
HAL Id: hal-03030416
https://hal.archives-ouvertes.fr/hal-03030416v2

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Pseudo-Linear Time Algorithm for the Optimal
Discrete Speed Minimizing Energy Consumption

Bruno Gaujal, Alain Girault, Stéphan Plassart

To cite this version:
Bruno Gaujal, Alain Girault, Stéphan Plassart. A Pseudo-Linear Time Algorithm for the Optimal
Discrete Speed Minimizing Energy Consumption. Discrete Event Dynamic Systems, Springer Verlag,
inPress, �10.1007/s10626-020-00327-9�. �hal-03030416v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362229375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-03030416v2
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

A Pseudo-Linear Time Algorithm for the Optimal
Discrete Speed Minimizing Energy Consumption

Bruno Gaujal · Alain Girault · Stéphan
Plassart

Received: date / Accepted: date

Abstract We consider the classical problem of minimizing off-line the total
energy consumption required to execute a set of n real-time jobs on a single
processor with a finite number of available speeds. Each real-time job is defined
by its release time, size, and deadline (all bounded integers). The goal is to
find a processor speed schedule, such that no job misses its deadline and the
energy consumption is minimal. We propose a pseudo-linear time algorithm
that checks the schedulability of the given set of n jobs and computes an
optimal speed schedule. The time complexity of our algorithm is in O(n),
to be compared with O(n log(n)) for the best known solution. Besides the
complexity gain, the main interest of our algorithm is that it is based on a
completely different idea: instead of computing the critical intervals, it sweeps
the set of jobs and uses a dynamic programming approach to compute an
optimal speed schedule. Our linear time algorithm is still valid (with some
changes) when arbitrary (non-convex) power functions and when switching
costs are taken into account.

Keywords Real time systems; Dynamic Voltage and Frequency Scaling;
Energy minimization; Dynamic programming.

1 Introduction

Among numerous hardware and software techniques used to reduce energy
consumption of a processor, supply voltage reduction, and hence reduction of

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-
0025-01) funded by the French program Investissement d’Avenir.

Bruno Gaujal · Alain Girault · Stéphan Plassart
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG
E-mail: bruno.gaujal@inria.fr E-mail: alain.girault@inria.fr E-mail: stephan.plassart@inria.fr



2 Bruno Gaujal et al.

CPU speed, is particularly effective. This is because the energy consumption
of the processor is a function at least quadratic in the speed of the processor
in most models of CMOS circuits. Nowadays, variable voltage processors are
readily available and a lot of research has been conducted in the field of Dy-
namic Voltage and Frequency Scaling (DVFS). Under real-time constraints,
the extent to which the system can reduce the CPU frequency (or processor
speed in the following) depends on the jobs’ features (execution time, arrival
date, deadline) and on the underlying scheduling policy. Several algorithms
have been proposed in the literature to adapt processor speed using DVFS.

There are two classes of such problems, on-line and off-line. In the off-line
case, all the jobs are known a priori with their characteristics, and they are
in a finite number, while in the on-line case the characteristics of the job are
“discovered” when they are released, and the number of jobs can be infinite.
We focus in this paper on the off-line case. Our goal is to minimize the energy
consumption under the constraint that no job misses its deadline. Checking
this constraint is known as checking the feasibility of the set of real-time jobs.

The problem of computing off-line DVFS schedules to minimize the energy
consumption has been well studied in the literature, starting from the seminal
paper of Yao et al. in 1995 [16]. All the previous algorithms proposed in the
literature compute the critical interval of the set of jobs1, using more and more
refined techniques to do so. This started in 1995 with [16] and [13] where it was
independently shown that one can compute the optimal speed schedule with
complexity O(n3), where n is the number of real-time jobs to schedule2. Later,
[5] showed in 2007 that the complexity can be reduced to O(n2L), where L is
the nesting level of the set of jobs. Finally the complexity has been reduced
to O(n2) in the most recent work in 2017 [9].

When the number of available speeds is finite, equal to m, [10] gave in 2007
aO(n2) algorithm, while [8] proposed in 2005 aO(mn log n) algorithm. In their
most recent work, the same authors showed in 2017 that the complexity can
be further reduced to O(n log(max{m,n})) [9].

In this paper, we present a dynamic programming solution that sweeps
the set of jobs and computes the best speed at each time step while checking
feasibility, even when the power function is not convex. The complexity is
equal to Kn, where the constant K depends linearly on the maximal speed
and quadratically on the maximal relative deadline of the jobs. Therefore, our
solution is competitive with the solution in [9] when the number of jobs is large
and all deadlines are bounded. More details about this comparison are given in
Section4.4. Our solution is inspired from a Markov Decision Process approach
proposed by Gaujal et al. in [3] in the on-line case when statistical data on
the job characteristics (arrival time, WCET, and deadline) are known. Their

1 The critical interval is the time interval with the highest load per time unit, to be
precisely defined later.

2 The arithmetic complexity of an algorithm is the number of elementary operations it
requires, regardless of the size of their arguments.



Title Suppressed Due to Excessive Length 3

algorithm computes the optimal on-line speed scaling policy that minimizes
the expected energy consumption. Here, we show that their algorithm can be
adapted to the off-line case where the characteristics of the jobs are given
as inputs to the algorithm. It does not use the critical intervals on which in
all previous approaches are based and therefore, it is still valid under more
realistic cases with non-convex power functions and when switching costs are
taken into account while approaches based on critical intervals collapse in these
cases.

We introduce in Section 2 the system model. Then we detail in Section 3
the state space. Our dynamic programming solution is detailed in Section 4.
We then study extensions of our algorithm. We show in Section 5 that the
dynamic programming approach can also be used in the case where switching
from one speed to another is not free, but instead takes some time and some
extra energy, which is a more realistic model. Finally we provide concluding
remarks in Section 6.

This paper is a long and improved version of [4]: We have removed the
assumption that the power function is convex, and the condition that speeds
must be consecutive. This version also contains a new algorithm with a greatly
improved complexity and the new Theorem 4 for switching costs.

2 System Model

We consider a set of n jobs {Ji}i=1..n to be executed by a single core processor
equipped with dynamic voltage and frequency scaling (DVFS). Each job Ji is
defined by the triplet (τi, ci, di), where τi is the inter-arrival time between Ji
and Ji−1 (with τ1 = 1 by convention), ci is the size (also called its WCET),
and di the relative deadline bounded by ∆. From the inter-arrival times and
the relative deadlines we can reconstruct the release times ri and the absolute
deadlines Di of the job Ji as follows:

ri =

i∑
k=1

τk ∀i ≥ 1, (1)

Di = ri + di. (2)

Since specifying a set of jobs as {(τi, ci, di)}i=1..n or as {(ri, ci, Di)}i=1..n

is equivalent, we use both notations in our examples.

We assume that all these quantities are in N. We also denote by T the last
deadline among all jobs, called the time horizon of our system. It is defined
as:

T =
n

max
i=1
{Di}. (3)

The single core processor is equipped with m processing speeds also as-
sumed to be in N, and smax denotes the maximal speed. The set of available



4 Bruno Gaujal et al.

speeds is denoted S. The speeds are not necessarily consecutive integers. In
the first part of the paper, we assume that the cost of switching speeds is null.
This will be generalized in Section 5 to include speed switching costs using the
same idea as in [3].

