi:10.2200/S00873ED1V01Y201808DTM051.

4 Robert D. Cameron, Ehsan Amiri, Kenneth S. Herdy, Dan Lin, Thomas C. Shermer, and Fred
Popowich. Parallel scanning with bitstream addition: An XML case study. In Proc. Euro-Par
2011, pages 2–13. Springer, 2011. doi:10.1007/978-3-642-23397-5_2.

5 Cristiana Chitic and Daniela Rosu. On validation of XML streams using finite state machines.
In Proc. WebDB 2004, pages 85–90. ACM, 2004. doi:10.1145/1017074.1017096.

6 Denis Debarbieux, Olivier Gauwin, Joachim Niehren, Tom Sebastian, and Mohamed Zergaoui.
Early nested word automata for XPath query answering on XML streams. Theor. Comput.
Sci., 578:100–125, 2015. doi:10.1016/j.tcs.2015.01.017.

7 Patrick Dymond. Input-driven Languages Are in Log N Depth. Inf. Process. Lett.,
26(5):247–250, January 1988. URL: http://dx.doi.org/10.1016/0020-0190(88)90148-2,
doi:10.1016/0020-0190(88)90148-2.

8 Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj D. Kalamkar, Greg Henry,
Hans Pabst, and Alexander Heinecke. Anatomy of high-performance deep learning convolutions
on SIMD architectures. In Proc. SC 2018, pages 66:1–66:12. IEEE / ACM, 2018. URL:
http://dl.acm.org/citation.cfm?id=3291744.

9 Alejandro Grez, Cristian Riveros, and Martín Ugarte. A formal framework for complex event
processing. In Proc. ICDT 2019, pages 5:1–5:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ICDT.2019.5.

10 Sascha Grunert and Daniel Schmidt. A comparison of regex engines, 2017.
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/. URL: https:
//rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/.

11 Ashish Kumar Gupta and Dan Suciu. Stream processing of XPath queries with predicates. In
Proc. SIGMOD 2003, pages 419–430. ACM, 2003.

12 Yeye He, Siddharth Barman, and Jeffrey F. Naughton. On load shedding in complex event
processing. In Proc. ICDT 2014, pages 213–224. OpenProceedings.org, 2014. doi:10.5441/
002/icdt.2014.23.

13 Eryk Kopczynski. Invisible pushdown languages. In Proc. LICS 2016, pages 867–872. ACM,
2016. doi:10.1145/2933575.2933579.

14 Geoff Langdale and Daniel Lemire. Parsing gigabytes of JSON per second. VLDB J.,
28(6):941–960, 2019. doi:10.1007/s00778-019-00578-5.

15 Filip Murlak, Charles Paperman, and Michal Pilipczuk. Schema validation via streaming
circuits. In Proc. PODS 2016, pages 237–249. ACM, 2016. doi:10.1145/2902251.2902299.

16 Damian Niwinski and Igor Walukiewicz. A gap property of deterministic tree languages. Theor.
Comput. Sci., 303(1):215–231, 2003. doi:10.1016/S0304-3975(02)00452-8.

17 Dan Olteanu. SPEX: streamed and progressive evaluation of XPath. IEEE Trans. Knowl.
Data Eng., 19(7):934–949, 2007. doi:10.1109/TKDE.2007.1063.

18 Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. Filter before you parse:
Faster analytics on raw data with sparser. Proc. VLDB Endow., 11(11):1576–1589, 2018.

19 Jean-Eric Pin. Proprietes syntactiques du produit non ambigu. In Proc. ICALP 1980, pages
483–499. Springer, 1980. doi:10.1007/3-540-10003-2_93.

20 Jean-Eric Pin. On reversible automata. In Proc. LATIN 1992, pages 401–416. Springer, 1992.
21 Jean Eric Pin and Raymond E. Miller. Varieties Of Formal Languages. Plenum Publishing

Co., 1986.
22 Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. Rethinking SIMD vectorization

for in-memory databases. In Proc. SIGMOD 2015, pages 1493–1508. ACM, 2015. doi:
10.1145/2723372.2747645.

23 Gang Ren, Peng Wu, and David A. Padua. An empirical study on the vectorization of
multimedia applications for multimedia extensions. In Proc. IPDPS 2005. IEEE, 2005.
doi:10.1109/IPDPS.2005.94.

https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1007/978-3-642-23397-5_2
https://doi.org/10.1145/1017074.1017096
https://doi.org/10.1016/j.tcs.2015.01.017
http://dx.doi.org/10.1016/0020-0190(88)90148-2
https://doi.org/10.1016/0020-0190(88)90148-2
http://dl.acm.org/citation.cfm?id=3291744
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/
https://rust-leipzig.github.io/regex/2017/03/28/comparison-of-regex-engines/
https://doi.org/10.5441/002/icdt.2014.23
https://doi.org/10.5441/002/icdt.2014.23
https://doi.org/10.1145/2933575.2933579
https://doi.org/10.1007/s00778-019-00578-5
https://doi.org/10.1145/2902251.2902299
https://doi.org/10.1016/S0304-3975(02)00452-8
https://doi.org/10.1109/TKDE.2007.1063
https://doi.org/10.1007/3-540-10003-2_93
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1109/IPDPS.2005.94

XX:24 Stackless

24 Luc Segoufin and Cristina Sirangelo. Constant-memory validation of streaming XML documents
against DTDs. In Proc. ICDT 2007, pages 299–313. Springer, 2007. doi:10.1007/11965893\
_21.

