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Many real-world problems require to optimise trajectories under constraints.
Classical approaches are based on optimal control methods but require an ex-
act knowledge of the underlying dynamics, which could be challenging or even
out of reach. In this paper, we leverage data-driven approaches to design a
new end-to-end framework which is dynamics-free for optimised and realistic
trajectories. We first decompose the trajectories on function basis, trading
the initial infinite dimension problem on a multivariate functional space for
a parameter optimisation problem. A maximum a posteriori approach which
incorporates information from data is used to obtain a new optimisation prob-
lem which is regularised. The penalised term focuses the search on a region
centered on data and includes estimated linear constraints in the problem.
We apply our data-driven approach to two settings in aeronautics and sailing
routes optimisation, yielding commanding results. The developed approach
has been implemented in the Python library PyRotor.
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1. Introduction

Many real-world problems require to optimise trajectories under constraints. The present
paper stems from an initial work on aeronautics, and the quest for designing fuel efficient
aircraft trajectories based on available flight data. We have reached a generic data-driven
methodology which falls in the much broader field of trajectory optimisation under con-
straints. As such, it has potential applications to many real world problems, such as in
robotics to minimise the work-based specific mechanical cost of transport (Srinivasan and
Ruina, 2006) or in aerospace to reduce the total thermal flux when a space shuttle re-enters
in the atmosphere (Trélat, 2012).

In aeronautics, optimisation problems are often formulated in terms of optimal control
problems (Codina and Menéndez, 2014; Girardet et al., 2014; Cots et al., 2018). They can
be solved by converting the problem into a parameter optimisation problem. This allows
to take into account the dynamics of the system, leading to realistic solutions complying
with additional constraints (we refer to Rao, 2009, for an overview).

Nevertheless the differential equations describing the dynamics of the system of interest
may be (partially) unknown. For instance, the differential system describing the motion
of an aircraft moving in an air mass (Rommel et al., 2019) involves the lift and drag
forces for which no analytic formulas exist. Aircraft manufacturer computes numerical
models by means of heavy simulations and wind tunnel tests. Another approach consists in
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reconstructing unknown forces based on physical formulas and available flight data; see for
instance Rommel et al. (2017); Dewez et al. (2020) for results in aeronautics and Ramsay
et al. (2007) in the generic setting of parameter estimation for differential equations.
However, while being promising, this reconstruction step requires restrictive assumptions
and the statistical errors may impact strongly the solution of the optimal control problem.
Moreover it does not tackle directly the optimisation problem.

The above approaches require intensive computations and may be affected by noise.
The aim of our work is to provide realistic trajectories without involving complex and
noisy dynamical systems. It is flexible enough and easily interpretable by experts while
permitting the use of efficient optimisation algorithms. In the present work, we leverage
available trajectory data to propose a thorough methodology which fulfils the above re-
quirements. Our approach learns a model based on the observed trajectories, allowing
in particular to extract some intrinsic properties in a data-driven way. It incorporates
this modelling into an optimisation problem through a Bayesian approach. The resulting
problem turns out to be constrained by the data in a simple and natural way. The main
benefit on this approach is that it directly uses the information contained in the data,
requiring no explicit information on the dynamics.

The methodology presented in this paper is specific to the situation where the user has
access to trajectory data but, at the same time, the approach is intended to be generic
enough so that it can be exploited in a wide range of applications. In particular it is
certainly not restricted to the aeronautic setting.

Our approach first assumes that all the trajectories belong to a finite-dimensional space,
which allows to reduce the complexity of the problem with low information loss for a well-
chosen basis. In a Bayesian framework, we assume that the prior distribution of trajectories
(through their related coefficients) is proportional to a decreasing exponential function of
the cost, assuming that efficient trajectories are a priori more likely than inefficient ones.
The observed trajectories, that we call reference trajectories, are interpreted as noisy
observations of an efficient one, the noise following a centered Gaussian multivariate dis-
tribution. In a Bayesian perspective it is thus possible to deduce the posterior distribution
of the efficient trajectory given the reference trajectories. For the sake of simplicity, we
focus on the mode of the posterior distribution, the related objective function involves
the cost of a trajectory and its squared Mahalanobis distance to a weighted average of
reference trajectories. It can be interpreted as a penalised optimisation problem.

The role of the penalisation in the objective function is to force the solution to be close to
real trajectories. The strength of the penalisation is here controlled by a hyper-parameter
and a tuning process is proposed to find an optimal balance between optimisation and
(non-linear) constraints verification. Hence the optimised trajectory may inherit a realistic
behaviour from the above closeness, even though the dynamics are not taken into account
in our problem. Further we note that this penalised term is actually quadratic and the
optimisation problem is constrained by affine functions. So in certain cases, the problem
is convex allowing to make use of very efficient algorithms.

A last remark on the penalised term is the fact that the underlying metrics is given
by a covariance matrix estimated on the reference trajectories. It is noteworthy that this
matrix not only indicates the most unconstrained directions for the optimisation but also
reveals linear relations between variables. In particular, some of these relations may reflect
the dynamics or may not be known by the user.

In a nutshell, this data-driven approach restricts the search space to a region centred
on the data in a metric space reflecting features estimated from the data. In particular
this property may help non-linear optimisation solvers to converge with a limited number
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of iterations.
Outline. We first describe our approach in Sec. 2. A brief description of the Python

library we have develop is provided in Sec. 3. Sec. 4 and Sec. 5 are devoted to applications:
the first one to the fuel reduction of aircraft during the climb and the second one to the
maximisation of the work of a force field along a path. We finish the paper by discussing
on future works to improve and generalise our optimisation methodology.

2. An end-to-end optimisation workflow based on observed
trajectories

We are interested in finding a trajectory y? which minimises a certain cost function F ,
namely a solution of the following optimisation problem:

ỹ? ∈ arg min
y∈AG(y0,yT )

F (y) . (1)

The set AG(y0, yT ), which is defined in Sec. 2.1, models the constraints the trajectory has to
comply with, such that the initial and final conditions. Note that a trajectory is typically
a multivariate function defined on an interval and its components are given by states and
controls (which are not distinguished in this paper for the sake of presentation). If the
constraints do not include the dynamics then the solution ỹ? may be by far unrealistic. A
strategy to force a more realistic pattern would be to add more user-defined constraints
to the problem (1), although this may be a complicated task and solving numerically the
resulting problem could be computationally expensive.

In view of this, we provide in this section our full workflow to obtain a new optimisation
problem which includes in a natural and simple way constraints coming from the data.
This problem is actually designed to provide trajectories which have a realistic behaviour.

We begin with elementary but necessary definitions for trajectories and constraints in
Sec. 2.1. We aim at stating the optimisation problem in a finite basis space so we de-
fine in Sec. 2.2 the mathematical formalisation of how we decompose each trajectory as
a projection on such a space. To extract information from the data for the optimisation
problem, a statistical modelling on the projected space of the available trajectory data
is done in Sec. 2.3. In Sec. 2.4, we put everything together to obtain our new optimisa-
tion problem Sec. 2.4 via a maximum a posteriori approach. Sec. 2.5 presents a handy
computation regarding the cost function in a quadratic case, for the sake of completeness.
Additional details can be found in the supplementary material. Sec. 2.6 focuses on a
hyperparameter tuning for an optimal tradeoff between optimisation and additional (non-
linear) constraints. Last but not least, Sec. 2.7 contains confidence intervals to assess the
accuracy of the predicted optimised cost when the cost function is known up to a random
noise term.

2.1. Admissible trajectories modelling

We start with definitions.

Definition 2.1 (Trajectory). Let T > 0 be a real number and let D > 1 be an integer. Any
continuous RD-valued map y defined on [0, T ], i.e. y ∈ C

(
[0, T ],RD

)
, is called a trajectory

over the time interval [0, T ]. The d-th component of a trajectory y will be denoted by y(d).
As such, a trajectory is at least a continuous map on a finite interval.
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When optimising a trajectory with respect to a given criterion, the initial and final states
are often constrained, that is to say the optimisation is performed in an affine subspace
modelling these endpoints conditions. This subspace is introduced just below.

