

CANU-ReID: A Conditional Adversarial Network for Unsupervised person Re-IDentification

Guillaume Delorme¹, Yihong Xu¹, Stéphane Lathuilière², Radu Horaud¹, Xavier Alameda-Pineda¹ Inria, LJK, Univ. Grenoble Alpes, France ² LTCI, Télécom Paris, IP Paris, France

12/01/2021, ICPR 2020, Milano, Italy

- Unsupervised Person Re-Identification
- Related Work
 - Clustering and Finetuning
 - Domain Adaptation and Negative transfer
- Conditional Camera Adversarial Learning
- Experimental Evaluation
- Conclusion

Unsupervised Person Re-Identification

Unsupervised Person Re-Identification

- ullet supervised Re-ID: large annotated datasets ullet Unsupervised Person Re-ID.
- ullet labeled source \mathcal{S} , unlabeled target \mathcal{T} : optimizes re-ID performance on \mathcal{T} .

Unsupervised Person Re-Identification

- ullet supervised Re-ID: large annotated datasets o Unsupervised Person Re-ID.
- \bullet labeled source ${\cal S},$ unlabeled target ${\cal T}:$ optimizes re-ID performance on ${\cal T}.$

Related Work

Overview

We need to review the following topics:

- Clustering and Finetuning
- Adversarial Domain Adaptation
- Negative Transfer

Recent works in Unsupervised Person Re-ID are based on the *Clustering* and *Finetuning* framework (SSG¹, MMT²):

- ${f 1}$ Clustering step ϕ frozen, run clustering on ${\cal T}$ $\phi({m x}_n^{\cal T})$ o pseudo-ID labels $ilde{m
 ho}_n^{\cal T}$
- **2 Finetuning step** ϕ finetuned using $\tilde{\boldsymbol{p}}_n^T$ with $\mathcal{L}_{\text{PS-ID}}(\phi)$
- **3 Return to 1** until convergence.

¹Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification". In: *IEEE ICCV*. 2019.

 $^{^2}$ Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification". In: ICLR (2020).

Recent works in Unsupervised Person Re-ID are based on the *Clustering* and *Finetuning* framework (SSG¹, MMT²):

- **1** Clustering step ϕ frozen, run clustering on \mathcal{T} $\phi(\mathbf{x}_n^{\mathcal{T}})$ \to pseudo-ID labels $\tilde{\boldsymbol{\rho}}_n^{\mathcal{T}}$.
- **2** Finetuning step ϕ finetuned using $\tilde{\boldsymbol{p}}_n^T$ with $\mathcal{L}_{\text{PS-ID}}(\phi)$.
- **3 Return to 1** until convergence.

¹Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification". In: *IEEE ICCV*. 2019.

 $^{^2}$ Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification". In: ICLR (2020).

Recent works in Unsupervised Person Re-ID are based on the *Clustering* and *Finetuning* framework (SSG¹, MMT²):

- **1** Clustering step ϕ frozen, run clustering on \mathcal{T} $\phi(\mathbf{x}_n^{\mathcal{T}}) \to \text{pseudo-ID}$ labels $\tilde{\boldsymbol{\rho}}_n^{\mathcal{T}}$.
- **2** Finetuning step ϕ finetuned using $\tilde{\boldsymbol{p}}_n^T$ with $\mathcal{L}_{\text{PS-ID}}(\phi)$.
- **3 Return to 1** until convergence.

¹Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification". In: *IEEE ICCV*. 2019.

 $^{^2}$ Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification". In: ICLR (2020).

Recent works in Unsupervised Person Re-ID are based on the *Clustering* and *Finetuning* framework (SSG¹, MMT²):

- **1** Clustering step ϕ frozen, run clustering on \mathcal{T} $\phi(\mathbf{x}_n^{\mathcal{T}}) \to \text{pseudo-ID}$ labels $\tilde{\boldsymbol{p}}_n^{\mathcal{T}}$.
- **2** Finetuning step ϕ finetuned using $\tilde{\boldsymbol{\rho}}_n^{\mathcal{T}}$ with $\mathcal{L}_{\text{PS-ID}}(\phi)$.
- **3 Return to 1** until convergence.