25 Luc Segoufin and Victor Vianu. Validating streaming XML documents. In Proc. PODS 2002,
pages 53–64. ACM, 2002.

26 Dan Suciu. From searching text to querying XML streams. J. Discrete Algorithms, 2(1):17–32,
2004.

27 Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of neural networks
on CPUs, 2011. Deep Learning and Unsupervised Feature Learning Workshop @ NIPS 2011.

28 Burchard von Braunmühl and Rutger Verbeek. Input-driven languages are recognized in log n
space. In Proc. FCT 1983, pages 40–51. Springer, 1983. doi:10.1007/3-540-12689-9_92.

29 Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu Hu, and
Heqing Zhu. Hyperscan: A fast multi-pattern regex matcher for modern CPUs. In Proc.
NSDI 2019, pages 631–648. USENIX Association, 2019. URL: https://www.usenix.org/
conference/nsdi19/presentation/wang-xiang.

30 Haopeng Zhang, Yanlei Diao, and Neil Immerman. On complexity and optimization of
expensive queries in complex event processing. In Proc. SIGMOD 2014, pages 217–228. ACM,
2014. doi:10.1145/2588555.2593671.

31 Yichun Zhang. Regex engine matching speed benchmark, 2015.
http://openresty.org/misc/re/bench/. URL: http://openresty.org/misc/re/bench/.

32 Jingren Zhou and Kenneth A. Ross. Implementing database operations using SIMD instructions.
In Proc. SIGMOD 2002, pages 145–156. ACM, 2002. doi:10.1145/564691.564709.

https://doi.org/10.1007/11965893_21
https://doi.org/10.1007/11965893_21
https://doi.org/10.1007/3-540-12689-9_92
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://doi.org/10.1145/2588555.2593671
http://openresty.org/misc/re/bench/
https://doi.org/10.1145/564691.564709

Barloy, Murlak and Paperman XX:25

A Proof of Proposition 3

Let us recall the statement.

I Proposition 30. Restricted depth-register automata recognize regular tree languages.

Proof. Consider a restricted depth-register automaton

A = (Γ, Q, qinit , F,Ξ, δ) .

The run of A on a tree T can be represented by means of an auxiliary labelling of the nodes
of T with elements of(

2Ξ ×Q
)
× 2Ξ ×

(
2Ξ ×Q

)
where for each node v in T , if v gets auxiliary label(

(X, p), Y, (Z, q)
)

then
upon reading the opening tag of v, A loads the current depth to registers in X and moves
to state p;
when processing the infix of 〈T 〉 delimited (exclusively) by the opening and closing tags
of v, A loads some current depth to exactly those registers that belong to Y ;
upon reading the closing tag of v, A loads the current depth to registers in Z and moves
to state q.

In what follows, we shall refer to q as the exit state of v.
The correctness of the auxiliary labelling can be equivalently expressed in a more local

way, relying on the transition function of A. Suppose that a node v has label a in T and
auxiliary label

(
(X, p), Y, (Z, q)

)
, and its children v1, v2, . . . , vn have labels a1, a2, . . . , an in

T and auxiliary labels
(
(Xi, pi), Yi, (Zi, qi)

)
for i ∈ {1, 2, . . . , n}. Then,

Y =
n⋃
i=1

Xi ∪ Yi ∪ Zi

and for all i ∈ {1, 2, . . . , n},

(Xi, pi) = δ(p′i, ai,Ξ, ∅) ,
(Zi, qi) = δ(q′i, ai,Ξ \ (Xi ∪ Yi), X ∪ Z1 ∪ . . . Zi−1 ∪Xi ∪ Yi) ,

where
p′1 = p and p′i = qi−1 for i ∈ {2, . . . , n};
q′i = pi if vi is a leaf and otherwise q′i is the exit state of the last child of vi.

If v is the root of T , it must also hold that

(X, p) = δ(qinit , a,Ξ, ∅) and (Z, q) = δ(q′, a,Ξ \ Y,Ξ) ,

where q′ = p if v is a leaf and otherwise q′ is the exist state of the last child of v (that is,
q′ = qn). The rephrased condition is equivalent to the original one precisely because in a
restricted depth-register automaton we have the guarantee that Xi ∪ Yi ⊆ Zi.

To show that the tree language recognized by A is regular it suffices to observe that it
can be recognized by a nondeterministic tree automaton that guess an auxiliary labelling of
the input tree, checks its correctness by verifying the rephrased condition, and accepts if the
second state in the auxiliary label of the root belongs to F . J

XX:26 Stackless

B Proof of Proposition 11

Let us recall the statement of the proposition.

I Proposition 31. The class of stackless queries invariant under sibling order is contained
in the class of RPQs.

