
HAL Id: hal-03032244
https://hal.inria.fr/hal-03032244

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effective Detection of Sleep-in-Atomic-Context Bugs in
the Linux Kernel

Jia-Ju Bai, Julia Lawall, Shi-Min Hu

To cite this version:
Jia-Ju Bai, Julia Lawall, Shi-Min Hu. Effective Detection of Sleep-in-Atomic-Context Bugs in the
Linux Kernel. ACM Transactions on Computer Systems, Association for Computing Machinery, 2020,
36 (4), pp.10. �10.1145/3381990�. �hal-03032244�

https://hal.inria.fr/hal-03032244
https://hal.archives-ouvertes.fr

10

Effective Detection of Sleep-in-Atomic-Context Bugs in the
Linux Kernel∗

JIA-JU BAI, Tsinghua University, China
JULIA LAWALL, Sorbonne University/Inria/LIP6, France
SHI-MIN HU, Tsinghua University, China

Atomic context is an execution state of the Linux kernel, in which kernel code monopolizes a CPU core. In
this state, the Linux kernel may only perform operations that cannot sleep, as otherwise a system hang or
crash may occur. We refer to this kind of concurrency bug as a sleep-in-atomic-context (SAC) bug. In practice,
SAC bugs are hard to find, as they do not cause problems in all executions.

In this paper, we propose a practical static approach named DSAC, to effectively detect SAC bugs in the
Linux kernel. DSAC uses three key techniques: (1) a summary-based analysis to identify the code that may be
executed in atomic context, (2) a connection-based alias analysis to identify the set of functions referenced
by a function pointer, and (3) a path-check method to filter out repeated reports and false bugs. We evaluate
DSAC on Linux 4.17, and find 1159 SAC bugs. We manually check all the bugs, and find that 1068 bugs are
real. We have randomly selected 300 of the real bugs and sent them to kernel developers. 220 of these bugs
have been confirmed, and 51 of our patches fixing 115 bugs have been applied.

CCS Concepts: • Software and its engineering� Software defect analysis; Operating systems; • Com-
puter systems organization� Reliability;

Additional Key Words and Phrases: Static analysis, bug detection, atomic context, operating system

ACM Reference Format:
Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. 2020. Effective Detection of Sleep-in-Atomic-Context Bugs in the
Linux Kernel. ACM Trans. Comput. Syst. 36, 4, Article 10 (April 2020), 30 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Concurrency bugs are known to be difficult to detect in the Linux kernel, because most of them are
hard to reproduce in real execution. Many tools have been proposed to detect common concurrency
bugs, such as atomicity violations and data races. However, as another kind of concurrency bug,
sleep-in-atomic-context (SAC) bugs have received less attention. SAC bugs occur at the kernel level
when a sleeping operation is performed in atomic context [18], such as when holding a spinlock or
executing an interrupt handler. Code executing in atomic context monopolizes a CPU core, and the
progress of other threads that need to concurrently access the same resources is delayed. Thus, the
code executing in atomic context should complete as quickly as possible. Sleeping in atomic context
is forbidden, because it can block a CPU core for a long time and may lead to a system hang.
∗This paper extends a previous conference paper [7] in the 2018 USENIX Annual Technical Conference. This paper includes
a new summary-based analysis to identify atomic context, a new connection-based alias analysis to handle function-pointer
calls, and an improved path-check method to filter out repeated reports and false bugs. Compared to that work, this paper
analyzes the whole kernel instead of only kernel modules, and handles function-pointer calls. This paper also finds more
real bugs in a more recent Linux kernel version.

Authors’ addresses: Jia-Ju Bai, Tsinghua University, Beijing, 100084, China, baijiaju1990@gmail.com; Julia Lawall, Sorbonne
University/Inria/LIP6, Paris, France, julia.lawall@lip6.fr; Shi-Min Hu, Tsinghua University, Beijing, 100084, China, shimin@
tsinghua.edu.cn.

© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in ACM Transactions on Computer Systems, https://doi.org/0000001.0000001.

ACM Trans. Comput. Syst., Vol. 36, No. 4, Article 10. Publication date: April 2020.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

Even though sleeping in atomic context is forbidden, many SAC bugs still exist in the Linux
kernel. The main reasons why SAC bugs continue to occur include: (1) Determining whether an
operation can sleep often requires system-specific experience; (2) Some parts of the kernel code can
be difficult to test, for example, testing a device driver requires its associated device; (3) SAC bugs
do not always cause problems in real execution, and they are often hard to reproduce at runtime.
Recent studies [19, 60] have shown that SAC bugs have caused serious system hangs at runtime.
Thus, it is necessary to design approaches to detect them.

Many existing approaches [13, 26, 37, 55] can detect concurrency bugs, but most of them are
designed for user-level applications. Some approaches [20, 25, 27, 54, 57] can detect some common
kinds of kernel-level concurrency bugs, such as atomicity violations and data races, but they have
not addressed SAC bugs. Several approaches [4, 15, 24, 46] can detect common kinds of OS kernel
faults, including SAC bugs. But they are not specific to SAC bugs, and most of them [15, 24, 46]
are designed to collect statistics rather than report specific bugs to the user, making issues such as
detection time and false positive rate less important. Besides, these approaches have not considered
function pointers, so they may miss SAC bugs that involve function-pointer calls.

In this paper, we propose a static approach named DSAC1 that targets accurately and efficiently
detecting SAC bugs in the Linux kernel. Specifically, DSAC consists of four phases. Firstly, DSAC
compiles the source code of the Linux kernel and records the link information. Secondly, DSAC
traverses the Linux kernel code to collect some useful information, such as the locations, callers
and callees of direct function calls. Thirdly, using the collected information, for each source file,
DSAC identifies the source files to which it is connected according to link information and direct
function calls. This connection information is used to guide function-pointer analysis in the next
phase. Fourthly, DSAC uses a summary-based analysis to identify the code that may be executed
in atomic context. To accurately cover as much code as possible, this analysis is inter-procedural,
context-sensitive and flow-sensitive. To handle function-pointer calls and find deep SAC bugs,
DSAC uses a connection-based alias analysis to identify the set of functions referenced by the
function pointer. In this phase, DSAC also uses a path-check method to filter out repeated reports
and false bugs. We have implemented DSAC using LLVM [39]. DSAC works automatically with the
given Linux kernel source code. Moreover, it can work in parallel to speed up the analysis.

Overall, we make the following contributions:
• We first analyze the main challenges of detecting SAC bugs in the Linux kernel, and then
propose three key techniques to address these challenges: (1) a summary-based analysis
to identify the code that may be executed in atomic context; (2) a connection-based alias
analysis to identify the set of functions referenced by a function pointer; (3) a path-check
method to filter out repeated reports and false bugs.

• Based on the three techniques, we propose a practical approach named DSAC, to effectively
and automatically detect SAC bugs in the Linux kernel.

• We evaluate DSAC on a Linux stable version 3.17.2 and a mainline release 4.17, and find 891
and 1159 bugs respectively. We manually check these bugs, and find that 805 and 1068 are
real, respectively, in these versions, giving false positive rates of 9.7% and 7.8%. 304 bugs real
bugs in Linux 3.17.2 have been fixed in 4.17. We have randomly selected 300 of the real bugs
in Linux 4.17, and sent them to kernel developers. 220 of these bugs have been confirmed,
and 51 of our patches fixing 115 bugs have been applied.

The remainder of this paper is organized as follows. Section 2 presents the background. Section 3
introduces the main challenges in detecting SAC bugs. Section 4 introduces our key techniques to
address these challenges. Section 5 introduces DSAC in detail. Section 6 presents the evaluation.
1DSAC website: https://oslab.cs.tsinghua.edu.cn/DSAC2/index.html

2

Interrupt Handler

SLEEP

Acquire lock

Release lock

Acquire lock

Release lock

Acquire lock

Release lock

Thread A Thread B Thread C

CPU0 is
spinning

CPU1 is
spinning

No CPU is available to
release the lock

Lock is not available,
continue spinning

State1

State2

State3 State4

State5

State5

DEADLOCK!!!

Instruction N

State1

Instruction N+1

Current Running Thread

State2

SLEEP

State3

State4
How to wake up?
KERNEL PANIC!!!

Interrupt is
raised

(a) Sleeping while holding a spinlock (b) Sleeping in an interrupt handler

Fig. 1. Side effects caused by sleeping in atomic context.

Section 7 compares DSAC to previous approaches. Section 8 discusses some possible extensions for
DSAC. Section 9 gives the related work and Section 10 concludes the paper.

2 BACKGROUND
In this section, we first introduce atomic context, and then motivate our work by a real SAC bug in
the Linux kernel.

2.1 Atomic Context
Atomic context is an OS kernel state in which a CPU core is monopolized to execute code, and
the progress of other threads that need to concurrently access the same resources is delayed. This
context is used to protect resources from concurrent access. In the Linux kernel, there are two
common examples of atomic context, namely holding a spinlock and executing an interrupt handler.
In atomic context, code execution should complete as quickly as possible without being able to be
rescheduled. Due to this special situation, sleeping in atomic context is not allowed, because it can
block CPU cores for long periods and may lead to a system hang or crash.
In Figure 1, we use the two common instances of atomic context to explain the side effects of

sleeping in atomic context:
Sleeping while holding a spinlock. Suppose that a thread A sleeps while holding a spinlock.

If another thread B requests the same spinlock at that time, thread B will monopolize a CPU to
spin until the spinlock is released by thread A. If all CPUs are monopolized to spin like thread B,
there will be no CPU on which to wake up thread A to release the spinlock, and thus a deadlock
will occur, causing a system hang. In the single-core system, sleeping while holding a spinlock
should deterministically cause a deadlock at runtime, because only one CPU is available, and it
has been monopolized by thread B. In a multi-core system, sleeping while holding a spinlock does
not always cause a deadlock at runtime, because another CPU may be available for thread A on
which it can release the spinlock. Figure 1(a) shows an example of the deadlock caused by sleeping
while holding a spinlock. The system has two CPUs and runs from State1 to State5. The deadlock
finally occurs in State5.

Sleeping in an interrupt handler. To quickly respond to interrupts, when an interrupt is raised,
the Linux kernel executes the interrupt handler in the context of the currently running thread.
Thus, the interrupt handler is not associated with a fixed process or thread context. For this reason,
if the interrupt handler sleeps during execution, the OS scheduler cannot reschedule it because
it does not have a backing process or thread, implying that it is not a schedulable entity. In this
situation, a kernel panic will occur, causing a system crash. Figure 1(b) shows how a kernel panic is

3

FILE: linux-2.6.0/net/xfrm/xfrm_user.c

1072. struct xfrm_policy *xfrm_compile_policy(...) {

1110. xp = xfrm_policy_alloc(GFP_KERNEL);

1122. }

1168. static struct xfrm_mgr netlink_mgr = {

1172. .compile_policy = xfrm_compile_policy,
1173. .notify_policy = xfrm_send_policy_notify,
1174. };

FILE: linux-2.6.0/net/xfrm/xfrm_state.c

804. int xfrm_user_policy (...) {

823. read_lock(...); // acquire the spinlock
824. list_for_each_entry(...) {
825. pol = km->compile_policy(...);

829. }
830. read_unlock(...); // release the spinlock

841. }

Fig. 2. Example SAC bug in the xfrm network module of Linux 2.6.0.

caused by sleeping in an interrupt handler. The system runs from State1 to State4, and a kernel
panic finally occurs in State4.
Note that atomic context only occurs at the kernel level, because user-level applications are

regularly interrupted by the OS scheduler when their time slice ends. Though kernel developers
often know that sleeping is not allowed in atomic context, many SAC bugs still exist in the Linux
kernel [24, 46].

2.2 Motivating Example
Figure 2 shows a reported SAC bug in the Linux xfrm network module. This bug was introduced
when the module was integrated in Linux 2.6.0 (released in December 2003), and was fixed in
Linux 2.6.36 (released in October 2010), nearly 7 years later. The function xfrm_user_policy calls
read_lock to acquire a spinlock on line 823, and then calls a function pointer km->compile_policy
on line 825. This function pointer is assigned to the function xfrm_compile_policy in another
source file. The function xfrm_compile_policy calls xfrm_policy_alloc with GFP_KERNEL to
allocate a policy-related data structure on line 1110. According to the Linux kernel documenta-
tion [1], xfrm_policy_alloc called with GFP_KERNEL can sleep at runtime, thus this code contains
a SAC bug. To fix this bug, the commit 2f09a4d5daaa2 replaced GFP_KERNEL with GFP_ATOMIC,
which prevents the allocation from sleeping.

This example illustrates four main reasons why SAC bugs occur in the Linux kernel. (1) Determin-
ing whether an operation can sleep requires OS-specific knowledge. In this example, without expe-
rience in Linux kernel development, it may be hard to know that the function xfrm_policy_alloc
called with GFP_KERNEL can sleep at runtime. (2) SAC bugs do not always cause problems in real
execution and are hard to reproduce at runtime. In this example, the function xfrm_policy_alloc
called with GFP_KERNEL only sleeps when memory is insufficient. Even in a low-memory situation,
this SAC bug is not always triggered at runtime in a multi-core system, because of the non-
determinism of concurrent execution. (3) Inter-procedural properties and function pointers need to
be considered when finding SAC bugs. In this example, the function xfrm_policy_alloc is called
through xfrm_compile_policy referenced by a function pointer, after read_lock is called. In fact,
a main reason why this bug persisted for a long time may be that it involves a function-pointer call.

