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Abstract. In this paper, we address the question of process and model
fairness. We propose FixOut, a human-centered and model-agnostic
framework, that uses any explanation method (based on feature impor-
tance) to assess model’s reliance on sensitive features. Given a pre-trained
classifier, FixOut first checks whether it relies on user defined sensitive
features. If it does, then FixOut employs feature dropout to produce a
pool of simplified classifiers that are then aggregated into an ensemble
classifier. We present empirical results using different models on sev-
eral real-world datasets, that show a consistent improvement in terms
of widely used fairness metrics, decreased reliance on sensitive features,
and without compromising the classifier’s accuracy.

Keywords: SHAP · LIME · Fairness metrics· Feature importance ·
Feature-dropout · Ensemble classifier.

1 Introduction

Machine Learning (ML) models are increasingly present in decision support sys-
tems with critical societal impacts, for instance, in job recruitment, loan appli-
cations and criminal recidivism prediction. In spite of the objective character of
these algorithmic decisions, recent studies raised fairness concerns by revealing
discriminating outcomes against minorities and unprivileged groups12 [9, 2]. In
2016, the European Union has enforced the GDPR Law3 across all organizations
and firms. The law entitles European citizens the right to have a basic knowledge
w.r.t. the inner workings of ML models and their outcomes.

Two main approaches have been proposed to address algorithmic (un)fairness
based on decision outcomes. One is to use fairness measures and impose fairness

? This research was partially supported by TAILOR, a project funded by EU Horizon
2020 research and innovation programme under GA No 952215, and the Inria Project
Lab “Hybrid Approaches for Interpretable AI” (HyAIAI)

1 https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-
scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

2 https://www.bbc.com/news/business-50365609
3 General Data Protection Regulation: https://gdpr-info.eu/
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constraints during training [21, 20] whereas the other aims to reduce the reliance
of ML models on salient or sensitive features [8, 4, 1]. For the latter, a natural
approach is to train models on datasets with these sensitive features removed,
however this may entail a reduction in the model’s accuracy [21].

Following the same tracks, Bhargava et al. [4] proposed a human centered,
model-agnostic framework called LimeOut to reduce classifiers’ reliance on sen-
sitive features without compromising their accuracy. Essentially, LimeOut re-
ceives a triple (M,D,F ) consisting of a classifier M , a dataset D and a set F of
sensitive features, as input, and it outputs a classifier M ′ that is less reliant on
the sensitive features in F . To assess the reliance of M on the sensitive features in
F , LimeOut uses a global variant of LIME explanations [15]. If sensitive features
are shown to contribute globally to M ’s outcomes, then M is deemed unfair. In
this case, LimeOut employs feature dropout to build a pool of classifiers that
are then aggregated to obtain an ensemble classifier. Otherwise, M is deemed
fair, and no action is taken.

Empirical studies [4, 1] showed that LimeOut’s ensemble models are less
dependent on sensitive features, and with improved (or, at least, maintained)
accuracy when compared to the original models. However, several issues con-
cerning the use of explanation methods for assessing process fairness have been
recently raised. For instance, [5, 19] questioned the usefulness of explanations to
assess fairness by showing that it is possible to perform “adversarial attacks” to
modify explanations in order to conceal unfairness issues. This led to a thorough
empirical investigation [1] beyond process fairness, and where LimeOut showed
consistent improvements with respect to widely used fairness metrics such as
disparate impact, equal opportunity, demographic parity, equal accuracy, and
predictive equality. In [1] it was also claimed the adaptability of LimeOut to
other data types as well as to other explanation methods. This is particularly
relevant given the drawbacks of LIME explanations that have been pointed out
in the literature [6, 14].

In this paper we tackle the latter issues by showing that LimeOut can be
adapted to different explanation methods. More precisely, we propose FixOut4,
an explainer-agnostic framework that generalizes LimeOut. To illustrate, we
consider FixOut instantiated by SHAP5 [13], an explanation method that is
based on coalitional game theory, to assess model fairness. Also, instead of a
simple average as aggregation rule, FixOut employs a weighted average that
takes into account the global contribution of sensitive features, to construct the
final ensemble model.