Proof. Consider a query Q invariant under sibling order, realized by a depth-register au-
tomaton B. It follows immediately, that Q is fully described by the answers it gives on the
leftmost branch of every tree. But these answers are determined by the word on the path
from the root to the current node. Hence, Q is a path query and it is fully described by its
behaviour on single-branch trees. Consider the run of B on the prefix of the encoding of
such a tree, consisting of all opening tags. In such a run, the current depth is always strictly
greater than all values stored in the registers, so the registers can be eliminated from the
automaton. Over single-branch trees, the resulting finite automaton over Γ ∪ Γ̄ selects the
same nodes as B. By restricting the alphabet to Γ, we obtain an automaton recognizing
L. J

C Proof of Proposition 13

We recall the formulation of the proposition.

I Proposition 32. It is decidable if the query realized by a given restricted depth-register
automaton is an RPQ.

Proof. By Proposition 11, a stackless query is an RPQ iff it is a path query. We phrase the
argument for the latter property.

A marked tree over Γ is a tree over Γ × {0, 1}; marked nodes in such a tree are those
with labels from Γ× {1}. Let us fix a unary query Q. For a tree T over Γ we let TQ be the
marked tree over Γ obtained from T by marking nodes from Q(T). Let MQ be the set of
all such TQ with T ranging over all trees over Γ. The query Q is a path query if and only
if there exists a language L over Γ × {0, 1} such that MQ = ML, where ML is the set of
marked trees over Γ where each direct path from the root to a marked node is labelled with
a word from L. Moreover, if Q is a path query, then we can take for L the language LQ
obtained by restricting MQ to trees that consist of a single branch with marked leaf. Hence,
Q is a path query if and only if MQ = MLQ

.
It is easy to turn this characterization into an algorithm. Suppose that we are given a

restricted depth-register automaton A and let Q be the query it realizes. Based on (the
proof of) Proposition 3, it is easy to construct a tree automaton B recognizing MQ. Next, we
intersect B with a tree automaton recognizing single-branch trees with marked leaf, interpret
the result as a word automaton, and thus obtain an automaton C that recognizes the language
LQ. Finally, we easily turn C into a tree automaton D recognizing MLQ

. Thus, testing if
the query realized by A is a path query reduces to testing if the tree automata B and D are
equivalent, which is well known to be decidable. J

D Proof of Lemma 23

Let us recall the statement of the lemma.

I Lemma 33. Let L ⊆ Γ∗ be a regular language.

Barloy, Murlak and Paperman XX:27

1. L is A-flat iff Lc is E-flat.
2. L almost-reversible iff it is both A-flat and E-flat.

Proof. Let A be the minimal automaton of L. Then Ac, obtained from A by swapping
accepting and rejecting states, is the minimal automaton of Lc. A state q is acceptive in A
iff it is rejective in Ac. It follows that A is A-flat iff Ac is E-flat.

For the second part, observe that states p and q in Definition 22 are internal, so every
almost-reversible automaton is A-flat and E-flat. For the converse, consider a minimal
automaton A that is A-flat and E-flat. We begin with an auxiliary claim.

We call an SCC X a sink if for each q ∈ X and each u ∈ Γ∗, q · u ∈ X. We claim that if
a sink SCC X is reachable from an internal state p, then X contains a state q that is almost
equivalent to p. Indeed, suppose that p · w ∈ X. Because X is a sink, p · wn ∈ X for all
n > 0. Consequently, there exist n, k > 0 such that p · wn = p · wn · wk. Moving n positions
backwards in the cyclic list of states p ·wn, p ·wn+1, . . . , p ·wn+k−1, starting from p ·wn, we
find a state q = p · wn+k−n mod k ∈ X that meets with p. Because X is a sink, p and q can
only meet in some r ∈ X. But then p and q also meet in q. Because q is either rejective or
acceptive, and A is both E-flat and A-flat, it follows that p and q are almost equivalent.

To see that A is almost-reversible, take two internal states p1 and p2 that meet. Then,
p1 and p2 meet in some sink SCC X. Consequently, there exists a non-empty word w and
state r ∈ X such that p1 · w = p2 · w = r. By the auxiliary claim, X contains states q1 and
q2 that are almost equivalent to p1 and p2, respectively. By Lemma 16 and the minimality
of A, we get q1 · w = p1 · w = r = p2 · w = q2 · w; that is, the states q1, q2 ∈ X meet in
X. Consequently, q1 meets with q2 in q2, and because q1 is obviously internal, it follows by
E-flatness or A-flatness that q1 and q2 are almost equivalent. It follows that p1 and p2 are
almost equivalent, too. J

E Proof of Lemma 24

Let us recall the statement of the lemma.

I Lemma 34. If L is an E-flat language, then EL is a registerless tree language.

Proof. Let A be the minimal automaton of L. We first construct an automaton B simulating
A in a certain precise sense, and then we turn B into an automaton recognizing EL.

Like in the simulation of almost-reversible automata, the high-level idea is to maintain
the state of A after processing ŵ up to almost equivalence, except that if at any point the
maintained state becomes non-rejective, the simulating automaton moves to an all-accepting
sink state >. But because the internal structure of E-flat automata is much richer then that
of almost-reversible ones, the simulating automaton B needs more information.

