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Abstract. In the realm of modern digital phenotyping technological
advancements, the demand of annotated datasets is increasing for ei-
ther training machine learning algorithms or evaluating 3D phenotyping
systems. While a few 2D datasets have been proposed in the commu-
nity in last few years, very little attention has been paid to the con-
struction of annotated 3D point cloud datasets. There are several chal-
lenges associated with the creation of such annotated datasets. Acquir-
ing the data requires instruments having good precision and accuracy
levels. Reconstruction of full 3D model from multiple views is a chal-
lenging task considering plant architecture complexity and plasticity, as
well as occlusion and missing data problems. In addition, manual an-
notation of the data is a cumbersome task that cannot easily be au-
tomated. In this context, the design of synthetic datasets can play an
important role. In this paper, we propose an idea of automatic genera-
tion of synthetic point cloud data using virtual plant models. Our ap-
proach leverages the strength of the classical procedural approach (like
L-systems) to generate the virtual models of plants, and then perform
point sampling on the surface of the models. By applying stochasticity
in the procedural model, we are able to generate large number of diverse
plant models and the corresponding point cloud data in a fully auto-
matic manner. The goal of this paper is to present a general strategy
to generate annotated 3D point cloud datasets from virtual models. The
code (along with some generated point cloud models) are available at:
https://gitlab.inria.fr/mosaic/publications/lpy2pc.

Keywords: Procedural Model, L-System, Virtual Plant, Point Cloud,
Labeled Synthetic Data

1 Introduction

With the recent breakthrough of the advancements on plant phenotyping re-
search, botanical and agronomic studies have been revolutionized to enter in a
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new stage of development [35]. In recent years, 3D computer vision based sys-
tems have been widely developed in different types of phenotyping applications
including robotic branch pruning [5], automated growth analysis [8,7], agricul-
tural automation tasks [38], etc. Point cloud based approach has been an integral
part of machine learning aspects of plant phenotyping [47]. However, many of
these techniques require ground truth data for training the algorithms and for
validation of the results in a quantitative manner. For example, methods per-
forming plant organ segmentation [27,22] require labeled point cloud data for
quantifying the segmentation accuracy. Similarly, in-field 3D segmentation [34]
or plant structure classification tasks [10] also demand annotated datasets for
validation. In addition, to exploit the recent success of deep learning technologies
for point cloud data [30] in agricultural applications, large amount of annotated
data are in extreme demand. Unfortunately at the current moment, there is
a scarcity of available annotated point cloud dataset in the plant phenotyping
community. Only a handful of datasets of certain plant species are proposed in
the literature. Among the currently available 3D datasets, Cruz et al. [9] cre-
ated a multimodal database of top view depth images of Arabidopsis and bean
plants. Wen et al. [44] proposed a database of 3D geometric plant models which
are based on the measurements of in-situ morphological data. Different types of
species in different growth stages are modelled in the framework. However the
data is limited to the organ scale of the plants, and not on the full 3D model.
Bernotas et al. [1] created a photometric stereo dataset along with manually
annotated leaf masks of Arabidopsis rosettes. The Komatsuna plant dataset [37]
contains RGB and depth images with annotated leaf labels. However, none of
the above mentioned datasets are built on full 3D point cloud model of plants.
Recently, the ROSE-X dataset [11] is created with 3D models of rosebush plants
acquired through X-ray tomography method. Manual annotation is performed
to label voxels and point clouds belonging to different organs of the plant. For
remote sensing applications of vegetation studies, Wang [41] simulated a syn-
thetic Terrestrial Laser Scanning (TLS) data of forest scenes. The generated
point cloud contains simulated data of large trees having structurally complex
crowns with labels belonging to leaf and wood class.