¹Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification". In: *IEEE ICCV*. 2019.

 $^{^2}$ Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification". In: ICLR (2020).

Recent works in Unsupervised Person Re-ID are based on the *Clustering* and *Finetuning* framework (SSG¹, MMT²):

- **1** Clustering step ϕ frozen, run clustering on \mathcal{T} $\phi(\mathbf{x}_n^{\mathcal{T}}) \to \text{pseudo-ID}$ labels $\tilde{\boldsymbol{\rho}}_n^{\mathcal{T}}$.
- **2** Finetuning step ϕ finetuned using $\tilde{\boldsymbol{\rho}}_n^{\mathcal{T}}$ with $\mathcal{L}_{\text{PS-ID}}(\phi)$.
- **3 Return to 1** until convergence.

¹Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification". In: *IEEE ICCV*. 2019.

 $^{^2}$ Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification". In: ICLR (2020).

Adversarial Domain Adaptation

Adversarial Domain adaptation strategies³ train a discriminator distinguishing target & source domain.

It is trained using the loss

$$min_{\phi, C_{ID}} \max_{D_{\text{DOMAIN}}} \mathcal{L}_{\text{ID}}^{\mathcal{S}}(\phi, C_{\text{ID}}) - \mu \mathcal{L}_{\text{DOMAIN}}(D_{\text{DOMAIN}})$$
 (1)

³Yaroslav Ganin et al. "Domain-adversarial training of neural networks". In: *JMLR* (2016).

Adversarial Domain Adaptation

Adversarial Domain adaptation strategies³ train a discriminator distinguishing target & source domain.

It is trained using the loss

$$\min_{\phi, C_{\text{ID}}} \max_{D_{\text{DOMAIN}}} \mathcal{L}_{\text{ID}}^{\mathcal{S}}(\phi, C_{\text{ID}}) - \mu \mathcal{L}_{\text{DOMAIN}}(D_{\text{DOMAIN}})$$
 (1)

³Yaroslav Ganin et al. "Domain-adversarial training of neural networks". In: *JMLR* (2016).

Negative transfer

Domain Generalization⁴ generalized this strategy to any number of domains.

Adversarial framework \rightarrow *Negative Transfer*: discriminator learns **ID-related** instead of **domain-related features**.

Happens when **prior label distributions** are different accross domains.

⁴Ya Li et al. "Deep Domain Generalization via Conditional Invariant Adversarial Networks". In: ECCV. 2018.

Negative transfer

Domain Generalization⁴ generalized this strategy to any number of domains.

Adversarial framework \rightarrow *Negative Transfer*: discriminator learns **ID-related** instead of **domain-related features**.

Happens when **prior label distributions** are different accross domains.

⁴Ya Li et al. "Deep Domain Generalization via Conditional Invariant Adversarial Networks". In: ECCV. 2018.

Negative transfer

Domain Generalization⁴ generalized this strategy to any number of domains.

Adversarial framework \rightarrow *Negative Transfer*: discriminator learns **ID-related** instead of **domain-related features**.

Happens when **prior label distributions** are different accross domains.

⁴Ya Li et al. "Deep Domain Generalization via Conditional Invariant Adversarial Networks". In: ECCV. 2018.

Contributions

From this analysis derive the following strategies:

- Camera adversarial-guided clustering: in Clustering step,
 viewpoint/camera variability drives pseudo-label errors, and propose an adversarial strategy to reduce it.
- Conditioned adversarial networks: different ID prior distributions on different cameras lead to negative transfer.

Contributions

From this analysis derive the following strategies:

- Camera adversarial-guided clustering: in Clustering step,
 viewpoint/camera variability drives pseudo-label errors, and propose an adversarial strategy to reduce it.
- Conditioned adversarial networks: different ID prior distributions on different cameras lead to negative transfer.