After reading a prefix w of the encoding of the input tree, the simulating automaton B
will store a synopsis of the run of A on ŵ. The goal of the synopsis is to list the transitions
that moved the run from one SCC of A to the next one. However, because the automaton A
is not reversible, taking the transitions backwards when processing closing tags will introduce
certain ambiguity into the stored transitions. Namely, the origins of the transitions will be
split states, defined as pairs (p, q) such that q is rejective and either p = q or p is internal and
meets with q in q. E-flatness guarantees that for each split state (p, q), the states p and q are
almost equivalent. By minimality, transitions from split states have unambiguous targets.

A split transition is a tuple (p, q, a, r) such that (p, q) is a split state and p · a = q · a = r.
A synopsis for A is an alternating sequence of state triples and letters, written as

(r0, p0, q0) a1−→ (r1, p1, q1) a2−→ · · · a`−→ (r`, p`, q`) , (9)

XX:28 Stackless

such that r0 is the initial state of A, each (pi, qi, ai+1, ri+1) is a split transition in A, (p`, q`)
is a split state in A, and

for each i < `, the states qi and ri+1 are in different SCCs;
for each i ≤ `, qi belongs to the SCC of ri and either pi belongs to the SCC of ri or i > 0
and pi = pi−1 = qi−1.

Observe that the states qi represent a chain of different SCCs, so `+ 1 is bounded by the
depth of the DAG of SCCs of A.

The empty word ε is compatible only with synopses (r0, p0, q0) with r0 ∈ {p0, q0}. For
u ∈ Γ∗ and a ∈ Γ, the word ua is compatible with a synopsis σ of the form (9) if r0·ua ∈ {p`, q`}
and one of the following holds:
(a) r0 · u is in the SCC of r0 · ua, and u is compatible with the synopsis obtained from σ by

replacing (r`, p`, q`) with (r`, r0 · u, r0 · u);
(b) ` > 0, r0 · u ∈ {p`−1, q`−1}, a = a`, and u is compatible with the synopsis obtained from

σ by removing the suffix a`−→ (r`, p`, q`);
(c) ` > 0, r0 · ua = p` = p`−1 = q`−1, and ua is compatible with the synopsis obtained from

σ by removing the suffix a`−→ (r`, p`, q`).
Note that if some u is compatible with σ and r0 · u = p`, then u is compatible with every
synopsis obtained from σ by replacing q` with some other state; similarly with p` and q`
swapped.

The states of B include all synopses for A and two sink states: all-accepting > and
all-rejecting ⊥. The simulation invariant is that after processing a proper prefix w of the
encoding of the input tree, either B is in the state > and r0 · v̂ is non-rejective for some prefix
v of w, or B is in a synopsis state σ and ŵ is compatible with σ and if the last symbol of w
is an opening tag then p` = q`.

Let r0 be the initial state of A. If r0 is rejective, the initial state of B is (r0, r0, r0);
otherwise, it is >. The invariant clearly holds before the first tag is processed. Let us see
how to define transitions from a synopsis state σ of the form (9) to propagate the invariant.

Suppose that an opening tag a is read and let s = p` · a = q` · a. If s is not rejective, move
to >. If s is rejective and belongs to the SCC of q`, continue with (r`, p`, q`) replaced with
(r`, s, s) in σ. If s is rejective but does not belong to the SCC of q`, continue with a−→ (s, s, s)
appended to σ. The invariant propagates.

Suppose a closing tag ā is read. If p` is not internal, then p` = q` = r0, which is only
possible if σ = (r0, r0, r0). The automaton B then moves to ⊥. Assume that the invariant
holds before ā is processed. Then, r0 · w̄ = r0. Because r0 is not internal, it follows that w is
empty. Hence, wā = ā, which is not a prefix of the encoding of any tree, and the state of B
after processing wā does not matter. If p` is internal, we consider four cases depending on
whether p` and q` are in the same SCC of A, and whether the shape of the synopsis allows
backtracking via a transition that originates outside of the SCC of q`.

Case A: p` and q` are in the same SCC X, and either r` /∈ {p`, q`} or a 6= a` or p`−1 is
not internal; that is, we can only take (backward) transitions within X. Consider

P =
{
p ∈ X

∣∣ p · a ∈ {p`, q`}} .
Because X contains the internal state p` and the rejective state q`, all states in X are internal
and rejective. The same holds for P ⊆ X. Pick any two p, q ∈ P . Because p` and q` meet
inside X, so do p and q. It follows that p and q meet in q. Hence, (p, q) is a split state, and
p and q are almost equivalent. In a minimal automaton there can be at most two different
almost equivalent states, so |P | ≤ 2. If P = ∅, then B moves to ⊥. Otherwise, P = {p′, q′}
for some p′ and q′, and B continues, replacing (r`, p`, q`) with (r`, p′, q′). Suppose that the

Barloy, Murlak and Paperman XX:29

invariant holds before ā is processed. If it holds by (a), then r0 · ŵā ∈ P = {p′, q′} and ŵā is
compatible with the synopsis obtained from σ by replacing (r`, p`, q`) with (r`, r0 · ŵā, r0 · ŵā).
Suppose that the invariant holds by (b). This implies that r` ∈ {p`, q`} and a = a`, so it
must be the case that p` is not internal. Then q` is equal to p`, so not internal either. By (b),
r0 · ŵā ∈ {p`−1, q`−1}, so it is non-internal too. Consequently, ŵā is the empty word, which
is possible only if wā is the complete encoding of the input tree. But then the invariant is
not required to hold. Finally, the invariant cannot hold by (c), because it would imply that
q`−1 and q` are in the same SCC, which is forbidden by the definition of synopsis.