Definition 2.2 (Endpoints conditions). Let y0, yT ∈ RD. We define the set D(y0, yT ) ⊂
C
(
[0, T ],RD

)
as follows:

y ∈ D(y0, yT ) ⇐⇒

{
y(0) = y0

y(T ) = yT
.

In many applications, the trajectories have to satisfy some additional constraints defined
by a set of (nonlinear) functions. For instance these functions may model physical or user-
defined constraints. In this paper, this set is not intended to include the dynamics of the
system. We define now the set of trajectories verifying such additional constraints.

Definition 2.3 (Additional constraints). For ` = 1, . . . , L, let g` be a real-valued function
defined on RD. We define the set G ⊂ C

(
[0, T ],RD

)
as the set of trajectories over [0, T ]

satisfying the following L inequality constraints given by the functions g`, i.e.

y ∈ G ⇐⇒ ∀ ` = 1, . . . , L ∀ t ∈ [0, T ] g`
(
y(t)

)
6 0 .

To finish we introduce the set of admissible trajectories which satisfy both the endpoints
conditions and the additional constraints.

Definition 2.4 (Admissible trajectory). We define the set AG(y0, yT ) ⊂ C
(
[0, T ],RD

)
as

follows:
AG(y0, yT ) := D(y0, yT ) ∩ G .

Any element of AG(y0, yT ) will be called an admissible trajectory.

2.2. Projection for a finite-dimensional optimisation problem

In our approach, a theoretical optimisation problem in a finite-dimensional space is desired
to reduce the inherent complexity of the problem. This can be achieved by decomposing
the trajectories on a finite number of basis functions. While raw signals are unlikely to
be described by a small number of parameters, this is not the case for smoothed versions
of these signals which capture the important patterns. In particular, given a family of
smoothed observed trajectories, one may suppose that there exists a basis such that the
projection error on a certain number of basis functions of any trajectory is negligible.

From now on, the trajectories we consider are assumed to belong to a space spanned
by a finite number of basis functions. For the sake of simplicity, we assume in addition
that all the components of the trajectories can be decomposed on the same basis but with
different dimensions. Extension to different bases is straightforward and does not change
our findings but burdens the notation.

Definition 2.5. Let {ϕk}+∞k=1 be an orthonormal basis of L2
(
[0, T ],R

)
with respect to the

inner product

〈f, g〉 =

∫ T

0
f(t) g(t) dt ,

such that each ϕk is continuous on [0, T ] and let K := {Kd}Dd=1 be a sequence of integers

with K :=
∑D

d=1Kd. We define the space of projected trajectories YK(0, T ) ⊂ C
(
[0, T ],RD

)
over [0, T ] as

YK(0, T ) :=
D∏
d=1

span {ϕk}Kdk=1 .
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If there is no risk of confusion, we write YK := YK(0, T ) for the sake of readability.

Remark 2.6. From the above definition, any projected trajectory y ∈ YK is associated
with a unique vector

c =
(
c

(1)
1 , . . . , c

(1)
K1
, c

(2)
1 , . . . , c

(2)
K2
, . . . , c

(D)
1 , . . . , c

(D)
KD

)T
∈ RK

defined by

c
(d)
k :=

〈
y(d), ϕk

〉
=

∫ T

0
y(d)(t)ϕk(t) dt . (2)

In other words, the vector c is the image of the trajectory y by the projection operator
Φ : C

(
[0, T ],RD

)
−→ RK defined by Φy := c, whose restriction Φ|YK

is bijective (as
the Cartesian product of bijective operators). In particular, the spaces YK and RK are
isomorphic, i.e. YK ' RK .

Regarding the endpoints conditions introduced in definition 2.2, we prove in the follow-
ing result that satisfying these conditions is equivalent to satisfying a linear system for a
projected trajectory.

Proposition 2.7. A trajectory y ∈ YK belongs to D(y0, yT ) if and only if its associated
vector c := Φy ∈ RK satisfies the linear system

A(0, T ) c = Γ , (3)

where the matrix A(0, T ) ∈ R2D×K and the vector Γ ∈ R2D are defined as follows

A(0, T ) :=



ϕ1(0) . . . ϕK1(0)
. . .

ϕ1(0) . . . ϕKD(0)
ϕ1(T ) . . . ϕK1(T )

. . .

ϕ1(T ) . . . ϕKD(T )


, Γ :=

(
y0

yT

)
.

Proof.Let y ∈ YK and let c := Φy ∈ RK . By the definition of the matrix A(0, T ), we
have

A(0, T ) c = A(0, T )
(
c

(1)
1 , . . . , c

(1)
K1
, c

(2)
1 , . . . , c

(2)
K2
, . . . , c

(D)
1 , . . . , c

(D)
KD

)T
=

(
K1∑
k=1

c
(1)
k ϕk(0), . . . ,

KD∑
k=1

c
(D)
k ϕk(0), . . . ,

K1∑
k=1

c
(1)
k ϕk(T ), . . . ,

KD∑
k=1

c
(D)
k ϕk(T )

)T

=

(
y(0)
y(T )

)
.

The conclusion follows directly from the preceding relation.

2.3. Reference trajectories modelling

Let us now suppose that we have access to I recorded trajectories yR1 , . . . , yRI , called
reference trajectories, coming from some experiments. We propose here a statistical mod-
elling for these reference trajectories, permitting especially to exhibit some linear proper-
ties. This modelling will permit to take advantage of the information contained in these
recorded trajectories when deriving optimisation problems in the next subsection.
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These trajectories being recorded, they are in particular admissible and we assume
that they belong to the space YK(0, T ). As explained previously they may be interpreted
as smoothed versions of recorded signals. In particular each reference trajectory yRi is
associated with a unique vector cRi ∈ RK . Moreover we consider each reference trajectory
as a noisy observation of a certain admissible and projected trajectory y∗. In other words
we suppose that there exists a trajectory y∗ ∈ YK ∩ AG(y0, yT ) associated with a vector
c∗ ∈ RK satisfying

∀ i = 1, . . . , I cRi = c∗ + εi .

The noise εi is here assumed to be a centered Gaussian whose covariance matrix Σi is of
the form

Σi =
1

2ωi
Σ ,

where Σ ∈ RK×K . It is noteworthy that this matrix will not be known in most of the cases
but an estimated covariance matrix can be computed on the basis of the reference vectors.
The positive real numbers ωi are here considered as weights so we require

∑I
i=1 ωi = 1 ;

each ωi plays actually the role of a noise intensity. Further from the hypothesis that the
trajectory y∗ and all the reference trajectories yRi verify the same endpoints conditions,
we deduce

AcRi = Ac∗ +Aεi ⇐⇒ Aεi = 0R2D ⇐⇒ εi ∈ kerA ,

for all i = 1, . . . , I (we shorten A(0, T ) in A when the context is clear). Hence the reference
vector c∗ satisfies the following I systems:

cRi = c∗ + εi

εi ∼ N(0RK ,Σi)

εi ∈ kerA

. (4)

To establish a more explicit system which is equivalent to the preceding one, we require
the following preliminary proposition. Here we diagonalise the matrices Σ and ATA by
exploiting the fact that the image of the first one is contained in the null space of the other
one and vice versa; this is shown in the proof. This property is actually a consequence
of the above modelling: the endpoints conditions modelled by A imply linear relations
within the components of the vectors, which should be reflected by the covariance matrix
Σ. The following result will be helpful to establish proposition 2.10.

Proposition 2.8. We define σ := rank Σ and a := rank ATA. In the setting of system
(4), we have σ+a 6 K and there exist an orthogonal matrix V ∈ RK×K and two matrices
ΛΣ ∈ RK×K and ΛA ∈ RK×K of the following form:

ΛΣ =

(
ΛΣ,1 0Rσ×(K−σ)

0R(K−σ)×σ 0R(K−σ)×(K−σ)

)
, ΛA =

(
0R(K−a)×(K−a) 0R(K−a)×a

0Ra×(K−a) ΛA,2

)
,

where ΛΣ,1 ∈ Rσ×σ and ΛA,2 ∈ Ra×a are diagonal matrices with positive elements, such
that

Σ = V ΛΣV
T , ATA = V ΛAV

T .

