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Abstract. In this paper, we present an algorithm for pith estimation
from digital images of wood cross-sections. The method is based on a
probabilistic approach, namely ant colony optimization (ACO). After
introducing the approach, we describe the implementation and the re-
production of the method linking to an online demonstration. Results
show that the approach performs as well as state-of-the-art methods.
The estimated pith is below 5mm from the ground truth. It is a fast
method that could be used in real-time environment. This paper also
gives the details about the intern parameter choice and shows how to
use the C++ source code for testing, as well as provides limit cases of
the proposed method and future improvements.

Keywords: Agent-based method, Local orientation, Hough transform

1 Introduction

The centre of the annual rings, also called pith, is one of the most important
feature to be detected since it can be related to wood quality [1,8,20] and it al-
lows to extract other features on log-end image [6,7,10,17] such as annual rings,
ring widths, knots, heartwood and sapwood. In the literature, several meth-
ods have been proposed for pith detection on log cross-sections. Most of them
[2,3,9,14,15,24] have been developed for X-ray computed tomographic (CT) im-
ages. The techniques based on CT images allow an efficient and robust detection
of external and internal characteristics of tree logs, including the pith. However,
the CT scanners are very expensive, and not every laboratory or wood-industry
sites (e.g., sawmills) can acquire such a device.

Recently, there have been some efforts to develop pith detection methods
on RGB images of cross sections from tree logs [12,13,19,21]. Contrary to CT
images, RGB images exhibit disturbances like sawing marks, dirt or ambient
light variations, which make the detection more challenging (see Fig. 1). On the
other side, the acquisition of such images can be done with low-cost and more
accessible devices (e.g., smartphone camera, industrial camera, . . . ) and could be
used everywhere, from the forest on the harvester, to the sawmill stocking area,
or at the road side for wood sells. Furthermore, the current camera technologies
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(a) (b) (c) (d) (e)

Fig. 1: Examples of image for pith detection: (a-b) CT images, (c-e) digital images
captured in log-yard. Digital images taken in realistic environments may contain dis-
turbances: (c) light condition, (d) soiling and dirt, (e) sawing marks.

provide images of quality and high resolution, and this allows us to extract the
wood quality features, including pith, on such images using the image processing
methods.

To the best of our knowledge, four works [12,13,19,21] have been published
in the context of pith detection on digital images of rough, untreated log ends.
Except in [12] which uses a deep neural network (DNN), the others rely on tree
ring analysis and use image processing tools for the detection. More precisely, it
is assumed that most tree rings close to the pith approximate a circular shape,
and thus the normal directions of these rings would point towards the pith.
Based on this idea, the pith detection is generally processed in three steps:

1. Estimate normal directions from tree ring local orientations.
2. Accumulate the normals in an accumulation space.
3. Extract the pith from the accumulation space.

Generally, Hough transform [5] is used as accumulator of normal directions,
then the pith is identified at the point with maximum accumulation, or the
barycenter of points above a given accumulation threshold. In other words, the
pith detection methods differ at the local orientation estimation step. In [19],
Norell and Borgefors presented two detection methods using two different tech-
niques to estimate the normal directions: the quadrature filters and the Laplacian
pyramids. The proposed methods are robust to disturbances; e.g., rot, dirt or
snow. However, a prior segmentation of the log end is needed before the detec-
tion. Later, Schraml and Uhl [21] proposed to compute the local orientations
with Fourier spectrum analysis. The approach was fast, robust, and accurate in
estimating the pith position. It, however, requires some preconditions about the
cross-section size and its location in the image for initializing the computation.
Recently, Kurdthongmee et al. [13] used histogram of oriented gradient (HOG)
to estimate normals of the tree rings. As stated in the paper, the algorithm pro-
vides only an approximation of the pith location, and needs more treatments to
identify it exactly.