Case B: p` and q` are in the same SCC X, and also r` ∈ {p`, q`}, a = a`, and p`−1 is
internal; that is, we can also take (backward) transitions that leave X. Note that this is
possible only if ` > 0. Consider again the set P ⊆ X introduced above. If P = ∅, then
B continues, removing the suffix a`−→ (r`, p`, q`) from the synopsis. In this case, only the
condition (b) of the invariant might hold before processing ā, so ŵā is compatible with
the modified synopsis, and the invariant propagates. Assume that P is nonempty. Let
p′ ∈ {p`−1, q`−1} and q′ ∈ P . We know that p′ · a and q′ · a belong to {p`, q`}, and that p`
and q` meet in X, so we also have that p′ and q′ meet in X. Because q′ ∈ P ⊆ X, it follows
that p′ and q′ meet in q′. As p`−1 is assumed to be internal, so is q`−1, and consequently
also p′. The state q′ is rejective because all states in P are. It follows that (p′, q′) is a split
state, so p′ and q′ are almost equivalent. Because p′ ∈ {p`−1, q`−1} ⊆ Xc and q′ ∈ P ⊆ X,
we conclude that p′ 6= q′. Using again the fact that there are at most two different almost
equivalent states in every minimal automaton, we get that p′ = p`−1 = q`−1 and {q′} = P .
The automaton B continues, replacing (r`, p`, q`) with (r`, p′, q′) in the synopsis σ. If the
invariant holds before processing ā, then either (a) or (b) holds. If (a) holds, then r0 · ŵā = q′,
and the invariant propagates like before. If (b) holds, then r0 · ŵā = p′ = p`−1 = q`−1, and
after processing ā, (c) will hold.

Case C: q` is in SCC X but p` /∈ X, and either r` /∈ {p`, q`} or a 6= a`. We then have
p` = p`−1 = q`−1. Suppose p · a = p` for some internal p and q · a = q` for some q ∈ X. Then
it easily follows that p meets with q in q, and so p and q are almost equivalent. Consequently,
p · a = p` and q · a = q` are equal, which is impossible because p` /∈ X. Thus, p and q cannot
both exist.

If p does not exist, B moves to the state it would take from the synopsis σ′ obtained from
the current one by replacing (r`, p`, q`) with (r`, q`, q`) in σ. Note that σ′ falls into Case A.
Suppose that the invariant holds before processing ā. If it is by (a), then r0 · ŵ = q`, so ŵ will
also be compatible with σ′ and the invariant will propagate as shown in Case A. The invariant
cannot hold by (b), because this would imply that r` ∈ {p`, q`} and a = a`, and we have
assumed the contrary. Suppose that the invariant holds by (c). Then (r0 · ŵā) ·a = r0 · ŵ = p`.
But, as we have shown, there are no internal states p such that p · a = p`. Hence, r0 · ŵā is a
noninternal state. This is possible only if ŵā is empty. Then, wā is the whole encoding of
the input tree, and the invariant is not required to hold any more.

If q does not exist, the state is chosen similarly, but this time we obtain σ′ by removing
the suffix a`−→ (r`, p`, q`) from σ. Note that σ′ falls into Case A or Case B: p`−1 is internal
because it is equal to p`, and p`−1 and q`−1 are in the same SCC because they are equal.
If the invariant holds before processing ā, then it must be by (c). Then, ŵ will also be
compatible with σ′, and the invariant will propagate as shown in Cases A and B.

Case D: q` is in SCC X but p` /∈ X, and both r` ∈ {p`, q`} and a = a`. It then follows
that p` = p`−1 = q`−1 and r` = q`. Consequently, p` · a = q` and, because p` and q` are
almost equivalent, q` · a = q`. Suppose that p · a = p` for some internal state p. Then, we
have p · aa = q` · aa = q`; that is, p meets with q` in q`. Since q` is rejective, it follows

XX:30 Stackless

that p and q` are almost equivalent. But that means that p` = p · a = q` · a = q`, which
is impossible because p` /∈ X. Hence, no such p exists. Suppose that q · a = q` for some
q ∈ X \ {q`}. Then q · a = q` · a = q` and it follows that q is almost equivalent to q`. But this
is impossible because together with p` /∈ X this would give three different almost equivalent
states. Hence, such q also does not exist. We let B continue with the same synopsis. Suppose
that the invariant holds before processing ā. If it is by (a), then r0 · ŵā = q`, because it
is the only state in X from which the transition over a leads to {p`, q`}, and the invariant
propagates. If the invariant holds by (b), then r0 · ŵā ∈ {p`−1, q`−1}, but p`−1 = q`−1 = p`,
so for ŵā and σ we will have (c). Finally, if the invariant holds by (c), it follows that wā is
the whole encoding of the input tree, like in the first subcase of Case C, and the invariant is
not required to hold any more.