Proof.The starting point of the proof is to remark that we have

ΣATA = ATAΣ = 0RK×K . (5)
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Indeed using the hypothesis εi ∈ kerA for any i = 1, . . . , I gives

ΣATA = 2ωi ΣiA
TA = 2ωi E(εiε

T
i )ATA = 2ωi E

(
εi (Aεi)

T
)
A = 0RK×K ;

similar arguments prove the second equality in (5). First, we can deduce

Im Σ ⊆ kerATA , (6)

which leads to σ 6 K−a by the rank-nullity theorem. Equalities (5) show also that Σ and
ATA are simultaneously diagonalisable (since they commute) so there exists an orthogonal
matrix V ∈ RK×K such that

Σ = V ΛΣV
T , ATA = V ΛAV

T , (7)

where ΛΣ ∈ RK×K and ΛA ∈ RK×K are diagonal matrices. Permuting if necessary
columns of V , we can write the matrix ΛΣ as follows:

ΛΣ =

(
ΛΣ,1 0Rσ×(K−σ)

0R(K−σ)×σ 0R(K−σ)×(K−σ)

)
; (8)

in other words the σ first column vectors of V span the image of Σ. From the inclusion (6),
we deduce that these vectors belong to the null space of ATA. Hence the σ first diagonal
elements of ΛA are equal to zero and, up to a permutation of the K−σ last column vectors
of V , we can write

ΛA =

(
0R(K−a)×(K−a) 0R(K−a)×a

0Ra×(K−a) ΛA,2

)
,

which ends the proof.

Remark 2.9. From equalities (5), we can also deduce

Im ATA ⊆ ker Σ ,

showing that Σ is singular. Consequently the Gaussian noise εi involved in (4) is degen-
erate.

A new formulation of system (4) which makes explicit the constrained and unconstrained
parts of a vector satisfying this system is given in the following result. This is achieved by
using the preceding result which allows to decompose the space RK into three orthogonal
subspaces. We prove that the restriction of the noise εi to the first subspace is a non-
degenerate Gaussian, showing that this first subspace corresponds to the unconstrained
one. The two other subspaces describe affine relations coming from the endpoints condi-
tions and from implicit relations within the vector components. These implicit relations,
which may model for instance natural trends, are expected to be contained in the reference
vectors cRi and reflected by the (estimated) covariance matrix Σ.
Prior to this, let us write the matrix V ∈ RK×K introduced in proposition 2.8 as follows:

V =
(
V1 V2 V3

)
,

where V1 ∈ RK×σ, V2 ∈ RK×K−σ−a and V3 ∈ RK×a. We emphasise that the column-
vectors of the matrices V1 and V3 do not overlap according to the property σ + a 6 K

8



proved in proposition 2.8. In particular the matrix V2 has to be considered only in the
case σ + a < K. Further for any c ∈ RK , we will use the notations

c̃ := V T c , c̃` := V T
` c ,

for ` = 1, 2, 3. Finally we consider the singular value decomposition of A coming from the
diagonalisation of the symmetric matrix ATA with V :

A = USAV
T ,

where U ∈ R2D×2D is orthogonal and SA ∈ R2D×K is a rectangular diagonal matrix of the
following form:

SA =
(
0R2D×K−2D SA,2

)
, (9)

with SA,2 :=
√

ΛA,2 ∈ R2D×2D.

Proposition 2.10. Suppose that the matrix A is full rank, i.e. a = 2D. Then for any
i = 1, . . . , I, system (4) is equivalent to the following one:

c̃Ri,1 = c̃∗,1 + ε̃i,1

ε̃i,1 ∼ N

(
0Rσ ,

1

2ωi
ΛΣ,1

)
c̃∗,2 = V T

2 cRi

c̃∗,3 = S−1
A,2 U

TΓ

. (10)

Proof.We first prove that system (4) is equivalent to
c̃Ri = c̃∗ + ε̃i

ε̃i ∼ N

(
0RK ,

1

2ωi
ΛΣ

)
SA c̃∗ = UTΓ

. (11)

The matrix V being orthogonal, it is non-singular and so we have for all i = 1, . . . , I,

cRi = c∗ + εi ⇐⇒ c̃Ri = c̃∗ + ε̃i ,

and, since Σi = 1
2ωi

Σ = 1
2ωi

V ΛΣV
T , we obtain

εi ∼ N(0RK ,Σi) ⇐⇒ ε̃i ∼ N

(
0RK ,

1

2ωi
ΛΣ

)
.

Finally the property εi ∈ kerA is equivalent to

Ac∗ = Γ ⇐⇒ USAV
T c∗ = Γ

⇐⇒ SA c̃∗ = UTΓ ,

proving that the systems (4) and (11) are equivalent. Now the fact that the K − σ
last diagonal elements of ΛΣ are zero implies that the components c̃∗,2 ∈ RK−σ−2D and
c̃∗,3 ∈ R2D are constant. From the first equality of (11), we have on one side

c̃Ri,2 = c̃∗,2 ⇐⇒ V T
2 cRi = c̃∗,2 ,

9



for any i = 1, . . . , I. On the other side, combining the last relation of the system (11) with
the form of the matrix SA given in (9) permits to obtain

SA c̃∗ = UTΓ ⇐⇒ SA,2 c̃∗,3 = UTΓ

⇐⇒ c̃∗,3 = S−1
A,2 U

TΓ ,

the last equivalence being justified by the hypothesis that the matrix A is full rank (which
implies that the diagonal matrix SA,2 is non-singular).

The above decomposition gives us access to non-degenerated density of c̃Ri,1 given c̃∗,1
which is later denoted by u(c̃Ri,1|c̃∗,1). In next section we will assume a prior distribution
on c̃∗,1 with high density for low values of the cost function F .

2.4. A trajectory optimisation problem via a Maximum A Posteriori approach

Before introducing the Bayesian framework, let first recall that we are interested in min-
imising a certain cost function F : C

(
[0, T ],RD

)
−→ R over the set of projected and admis-

sible trajectories YK∩AG(y0, yT ). As explained previously, we propose here a methodology
leading to a constrained optimisation problem based on the reference trajectories and de-
signed to provide realistic trajectories. Technically speaking, we seek for the mode of a
posterior distribution which contains information from the reference trajectories. The aim
of this subsection is then to obtain the posterior distribution via Bayes’s rule, using in
particular the precise modelling of the reference trajectories given in proposition 2.10 and
defining an accurate prior distribution with high density for low values of the cost function
F .

To do so, we recall firstly that all the trajectories considered here are assumed to belong
to the space YK which is isomorphic to RK . So each trajectory is here described by
its associated vector in RK , permitting in particular to define distributions over finite-
dimensional spaces. We recall also that the reference trajectories are interpreted as noisy
observations of a certain y∗ associated with a c∗. According to proposition 2.10, this vector
complies with some affine conditions which are described by the following subspace V1:

c ∈ V1 ⇐⇒

{
V T

2 c = V T
2 cRi

V T
3 c = S−1

A,2 U
TΓ

. (12)

Hence a vector c belonging to V1 is described only through its component c̃1 := V T
1 c. In

addition we note that the definition of V1 does not depend actually on the choice of i since
V T

2 cRi has been proved to be constant in proposition 2.10. Further we emphasise that the
matrix A is supposed to be full rank in this case and we have V1 ' Rσ; we recall that σ
is the rank of the covariance matrix Σ.

Let us now define the cost function F over the spaces RK and V1. This is necessary to
define the prior distribution and to establish our optimisation problem.

Definition 2.11 (Cost functions). Let F̌ : RK −→ R and F̃ : Rσ −→ R be the functions
defined by

• F̌ (c) := F
(
Φ|−1

YK
c
)

;

• F̃ (c̃1) := F
(

Φ|−1
YK
V
(
c̃T1 c TRiV2 ΓTU

(
S−1
A,2

)T)T)
.
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Remark 2.12. From the preceding definition, we observe that for any y ∈ YK and its
associated vector c ∈ RK , we have

F̌ (c) = F
(
Φ|−1

YK
c
)

= F (y) .