In this paper, we propose a general method to estimate pith location on
digital images taken in realistic environments; e.g., in the sawmill, forest, log-
yard, or on the road. The raw images are directly processed without any prior
segmentation nor knowledge of log end visual appearance, shape or location. In
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particular, the proposed method must not only provide accurate pith estimation,
but also be efficient in computation time to be used in real-time applications.
To this end, we consider a smooth gradient based method to compute local ori-
entations; this method was originally used for fingerprint images [11]. Then, a
probabilistic approach, based on Ant Colony Optimization (ACO) [4], is per-
formed to accumulate the normals of tree rings in a robust way. Finally, the pith
is located at the barycenter of points above a given accumulation threshold.

The proposed method is described in the following section (Section 2), with
the details of the local orientation computation and the ACO algorithm. Section 3
gives the description of the source code and its usage. The experimental results
and parameter discussions are addressed in Section 4, followed by the conclusion.

2 Algorithm for pith detection

The proposed algorithm to estimate pith location on digital images is composed
of four steps. Firstly, a pre-processing is applied on input image to remove sawing
marks visible on log ends. In case of high-resolution images, a resizing step can
be applied to reduce the computation time. Secondly, we compute local orien-
tations for pixels of the pre-processed image. Then, the ACO algorithm is used
to accumulate the normals, and finally extract the pith from this accumulator.
For an accurate pith estimation, the ACO algorithm and the pith extraction are
performed twice: the first to coarsely estimate the pith region, and the second
for the precise pith location.

2.1 Pre-processing image

Pith estimation methods based on ring analysis strongly depend on local orien-
tation estimations. In this paper, we work with raw images in which there might
be sawing marks on rough log ends. The presence of sawing marks perturbs
the orientation estimations. To reduce errors induced by sawing marks and also
computation time, we perform this pre-processing step. Firstly, the input image
is converted into gray-scale, then down-sampled with a factor s using bi-linear
interpolation. Secondly, we remove sawing marks using the method proposed in
[18] which is based on Fast Fourier Transform (FFT).

Typically, sawing marks are straight lines being parallel or in fan-shape and
not always evenly spaced. This repetitive pattern suggests that filtering in the
Fourier domain is suitable to reduce them. Indeed, in the Fourier spectrum, they
correspond to the line passing through the centre with a direction perpendicular
to them. In other words, the energy level will be high along this line. There-
fore, by reducing this energy and converting filtered spectrum back to spatial
domain, sawing marks can be removed or at least reduced. More precisely, we
first compute a Fast Fourier Transform (FFT) and filter the Fourier spectrum
with a band-pass filter, also remove both horizontal and vertical lines. Then,
we threshold it with a value λ to filter high value energy points corresponding
to sawing marks. A line fitting, using principal component analysis (PCA), is
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(a) Input (b) FFT (c) Thresholding

(d) Detected line (e) Sawing mark removal (f) Local orientation

Fig. 2: Removing sawing marks and estimation of local orientations: (a) input gray-
scale image, (b) FFT of (a), (c) threshold (b) with λ = 0.875, (d) detected line after
convoluted with a Gaussian of σ = 6, (e) image after removing sawing marks, and (f)
estimated local orientations (red lines) on (e).

applied on the obtained points to find the direction of the line. This line is fur-
ther convoluted with a Gaussian filter of standard deviation σ, and pixel-wise
multiplied with the original Fourier spectrum to reduce energy along the line.
The result is transformed back into a spatial image using the inverse FFT. The
process is illustrated in Fig. 2 (a-e).

2.2 Local orientation

After removing sawing marks, we now compute normal directions for blocks of
pixels in the image using a smooth gradient based method. The method was
used in [11] to assess the local orientation in fingerprint images. It is a least
mean square orientation estimation in a local area, namely a window of size w.
More precisely, the gradient ∇(u, v) = [∇x(u, v), ∇y(u, v)]t is estimated for each
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block centered at pixel (u, v) as follows.
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where δx(i, j) and δy(i, j) are the derivatives with respect to x and y of the pixel
(i, j). The derivatives are estimated by a Sobel operator [22]. Then, the local
orientation of the block centered at (u, v) is computed as:

θ(u, v) =
1

2
tan−1

(∇y(u, v)

∇x(u, v)

)

(3)

Fig. 2 (f) shows an example of local orientations estimated by this method.