In contrast to the scarcity of 3D point cloud datasets, there has been quite
a few 2D datasets available for public use, as well as software tool to access dif-
ferent types of existing solutions according to the experimental need [24]. These
have revealed extremely useful for training machine learning algorithms and per-
formance validations tasks for 2D image based plant phenotyping applications.
The dataset proposed in [25] is one of the first kind, where annotated top-view
color images of rosette plants at different growth stages are available. Shadrin
et al. [31] proposed a manually annotated dataset of raw salad images acquired
over a period of several days for plant growth dynamics assessment. Among
other recent datasets, the Oil Radish dataset [26] and Grass clover dataset [32]
have been proposed. In last few years, leaf segmentation and counting of rosette
plants have been an active area of interest. Deep learning techniques have been
very successful in solving this type of problem, which demand lot of annotated
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data for training the network. In order to overcome the scarcity of available
datasets, different types of data augmentation strategies have been proposed to
generate realistic synthetic data. Giuffrida et al. [13] proposed a Generative Ad-
versarial Network (GAN) model to artificially create Arabidopsis rosette images.
The model allows the user to create plants with desired number of leaves in a
realistic manner. With a similar type of motivation, Ward et al. [43] generated
synthetic leaf images inspired by domain randomization strategy using a Mask-
RCNN deep learning model. Kuznichov et al. [21] proposed a data augmentation
strategy which preserves the geometric structure of the generated leaves with the
real data. Different types of synthetic images are generated by applying some
heuristic rules on the leaf shape and growth and recently, parametric L-systems
have been used to perform data augmentation in generating synthetic leaf models
[36]. Various leaf databases have also been proposed [33,46,20] which are useful
for species identification and leaf architecture analysis [45,40,6].

Some of the difficulties associated with creating labeled 3D point cloud
datasets include the expensive scanning devices, cumbersome and error prone
manual annotation of large number of points, and reconstructing full 3D struc-
ture of complex plants in the presence of occlusion and noise. Also, growing
varieties of plant species and acquiring data at different growth stages require
lot of manpower and constant monitoring of the plants. In this regard, syn-
thetic (or virtual) plant models can play an important role. Recently Ward et
al. [42] demonstrated that synthetic data can be extremely useful in training
deep learning models, which can be reliably used for measurements of different
types of phenotypic traits in the general case. Modelling the geometry of com-
plex plant structures have been a center of attention for mathematicians and
biologists for decades [23,15,14,29]. Virtual models can be extremely useful in
agricultural studies [12,3], as well as have great potential for mechanical simula-
tion of plant behavior [4]. In generating the virtual plant models, L-system based
modelling technique has been quite successful [28]. Different types of platforms
have been developed to simulate the L-system rules, e.g., L+C modelling lan-
guage [18], L-Py framework [2], etc. Functional Structural Plant Models (FSPM)
[15] have emerged as powerful tool to construct 3D models of plant functioning
and growth. These models can play an important role in mechanical simulation
in crop science research [39]. Although generation of synthetic plant models have
been a well studied area, the virtual plant models have not been exploited in
generating synthetic 3D point cloud data for plant phenotyping applications.
Compared to the synthetic artery data simulation software like Vascusynth [16]
for medical imaging research, there is no such tool available in the plant pheno-
typing community.

Inspired by the necessity of synthetic plant point cloud datasets for 3D plant
phenotyping applications, we propose a general approach to sample points on
the surface of virtual plant models to generate annotated 3D point cloud data
in a fully automatic manner. The framework is general in the sense that it can
be plugged into any procedural plant model, and surface point cloud can be
sampled from the virtual plant. Another motivation of the work comes from a
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computer graphics perspective. Among different types of representations of geo-
metric shapes in computer graphics, two types are widely used: triangular mesh
and point based representation [19]. These two types are complementary to each
other in terms of information richness and model complexity, and our framework
builds a bridge between the two paradigms for the varieties of applications of
the geometric plant models in phenotyping problems.