Further for any c ∈ V1, we have

F̌ (c) = F
(
Φ|−1

YK
c
)

= F
(
Φ|−1

YK
V c̃
)

= F
(

Φ|−1
YK
V
(
c̃T1 c TRiV2 ΓTU

(
S−1
A,2

)T)T)
= F̃ (c̃1) .

We deduce that F̃ is actually the restriction of F̌ to the subspace V1.

From now on, the trajectory y∗ and the associated vector c∗ will be considered as random
variables and will be denoted by y and c. We are interested in the posterior distribution

u(c̃1 | c̃R1,1, . . . , c̃RI ,1) ,

which depends only on the free component c̃1 of c ∈ V1, the two other ones c̃2 and c̃3

being fixed according to (12). We use Bayes’s rule to model the posterior via the prior
and likelihood distributions, leading to

u(c̃1 | c̃R1,1, . . . , c̃RI ,1) ∝ u(c̃R1,1, . . . , c̃RI ,1 | c̃1)u(c̃1) .

Assuming now that the vectors c̃Ri,1 are independent gives

u(c̃R1,1, . . . , c̃RI ,1 | c̃1)u(c̃1) =
I∏
i=1

u(c̃Ri,1 | c̃1)u(c̃1) .

The above likelihood is given by the modelling of the reference trajectories detailed in
proposition 2.10. In this case, we have

u(c̃Ri,1 | c̃1) ∝ exp
(
− ωi

(
c̃1 − c̃Ri,1

)T
Λ−1

Σ,1

(
c̃1 − c̃Ri,1

))
.

The prior distribution is obtained by assuming that the most efficient trajectories (with
respect to the cost function) are a priori the most likely ones:

u(c̃1) ∝ exp
(
− κ−1F̃ (c̃1)

)
, (13)

where κ > 0. Putting everything together and taking the negative of the logarithm
gives the following minimisation problem, whose solution is the Maximum A Posteriori
estimator: 

c̃?1 ∈ arg min
c̃1∈Rσ

F̃ (c̃1) + κ

I∑
i=1

ωi
(
c̃1 − c̃Ri,1

)T
Λ−1

Σ,1

(
c̃1 − c̃Ri,1

)
c̃2 = V T

2 cRi

c̃3 = S−1
A,2 U

TΓ

, (14)

where i is arbitrarily chosen in {1, . . . , I}.
Let us now rewrite the above optimisation problem with respect to the variable c =

V c̃ ∈ RK in order to make it more interpretable.

11



Proposition 2.13. The optimisation problem (14) is equivalent to the following one:

c? ∈ arg min
c∈V1

F̌ (c) + κ
I∑
i=1

ωi
(
c− cRi

)T
Σ†
(
c− cRi

)
, (15)

where Σ† ∈ RK×K denotes the pseudoinverse of the matrix Σ.

Proof.From (8), we deduce

I∑
i=1

ωi
(
c̃1 − c̃Ri,1

)T
Λ−1

Σ,1

(
c̃1 − c̃Ri,1

)
=

I∑
i=1

ωi
(
c̃− c̃Ri

)T
Λ†Σ
(
c̃− c̃Ri

)
=

I∑
i=1

ωi
(
c− cRi

)T
V Λ†ΣV

T
(
c− cRi

)
=

I∑
i=1

ωi
(
c− cRi

)T
Σ†
(
c− cRi

)
.

And from the proof of proposition 2.10, we have

Ac = Γ ⇐⇒ c̃3 = S−1
A,2 U

TΓ ,

proving that c ∈ V1.

To conclude, let us comment on this optimisation problem.

1. To interpret the optimisation problem (15) (or equivalently (14)) from a geometric
point of view, let us consider the following new problem:

min
c̃1∈Rσ

F̃ (c̃1)

s.t.

I∑
i=1

ωi
(
c̃1 − c̃Ri,1

)T
Λ−1

Σ,1

(
c̃1 − c̃Ri,1

)
6 κ̃

(16)

where λ > 0. Here we suppose that F̃ is strictly convex and that the problem (16) has
a solution (which is then unique). By Slater’s theorem (Boyd and Vandenberghe,
2004, Subsec. 5.2.3), the strong duality holds for the problem (16). It can then
be proved that there exists a certain λ? > 0 such that the solution of (16) is the
minimiser of the strictly convex function

c̃1 7−→ F̃ (c̃1) + λ?
I∑
i=1

ωi
(
c̃1 − c̃Ri,1

)T
Λ−1

Σ,1

(
c̃1 − c̃Ri,1

)
,

which is actually the objective function of the optimisation problem (14) for κ = λ?.
Hence the problem (14) minimises the cost F̃ in a ball centered on the weighted
average of the reference trajectories. In particular if the reference trajectories are
close to an optimal one with respect to F̃ then one could expect the solution of (14)
to be equal to this optimal trajectory.

2. Further the optimisation problem (15) takes into account the endpoints conditions
through the subspace V1 but not the additional constraints. However as explained
in the preceding point, the solution is close to realistic trajectories and so is likely to
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comply with the additional constraints for a well-chosen parameter κ > 0. We refer
to Sec. 2.6 for more details on an iterative method for the tuning of κ. In particular,
a right choice for this parameter is expected to provide an optimised trajectory with
a realistic behaviour. This is for instance illustrated in Sec. 4.

3. Taking into account the linear information from the available data through the co-
variance matrix Σ allows to restrict the search to the subspace V1 describing these
relations. This is of particular interest when implicit relations (modelled by the
sub-matrix V2) are revealed by the estimation of Σ on the basis of the reference
trajectories; in this case, these implicit relations may not be known by the expert.

4. The optimisation problem (15) has linear constraints and a quadratic penalised term.
For instance, if the cost function F̌ is a convex function then we obtain a convex
problem for which efficient algorithms exist.

2.5. Quadratic cost for a convex optimisation problem

In this short subsection, we focus on a particular case where the cost function F is defined
as the integral of an instantaneous quadratic cost function, i.e.

∀ y ∈ C
(
[0, T ],RD

)
F (y) =

∫ T

0
f(y(t)) dt , (17)

where f : RD −→ R is quadratic. Even though such a setting may appear to be restric-
tive, we emphasise that quadratic models may lead to highly accurate approximations of
variables, as it is illustrated in Sec. 4. For a quadratic instantaneous cost, the associated
function F̌ : RK −→ R can be proved to be quadratic as well and can be explicitly com-
puted. In the following result, we provide a quadratic optimisation problem equivalent to
(15).

Proposition 2.14. Suppose that the cost function F is of the form (17) with f quadratic.
Then the optimisation problem (15) is equivalent to the following one:

c? ∈ arg min
c∈V1

cT
(
Q̌+ κΣ†

)
c+

(
w̌ − 2κ

I∑
i=1

ωi Σ†cRi

)T
c , (18)

where Q̌ ∈ RK×K and w̌ ∈ RK can be explicitly computed from f .

Proof.We defer the proof to the supplementary material.

In particular this permits to derive sufficient conditions on the parameter κ > 0 so
that the optimisation problem is proved to be equivalent to a quadratic program (Boyd
and Vandenberghe, 2004, Sec. 4.4), namely the objective function is convex quadratic to-
gether with affine constraints. In practice, this allows to make use of efficient optimisation
libraries to solve numerically (18).

2.6. Iterative process to comply with additional constraints

As explained in Sec. 2.4, the trajectory optimisation problem (15) is constrained by the
endpoints conditions and by implicit linear relations revealed by the reference trajectories.
Nevertheless the additional constraints introduced in definition 2.3 are not taken into
account in this problem. In practice such constraints assure that natural or user-defined
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features are verified and so a trajectory which does not comply with these constraints may
be considered as unrealistic.

