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ABSTRACT
Crowdsensing allows citizens to contribute to the monitoring of
their living environment using the sensors embedded in their mo-
bile devices, e.g., smartphones. However, crowdsensing at scale in-
volves significant communication, computation, and financial costs
due to the dependence on cloud infrastructures for the analysis (e.g.,
interpolation and aggregation) of spatio-temporal data. This limits
the adoption of crowdsensing by activists although sorely needed
to inform our knowledge of the environment. As an alternative to
the centralized analysis of crowdsensed observations, this paper
introduces a fully distributed interpolation-mediated aggregation
approach running on smartphones. To achieve so efficiently, we
model the interpolation as a distributed tensor completion problem,
and we introduce a lightweight aggregation strategy that antici-
pates the likelihood of future encounters according to the quality
of the interpolation. Our approach thus shifts the centralized post-
processing of crowdsensed data to distributed pre-processing on the
move, based on opportunistic encounters of crowdsensors through
state-of-the-art D2D networking. The evaluation using a dataset
of quantitative environmental measurements collected from 550
crowdsensors over 1 year shows that our solution significantly
reduces –and may even eliminate– the dependence on the cloud
infrastructure, while it incurs a limited resource cost on end devices.
Meanwhile, the overall data accuracy remains comparable to that
of the centralized approach.
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1 INTRODUCTION
Mobile crowdsensing is an attractive sensing paradigm to moni-
tor the urban environment such as noise level, ambient tempera-
ture, luminance, air pressure, relative humidity, etc. [11, 17, 26, 38].
Citizens may contribute valuable spatio-temporal observations us-
ing the low-cost, yet powerful, sensors embedded in their smart-
phones/tablets, with the GPS for positioning and the Internet access
for uploading. Furthermore, pollution is an increasing societal con-
cern, and through opportunistic crowdsensing, people are able to
be aware of it in a mutually beneficial way. However, the collected
observations often cover the urban space and time unevenly and
sparsely, due to the dependence on the mobility of citizens through-
out the city [33]. State-of-the-art crowdsensing systems address this
shortcoming through the centralized analysis –incl. aggregation
and interpolation– of observations provided to cloud infrastruc-
ture servers [8, 18, 23, 31]. The implemented centralization then
severely limits the adoption of crowdsensing for environmental

monitoring due to the resulting resource and financial costs, and
also introduces user privacy leak (e.g., mobility inference) [29].

We argue that enabling fully decentralized crowdsensing sys-
tems, including the underlying large-scale data analysis, is key to
the democratization of environmental monitoring using crowdsen-
sors. This is the focus of our paper that introduces the IAM (Inter-
polation and Aggregation on the Move) distributed solution, which
builds upon the two following trends to support crowdsensing-
based environmental monitoring at scale:

(i) IAM views crowdsensors as "social sensors" that outfit hu-
man, as opposed to mere physical equipment that senses
the environment and transfers data. In particular, mobile
crowdsensors often encounter each other during sensing
campaigns or as part of the daily routine of their owners
[20]. We focus on opportunistic crowdsensing, where people
follow their daily routine without being directly involved in
the sensing task [6, 11]. At the micro level, behavioral signa-
tures (i.e., routines) as well as recurrent encounter patterns
reflect the underlying relational dynamics of organizations
or communities to which the user is affiliated. Furthermore,
end-users are more likely to share their data, especially in
short encounters, as the risk of losing their anonymity is
lower [14].

(ii) The collaborative and ubiquitous processing of crowdsensed
observations improves the overall efficiency of the system
in terms of resource consumption [6, 28, 35], regarding both
the infrastructure and contributing devices. It also allows
end users to collaborate and share knowledge effortlessly
and with little or no cost. In particular, D2D collaboration
enhances mobile edge computing by enabling the sharing
of heterogeneous computing and communication resources
between powerful mobile end devices [2, 20].