Some recent studies [19, 60] have shown that SAC bugs have caused serious system hangs, and
these bugs are often hard to locate and reproduce. Thus, to improve the reliability of the Linux
kernel, it is necessary to design an effective approach to detect SAC bugs.

3 CHALLENGES
There are three main challenges in detecting SAC bugs in the Linux kernel.
2Patch link: http://lists.openwall.net/netdev/2010/08/13/47

4

http://lists.openwall.net/netdev/2010/08/13/47

3.1 C1: Accuracy and Efficiency in Code Analysis
When identifying the code that may be executed in atomic context, the code analysis should be
accurate and efficient. Flow-sensitive static analysis searches each code path with the goal of
providing accuracy, but it is often inefficient in analyzing large software. The Linux kernel code
base is very large (amounting to over 16M lines of source code, measured with CLOC [17], in our
tested version Linux 4.17) and complex, and it contains many source files in multiple directories.
Thus, directly using flow-sensitive analysis to check the whole Linux kernel may be quite time
consuming.

3.2 C2: Handling Function Pointers
The Linux kernel is essentially an object-oriented system, in which data structures containing
function pointers play the role of objects containing methods. This design improves extensibility,
but greatly complicates static analysis. Indeed, many possible execution paths contain calls to
function pointers, and static analysis needs to correctly determine the set of functions that may be
referenced by these pointers. An accurate function pointer analysis is thus very important when
detecting SAC bugs. On the one hand, identifying too few or no referenced functions implies that
SAC bugs like the one shown in Figure 2 that hide in the missed functions cannot be detected. On
the other hand, if incorrect functions are identified for function pointers, false SAC bugs may be
reported.

3.3 C3: Filtering out Repeated and False Bugs
Flow-sensitive analysis may detect repeated bugs when these bugs take the spinlock at the same
place and call the same sleep-able function but only differ in their code paths. Moreover, flow-
sensitive analysis may detect false bugs, because the analysis does not consider variable values
when analyzing path conditions, and thus may search some infeasible code paths.

4 KEY TECHNIQUES
To solve the above challenges, we propose three key techniques. For C1, we propose a summary-
based flow-sensitive analysis to accurately and efficiently identify the code that may be executed in
atomic context. For C2, we propose a connection-based alias analysis to correctly identify the set of
functions referenced by a function pointer. For C3, we propose a path-check method to filter out
repeated reports and false bugs. We now introduce these techniques.

4.1 Summary-Based Analysis
Our summary-based analysis identifies the code in atomic context, and it has the following proper-
ties: (1) The analysis is context-sensitive and inter-procedural, in order to maintain the spinlock
status and detect atomic context across functions calls. (2) The analysis is flow-sensitive, in order to
improve the accuracy. (3) The analysis uses function summaries to reduce repeated analysis, which
can improve the efficiency. (4) The analysis uses a connection-based alias analysis (which will be
introduced in Section 4.2) to handle function-pointer calls. (5) When the analysis encounters a call
to a function that can sleep at runtime (a sleep-able function) in atomic context, the analysis uses a
path-check method (which will be introduced in Section 4.3) to filter out repeated reports and false
bugs.
Our summary-based analysis has two steps. The first step identifies interrupt handler func-

tions and calls to spin-lock functions, which initiate atomic context. For interrupt handler func-
tions, we identify the calls to interrupt-handler-register kernel interfaces (like request_irq and

5

1

HandleCall(mycall, path_stack, lock_stack)
1: if lock_stack == ø and g_intr_flag == FALSE then
2: return;
3: end if
4: func_set := ø;
5 if mycall is a call to a function pointer then
6 /* Use connection-based alias analysis to
7 * get the set of referenced functions */
8: func_set := ConnAliasAnalysis(mycall, g_cur_file);
9: else

10: myfunc := GetCalledFunction(mycall);
11: Store myfunc in func_set;
12: end if
13: foreach func in func_set do
14: HandleFunc(func, path_stack, lock_stack);
15: end foreach

HandleFunc(myfunc, path_stack, lock_stack)
1 /* Search existing function summaries */
2: if FindFuncSummary(myfunc, lock_stack, g_intr_flag) == TRUE then
3 /* Get existing atomic context path in function summary */
4: atomic_path_stack_set = GetAtomicPathInSummary(myfunc);
5: if atomic_path_stack_set == ø then
6: return;
7: end if
8: foreach atomic_path_stack in atomic_path_stack_set do
9: /* Splice and get full atomic context path */

10: my_path_stack := path_stack + atomic_path_stack;
11: last_call := GetLastFuncCall(my_path_stack);
12: /* Use path-check method to validate path feasibility */
13: if PathCheck(last_call, my_path_stack) == TRUE then
14: WriteBugFile(last_call, my_path_stack);
15: end if
16: end foreach
17: else
18: /* Add a new function summary */
19: CreateFuncSummary(myfunc, lock_stack, g_intr_flag);
20: entry_block := GetEntryBlock(myfunc);
21: HandleBlock(entry_block, path_stack, lock_stack);
22: end if

HandleBlock(myblock, path_stack, lock_stack)
1: if PathHasExisted(myblock, path_stack, lock_stack) == TRUE then
2: return; /* Prevent infinite handling on loops and recursive calls */
3: end if
4: AddPathStack(myblock, path_stack);
5: foreach func_call in FunctionCallList(myblock) do
6: if func_call is a call to a spin-lock function then
7 Push func_call onto lock_stack;
8: else if func_call is a call to a spin-unlock function then
9: Pop an item from lock_stack;

10: else if func_call is a call to a basic sleep-able function or
11: a function with a sleep-able constant flag then
12: /* Use path-check method to validate path feasibility */
13: if PathCheck(func_call, path_stack) == TRUE then
14 WriteBugFile(func_call, path_stack);
15: end if
16: /* Store atomic context path in function summary */
17: myfunc := GetParentFunc(myblock);
18: StoreAtomicPathInSummary(func_call, path_stack, myfunc);
19: else
20: HandleCall(func_call, path_stack, lock_stack);
21: end if
22: end foreach
23: if lock_stack == ø and g_intr_flag == FALSE then
24: return;
25: end if
26: foreach block in SuccessorBlocks(myblock) do
27: HandleBlock(block, path_stack, lock_stack);
28: end foreach

CodeAnalysis: Identify the code in atomic context
1: InitFuncSummary();
2: g_cur_file := GetCurrentSourceFileName();
3: foreach func_call in spinlock_func_set do
4: lock_stack := ø; path_stack := ø; g_intr_flag := FALSE;
5: myblock := GetBasicBlock(func_call);
6: HandleBlock(block, path_stack, lock_stack);
7: end foreach
8: foreach func in intr_handler_func_set do
9: lock_stack := ø; path_stack := ø; g_intr_flag := TRUE;

10: entry_block := GetEntryBlock(func);
11: HandleBlock(entry_block, path_stack, lock_stack);
12: end foreach

Fig. 3. Procedure of summary-based analysis.

tasklet_init in the Linux kernel), and extract interrupt handler functions from the relevant
arguments. For calls to spin-lock functions, we identify them according to the function name.
The second step performs the main analysis, CodeAnalysis, which is defined in Figure 3. The

analysis maintains two stacks, namely a path stack (path_stack) to store the executed code path
(a sequence of locations of basic blocks and function calls) and a lock stack (lock_stack) to store
the spinlock status. For simplicity, the analysis only considers the number and locations of locks
in lock_stack, instead of the alias of each lock. The analysis also uses a global flag (g_intr_flag) to
indicate whether the code is in an interrupt handler. If lock_stack is not empty or g_intr_flag is TRUE,
the code may be executed in atomic context. Besides, the analysis creates and stores a function
summary for each analyzed function for each execution context. This function summary contains
the location of the function, the lock_stack and g_intr_flag for which the function is analyzed, and
code paths of the SAC bugs found in the function (we refer to such a code path as an atomic-context
code path). CodeAnalysis uses HandleCall to handle a function call, HandleBlock to handle a basic
block, and HandleFunc to handle the definition of a called function.

HandleCall. It handles the function call mycall with the arguments path_stack and lock_stack.
Firstly, HandleCall checks whether lock_stack is empty and g_intr_flag is FALSE (lines 1-3). If so, no
spinlock is held and the code is not in an interrupt handler, and thus HandleCall returns. Secondly,
HandleCall identifies the set of functions called by mycall (lines 5-12), which is represented by
func_set. If mycall is a function-pointer call, HandleCall performs a connection-based alias analysis,
described in Section 4.2, to identify the set of functions referenced by the function pointer, and

6

stores them in func_set. Otherwise, HandleCall only stores the called function myfunc in func_set.
Finally, HandleCall handles each function in func_set by using HandleFunc (lines 13-15).
HandleBlock. It handles the basic block myblock with the arguments path_stack and lock_stack.

Firstly, HandleBlock searches path_stack to check whether myblock has been analyzed (lines 1-
3) with respect to the current lock_stack. If so, it returns to avoid repeated analysis. Secondly,
HandleBlock adds myblock into path_stack (line 4). Thirdly, HandleBlock handles each function
call func_call in myblock (lines 5-22) in order. If func_call is a call to a spin-lock or spin-unlock
function, HandleBlock respectively pushes the call onto or pops an item from lock_stack. If func_call
is a call to a basic sleep-able function or a function with a sleep-able constant flag, HandleBlock
uses a path-check method, described in Section 4.3, to validate whether the code path is feasible.
If so, a SAC bug is found, and its call path is written into the bug report file. Then, HandleBlock
stores the code path path_stack reaching func_call as an atomic-context code path in the summary
of myblock’s function myfunc, and this atomic-context code path is used to build the completed
code path in the summary-based analysis. If func_call is not a call to a spin-lock, spin-unlock,
basic sleep-able function or a function with a sleep-able constant flag, HandleBlock uses HandleCall
to handle func_call. Fourthly, HandleBlock checks whether lock_stack is empty and g_intr_flag is
FALSE (lines 23-25). If so, it returns. Finally, HandleBlock handles each successor basic block of
myblock by using HandleBlock.

HandleFunc. It handles the function myfunc with the arguments path_stack and lock_stack.
HandleFunc searches existing function summaries stored in the database, to check whether myfunc
has been already handled under the current execution context (line 1). If so, HandleFunc uses the
results produced by the previous analysis (lines 3-16). HandleFunc searches the function summary
of myfunc to find atomic-context code paths starting from myfunc, and stores the code paths
in a set atomic_path_stack_set. If no code path is found, namely myfunc contains no calls to
sleep-able functions, then HandleFunc returns directly. Then, HandleFunc handles each code path
atomic_path_stack in the set atomic_path_stack_set. It splices path_stack and atomic_path_stack to
build a complete atomic context code path my_path_stack. Later, HandleFunc gets the last function
call from my_path_stack as the end of the code path, and uses the path-check method, described in
Section 4.3, to validate whether the code path is feasible. If so, a SAC bug is found, and its call path
is written into the bug report file. If no function summary is found, it indicates that myfunc has not
been handled under the current execution context. In this case, HandleFunc creates a new function
summary for myfunc for the current execution context, stores the summary in the database, and
analyzes the definition of myfunc starting from its entry basic block by using HandleBlock.
CodeAnalysis. It performs the main analysis, in three steps. Firstly, CodeAnalysis initializes the

set of function summaries. Secondly, CodeAnalysis handles each call to a spin-lock function in the
kernel code. It clears lock_stack and path_stack, and sets g_intr_flag to FALSE, and then starts the
analysis by using HandleBlock to handle the basic block containing the call. Thirdly, CodeAnalysis
handles each interrupt handler function. It clears lock_stack and path_stack, and sets g_intr_flag
to TRUE, and then starts the analysis by using HandleBlock to handle the entry basic block of the
function.

Our summary-based analysis has four main advantages: (1) By using flow-sensitive and context-
sensitive analysis, our analysis can accurately identify the code that may be executed in atomic
context. (2) By using function summaries and storing atomic-context code paths, our analysis can
effectively reduce repeated analysis and utilize previous analysis results, to improve efficiency
without damaging accuracy. (3) Our analysis is inter-procedural and can analyze functions across
different source files and modules. (4) Our analysis handles function-pointer calls, which are not
considered in existing approaches that detect SAC bugs [15, 24, 46]. However, a main limitation of

7

FILE: linux-4.17/drivers/gpu/drm/ttm/ttm_bo_manager.c

121. static int ttm_bo_man_takedown(…) {
 ……

126. spin_lock(...); // acquire the spinlock
127. if (drm_mm_clean(...)) {
128. drm_mm_takedown(...);

 ……
133. }
134. spin_unlock(...); // release the spinlock
135. return -EBUSY;
136. }

FILE: linux-4.17/drivers/gpu/drm/drm_vma_manager.c

105. void drm_vma_offset_manager_destroy(…) {
106. write_lock(...); // acquire the spinlock
107. drm_mm_takedown(...);
108. write_unlock(...); // release the spinlock
109. }

FILE: linux-4.17/drivers/gpu/drm/amd/amdgpu/amdgpu_vram_mgr.c

66. static int amdgpu_vram_mgr_fini(…) {
 ……

70. spin_lock(...); // acquire the spinlock
71. drm_mm_takedown(...);
72. spin_unlock(...); // release the spinlock

 ……
76. }

FILE: linux-4.17/drivers/gpu/drm/drm_mm.c

911. static int drm_mm_takedown(…) {
912. if (WARN(!drm_mm_clean(...),
913. “Memory manager not clean during takedown.\n”))
914. show_leaks(...);
915. }

FILE: linux-4.17/drivers/gpu/drm/drm_mm.c

124. static void show_leaks(…) {
 ……

130. buf = kmalloc(BUFSZ, GFP_KERNEL);
 ……

153. }

Fig. 4. Examples of summary-based analysis.