Initially we represent the virtual model as a collection of geometric primitives,
each having their own label belonging to different organs of a plant. Each prim-
itive is then tessellated into triangles to obtain a basic coarse mesh model. By a
random sampling strategy using the idea of barycentric coordinates, we are able
to generate uniformly distributed point cloud on the surface of the virtual model.
Points residing inside any primitive are removed by a geometric filtering tech-
nique. We also model some basic characteristics of real world scanning devices
by incorporating different sampling strategies, which can be adopted according
to the need of the application. We demonstrate the efficiency of the approach by
generating realistic synthetic point cloud model of Arabidopsis plants, as well as
plants with different types of architecture. These datasets are generated by the
stochasticity inherent to the procedural model and by a second level of stochas-
ticity at the level of point cloud sampling. We also show some examples on other
synthetic plants having different types of geometry structures.

In the next section we briefly describe how a virtual plant model should be
specified to allow our algorithm to construct annotated point clouds from it.
Then the basic random point cloud sampling strategy is explained, followed by
the insideness testing process. Then we discuss the sampling strategy to obtain
device specific point cloud models, and experimental results are demonstrated.
Finally the scope of the work and directions for further improvements are dis-
cussed.

2 Virtual Plant Models

Virtual plants are computer generated synthetic models mimicking the devel-
opment and growth of real plants. The models are typically developed by the
recursive rules of L-systems [23]. One of the main attribute of L-system based
plant models is that, complex plant structures can be generated by successive ap-
plication of simple recursive rules. The recursive rules help in modelling natural
phenomena like plant growth, creation and destruction of plant organs over time,
change of shape (e.g. bending, spiralling), etc. This helps us to model a desired
plant species in different growth stages by incorporating biological knowledge
about the plant in the L-system rules.

In a L-system framework, a plant is defined by a string of symbols, called
L-string, representing the different organs of the plant, A for Apex, I for intern-
ode, L for leaf for example. Each symbol is given a set of arguments describing
variables attached to the corresponding organ. For example an internode can
be modeled as a cylinder of height h and radius r, a leaf can be modeled as
a polygon of size s, an apex can have an age t, etc. Square brackets are used
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to delineate branches within the L-string. An initial L-string, called the axiom,
defines the initial state of the plant, before growth starts. For example, the plant
may initially be composed of an apex A(t). This is represented as:

Axiom: A(0) # meaning that the L-string initially contains a

single apex at time 0

A typical L-system model, then consists of a set of rules that make it possible
to evolve the initial L-string. For instance the following rule typically says that
at each time step dt the apex produces an internode I, a branching apex A and
a leaf L, and an apical apex A:

A(t) --> I(0.01,0.1) [+(angle)[L(0.1)]A(t+dt)] A(t+dt)

where ‘angle’ is a variable (that can be a constant for example). This rule can
be complemented by rules that express how internodes and leaf should change
in time:

I(r,h) --> I(r’,h’)

with r’ = r + a*dt and h’ = r’ + b*dt

L(s) --> L(s’)

with s’ = s + c*dt

In general, these so-called production rules do not describe how the symbols
are associated with geometric models. For this, a way to interpret geometrically
the symbols of the L-string should be defined. This is done using a new set of
rules called interpretation rules. Here they could for instance look like, e.g.:

A(t) --> Sphere(radius(t))

with radius(t) = 0.1 (constant radius in time)

I(r,h) --> Cylinder(r,h)

L(s) --> Polygon(size)

To use our algorithm, one would need to attach a unique annotation for each
class of organ that one would like to recognize in the application. This is done
by adding an extra ‘label’ argument to the symbols of interest.

A(t) --> I(0.01,0.1,8) [+(angle)[L(0.1,9)]A(t+dt)] A(t+dt)

I(r,h,label_I) --> I(r’,h’,Label_I)

with r’ = r + a*dt and h’ = r’ + b*dt

L(size,label_L) --> L(s’,label_L)

with s’ = s + c*dt

where label=8 is attached to internodes and label=9 to leaves. The interpre-
tation rules should be modified accordingly:

A(t) --> Sphere(radius(t))

with radius(t) = 0.1 (constant radius in time)

I(r,h,label_I) --> Cylinder(r,h,label_I)

L(size,label_L) --> Polygon(size,label_L)
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In this way, the geometric models will be tagged with a label corresponding
to their category (here Internode or Leaf), and will make it possible to identify
the triangles (which are used for rendering the model) that belong respectively
to internodes and leaves in the 3D scene. Basically we transfer the label of an
organ to the triangles while performing the tessellation, as discussed next.