In this paper, all jobs are scheduled by the Earliest Deadline First (EDF)
preemptive scheduling policy. A key advantage of EDF is that it is optimal
for feasibility. A set of jobs is feasible if and only if there exists a job schedule
so that no deadline is missed when the processor always uses its maximal
speed smax. In this respect, the optimality of EDF means that, if a set of jobs
is feasible, then it is also feasible under EDF.

When the processor runs at speed s(t) it executes an amount of work equal
to
∫ t+1

t
s(u)du in one time unit, provided that enough jobs are active in the

system at this time t (i.e., released and not yet finished). For instance, assume
that two jobs J1 and J2 are active at time t, with respective size c1 = 1 and
c2 = 2, and with absolute deadlines such that D2 > D1 > t. If the processor
runs at the constant speed s = 2 during the time slot [t, t + 1], then during
this time slot it executes entirely J1 and half of J2.

The power dissipated at any time t by the processor running at speed
s(t) is denoted Q(s(t)) (arbitrary, not necessarily convex). According to these
notations, the total energy consumption E is:

E =

∫ T

1

Q(s(t))dt. (4)

Given a set of n jobs {Ji}i=1..n, the goal is to find an optimal speed schedule
{s(t), t ∈ [1, T ]} that will allow the processor to execute all the jobs before their
deadlines while minimizing the total energy consumption E.

3 State Space

3.1 State Description

The central idea of this paper is to define the state of the system at time t.
We denote W the set of all states of the system.

A natural state of the system at time t is the set of all jobs present at
time t, i.e., {Ji = (ri, ci, di)|ri ≤ t ≤ ri + di}. Yet, in order to compute the
speed of the processor, one does not need to know the set of actual jobs but
only the cumulative remaining work present at time t, corresponding to these
jobs. Therefore, a more compact state will be the remaining work function
wt(·) at time t: for any u ∈ R+, wt(u) is the amount of work that must be
executed before time u+ t, taking into account all the jobs Ji present at time t
(i.e., with a release time ri ≤ t and deadline ri + di > t). By definition, the
remaining work wt(·) is a staircase function.



Title Suppressed Due to Excessive Length 5

To derive a formula for wt(·), let us introduce the work quantity that arrives
at any time t: to achieve this, we define in Def. 1 a new function at(·). For any
u ∈ R+, the quantity at(u) is the amount of work that arrives at time t and
must be executed before time t+ u.

Definition 1 The amount of work that arrived at time t and must be executed
before time t+ u is

at(u) =
∑
i | ri=t

ciHri+di(t+ u), (5)

where Hdi(·) is the discontinuous step function defined ∀x ∈ R by

Hri+di(x) =

{
0 if x < ri + di,
1 if x ≥ ri + di.

To illustrate the definition of at(·), let us consider an example with 3 jobs
J1, J2, J3 with respective release times r1 = r2 = r3 = t, sizes c1 = 1, c2 = 2,
c3 = 1 and relative deadlines d1 = 2, d2 = 3, d3 = 5. In this case, the function
at(·) is displayed in Figure 1b by the red line.

Def. (1) allows us to describe the state change formula when moving from
time t− 1 to time t, using speed s(u) in the whole interval [t− 1, t].

Lemma 1 At time t ∈ N the remaining work function is given by:

wt(·) = T

[(
wt−1(·)−

∫ t

t−1
s(u)du

)+
]
+ at(·), (6)

with Tf the shift on the time axis of function f , defined as: Tf(t) = f(t+ 1)
for all t ∈ R, and f+ = max(f, 0), the positive part of a function f .

Proof Eq. (6) defines the evolution of the remaining work over time (see Fig-
ure 1 for an illustration). The remaining work at time t is the remaining work
at t − 1 minus the amount of work executed by the processor from t − 1 to t
(which is exactly

∫ t
t−1 s(u)du) plus the work arriving at t. The “max” with 0

makes sure that the remaining work is always positive and the T operation
performs a shift of the reference time from t− 1 to t. �

3.2 Size of the State Space

As said in Section 3.1, W is the set of all states of the system. W is therefore
the set of all possible remaining work functions that can be reached by any
feasible set of jobs, when the processor only changes its speed at integer times,
and when no job has missed its deadline before time t. The size of the state
space W is denoted by G.



6 Bruno Gaujal et al.

•
t−1 t−1+∆

wt−1(·)

•

s(
t−

1
)

u1

u2

t1

t2

t3

(a) State of the system at t−1.

•
t t+∆

at(·)

•

d1

d2

d3

c1

c2

c3

(b) Arrival of three new jobs.

•
t t+∆

wt(·)

••

u1−1

u2

c1

c2

c3

t1−1
t2−1

t3

(c) Resulting state at t.

Figure 1: Figure 1a: State of the system at t− 1. The green line depicts the
remaining work function wt−1(·). The constant speed chosen between times
t− 1 and t is s(t− 1) = 1; u1 stands for wt−1(2) and u2 stands for wt−1(5)−
wt−1(2). Figure 1b: Arrival of three new jobs (ri, ci, di) at t: J1 = (t, 1, 2),
J2 = (t, 2, 3), and J3 = (t, 1, 5). The red line depicts the corresponding arrival
work function at(·). Figure 1c: The blue line depicts the resulting state at t,
wt(·), obtained by shifting the time from t−1 to t, by executing 1 unit of work
(because s(t− 1) = 1), and by incorporating the jobs arrived at t. Above the
blue line are shown in green the “parts” of wt(·) that come from wt−1(·) and
in red those from at(·).

Since all jobs have a relative deadline bounded by ∆, then for all t ∈ N we
have:

wt(u) = wt(∆) for all u ≥ ∆. (7)

Since wt(u) is constant after u = ∆, and since wt is a staircase func-
tion with steps at integer times, wt is completely specified by its first values,
wt(0), wt(1), wt(2), . . . , wt(∆).



Title Suppressed Due to Excessive Length 7

The fact that no job has missed its deadline before time t implies wt(0) = 0
(no work with deadline at most t is left at time t).

The number of such remaining work functions depends on the processor
characteristics, and in particular of the maximal processor speed smax. Indeed,
the processor can execute at most smaxu amount of work during a time interval
of size u. As a consequence, in order to take into account only the feasible
remaining work functions (i.e., the remaining work functions such that all
jobs Ji can be executed before their deadline), one only needs to consider the
remaining work functions that satisfy the following equation:

∀0 < u ≤ ∆, wt(u) ≤ smaxu. (8)

• t

0 ∆ ∆+1

•smax(∆+1)•

wt(·)

•

A remaining work function wt(·)
The corresponding Catalan path

Figure 2: Bijection between remaining work functions wt(·) (orange dashed
staircase line) and the Catalan paths (blue solid staircase line).