Source file Line Caller function Flag

.../ttm_bo_manager.c 126 ttm_bo_man_takedown START

.../ttm_bo_manager.c 127 ttm_bo_man_takedown BLOCK

.../ttm_bo_manager.c 128 ttm_bo_man_takedown ENTER_FUNC

.../drm_mm.c 912 drm_mm_takedown FUNC_ENTRY

.../drm_mm.c 914 drm_mm_takedown ENTER_FUNC

…… …… …… ……

.../drm_mm.c 130 show_leaks SLEEP

(a) Create atomic-context code path for ttm_bo_man_takedown

(b) Build atomic-context code path for drm_vma_offset_manager_destroy (c) Build atomic-context code path for amdgpu_vram_mgr_fini

Copy and splice the code path

Source file Line Caller function Flag

.../drm_vma_manager.c 106 drm_vma_offset_manager_destroy START

.../drm_vma_manager.c 127 drm_vma_offset_manager_destroy ENTER_FUNC

.../drm_mm.c 912 drm_mm_takedown FUNC_ENTRY

.../drm_mm.c 914 drm_mm_takedown ENTER_FUNC

…… …… …… ……

.../drm_mm.c 130 show_leaks SLEEP

Source file Line Caller function Flag

.../amdgpu_vram_mgr.c 70 amdgpu_vram_mgr_fini START

.../amdgpu_vram_mgr.c 71 amdgpu_vram_mgr_fini ENTER_FUNC

.../drm_mm.c 912 drm_mm_takedown FUNC_ENTRY

.../drm_mm.c 914 drm_mm_takedown ENTER_FUNC
…… …… …… ……

.../drm_mm.c 130 show_leaks SLEEP

Copy and splice the code path

Fig. 5. Examples of atomic-context code paths.

our analysis is that variable value information is not considered, which may cause false positives
in bug detection.

To illustrate our summary-based analysis, we consider the Linux kernel code shown in Figure 4.
The functions ttm_bo_man_takedown, drm_vma_offset_manager_destroy and amdgpu_vram_-
mgr_fini all call the function drm_mm_takedown while holding a spinlock. The function drm_mm_-
takedown calls show_leaks, and the function show_leaks calls kmalloc with GFP_KERNEL, which
can sleep at runtime resulting in three SAC bugs. In this example, the function drm_mm_takedown
is called under the same lock status, namely holding one spinlock, thus this function can be just
analyzed once, instead of three times.

For the example in Figure 4, assume that our summary-based analysis first handles the function
ttm_bo_man_takedown, and creates the function summary for drm_mm_takedown while holding
one spinlock. Our analysis stores the atomic-context code path in the function summary for drm_-
mm_takedown that is shown in Figure 5(a). Each item in the code path represents the code location
of a basic block or function call that has to be traversed to reach the current point in the code.
The item consists of four fields, namely the source file name, source line number, caller function

8

and a flag. The flag indicates the analysis state of the code location. For example, in Figure 5,
“START” means the location of the start of the analysis; “BLOCK” means the entry of a basic
block; “ENTER_FUNC” means the location of a function call whose function definition is to be
analyzed; “FUNC_ENTRY” means the entry of a function; “"SLEEP" means the location of a sleep-
able function call. The called function and the flag are not strictly necessary for the algorithm, but
facilitate generating an understandable report when a bug is found. When our analysis handles
the functions drm_vma_offset_manager_destroy and amdgpu_vram_mgr_fini, it finds that the
function drm_mm_takedown with holding one spinlock has been already analyzed, by searching the
function summaries. Then, our analysis finds the atomic-context code paths stored in the summary
of drm_mm_takedown. Later, as shown in Figure 5(b) and 5(c), our analysis copies this code path
and splices it with the handled code paths in the functions drm_vma_offset_manager_destroy
and amdgpu_vram_mgr_fini, to build complete atomic-context code paths. Finally, our analysis
uses a path check method to perform code path validation, and finds that the code path is feasible.
Thus, our analysis writes the bug information and code path into the bug report file.

4.2 Connection-Based Function-Pointer Analysis
Overall, we identify the set of functions called by a function-pointer call through two steps. Firstly,
before the summary-based analysis, we collect the functions that are assigned to function pointers.
Secondly, during the summary-based analysis, we select the correct function(s) at each given call
site from the collected functions. The first step is performed straightforwardly, by scanning the
assignments to function pointers in the Linux code. The second step, of how to identify the correct
function(s) at a particular call site, is more difficult.
To illustrate the problem with the second step, we consider the Linux kernel code shown in

Figure 6. Figure 6(a) shows that in the e1000 driver, the function e1000_dump_eeprom calls a
function pointer through the get_eeprom field of a struct ethtool_ops data structure (line
748). This field is initialized in multiple drivers to different functions. Figure 6(b) shows three
candidate functions: e1000_get_eeprom, jme_get_eeprom and sky2_get_eeprom. Because this
function pointer is called in the e1000 driver, the referenced function(s) should be related to this
driver. From the Makefile of the e1000 drivers shown in Figure 6(c), e1000_main.c is linked with
e1000_ethtool.c in the same kernel module, thus e1000_get_eeprom should be the correct function
referenced by the function pointer.

From this example, we observe that link information can be used to identify the correct function(s)
referenced by a function-pointer call. The simplest case is that the candidate function and the
function-pointer call are in the same source file. In other cases, for a candidate function 𝐹 that may be
referenced by a function pointer, if its source file is linked with the source file of a function-pointer call,
𝐹 is very likely to be a correct referenced function for the function-pointer call. The link information
reflects the connection between the source files of the candidate function and function-pointer call.
This connection is strong, as the involved two source files are linked in the same kernel module.

Besides calling function pointers in the same kernel module, in the Linux kernel, one kernel
module can also call the functions in another kernel module through function pointers. In this case,
the link information is not sufficient to identify the correct function(s) referenced by a function-
pointer call, because the related kernel modules may not be explicitly linked together. To handle
this case, we observe that direct function calls can be used to identify the connection between the
source files of the candidate function and function-pointer call. Specifically, if there exists a direct
function call between File1 and File2 (File1 → File2 or File2 → File1), then we say that File1 and File2
have a direct connection. This connection can be transitive. Namely, if there exists a direct function
call from File1 to File2 (File1 → File2) and from File2 to File3 (File2 → File3), then we say that File1
and File3 have an indirect connection (File1→ File3). This connection of function call is weaker than

9

(a) Function pointer call.

(b) Some functions that may be referenced by the function pointer.

Correct

In
co

rrect

Incorrect

FILE: linux-4.17/drivers/net/ethernet/marvell/sky2.c

4419. static const struct ethtool_ops sky2_ethtool_ops = {

4430. .get_eeprom = sky2_get_eeprom,
4431. .set_eeprom = sky2_set_eeprom,

4444. }

FILE: linux-4.17/drivers/net/ethernet/jme.c

2865. static const struct ethtool_ops jme_ethtool_ops = {

2880. .get_eeprom = jme_get_eeprom,
2881. .set_eeprom = jme_set_eeprom,

2884. }

ss

FILE: linux-4.17/drivers/net/ethernet/Intel/e1000/e1000_ethtool.c

1876. static const struct ethtool_ops e1000_ethtool_ops = {

1887. .get_eeprom = e1000_get_eeprom,
1888. .set_eeprom = e1000_set_eeprom,

1903. }

FILE: linux-4.17/drivers/net/ethernet/Intel/e1000/e1000_main.c

731. static void e1000_dump_eeprom(…) {
 ……

748. ops->get_eeprom(...);
 ……

776. }

FILE: linux-4.17/drivers/net/ethernet/Intel/e1000/Makefile

obj-$(CONFIG_E1000) += e1000.o

e1000-objs := e1000_main.o e1000_hw.o e1000_ethtool.o
 e1000_param.o

(c) Makefile for the e1000 driver.

Fig. 6. Examples of handling function-pointer calls through link information.

(a) Example of function pointer call through a direct function-call connection.

FILE: linux-4.17/drivers/scsi/fcoe/fcoe_ctlr.c

3189. static void fcoe_ctrl_mode_set(...) {

3200. lport->tt.disc_recv_req = fcoe_ctlr_disc_recv;
3201. lport->tt.disc_start = fcoe_ctlr_disc_start;

3216. }

3227. int fcoe_libfc_config(...) {

3236. fc_lport_init(...);

3240. }

FILE: linux-4.17/drivers/scsi/libfc/fc_lport.c

729. static void fc_lport_enter_ready(…) {
 ……

739. if (!lport->ptp_rdata)
740. lport->tt.disc_start(...);
741. }

1868. int fc_lport_init(...) {
 ……

1893. }

Function pointer

Function call

(b) Example of function pointer call through an indirect function-call connection.

FILE: linux-4.17/drivers/gpio/gpio-dwapb.c

384. static void dwapb_configure_irqs(...) {

425. ct->chip.irq_unmask = irq_gc_mask_clr_bit;
426. ct->chip.irq_set_type = dwapb_irq_set_type;

444. irq_set_chained_handler_and_data(...);

466. }

FILE: linux-4.17/kernel/irq/manage.c

183. int irq_do_set_affinity(...) {
 ……

205. }

660. int __irq_set_trigger(…) {
 ……

684. flags &= IRQ_TYPE_SENSE_MASK;
685. ret = chip->irq_set_type(...);

 ……
712. }

Function pointer

Function call

FILE: linux-4.17/kernel/irq/chip.c

255. int irq_startup(...) {
 ……

272. irq_do_set_affinity(...)
 ……

284. }

997. void irq_set_chained_handler_and_data(...) {

 ……

1010. }

Function call

Fig. 7. Examples of handling function-pointer calls through function-call connections.

the link-information connection, as the involved two source files are in different kernel modules.
For this reason, the link-information connection is preferentially used for function-pointer analysis.
To illustrate the function-call connection between different kernel modules, we consider two

examples in the Linux kernel code shown in Figure 7.

10

Figure 7(a) shows an example of a direct function-call connection. The driver libfc uses a function-
pointer call on line 740 in fc_lport.c, and the driver fcoe has an assignment of this function pointer to
fcoe_ctlr_disc_start on line 3201 in fcoe_ctlr.c. In fcoe_ctlr.c, the function fcoe_libfc_config
calls the function fc_lport_init defined in fc_lport.c, thus the two source files have a direct
connection (fcoe_ctlr.c → fc_lport.c). For this reason, fcoe_ctlr_disc_start in fcoe_ctlr.c should
be a function referenced by the function-pointer call in fc_lport.c.

Figure 7(b) shows an example of an indirect function-call connection. The kernel uses a function-
pointer call on line 685 in manage.c, and the driver gpio has an assignment of this function pointer
to dwapb_irq_set_type on line 426 in gpio-dwapb.c. In gpio-dwapb.c, there is no function that calls
a function defined inmanage.c, so the two source files do not have a direct function-call connection.
However, the function dwapb_configure_irqs calls the function irq_set_chained_handler_-
and_data defined in chip.c (gpio-dwapb.c→ chip.c), and in chip.c, the function irq_startup calls
the function irq_do_set_affinity defined in manage.c (chip.c → manage.c), so gpio-dwapb.c
and manage.c have an indirect function-call connection (gpio-dwapb.c→ chip.c). For this reason,
dwapb_irq_set_type in gpio-dwapb.c should be a function referenced by the function-pointer call
in manage.c.

Based on the connections of link information and function calls, we propose a connection-based
alias analysis to identify the set of functions referenced by a function pointer. Specifically, our
analysis has two steps:

The first step is to collect candidate functions referenced by function pointers and the connections
between source files. This step is performed before the summary-based analysis described in Section
4.1. To collect candidate functions, our analysis traverses the Linux kernel code and handles function-
pointer assignments. Specifically, our analysis focuses on function-pointer assignments involving
data-structure fields, for two reasons. Firstly, many function pointers in kernel code are obtained
from data-structure fields [9], especially in device drivers, as illustrated in Figure 6 and Figure 7.
We have studied the function-pointer calls in the x86 code of Linux 4.17, and find that over 95% (i.e.,
34,452 out of 36,174) involve functions stored in data-structure fields. Secondly, a function pointer
stored in a data-structure field can be explicitly can be distinguished from other function pointers
with the data-structure type, field offset and function-pointer type. To collect the connections
between source files, our analysis records the link information during kernel code compilation and
records direct function calls between different source files. All of this information is stored in the
database.