2.3 Ant colony optimization

We now describe the process of accumulating normals using ACO which is an
algorithm inspired by the behavior of ant species. Ants deposit pheromones that
help other ants of the colony to make the best choice in their goal. Ant system

[4] was the first ACO algorithm, it is applied for solving different combinato-
rial optimization problems; e.g., traveling salesman problem (TSP), quadratic
assignment problem (QAP) and the job-shop scheduling problem (JSP). Since
then, a large number of ACO algorithms have been developed to address various
problems like edge detection [16,23]. It has, to our knowledge, never been used
as accumulator of local orientations.

The main idea of the proposed method is that a certain number of ants
are uniformly placed on the rough log-end image. They can freely move on the
image and use normal values as pheromones. Their final goal is the pith. Each
ant iteratively lays down pheromones as it moves towards the pith, and they all
move towards the pith area where there is a high quantity of pheromones. The
process is summarized in Alg. 1. Hereafter, we describe in details the different
steps of the proposed ACO algorithm.

Initialization (Line 1 and 2 in Alg. 1) Let K × K be the number of ants and
π(t) be the pheromone matrix at iteration t. At the beginning, K ants are placed
in an uniform grid on the pre-processed image, and the pheromone matrix π(0)

is initialized with random values drawn from a normal distribution.

Computation of probabilistic transition matrix (Line 5 to 9 in Alg. 1) An
ant can move randomly with a probability that evolves during the optimization.
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Algorithm 1: Ant colony optimization for normal accumulation

Input: The estimated local orientations Iθ

The number of ants K × K

The maximum number of iterations N

The number of block clusters around an ant n × n

The size of each block cluster ω × ω pixels
Output: The pheromone matrix π

Variables : ηt
k: The desirability matrix of the kth ant at iteration t

τ t
k: The probabilistic transition matrix of the kth ant at iteration t

ρt
k: The deposited pheromone matrix of the kth ant at iteration t

πt: The pheromone matrix at iteration t

1 Initialize the positions of the K ants
2 Initialize the pheromone matrix π0

3 for t = 1 . . . N do

4 for k = 1 . . . K2 do

5 Let (a, b) be the position of the kth ant

/* Compute the deposited pheromone matrix ρt of the kth ant */

6 Let B be the n × n block clusters of size ω × ω centered at (u, v) in Iθ

7 foreach h ∈ B do

8 Let (ox, oy) be the median value of local orientations of h

9 Let l be the line of orientation (ox, oy) passing through (u, v)
10 Increase ρt

k by 1 along l

/* Compute the desirability matrix η of the ant to move

towards a position (u, v) */

11 foreach (u, v) ∈ ηt
k do

12 ηt
k(u, v) = 1√

(u−a)2+(v−b)2+1

/* Compute the probabilistic transition matrix ρ of the ant to

move towards a position (u, v) */

13 foreach (u, v) ∈ τ t
k do

14 τ t
k(u, v) =

(πt(u,v))α(ηt
k

(u,v))β

∑

i,j
(πt(i,j))α(ηt

k
(i,j))β

/* Move the ant according to the probabilistic transition

matrix τ t
k */

15 Let (x, y) be the position of the maximum probability in τ t
k

16 Move the ant to the position (x, y)

/* Update the pheromone matrix πt after all K ants moved */

17 πt+1 = (1 − γ)πt +
∑K

k=1
ρt

k

/* Early-stopping criteria */

/* Compute the new pith position */

18 The current pith position pt+1 is estimated according to πt+1

/* Compute the distance between the current and the last pith

position */

19 dt+1 = ‖pt+1 − pt‖2

/* Compute the average of the last five distances */

20 ad = 1
5

∑t+1

k=t−3
dk

21 if ad < ε then

22 Break

23 Return π(N)
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At iteration t, the probability for an ant k, currently at position (a, b), to move
to the position (u, v) is defined by:

τ t
k(u, v) =

(

πt(u, v)
)α(

ηt
k(u, v)

)β

∑

i,j

(

πt(i, j)
)α(

ηt
k(i, j)