Now, the set of remaining work functions wt(·) that satisfy Eq. (8) can be
bijectively associated to the set of increasing paths over the 2D integer lattice3
that start from point (0, 0), end into point (∆+1, smax(∆+1)), and that stay
below the diagonal. This is done by adding one step to the wt(·) staircase,
from (∆,wt(∆)) to (∆ + 1, smax(∆ + 1)). These paths are known under the
name of Catalan paths [6]. This bijection is illustrated in Figure 2, where the
additional step connects the orange bullet and the blue bullet.

As a consequence, the size G of the state spaceW can be computed using a
generalization of the Catalan numbers [6]: The number of Catalan paths from
(0, 0) to (∆ + 1), smax(∆ + 1)), hence the number of all possible remaining
work functions for any set of feasible jobs, is:

G =
1

1 + smax(∆+ 1)

(
(smax + 1)(∆+ 1)

∆+ 1

)
≈ e√

2π

1

(∆+ 1)3/2
(e smax)

∆. (9)

3 Increasing paths over a 2D integer lattice are staircases.



8 Bruno Gaujal et al.

4 Dynamic Programming Solution

4.1 Vdd-hopping

Any feasible speed schedules s uses speeds in S at any time s(t) ∈ S. In a unit
interval [t, t+ 1], the amount of work executed under s is vt =

∫ t+1

t
s(u)du =∑m

k=1 αksk, where sk are the speeds in S and αk is the time when s(t) = sk
in [t, t+ 1]. By definition,

∑
k αk = 1.

The energy spent by the speed schedule in the interval [t, t+ 1] is:

Et(s) =

∫ t+1

t

Q(s(u))du =

m∑
k=1

αkQ(sk).

This speed schedule s can be transformed into a new speed schedule s′

such that on each unit interval:

1. The executed work is the same: v′t =
∫ t+1

t
s′(u)du = vt;

2. The energy consumption is smaller: Et(s′) ≤ Et(s);
3. The speed schedule s′ uses at most two speeds in [t, t + 1] (called the

bounding speeds of vt in the following, and defined in the next paragraph).

The construction of s′ is called Vdd-hopping in the following. Here is how
s′ is constructed. The energy consumption of Et(s) =

∑
k αkQ(sk) is a convex

combination of Q(s1), . . . Q(sm). Under the constraint that
∑
k αksk = vt, the

minimum for Et(s) is reached when only two values Q(vt) and Q(vt) are used
with vt ≤ vt < vt and respective durations α′ and 1 − α′ (or only one speed
in the particular case where vt = vt, with α′ = 1).

It follows that, in unit each interval [t, t + 1], the speed schedule s′ uses
speeds vt and vt with respective duration α′ and 1 − α′. The two speeds vt
and vt are called the bounding speeds of vt. This is illustrated in Figure 3.

We further define a new power function, defined for all values of vt ∈
[0, smax] as Q̂(vt) := α′Q(vt) + (1 − α′)Q(vt). Note that Q̂(vt) is the energy
spent by the speed schedule s′ in [t, t + 1]. Also note that once vt is given,
the speed schedule s′ is uniquely defined (up to a harmless permutation of vt
and vt).

4.2 Dynamic Program (First Version)

Algorithm 1 computes the optimal speed schedule. Before presenting its pseudo-
code, let us provide an informal description of the behavior of the system.
Under a given executed work sequence v(1), v(2), . . . , v(T −1), the state of the
system evolves as follows:



Title Suppressed Due to Excessive Length 9

executed work

0

vt

time
t t+α′ t+1

vt

vt

α′ 1− α′

Figure 3: Amount of work executed with speed s (in red), and amount of
work executed by s′ using the two bounding speeds vt and vt (in blue).

– At time 1, no jobs are present in the system so the initial state function
w1 is the null function, which we represent by the null vector of size ∆:
w1 = (0, . . . , 0) (see line 4).

– The first job J1 is released at time 1, maybe simultaneously with other
jobs, so the new state function becomes w1 = w0+a1 according to Eq. (6).
The case where several jobs are released at time 1 is taken care by the sum
operator in Eq. (5) used to compute a1.

– At time 1, the work executed by the processor is set to v(1). The processor
uses this up to time 2, incurring an energy consumption equal to Q̂(v(1)).

– At time 2, the state function becomes w2 = T(w1 − v(1))+ + a2 according
to Eqs. (6) and (5), and so on and so forth up to time T − 1, resulting in
the sequence of state functions w1, w2, . . . , wT−1.

Now, let us denote by E∗t (w) the minimal energy consumption from time
t to time T , if the state at time t is w, and if the optimal speed schedule
is v∗(t), v∗(t + 1), . . . , v∗(T − 1). Of course, this partial optimal schedule is
not known. But let us assume (using a backward induction) that the optimal
speed schedule is actually known for all possible states w ∈ W at time t. It
then becomes possible to compute the optimal speed schedule for all possible
states between time t− 1 and T using the maximum principle:

E∗t−1(w) = min
v

(
Q̂(v) + E∗t (T(w − v)+ + at)

)
(10)

v∗(t− 1)(w) = argmin
v

(
Q̂(v) + E∗t (T(w − v)+ + at)

)
, (11)

where v∗(t)(w) denotes the optimal execution at time t if the current state
is w.

When time 0 is reached, the optimal speed schedule has been computed
between 0 and T for all possible initial states. To obtain an optimal speed
schedule for the sequence of states w1, . . . , wT−1, we just have to return the



10 Bruno Gaujal et al.

speeds s∗(1)(w1), . . . , v
∗(T − 1)(wT−1) (see line 26). Note that, because of the

“argmin” operator in Eq. (11), the optimal speed schedule is not necessarily
unique.

Algorithm 1 Dynamic program computing the optimal executed work.
1: input: {Ji = (τi, ci, di), i = 1..n} % Set of jobs to schedule

% Initializations
2: for all i = 1 to n do ri ←

∑i
k=0 τk end for % Release times

3: T ← maxi(ri + di) % Time horizon
4: w1 ← (0, . . . , 0)
5: for all w ∈ W do E∗T (w)← 0 end for % Energy at the horizon

% Main loop
6: t← T % Start at the horizon
7: while t ≥ 1 do
8: for all w ∈ W do
9: E∗t−1(w)← +∞
10: for all v ∈ P(w) do
11: w′ ← T

[
(w − v)+

]
+ at % Computation of the next state

12: if w′ /∈ W then
13: E∗t (w

′)← +∞ % The next state is unfeasible
14: end if
15: if E∗t−1(w) > Q̂(v) + E∗t (w

′) then
16: E∗t−1(w)← Q̂(v) + E∗t (w

′) % Update the energy in state w at t− 1
17: v∗(t− 1)(w)← v % Update the optimal speed in state w at t− 1
18: end if
19: end for
20: end for
21: t← t− 1 % Backward computation
22: end while

% Return the result
23: if E∗1 (w1) = +∞ then
24: return “not feasible”
25: else
26: return {v∗(t)(wt)}t=1...T

27: end if

This is what Algorithm 1 does. E∗ is computed using the backward in-
duction described previously, which is a special case of the finite horizon opti-
mization algorithm provided in [11].