The second step is to identify the set of functions referenced by a function pointer, which is done
during the summary-based analysis described in Section 4.1. Figure 8 shows the main procedure
FuncPtrAnalysis. The inputs are a function-pointer call func_ptr_call and the name of its source
file src_file where the summary-based analysis starts. The output is func_set, the set of functions
referenced by the function pointer for func_ptr_call. Firstly, our analysis clears func_set, and gets
the called function pointer func_ptr of func_ptr_call (lines 1-2). Secondly, by looking up the collected
information stored in the database, our analysis gets the set of candidate functions for func_ptr,
which is represented as cand_func_set (line 3). Because our analysis focuses on function pointers
stored in data-structure fields, we perform field-based analysis [30] here. Specifically, If func_ptr is
a function pointer stored in a data-structure field, we get its candidate functions according to its
data-structure type, field offset and function-pointer type. Thirdly, our analysis selects the functions
from cand_func_set whose source file cand_src_file has a link-information connection with src_file
(lines 4-9). The selected functions are put in func_set. Because a link-information connection is
strong, if any function is selected through this connection, our analysis returns func_set and ends
(lines 10-12). Otherwise, our analysis selects the functions from cand_func_set whose source file

11

1

FuncPtrAnalysis(func_ptr_call, src_file)

Input: func_ptr_call - function pointer call;
src_file - name of the source file where summary-based analysis starts

Output: func_set - set of the functions referenced by the function pointer

1: func_set := ø;

2: func_ptr := GetCalledValue(func_ptr_call);

3: cand_func_set := FindCandidateFuncSet(func_ptr);

4: foreach cand_func in cand_func_set do

5: cand_src_file := GetSourceFile(cand_func);

6: if HaveLinkInfoConnection(cand_src_file, src_file) == TRUE then

7: AddFuncSet(cand_func, func_set);

8: end if

9: end foreach

10: if func_set != ø then

11: return func_set;

12: end

13: foreach cand_func in cand_func_set do

14: cand_src_file := GetSourceFile(cand_func);

15: if HaveFuncCallConnection(cand_src_file, src_file) == TRUE then

16: AddFuncSet(cand_func, func_set);

17: end if

18: end foreach

19: return func_set;

Fig. 8. Procedure of connection-based function-pointer analysis.

cand_src_file has a function-call connection with src_file (lines 13-18). The selected functions are
put in func_set. Finally, our analysis returns func_set and ends (line 19).

The main advantage of our connection-based alias analysis is to improve the accuracy of identify-
ing correct referenced functions for function-pointer calls. This advantage can benefit the detection
of SAC bugs in two aspects: (1) Deep SAC bugs involving function pointers can be detected. (2)
Filtering out incorrect functions for function pointers reduces the false positive rate. Another
advantage of our alias analysis is high efficiency, because the analysis is flow-insensitive and its
processing is not complex. This advantage is quite beneficial in analyzing code of millions of lines,
as found in the Linux kernel. However, due to flow insensitivity, the identified function(s) may be
incorrect in a specific control flow. Moreover, in the current implementation, our analysis focuses
on function pointers stored in data-structure fields, and other kinds of function pointers are not
handled, so some SAC bugs involving these unhandled function pointers may be missed.
At present, our connection-based alias analysis is only used to detect SAC bugs. In another

work [5], we have developed the tool DCNS that detects the inverse of SAC bugs, where non-sleep
operations are used unnecessarily, outside of atomic context. That work uses a simpler version of
connection-based alias analysis that only considers function call connections and does not take into
account link information. In both of these cases, our alias analysis only handles function-pointer
calls that are considered to occur in atomic context. We are currently extending our alias analysis
to detect other kinds of bugs involving function-pointer calls.

4.3 Path-Check Bug Filtering
Given the code paths recorded during our summary-based analysis, we use a path-check method
to filter out repeated reports and false bugs.
Firstly, our method filters out repeated bugs. For each new possible bug, our method checks

whether its starting and ending basic blocks are the same as those of an already detected bug, and
whether the ending basic block uses the same sleep-able function call. If the two conditions are
both satisfied, the possible bug is marked as a repeated bug and is filtered out.

12

FILE: linux-4.17/drivers/tty/n_r3964.c

837. struct void add_msg(...) {

846. pMsg = kmalloc(sizeof(struct r3964_message),
 error_code ? GFP_ATOMIC : GFP_KERNEL);

892. }

FILE: linux-4.17/drivers/block/DAC960.c

781. static void DAC960_ExecuteCommand(...) {
 ……

792. if (in_interrupt())
793. return;
794. wait_for_completion(…);
795. }

(a) Specific kernel interface. (b) Non-sleep constant flag.

Fig. 9. Examples of code styles for avoiding SAC bugs.

Secondly, our method filters out false bugs, which are mainly introduced by the fact that our
summary-based analysis neglects variable value information. Our basic strategy is to validate the
path conditions [12] of the code path for each possible bug. As shown in Figure 4, the code path
consists of nodes, and each node can be a basic block or a function call whose called function is
analyzed. Our method scans each node in the code path in order, records the stored value of each
variable in each basic block, and validates the branch condition of each basic block according to
the recorded values of related variables. If the validation fails, the possible bug is marked as a false
bug and is filtered out.

Besides, by studying the Linux kernel code, we also find two common coding styles used by kernel
developers to avoid introducing SAC bugs: (1) A function call to a specific kernel interface (like
in_interrupt) is used to check for atomic context. (2) A non-sleep constant flag (like GFP_ATOMIC)
is used as an argument under a condition in the function call. Figure 9 shows two examples in the
Linux kernel code. In Figure 9(a), a conditional tests the result of calling in_interrupt to check
whether the code is executed in an interrupt handler and decide whether the sleep-able function
wait_for_completion can be called. In Figure 9(b), the call to the function kmalloc chooses
between using a non-sleep constant flag GFP_ATOMIC or a sleep-able constant flag GFP_KERNEL
as an argument. In fact, these two coding styles indicate semantic information, namely that the
code can be in atomic context or non-atomic context. If a code path associated with a possible bug
satisfies either of these two code styles, the possible bug is marked as a false bug and is filtered out.

5 APPROACH
Based on the three techniques in Section 4, we propose a static approach DSAC, to effectively detect
SAC bugs in the Linux kernel. We have implemented DSAC using the Clang compiler [16], and
perform static analysis on the LLVM bytecode of each source file. Figure 10 shows the architecture
of DSAC, which has five parts:

• Code compiler. This part compiles each source file of the Linux kernel into an LLVM bytecode
file, and records link information during code compilation and linking.

• Information collector. This part analyzes each LLVM bytecode file to collect useful informa-
tion about the code, and stores the information in a MySQL database [43]. This information
will be used in the remaining analyses.

• Connection extractor. This part uses the collected code information and link information
to extract connections between source files, and stores them in the MySQL database.

• Bug detector. This part performs our summary-based analysis to detect possible SAC bugs
from the LLVM bytecode.

• Bug filter. This part uses our path-check method to filter out repeated and false bugs, and
generates reports for the final detected SAC bugs.

Based on this architecture, DSAC consists of four phases, which will be introduced in Sections
5.1-5.4. Section 5.5 will analyze the parallelism of these phases.

13

DSAC

Information
Collector

Connection
Extractor

Linux Kernel
Source Files

Code
Compiler

Link
Information

LLVM
Bytecode

Code
Information

Connections

Bug Detector

Possible Bugs

Bug Filter

Bug Reports

Fig. 10. DSAC architecture.

5.1 Code Compilation
In this phase, the code compiler performs code compilation and linking using the Clang compiler,
in three steps: (1) compile each source file into a LLVM bytecode file; (2) compile each bytecode file
into an assembly file and then into an object file; (3) link one or more object files together into a
kernel object file, representing a loadable kernel module.
The code compiler keeps the set of LLVM bytecode files generated in the first step for the

remaining analyses, and records the link information obtained from the third step.

5.2 Information Collection
In this phase, by analyzing LLVM bytecode files, the information collector extracts and stores useful
information about the code of the Linux kernel, including the name and position of each function
definition, the functions that may be referenced by each function pointer, and the callee and caller
functions of each direct function call.

5.3 Connection Extraction
In this phase, the connection extractor extracts connections between source files. To extract link-
information connections, the extractor analyzes the recorded link information, to get the source
files that are linked together. To extract function-call connections, the extractor analyzes each
function call between two different source files, and records the information that these two source
files have a direct function-call connection.

5.4 Bug Detection
In this phase, the bug detector first performs summary-based analysis on the LLVM bytecode
files, using the collected code information. To handle function-pointer calls, the detector performs
connection-based alias analysis to identify the set of functions referenced by the function pointer,
and processes each function in the resulting set. Then, the bug filter filters out repeated reports
and false bugs. Finally, DSAC produces detailed reports for the found SAC bugs (including code
paths and source file names), to help the user to locate the bugs.

5.5 Parallelism
The first three phases each work on the individual files independently, benefiting from the infor-
mation collected in the previous phases. Thus, these phases can be parallelized straightforwardly.

14

Table 1. Evaluated Linux kernel versions

Description Linux 3.17.2 Linux 4.17
Release time October 2014 June 2018
Source files(.c) 22.8K 25.9K
Source code lines 12.4M 16.9M

In the fourth phase, the summary-based analysis traces through function calls, which may cross
file boundaries, when the called function is defined in another file and no function summary is
available for the current analysis. In this case, we can also run the analysis in parallel, relying on
the global database of function summaries to prevent repeated analysis of functions in the same
context across different threads.

6 EVALUATION
6.1 Experimental Setup
To validate the effectiveness of DSAC, we evaluate it on the Linux kernel code. To cover different
kernel versions, we select an old version 3.17.2 (released in October 2014) and a recent version 4.17
(released in June 2018). Table 1 shows some information about these kernel versions (the lines of
source code are measured with CLOC [17]). We run the experiments on a Lenovo x86-64 PC with
four Intel i5-3470@3.20G processors and 8GB memory. We compile the kernel code using Clang 6.0.
We use the kernel configuration allyesconfig to enable all code for the x86 architecture. Because
DSAC can work in parallel, we configure DSAC to run on four threads.
To run DSAC, we perform three steps. Firstly, we configure DSAC for the Linux kernel, by

providing the names of 29 pairs of spin-lock and spin-unlock functions (such as spin_lock_irq
and spin_unlock_irq), 3 interrupt-handler-register functions (request_irq, tasklet_init and
devm_request_irq), 24 basic sleep-able kernel interfaces (such as msleep and usleep_range) and
5 sleep-able flags (such as GFP_KERNEL and GFP_USER). Secondly, we execute DSAC’s compiling
script to compile the source code of the Linux kernel. Finally, we execute DSAC’s bug-detection
script to detect SAC bugs. The second and third steps are fully automated.

6.2 Bug Detection
To validate whether DSAC can find known bugs, we use DSAC to check the Linux 3.17.2 kernel
source code. To validate whether DSAC can find new bugs, we use DSAC to check the Linux 4.17
kernel source code. To check the accuracy of the bug-detection results, we manually check all
detected bugs to identify whether they are real bugs. Table 2 shows the results. In this table, column
“DSAC” shows the results of DSAC, and column “DSAC_noptr” shows the results of a variant of
DSAC that does not consider the sets of functions possibly invoked by function-pointer calls. From
Table 2, we have the following findings:

(1) DSAC can scale to large code bases. In Linux 3.17.2 and 4.17, DSAC respectively handles the
11.7K and 16.7K source files included in the x86 allyesconfig Linux kernel configuration. These
files contain 7.0M and 9.8M lines of source code, as measured with CLOC [17]. DSAC starts its
analysis from many entry basic blocks and many interrupt handler (INTR) functions. Still, some
source files of the Linux kernel are not handled by DSAC, because they are not enabled for the x86
architecture.
(2) DSAC effectively handles many function-pointer calls, namely it successfully identifies the

referenced functions of many function-pointer calls. DSAC respectively handles 73% and 67% of all
encountered function-pointer calls in Linux 3.17.2 and 4.17. Among these handled function-pointer
calls, 85% and 83%, respectively, are handled by link-information connections.

15

Table 2. Bug detection results.

Description Linux 3.17.2 Linux 4.17
DSAC DSAC_noptr DSAC DSAC_noptr

Code handling Source files (.c) 11.7K 11.7K 16.7K 16.7K
Source code lines 7.0M 7.0M 9.8M 9.8M

Summary-based
analysis

Handled INTR functions 966 966 1424 1424
Entry basic blocks 42190 42190 50929 50929
Handled functions 51K 37K 65K 47K
Function summaries 79K 52K 103K 69K

Function-pointer
analysis

Encountered function-pointer calls 14185 - 17349 -
Handled function-pointer calls 10323 - 11915 -
Calls handled by link-information connection 8741 - 9859 -
Calls handled by function-call connection 1582 - 2056 -
Candidate referenced functions 113K - 138K -
Identified referenced functions 40K - 45K -

Bug detection

Filtered repeated bugs 22687 5151 28374 11586
Filtered false bugs 7796 4284 9957 5141
Final detected bugs 891 464 1159 615
Real bugs 805 432 1068 564

Time usage

P1: Information collection 17m 17m 24m 24m
P2: Connection extraction 8m 0m 11m 0m
P3: Bug detection 53m 23m 62m 28m
Total 78m 40m 97m 52m

FILE: linux-4.17/net/atm/clip.c

327. static netdev_tx_t clip_start_xmit(...) {

395. vcc->send(...);

413. }

FILE: linux-4.17/net/atm/raw.c

78. int atm_init_aal5(...) {

83. vcc->send = vcc->dev->ops->send;
84. return 0;
85. }

FILE: linux-4.17/fs/lockd/svc4proc.c

278. static __be32 nlm4svc_callback(..., __be32(*func)(...)) {
 ……

294. if (call == NULL)
295. return rpc_system_err;
296.
297. stat = func(...);

307. }

310. static __be32 nlm4svc_proc_test_msg(...) {
311. dprintk(“locked: TEST_MSG called\n”);
312. return nlm4svc_callback(…, __nlm4svc_proc_test);
313. }

(a) Function pointer of function argument. (b) Function pointer of indirect assignment.