3 Surface Point Cloud Generation

After creating the virtual model, we aim at generating points on the surface of
the model where each point has a label of the plant organ it belongs to. In order
to achieve this, we follow a series of steps. Given a parametric L-system model
with unique label associated with each organ of the plant, we extract the set of
primitives (along with their label of the organ they belong to in the procedural
model) which are used to display the virtual plant model as a 3D object. In
general, the following types of primitives are typically used in constructing the
3D object: cylinder, frustum, sphere, Beźier curve, NURBS patch, etc. Each
primitive is then locally tessellated into a set of triangles (these triangles are
used to render the 3D object), and the triangles are assigned the label of the
primitive. Finally a global list of labelled triangle vertices are created to obtain
a coarse mesh model of the 3D structure of the plant. Now the idea is to sample
a dense set of labelled point cloud on the triangle surfaces, with a controlled
density to create a realistic point cloud model of the plant. In the next section,
we describe a simple and effective random point sampling strategy that can
generate desired number of labelled points on the surface of the model.

3.1 Random Point Sampling

In order to generate labelled points on the surface of the virtual model, we
propose two types of sampling strategies. The first type of sampling aims at
generating uniform density of points on the model surface, and the second type
of sampling is motivated by the effect of real world scanning devices, for which
point density depends on various sensor-related parameters. In this section, we
present the basic sampling strategy to generate point cloud of uniform density.

As described earlier, at this stage we represent the virtual model as a set
of triangles of different sizes in a 3D scene. Sampling of points on the triangle
surface is performed by random selection of triangle in each iteration and gen-
erating a point at random location inside the triangle. If we want to generate
a point cloud of size m, we repeat the process of random triangle selection m
times, and each time we generate a random point inside the selected triangle.
However since the triangle sizes are not uniform, the part of the model having
higher number of small triangles will likely to have higher point density than the
part having smaller number of large triangles. In order to handle this problem,
we use the triangle area as a selection probability while performing the sampling,
thus resulting in a list of triangles sampled in a uniform manner.
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Next, in order to perform point sampling on each triangle surface, we ex-
ploit barycentric coordinates, which are widely used in ray tracing applications
of computer graphics. The barycentric coordinates can be used to define the
position of any point located inside a triangle. In the general case for a simplex
in an affine space, let the vertices are denoted as (v1, · · · ,vn). If the following
condition holds true for some point P:

(α1, · · · , αn)P = α1v1 + · · ·+ αnvn, (1)

and at least one of the αi’s are not zero, then the coefficients (α1, · · · , αn) are
the barycentric coordinates of P with respect to (v1, · · · ,vn). For the case of
triangles, any point inside a triangle can be described by a convex combination
of its vertices. Let the vertices of a triangle are denoted as v1,v2,v3. Then any
random point Q inside the triangle can be expressed as,

Q =

3∑
i=1

αivi, (2)

where α1, α2, α3 ≥ 0 are three scalars (the barycentric coordinates of the point
Q) such that the following condition holds true:

α1 + α2 + α3 = 1. (3)

For all points inside the triangle, there exists a unique triple (α1, α2, α3)
such that the condition of Equation 2 holds true. Hence, due to the property in
Equation 3, any point can be defined by any two of the barycentric coordinates.

Using barycentric coordinates, random points can be generated easily on the
triangle surfaces. For each randomly selected triangle, we generate two random
numbers α1 and α2. Then α3 is computed as, α3 = 1−(α1+α2) (using Equation
3). This gives us a random point Q inside the triangle. By performing this process
for m number of times, a uniformly spaced point cloud of size m is obtained on
the surface of the virtual model.