)β
(4)

where τ t(u, v) is the amount of pheromone at (u, v), ηt
k(u, v) is the desirability

of the kth ant to move towards (u, v), and equal to the inverse distance from
(u, v) to (a, b):

ηt
k(u, v) =

1
√

(u − a)2 + (v − b)2 + 1
(5)

The desirability can be seen as a weighting of pheromone matrix. It aims to
ensure ants having a higher probability to move towards local maxima and not
towards the global one. α and β are respectively parameters to control the influ-
ence of τ t

k(u, v) and ηt
k(u, v). The ratio α

β
allows to modify the behavior of ants; a

high ratio value leads ants to move more quickly to the pheromone peaks, while
a low value leads ants to continue to explore areas in image.

Pheromone deposit (Line 12 to 16 in Alg. 1) Each ant is the centre of
an image block cluster. The cluster consists of n × n blocks, and each block
has a size of ω × ω pixels. For each block cluster, the median value of local
orientations (see Section 2.2) is considered as the block orientation. Then a line
is drawn according to the orientation and passing through (u, v). All elements of
the deposited pheromone matrix ρt

k along the line are incremented by 1. Indeed,
depositing pheromones along the whole line allows to include lines intersections
which could not happened if pheromone deposit is locally done. Fig. 3 illustrates
this step of pheromone deposit of an ant.

Updating the pheromone matrix (Line 17 in Alg. 1) The pheromone matrix
is updated once all ants have moved:

πt+1 = (1 − γ)πt +

K
∑

k=1

ρt
k (6)

where ρt
k is the deposited pheromone matrix of the kth ant at iteration t, and γ

is the rate of pheromone evaporation; the higher γ is, the faster pheromones are
removed.

The process is repeated maximum N times (Line 3 in Alg. 1). In order to
reduce computational time, the pheromone matrix πt is resized by a factor m

comparing to the pre-processed image I. In other words, if I is of size H × W ,
then πt is of size H

m
× W

m
.
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Fig. 3: Left: Image with the ants in yellow crosses, the pith in red, a cluster of 3 × 3
blocks of size 8 × 8 pixels and normals (according to the cluster) in green lines. Right:
Normal accumulation by pheromone matrix with the considered ant in yellow cross,
the 9 green lines corresponding to the normal directions of the block clusters and the
pith estimation in red.

2.4 Pith extraction

To extract the pith position from the pheromone matrix π, we take the barycen-
tre of all the pixels above κ ∗ max(τ) in π. Indeed, taking the maximum value of
accumulation is less robust than the barycentre of the highest values. Note that
the higher κ is, the more sensitive to small variations the pith estimation is.

Furthermore, we introduce an early stopping criterion in Alg. 1. At each
iteration t, we estimate the pith location and compute the distance between
the current and the last estimation. Instead of running for N iterations, the
algorithm could stop as soon as the average of the last five distances falls below
a threshold ε.

3 Code sources

3.1 Download and installation

The proposed method is implemented in Matlab 2019b and C++ using the open
source library OpenCV3 (OPEN Computer Vision). Both implementations are
available at the github repository:

https://gitlab.com/Ryukhaan/treetrace/-/tree/master/pith

The installation is done with a cmake4 procedure (see README.md5). In the
following, we focus on the C++ implementation.

3 https://opencv.org/
4 http://www.cmake.org
5 https://gitlab.com/Ryukhaan/treetrace/-/blob/master/README.md
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3.2 Description and usage

The repository has four packages:

• aco computes the Ant Colony Optimization algorithm for one image;
• normals computes normal accumulations using Bresenham lines;
• orientation computes local orientations for one image;
• ui manages the display (pheromones, ants position on image, and so on).

Once the installation is done, the executable file is in the build directory and
named AntColonyPith.