The main contributions of this paper are thus the following: (1) the introduc-
tion of the FixOut framework, which is explainer-agnostic, (2) the consideration
of model ensembles that take into account global contributions of sensitive fea-
tures, and (3) an empirical study of FixOut on different datasets and with
respect to several fairness metrics, that illustrate the adaptability of FixOut to
different explanation methods.

4 FixOut stands for FaIrness through eXplanations and feature dropOut.
5 SHAP stands for SHapley Additive exPlanations.
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2 Related Work

In this section we recall the main concepts used in this work. We start with the
notions of fairness and then we describe SHAP explanations which is used to
assess fairness in our framework FixOut.

2.1 Assessing Model Fairness

Fairness of ML models can be addressed in several ways, but most fairness no-
tions focus on models’ outcomes. In this setting, there are two main approaches:
one that proposes certain fairness metrics [20], while the other focuses on pro-
cess fairness that assesses, for instance, the model’s reliance on discriminatory
or sensitive features [7], such as race, ethnicity, gender, or sexual orientation.

Fairness metrics usually rely on well known scores measured with respect
to privileged and unprivileged groups. For instance, with respect to “race”,
white people are usually the privileged group and the nonwhites the unprivileged
group. Among the best known fairness metrics, we will consider the following
ones: demographic parity (DP) [10] that relies on predicted positive rates, dis-
parate impact6 (DI) [20] consider the proportion of these positive rates, equal
opportunity7 (EO) that is based on recall scores [20], and equal accuracy (EA)
relies on accuracy scores [10]. In addition, we will also use predictive equality
(PE) that assesses fairness based on false positive rates [1].

2.2 Explanations to assess fairness: the case of SHAP

Several works have been advocating that explanations can be used to assess
model fairness since they provide insights into ML models’ outcomes. Explana-
tion methods differ mainly in the form of explanations or in the approach they
use to generate them. For instance, Anchors provides rule-based explanations
[16], while LIME [15], SHAP [12] and DeepLIFT [18] explain the outcome for
a given instance by computing the contributions of feature to the outcome. In
this paper, we focus on model-agnostic explanation methods, such as LIME and
SHAP. As LIME has been already considered [1, 4], in this paper we will mainly
use SHAP explanations.

SHapley Additive exPlanations [13] is a local model-agnostic explanation
method based on coalitional game theory. SHAP provides explanations in the
form of a linear surrogate model that (unlike LIME) is defined on a simplified
representation space (a “coalition” of simplified features), and whose coefficients
correspond to the contributions of the corresponding (selected) features. In the
case of SHAP these coefficients coincide with Shapley values [17]. In this work,
we focus on KernelSHAP [13] that is a variant of SHAP. KernelSHAP receives
as input an instance x, the prediction model f , and the number of coalitions
m. It then learns a linear model g defined on a simplified subset of features

6 It is also referred to as group fairness
7 It is also referred to as disparate mistreatment
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(“coalition” that defines the representation space) by optimizing the following
loss function:

L(f, g, πx) =
∑
z∈Z

[f(hx(z))− g(z)]2πx(z),

where hx(z) converts z from the representation space to the feature space, Z is
a set of points that are representations of neighbors of x in the representation
space, and πx(z) is the kernel defined as:

πx(z) =
M − 1(

M
|z|
)
|z|(M − |z|)

,

where |z| is the number of present features in the coalition z and M is the
maximum coalition size.

KernelSHAP first samples coalitions of features and it then asks for predic-
tion of each coalition8. This produces a new dataset of coalitions along with
predictions which is used by KernelSHAP to fit a linear model g as described in
the formula:

g(z) = φ0 +

M∑
j=1

φjzj ,

where zj indicates the presence/absence of the j-th feature.
To illustrate, let us consider the example of the Adult dataset where the

goal is to predict if a person earns ≥50k dollars a year. Figure 1 presents a
SHAP explanation for a prediction using Logistic Regression classifier, where
the Shapley value for “Capital Gain = 2,174” is around -0.15 that indicates this
feature contribute to move the prediction towards the negative class.