Concretely, IAM allows a fully distributed, collaborative ap-
proach to crowdsensing: crowdsensors interpolate their observation
of the phenomenon, and they aggregate the respective data in an
opportunistic way. The intent is to overcome the spatio-temporal
sparsity and to limit –or even avoid– the use of a centralized infras-
tructure server. There are many interpolation methods for inferring
spatio-temporal phenomena, and the smartphone is becoming in-
creasingly powerful to perform such advanced tasks. At the same
time, P2P wireless ad hoc network technology (e.g., Wi-Fi Direct)
enables the discovery of nearby mobile devices and the exchange
of data between peers, making the collaboration possible [6, 20].
Some crowdsensing systems already exploit the P2P collaboration
of crowdsensors as they meet [5, 34, 39]. However, the collabora-
tion primarily deals with handling the relay of data, while deployed
static edge servers are in charge of the distributed data aggregation.



Our approach leverages the advantage of the former and overcomes
the disadvantage of the latter: it implements an opportunistic data
relay and analysis on the move, across the crowdsensors.

In summary, the paper makes the following contributions to
enable ubiquitous and collaborative crowdsensing:

(1) A fully distributed approach to the aggregation and interpola-
tion of crowdsensing data on the move (§ 3), which exploits the
smartphone’s capability to perform 3D tensor completion. In
particular, we thoroughly analyze and compare eligible state-
of-the-art interpolation methods, which leads us to leverage
the Gaussian Process Regression (§ 3.2) that produces the
most cost-effective inference for spatio-temporal phenom-
ena along with an estimation of the inference uncertainty.
Another advantage compared to alternative interpolation
approaches (i.e., ordinary kriging & tensor decomposition)
is that all the specified parameters are learned and the most
relevant kernel was selected following related assessment.
Finally, only a small portion of the interpolation is running
on each crowdsensor.

(2) A distributed lightweight and quality-aware aggregation strat-
egy based only on linear operations (§ 3.3) that combines the
tensors that each crowdsensor establishes autonomously.
Such a linear aggregation takes place opportunistically across
the end devices, and possibly at the server if the D2D com-
munication does not allow covering all the devices over the
given time window. That is, when crowdsensor peers get in a
shared D2D communication range, our algorithm selects one
of them to aggregate their interpolated tensors and further
relay the new tensor. At the end of a predefined time window,
the crowdsensor uploads its tensor to the server unless it
has previously met a peer that takes care of the relay. A key
aspect of the proposed approach is that the aggregation is
much less resource consuming (in time and space) than the
interpolation, and the server performs only the aggregation
needed to fill the gap between the network islets that the
contributing crowd forms through D2D communication.

(3) A prototype implementation (§ 4) of the IAM solution and its
performance evaluation using a 1-year crowdsensing dataset
(§ 5). The evaluation shows that IAM aggregates a global
knowledge that is both robust and accurate compared to the
centralized approach. Based on our empirical evaluation, we
select the best kernel, which is characterized by a fairly good
balance between accuracy and resource consumption. Most
importantly, compared to the centralized approach and base-
line relay-based aggregation mechanisms, IAM significantly
lowers the communication, computation and financial costs
of crowdsensing-based environmental monitoring.

2 RELATEDWORK
Sensing data fusion deals with the combination of observations
so as to enhance the quality of the knowledge we gather from the
sensors. In the specific case of fusing data from mobile crowdsen-
sors and assuming that all the crowdsensors are trusted to provide
equally accurate measurements, the supporting algorithms serve
the two following functions: (i) aggregating together the measure-
ments associated with related observations, and (ii) interpolating

the missing measurements to overcome the sparse contribution
coverage.