The cases where the set of jobs is unfeasible are taken into account by
setting the energy function E∗t (w′) to infinity if the state w′ is unfeasible, that
is, if w′ /∈ W (see lines 12 and 13) since W is the set of feasible states by
definition.

If v(t)(w) is the work executed by the processor in [t, t+1] in state w, then
the deadline constraint on the jobs imposes that v(t)(w) must be large enough
to execute the remaining work at the next time step, and cannot exceed the
total work present at time t. This means:

∀t, ∀w, w(∆) ≥ v(t)(w) ≥ w(1). (12)



Title Suppressed Due to Excessive Length 11

This set of admissible executions in state w will be denoted by P(w) and
formally defined as :

P(w) =
{
v ∈ N | v ≤ smax and w(∆) ≥ v ≥ w(1)

}
. (13)

Our first result is Theorem 1, which states that Algorithm 1 computes the
optimal speed schedule.

Theorem 1 If the set of jobs is not feasible, then Algorithm 1 outputs “not
feasible”. Otherwise it outputs an optimal execution in each unit interval (and
hence an optimal speed schedule via Vdd-hopping) that minimizes the total en-
ergy consumption.

Proof Case A: The set of jobs is not feasible. Then, at some time t,
the state wt will get out of the set of feasible states, for all possible choices
of v. Hence its value E∗t (wt) will be set to infinity (see line 13) and this will
propagate back to time 1 (see line 16). In conclusion, E∗1 (w1) will be infinite
and Algorithm 1 will return “not feasible” (see line 24).

Case B: The set of jobs is feasible. The proof proceeds in two stages.
In the first stage we show that there exists an optimal solution that executes
an integer amount of work in each unit interval. In the second stage, we show
that Algorithm 1 finds an optimal speed schedule among all solutions that
execute an integer amount of work in each unit interval.

Case B – first stage.

A solution s(t) is feasible if no job misses its deadline under s. This can
be translated into linear constraints on the variables vt, the quantity of work
executed in the unit intervals [t, t+ 1]: vt =

∫ t+1

t
s(u)du.

For any interval [t, t′], the feasibility constraints are

∀0 < t < t′ ≤ T, vt + vt+1 + · · ·+ vt′−1 ≥
∑

i:ri≥t,ri+di≤t′
ci.

There is also an upper constraint on the total amount of work that can be
executed:

∀0 < t < T, v1 + · · ·+ vt ≤
∑
i:ri≤t

ci.

Finally, the speed being limited by smax, a final constraint is

∀0 < t < T, 0 ≤ vt ≤ smax

All these constraints form a constraint matrix with the consecutive-ones
property (i.e., each line is only made of 0s and a consecutive sequence of 1s) so
that the constraint matrix is totally unimodular (i.e., every square submatrix
has determinant −1, 0 or 1).



12 Bruno Gaujal et al.

As for the cost to be minimized, E(s), let us consider a feasible solution
s∗ whose cost is minimal. The cost E(s∗) can also be expressed as a function
of the variables v∗t .

E(s∗) =

∫ T

1

Q(s∗(u))du

=

T−1∑
t=0

∫ t+1

t

Q(s∗(u))du

=

T−1∑
t=0

Ft(v
∗
t ),

where Ft(·) is defined as follows. Let v∗t and v∗t be the two bounding speeds of
v∗t in S. By Vdd-hopping ,

Ft(x) =
Q(v∗t )−Q(v∗t )

v∗t − v∗t
(x− v∗t ) +Q(v∗t ). (14)

This is an affine function of x. The minimum of the sum
∑T−1
t=0 Ft un-

der totally unimodular constraints is reached at an integer point (see [12] for
example).

Case B – second stage. In the second stage of the proof, we show that
Algorithm 1 finds an optimal speed selection among all solutions that execute
an integer amount of work in each unit interval. Together with the first stage,
this will end the proof. Proving the optimality of Algorithm 1 is classical in
dynamic programming. This is done by a backward induction on the time t.
Let us show that E∗t (w), as computed by the algorithm, is the optimal energy
consumption from time t to time T under any possible state w at time t.

Initial step: t = T . We set E∗T (w) = 0 for all w. Indeed no jobs are present
after time T , so that the state reached at time t must be wT = (0, 0, . . . , 0)
because no work is left at time T and the value E∗T (wT ) = 0 is therefore
correct. No speed has to be chosen at time T .

Induction: Assume that the property is true at time t + 1. At time t,
Algorithm 1 computes ∀w ∈ W, E∗t (w). In particular, if the set of jobs is
feasible, then the actual state at time t, namely wt, must be in W. Therefore,
according to lines 15 and 16, we have:

E∗t (wt) = min
v∈P(w)

(
Q̂(v) + E∗t+1(T(wt − v)+ + at)

)
.

All possible speeds at time t are tested with their optimal continuation (by
induction hypothesis). Therefore, the best choice of speed at t, which minimizes
the total energy from t to T , is selected by Algorithm 1.

Finally, when all the speed changes occur at integer times, the total energy
consumption computed by Eq. (4) is equal to the value E∗1 (w1) computed by
Algorithm 1. �



Title Suppressed Due to Excessive Length 13

Our second result is Theorem 2, which states that the time complexity of
Algorithm 1 is linear in the number of jobs n.

Theorem 2 The time complexity of Algorithm 1 is Kn, where n is the number
of jobs and the constant K depends on the maximal speed smax and the maximal
relative deadline ∆.

Proof The proof proceeds by inspecting Algorithm 1 line by line. The number
of operations in line 11 is equal to the number of jobs whose release time is at
time t, denoted nt:

nt = |{Ji = (ri, ci, di) s.t. ri = t}|, (15)

and the sum of all nt is equal to the total number of jobs, n:
T∑
t=1

nt = n. (16)

Furthermore, the number of operations in line 12 is ∆ (to check if w′(i) ≤
i smax for i = 1..∆). Therefore the total number O of arithmetic operations
(copies, comparisons, and additions of integers) is:

O =

T∑
t=1

∑
w∈W

∑
s∈P(w)

(nt +∆+K ′), (17)

where K ′ is a constant that accounts for all the arithmetic operations between
lines 11 and 18 in Algorithm 1.

The size of P(w) is bounded by smax
4. Hence O is bounded by a linear

function of n and T :

O ≤ nGsmax + TGsmax(∆+K ′). (18)

We have seen previously that G is bounded by a function of smax and ∆ (see
Eq. (9)). Now, T = maxni=1(ri + di) = maxni=1(di +

∑i
j=1 τj). If there exists

j such that τj > ∆, then there exists an interval of time when the processor
must be idle, between the end of the execution of the first j − 1 jobs and the
release time of the jth job. In this case the problem can be split into two: all
jobs from 1 to j− 1 and all jobs from j to n. This means that one can assume
with no loss of generality that all inter-arrival times are smaller than ∆, hence
T ≤ n∆.