Fig. 1. SHAP explanation of the prediction of an instance in the Adult dataset.

3 Fairness Through Explanations and Feature Dropout

In this section, we introduce our proposed framework FixOut and highlight
the differences between FixOut and LimeOut. Similarly to LimeOut [1, 4],

8 Before asking for predictions, KernelSHAP converts a coalition z from the represen-
tation space to the original space using hx(z).
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FixOut has two main components: ExpGlobal that provides global explana-
tions9 in order to assess fairness of a given pre-trained model M , and Ensem-
bleOut that builds a fairer model Mfinal if M is deemed unfair. However, unlike
LimeOut, FixOut receives as input a quadruple (M,D,F,E) where M is a
pre-trained model, D is a dataset, F is a set of sensitive features, and E is an
explanation method based on feature importance.

FixOut’s workflow can be summarized as follows. Given (M,D,F,E), FixOut
applies the component ExpGlobal using E as the explanation method. For in-
stance, it can employ either SHAP or LIME to measure feature importance
and so to evaluate the dependence of M on sensitive features. The output of
ExpGlobal is a list F k of the k most important features a1, a2, . . . , ak. As in
LimeOut, FixOut applies the following rule to decide whether M is fair: if F k

contains sensitive features aj1 , aj2 , . . . , aji in F with i > 1, then M is deemed
unfair and the FixOut’s second component applies; otherwise, it is considered
fair and no action is taken.

In the former case (i.e., M is considered unfair), FixOut employs feature
dropout [4] and uses the i features aj1 , aj2 , . . . , aji ∈ F to build a pool of i + 1
classifiers in the following way: for each 1 ≤ t ≤ i, FixOut trains a classifier
Mt after removing ajt from D, and an additional classifier Mi+1 trained after
removing all sensitive features F from D. As in LimeOut, this pool of classifiers
is used to construct an ensemble classifier Mfinal. However, instead of a simple
average, FixOut employs a weighted average using weights that take into ac-
count feature’s contributions. Let c′jt ∈ [0, 1] be the normalized10 global feature
contribution associated with ajt , and define the weights wt of Mt and the weight
wi+1 of Mi+1 as

wt =
c′jt

1 +
∑i

u=1 c
′
ju

, 1 ≤ t ≤ i, and wi+1 =
1

1 +
∑i

u=1 c
′
ju

.

For a data instance x and a class C, the ensemble classifier Mfinal uses the
following rule to predict the probability of x being in class C,

PMfinal
(x ∈ C) =

i+1∑
t=1

wtPMt
(x ∈ C), (1)

where PMt
(x ∈ C) is the probability predicted by model Mt.

9 Essentially, we use sampling techniques to choose representative data instances:
LimeOut uses submodular pick [15], whereas FixOut uses a simple bootstrapping
approach available in the implementation of SHAP [11]. These are then aggregated
to obtain a global ranking of feature contributions.

10 We standardize feature contributions by c′jt =
cjt−min(Fk)

max(Fk)−min(Fk)
, where min(F k) and

max(F k) are the lowest and the highest feature contribution among F k, respectively.



6 G. Alves et al.

4 Experiments

In this section, we briefly present the datasets and the experimental setting that
we used to perform our experiments. We then examine the obtained results in
the following way. First, we report and compare the obtained accuracy on several
classifiers and on FixOut’s ensembles in Subsection 4.2. We then assess process
fairness using SHAP explanations in Subsection 4.3. Finally, we evaluate fairness
using standard metrics in Subsection 4.4.

4.1 Datasets & Experimental Setup

The experiments were conducted on 5 datasets used in [1], namely, German11,
Adult12, HMDA13, LSAC14, and Default15. All datasets share common charac-
teristics that allow us to run our experiments: a binary target feature and the
presence of sensitive features. Table 1 summarizes basic information about these
datasets.

Table 1. Datasets employed in the experiments.