Fig. 11. Examples of unhandled function-pointer calls by DSAC.

The remaining 27% and 33% of function-pointer calls are not handled. There are two cases that are
commonly not covered. Firstly, DSAC focuses on function pointers stored in data-structure fields,
and cannot handle the function pointers that are not referenced in this way. For example in Fig-
ure 11(a), on line 312, the function nlm4svc_proc_test_msg calls the function nlm4svc_callback
with an argument that is a pointer to the function __nlm4svc_proc_test. And the function
nlm4svc_callback calls __nlm4svc_proc_test via the pointer argument on line 297. Because the
function pointer on line 297 is not a data-structure field, DSAC cannot identify the referenced func-
tions for this function pointer call. Secondly, some function pointers stored in data-structure fields
are not directly assigned to explicit functions, and DSAC cannot identify the functions involved in
such function-pointer assignments. For example in Figure 11(b), the function pointer vcc->send
is assigned through another function pointer vcc->dev->ops->send on line 83, so the candidate
referenced functions of vcc->send cannot be directly identified only according to this assignment.
For this reason, DSAC cannot identify the referenced functions for the function-pointer call to
vcc->send on line 395.

16

(3) Our connection-based alias analysis is effective in improving the accuracy of function-pointer
analysis. It retains around 35% and 33% of the candidate referenced functions in Linux 3.17.2 and
4.17, respectively. The remaining 65% and 67% candidate referenced functions are discarded because
they are considered to be incorrect in the calling context of the given function-pointer call. By
discarding these incorrect functions, DSAC reduces unnecessary analysis of atomic context, and
also reduces the number of false positives in bug detection.
(4) Our path-check method is effective in filtering out repeated reports and false bugs. It filters

out more than 95% of all possible bugs, which are considered to be repeated reports and false
positives according to their code paths. Among the false bugs filtered out by DSAC, 28% and 25%
are related to coding styles about atomic context (such as using the function call to in_interrupt
and the non-sleep constant flag GFP_ATOMIC).
(5) DSAC is effective in bug detection with or without function-pointer analysis:
For Linux 3.17.2, DSAC reports 891 bugs, of which we have identified 805 as real bugs. Two

experienced researchers each spent six days manually checking these bugs. Among these bugs, 304
bugs have been fixed in Linux 4.17. Without function-pointer analysis (DSAC_noptr), it reports 464
bugs, of which we have identified 432 as real bugs. Among these bugs, 171 bugs have been fixed in
Linux 4.17. The results indicate that DSAC can indeed find known bugs.
For Linux 4.17, DSAC reports 1159 bugs, of which we have identified 1068 as real bugs. Two

experienced researchers each spent eight days manually checking these bugs. Without function-
pointer analysis (DSAC_noptr), it reports 615 bugs, of which we have identified 564 bugs as real
bugs. Among the 1068 real bugs found by DSAC, we randomly selected 300 and reported them to
kernel developers. As of September 2018, 220 bugs have been confirmed. We also sent 94 patches
to fix 208 of the reported bugs, and 51 patches fixing 115 bugs have been applied by the kernel
maintainers. The results indicate that DSAC can indeed find new bugs.

(6) Using function-pointer analysis, DSAC can find many deep bugs that involve function-pointer
calls. In Linux 3.17.2 and 4.17, DSAC respectively finds 341 and 505 more real bugs than that without
function pointer analysis (DSAC_noptr), accounting for 42% and 47% of all real found bugs.

(7) DSAC achieves good accuracy in bug detection. The false positive rates are respectively only
9.7% and 7.9% in Linux 3.17.2 and 4.17. Without function-pointer analysis (DSAC_noptr), the false
positive rates are respectively only 6.9% and 8.3%.

(8) DSAC is efficient in code analysis. On four running threads, it respectively spends 78 and 97
minutes on handling 11.7K and 16.7K source files in Linux 3.17.2 and 4.17. Without function-pointer
analysis, on four running threads, DSAC respectively spends 40 and 52 minutes of running time.

6.3 Example Bugs
Figure 12 shows some real bugs found by DSAC in Linux 4.17, that have been confirmed by kernel
developers. In Figure 12(a), the socionext driver registers the function ave_irq_handler as an
interrupt handler using the kernel interface request_irq on line 1236. The function ave_irq_-
handler calls ave_rxfifo_reset on line 932, which calls a sleep-able function usleep_range on
lines 888 and 892, causing two SAC bugs.3

In Figure 12(b), the function __setup_irq calls raw_spin_lock_irqsave to acquire a spinlock,
and then calls __irq_set_trigger on line 1353. This called function uses a function pointer
call chip->irq_set_type on line 685. In the adp5588 driver, this function pointer is assigned to
the function adp5588_irq_set_type on line 237. This function calls adp5588_gpio_direction_-
input on line 224, which calls a sleep-able function mutex_lock on line 113, causing a SAC bug.4

3Link: https://lore.kernel.org/patchwork/patch/986431/
4Link: https://lkml.org/lkml/2018/8/13/197

17

(a) The socionext driver.

FILE: linux-4.17/drivers/net/ethernet/socionext/sni_ave.c
871. static void ave_rxfifo_reset(...) {

 ……
888. usleep_range(40, 50); // can sleep

 ……
892. usleep_range(10, 20); // can sleep

 ……
902. }

 // Interrupt handler
904. static irqreturn_t ave_irq_handler(...) {

 ……
932. ave_rxfifo_reset(...);

 ……
960. }

1229. static int ave_open(…) {
 ……

1236. request_irq(priv->irq, ave_irq_handler, ...);
 ……

1315. }

FILE: linux-4.17/kernel/irq/manage.c
660. int __irq_set_trigger(...) {

 ……
685. ret = chip->irq_set_type(...);

 ……
712. }

1136. static int __setup_irq(...) {
 ……

1241. raw_spin_lock_irqsave(...);
 ……

1353. ret = __irq_set_trigger(...);
 ……

1434. raw_spin_unlock_irqsave(...);
 ……

1491. }

FILE: linux-4.17/drivers/gpio/gpio-adp5588.c
105. static int adp5588_gpio_direction_input(...) {

 ……
113. mutex_lock(...); // can sleep

 ……
119. }

202. static int adp5588_irq_set_type(...) {
 ……

224. adp5588_gpio_direction_input(...);
 ……

229. }

231. static struct irq_chip adp5588_irq_chip = {
232 .name = "adp5588",
233. .irq_mask = adp5588_irq_mask,

 ……
237 .irq_set_type = adp5588_irq_set_type,
238 }

(b) The adp5588 driver.

Fig. 12. Examples of real bugs found by DSAC.

Figure 13 shows the bug reports for these bugs generated by DSAC. The report explicitly shows
the function call path (from bottom to top) of the detected bug, including the source file’s name,
the source line number, the callee function’s name and the caller function’s name. In the report,
“[FUNC_PTR]” means that a function-pointer call is used. According to the bug report, the user can
conveniently locate the detected bug.

========== BUG [INTR] ==========
[FUNC] usleep_range
drivers/net/ethernet/socionext/sni_ave.c, 888: usleep_range in ave_rxfifo_reset
drivers/net/ethernet/socionext/sni_ave.c, 932: ave_rxfifo_reset in ave_irq_handler

......
========== BUG ==========
[FUNC] mutex_lock
drivers/gpio/gpio-adp5588.c, 113: mutex_lock in adp5588_gpio_direction_input
drivers/gpio/gpio-adp5588.c, 224: adp5588_gpio_direction_input in adp5588_irq_set_type
kernel/irq/manage.c, 685: [FUNC_PTR]adp5588_irq_set_type in __irq_set_trigger
kernel/irq/manage.c, 1353: __irq_set_trigger in __setup_irq
kernel/irq/manage.c, 1241: raw_spin_lock_irqsave in __setup_irq

......

Fig. 13. Example of bug reports generated by DSAC.

6.4 Bug Characteristics
Reviewing the SAC bugs found by DSAC, we find some interesting characteristics of them:

(1) Most of the detected bugs (1056 in Linux 4.17) involve multiple function calls. Indeed, kernel
developers may easily forget that the code is in atomic context across multiple function calls,
especially function-pointer calls.
(2) Many of the detected bugs (313 in Linux 4.17) involve multiple parts of the kernel. For

example in Figure 12(b), the SAC bug involves two parts of the kernel, namely the interrupt
handling manager and the driver adp5588. Figure 14 shows another representative bug found by
DSAC and the generated bug report. This SAC bug involves three drivers of different classes, namely
input, mfd and spi drivers. Indeed, when calling functions defined in other parts of the kernel,
kernel developers may easily forget to check whether these functions can sleep and just call these
functions according to their functionality.

(3) Many of the detected bugs (235 in Linux 4.17) are related to resource allocation. For example,
many SAC bugs are caused by allocating a resource using a sleep-able flag GFP_KERNEL (like the
bugs shown in Figure 4), which allows sleeping and waiting until the resource becomes available.

18

FILE: linux-4.17/drivers/input/misc/pcap_keys.c
 // Interrupt handler
 27. static irqreturn_t pcap_keys_handler(...) {

 ……
 33. ezx_pcap_read(...);

 ……
 48. }

 50. static int pcap_keys_probe(…) {
 ……

 82. request_irq(..., pcap_keys_handler, ...);
 ……

104. }

FILE: linux-4.17/drivers/mfd/ezx-pcap.c
59. static int ezx_pcap_putget(...) {

 ……
73. spi_sync(...);

 ……
79. }

96. int ezx_pcap_read(...) {
 ……

104. ret = ezx_pcap_putget(...);
 ……

108. }

FILE: linux-4.17/drivers/spi/spi.c
3157. int spi_sync(...) {

 ……
3161. mutex_lock(...); // can sleep

 ……
3166. }

========== BUG [INTR] ==========
[FUNC] mutex_lock
drivers/spi/spi.c, 3161: mutex_lock in spi_sync
drivers/mfd/ezx-pcap.c, 73: spi_sync in ezx_pcap_putget
drivers/mfd/ezx-pcap.c, 104: ezx_pcap_putget in ezx_pcap_read
drivers/input/misc/pcap_keys.c, 33: ezx_pcap_read in pcap_keys_handler

Fig. 14. Example SAC bug involving multiple parts of the kernel and its bug report.

(4) Multiple detected bugs are caused by calling the same sleep-able kernel interfaces. This char-
acteristic indicates that some commonly used kernel interfaces may be supposed to be non-sleep by
some kernel developers, but these kernel interfaces can sleep in reality. An example is that the three
bugs shown in Figure 4 are all caused by calling the sleep-able kernel interface drm_mm_takedown.
Besides, in DSAC’s bug reports, hid_hw_request (causing 18 bugs) and clk_get_rate (causing 6
bugs) are also such sleep-able kernel interfaces.

(5) Few of the detected bugs (152 in Linux 4.17) are in interrupt handlers. Indeed, driver developers
often write clear comments to mark the driver functions that are called from an interrupt handler,
to protect against calling sleep-able functions in these functions.

6.5 Bug Distribution
We classify the detected bugs according to the directory of their source files. As described in
Section 6.4, many detected bugs involve multiple parts of the kernel, so the bugs are classified by
the source file of the starting basic block (containing the call to a spin-lock function or the entry
of an interrupt handler function) in the bug report. Figure 15 shows the results for the real bugs
identified by our manual check.

We find that drivers have more than 77% of all detected real bugs. This is somewhat higher than
the percentage of code represented by drivers (67% in Linux 4.17). Thus, drivers remain a significant
source of system problems [52]. We also classify the detected bugs in drivers by the driver class.
We find that network, scsi and staging drivers together have more than 50% of the bugs in drivers. A
possible reason is that these drivers also have much more code than the other driver classes.

6.6 False Positives
False positives are mainly introduced in two cases:

Firstly, due to flow insensitivity, our connection-based alias analysis may identify incorrect ref-
erenced functions for function pointers. Figure 16(a) shows a false reported bug in such a case. The
function qla2100_intr_handler acquires a spinlock on line 59, and then uses a function-pointer
call ha->isp_ops->fw_dump on line 77. This function pointer has several candidate referenced
functions, such as qla2100_fw_dump and qla8044_fw_dump. Because the two functions are respec-
tively defined in qla_dbg.c and qla_nx2.c, which are both linked with qla_isr.c and qla_os.c according
to the Makefile, our alias analysis identifies both of the functions as referenced functions of the
function-pointer call. But according to the data flow of the source file, qla2100_fw_dump should

19

network
7.5%

drivers
84.2%

others
2.5%

network
29.0%

scsi
18.3%

staging
10.0%

gpio
6.0%

gpu
5.3%

hid
3.2%

others
21.1%

file system
7.6%

network
11.3%

drivers
77.9%

others
3.2%

network
24.9%

scsi
16.4%

staging
14.7%

usb
8.1%

leds
5.6%

gpu
3.5%

i2c
3.3%

others
23.4%

whole kernel drivers

(a) Linux 3.17.2.