It follows, the total number of arithmetic operations O is bounded:

O ≤ nK with K = Gsmax(∆
2 +∆K ′ + 1). (19)

Finally, by replacing in Eq. (19) G by its value from Eq. (9), we conclude
that exists a constant K0 such that O ≤ n×K0

√
∆(e smax)

∆+1. �
4 To be more precise, |P(w)| is bounded by |S|, and since S = {0, 1, . . .m − 1}, we have
|S| = smax + 1.



14 Bruno Gaujal et al.

4.3 Dynamic Program (Second Version)

The main term in Eq. (19) is G, the size of the state space W. The dynamic
programming algorithm 1 computes the optimal energy for all states in W at
each time t, regardless of the fact that these states are reachable at time t.

We present in this section an improved algorithm that constructs the set of
reachable states on the fly at each time step t, resulting in a dramatic reduction
of the complexity, from O(n×

√
∆(e smax)

∆+1) to O(n× (smaxC∆
2)).

First, let us consider the cumulative evolution up to time t. Let e(t) be the
work executed up to time t:

e(t) =

t∑
i=0

vi, (20)

where vi denotes the executed work in [i, i+1]. The cumulative executed work
e(t) must be smaller than the cumulative work A(t) arrived before time t, and
larger than the cumulative deadlines D(t) at t:

D(t) ≤ e(t) ≤ A(t),

with
A(t) =

∑
i:ri≤t

ci and D(t) =
∑
i:Di≤t

ci. (21)

At time 0, A(0) = e(0) = D(0) = 0 and at time T , A(T ) = e(T ) = D(T ) =∑n
i=1 ci.

As discussed earlier, feasibility implies that at the backlog cannot become
greater than smax∆. Therefore, under a feasible set of jobs, we have A(t) −
D(t) =

∑
i:rt≤t<Di

ci ≤ smax∆, hence for any t the number of different values
for e(t) is smaller than smax∆.

To further refine these bounds on e(t), we define M(t) as the maximal
amount of executed work:

M(t) = min
(
A(t),M(t− 1) + smax

)
with M(0) = 0. (22)

At time t, the maximal amount of executed work M(t) can be bounded by
A(t) as discussed above, but also by M(t− 1)+ smax. This means that at any
time t we have

D(t) ≤ e(t) ≤M(t).

Second, the state at time t is a function of e(t). If we denote by we(t)t (·)
the work remaining function at time t when a quantity e(t) of work has been
executed up to time t, then, for all u ≥ 0, we have:

w
e(t)
t (u) =

( ∑
i:ri<t

ciHri+di(t+ u)− e(t)

)+

+
∑
i:ri=t

ciHri+di(t+ u). (23)



Title Suppressed Due to Excessive Length 15

In other words, we(t)t (.) is a function of e(t). Since there are smax∆ different
values of e(t), the same holds for wt(.). As a result, the number of reachable
states at time t is smaller than smax∆.

Finally, to make the construction of all reachable states more efficient, the
dynamic programming should be done in a forward mode, instead of backward
as it is done in Algorithm 1, because this allows us to construct the state
associated to e(t) incrementally and iteratively, by using the states at time
t− 1. The resulting forward algorithm is shown in Algorithm 2.

Theorem 3 Algorithm 2 computes the optimal speed schedule using less than
n×Ks2max∆

3 operations, where K is a constant.

Proof Let us decompose the analysis of the complexity step by step:

– To compute the cumulative functions A(t) and D(t) in lines 8 and 9, the
complexity is

∑T
t=1(nt + nt +K1) ≤ 2n+K1T , where nt is the number of

tasks released at time t and K1 is a constant.
– In the main temporal loop, from line 20 to 33, there are three parts:

1. At line 21, the complexity of the energy initialization is bounded by
K2smax∆, where K2 is a constant.

2. From line 22 to 33, there are 2 nested loops, one on e′, bounded by
smax∆ and one another on v, bounded by smax. In this part, we use the
minimum principle to determine the minimal energy. All these compu-
tations are done in constant time except for line 30. Therefore, the time
complexity of the rest is bounded by K3s

2
max∆, where K3 is a constant.

3. In line 30, the state associated to e at time t is constructed. It takes at
most ∆ operations to subtract v and take the positive part. Moreover
nt additions are needed to add the sizes of the new jobs arrived at t. As
a result, the time complexity here is bounded by K4s

2
max∆(∆+ nt)t.

Therefore, the whole loop has a complexity K5(s
2
max∆T + s2max∆

2T +
s2max∆nt).

The result output (line 38) uses T operations.

Finally, T ≤ n∆ (see the proof of Theorem 2).

Putting everything together yields a number of elementary operations (copies
of an integer, comparisons, additions) bounded by n×Ks2max∆

3, where K is
a constant that does not depend on the problem instance. �

Figure 4 displays all states visited by Algorithm 2 with the set of jobs
given at the left of the figure and with the set of available speeds {0, 1, 2}. The
speeds considered in each state for optimizing the energy are shown as black
arrows. Note that speed 0 is not considered between times 5 and 6. This is
because for any point e at time 5, we have we5(1) = 1. This value comes from
Job J3 that arrives at time 5 with a relative deadline of 1. Also note that the



16 Bruno Gaujal et al.

Algorithm 2 Optimized dynamic program computing optimal executed work.

1: input: {Ji = (τi, ci, di), i = 1..n} % Set of jobs to schedule
% Initializations

2: for all i = 1 to n do ri ←
∑i

k=0 τk end for % Release times
3: T ← maxi(ri + di) % Time horizon
4: w0

1 ← (0, . . . , 0)
5: A(0)← 0; D(0)← 0; M(0)← 0
6: for all t = 1 to T do
7: for all i s.t. ri = t do
8: A(t)← A(t) + ci % arrivals at t
9: D(t+ di)← D(t+ di) + ci % Deadlines
10: end for
11: end for
12: for all t = 1 to T do
13: A(t)← A(t− 1) +A(t) % Cumulative arrival staircase
14: D(t)← D(t− 1) +D(t) % Cumulative deadline staircase
15: M(t)← min(A(t),M(t− 1) + smax) % Maximal executed work
16: if A(t)−D(t) > smax∆ then
17: return “not feasible”
18: end if
19: end for

% Main loop
20: for all t = 1 to T do % Forward computation
21: for all e ∈ [D(t),M(t)] do E∗t (e)← +∞ end for % Energy at each reachable state
22: for all e′ ∈ [D(t− 1),M(t− 1)] do
23: for all v ∈ [we′

t−1(1),min(smax,M(t)− e′)] do % Sweep admissible executions
from t−1 to t

24: e← e′ + v % Amount of executed work at time t
25: if E∗t (e) > Q̂(v) + E∗t−1(e

′) then
26: E∗t (e)← Q̂(v) + E∗t−1(e

′) % Forward optimality equation
27: v∗t (e)← v
28: prev∗t (e)← e′ % Store the optimal solution backwards
29: end if
30: we

t ← T(we′
t−1 − v)+ + at % Build the state associated to e at t

31: end for
32: end for
33: end for

% Return the result
34: if E∗T (eT ) = +∞ then
35: return “not feasible”
36: else
37: for all t from T to 1 do % Output the optimal solution backward
38: return v∗t (e

∗
t )

39: e∗t−1 ← prev∗t (e
∗
t )

40: end for
41: end if

point e = 5 at time 5 (the blue cross in Figure 4) is not visited because it is
below M(5) = 4.