This completes the construction of B and the proof that every run of B over the encoding
of a tree T satisfies the invariant. Directly from the invariant it follows that after reading a
prefix wa of 〈T 〉 for a opening tag a, we have p` = q` = r0 · ŵa. To recognize EL it suffices
to enrich the synopsis states of B with the information about the most recently read tag,
and move directly to > whenever a closing tag ā is read in a state storing the opening tag
a and a synopsis with p` = q` accepting in A. The resulting automaton B′ enters > in the
situation described above or if it encounters a prefix v of the encoding such that r0 · v is not
rejective. In the first case, the automaton B′ has detected a leaf such that the branch leading
to it is labelled by a word from L. In the second case, B′ has detected a node such that each
branch containing this node is labelled by a word from L. Correctness of B′ follows. J

F Proofs of lemmas from Section 3.4

We recall the formulations of the lemmas.

I Lemma 35. Suppose that c1 ≈i,j c2. For every word w such that i ≤ bwc ≤ dwe ≤ j, it
holds that c1 · w ≈i−‖w‖,j−‖w‖ c2 · w.

Proof. It suffices to show the lemma for the case when w is a single letter; the general claim
follows by straightforward induction on the length of w. Suppose that w = a ∈ Γ. Then,
bwc = dwe = 1. Because c1 ≈i,j c2 and i ≤ 1 ≤ j, it follows the same transition over a will
be taken from c1 and c2. After the transition is taken, the absolute thresholds between the
three kinds of behaviour of registers listed in the definition of ≈ do not change, but because
the current depth increases by one, the relative thresholds have to be adjusted. This gives
precisely c1 · a ≈i−1,j−1 c2 · a. For w = ā the argument is entirely analogous. J

I Lemma 36. Let ci = (qi, di, ηi) with i ∈ [1; 4] be configurations of a depth-register
automaton B and let y, z ∈ (Γ ∪ Γ̄)+ be descending words such that c1

y−→ c2
z−→ c3

y−→ c4. If
img(η1) ⊆ (−∞; d1] and c1 ∼ c3, then img(η4) ∩ (d1; d2] = ∅.

Proof. Because y and z are descending, from img(η1) ⊆ (−∞; d1] it follows that img(η3) ⊆
(−∞; d3]. Combining this with c1 ∼ c3, we conclude that from configurations c1 and c3 the
same sequence of transitions will be taken while processing y. But this implies that if a
depth d ∈ (d1; d2] was stored in some register ξ while processing y from c1, the corresponding
depth d′ ∈ (d3; d4] will be stored in ξ while processing y from c3. That is, each depth stored
when the first copy of y was processed, is overwritten when the second copy of y is processed.
Because img(η1) ⊆ (−∞; d1], and both y and z are descending, there is no other way of
putting a value from the segment (d1; d2] into registers. J

Barloy, Murlak and Paperman XX:31

I Lemma 37. Let B be a depth-register automaton with k states and ` registers, and let
n ≥ k · (`+ 1). For every configuration c = (q, d, η) of the automaton B and every descending
or ascending word x ∈ (Γ ∪ Γ̄)+, if

img(η) ∩
[
d+

⌊
x3·n!⌋ ; d+

⌈
x3·n!⌉] = ∅ ,

then
1. c · xn! ∼ c · xn! · xn!; and
2. c · xn! · xn! ≈bxn!c−‖xn!‖,dxn!e−‖xn!‖ c · xn! · xn! · xn!.

Proof. It is well known that for every deterministic finite automaton A over Γ ∪ Γ̄ with at
most n states, p · wn! = p · wn! · wn! for every state p and every word w. To see why this
is the case, let us analyze the evolution of the state after processing successive copies of w.
Already after processing at most n copies a state will repeat, and because A is deterministic,
we will start looping around a cycle in A. After processing all n! copies we are still on the
cycle, of course. After processing any number of copies that is divisible by the length of the
cycle (measured in the number of w-steps, not single letters), we return to the same state.
Because the length of the cycle is at most n, and n! is divisible by every number between 1
and n, the claim follows.

The lemma is proved in a similar fashion. Suppose x is descending; the argument for
ascending x is entirely analogous. Throughout the run on xn! · xn! · xn! from c, the current
depth stays within

[
d+

⌊
x3·n!⌋ ; d+

⌈
x3·n!⌉]. Consequently, comparisons with values from

img(η) give the same result at every step of this run. Moreover, because x is descending,
depths stored when processing the ith copy of x are all strictly smaller than every depth
that occurs when processing the jth copy of x for all j > i. Consequently, the behaviour of
B when processing the (i+ 1)st copy of x is determined by the state and the set of registers
storing values not greater than the current depth—after processing the ith copy of x. Because
the set of registers can only grow as the successive copies of x are processed, after processing
at most k · (`+ 1) copies of x a state-set pair will repeat. Because the sets only grow, all
state-pairs in between share the same set. It follows that when processing subsequent copies
of x, this sequence of state-pairs will repeat in a cyclic fashion. Because the length of this
sequence is at most k · (`+ 1), it follows like before that the state-set pairs corresponding
to c · xn! and c · xn! · xn! coincide. This implies item (1) of the lemma. In configuration
c · xn! · xn! some registers store the same value from(
−∞; d+