Our aim is then to assure that the trajectory y? = Φ|−1
YK
c?, where c? ∈ V1 is the solution

of the optimisation problem (15), verifies the additional constraints, i.e. belongs to the set
G. A first solution would be to add the constraint Φ|−1

YK
c ∈ G in the optimisation problem

(15). However depending on the nature of the constraints functions g`, this may lead to
nonlinear constraints which could be costly from a numerical point of view. The solution
we propose consists rather in exploiting the degree of freedom coming from the parameter
κ > 0 appearing in the problem (15).

First of all, let us factorise the problem (15) by κ to obtain the following new one for
the sake of presentation:

c? ∈ arg min
c∈V1

ν F̌ (c) +
I∑
i=1

ωi
(
c− cRi

)T
Σ†
(
c− cRi

)
, (19)

where ν := κ−1. On one hand, we observe that the solution of the optimisation problem
(19) for the limit case ν = 0 is given by

∑I
i=1 ωi cRi which is the average of the reference

vectors. In this case, one may expect that the associated average trajectory complies with
the constraints but is unlikely to optimise the cost function F . On the other hand, for
very large ν > 0, the second term of the objective function in (19) can be considered
as negligible compared to the first one. In this case, the cost of the solution will surely
be smaller than the costs of the reference trajectories but no guarantee regarding the
additional constraints can be established in a general setting.

Given these observations, the task is then to find an appropriate value ν? > 0 in order
to reach a trade-off between optimising and remaining close to the reference trajectories
to comply with the additional constraints. Many methods can be developed to find such
a ν? and, among those based on iterative processes, linear or binary search algorithms
can be considered. In this case, one has to set firstly a maximal value νmax so that the
solution of (19) with νmax is unlikely to satisfy the constraints and to perform secondly the
search over the interval (0, νmax). Since the solution for ν = 0 is assumed to be admissible,
we expect that the binary search will find a ν? > 0 leading to an optimised trajectory
belonging to G.

2.7. Confidence bounds on the integrated cost

In practice the cost function F considered is an estimation of the true cost F ?, a random
variable which cannot be fully predicted based on y. If the distribution F (y) would be
known it would be possible to deduce confidence bound on F ?. This is for instance possible
by considering multivariate functional regression (Ramsay et al., 2007).

The simplest case from the estimation point of view is to consider that F ? is the inte-
gral of some instantaneous consumption function f? as in Sec. 2.5, and to estimate the
parameters of the standard multivariate regression

f?(y(t)) = f(y(t)) + ε(t),

where the random noise ε(t) is assumed to follow a centered Gaussian distribution with
variance σ. In this case F ? can be expressed as the integral of a stochastic process

F ?(y) :=

∫ T

0
f?(y(t)) dt = F (y) +

∫ T

0
ε(t) dt .
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then assuming that (ε(t))t∈[0,T ] independent we obtain∫ T

0
ε(t) dt ∼ N(0, Tσ2).

Thus F ?(y) follows a Gaussian distribution centered on F (y) and with variance equals to
Tσ2. This makes it possible to compute confidence bounds on F ?(y). For a confidence
level 1− u, u ∈ [0, 1], a confidence interval for F ?(y) is obtained as

CI1−u(F ?(y)) = F (y)± ζ1−u
2

√
Tσ,

where ζ1−u
2

is the quantile of order 1− u
2 of the standard Gaussian distribution.

The assumption that f and σ2 are known is relevant since they are estimated based on
a huge amount of training data. The assumption of white Gaussian noise can be seen as
unrealistic, however it appears to be the only route to explicit calculus. A more complex
strategy could be derived using Gaussian processes, which is beyond the scope of this
paper.

3. The Python library Pyrotor

The above optimisation methodology is aimed at being used in a wide range of appli-
cations, from path planning for industrial robots (Chettibi et al., 2004) to fuel-efficient
aircraft trajectories (Dewez et al., 2020; Rommel et al., 2019). We therefore contribute a
generic Python library PyRotor (standing for Python Route trajectory optimiser) which
is intended to a large audience. In particular, this library has been used to obtain the
numerical results given in the two following sections.

When using the PyRotor library, the practitioner has to define the endpoints conditions
as a dictionary, the additional constraints in a list of functions, the name of the basis
and the dimension for each variable. The current version of the library covers only the
case of Sec. 2.5, that is to say the cost is given by a quadratic instantaneous function.
This permits to make use of proposition 2.14 in which a quadratic objective function is
given. We mention that future releases of PyRotor are intended to cover more general cost
functions. The value of the parameter νmax in (19) can also be manually set depending on
the application. The Legendre basis is currently the only basis implemented in the first
version of PyRotor (via the legendre module from NumPy package (Harris et al., 2020)) but
future developments including other general bases are planned. Further the user indicates
a path to a directory containing the data, each reference trajectory being contained in a
csv file. The covariance matrix Σ is here estimated by using the sklearn.covariance

package from the Python library scikit-learn (Pedregosa et al., 2011). Two optimisation
solvers are proposed: the generic solver minimize(method=’trust-constr’) (Conn et al.,
2000) from SciPy software (Virtanen et al., 2020) and the quadratic programming solver
from CVXOPT software (Andersen et al., 2020). The latter is intended to speed up the
execution in case of convex quadratic objective function. Once the arguments are given
by the user, a class is created and the optimisation is performed by executing a method
from this class. At the end, the optimised trajectory is provided in a dataframe: at each
time, the position of the trajectory is given together with the value of f . The total cost
is also computed and a quantitative comparison in terms of savings with the reference
trajectories can be also displayed.

The open source PyRotor library is developed on GitHub and welcomes contributions
from its users: we favour a community-based development to foster the diffusion of our
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work towards practitioners. PyRotor is intended to be PEP8 compliant and purposely
rely on high standard coding practices. The continuous development platform Travis is
used to certify the latest builds of the library. Finally we provide Jupyter notebooks for
examples on how to use PyRotor along with online documentation. PyRotor is available
at https://github.com/bguedj/pyrotor.

4. Application 1: trajectory optimisation for fuel-efficient
aircrafts

In this section, we consider the aeronautic problem of reducing the total fuel consumption
of an aircraft during the climb phase. This example illustrates the key role played by
the reference trajectories since we are able to obtain realistic and optimised trajectories
thanks to a simple modelling involving few constraints.

4.1. Modelling

Here the trajectories are supposed to be in a vertical plane and are defined by the altitude
h, the Mach number M and the engines rotational speed N1 (expressed as a percentage
of a maximal value). Hence a trajectory y in this setting is a continuous R3-valued map
defined on [0, T ], where T is a maximal climb duration fixed by the user. Hence we have

∀ t ∈ [0, T ] y(t) :=
(
h(t),M(t),N1(t)

)
.

The quantity to minimise is the total fuel consumption TFC : C
(
[0, T ],R3

)
−→ R+ which

is defined via the fuel flow FF : R3 −→ R+ as follows1:

TFC(y) :=

∫ T

0
FF
(
y(t)

)
dt .

Regarding the endpoints conditions, we require the trajectory to start at the altitude h0

with Mach number M0 and to end at the altitude hT with Mach number MT . In particular,
the reference trajectories we use have to verify these conditions.

We consider also additional constraints which are conventional in the aeronautic setting:

• The rate of climb, i.e. the time-derivative of the altitude, has to be upper bounded
by a given maximal value γmax during the whole climb;

• The Mach number should not exceed a certain value called the maximum operational
Mach (MMO).

The final time of the climb is given by T ? ∈ [0, T ] which is the first time where the aircraft
reaches hT with Mach number MT .

Finally we mention that the fuel flow model FF is here estimated. To do so, we exploit
the reference trajectories which contain recorded altitude, Mach number, engines power
and fuel flow for each second of the flight. Having access to these data, we are in position to
fit a statistical model. Following the numerical results in Dewez et al. (2020) which show
that polynomials can accurately model aeronautic variables, we consider a polynomial
model of degree 2 for the fuel flow. In particular the requirements for the cost function
in the current version of PyRotor are fulfilled. The prediction accuracy of the resulting
estimated model is assessed in the following subsection.