The two following corollaries are the main result of this paper.



Title Suppressed Due to Excessive Length 17

time
1 2 3 4 5 6 7 8 9 10 T

work

5

J1(r1=1, c1=2, D1=5)

J2(r2=4, c2=3, D2=8)

J3(r3=5, c3=1, D3=6)

J4(r4=6, c4=1, D4=11)

X

D(t)A(t)

•••

•

••

•

••

••

•

•

•

••

•

•

•••

••

•

•

•

•

•

••

•

••

•

•

•

•

•

•

••

•

•

•

•

••

•

•

•

•

•

• •

•

•

•

•

• • •

Figure 4: Execution of Algorithm 2 with 4 jobs {Ji}1=1..4 and a power function
Q(s) = s2. The cumulative deadlines form the black staircase D(t), while the
cumulative arrivals form the brown staircase A(t). All the states visited by the
algorithm are depicted as dots, and all the speeds evaluated in these states are
depicted as arrows. The optimal speed schedule computed by Algorithm 2 is
shown as the bold red arrows: (1, 1, 0, 1, 1, 1, 1, 1, 0, 0).

Corollary 1 Algorithm 2 can be improved in order to compute the optimal
speed schedule and use less than n×Ks2max∆

2 operations, where K is a con-
stant.

Proof The reduction from ∆3 to ∆2 can be achieved by replacing the state
construction in line 30 in Algorithm 2 by the following code:

Algorithm 3 Modification of line 30 in Algorithm 2.
1: if e ≤M(t− 1) and v = 0 then
2: we

t ←−
in−place

T(we′
t−1) + at

3: else if M(t− 1) < e ≤M(t) and v = smax then
4: we

t ← T(we′
t−1 − v)+ + at

5: end if

Indeed, line 2 in the above code changes the vector we
′

t−1 in place (symbol
“ ←−
in−place

”), i.e., we only move a pointer position for the time shift operation T

(this can be done in constant time) and add at with cost K1nt. Therefore, this
line costs K6nt and will be visited smax∆ times at most.

As for line 4 in the above code, the copy of ∆ values and the computation
of the max cost K7∆. However, this line will be visited only smax times and



18 Bruno Gaujal et al.

not for all states. So the complexity of the state construction is reduced to
K8smax(∆+ nt).

Therefore the complexity of this replacement of line 30 in Algorithm 2
becomes: K9(smax∆nt + smax(∆+ nt)).

By adding the other terms computed in the proof of Theorem 3 and the
temporal loop, we obtain a complexity of K10(2n+ T + s2max∆T + smax∆n+
smax∆T + smax∆n). �

Corollary 2 If the work arriving at any instant t is bounded (i.e., ∀t,
∑
i:ri=t

ci ≤
C), then Algorithm 2 computes the optimal speed schedule using less than
n×KsmaxC∆

2 operations.

Proof The complexity change from s2max to smaxC comes from the fact that
A(t)−D(t) ≤ C∆ if the work arriving at t is bounded by C. �

4.4 Comparison with Previous Work

If we want to compare our algorithm with the best algorithm presented in [9]
whose complexity is K ′′n log(max{n,m}), obviously, we only gain when the
number of jobs n is large and the number of available speeds m small. Also,
our constant factor K can be larger than K ′′.

Under a more detailed inspection, our algorithm is based on the fact that
the input is made of O(n) bounded integers, or equivalently, of O(n) ratio-
nal numbers with bounded numerators and denominators. This can be con-
sidered as a valid assumption because elementary operations used in Algo-
rithm 2 (only additions and comparisons between inputs) only take a con-
stant time under this assumption. The analysis of the arithmetic complexity
in [9] does not require that the job features are bounded integers. By tak-
ing into account the size of the input, the time complexity in [9] will be
K ′′n log(max{n,m}) log2(B), where B is the maximal input size. Their al-
gorithm is oblivious to the integrity of the input and both algorithms are
oblivious to B. Obviously, our algorithm is only competitive over a restricted
set of inputs (integer inputs with n large and B small).

We believe that the main contribution of our solution is twofold, on the
one hand to show that computing the optimal speed schedule is not neces-
sarily based on the critical interval, and on the other hand to show that this
computation can be linear in the number of jobs to be scheduled.

As a side remark reinforcing this fact, there exist instances of jobs where
Algorithm 2 cannot be used to find the critical interval. More precisely, by
tuning the order in which the speeds are examined in line 23 of Algorithm 2,
all the optimal speed schedules with integer switching times can be found by
Algorithm 2. The following three facts are then true.



Title Suppressed Due to Excessive Length 19

– One can find two sets of jobs with different critical intervals and differ-
ent corresponding critical speeds for which there exists a common optimal
speed schedule. This common solution can be the output of Algorithm 2
in both cases with a convenient choice of the order of the speeds in line 23
of Algorithm 2. Consider the following example with a processor having
two available speeds: {0, 1} and Q(s) = s2. The first set is made of a sin-
gle job J1 = (r1, c1, D1) = (1, 3, 6). The second set is made of two jobs
J2 = (1, 1, 6) and J3 = (2, 2, 5). The critical interval for the set {J1} is
Ic1 = [1, 6] with critical speed sc1 = 3/5. In contrast, the critical interval for
the set {J2, J3} is Ic2 = [2, 5] with critical speed sc1 = 2/3. In both cases, if
Algorithm 2 sweeps the speeds in increasing order in line 23, its solution
is (0, 0, 1, 1, 1).

– For any two sets of jobs with different critical intervals, Ic1 ⊂ Ic2 (or/and
different critical speeds sc1 < sc2), there exists an optimal speed schedule
for the first set that is not valid for the second set. Informally, this is true
because the second set is more constrained and some “extreme” solution
for the first set will not satisfy the more stringent constraints of the second
set. In the previous example, the schedule (1, 1, 0, 0, 1) is optimal for the set
{J1} but it is not valid for the set {J2, J3} because job J3 is not completed
before its deadline (the processor only executes one unit of work in the
time interval [2, 5] while job J3 is of size 2 on the same interval).

– There exist examples where some optimal speed schedules cannot be found
by an approach based on critical intervals. For example, using again the
set {J2, J3} with J2 = (1, 1, 6) and J3 = (2, 2, 5), the critical interval
is Ic3 = [2, 5] with critical speed sc3 = 2/3. Once this critical interval is
collapsed and the job J3 that is included in Ic3 is removed, there remain
the two intervals [1, 2] and [5, 6] and the job J2. As a result, the new critical
interval after collapsing becomes Ic4 = [1, 3], with critical speed sc4 = 1/2.
In this case, the optimal schedule (0, 1, 1, 1, 0) can be found by Algorithm 2
but will never be discovered by approaches based on the critical interval,
because all of them will use speed 0 exactly once in the critical interval Ic3 .
This is illustrated in Figure 5.

5 Switching Costs

In this section, we show that Algorithm 2 can be adapted to compute an
optimal solution in linear time even when switching from one speed to another
has a time and/or energy cost.