⌈
xn!⌉] ∪ (d+

⌈
x3·n!⌉ ;∞

)
that they stored in configuration c · xn!, and into the remaining registers some values from(

d+
⌈
xn!⌉ ; d+

⌈
x2·n!⌉]

were loaded when the second copy of xn! was being processed. Because the state-set pairs
corresponding to c · xn! and c · xn! · xn! coincide, processing the third copy of xn! will load
into the same registers the corresponding (that is, shifted by ‖xn!‖) values, and no other
load operations will be performed. This implies item (2) of the lemma. J

G Blind classes

We shall use the symbol C for the universal closing tag. The term encoding [T] ∈
(
Γ∪{C}

)∗
of a tree T with a-labelled root and immediate subtrees T1, T2, . . . , Tn is

[T] = a [T1] [T2] . . . [Tn] C .

XX:32 Stackless

s

tu1(u2)n!

x

u1(u2)n!

x

(a) Tree S.

s

u1(u2)n!−1

tu2(u2)n!

x

u1(u2)n!

x

(b) Tree S′.

Figure 7 Blind variants of fooling trees in Lemma 25.

Correspondingly, for u = a1a2 · · · an ∈ Γ∗ we let ū =Cn. Like for the markup encoding, we
let [L] =

{
[T]
∣∣ T ∈ L} for every tree language L over Γ.

A tree language L over Γ is term-registerless (resp. term-stackless) if there exists a finite
automaton (resp. depth-register automaton) over Γ ∪ {C} that accepts all words from [L]
and rejects all words from [Lc]. A unary query Q is term-registerless (resp. term-stackless) if
there exists a finite automaton (resp. depth-register automaton) over Γ∪{C} that pre-selects
nodes in Q(T) when running over [T].

We say that states p and q blindly meet in state r if there exist words u1, u2 ∈ Γ∗ such that
|u1| = |u2| and p · u1 = q · u2 = r. By replacing ‘meet’ with ‘blindly meet’ in Definitions 17,
19 and 22, we get the definitions of the syntactic classes of blindly almost-reversible, blindly
HAR, blindly A-flat, and blindly E-flat word languages.

I Theorem 38. Let L be a regular language.
1. EL is a term-registerless tree language iff L is blindly E-flat.
2. AL is a term-registerless tree language iff L is blindly A-flat.
3. The following conditions are equivalent:

a. QL is a term-registerless unary query;
b. EL and AL are term-registerless tree languages;
c. L is blindly E-flat and blindly A-flat;
d. L is blindly almost-reversible.

Proof. The argument is fully analogous to that in Theorem 15, with Lemmas 18 and 23
to 25. replaced by their analogues for term-registerless, blindly E-flat, blindly A-flat, and
blindly almost-reversible languages.

The analogue of Lemma 18 states that if L is a blindly almost-reversible language, then
QL is a term-registerless query. The proof is almost identical, except that when the closing
tag C is read in state p, we pick any state p′ such that p′ · a is almost equivalent to p for
some a ∈ Γ; because L is blindly almost-reversible, the original argument now shows also
that the choice of a does not matter.

The analogue of Lemma 23 states that a regular language is blindly A-flat iff its comple-
ment is blindly E-flat, and that it is blindly almost-reversible iff it is both blindly A-flat and
blindly E-flat; it is proved just like the original.

The analogue of Lemma 24 states that if L is blindly E-flat, then EL is term-registerless.
The proof is an adaptation of the original one to the blind setting. The states of the
simulating finite automaton, the simulation invariant, the transitions over opening tags, and
the transformation into an automaton recognizing EL are entirely analogous, with ‘meet’
replaced everywhere with ‘blindly meet’; in particular, we keep the labels a1, . . . , a` in the
synopsis. However, the behaviour of the simulating automaton over the closing tag needs to

Barloy, Murlak and Paperman XX:33

be adjusted so that it does not rely on the label of the current node. We begin by dropping
all references to the current label in the conditions defining Cases A–D, which gives
Case A’: p`, q` ∈ X but either r` /∈ {p`, q`} or p`−1 is not internal;
Case B’: p`, q` ∈ X, r` ∈ {p`, q`}, and p`−1 is internal;
Case C’: q` ∈ X, p` /∈ X, and r` /∈ {p`, q`};
Case D’: q` ∈ X, p` /∈ X, and r` ∈ {p`, q`}.
In each of these cases the simulating automaton needs to consider all possible values of the
current label. That is, in Cases A’ and B’, the set P is now defined as

P =
{
p ∈ X

∣∣ p · a ∈ {p`, q`}, a ∈ Γ
}
,

and in Case C’ we look at p ·a1 = p` and q ·a2 = q` for arbitrary a1, a2 ∈ Γ. Apart from these
differences, the arguments in Cases A’–C’ are analogous to the original ones. Let us have
a closer look at Case D’. Like before we have p` = p`−1 = q`−1 and r` = q`. Consequently,
p` · a` = q` and, because p` and q` are almost equivalent, q` · a` = q`. Suppose that p · a = p`
for some internal state p and some a ∈ Γ. Then, we have p · aa` = q` · a`a` = q`; that is,
p blindly meets with q` in q`. Since q` is rejective, it follows from blind E-flatness that p
and q` are almost equivalent. Consequently, q` · a = p · a = p`. Because we also have that
p` · a` = q`, it follows that p` ∈ X which is a contradiction. Hence, such p cannot exist. One
then argues, like in the markup case, that there is no q ∈ X \ {q`} for which there exists
a ∈ Γ such that q · a = q`, and that letting the simulating automaton continue with the same
synopsis preserves the invariant.