Dataset # features # instances Sensitive features

German 20 1000 “statussex”, “telephone”, “foreign worker”
Adult 14 32561 “MaritalStatus”, “Race”, “Sex”

HMDA 28 92793 “sex”, “race”, “ethnicity”
LSAC 11 26551 “race”, “sex”, “family income”

Default 23 30000 “sex”, “marriage”

We split each dataset into 70% training set and 30% testing. As the datasets
are imbalanced, we used Synthetic Minority Oversampling Technique (SMOTE16)
over training data to generate the samples synthetically. We train original and
FixOut’s ensemble models on the balanced (augmented) datasets using five
classifiers. We used Scikit-learn implementation of the following algorithms: Ad-
aBoost(ADA), Bagging (BAG), Random Forest (RF), and Logistic Regression
(LR). We kept the default parameters of Scikit-learn documentation. In order to
estimate Shapley values faster, especially in the presence of continuous features,
we use K-means clustering with the number of clusters n = 10 to reduce feature
domains; otherwise, the full domain is considered.

11 https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
12 http://archive.ics.uci.edu/ml/datasets/Adult
13 https://www.consumerfinance.gov/data-research/hmda/
14 http://www.seaphe.org/databases.php
15 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
16 https://machinelearningmastery.com/threshold-moving-for-imbalanced-

classification/
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4.2 Accuracy Assessment

Table 2 shows the average accuracy obtained throughout the performance of the
same experiment 30 times. For each dataset, we have the average accuracy of
the original model and of the FixOut ensemble model. We also have the level
of statistical significance. We performed the t-test to assess whether the average
accuracy of original and FixOut’s ensemble models are statistically different,
with the exception of the Default dataset for which bagging, random forest and
logistic regression were considered fair, whereas the improvement in the case of
AdaBoost was negligible as discussed below.

Our analysis is based on the comparison between the accuracy of original
and ensemble models. It is evident that FixOut ensemble models improve (or
at least maintain) the accuracy level compared to original models. We can also
observe that experiments in which FixOut’s ensemble models improve in accu-
racy have a level of significance p < 0.05 (see experiments with one or two stars).
The differences are not statistically significant in the following cases: Logistic Re-
gression on the German, the Adult and the HMDA datasets, and AdaBoost on
the LSAC dataset. We only notice an improvement in accuracy in Random For-
est on the German dataset. Moreover, there was a slight improvement in the case
of AdaBoost on the Default dataset (0.817 vs 0.819) but the level of significance
was greater than 0.05, and thus we do not consider it statistically significant.

Table 2. Average accuracy assessment, where FixOut stands for the ensemble model
built by our proposed framework. Numbers in parentheses indicate standard deviation.
Hyphen indicates no accuracy values are reported (no statistical test is performed
either). Stars indicate level of statistical significance, ∗∗ means p < 0.001, ∗ means
p < 0.05, and no stars indicates p > 0.05.

ADA BAG RF LR

German
Original 0.754 (.017) 0.742 (.021) 0.765 (.018) 0.764 (.020)

FixOut 0.758 (.018) 0.761 (.018) 0.766 (.014) 0.761 (.020)

t-test * *

Adult
Original 0.854 (.003) 0.841 (.003) 0.846 (.003) 0.807 (.006)

FixOut 0.856 (.003) 0.845 (.003) 0.848 (.003) 0.805 (.003)

t-test ** ** *

HMDA
Original 0.880 (.001) 0.883 (.001) 0.882 (.001) 0.878 (.001)

FixOut 0.880 (.001) 0.884 (.001) 0.883 (.001) 0.878 (.001)

t-test ** **

LSAC
Original 0.857 (.003) 0.860 (.003) 0.853 (.003) 0.818 (.005)

FixOut 0.857 (.003) 0.862 (.002) 0.858 (.003) 0.820 (.004)

t-test ** ** *

4.3 Process Fairness Assessment

We now address process fairness, namely, the reliance of FixOut’s ensemble
outputs on sensitive features. To demonstrate the ability of FixOut to reduce
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Table 3. Global explanation of RF on German dataset.