Conditional Camera Adversarial Learning

1- Clustering of target's embedding vectors $\phi(\mathbf{x}_n)$

Computes embedding centroids ϕ_p , and pseudo-label ID $\tilde{\mathbf{p}}_n$

$$\min_{\phi, C_{\text{PS-ID}}} \max_{D_{\text{CAM}}} \mathcal{L}_{\text{PS-ID}}^{\mathcal{T}}(\phi, C_{\text{PS-ID}}) - \mu \mathcal{L}_{\text{CAM}}^{\mathcal{T}}(\phi, D_{\text{CAM}}), \tag{2}$$

$$\mathcal{L}_{\text{CAM}}^{\mathcal{T}}(\phi, D_{\text{CAM}}) = -\mathbb{E}_{(\mathbf{X}, \mathbf{C}) \sim \mathcal{T}} \left\{ \log \langle D_{\text{CAM}}(\phi(\mathbf{X})), \mathbf{c} \rangle \right\}$$
(3)

$$\min_{\phi, C_{\text{PS-ID}}} \max_{D_{\text{CAM}}} \mathcal{L}_{\text{PS-ID}}^{\mathcal{T}}(\phi, C_{\text{PS-ID}}) - \mu \mathcal{L}_{\text{CAM}}^{\mathcal{T}}(\phi, D_{\text{CAM}}), \tag{2}$$

$$\mathcal{L}_{\text{CAM}}^{\mathcal{T}}(\phi, D_{\text{CAM}}) = -\mathbb{E}_{(\mathbf{X}, \mathbf{C}) \sim \mathcal{T}} \left\{ \log \langle D_{\text{CAM}}(\phi(\mathbf{X})), \mathbf{c} \rangle \right\}$$
(3)

$$\min_{\phi, C_{\text{PS-ID}}} \max_{D_{\text{CAM}}} \mathcal{L}_{\text{PS-ID}}^{\mathcal{T}}(\phi, C_{\text{PS-ID}}) - \mu \mathcal{L}_{\text{CAM}}^{\mathcal{T}}(\phi, D_{\text{CAM}}), \tag{2}$$

$$\mathcal{L}_{\text{CAM}}^{\mathcal{T}}(\phi, D_{\text{CAM}}) = -\mathbb{E}_{(\mathbf{X}, \mathbf{C}) \sim \mathcal{T}} \left\{ \log \langle D_{\text{CAM}}(\phi(\mathbf{x})), \mathbf{c} \rangle \right\}$$
(3)

Handling negative transfer

IDs are **unevenly distributed** across cameras \rightarrow negative transfer:

- Can be solved by adding the pseudo-ID label information to the discriminator input.
- The **number of ID clusters** is big.
- Clustering algorithm does not preserve number of IDs and ordering.
- We use **centroids** ϕ_p provided by the clustering.

Handling negative transfer

IDs are **unevenly distributed** across cameras \rightarrow negative transfer:

- Can be solved by adding the pseudo-ID label information to the discriminator input.
- The **number of ID clusters** is big.
- Clustering algorithm does not preserve number of IDs and ordering.
- We use **centroids** ϕ_p provided by the clustering.

Handling negative transfer

IDs are **unevenly distributed** across cameras \rightarrow negative transfer:

- Can be solved by adding the pseudo-ID label information to the discriminator input.
- The **number of ID clusters** is big.
- Clustering algorithm does not preserve number of IDs and ordering.
- We use **centroids** ϕ_p provided by the clustering.