(b) Linux 4.17.

whole kernel drivers

Fig. 15. The distribution of real SAC bugs found by DSAC.

be the sole correct referenced function of the function-pointer call. Thus, the detected bug about
msleep on line 421 called by qla8044_fw_dump through qla8044_idc_lock is a false positive.
Secondly, our path-check method fails to identify infeasible code paths in some complex cases.

The case of acquiring a spinlock under a condition and checking it across function calls is an
example, and Figure 16(b) shows a false reported bug in such case. The function adpt_abort
acquires a spinlock on line 705 under the condition that pHba->host is true on line 704, and then
calls the function adpt_i2o_post_wait on line 706. The function adpt_i2o_post_wait releases
the spinlock on line 1231 under a condition that pHba->host is true on line 1230, and then calls a
sleep-able function schedule on line 1233. Thus, schedule is not called while holding the spinlock.
However, DSAC does not maintain the condition pHba->host on line 704 across function calls,
because this variable is a data-structure field, which the path-check method does not handle at
present. Thus, our path-check method cannot use this condition to validate the path feasibility, and
considers that schedule can be called while holding the spinlock. Thus, it reports a false bug.

6.7 False Negatives
To analyze the false negatives of DSAC, we compare its bug reports to the kernel commits fixing
SAC bugs by changing GFP_KERNEL into GFP_ATOMIC between Linux 4.17 and 5.2 (June 2018 - July
2019). Specifically, we collect the commits that were not submitted by us and where the bug was
already present in Linux v4.17. This strategy resulted in 16 commits. DSAC finds the bugs in 5 of
these commits, but misses the bugs in the remaining 11 commits. These bugs are missed for two
main reasons:

20

(a) Incorrect referenced function of function pointer call.

FILE: linux-4.17/drivers/scsi/qla2xxx/qla_isr.c
 36. irqreturn_t qla2100_intr_handler(...) {

 ……
 59. spin_lock_irqsave(...); // acquire spinlock

 ……
 77. ha->isp_ops->fw_dump(...);

 ……
114. spin_unlock_irqrestore(...); // release spinlock
115. return IRQ_HANDLED;
116. }

FILE: linux-4.17/drivers/scsi/qla2xxx/qla_os.c
2122. static struct isp_operations qla2100_isp_ops = {

 ……
2146. .write_nvram = qla2x00_write_nvram_data,
2147. .fw_dump = qla2100_fw_dump,

 ……
2159. }

2356. static struct isp_operations qla8044_isp_ops = {
 ……

2380. .write_nvram = NULL,
2381. .fw_dump = qla8044_fw_dump,

 ……
2393. }

Incorrect

Correct FILE: linux-4.17/drivers/scsi/qla2xxx/qla_nx2.c
358. int qla8044_idc_lock(...) {

 ……
421. msleep(...); // can sleep

 ……
424. }

4074. void qla8044_fw_dump(...) {
 ……

4083. qla8044_idc_lock(...);
 ……

4088. }

========== BUG ==========
[FUNC] msleep
drivers/scsi/qla2xxx/qla_nx2.c, 421: msleep in qla8044_idc_lock
drivers/scsi/qla2xxx/qla_nx2.c, 4083: qla8044_idc_lock in qla8044_fw_dump
drivers/scsi/qla2xxx/qla_isr.c, 77: [FUNC_PTR]qla8044_fw_dump in qla2100_intr_handler
drivers/scsi/qla2xxx/qla_isr.c, 59: _raw_spin_lock_irqsave in qla2100_intr_handle

(b) Infeasible code path.

FILE: linux-4.17/drivers/scsi/dpt_i2o.c
 681. static int adpt_abort(...) {

 ……
 704. if (pHba->host)
 705. spin_lock_irq(...); // acquire spinlock
 706. rcode = adpt_i2o_post_wait(...);
 704. if (pHba->host)
 705. spin_unlock_irq(...); // release spinlock

1191. static int adpt_i2o_post_wait(...) {
 ……

1230. if (pHba->host)
1231. spin_unlock_irq(...); // release spinlock
1232. if (!timeout)
1233. schedule(); // can sleep

 ……
1243. if (pHba->host)
1244. spin_lock_irq(...); // acquire spinlock

 ……
1275. }

========== BUG ==========
[FUNC] schedule
drivers/scsi/dpt_i2o.c, 1233: schedule in adpt_i2o_post_wait
drivers/scsi/dpt_i2o.c, 706: adpt_i2o_post_wait in adpt_abort
drivers/scsi/dpt_i2o.c, 705: spin_lock_irq in adpt_abort

FILE: linux-4.17/drivers/scsi/qla2xxx/qla_dbg.c
894. void qla2100_fw_dump {

 ……
1090. }

FILE: linux-4.17/drivers/scsi/qla2xxx/Makefile
qla2xxx-y := qla_os.o qla_init.o qla_mbx.o qla_iocb.o qla_isr.o qla_gs.o \

 qla_dbg.o qla_sup.o qla_attr.o qla_mid.o qla_dfs.o qla_bsg.o \
 qla_nx.o qla_mr.o qla_nx2.o qla_target.o qla_tmpl.o qla_nvme.o

Fig. 16. Example of false detected bugs and their bug reports.

Firstly, our connection-based alias analysis focuses on direct function pointer assignments
involving data-structure fields, but neglects other kinds of function-pointer assignments. For
example, a function pointer may be assigned through a function argument or another function
pointer (as illustrated by the examples in Figure 11). Thus, our alias analysis fails to identify the set
of functions referenced by calls to such a function pointer, which may cause DSAC to miss real
bugs involving these calls. This reason causes DSAC to miss the bugs in 7 commits.

Secondly, DSAC requires the kernel configuration, and we only use the allyesconfig configu-
ration for the x86 architecture in our evaluation. Thus, SAC bugs in the source files that are not
enabled by this configuration are missed. This reason causes DSAC to miss the bugs in 4 commits.

6.8 Common Fixing Patterns for SAC Bugs
By studying Linux kernel patches, we have found four common patterns for fixing SAC bugs. In
Figure 17, we illustrate each fixing pattern using a known SAC bug in Linux 3.17.2 that has been
fixed in Linux 4.17.

The fixing patterns are as follows:
P1: Replace the sleep-able function call with a non-sleep function call having the same function-

ality, as illustrated by the change usleep_range ⇒ udelay shown in Figure 17(a).5

5Patch link: https://github.com/torvalds/linux/commit/69b624983f94f2a877449c1e6c34f21c97440f25

21

FILE: linux-3.17.2/drivers/net/ethernet/intel/e1000/e1000_hw.c

4057. s32 e1000_write_eeprom(...) {
4058. s32 ret;
4059. spin_lock(...); // FIXING: mutex_lock(...);
4060. ret = e1000_do_write_eeprom(...);
4061. spin_unlock(...); // FIXING: mutex_unlock(...);
4062. return ret;
4063. }

4065. s32 e1000_do_write_eeprom(...) {

4098. msleep(10);

4105. }

(a) P1

FILE: linux-3.17.2/drivers/staging/rtl8188eu/core/rtw_mlme.c

345. u8 rtw_createbss_cmd(...) {

361. pcmd = kzalloc(..., GFP_KERNEL); // FIXING: GFP_ATOMIC

379. }

638. void rtw_surveydone_event_callback(...) {

643. spin_lock_bh(...); // acquire spinlock

685. if (rtw_createbss_cmd(...) != _SUCCESS)

719. spin_unlock_bh(...); // release spinlock

724. }

(b) P2

FILE: linux-3.17.2/drivers/net/hippi/rrunner.c

1326. static int rr_close(...) {

1343. spin_lock_irqsave(...); // acquire spinlock

1382. rrpriv->info = NULL;
1383.
1384. free_irq(...); // FIXING: Move to “++++”
1385. spin_unlock_irqrestore(...); // release spinlock
++++. free_irq(...);
1386.
1387. return 0;
1388. }

(c) P3 (d) P4

FILE: linux-3.17.2/drivers/gpu/drm/nouveau/core/subdev/ibus/gk20a.c

31. static void gk20a_ibus_init_priv_ring(...) {

35. nv_mask(...);
36. usleep_range(20, 30); // FIXING: udelay(20)
37. nv_mask(...);

42. }

// Called from the interrupt handler “nouveau_mc_intr”
45. static void gk20a_ibus_intr(...) {

51. nv_debug(priv, "resetting priv ring\n");
52. gk20a_ibus_init_ibus_ring(...);

60. }

Fig. 17. Examples of common fixing patterns for SAC bugs in Linux 3.17.2.

P2: Replace the specific sleep-able constant flag with a non-sleep flag, as illustrated by the change
GFP_KERNEL ⇒ GFP_ATOMIC shown in Figure 17(b).6

P3:Move the sleep-able function call to some place where a spinlock is not held, as illustrated
by the change of moving free_irq shown in Figure 17(c).7
P4: Replace the spinlock with a lock that allows sleeping, as illustrated by the change of

spin_lock ⇒ mutex_lock and spin_unlock ⇒ mutex_unlock shown in Figure 17(d).8
These patterns have different usage scenarios and raise different challenges. Firstly, P1 and P2 can

be used for all atomic contexts, while P3 and P4 are only used when holding a spinlock. Secondly,
P1 and P2 involve simple modifications, while P3 and P4 involve more difficult modifications and
are error-prone. Using P3 requires carefully determining where the sleep-able function should be
moved to. Using P4 requires modifying all locking and unlocking operations. Thus, when we write
our patches for fixing the detected bugs in Linux 4.17, we preferentially select the bugs that can be
fixed using P1 and P2.

6.9 Sensitivity Analysis
DSAC exploits two key techniques: a summary-based analysis to reduce repeated analysis, and a
connection-based alias analysis to identify the set of functions referenced by a function pointer. To
better understand the value of these two techniques, we modify DSAC to drop each of them, and
evaluate each modified tool on Linux 3.17.2.

Summary-based analysis. We implement a modified tool by dropping the summary-based
analysis, implying that functions may be repeatedly analyzed in the same execution context. The
6Patch link: https://lkml.org/lkml/2017/12/18/833
7Patch link: https://patchwork.ozlabs.org/patch/847407/
8Patch link: https://patchwork.ozlabs.org/patch/499802/

22

PathHasExisted check is retained, however, on lines 1-3 of HandleBlock (Figure 3), to protect against
infinite loops due to recursion. In this experiment, themodified tool runs for over 11 hours and finally
aborts due to insufficient memory, without completing the analysis. This experiment indicates that
our summary-based analysis indeed improves the efficiency of atomic context analysis.

Connection-based alias analysis. We implement a modified tool by dropping the connection-
based alias analysis, and simply using a field-based analysis [30]. Specifically, we simply select all
possible referenced functions of a function pointer stored in a data-structure field, according to its
data-structure type, field offset and function-pointer type. In the experiment, the modified tool runs
for around 320 minutes, and identifies more than 136K referenced functions of function-pointer
calls, which is much more than the number of referenced functions (40K) identified by original
DSAC. Because these referenced functions have to be all handled in the code analysis, the time
usage of the modified tool is much longer than that of original DSAC (320 minutes vs. 78 minutes,
i.e., over 4x longer). As for bug detection, the modified tool reports 2958 SAC bugs, much more
than the number of bugs found by original DSAC. We have manually checked these reported bugs,
and found that more than 2000 of them are false. The reason is that in the recorded code paths of
these false bugs, the referenced functions of function-pointer calls are incorrect. This experiment
indicates that our connection-based alias analysis indeed reduces the false positive rate of SAC bug
detection and improves the efficiency of atomic context analysis.

7 COMPARISON TO PREVIOUS APPROACHES
Several previous approaches [4, 7, 15, 24, 46] have considered SAC bugs. Among them, we select
two state-of-the-art approaches, namely the Coccinelle BlockLock checker [46] and our previous
DSAC approach [7] to make detailed comparisons. We select the Coccinelle BlockLock checker
because it has been used to detect many SAC bugs in the Linux kernel and it is open-source and its
bug reports are available [11]. We select the previous DSAC approach because we aim to show the
improvements of the current DSAC approach in this paper.

7.1 Coccinelle BlockLock Checker
Compared to the BlockLock checker, DSAC has some important improvements:

Atomic context analysis. BlockLock only uses one bit of context information to check if a
lock is held, so it may not accurately identify the code in atomic context when multiple locks
are taken but only some of them are released. DSAC maintains a complete lock stack during its
summary-based analysis, thus it can be more accurate in identifying the code in atomic context.
BlockLock is also not sensitive to the module Makefile, and thus may choose the wrong definition
when unfolding a function call if the called function has multiple definitions. DSAC uses the module
Makefile to accurately identify the definition of each function. DSAC can detect SAC bugs in
interrupt handlers and involving sleep-able operations other than a call to an allocation function
with GFP_KERNEL, which are not considered by BlockLock.

Function-pointer analysis. BlockLock does not handle function-pointer calls. DSAC uses a
connection-based alias analysis to handle function-pointer calls. Thus, DSAC can find the bugs
involving function-pointer calls, which are missed by BlockLock.