Original (SHAP)
Feature Contrib.
residencesince 9.124647
job -8.293296
statussex -6.704196
existingchecking -6.659944
savings 6.598886
purpose 6.567743
property 6.454444
telephone 5.69921
housing -4.141756
installmentrate 3.990249

Ensemble (SHAP)
Feature Contrib.
property 7.867011
credithistory 7.290505
residencesince 7.122002
job -6.649668
installmentrate 5.405495
existingchecking -4.993191
existingcredits 4.630803
duration 3.574884
otherinstallmentplans -3.503103
housing -3.492053

Table 4. Global explanation of AdaBoost on Adult dataset.

Original (SHAP)
Feature Contrib.
MaritalStatus -2.570228
Education 1.841389
Age 1.823791
Hoursperweek 1.449913
Relationship 1.145855
CapitalGain -0.841991
Occupation -0.572992
Sex 0.453937
Education-Num -0.294207
CapitalLoss -0.158168

Ensemble (SHAP)
Feature Contrib.
Relationship -2.487373
Education 1.895012
Age 1.602135
Hoursperweek 1.406758
CapitalGain -0.85136
Occupation -0.613416
Sex 0.251091
CapitalLoss -0.159068
MaritalStatus -0.156663
Education-Num 0.121778

Table 5. Global explanation of Bagging on HMDA dataset.

Original (SHAP)
Feature Contrib.
derived loan product type 131.970375
intro rate period 55.185479
derived race -35.760327
derived sex 12.466373
applicant credit score type 12.222446
debt to income ratio 6.906509
applicant age above 62 6.140392
loan amount 5.489757
loan to value ratio 5.421845
income 5.189954

Ensemble (SHAP)
Feature Contrib.
derived loan product type 152.401853
intro rate period 78.719783
applicant credit score type desc 29.645684
loan to value ratio 21.613061
loan amount 8.680493
applicant credit score type 7.692752
debt to income ratio 7.539624
loan term -7.261209
income 5.350675
applicant age above 62 4.415154

Table 6. Global explanation of Bagging on LSAC dataset.

Original (SHAP)
Feature Contrib.
zfygpa 21.085383
zgpa 19.393242
DOB yr -17.997389
sex -9.409471
family income -4.030357
lsat -3.86481
ugpa 3.172791
weighted lsat ugpa -3.118103
isPartTime 3.034175
cluster tier -1.777019

Ensemble (SHAP)
Feature Contrib.
DOB yr -15.453783
zgpa 11.221133
zfygpa 9.450359
ugpa -5.384145
cluster tier -5.37509
weighted lsat ugpa 4.671315
lsat -4.408225
isPartTime 3.522834
race -1.937712
family income 0.854036

the reliance of classifiers on sensitive features regardless of the choice of expla-
nation method, we made several experiments using SHAP explanations. Due to
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Table 7. Global explanation of AdaBoost on Default dataset.

Original (SHAP)
Feature Contrib.
PAY 0 -0.970901
PAY AMT2 -0.533411
EDUCATION 0.40984
PAY AMT3 -0.388931
PAY 5 -0.183335
PAY 6 -0.138245
MARRIAGE -0.056857
PAY 2 -0.048885
PAY 3 -0.028558
SEX -0.001967

Ensemble (SHAP)
Feature Contrib.
PAY 0 -0.711716
PAY AMT1 -0.482153
PAY AMT3 -0.347062
EDUCATION 0.290634
AGE 0.229882
PAY 6 -0.188315
PAY 3 -0.122395
PAY 5 -0.103442
PAY 2 -0.08513
PAY AMT2 0.07256

lack of space, we do not provide the list of feature contributions for all combina-
tions of datasets and classifiers. Instead, for each dataset, we select the classifier
that obtained the highest accuracy.