$$\min_{\phi, C_{\text{PS-ID}}} \max_{D_{\text{CAM}}} \mathcal{L}_{\text{PS-ID}}^{\mathcal{T}}(\phi, C_{\text{PS-ID}}) - \mu \mathcal{L}_{\text{CAM}}^{\mathcal{T}}(\phi, D_{\text{CAM}}), \tag{4}$$

$$\mathcal{L}_{\text{CAM}}^{\mathcal{T}}(\phi, D_{\text{CAM}}) = -\mathbb{E}_{(\mathbf{X}, \mathbf{C}) \sim \mathcal{T}} \left\{ \log \langle D_{\text{CAM}}(\phi(\mathbf{X})), \mathbf{c} \rangle \right\}$$
 (5)

Conditional camera adversarial training pipeline

Tackling Negative Transfer

$$\min_{\phi, C_{\text{PS-ID}}} \max_{D_{\text{C-CAM}}} \mathcal{L}_{\text{PS-ID}}^{\mathcal{T}}(\phi, C_{\text{PS-ID}}) - \mu \mathcal{L}_{\text{C-CAM}}^{\mathcal{T}}(\phi, D_{\text{C-CAM}}), \tag{6}$$

$$\mathcal{L}_{\text{C-CAM}}^{\mathcal{T}}(\phi, D_{\text{C-CAM}}) = -\mathbb{E}_{(\boldsymbol{X}, \boldsymbol{p}, \boldsymbol{c}) \sim \mathcal{T}} \left\{ \log \left\langle D_{\text{C-CAM}}(\phi(\boldsymbol{x}), \boldsymbol{\phi}_{\boldsymbol{p}}), \boldsymbol{c} \right\rangle \right\}$$
(7)

Camera adversarial training

Advantages:

- Can be plugged into any clustering and finetuning strategy: CANU-MMT, CANU-SSG
- Explicitely reduce errors in pseudo-ID labels,
- Make embedding space invariant to camera information, → better re-ID performance.

Camera adversarial training

Advantages:

- Can be plugged into any clustering and finetuning strategy: CANU-MMT, CANU-SSG
- Explicitely reduce errors in pseudo-ID labels,
- Make embedding space invariant to camera information, → better re-ID performance.

Camera adversarial training

Advantages:

- Can be plugged into any clustering and finetuning strategy: CANU-MMT, CANU-SSG
- Explicitely reduce errors in pseudo-ID labels,
- Make embedding space invariant to camera information, → better re-ID performance.

Experimental Evaluation

Experimental Setup

- CANU-SSG and CANU-MMT are evaluated.
- The clustering algorithm used is DBSCAN⁵.
- The strategies are evaluated using Market-1501 (Mkt) [12], DukeMTMC-reID (Duke) [9] and MSMT17 (MSMT) [10] datasets with standard Re-ID metrics (R1 and mAP).

⁵Martin Ester et al. "A density-based algorithm for discovering clusters in large spatial databases with noise." In: *Kdd.* 1996.

Experimental Setup

- CANU-SSG and CANU-MMT are evaluated.
- The clustering algorithm used is DBSCAN⁵.
- The strategies are evaluated using Market-1501 (Mkt) [12], DukeMTMC-reID (Duke) [9] and MSMT17 (MSMT) [10] datasets with standard Re-ID metrics (R1 and mAP).

⁵Martin Ester et al. "A density-based algorithm for discovering clusters in large spatial databases with noise." . In: *Kdd.* 1996.

Experimental Setup

- CANU-SSG and CANU-MMT are evaluated.
- The clustering algorithm used is DBSCAN⁵.
- The strategies are evaluated using Market-1501 (Mkt) [12], DukeMTMC-reID (Duke) [9] and MSMT17 (MSMT) [10] datasets with standard Re-ID metrics (R1 and mAP).

⁵Martin Ester et al. "A density-based algorithm for discovering clusters in large spatial databases with noise.". In: *Kdd.* 1996.

Comparison with State of the Art

Table 1: CANU on the Mkt ▶ Duke and Duke ▶ Mkt settings.