• Input: The image to be processed;
• Command Line: To run the program from the CODESOURCES/build

./AntColonyPith --input=path to image [list of parameters]

./AntColonyPith --input path to image --parameters path to parameters.json

For instance, to run the program on harvest.jpeg with default parameters

./AntColonyPith --input ../../samples/harvest.jpeg

To run the program on harvest.jpeg with 10×10 ants, α = 1.0 and without
animation

./AntColonyPith --input ../../samples/harvest.jpeg --ant=10 --alpha=1.0
--animated=false

or

./AntColonyPith --input ../../samples/harvest.jpeg -n 10 -a 1.0 --animated=false

To run the program on harvest.jpeg with parameters in parameters.json

./AntColonyPith --input ../../samples/harvest.jpeg
--parameters ../AntColonyPith/parameters.json

More details about the options are given in the command line helper.

./AntColonyPith --help

The options can be provided in two ways:
• using command line with usual options,
• providing a JSON file with all parameters (an example of JSON file,

namely parameters.json6, is provided within the repository).
• Output: Two files are created. The first one consists of the detected pith

position in CSV format. The second one is an image of the input image with
the detected pith denoted by a cross.

6 https://gitlab.com/Ryukhaan/treetrace/-/blob/master/pith/c++/

AntColonyPith/parameters.json
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Fig. 4: Examples from Besle (the first two rows) and BBF (the last row) datasets.

4 Experimental results

4.1 Experiments on real images

We experiment our algorithm on two datasets obtained from Douglas fir trees:
Besle consists of 65 images and BBF consists of 40 images (see Fig. 4 for some
examples). RGB images are converting into grayscale using the usual weighted
method. Both datasets include the raw log ends taken in the forest or log yard,
the images contain different disturbances such as sawing marks, dirt and light
variations. Some visual results are shown in Fig. 5 by running the proposed
method with the default parameters. The values of default parameters are given
in the file parameters.json6. Further experiments about computation time and
algorithm convergence are presented in the next sections. Note that we take the
average value overall experiments on images in both datasets.

4.2 Accuracy of the method

For our implementation, we process twice the described method Section 2. RBG
image are converted into grayscale (with the function imread and the option
IMREAD GRAYSCALE from Opencv). The first run is to coarsely estimate
the pith while the second run is for a precise pith estimation. For the first run,
we split the image into 4 × 4 sub-images to manage the sawing marks removal
(see Section 2.1). After retrieving the first pith estimation, this latter is converted
back to coordinate of the original image. We select a sub-image of size 512 × 512
pixels centered on it and process again the algorithm (including the preprocessing
without subdivision).

Ground truths were done by two operators. Each operator independently, for
each image, pointed the pith. The truth is the average of these two measures.

To determine the parameters’ values, we manually minimized over the whole
BBF dataset the sum of distances between ground truths and results. Then,
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Fig. 5: Pith position (black cross) detected by the proposed method on raw log-end
images using default parameters.

Table 1: Pre-processing parameters for both steps. H is the height of the Fourier
spectrum.

λ δ σ Band-pass

For the both stages 0.875 0.4 6 H
3

< f < H
64

we validated those values on Besle dataset. Tables 1 shows the parameters
obtained for the preprocessing. Parameters for the ACO-based algorithms are
set as follows (the values are the same for both phase unless otherwise indicated):

– K = 16: the number of ants K × K;
– α = 2.0: the control of the pheromone influence in (4);
– β = 1.0: the control of the heuristic influence in (4);
– γ = 0.07: the evaporation rate in (6);
– m = 5 for the first run then m = 2 for the second one: how many pixels an

element in the matrix τ stands for;
– n = 3: the size of the blocks cluster (see Section 2.3);
– ω = 8: the size in pixels of a block (see Section 2.3);
– κ = 0.8: threshold to the barycentre (see Section 2.4)
– ε = 2 for the first run then ε = 0.5: the thresh to early stop the algorithm.
– N = 50: the maximum number of iterations;

We have compared our results with [12], [13] and [21] on our datasets. For
the algorithm of Kurdthongmee et al.,[13], we get optimized parameters with a
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Table 2: Average, standard deviation, minimum and maximum between ground truths
and estimated piths by our method and methods of [21,13,12] methods (in mm) and
average time to proceed one image (in ms).