2.1 Data Aggregation
Related crowdsensing observations are usually aggregated using an
average [19, 29] or a weighted average [13, 28] value, althoughmore
complex functions may be found in the literature depending on
the observed phenomenon [12]. The aggregation may be executed
either on the cloud, or in a distributed way –at least partially–
for which most crowdsensors provide the necessary computing
resources. We undertake the latter decentralized approach in our
work so as to benefit from ubiquitous computing and in particular
limit the dependence on –and related resource and financial costs
due to the usage of– a cloud/edge infrastructure. The challenge
is therefore to perform a distributed aggregation in a way that
both (i) delivers an overall accurate knowledge, and (ii) incurs
bearable resource consumption for the end devices. To achieve so,
we use the Average aggregate function that is duplicate-sensitive
and decomposable; in particular, a batch aggregation is equivalent
to several pairwise aggregations.

The distributed aggregation protocol may rely on either a struc-
tured (e.g., hierarchical) or an unstructured (e.g., flooding) routing;
it may even implement a combination of the two. Our solution
is based on the unstructured routing that matches the mobility
behavior of opportunistic crowdsensors. That is, a crowdsensor
exchanges its observations with another crowdsensor as they get
in the D2D communication range of each other, so that one of them
aggregates the two sets of observations, and in turn repeats the
process as it meets a new crowdsensor. The protocol stops when
reaching a predefined criterion, which is a given time-window in
our case (see § 4). Still, the distributed aggregation protocol must
be complemented with the interpolation of missing values [32].

2.2 Data Interpolation
There exist various eligible approaches to the interpolation of
crowdsensed observations, wherein the challenge is to overcome
both the related data sparsity and computing complexity. In statis-
tical geography, multivariate interpolation and spatial interpolation
play an important role as they enable modeling a large-scale phe-
nomenon (and producing a digital elevationmodel) provided a set of
observations/points. Many interpolation techniques may be applied,
depending on the characteristics of the observed data points.

Ordinary kriging [8, 23] is one of the methods that is widely
applied as it supports a fine-grained interpolation at each location
over a 2D space. It estimates the value at an unobserved location
based on values at observed locations and it performs well as long as
observations are uniformly distributed. In particular, performance
greatly degrades for large amounts of missing data and the compu-
tational cost gets prohibitive [7].

Compressive sensing is a recent alternative approach to the inter-
polation of data for the production of observation maps, while deal-
ingwith sparse observations [7]. It has been used to infer/interpolate
urban-scale physical phenomena from crowdsensed observations
stored in a 2D matrix [8, 33, 36]. However, physical phenomena
often have more than two modes of variation and are therefore best
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represented as multi-dimensions observations, which leads to us-
ing 3D tensors [16, 26, 40]. The matrix/tensor completion problem
is usually solved by matrix/tensor decomposition and one major
drawback is that it trades uncertainty for efficiency, as there is no
confidence interval associated with the inference.

Multiple regression is another approach to infer missing values
[9, 25], which transforms the interpolation problem into regressions.
This inspired us to use the Gaussian Process Regression (GPR) to
solve the tensor completion problem. GPR is a well-known and
general approach applied in machine learning [22], which supports
a non-parametric and interpretable Bayesian model. GPR naturally
supports multi-dimension and it does not require the data to follow
Gaussian distribution. GPR enables estimating the level of uncer-
tainty associated with the produced model. We compare the three
interpolation approaches in the evaluation section (§ 5) where we
show that GPR is the best suited to support distributed interpolation
across mobile crowdsensors.

2.3 Centralized vs Distributed Data Fusion in
Crowdsensing Platforms

The great majority of crowdsensing platforms applies centralized
analysis to the sensing data: the cloud/edge server first aggregates
the raw crowdsensor measurements and then interpolates the miss-
ing observations. Existing platforms adopt various interpolation
and aggregation methods, while considering different types of sen-
sors (static vs mobile). For instance, one of the solutions leverages
ordinary kriging on the cloud to generate a map from the measure-
ments contributed by a combination of static sensors and mobile
crowdsensors [8]. Some platforms [16, 17, 26, 38] exploit additional
urban data sources (e.g., road networks, check-in data) to infer the
phenomenon, which is represented as a 3D tensor completion using
centralized tensor decomposition. Rather than integrating more
data sources, the analysis may leverage historical data to improve
the accuracy of the generated map. A multi-Output Gaussian Pro-
cess serves as a unified map generation model, which takes multiple
instances (a current sparse instance and an appropriate historical
dense instance) to generate an improved air quality map in [3].