1In the notation of Sec. 2.5, FF and TFC play respectively the role of f and F .
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4.2. Numerical results

We present now numerical results based on real flight data for the above aeronautic prob-
lem. Here we have access to 2,162 recorded short and medium-haul flights performed by
the same narrow-body airliner type, provided by a partner airline. In particular they can
not be publicly released for commercial reasons. The data is here recorded by the Quick
Access Recorder (QAR).

Before considering the optimisation setting, we estimate a fuel flow model specific to
the climb phase and to the considered airliner type. To do so we extract the signals of
the four variables of interest (altitude, Mach number, engines rotational speed and fuel
flow) and keep the observations from the take-off to the beginning of the cruise without
level-off phases. Smoothing splines are then applied to the raw signals to remove the
noise. We sample each 5 seconds to reduce the data set size without impacting strongly
the accuracy of the resulting models. At the end, we obtain 494,039 observations which
are randomly split into training and test sets to fit a polynomial model of degree 2 using
the scikit-learn library. The RMSE and MAPE values of this model on the test set are
respectively equal to 3.64× 10−2 kg.s−1 and 1.73%.

Regarding the optimisation, we are interested in climb phases from 3,000 ft to 38,000 ft.
We mention that we remove lower altitudes because operational procedures constraint
heavily the trajectory during the very beginning of the climb. Further the initial and
final Mach numbers are required to be equal to 0.3 and 0.78. It is noteworthy that
the optimisation solvers used in PyRotor allow linear inequality conditions, permitting
to slightly relax the endpoints conditions. Here we tolerate an error of 100 ft for the
altitude and an error of 0.01 for the Mach number. The initial and final N1 values are let
unconstrained. Finally the MMO and γmax are respectively set to 0.82 and 3,600 ft.min−1.

The reference trajectories are given by 48 recorded flights which satisfy the above climb
endpoints conditions among the 2,162 available ones. All these selected flights are used to
estimate the covariance matrix involved in the optimisation problem. On the other hand,
we use only the 5 most fuel-efficient flights in the objective function to focus on a domain
containing the most efficient recorded flights. Further the maximal duration T is here
fixed to the duration of the longest climb among the 5 most fuel-efficient ones we use.

Legendre polynomials are used as the functional basis spanning the space in which lies
the trajectories. Since we consider narrow-body airliners, polynomials are expected to be
relevant to describe the slow variations of such aircrafts. Here the dimensions associated
with the altitude, the Mach number and the engines power are given respectively by 4, 10
and 6. The reference vectors cRi are then computed using the formula (2). At the end,
we amount to solving a constrained optimisation problem in a space of dimension 20.

We are then in position to apply the optimisation method developed in Sec. 2 using
the PyRotor library. First of all a relevant value for νmax > 0 has to be fixed. In order
to propose a realistic optimised climb, we choose a νmax relatively small so that the
optimised climb remains close to the reference ones. In particular, the quadratic objective
function in (19) turns out to be convex for all ν ∈ [0, νmax] permitting to use the quadratic
programming solver from CVXOPT software imported in PyRotor. The preprocessing of
the reference trajectories and the optimisation steps have been executed 100 times using
PyRotor on an Intel Core i7 6 cores running at 2.2 GHz. The mean of the execution time
for both steps is equal to 3.76 s with standard deviation 0.11 s, illustrating that the library
is time-efficient in this setting.

A plot of the optimised trajectory obtained using PyRotor is given in Fig. 1. We
observe that the optimised trajectory seeks to reach the maximum altitude in the minimum
amount of time; this is in accordance with the existing literature (see for instance Codina
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Table 1: Statistical description of the fuel savings of the optimised trajectory – The savings
are compared with the 48 recorded flights satisfying the present endpoints and the
total consumption of the optimised trajectory is estimated by using the statistical
model for the fuel flow - Q1, Q2 and Q3 refer to the first, second and third
quartiles.

Mean Std Min Q1 Q2 Q3 Max

Fuel savings [kg] 260.38 86.21 71.79 202.40 261.87 330.32 393.73
Percentage [%] 16.54 4.73 5.27 13.56 16.88 20.39 23.39

and Menéndez (2014) and references therein). In particular, the duration T ? is equal to
1,033 seconds which is actually slightly shorter than the reference durations. We note
also that the optimised Mach number shares a very similar pattern with the references.
On the other hand, the optimised engines rotational speed tends to slowly decrease until
the cruise regime before reaching the top of climb. This is not the case for the reference
engines speed which falls to the cruise regime just after reaching the final altitude. Most
of the savings seem to be achieved in these last moments of the climb. At last but not
least, the optimised trajectory presents a realistic pattern inherited from the reference
trajectories.

For a quantitative comparison, we refer to Table 1 which provides statistical information
on the fuel savings. The mean savings 16.54% together with the fact that the optimised
trajectory verifies the additional constraints show that these first results are promising,
motivating further studies. For instance one could model environmental conditions or take
into account Air Traffic Control constraints for more realistic modellings.

5. Application 2: trajectory optimisation to maximise work of a
force field

Here we consider the following generic example: given a moving point in a force field, find
a trajectory starting and ending at two different given points which maximises the work
of the force along the trajectory while minimising the travelled distance. For instance,
this corresponds to a very simple modelling of a sailing boat which seeks to increase
the power of the wind at each time, i.e. maximising the wind work, without travelling
a too large distance. This second example demonstrates that our generic optimisation
approach is flexible enough to take into account derivatives of trajectories and hence to
cover dynamics settings.

5.1. Modelling

To model this problem, we suppose without loss of generality that the trajectories are
defined on the (time-)interval [0, 1] and we let V : RD −→ RD denote a vector field.
Furthermore the trajectories are assumed here to be continuously differentiable, i.e. they
belong to C1

(
[0, 1],RD

)
. The work of V along a trajectory y ∈ C1

(
[0, 1],RD

)
is defined as

W (y, ẏ) :=

∫ 1

0
V
(
y(t)

)T
ẏ(t) dt ;

here ẏ denotes the derivative of y with respect to the independent variable t. Moreover
using Hamilton’s principle in Lagrangian mechanics, it can be shown that the trajectory
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Figure 1: Optimised and reference altitudes, Mach numbers and engines rotational speeds
– The optimised trajectory is represented by the blue curves.
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with constant velocity (i.e. a straight line travelled at constant speed) is the minimum of
the following functional,

J(ẏ) =

∫ 1

0

∥∥ẏ(t)
∥∥2

2
dt ,

where the starting and ending points of y are fixed and different. This functional can be
then used to control the travelled distance. It follows that minimising the cost function

Fα(y, ẏ) := αJ(ẏ)−W (y, ẏ) =

∫ 1

0
α
∥∥ẏ(t)

∥∥2

2
− V

(
y(t)

)T
ẏ(t) dt ,

where α > 0 is arbitrarily chosen, is expected to lead to an optimised trajectory reflecting
a trade-off between maximising the work and minimising the distance. Further we require
the trajectory to stay in the hypercube [0, 1]D and to start and to end respectively at
y0 ∈ [0, 1]D and y1 ∈ [0, 1]D.

Now we remark that the above cost function involves the (time-)derivative ẏ. So one has
to derive a formula permitting to compute the derivative of any trajectory y = Φ|−1

YK
c ∈ YK

from its associated vector c ∈ RK , especially to compute F̌ (c). For instance, this can be
easily achieved by assuming that each element of the functional basis is continuously
differentiable. Indeed we can differentiate in this case any y ∈ YK:

∀ d = 1, . . . , D ẏ(d) =

Kd∑
k=1

c
(d)
k ϕ̇k =

(
d

dt
Φ|−1

YK
c

)(d)

.

We deduce then the following formula for F̌ (c) in the present setting:

F̌ (c) := Fα

(
Φ|−1

YK
c,
d

dt
Φ|−1

YK
c

)
.

Here the vector c contains information on both position and velocity, permitting especially
to keep the problem dimension unchanged. To finish, let us remark that it is possible to
make the above formula for F̌ explicit with respect to c in certain settings. For instance
it is possible to derive an explicit quadratic formula for F̌ (c) when the integrand defining
Fα is quadratic with respect to y(t) and ẏ(t); this formula is implemented in PyRotor and
the arguments to obtain it are similar to those proving proposition 2.14.