Besle Mean StDev Min Max Time (ms)

[21] 2.29 0.98 0.39 4.96 8344
[13] 25.06 21.23 2.15 92.44 667
[12] 2.88 1.67 0.87 7.61 138

Our method 2.34 1.02 0.46 5.04 1611

BBF Mean StDev Min Max Time (ms)

[21] 2.39 1.48 0.49 7.59 8660
[13] 38.38 38.91 3.14 232.74 721
[12] 12.69 53.55 0.50 341.92 186

Our method 2.26 1.32 0.44 4.63 1745

subregion of size 24 × 24 pixels and a quantization factor of 12. We also used
optimized parameters of our dataset for Schraml and Uhl algorithm [21]. For
the comparison with the DNN [12], we have done a twofold cross-validation. For
each imageset, half of images have been used for the training and the other half
for the validation. Two models were trained for each imageset by inverting the
training and the validation sets. Ground truths consist of a square of 300 × 300
with the pith position at the center. A data augmentation have been processed
on-the-flight (i.e. each time each image was transformed before passing through
the DNN). The DNN hyperparameters were the same as [12], only input size have
been modified which is 576 × 432 for both imageset (the ground truth is resized
according to that). The DNN returns a box with a probability of finding a pith
in it. The predicted pith is the center of the box with the highest probability. To
compare each method, we have aggregated all predictions from trained models
(which gives us predictions for all images).

Table 2 presents a statistical analysis of the three algorithms on our datasets.
The deep learning method is the fastest but drawbacks are the learning time and
the creation of dataset with ground truths. Our method is, in average, 5 times
faster than [21] and can be easily parallelized. We can observe that both our
method and [21] are more accurate than [12,13]. The results [12] are worse on
BBF imageset, this may be due to the small number of images in it.

Fig. 6 presents boxplots for our method, [21] and [12] to better illustrate the
differences between them. We excluded [13] since the results are less accurate
than the three others. For Besle imageset, our method is a little less accurate
than [21]. [12] is even a little less accurate and presents one outlier (7.61 mm). Its
first and third quartiles are higher than our method and [21]. For BBF imageset,
[21] has one outlier (7.6 mm) and [12] has four outliers above 10 mm.
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(a) Boxplot for Besle dataset (b) Boxplot for BBF dataset

Fig. 6: Boxplots of distance between ground truths and pith estimation (in mm) for
[21,12] and our method.

4.3 Effect of parameter changes on computation time

Hereafter, the experiments are carried out to analyse the effects of parameter
changes. First, we focus on computation time then on precision and convergence.

Let estimate the time complexity for one iteration in Alg. 1. Let I be the
input image of size H × W . According to Alg. 1, there are K2 ants, and they
can freely move on I. Let now estimate the time complexity for an ant, namely
the kth ant. Firstly, the desirability matrix η and the probabilistic transition
matrix ρ associated to the kth ant are computed in O( HW

m2 ). Secondly, for the
pheromone deposit, we must recall that each ant is the centre of an image block
cluster which consists of n×n blocks and each block is of size ω×ω. Therefore, to
estimate the block orientation, we compute n2 times the median of an array of ω2

pixels. This operation is done by sorting the array and costs O(n2ω2 log ω). We
also compute n2 times the deposited pheromone matrix ρt

k along the directional

line l. In the worst case, the length of l is equal to
√

( H
m

)2 + ( W
m

)2. In other

words, the pheromone matrix update is done in O( n2

m

√
H2 + W 2). Finally, the

ant’s position is updated in O(1). Once each ant has moved, the pheromones
matrix πt is updated in O( HW

m2 ). Therefore, the total time complexity for one
iteration is:

O
(

K2

[

n2ω2 log ω +
n2

m

√

H2 + W 2 +
1

m2
HW + 1

]

+
1

m2
HW

)

(7)

We can simplify this equation by keeping only the main input parameters, which
are K, H and W . The total time complexity is therefore:

O
(

K2
[

√

H2 + W 2 + HW + 1
]

)

(8)
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Fig. 7: Computation time for one iteration according to the size of input image (in ms).

We now validate this theoretical time complexity by the experiments. Firstly,
it can be seen in Eq. (7) that the method is quadratic with respect to the size
of the input image I. This is confirmed by Fig. 7, we have the computation time
for one iteration according to I.