False bug filtering. BlockLock does not consider variable value information to validate path
conditions, which may cause a number of false positives. DSAC uses a path-check method to
validate whether the code path is feasible, which filters out many false bugs.

We also compare the experimental results of BlockLock and DSAC, with two steps. Firstly, we
download the bug reports of BlockLock for Linux 2.6.33, and get 70 reported bugs. We select the
bugs related to the x86 architecture based on the Kconfig files, leaving 37 reported SAC bugs (26
real bugs and 11 false bugs). Secondly, we use DSAC to check the source code of Linux 2.6.33. We

23

use the kernel configuration allyesconfig to enable all code for the x86 architecture. DSAC runs
for 45m on four running threads, and finds 772 SAC bugs. We manually check these bugs, and find
that 719 are real.
By manually comparing the bug reports, we find that: (1) 59 real bugs reported by DSAC are

equivalent to 26 real bugs reported by BlockLock. DSAC reports more bugs because it detects
basic sleep-able kernel interfaces, while BlockLock detects sleep-able functions. Thus, if a function
defined in the kernel module calls several basic sleep-able kernel interfaces in atomic context, DSAC
reports all these kernel interfaces, while BlockLock only reports this function. (2) DSAC filters out
all false bugs reported by BlockLock. (3) DSAC reports 660 real bugs missed by BlockLock. Some of
these bugs involve multiple source files, and BlockLock cannot handle them very precisely; some
of these bugs involve function-pointer calls or are related to interrupt handling, which are not
considered by BlockLock. (4) The false positive rate of DSAC is 6.9%, which is lower than that of
BlockLock.

However, compared to BlockLock, an important limitation of DSAC is that its results are specific
to a single kernel configuration. BlockLock is based on Coccinelle [45], which does not compile
the source code. Thus it can conveniently check all source files without any kernel configuration.
DSAC is based on LLVM, which compiles the source code with a selected kernel configuration.
Thus, the 33 bugs found by BlockLock for non-x86 architectures are missed by DSAC.

7.2 Our Previous DSAC approach
Compared to our previous DSAC approach [7], our current DSAC approach achieves some important
improvements:

Summary-based analysis. Our previous DSAC approach uses a hybrid of flow-sensitive and
-insensitive analysis, which may repeatedly analyze a function under the same execution context.
Our current DSAC approach uses a summary-based analysis, which only analyzes a function once
per execution context. And our current DSAC approach uses a flow-sensitive analysis to analyze
all targeted code paths. Thus, our current DSAC approach is more efficient and accurate than our
previous DSAC approach.

Cross-kernel-module analysis. Our previous DSAC approach handles one kernel module at
a time and only analyzes code paths within the module. Our current DSAC approach can handle
multiple kernel modules and can analyze code paths across different kernel modules. Thus, our
current DSAC approach can find bugs involving multiple kernel modules that are missed by our
previous DSAC approach.

Connection-based alias analysis. Our previous DSAC approach does not handle function-
pointer calls. Our current DSAC approach uses a connection-based alias analysis to identify the set
of functions referenced by a function pointer. Thus, our current DSAC approach can find many
bugs involving function-pointer calls that are missed by our previous DSAC approach.

Improved path-check method. Our previous DSAC approach relied on some information
about common coding styles to check the names of variables and called functions in if conditions.
This approach is only applicable to the cases that follow the expected coding styles, and thus
many false bugs involving other cases are still reported. Our current DSAC approach collects some
information about variable values to validate the feasibility of the code path, which is more accurate
and effective in filtering out false bugs.

Our previous DSAC and current DSAC approaches are both evaluated on Linux 3.17.2. However,
our previous DSAC approach only checks device drivers, while our current DSAC approach checks
the whole kernel. To make a fair comparison, we select the SAC bugs of drivers found by our
current DSAC approach, and get 666 bug reports (627 real bugs and 39 false bugs). Our previous
DSAC approach reports 215 bugs in drivers (200 real bugs and 15 false bugs). By manually checking

24

the bug reports, we find that: (1) The 200 real bugs found by our previous DSAC approach are all
found by our current DSAC approach. (2) Among the 15 false bugs found by our previous DSAC
approach, 10 are filtered out by our current DSAC approach. (3) Our current DSAC approach finds
427 real bugs missed by our previous DSAC approach. These bugs involve multiple kernel modules
or function-pointer calls, and our previous DSAC approach cannot handle them. (4) The false
positive rate of our current DSAC approach is 5.9%, which is lower than that of our previous DSAC
approach (7.0%).

8 DISCUSSION
In this section, we discuss two possible extensions for DSAC.

8.1 Detecting SAC Bugs in Other OS Kernels
At present, DSAC is specific to the Linux kernel, in two main aspects. Firstly, DSAC requires LLVM
bytecode and link information for the OS kernel, and we implement a script specific to the Linux
kernel to collect this information when compiling the Linux kernel source code. Secondly, DSAC
requires the names of some functions and flags specific to the Linux kernel. For the summary-based
analysis in Figure 3, we need to manually provide the names of the spin-lock and spin-unlock
functions used on lines 6 and 8 in HandleBlock and on line 3 in CodeAnalysis, the names of the
interrupt-handler-register functions used on line 8 in CodeAnalysis, and the names of the basic
sleep-able kernel interfaces and sleep-able flags used on lines 10-11 in CodeAnalysis. For the path-
check method, we need to manually provide the names of the functions checking atomic context
and the non-sleep flags. Thus, to apply DSAC in another OS kernel, such as FreeBSD or NetBSD,
we need to implement a new script for the source-code compilation of this kernel, and provide the
names of the corresponding functions and flags specific to the targeted kernel.

8.2 Detecting Other Kernel Problems
The good results and reasonable performance of DSAC rely on three key techniques used in DSAC:
function summaries to avoid repeated analysis, link and file connections to reduce the set of
considered functions when analyzing function-pointer calls, and a path-check method that only
applies precise analysis to possible bug reports to avoid the cost of always checking during static
analysis. DSAC also benefits from the fact that it is looking for a specific bug type, involving specific
operators, such as locking calls and sleep-able functions, that occur frequently, but not pervasively.
Other problems that may have similar properties include properties of specific resource allocations,
such as double locks or memory leaks. We are currently developing a general interprocedural
program analysis framework targeting the Linux kernel in order to be apply the techniques used
by DSAC to a wider range of bug types.

9 RELATEDWORK
9.1 Detecting Concurrency Bugs
Many approaches [13, 21, 26, 35, 37, 44, 50, 55, 56] have been proposed to detect concurrency bugs
in user-mode applications. Some of them [13, 26, 55] use dynamic analysis to collect and analyze
runtime information to detect concurrency bugs. But the code coverage of dynamic analysis is
limited by test cases. Others [21, 44, 50, 56] use static analysis to cover more code without running
the tested programs. But static analysis often introduces false positives. Some approaches [14, 35, 37]
combine static and dynamic analysis to achieve higher code coverage with fewer false positives.
DSAC uses static analysis to cover the whole kernel, and validates the feasibility of code paths to
reduce false positives.

25

To improve OS reliability, some approaches [20, 23, 25, 27, 53, 54, 57] detect some kinds of
concurrency bugs like data races, but they do not detect SAC bugs. Several approaches [4, 15, 24, 46]
can detect common kinds of OS kernel bugs, including SAC bugs. But they are not specific to SAC
bugs, and most of them [15, 24, 46] are designed to collect statistics rather than report specific bugs
to the user, making issues such as detection time and false positive rate less important. Besides,
these approaches does not handle function pointers, so they may miss SAC bugs that involve
function-pointer calls. For example, BlockLock [46] has an overall false positive rate of 20%, while
that of DSAC is less than 10%, and BlockLock also misses many real bugs found by DSAC, especially
the bugs involving function-pointer calls.

9.2 Checking API Rules
Checking API rules is a promising way of finding deep and semantic bugs in an OS kernel. Some
approaches [6, 10, 40, 42] use known API rules to statically or dynamically detect API misuses.
For example, with known paired kernel reference count management interfaces, RID [40] uses a
summary-based inter-procedural analysis to detect reference counting bugs in the Linux kernel.
To find implicit API rules, some approaches do specification mining by analyzing source code [33,
36, 38, 49, 59] or execution traces [8, 31, 58], and then use the mined API rules to detect violations.
For example, PF-Miner [38] analyzes the source code of the Android kernel. It first identifies error
handling paths from C source code, and then respectively collects function call sequences in normal
execution paths and error handling paths. By using statistical methods to compare the collected
function call sequences in the two kinds of code paths, PF-Miner extracts frequently used function
pairs as API rules. Perracotta [58] analyzes execution traces for the Windows kernel. It partitions
the original imperfect execution traces into some sub-traces, and identifies different objects using
context-sensitive analysis. Then, Perracotta uses three heuristics, namely call-graph reachability,
name similarity and properties combination, to find interesting API rules.

Most of these approaches focus on the temporal rules of common API usages, such as resource
acquiring and releasing pairs [49, 58] and error handling patterns [8, 33, 38], but these approaches
have not targeted SAC bugs.

9.3 Function-Pointer Analysis
In static analysis, analyzing function pointers is a classical and difficult problem, because the set
of functions referenced by a function pointer is often hard to correctly identify without exact
runtime information. Some alias-analysis approaches [22, 29, 30, 32, 41] have been proposed that
can handle function pointers. They are classified as Andersen-style [3] or Steensgaard-style [51].
Andersen-style approaches view pointer assignments as subset constraints, and use constraints to
propagate pointer information; Steensgaard-style approaches also use constraint-based analysis,
but they use equality constraints instead of subset constraints. CLA [30] uses a field-based and flow-
insensitive pointer analysis to analyze large-scale software in a short time. It is Andersen-style, and
uses the data structure type and field name to maintain field sensitivity. DSA [32] is field-sensitive,
context-sensitive and flow-insensitive pointer analysis algorithm. DSA is Steensgaard-style [51]
with full heap cloning, and uses some practical optimizations to speed up alias analysis.

However, these approaches often identify incorrect referenced functions of function pointers in
large and complex software. A main reason is that they do not consider the calling context of a
function-pointer call, and just produce all the functions possibly referenced by the called function
pointer. In this paper, based on the field-based analysis of CLA [30], we propose connection-based
alias analysis to improve the accuracy of analyzing function-pointer calls.

26

9.4 Improving the Kernel Module Architecture
To prevent concurrency bugs in the OS kernel, several improved kernel module architectures have
been proposed, typically for device drivers. The active driver architecture [2, 48] runs each driver in
a separate kernel thread, and all communication between the driver and kernel is performed using
message passing. This architecture can serialize the concurrent accesses to the driver and eliminate
the possibility of concurrency bugs. The user-mode driver architecture [28, 34, 47] runs each driver
in a separate user-mode process. This architecture protects the OS kernel against crashes caused by
driver code. This architecture also allows the driver code to be implemented using a safer language
such as Java [47], instead of C.
These approaches have two main limitations. Firstly, the source code of the kernel module

must be manually rewritten. Secondly, the performance of the kernel module may degrade due to
serialization in the active driver approaches and frequent context switches in the user-mode driver
approaches.

10 CONCLUSION
In this paper, we have proposed DSAC, a practical static approach, to automatically and effectively
detect SAC bugs in the Linux kernel. DSAC uses three key techniques: (1) a summary-based analysis
to identify the code that may be executed in atomic context. (2) a connection-based alias analysis to
identify the set of functions referenced by a function pointer. (3) a path-check method to filter out
repeated reports and false bugs. We have used DSAC to check the kernel source code of Linux 4.17,
and in total find 1068 real bugs. We have randomly selected 300 of the real bugs and sent them to
kernel developers. 220 of these bugs have been confirmed, and 51 of our patches fixing 115 bugs
have been applied.
DSAC can be still improved in several aspects. Firstly, the current implementation of DSAC

can be improved to reduce false positives. For example, DSAC still fails to correctly validate the
feasibility of the code path in complex cases. Thus, we need to improve our path-check method to
accurately handle such cases. Secondly, at present, DSAC focuses on function pointers stored in
data-structure fields, and cannot handle function pointers that are not referenced in this way. Thus,
we need to improve our connection-based alias analysis to handle more kinds of function-pointer
calls, which can help to find more SAC bugs. Thirdly, we have only evaluated DSAC on the Linux
kernel in this paper. In fact, our previous DSAC approach [7] also found some real SAC bugs in
the FreeBSD and NetBSD kernels. Thus, we will evaluate DSAC on these OS kernels. Finally, our
connection-based alias analysis can help to build a full kernel call graph involving function-pointer
calls. We are investigating whether the collected information is sufficient to accurately support
detection of other kinds of kernel problems, such as double free and double lock bugs.

ACKNOWLEDGMENT
We would like to thank the Linux kernel developers and maintainers who gave helpful feedback on
our bug reports and patches. This work was supported in part by the China Postdoctoral Science
Foundation under Project 2019T120093. Shi-Min Hu is the corresponding author.

REFERENCES
[1] Allocation 2018. Linux kernel documentation for memory allocation. https://www.kernel.org/doc/htmldocs/kernel-

api/API-kmalloc.html.
[2] Sidney Amani, Peter Chubb, Alastair F Donaldson, Alexander Legg, Keng Chai Ong, Leonid Ryzhyk, and Yanjin Zhu.