Tables 3, 4, 5, 6, and 7 present the list of the k = 10 most important features
with their respective global contribution of both original and ensemble models.
In all cases, we notice that FixOut’s ensemble classifiers are less reliant on sen-
sitive features. For instance, in the experiment using RF on the German dataset
(see Table 3), the global contribution of “statussex” and “telephone” decreased
so that both features disappeared of the list of most important features of the
ensemble model. Also, we can observe that the sensitive features that still in
the top-10 most important features of the ensemble model contributed less to
the global prediction compared to the original model. For instance, in the ex-
periment using AdaBoost on the Adult dataset (see Table 4), the absolute value
of “MaritalStatus” decreased from -2.5702288 (original model) to -0.156663 (en-
semble model). Like in LimeOut we notice the same behavior when we compare
both lists (original and ensemble) of top-k important features. However, unlike
in LimeOut where LimeGlobal deemed fair these 4 classifiers trained on the
HMDA [1], FixOut (using SHAP) deems them unfair on the HMDA dataset.

4.4 Fairness Metrics Assessment

In this section, we assess fairness using the standard metrics introduced in Sub-
section 2.1 in order to have a different perspective of the fairness of FixOut’s
ensemble models. We compute Demographic Parity (DP), Equal Opportunity
(EQ), Equal Accuracy (EA) and Disparate Impact (DI) using IBM AI Fairness
360 Toolkit17 [3]. We also consider Predictive Equality (PE) [1] to measure the
false positive differences between privileged and unprivileged groups. The met-
rics DP, EO, EA, and PE give values in the interval [-1,1] where 0 indicates a
perfect fair model, while the optimal value for DI is 1.

Fairness metrics are depicted in Figures 3 and 4. In this analysis, we compare
the original and ensemble models based on fairness metrics for each combination
of classifier and sensitive feature. Red points indicate the values for FixOut en-
semble models while blue points indicate values for original models. The dashed

17 https://github.com/Trusted-AI/AIF360
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line is the reference for a fair model (optimal value). Results for the German
dataset are depicted in Figure 3. Like in LimeOut experiments, FixOut pro-
duces ensemble models that are fairer according to metrics DP, EQ and DI,
since red points are closer to zero compared to blue points (pre-trained model).
However, unlike in LimeOut’s case, we can notice that ensemble models be-
haved almost in the opposite way of original models according to PE metric.
In the case of EA metric, ensemble models keep the same fairness level, except
for Random Forest on “foreign worker” attribute, while the same combination
(classifier,sensitive feature) shows fairness improvement in DP and DI metrics.
Figure 4 shows the results on fairness metrics for the Adult dataset. In this
dataset, FixOut ensemble models keep values of all metrics in almost scenar-
ios. We only see a deterioration of fairness when we compute EQ for Logistic
Regression focuses on marital status. This behaviour means that FixOut at
least maintain the value of fairness metrics when it reduces the dependence on
sensitive features, but it cannot ensure fairness metrics closer to 0.

These results indicate that, in general, FixOut consistently improves, or at
least maintains, the fairness of the ensemble classifier. We also used an aggrega-
tion rule that takes into account the global contributions of sensitive features in
each classifier. This resulted in a slight improvement of these metrics (when com-
pared to those obtained by LimeOut in which were used simple aggregation).
This fact seems to indicate that learning the aggregation rule should further
improve these fairness metrics for FixOut’s ensemble classifiers.
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Fig. 3. Fairness metrics for German Credit Score Dataset
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Fig. 4. Fairness metrics for Adult Dataset.

5 Conclusion

We have proposed FixOut a human-centered and model-agnostic framework to
make ML models fairer. FixOut was proposed to address and tackle process
fairness: it first assesses the dependence of given pre-trained ML model on sen-
sitive features by global explanations in the form of feature contributions to the
classifier’s outcomes. If the ML model’s outcomes are shown to rely on sensitive
features, FixOut employs feature dropout followed by an ensemble approach to
produce a new model.

In addition to process fairness, we also analysed FixOut empirically on dif-
ferent pre-trained ML models and using several well known fairness metrics. The
empirical study performed on five real datasets showed that FixOut produces
ensemble classifiers that are less reliant on sensitive features without compro-
mising accuracy. Moreover, it also shows consistent improvements with respect
to widely used fairness metrics.

Nonetheless, there is still room for several improvements in FixOut’s work-
flow, in particular: (1) to determine the suitable number k of most important
features for a given domain, (2) to learn the aggregation rule on the fly, and (3)
to automate the detection of sensitive features. These are some of the topics of
current on-going work.
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