The distributed interpolation and aggregation of sensing data
have deserved less attention than the centralized counterparts,
with most solutions targeting Wireless Sensor Networks (WSN). A
localized, distributed interpolation & aggregation scheme based on
kriging is introduced in [30] for a tree-structured WSN; it allows
inferring a phenomenon over the holes that the static WSN does
not cover. In [37], a hierarchical WSN is organized such that sensors
send the measurements to their respective cluster heads, which in
turn encode the sparse measurements and use compressive sensing
(matrix decomposition) to interpolate the overall phenomenon.

The work that is the most related to ours is the edge-mediated
spatial-temporal crowdsensing proposed in [39]. The solution relies
on a trusted edge server (e.g., a deployed cloudlet) that coordinates
a few crowdsensors. In practice, crowdsensors independently per-
form a part of matrix decomposition using a stochastic gradient
descent and they exchange factor vectors with the crowdsensors
that are in the same WLAN. Each edge server is responsible for a
batch of crowdsensors that are fully connected to perform iterative
optimization, and ultimately recovers an interpolated map for the

sub-area. The set of crowdsensors and the edge server must remain
connected and communicate over multiple rounds to establish a
single interpolation. Furthermore, as stated previously, the tensor
decomposition that is applied is less accurate than GPR, which we
leverage within IAM.

Different to previous work, the IAM solution: (1) leverages 3D
tensors that embed more information than the 2D matrix data
model, and efficient Gaussian Process Regression for interpolation,
(2) supports both interpolation and aggregation at the end device
in a resource-efficient way, so as to limit the dependence on the
infrastructure (edge/cloud server) at a bearable additional resource
(including energy) cost for the users’ crowdsensing devices, and (3)
implements opportunistic P2P aggregation, which benefits from the
encounter with other crowdsensors and is hence not constrained
by any hierarchical/tree network structure.

3 LIGHTWEIGHT DECENTRALIZED
CROWDSENSING DATA FUSION

The IAM solution to decentralized crowdsensing takes benefits of
today’s smartphones capacity, while limiting the resulting addi-
tional resource consumption on devices. That is, IAM implements
lightweight collaborative sensor data fusion across the participating
crowdsensing devices as they are in D2D communication range.

3.1 Problem Statement
Let IAM be deployed over 𝑚 mobile crowdsensors (e.g., smart-
phones) embedding (built-in or connected) sensors providing mea-
surements related to the physical phenomenon P. We further as-
sume that the 𝑚 crowdsensors are all trustworthy and provide
equally accurate measurements (i.e., they underwent appropriate
calibration [28] prior to contribute measurements). IAM supports
the periodic monitoring of P over (a possibly large) area A and a
given time periodD using the contributions of the𝑚 crowdsensors.

We represent the data that each crowdsensor collects as a con-
cise 3D tensor where the first two dimensions refer to the spatial
space (i.e., latitude and longitude) and the third one to the temporal
domain (time). In particular, we discretize the target region A into
𝐼 × 𝐽 areas, which are cells of equal spatial size. We also discretize
D into 𝐾 time slots of equal durations. We denote Y𝑠 ∈ R𝐼×𝐽 ×𝐾
the tensor that crowdsensor 𝑠 (1 ≤ 𝑠 ≤ 𝑚) maintains. The entry
𝑦𝑠 (𝑥) ∈ R at position 𝑥 := (𝑖, 𝑗, 𝑘) ∈ R3 is the average of the mea-
surements collected by 𝑠 over the area cell indexed by (𝑖, 𝑗) during
the time interval indexed by 𝑘 . The value 𝑦𝑠 (𝑥) is null if 𝑠 does not
sense at position 𝑥 . In other words, any crowdsensor 𝑠 contributes
a tensor Y𝑠 that provides a sparse/incomplete observation of the
physical phenomenon according to its behavior.