So far, we have assumed that the time needed by the processor to change
speeds is null. However, in all synchronous CMOS circuits, changing speeds
does consume time and energy. The energy cost comes from the voltage regu-
lator when switching the voltage of the circuit, while the time cost comes from
the relocking of the Phase-Locked Loop when switching the frequency [15].
Burd and Brodersen have provided in [2] the equations to compute these two



20 Bruno Gaujal et al.

t

1 2 3 4 5 6

executed work

0

1

2

3

1
2 •

2
3

• 1
2

•

•

(a) Speed profile.

t

2 3 4 5

executed work

0

1

2

•

•
2
3

(b) First critical interval [2, 5].

t

1 2-5 6

executed work

0

1

•

•

1
2

•

(c) Second critical interval [1, 2] ∪ [5, 6].

Figure 5: A system made of two jobs J2 = (r2, c2, D2) = (1, 1, 6) and J3 =
(2, 2, 5) (Figure 5a). The first critical interval is Ic3 = [2, 5] (Figure 5b), which
is materialized by the dotted rectangle in Figure 5a. Once Ic3 is collapsed, the
second critical interval is Ic4 = [1, 2] ∪ [5, 6] (Figure 5c). The critical speed is
sc = 2

3 on Ic3 and sc = 1
2 on Ic4 . All the optimal speed schedules obtained

by critical interval methods are depicted as dashed red lines in Figures 5b
and 5c. The optimal speed schedule (0, 1, 1, 1, 0) (green curve in Figure 5a)
cannot be found by algorithms based on critical intervals, but will be found
by Algorithm 2.

costs. In contrast with many DVFS studies (e.g., [2,1,7,14]), our formulation
can accommodate energy cost to switch from speed s to s′. In the sequel, we
denote this energy cost by he(s, s′).

As for the time cost, we denote by δ the time needed by the processor to
change speeds. For the sake of simplicity we assume that the delay δ is the
same for each pair of speeds, but our formalization can accommodate different
values of δ, as computed in [2].

5.0.1 Switching Delay as an Energy Cost

When there is a time delay, the executed work by the processor has two slope
changes, at times τ1 and τ2, with τ2 − τ1 = δ (the red solid line in Fiure. 6).



Title Suppressed Due to Excessive Length 21

s1 < s2

time
t−1 t∈N t+1

executed work

•
• •

•

•

•

•
s1

•

s2
δ α1,2

ε

τ1 τ2

Actual behavior
Simulated behavior

(a) Case s1 < s2.

s1 > s2

time
t-1 t∈N t+1

executed work

•

•
• •

•

•

•

s1

•

s2

δα1,2

ε

τ2τ1

Actual behavior
Simulated behavior

(b) Case s1 > s2.

Figure 6: Transformation of the time delay into an energy additional cost by
shifting the switching point. Figure 6a corresponds to the s1 < s2 case and
Figure 6b to the s1 > s2 case. The red line represents the actual behavior of the
processor with a δ time delay. The blue dashed line represents an equivalent
behavior in terms of executed work, with no time delay.

Since δ 6∈ N, we cannot have both τ1 ∈ N and τ2 ∈ N. As a consequence,
one of the remaining work functions wτ1(.) or wτ2(.) will not be integer valued.
This is not allowed by our approach.

We propose a solution inspired from [3] and illustrated in Figure 6. It
consists in shifting the time τ1 when the speed change is initiated so that the
global behavior can be simulated by a single speed change that occurs at an
integer time (t in Figure 6). The actual behavior of the processor is represented
by the red solid line, while the simulated behavior, which is equivalent in terms
of the amount of work performed, is represented by the blue dashed line. The
total amount of work done by the processor is identical in both cases at all
integer times t− 1, t, and t+ 1.

When s1 < s2, the speed change must be anticipated and occurs at τ1 < t
(Figure 6a). When s1 > s2, the speed change has to be delayed and occurs at
τ1 > t (Figure 6b). The exact computation of t1 is similar in both cases and
is straightforward (see [3]).

One issue remains however, due to the fact that the consumed energy will
not be identical between the real behavior and the simulated behavior. Indeed,
it will be higher for the actual behavior for convexity reasons. This additional
energy cost of the real processor behavior must therefore be added to the
energy cost of the equivalent simulated behavior.



22 Bruno Gaujal et al.

The value of ε and α1,2 as defined in Figure 6, and the additional energy
cost hδ(s1, s2) incurred by this speed change are computed as follows. In the
case s2 > s1, we have:

s1ε = s2α1,2 = s2(ε− δ)⇐⇒ ε = δ + α1,2 =
δs2

s2 − s1
. (24)

During the time delay δ, the energy is consumed by the processor as if the
speed was s1. The additional energy cost incurred in the actual behavior (the
red solid line) compared with the simulated behavior (the blue dashed line),
denoted hδ(s1, s2), is therefore:

hδ(s1, s2) = α1,2(Q(s2)−Q(s1)). (25)

Using the value of α1,2 from Eq. (24), this yields:

hδ(s1, s2) = δs1

(
Q(s2)−Q(s1)

s2 − s1

)
. (26)

When s1 > s2, the additional cost becomes:

hδ(s1, s2) = δs2

(
Q(s1)−Q(s2)

s1 − s2

)
. (27)

The global switching cost can now be defined as h(s′, s) = he(s
′, s) +

hδ(s, s
′), where hδ(s, s′) is given by Eq. (27) if s′ < s and by Eq. (26) if s < s′.

When s′ = s, h(s′, s) = 0.

5.1 Dynamic Program (Third Version)

We now wish to take into account the switching costs in Algorithm 2, which
requires to modify the optimality equation in lines 25 – 26.

At time t, recall that e is the executed work at time t, and let s be the
speed used just before time t. The optimality equation becomes for all e, s,

E∗t (e, s) = min
v≥we−v

t−1 (1)
min

s′,s′′∈S(
E∗t−1(e− v, s′) + h(s′, s′′) + αQ(s′′) + h(s′′, s) + (1− α)Q(s)

)
. (28)

In Eq. (28), v is the integer quantity of work executed in interval [t− 1, t],
s′′ and s are the two speeds of S used in interval [t − 1, t], in that order,
respectively for a duration α and 1− α, with αs′′ + (1− α)s = v.

Replacing the computation of the minimum in lines 25 – 26 in Algorithm 2
by this new optimality equation (28) changes the complexity to Ks3max∆

2n.
The optimality of the new algorithm is proved in Theorem 4 below.



Title Suppressed Due to Excessive Length 23

Theorem 4 Algorithm 2 with the modification given by Eqs. (28) will always
compute an optimal speed schedule when switching costs are taken into account
if and only if for any s1, s2, s3 in S, h satisfies a triangular inequality:

h(s1, s2) + h(s2, s3) ≥ h(s1, s3). (29)

Before proving this result, let us comment the Condition (29). Although
the triangular inequality of Condition (29) looks natural, the delay cost alone,
hδ defined in Eqs. (26) – (27), does not satisfy it: indeed, for any speeds
s1, s2, hδ(s1, 0)+hδ(0, s2) = 0 ≤ hδ(s1, s2). Therefore to satisfy the triangular
inequality of Condition 29 one must rely on he.