3.2 Insideness Testing

Although the point sampling is performed on the surface of the primitives, there
can be points remaining inside the volumetric primitives (cylinder, frustum, and
sphere). As shown in Figure 1, for the case of a simple branching structure
approximated by cylinders and frustums, part of a branch remains inside the
other. This is physically inconsistent, and we need to filter out the points inside
any volumetric primitive. Hence for each point, we perform a geometric testing
for different types of primitives as follows.

Cylinder Primitive Let an arbitraily oriented cylinder has radius r and two
endpoints (−→pi ,−→pj ) on the central axis. Given a random point −→q , we aim at
determining if the point is inside the cylinder or not (left of Figure 2). First, we
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Fig. 1. In case of volumetric primitives, joining of two (or more) branches results in
one primitive to retain inside another primitive.

test if −→q lies between the planes of the two circular facets of the cylinder. This
is determined by the following two conditions:

(−→q −−→pi ) · (−→pj −−→pi ) ≥ 0,

(−→q −−→pj ) · (−→pj −−→pi ) ≤ 0.
(4)

If the above conditions are true, we compute the perpendicular distance of
the point −→q from the central axis of the cylinder. If the distance is less than the
radius of the cylinder, then the point lies inside. Mathematically the condition
is defined as,

|(−→q −−→pi ) · (−→pj −−→pi )|
|(−→pj −−→pi )|

≤ r. (5)

Fig. 2. Insideness testing for the case of cylinder and frustum.

Frustum Primitive Let an arbitraily oriented frustum has base radius ri and
top radius rj . The two endpoints on the central axis are defined as (−→pi ,−→pj ). Given
a random point −→q , we aim at determining if the point is inside the frustum or
not (right of Figure 2).
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Similar to the case of cylinder, first we check if the point lies between the
planes of the two circular facets of the frustum using Equation 4. Then we project
the point −→q on the line joining −→pi and −→pj (the central axis of the frustum) as,

−→q ′ = −→pi +

[
(−→q −−→pi ) · (−→pj −−→pi )
(−→pj −−→pi ) · (−→pj −−→pi )

]
∗ (−→pj −−→pi ). (6)

The distance between −→q and −→q ′ is computed as, d = dist(−→q ,−→q ′). Next we
compute the frustum radius rq′ at the point −→q ′. This can be computed as,

rq′ =
dist(−→pi ,−→q ′)

dist(−→pi ,−→pj )
∗ ri +

dist(−→pj ,−→q ′)

dist(−→pi ,−→pj )
∗ rj . (7)

If the distance d < rq′ , then the point lies inside the frustum.

Sphere Primitive Let a sphere centered at point −→p = (xc, yc, zc) having radius
r. A point −→q = (xi, yi, zi) is inside the sphere if the following condition holds
true: √

(xc − xi)2 + (yc − yi)2 + (zc − zi)2 ≤ r. (8)

General Primitives For more general geometric models that represent more
complex plant organs, we use general computer graphics techniques like ray
casting [17] that make it possible to test whether a particular point lies inside
or outside a closed geometric envelop.

The step by step procedure to generate the point cloud using the basic point
sampling strategy is outlined in Algorithm 1.

3.3 Sensor Specific Distance Effect

The point cloud sampling described so far, is based on the assumption that the
point density is uniform in the whole plant model. However in real scanning
devices, this is usually not the case. While there are different types of sensor
devices having different types of specific traits associated with the generated
surface point cloud, one of the most common is the effect of distance from the
scanner on the point density. A typical effect of this type yields higher point
density near the scanner, and the density decreases as the distance of different
parts of the object from the scanner increases. In order to simulate the effect of
these type of real scanning devices, we implemented a sampling strategy which
can be adapted to different types of cases according to the need of the application.