From Eq. (7), the method has a linear time complexity with respect to the
number of ants K2. Indeed, Fig. 8 (a) shows the computation time according to
K. The number of ants quadratically increases, and thus the computation time.

Still in Eq. (7), the computation time decreases as m increases. Fig. 8 (b)
shows the computation time according to m. It can be seen that having a value
of m higher than 1 is really computationally helpful. Indeed, the matrix π is
widely used during the process, from the pheromones deposit to the pheromones
updates (reducing the size of η, τ and π). Let now look at two parameters:
the block size ω × ω and the number of clusters n × n around the ant. First,
the computation time according to the block size is shown in Fig. 8 (c). As the
number of block is at least one, the computation time does not start at 0. For a
block size of 3×3 it takes in average 243ms, while for a block size of 11×11 it is
259ms. Note that the computation time depends on the length of the line l used
to update ρ (which depends on local orientations). For n, it should be quadratic.
As n should be at least one, the computation time does not start at 0. Fig. 8 (d)
shows the computation time according to n, and it is nearly quadratic. Again,
this is due to the length of l.

4.4 Effects of parameter changes on the convergence

We now analyse the influence of parameters regarding the convergence of the
algorithm. More precisely, the algorithm converges if the Euclidean distance be-
tween two successive estimations does not vary more than one pixel. We compute
the average variations at each iteration over the whole set of images. We also
fit a curve aebx + c for each change in the value of parameters. It is done by
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(a) (b)

(c) (d)

Fig. 8: Computation time for one iteration according to (a) the number of ants K, (b)
the size of τ , (c) the block size ω and (d) the cluster size n.

using non linear least squares with trust-region algorithm and for initial value
a = max − min

2 , b = 0 and c = 0.

First, we focus on the number of ants K × K. Fig. 9 shows the convergence
speed according to K. One can see that the more ants are, the fastest the al-
gorithm converges. With only four ants, the algorithm fluctuates between some
positions. However, a high number of ants does not speed up convergence but
makes the convergence point more stable (the parameter c is lower with a high
value of K).

Let us now focus on the block’s size ω. Fig. 11 shows the convergence speed
according to ω. It seems that large block speeds up convergence but not as
sharply as K. It is observed that an increasing in ω seems to slow down the
convergence. This is due to an increase in the deposited pheromones. Indeed,
the higher ω is, there more pheromones in the wrong places are. Therefore, it
requires more iterations to remove those pheromones.
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Fig. 9: Variation in both axis between the pith estimation at time t and at time t + 1
according to the number K × K of ants.

Fig. 10: Variation in both axis between the pith estimation at time t and at time t + 1
according to the cluster size ω.

Let us now consider the number of blocks n. Fig. 10 shows the convergence
speed according to n. Contrary to intuition, a large number of blocks does not
lead to an important acceleration of convergence, but it slows the algorithm
down. This could be due to a less accurate local orientation with larger blocks.

Finally, we look at m. As a reminder, the higher m is, the smaller τ is.
Fig. 12 shows the convergence speed according to m. It appears that m slightly
speeds up the convergence. Raising the value of m causes a slightly decelera-
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Fig. 11: Variation for both axis between the pith estimation at time t and at time t + 1
according to the block size n.

Fig. 12: Variation in both axis between the pith estimation at time t and at time t + 1
according to the parameter m.

tion the convergence. It could be explained by the fact that with a small τ the
small variations in the local orientation are not considered when ants deposits
pheromones.

4.5 Limit cases

Our algorithm relies mainly on tree ring analysis. In other words, if the tree
rings are not well presented in the input log-end image, then the detection result
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Fig. 13: Examples of wrong pith estimation. Left: The tree rings are in low resolution
and the sawing marks are not straight lines. Right: the sawing marks are straight lines
but tree rings are in low resolution and really small.

could be inaccurate. Fig. 13 shows some examples in which tree ring analysis is
difficult and leads to a wrong pith estimation by using the proposed method.
These two examples are not from both datasets. Indeed, our algorithm works very
well on introduced datasets (no outliers). In both examples, it can be observed
that tree rings are barely visible that makes difficult their analysis. Indeed, the
pre-processing step may remove information about tree rings, which leads our
algorithm to an inaccurate pith estimation. Furthermore, there are many other
disturbances on such images; for instance, the sawing marks are not straight
lines as we assumed in Section 2.1, or the presence of log-tree cracks.