Proof (of Theorem 4). We will prove that there always exists an optimal so-
lution that executes an integer amount of work in each interval. This will end
the proof because Algorithm 2 modified by Eqs (28) finds the optimal solution
among all solutions with integer executed work in each interval.

Let us consider any feasible solution s. On each unit interval [i, i+1], s uses
a sub-set of the speeds in S, called the support of s in [i, i+ 1].

Part 1: “if”

Let sopt be a solution whose energy is minimal among all solutions that
only uses the speeds in the support of s in each interval. Under this subset
of speeds, the bounding speeds of s are modified. However, the feasibility
constraints on the executed work in each unit interval are not changed. They
still have the “consecutive-ones” property. Therefore, the constraints form a
totally unimodular matrix (see [12] for example). This implies that there exists
a solution minimizing the energy sopt such that, over any interval [i, i+1], the
executed work

∫ i+1

i
sopt(t)dt = vopt[i,i+1] is integer. Furthermore, over [i, i + 1],

sopt only uses the two (modified) bounding speeds of vopt[i,i+1] in the support
of s. We can also assume that these bounding speeds are used in the same order
as in s. Thanks to the triangular inequality of Condition 29, the switching cost
of sopt is not higher than the switching cost of s. This implies that sopt has a
smaller cost (i.e., a smaller energy plus switching cost) than s.

Therefore, this new policy sopt has a smaller cost than s. Since this is true
starting from any feasible policy s, this implies that there exists an optimal
policy that executes an integer amount of work in each interval.

Part 2: “only if”

We proceed by contradiction. If the triangular inequality is not satisfied
(for example, assume that h(1, 0) + h(0, 2) < h(1, 2)), then it is easy to check
that for the example given in Figure 7, the optimal integer solution using at
most two speeds in each interval is s0 = 1 over interval [1, 2] and s0 = 2
over interval [2, 3]. This speed schedule s0 can be improved by adding speed
changes. The schedule sε is defined as follows: sε = 1 over [1, 2 − 2ε], sε = 0
over [2− 2ε, 2− ε], and sε = 2 over [2− ε, 3]. This schedule will have a smaller



24 Bruno Gaujal et al.

cost than s0 provided that ε is small enough, more precisely if:

ε <
h(1, 2)− h(1, 0)− h(0, 2)
Q(2) +Q(0)− 2Q(1)

.

t

1 2 3

executed work

0

1

2

3

ε ε

A(t)

•
1

2

s0

1

•
0
•

2

sε

D(t)

Figure 7: Illustration of the two policies s0 and sε. If h(1, 0)+h(0, 2) < h(1, 2)
and ε is small enough, then the cost of sε is smaller than the cost of s0.

Notice that in this case there is no optimal policy because when ε goes
to 0, the cost of sε decreases to Q(1) + Q(2) + h(1, 0) + h(0, 2) − h(1, 2) and
is smaller than the cost for ε = 0, equal to Q(1) +Q(2). �

6 Conclusion

We have addressed the problem of minimizing off-line the total energy con-
sumption required to execute a set of n real-time jobs on a single processor
with varying speed. Each real-time job is defined by its release time, size, and
deadline (all integers). The goal is to find a sequence of processor speeds, cho-
sen among a finite set of available speeds, such that no job misses its deadline
and the energy consumption is minimal. Such a sequence is called an optimal
speed schedule.

Our main result is that computing an optimal speed schedule can be done
with a linear time complexity: Kn where n is the number of real-time jobs
and K is a constant. This result holds for an arbitrary power function and can
also take into account speed switching costs.

Our solution with an O(n) complexity is an improvement compared to the
previous state of the art, which was O(n log(n)).



Title Suppressed Due to Excessive Length 25

References

1. M. Bandari, R. Simon, and H. Aydin. Energy management of embedded wireless systems
through voltage and modulation scaling under probabilistic workloads. In International
Green Computing Conference, IGCC’14, pages 1–10, Dallas (TX), USA, November
2014. IEEE Computer Society.

2. T. Burd and R. Brodersen. Design issues for dynamic voltage scaling. In International
Symposium on Low Power Electronics and Design, ISLPED’00, Rapallo, Italy, July
2000.

3. B. Gaujal, A. Girault, and S. Plassart. Dynamic speed scaling minimizing expected
energy consumption for real-time tasks. Technical Report HAL-01615835, Inria, 2017.

4. Bruno Gaujal, Alain Girault, and Stéphan Plassart. A Linear Time Algorithm for
Computing Off-line Speed Schedules Minimizing Energy Consumption. In MSR 2019 -
12ème Colloque sur la Modélisation des Systèmes Réactifs, pages 1–14, Angers, France,
November 2019.

5. Bruno Gaujal and Nicolas Navet. Dynamic voltage scaling under EDF revisited.
Real-Time Systems, 37(1):77–97, 2007. The original publication is available at
www.springerlink.com.

6. Peter Hilton and Jean Pedersen. Catalan numbers, their generalization, and their uses.
The Mathematical Intelligencer, 13(2):64–75, Mar 1991.

7. K. Li. Energy and time constrained task scheduling on multiprocessor computers with
discrete speed levels. J. of Parallel and Distributed Computing, 95(C):15–28, September
2016.

8. M. Li and F. F. Yao. An efficient algorithm for computing optimal discrete voltage
schedules. SIAM J. Comput., 35:658–671, 2005.

9. Minming Li, Frances F. Yao, and Hao Yuan. An O(n2) algorithm for computing opti-
mal continuous voltage schedules. In Annual Conference on Theory and Applications
of Models of Computation, TAMC’17, volume 10185 of LNCS, pages 389–400, Bern,
Switzerland, April 2017.

10. Jianfeng Mao, Christos G. Cassandras, and Qianchuan Zhao. Optimal dynamic voltage
scaling in energy-limited nonpreemptive systems with real-time constraints. Trans. Mob.
Comput., 6(6):678–688, 2007.

11. Martin L. Puterman. Markov Decision Process : Discrete Stochastic Dynamic Pro-
gramming. Wiley, series in probability and statistics edition, February 2005.

12. Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
1998.

13. J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo. Deadline Scheduling for
Real-Time Systems: EDF and Related Algorithms. Kluwer Academic Publisher, 1998.

14. J. Wang, P. Roop, and A. Girault. Energy and timing aware synchronous programming.
In International Conference on Embedded Software, EMSOFT’16, Pittsburgh (PA),
USA, October 2016. ACM.

15. Q. Wu, P. Juang, M. Martonosi, and D.W. Clark. Voltage and frequency control with
adaptive reaction time in multiple-clock-domain processors. In International Conference
on High-Performance Computer Architecture, HPCA’05, pages 178–189, San Francisco
(CA), USA, February 2005. IEEE.

16. F. Frances Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced
CPU energy. In 36th Annual Symposium on Foundations of Computer Science, pages
374–382, Milwaukee (WI), USA, October 1995. IEEE Computer Society.