Instead of random sampling of triangles in every iteration as in the case of
naive sampling technique described before, we compute the number of points to
be sampled on each triangle based on a distance factor. First we compute the
total surface area AT of all the triangles as, AT =

∑
iATi

. Then we compute
the point density ρu per unit area of the mesh as, ρu = n/AT , where n is
the maximum number of points we wish to sample. Basically ρu gives the point
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density for the case of uniform sampling: given a random triangle Ti, the number
of points on the triangle surface can be approximated as (ρu ∗ ATi

).
Next we compute the distance di of each triangle centroid from the camera

position, and normalize the value in the range [0, 1]. Now the idea is that, as the
distance of a triangle increases from the camera position, the point density ρu is
decreased by some function of di. For i -th triangle, the number of points to be
sampled is computed as,

ni = ρu ATi γ(di), (9)

where γ(·) is a real valued function that controls the effect of distance on the
point sampling. To demonstrate the effect of γ(·), we show an example of a
simple branching structure in Figure 3, where we used γ(di) = 1 (which is the
uniform sampling), and γ(di) = d2i . The Figure shows how the point density
decreases as the distance of the object part increases from the camera position,
compared to the case of uniform sampling.

Fig. 3. Simulation of the effect of distance from the scanner position. From left to
right: the original model along with camera position, using γ(di) = 1 (uniform point
sampling), and γ(di) = d2i .

3.4 Effect of Noise

Presence of noise is a very common effect of scanning devices. While the type of
noise can vary among different types of devices, we simulate a few common effects
of noise in our framework. Some examples are shown in Figure 4 on a simple
branching structure as in Figure 3. On the left of the figure, we show the effect
of uniform noise, where each point is generated by a Gaussian having the surface
position of the point as mean and a standard deviation of σ = 0.06. We also
check the insideness testing while applying the noise, so that the noisy points do
not remain inside any branch. In the middle of the figure, the noise is modelled
with the effect of distance from the camera, as described in the previous section.
Points closer to the scanner has almost zero noise, while the noise increases as
the distance of the point increases from the position of the scanner. Finally at
the right of the figure, the distance effect is shown considering the decrease of
point density as described before.
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Fig. 4. Simulation of noise effect. Left: uniform distribution of noise, Middle: Effect
of noise on the distance from the scanner, Right: Effect of noise on the distance along
with point density factor.

4 Results

We have implemented the model in L-Py framework [2]. However, other types
of frameworks (e.g. L+C [18]) can also be used. In the left of Figure 5, we show
the synthetic model of an Arabidopsis plant that is generated by parametric L-
system using stochastic parameters to compute different instances of the plant
architecture. Using the stochasticity in the model, it is possible to generate a
large variety of plants along with their labelled point cloud data. In the same
figure we show some of the varieties of the generated point cloud models of the
Arabidopsis plant. In all examples, we have used 3 labels (flowers, internodes
and leaves) and about 100k points, although the number of labels and points
can be controlled according to the need of the application. In Figure 6, we show
more detailed result of the Arabidopsis plant.

Fig. 5. From left to right: a virtual model of Arabidopsis plant, followed by labelled
point cloud representation of the plant model in different growth stages.

We also show some results on different types of artificial plants in Figure 7.
This demonstrates the portability of the framework which allows us to use it in
any procedural plant model. In the last example (rightmost in the same figure),
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Fig. 6. An example of a point cloud model generated by the approach using 3 labels
and about 100k points. Different parts are shown in details by the zoom-in.

we demonstrate that the number of labels can be controlled according to the
need of the application. In this case, we have used different labels for each flower
of the Lilac plant (denoted by different colors).

5 Discussion

There are many ways the framework can be improved and adapted to different
types of applications. For example, incorporating back face culling in the frame-
work can be useful for applications where occlusion needs to be modelled. While
we have implemented a basic sampling strategy to mimic the sensor specific dis-
tance effect, there can be several other types of effects in real world scanning
devices, that yield a research avenue by themselves. Incorporating these effects in
the point sampler will make the system more versatile and robust, and increase
its application range. As we have simulated the effect of distance on the point
density by considering the distance of the triangle centroids from the scanner,
the point density remains same in all areas of one triangle. For large triangles
where one part of the triangle is closer to the scanner than the other part, ideally
the point density should vary accordingly inside the same triangle. However in
the current framework, we have not modelled this effect.