5.2. Numerical results

Numerical results based on randomly generated data for the above physical application
are presented in this section.

First of all we consider trajectories with two components y(1) and y(2) lying in the square
[0, 1]2 for the sake of simplicity. We set the starting and ending points as follows:

y(1)(0) = 0.111 , y(2)(0) = 0.926 , y(1)(1) = 0.912 , y(2)(1) = 0.211

with a tolerated error 1× 10−4, and the vector field V : R2 −→ R2 is here defined by

V
(
x(1), x(2)

)
=
(

0, x(1)
)T

.

Given the above endpoints and the vector field, we observe that the force modelled by V
will be in average a resistance force to the motion. Indeed the force is oriented toward the
top of the square while the moving point has to go downward. Further let us note that the
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Table 2: Statistical description of the work gains in percentage for α ∈ {0, 0.35, 1, 10} –
The values have been computed by using the 122 available reference trajectories
– Negative percentages indicate that no work gains have been obtained – Q1, Q2

and Q3 refer to the first, second and third quartiles.

Mean Std Min Q1 Q2 Q3 Max

α = 0 73.43 2.36 68.63 71.90 73.25 74.67 80.69
α = 0.35 45.88 4.81 36.09 42.75 45.49 48.39 60.66
α = 1 −6.12 9.43 −25.31 −12.26 −6.88 −1.20 22.87
α = 10 −34.54 11.96 −58.87 −42.32 −35.50 −28.30 2.22

integrand of the cost function Fα in the present setting is actually quadratic with respect
to y(t) and ẏ(t), so that an explicit quadratic formula for F̌ (c) implemented in PyRotor

is available.
Here the reference trajectories are obtained through a random generation process. To

do so, we define an arbitrarily trajectory yR verifying the endpoints conditions and we
compute its associated vector cR; Legendre polynomials are once again used and the
dimensions of y(1) and y(2) are here set to 4 and 6. Let us note that yR is designed in
such a way that it has a relevant pattern but not the optimal one. Then we construct a
set of reference trajectories by adding centered Gaussian noises to cR. It is noteworthy
that the noise is generated in such a way that it belongs to the null space of the matrix
A describing the endpoints conditions; the resulting noised trajectories satisfy then these
conditions. Further the trajectories which go out of the square [0, 1]2 are not kept. At
the end, we get 122 generated reference trajectories assumed to be realistic in this setting,
each of them containing 81 time observations. Among these reference trajectories, we use
the 10 most efficient ones with respect to the cost Fα.

In the present example, we set a νmax relatively large to explore a large domain around
the reference trajectories. In this case, the objective function of the optimisation problem
(19) may be not convex even if it is still quadratic. So we make use of the generic
optimisation solver minimize(method=’trust-constr’) imported in PyRotor. Regarding
the execution time, we have randomly and uniformly generated 100 values in the interval
[0, 10] for the parameter α and executed PyRotor for each of them. The mean of PyRotor
execution time is 0.44 s with standard deviation 0.03 s on an Intel Core i7 6 cores running
at 2.2 GHz.

In Fig. 2, we plot 4 optimised trajectories associated with different values of α: 0, 0.35,
1 and 10. As expected the trajectory associated with the largest value of α gives the most
straight trajectory while the most curvy one is associated with α = 0. In particular, the
latter tends to move to the left at the beginning where the force V is the smallest before
going to the ending point in a quasi-straightforward way so that the force is perpendicular
to the motion. This example illustrates especially that our optimisation approach may
lead to optimised trajectories which differ from the reference ones to reduce more the cost.

A quantitative comparison in terms of work gains for different values of α is provided in
Table 2. The results confirm the above observations on the curves and show that a right
value for α has to be fixed depending on the setting.
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Figure 2: Optimised trajectories in the square [0, 1]2 for α ∈ {0, 0.35, 1, 10} – Optimised
and reference trajectories are respectively given by plain and dotted curves –
Coloured dots indicate the power value of the force at different points of the
optimised trajectories and the bar shows the scale – Red arrows represent the
pattern of the vector field V .

6. Conclusion / Discussion

We have proposed an approach for data-driven trajectories optimisation without involving
dynamical system. The approach can work based on a known cost function or a cost func-
tion learnt from the data. The modelling of the trajectories allows to take into account
explicit and implicit linear constraints on the coefficients in the optimisation problem.
Contrary to full optimisation approaches, our method finds a trade-off between high den-
sity constraints-compliant solutions and fully optimised solutions through the tuning of the
regularisation. In the aeronautic framework our approach leads to promising fuel-efficient
trajectories. Our approach is generic enough to be applied to other physical settings such
as the motion of a moving point in a force field (such as a sailing boat).

Some perspectives of this work are first to further exploit the flexibility of Bayesian
setting, by not only searching for the mode of the posterior distribution but also sampling
by means of MCMC algorithms. A second perspective would be to consider a clustering
of reference trajectories, and apply our strategy on each cluster, then particularise the
optimal trajectory depending on the cluster. Last but not least, we aim at adapting our
approach where some component of the trajectory would be categorical variables: this
would be particularly useful for decision making processes in various disciplines.
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A. Appendix

Here we focus on the case where the cost function F : C
(
[0, T ],RD

)
−→ RD is of the

following form

F (y) =

∫ T

0
y(t)TQy(t) + wT y(t) + r dt , (20)

where Q ∈ RD×D is symmetric, w ∈ RD and r ∈ R. In this setting, we provide explicit
formulas for the costs F̌ : RK −→ R and F̃ : Rσ −→ R defined in Section 2.4. A sufficient
condition on the parameter κ > 0 so that the optimisation problem

c? ∈ arg min
c∈V1

F̌ (c) + κ

I∑
i=1

ωi
(
c− cRi

)T
Σ†
(
c− cRi

)
, (21)

is a quadratic program in the present setting is then derived. From Section 2.4, we recall
that the preceding optimisation problem is equivalent to

c̃?1 ∈ arg min
c̃1∈Rσ

F̃ (c̃1) + κ
I∑
i=1

ωi
(
c̃1 − c̃Ri,1

)T
Λ−1

Σ,1

(
c̃1 − c̃Ri,1

)
c̃2 = V T

2 cRi

c̃3 = S−1
A,2 U

TΓ

. (22)

Lemma A.1. Suppose that the cost function F is of the form (20). Then the costs F̌ and
F̃ are quadratic and explicit formulas are given in (24) and (26).

Proof.Let c ∈ RK and let y := Φ|−1
YK
c ∈ YK be its associated trajectory, which can be

represented as follows:

∀ d ∈ {1, . . . , D} y(d) =

Kd∑
k=1

c
(d)
k ϕk .

We also remark that each component of the vector

c =
(
c

(1)
1 , . . . , c

(1)
K1
, c

(2)
1 , . . . , c

(2)
K2
, . . . , c

(D)
1 , . . . , c

(D)
KD

)T
can be simply described by a single parameter so that we can write c = (c1, c2, . . . , cK)T .

• Computation of F̌ :
We first insert the preceding representation of y into the above quadratic integrand
to obtain:

y(t)TQy(t) + wT y(t) + r

=

D∑
d1,d2=1

Kd1∑
k1=0

Kd2∑
k2=0

Qd1d2 c
(d1)
k1

c
(d2)
k2

ϕk1(t)ϕk2(t) +
D∑
d=1

Kd∑
k=0

wd c
(d)
k ϕk(t) + r ,

(23)
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for all t ∈ [0, T ]. The next step of the proof consists in changing the indices of the
above sums. To do so, let us define the matrix Q ∈ RK×K and the vector w ∈ RK
as

Q :=

 Q11 JK1,K1 . . . Q1D JK1,KD
...