Finally, the analogue of Lemma 25 states that for each regular language L, if EL is
term-registerless, then L is blindly E-flat. This time there are important differences in the
proof; we sketch it below.

We show that if L is not blindly E-flat, then [EL] cannot be separated from [(EL)c] by a
finite automaton. Suppose that the minimal automaton A of L ⊆ Γ∗ is not E-flat. Let i be
the initial state of A. Then, there exist words s, t, u1, u2 ∈ Γ+, x ∈ Γ∗ and states p, q such
that |u1| = |u2|, i · s = p, p · u1 = q · u2 = q, q · x is rejecting, and p · t is accepting iff q · t
is rejecting. It follows that for each k > 0, su1(u2)kx ∈ Lc, and st ∈ L iff s(u1)(u2)kt ∈ Lc.
Unlike for the markup encoding, the construction of the fooling trees depends on whether
st ∈ L or st ∈ Lc

Suppose first that st ∈ Lc. Then, the trees S, S′ used in Lemma 25 should be replaced
with the ones in Figure 7a. We have S /∈ EL and S′ ∈ EL. Note that we have no control on
whether the rightmost branch of S′ is labelled by a word from L or not, but it is irrelevant,
because we know that the middle branch is. The term encodings of S and S′ satisfy the
following:

[S] = s · u1(u2)n! xx̄ (ū2)n!ū1 tt̄ u1(u2)n! xx̄ (ū2)n!ū1 s̄ ,

[S′] = s u1(u2)2·n! xx̄ (ū2)n!ū2 tt̄ u1(u2)n! xx̄ (ū2)n!ū1(ū2)n!−1ū1 s̄

= s u1(u2)2·n! xx̄ (ū2)n!ū1 tt̄ u1(u2)n! xx̄ (ū2)n!ū2(ū2)n!−1ū1 s̄

= s u1(u2)2·n! xx̄ (ū2)n!ū1 tt̄ u1(u2)n! xx̄ (ū2)2·n!ū1 s̄ ,

because |u1| = |u2| implies ū1 = ū2. The rest of the proof is identical.
If st ∈ L, in S we replace u1 on the rightmost branch with u2, and we modify S′

accordingly. It then holds that S ∈ EL regardless of whether su2(u2)n!x belongs to L or not,
and S′ /∈ EL; the proof again continues like in Lemma 25. J

I Theorem 39. For each regular language L, the following conditions are equivalent:

XX:34 Stackless

1. QL is a term-stackless unary query;
2. EL is a term-stackless tree language;
3. AL is a term-stackless tree language;
4. L is blindly HAR.

Proof. The argument is fully analogous to that in Theorem 14, with Lemmas 20, 21 and 29
replaced by their analogues for term-stackless and blindly HAR languages.

The analogue of Lemma 20 states that the class of blindly HAR languages is closed under
complement, which is immediate from the definition just like for HAR languages.

The analogue of Lemma 21 states that if L blindly HAR then QL is term-stackless. The
proof is analogous, with the only modification being what we did with Lemma 18 in the
proof of Theorem 38: when the closing tag C is read in state p and the current depth is
greater than or equal to the maximal stored depth, we pick any state p′ such that p′ · a is
almost equivalent to p for some a ∈ Γ. Because L is blindly HAR, the original argument now
shows also that the choice of a does not matter.

Finally, the analogue of Lemma 29 states that for each regular language L, if EL is a
term-stackless tree language then L is blindly HAR. The proof is obtained by adjusting the
proof of Lemma 29 just like the proof of Lemma 25 was adjusted in Theorem 38. This time
there is only one case because we know that s(wu1 + vu2)∗wt ⊆ Lc and s(wu1 + vu2)∗vt ⊆ L,
and not the other way around. In the tree R shown in Figure 5, the copies of u immediately
following copies of w should be replaced by u1 and those immediately following v should be
replaced by u2. From there, the proof continues like before. J

	Introduction
	Computational model
	Depth-register automata
	Recognizing streamed tree languages
	Querying streamed trees

	Characterization theorems
	Almost-reversibility
	Hierarchical almost-reversibility
	Flatness
	Inexpressibility

	Discussion
	Tree languages defined by DTDs
	 A different encoding of trees
	Outlook

	Proof of Proposition 3
	Proof of Proposition 11
	Proof of Proposition 13
	Proof of Lemma 23
	Proof of Lemma 24
	Proofs of lemmas from Section 3.4
	Blind classes