In order to model the sensor specific distance effect, the desired number
of points should be significantly higher than the total number of triangles in
the model. In the current implementation, we estimate the number of points
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Fig. 7. Some examples of artificial plant models (top row), and the corresponding
labelled point cloud data (bottom row). In the first two examples, 2 and 3 labels are
used, respectively. In the last example, each flower is assigned a different label denoted
by different colors.

per triangle based on its area, without taking into consideration the number
of sampled points on the neighboring triangles. While the number of estimated
points per triangle can be a fractional number according to Equation 9, we need
to round off the value to a nearest integer. Hence the part(s) of the model having
large number of tiny triangles will contain at least one point inside each triangle,
even when the number of estimated point for the triangle is less than 1, resulting
in higher point density in these areas. Ideally the sampling should be performed
based on the point density of the neighboring triangles, although this is not
considered in the framework.

The current implementation is not optimized, and thus is slow in terms of
computation time. For example, in order to generate 100k points in the Ara-
bidopsis model, it takes about 1.5 hours to run the basic sampler. While we have
decomposed each shape into triangles to perform point sampling, the points can
also be sampled directly on the surface of the geometrical shape. However, we
use the triangle representation since it is simple and straightforward.

6 Conclusion

In this paper we have proposed a generalized approach to generate labeled 3D
point cloud data from procedural plant models. As a preliminary work, we have
presented results on a simulated Arabidopsis plant along with some artificial
plant models. The point sampler is portable enough to use in different types of
plant models, and corresponding point cloud data can be generated. This can be
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beneficial to various types of plant phenotyping research problems in performing
quantitative evaluation of point cloud based algorithms, as well as in training
the machine learning models. It will be worth investigating how the synthetic
models perform in training deep neural networks. In future, we plan to model
different types of plant species and more complex plants in the framework. While
currently there is no such method available to generate synthetic labeled point
cloud data, our approach is the first step towards this in promoting 3D point
cloud based plant phenotyping research.

Algorithm 1: Basic Point Sampling Algorithm

Input: Procedural Plant Model
Output: Surface point cloud of the model P = {p1, · · · ,pn}, label list `
begin
P ← {Φ}, `← {Φ}
Assign label `i, i ∈ {1, · · · , r} to r organs in the procedural model
Extract all primitives with organ labels from the model {C`i1 , · · · , C`im}
Extract the set of geometry parameters of the primitives {λ1, · · · , λm}
Tessellate each primitive into set of triangles T = {{T `i

1 }, · · · , {T `i
m }}

Create global list of triangle vertices along with their corresponding labels
while Total number of Points ! = n do

Randomly select a triangle T `i
j ∈ T with area probability

{vj
1,v

j
2,v

j
3} ← vertex(T `i

j ) // Extract triangle vertices

α1 ← rand(0, 1), α2 ← rand(0, 1), α3 ← rand(0, 1)
α1 ← α1/

∑3
i=1 αi, α2 ← α2/

∑3
i=1 αi, α3 ← α3/

∑3
i=1 αi

p← α1v
j
1 + α2v

j
2 + α3v

j
3

insidenessFlag ← False
// Loop over all primitives

for k ← 1 to m do

if C`ik is a Cylinder then
insidenessFlag ← isInsideCylinder(λk,p)// using Eqn.4,5

else if C`ik is a Frustum then
insidenessFlag ← isInsideFrsutum(λk,p)// using Eqn.4,6,7

else if C`ik is a Sphere then
insidenessFlag ← isInsideSphere(λk,p)// using Eqn.8

if insidenessFlag = False then
P ← P ∪ p
`← ` ∪ `i
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