Method	Mkt ▶ Duke		Duke ► Mkt	
	R1	mAP	R1	mAP
PUL [3]	30.0	16.4	45.5	20.5
SPGAN [1]	41.1	22.3	51.5	22.8
Co-teaching [7]	77.6	61.7	87.8	71.7
SSG [4]	73.0	53.4	80.0	58.3
CANU-SSG (ours)	76.1 (+3.1)	57.0 (+3.6)	83.3 (+3.3)	61.9 (+3.6)
MMT [6]	80.2	67.2	91.7	79.3
CANU-MMT (ours)	83.3 (+3.1)	70.3 (+3.1)	94.2 (+2.5)	83.0 (+3.7)

Comparison with State of the Art

Table 2: CANU on the Mkt ► MSMT and Duke ► MSMT settings.

Method	Mkt ▶	MSMT	Duke ► MSMT		
	R1	mAP	R1	mAP	
PTGAN [11]	10.2	2.9	11.8	3.3	
ENC [13]	25.3	8.5	30.2	10.2	
SSG [4]	31.6	13.2	32.2	13.3	
CANU-SSG (ours)	45.5 (+13.9)	19.1 (+5.9)	43.3 (+11.1)	17.9 (+4.6)	
MMT [6]	51.6	26.6	59.0	32.0	
CANU-MMT (ours)	61.7 (+10.1)	34.6 (+8.0)	66.9 (+7.9)	38.3 (+6.3)	

Camera adversarial vs Conditional camera adversarial

Table 3: Impact of the conditional strategy on baselines. When the mAP values are equal, we highlight the one corresponding to higher R1.

Method	Mkt ► Duke		Duke ► Mkt	
Wicthod	R1	mAP	R1	mAP
SSG [4]	73.0	53.4	80.0	58.3
SSG + Adv.	75.4	56.4	83.8	62.7
CANU-SSG	76.1	57.0	83.3	61.9
MMT [6]	80.2	67.2	91.7	79.3
$MMT {+} Adv.$	82.6	70.3	93.6	82.2
CANU-MMT	83.3	70.3	94.2	83.0

Camera & Pseudo-ID dependancy analysis

Figure 1: Mutual information between pseudo labels and camera index evolution for the MMT baseline. Ground-truth ID comparison is displayed in dashed lines for both datasets.

Merge finetuning and clustering with a camera-based adversarial strategy, which can be plugged into any unsupervised approach.

Solve the **negative transfer** problem with a conditioned approach.

Demonstrate its performance on **two state of the art methods**.

Merge finetuning and clustering with a camera-based adversarial strategy, which can be plugged into any unsupervised approach.

Solve the **negative transfer** problem with a conditioned approach.

Demonstrate its performance on two state of the art methods.

Merge finetuning and clustering with a camera-based adversarial strategy, which can be plugged into any unsupervised approach.

Solve the **negative transfer** problem with a conditioned approach.

Demonstrate its performance on two state of the art methods.

Clustering and Finetuning - examples

- **Self-similarity grouping** (SSG)⁶ clusters on 3 visual subdomains (full body, upper/lower body), and rely on self-consistency to reduce clustering mistakes.
- Mutual mean-teaching (MMT)⁷ uses teacher-student models, trained with hard pseudo-ID based loss and soft losses supervised by each other's predictions

⁶Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification". In: *IEEE ICCV*. 2019.

⁷Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Justiness Domain Adaptation on Person Re-identification". In: *ICLR* (2020).

Clustering and Finetuning - examples

- **Self-similarity grouping** (SSG)⁶ clusters on 3 visual subdomains (full body, upper/lower body), and rely on self-consistency to reduce clustering mistakes.
- Mutual mean-teaching (MMT)⁷ uses teacher-student models, trained with hard pseudo-ID based loss and soft losses supervised by each other's predictions.

⁶Yang Fu et al. "Self-similarity grouping: A simple unsupervised cross domain adaptation approach for person re-identification". In: IEEE ICCV 2019

⁷Yixiao Ge, Dapeng Chen, and Hongsheng Li. "Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification". In: *ICLR* (2020).