...
QD1 JKD,K1 . . . QDD JKD,KD

 , w :=
(
w1 J1,K1 . . . wD J1,KD

)T
,

where Jm,n is the all-ones matrix of size m × n. We also introduce the map ϕ ∈
C
(
[0, T ],RK

)
as

ϕ(t) :=
(
ϕ1(t), . . . , ϕK1(t), ϕ1(t), . . . , ϕK2(t), . . . , ϕ1(t), . . . , ϕKD(t)

)T
,

for all t ∈ [0, T ], where the ϕk are the functional basis elements. We are now in
position to change the indices in the sums appearing in (23):

D∑
d1,d2=1

Kd1∑
k1=0

Kd2∑
k2=0

Qd1d2 c
(d1)
k1

c
(d2)
k2

ϕk1(t)ϕk2(t) +

D∑
d=1

Kd∑
k=0

wd c
(d)
k ϕk(t) + r

=
K∑

k1,k2=1

Qk1k2 ck1ck2 ϕk1(t)ϕk2(t) +

K∑
k=1

wk ck ϕk(t) + r ,

where we have used the above rewriting of the vector c. Integrating finally over [0, T ]
gives

F̌ (c) =

∫ T

0
y(t)TQy(t) + wT y(t) + r dt

=

K∑
k1,k2=1

Qk1k2

∫ T

0
ϕk1(t)ϕk2(t) dt ck1ck2 +

K∑
k=1

wk

∫ T

0
ϕk(t) dt ck + rT

=
K∑

k1,k2=1

Q̌k1k2 ck1ck2 +
K∑
k=1

w̌k ck + rT

= cT Q̌c+ w̌T c+ rT , (24)

where we have defined

Q̌k1k2 := Qk1k2

∫ T

0
ϕk1(t)ϕk2(t) dt , w̌k := wk

∫ T

0
ϕk(t) dt . (25)

• Computation of F̃ :

By the definition of F̃ given in Section 2.4, we have

F̃ (c̃1) = F̌
(
V
(
c̃T1 c̃ T2,3

)T)
,

where V has been introduced in Section 2.3 and c̃2,3 ∈ RK−σ is defined as follows:

c̃2,3 :=

(
V T

2 cRi

S−1
A,2U

TΓ

)
,
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here the index i is arbitrarily chosen in {1, . . . , I} since the vector V T
2 cRi has been

proved to be independent from i. We introduce now the matrix Q̌V := V T Q̌V and
the vector w̌V := V T w̌ which can be decomposed as follows:

Q̌V =

(
Q̌V,11 Q̌V,12

Q̌V,21 Q̌V,22

)
, w̌V =

(
w̌V,1

w̌V,2

)
,

where Q̌V,11 ∈ Rσ×σ, Q̌V,12 ∈ Rσ×(K−σ), Q̌V,21 ∈ R(K−σ)×σ, Q̌V,22 ∈ R(K−σ)×(K−σ),
w̌V,1 ∈ Rσ and w̌V,2 ∈ RK−σ. Given this and the preceding point, we obtain

F̃ (c̃1) =
(
c̃T1 c̃ T2,3

)(
V T Q̌V

)(
c̃T1 c̃ T2,3

)T
+
(
V T w̌

)T (
c̃T1 c̃ T2,3

)T
+ rT

=
(
c̃T1 c̃ T2,3

)
Q̌V
(
c̃T1 c̃ T2,3

)T
+ w̌TV

(
c̃T1 c̃ T2,3

)T
+ rT

= c̃T1 Q̌V,11 c̃1 + c̃T1 Q̌V,12 c̃2,3 + c̃ T2,3 Q̌V,21 c̃1 + c̃ T2,3 Q̌V,22 c̃2,3

+ w̌ T
V,1 c̃1 + w̌ T

V,2 c̃2,3 + rT .

Rearranging the preceding terms and using the fact that Q̌V is symmetric gives

F̃ (c̃1) = c̃T1 Q̃ c̃1 + w̃T c̃1 + r̃ , (26)

where

• Q̃ := Q̌V,11 ; (27)

• w̃ := 2 Q̌V,12 c̃2,3 + w̃V,1 ; (28)

• r̃ := c̃ T2,3 Q̌V,22 c̃2,3 + w̃ T
V,2 c̃2,3 + rT . (29)

The optimisation problem (22) is then equivalent to the following one in the present
quadratic setting:

c̃?1 ∈ arg min
c̃1∈Rσ

c̃T1 Q̃ c̃1 + w̃T c̃1 + κ
I∑
i=1

ωi
(
c̃1 − c̃Ri,1

)T
Λ−1

Σ,1

(
c̃1 − c̃Ri,1

)
c̃2 = V T

2 cRi

c̃3 = S−1
A,2 U

TΓ

. (30)

In the following result, we provide a sufficient condition on the parameter κ > 0 so that
the problem (30) is a quadratic program. The proof uses the fact that the symmetric
matrix associated with the quadratic objective function is now explicit and given by the
sum of two matrices. A perturbation result for matrices is then applied to obtain a bound
for κ assuring that the symmetric matrix is positive semidefinite.

Theorem A.2. Let ρ1 > ρ2 > · · · > ρσ and λ1 > λ2 > · · · > λK be respectively the
eigenvalues of the symmetric matrices Q̃ and Σ. If κ > −ρσ λ1 then the optimisation
problem (30) is a quadratic program.

Proof.We first note that all the eigenvalues of the matrix Σ are non-negative (because
Σ is a covariance matrix) and that λσ+1 = . . . = λK = 0 (because rank Σ = σ). In
particular, the eigenvalue λ1 is positive.
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Standard calculations show that the symmetric matrix associated with the quadratic ob-
jective function of the problem (30) is given by

M(κ) := Q̃+ κΛ−1
Σ,1 ∈ Rσ×σ .

Let µ1(κ) > µ2(κ) > · · · > µσ(κ) denote the eigenvalues of M(κ). The goal is then to find
a sufficient condition on κ > 0 so that µσ(κ) is non-negative to assure that M is positive
semidefinite. Since M(κ) can be interpreted as a perturbed version of Q̃, we can apply
Weyl’s inequality (see for instance Wang and Zheng (2019)) which states

µσ(κ) > ρσ +
κ

λ1
.

Then choosing κ such that κ > −ρσ λ1 implies that µσ(κ) > 0, leading to the result.

For the sake of completeness, we finish by rewriting the problem (30) as a quadratic
optimisation problem in V1 ⊂ RK .

Proposition A.3. Suppose that the cost function F is of the form (20). Then the opti-
misation problem (21) is equivalent to the following one:

c? ∈ arg min
c∈V1

cT
(
Q̌+ κΣ†

)
c+

(
w̌ − 2κ

I∑
i=1

ωi Σ†cRi

)T
c .

Proof.It is sufficient to show that the two following objective functions g1, g2 : RK −→ R
have the same minima:

• g1(c) := F̌ (c) + κ
I∑
i=1

ωi
(
c− cRi

)T
Σ†
(
c− cRi

)
;

• g2(c) := cT
(
Q̌+ κΣ†

)
c+

(
w̌ − 2κ

I∑
i=1

ωi Σ†cRi

)T
c .

Firstly we have by standard calculations,

I∑
i=1

ωi
(
c− cRi

)T
Σ†
(
c− cRi

)
=

I∑
i=1

ωi c
TΣ†c− 2

I∑
i=1

ωi c
T
RiΣ

†c+
I∑
i=1

ωi c
T
RiΣ

†cRi

= cTΣ†c−

(
2

I∑
i=1

ωi Σ†cRi

)T
c+

I∑
i=1

ωi c
T
RiΣ

†cRi ,

for any c ∈ RK , where we have used
∑I

i=1 ωi = 1. Combining now this equality with
Lemma A.1 implies

g1(c) = cT Q̌c+ w̌T c+ rT + κ

cTΣ†c−

(
2

I∑
i=1

ωi Σ†cRi

)T
c+

I∑
i=1

ωi c
T
RiΣ

†cRi


= cT

(
Q̌+ κΣ†

)
c+

(
w̌ − 2κ

I∑
i=1

ωi Σ†cRi

)T
c+ κ

I∑
i=1

ωi c
T
RiΣ

†cRi + rT

= g2(c) + κ

I∑
i=1

ωi c
T
RiΣ

†cRi + rT .

Since the two last terms of the last right-hand side do not depend on c, we deduce that
the objective functions g1 and g2 have the same minima.
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Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey,
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