4.6 Image credits

All images used in this paper are from the French National Research Agency,
in the framework of the project TreeTrace, ANR-17-CE10-0016. Some samples
(images in Fig. 5 and Fig. 13) are available for testing on the github repository7.

5 Conclusion

In this paper, we presented a probabilistic method for detecting pith position on
digital images of rough, untreated log ends. More precisely, the proposed method
is based on ant colony optimization (ACO) to robustly accumulate the normals
of ring tree, then the pith location is extracted from this accumulation space as
barycenter of points above a threshold. The experiments demonstrated that the
proposed method provides not only an accuracy pith estimation (a distance of

7 https://gitlab.com/Ryukhaan/treetrace/-/tree/master/pith/samples
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less than 5 mm from the ground truths), but also is efficient in computation time
and it could be used in real-time applications. In addition to the implementation
of the method, an online demonstration is available for testing at:

https://ngophuc.github.io/ACO_PithDetection_IPOLDemo

It could be noticed that the algorithm has many parameters. Though, they
are set with default values and allow a good performance on tested images.
Generally, the algorithm provides a very accurate pith estimation. A study on
the role and effect of the different parameters is addressed in the paper for a
better understanding of the parameters on the presented method. Based on this
study, a perspective is to reduce the number of parameters and further provide an
automatic approach to determine the best parameters adapted to a given image
or a set of images of same characteristic. Furthermore, for reducing computation
time of the algorithm, parallelism should be considered in future work.
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Debled-Rennesson, I.: Automatic knot detection and measurements from x-ray ct
images of wood: A review and validation of an improved algorithm on softwood
samples. Comput. Electron. Agric. 85, 77–89 (2012)

15. Longuetaud, F., Leban, J.M., Mothe, F., Kerrien, E., Berger, M.O.: Automatic
detection of pith on ct images of spruce logs. Computers and Electronics in Agri-
culture 44(2), 107–119 (2004)

16. Nezamabadi-Pour, H., Saryazdi, S., Rashedi, E.: Edge detection using ant algo-
rithms. Soft Computing 10(7), 623–628 (2006)

17. Nordmark, U.: Models of knots and log geometry of young pinus sylvestris sawlogs
extracted from computed tomographic images. Scandinavian journal of forest re-
search. 18(2), 168—175 (2003), https://doi.org/10.1080/02827580310003740

18. Norell, K.: Automatic counting of annual rings on Pinus sylvestris end faces in
sawmill industry. Computers and Electronics in Agriculture 75(2), 231–237 (Feb
2011)

19. Norell, K., Borgefors, G.: Estimation of pith position in untreated log ends in
sawmill environments. Computers and Electronics in Agriculture 63(2), 155 – 167
(2008)

20. Rune, G., Warensjo, M.: Basal sweep and compression wood in young scots pine
trees. Scandinavian journal of forest research. 17(6), 529—537 (2002), https://

doi.org/10.1080/02827580260417189

21. Schraml, R., Uhl, A.: Pith estimation on rough log end images using local fourier
spectrum analysis. In: Proceedings of the 14th Conference on Computer Graphics
and Imaging (CGIM’13), Innsbruck, AUT (2013)

22. Sobel, I., Feldman, G.: An isotropic 3x3 image gradient operator. In: History and
Definition of the so-called ”Sobel Operator” (1990)

23. Tian, J., Yu, W., Xie, S.: An ant colony optimization algorithm for image edge
detection. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence). pp. 751–756. IEEE (2008)

24. Wei, Q., Leblon, B., La Rocque, A.: On the use of x-ray computed tomography for
determining wood properties: a review. Canadian journal of forest research 41(11),
2120–2140 (2011)


	Pith Estimation on Tree Log End Images