2014. Automatic verification of active device drivers. ACM SIGOPS Operating Systems Review 48, 1 (2014), 106–118.
[3] Lars Ole Andersen. 1994. Program analysis and specialization for the C programming language. Ph.D. Dissertation.

University of Cophenhagen.

27

[4] Zachary R Anderson, Eric A Brewer, Jeremy Condit, Robert Ennals, David Gay, Matthew Harren, George C Necula,
and Feng Zhou. 2007. Beyond bug-finding: sound program analysis for Linux. In Proceedings of the 11th International
Workshop on Hot Topics in Operating Systems (HotOS). 1–6.

[5] Jia-Ju Bai, Julia Lawall, Wende Tan, and Shi-Min Hu. 2019. DCNS: automated detection of conservative non-sleep
defects in the Linux kernel. In Proceedings of the 24th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 287–299.

[6] Jia-Ju Bai, Hu-Qiu Liu, Yu-Ping Wang Wang, and Hu Shi-Min. 2014. aComment: mining annotations from comments
and code to detect interrupt related concurrency bugs. In Proceedings of the 21st Asia-Pacific Software Engineering
Conference (APSEC). 407–414.

[7] Jia-Ju Bai, Yu-Ping Wang, Julia Lawall, and Shi-Min Hu. 2018. DSAC: effective static analysis of sleep-in-atomic-context
bugs in kernel modules. In Proceedings of the 2018 USENIX ATC Conference (USENIX ATC). 587–600.

[8] Jia-Ju Bai, Yu-Ping Wang, Hu-Qiu Liu, and Shi-Min Hu. 2016. Mining and checking paired functions in device drivers
using characteristic fault injection. Information and Software Technology 73 (2016), 122–133.

[9] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. 2011. Detecting kernel-level rootkits using data structure invariants.
IEEE Transactions on Dependable and Secure Computing (TDSC) 8, 5 (2011), 670–684.

[10] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg, Con McGarvey, Bohus Ondrusek,
Sriram K Rajamani, and Abdullah Ustuner. 2006. Thorough static analysis of device drivers. In Proceedings of the 1st
European Conference on Computer Systems (EuroSys). 73–85.

[11] BlockLock 2014. Website for “Faults in Linux: ten years later”. http://faultlinux.lip6.fr/.
[12] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage

tests for complex systems programs. In Proceedings of the 8th International Conference on Operating Systems Design and
Implementation (OSDI). 209–224.

[13] Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. 2016. A deployable sampling strategy for data race detection. In
Proceedings of the 24th International Symposium on Foundations of Software Engineering (FSE). 810–821.

[14] Lee Chew and David Lie. 2010. Kivati: fast detection and prevention of atomicity violations. In Proceedings of 5th
European Conference on Computer Systems (EuroSys). 307–320.

[15] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. 2001. An empirical study of operating
systems errors. In Proceedings of the 18th International Symposium on Operating Systems Principles (SOSP). 73–88.

[16] Clang 2018. Clang compiler. http://clang.llvm.org/.
[17] CLOC 2018. CLOC: counting lines of code. https://github.com/AlDanial/cloc.
[18] Jonathan Corbet. 2008. Atomic context and kernel API design. https://lwn.net/Articles/274695/.
[19] Domenico Cotroneo, Roberto Natella, and Stefano Russo. 2009. Assessment and improvement of hang detection in the

Linux operating system. In Proceedings of the 28th International Symposium on Reliable Distributed Systems (SRDS).
288–294.

[20] Pantazis Deligiannis, Alastair F Donaldson, and Zvonimir Rakamaric. 2015. Fast and precise symbolic analysis
of concurrency bugs in device drivers. In Proceedings of the 30th International Conference on Automated Software
Engineering (ASE). 166–177.

[21] Jyotirmoy Deshmukh, E Allen Emerson, and Sriram Sankaranarayanan. 2009. Symbolic deadlock analysis in concurrent
libraries and their clients. In Proceedings of the 24th International Conference on Automated Software Engineering (ASE).
480–491.

[22] Maryam Emami, Rakesh Ghiya, and Laurie J Hendren. 1994. Context-sensitive interprocedural points-to analysis in
the presence of function pointers. In Proceedings of the 1994 International Conference on Programming Language Design
and Implementation (PLDI). 242–256.

[23] Dawson Engler and Ken Ashcraft. 2003. RacerX: effective, static detection of race conditions and deadlocks. In
Proceedings of the 19th International Symposium on Operating Systems Principles (SOSP). 237–252.

[24] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. 2000. Checking system rules using system-specific,
programmer-written compiler extensions. In Proceedings of the 4th International Conference on Operating Systems
Design and Implementation (OSDI). 1–16.

[25] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk Olynyk. 2010. Effective data-race detection for
the kernel. In Proceedings of the 9th International Conference on Operating Systems Design and Implementation (OSDI).
151–162.

[26] Pedro Fonseca, Cheng Li, and Rodrigo Rodrigues. 2011. Finding complex concurrency bugs in large multi-threaded
applications. In Proceedings of the 6th European Conference on Computer Systems (EuroSys). 215–228.

[27] Pedro Fonseca, Rodrigo Rodrigues, and Björn B Brandenburg. 2014. SKI: exposing kernel concurrency bugs through
systematic schedule exploration. In Proceedings of the 11th International Conference on Operating Systems Design and
Implementation (OSDI). 415–431.

28

[28] Vinod Ganapathy, Matthew J Renzelmann, Arini Balakrishnan, Michael M Swift, and Somesh Jha. 2008. The design
and implementation of microdrivers. In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 168–178.

[29] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive pointer analysis for millions of lines of code. In Proceedings of the
9th International Symposium on Code Generation and Optimization (CGO). 289–298.

[30] Nevin Heintze and Olivier Tardieu. 2001. Ultra-fast aliasing analysis using CLA: a million lines of C code in a second. In
Proceedings of the 2001 International Conference on Programming Language Design and Implementation (PLDI). 254–263.

[31] Christopher LaRosa, Li Xiong, and Ken Mandelberg. 2008. Frequent pattern mining for kernel trace data. In Proceedings
of the 2008 ACM symposium on Applied computing. 880–885.

[32] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making context-sensitive points-to analysis with heap
cloning practical for the real world. In Proceedings of the 2007 International Conference on Programming Language
Design and Implementation (PLDI). 278–289.

[33] Julia L Lawall, Julien Brunel, Nicolas Palix, René Rydhof Hansen, Henrik Stuart, and Gilles Muller. 2009. WYSIWIB: A
declarative approach to finding API protocols and bugs in Linux code. In Proceedings of the 39th International Conference
on Dependable Systems and Networks (DSN). 43–52.

[34] Ben Leslie, Peter Chubb, Nicholas Fitzroy-Dale, Stefan Götz, Charles Gray, Luke Macpherson, Daniel Potts, Yue-Ting
Shen, Kevin Elphinstone, and Gernot Heiser. 2005. User-level device drivers: achieved performance. Journal of
Computer Science and Technology 20, 5 (2005), 654–664.

[35] Qiwei Li, Yanyan Jiang, Tianxiao Gu, Chang Xu, Jun Ma, Xiaoxing Ma, and Jian Lu. 2016. Effectively manifesting
concurrency bugs in Android apps. In Proceedings of the 23rd Asia-Pacific Software Engineering Conference (APSEC).
209–216.

[36] Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting implicit programming rules and detecting
violations in large software code. In Proceedings of the 13th International Symposium on Foundations of Software
Engineering (FSE). 306–315.

[37] Haopeng Liu, Guangpu Li, Jeffrey F Lukman, Jiaxin Li, Shan Lu, Haryadi S Gunawi, and Chen Tian. 2017. DCatch:
automatically detecting distributed concurrency bugs in cloud systems. In Proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). 677–691.

[38] Hu-Qiu Liu, Yu-Ping Wang, Jia-Ju Bai, and Shi-Min Hu. 2016. PF-Miner: a practical paired functions mining method
for Android kernel in error paths. Journal of Systems and Software 121 (2016), 234–246.

[39] LLVM 2018. LLVM compiler infrastructure. https://llvm.org/.
[40] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi. 2016. RID: finding reference count bugs with inconsistent path

pair checking. In Proceedings of the 21st International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 531–544.

[41] Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2004. Precise call graphs for C programs with function pointers.
Automated Software Engineering 11, 1 (2004), 7–26.

[42] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Taesoo Kim. 2015. Cross-checking semantic
correctness: the case of finding file system bugs. In Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP). 361–377.

[43] MySQL 2018. MYSQL database. https://www.mysql.com/.
[44] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Proceedings of the 27th

International Conference on Programming Language Design and Implementation (PLDI). 308–319.
[45] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. 2008. Documenting and automating collateral

evolutions in Linux device drivers. In Proceedings of the 3rd European Conference on Computer Systems (EuroSys).
247–260.

[46] Nicolas Palix, Gaēl Thomas, Suman Saha, Christophe Calvès, Gilles Muller, and Julia Lawall. 2014. Faults in Linux 2.6.
ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 4:1–4:40.

[47] Matthew J Renzelmann and Michael M Swift. 2009. Decaf: Moving device drivers to a modern language. In USENIX
Annual Technical Conference (USENIX ATC). 1–14.

[48] Leonid Ryzhyk, Yanjin Zhu, and Gernot Heiser. 2010. The case for active device drivers. In Proceedings of the 1st
Aisa-Pacific Workshop on Systems (APSys). 25–30.

[49] Suman Saha, Jean-Pierre Lozi, Gaël Thomas, Julia L Lawall, and Gilles Muller. 2013. Hector: Detecting resource-release
omission faults in error-handling code for systems software. In Proceedings of the 43rd International Conference on
Dependable Systems and Networks (DSN). 1–12.

[50] Anirudh Santhiar and Aditya Kanade. 2017. Static deadlock detection for asynchronous C# programs. In Proceedings of
the 38th International Conference on Programming Language Design and Implementation (PLDI). 292–305.

[51] Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd International Symposium
on Principles of Programming Languages (POPL). 32–41.

29

[52] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. 2003. Improving the reliability of commodity operating
systems. In Proceedings of the 19th International Symposium on Operating Systems Principles (SOSP). 207–222.

[53] Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: mining annotations from comments and code to
detect interrupt related concurrency bugs. In Proceedings of the 33rd International Conference on Software Engineering
(ICSE). 11–20.

[54] Vesal Vojdani, Kalmer Apinis, Vootele Rõtov, Helmut Seidl, Varmo Vene, and Ralf Vogler. 2016. Static race detection
for device drivers: the Goblint approach. In Proceedings of the 31st International Conference on Automated Software
Engineering (ASE). 391–402.

[55] Dasarath Weeratunge, Xiangyu Zhang, William N Sumner, and Suresh Jagannathan. 2010. Analyzing concurrency
bugs using dual slicing. In Proceedings of the 19th International Symposium on Software Testing and Analysis (ISSTA).
253–264.

[56] Amy Williams, William Thies, and Michael D Ernst. 2005. Static deadlock detection for Java libraries. In Proceedings of
the 19th European Conference on Object-Oriented Programming (ECOOP). 602–629.

[57] Thomas Witkowski, Nicolas Blanc, Daniel Kroening, and Georg Weissenbacher. 2007. Model checking concurrent linux
device drivers. In Proceedings of the 22nd International Conference on Automated Software Engineering (ASE). 501–504.

[58] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. 2006. Perracotta: mining temporal
API rules from imperfect traces. In Proceedings of 28th International Conference on Software Engineering (ICSE). 282–291.

[59] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur Naik. 2016. APISan: sanitizing API usages
through semantic cross-checking. In USENIX Security Symposium. 363–378.

[60] Yian Zhu, Yue Li, Jingling Xue, Tian Tan, Jialong Shi, Yang Shen, and Chunyan Ma. 2012. What is system hang and how
to handle it. In Proceedings of the 23rd International Symposium on Software Reliability Engineering (ISSRE). 141–150.

Received October 2018; revised September 2019; accepted xxx

30

	Abstract
	1 Introduction
	2 Background
	2.1 Atomic Context
	2.2 Motivating Example

	3 Challenges
	3.1 C1: Accuracy and Efficiency in Code Analysis
	3.2 C2: Handling Function Pointers
	3.3 C3: Filtering out Repeated and False Bugs

	4 Key Techniques
	4.1 Summary-Based Analysis
	4.2 Connection-Based Function-Pointer Analysis
	4.3 Path-Check Bug Filtering

	5 Approach
	5.1 Code Compilation
	5.2 Information Collection
	5.3 Connection Extraction
	5.4 Bug Detection
	5.5 Parallelism

	6 Evaluation
	6.1 Experimental Setup
	6.2 Bug Detection
	6.3 Example Bugs
	6.4 Bug Characteristics
	6.5 Bug Distribution
	6.6 False Positives
	6.7 False Negatives
	6.8 Common Fixing Patterns for SAC Bugs
	6.9 Sensitivity Analysis

	7 Comparison to Previous Approaches
	7.1 Coccinelle BlockLock Checker
	7.2 Our Previous DSAC approach

	8 Discussion
	8.1 Detecting SAC Bugs in Other OS Kernels
	8.2 Detecting Other Kernel Problems

	9 Related Work
	9.1 Detecting Concurrency Bugs
	9.2 Checking API Rules
	9.3 Function-Pointer Analysis
	9.4 Improving the Kernel Module Architecture

	10 Conclusion
	References