IAM allows the opportunistic combination of the various tensors
Y𝑠 from the contributing crowdsensors 𝑠 , using interpolation and
aggregation, so as to compute an overall Y for a spatio-temporal
characterization of phenomenon P over area A and duration D.
As a base design choice, crowdsensors first apply interpolation over
their local tensor Y𝑠 prior to engage in the collaborative aggrega-
tion, which is key to the –both local and global– resource-efficiency
of the IAM approach, while supporting the computation of a glob-
ally accurate knowledge.
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3.2 Spatio-temporal Interpolation using
Gaussian Process Regression

Given a sparse tensor Y𝑠 resulting from the averaging of the local
measurements collected at crowdsensor 𝑠 over areaA and duration
D, interpolation allows completing the tensor by estimating miss-
ing cells. The resulting (denser) tensor is denoted Ŷ𝑠 . The quality of
the estimation can be established based on the approximation error
(i.e., residual). The overall residual is then given by E = ∥Y − Ŷ∥.

Let Ω be the set of observed cells by a given crowdsensor, that is,
the cells to which the crowdsensor contributed observations. The
Boolean mask tensorM ∈ B𝐼×𝐽 ×𝐾 is defined such that𝑚(𝑥) = 1
if there is a corresponding value at point 𝑥 ∈ Ω, and 𝑚(𝑥) = 0
otherwise. Thus, M ∗ Y provides values resulting from actual
observations (i.e., ground truth as sensed). When estimating Ŷ
based on a sparse tensor Y with maskM, we seek to minimize the
following loss function, which is associated with Ŷ:

𝐽 (Y, Ŷ) := 1
2

∑
𝑥 ∈Ω

𝑒 (𝑥)2 = 1
2
∥M ∗ (Ŷ − Y)∥2

where: 𝑒 (𝑥) is the residual at point 𝑥 , ∥ · ∥ denotes the Euclidean
norm of a tensor, and ∗ represents the element-wise multiplication.

Recall that the function 𝑦 : R3 ↦→ R maps an arbitrary point
𝑥 := (𝑖, 𝑗, 𝑘) to its cell value 𝑦 (𝑥). Following the assessment of
the eligible interpolation methods summarized in Section 2.2, we
leverage the Gaussian Process Regression [22] to compute Ŷ out of
Y. That is, we assume that 𝑦 follows a Gaussian Process (Gaussian
distribution over functions), i.e.:

𝑦 (𝑥) ∼ GP(` (𝑥), 𝑘 (𝑥, 𝑥 ′))

where: ` (𝑥) = E[𝑦 (𝑥)] refers to the mean function, and 𝑘 (𝑥, 𝑥 ′) is
the covariance matrix, i.e., the kernel of the GPR, which verifies
𝑘 (𝑥, 𝑥 ′) = E[(𝑦 (𝑥) − ` (𝑥)) (𝑦 (𝑥 ′) − ` (𝑥 ′))].

The kernel is a crucial ingredient of GPR as it encodes the notion
of similarity between two nearby data points 𝑥 and 𝑥 ′ on the basis
that observations that are close to each other (Euclidean distance)
are likely to have higher correlation. Thereby, the actual measure-
ments that are close to an approximated observation are assumed
to be highly informative for the inference at that point. Various
families of kernels exist (see [27] for an overview). In our case, the
Matérn [24] induced the lowest error and execution time compared
to alternative kernels (see §5).

In summary, once a GPR model is trained, the inferred mean
value ˆ̀(𝑥) and its variance �̂� (𝑥) of any input point 𝑥 are generated
(as regression process). The complete approximation tensor Ŷ is
produced using ˆ̀(𝑥) as 𝑦 (𝑥) cell value, while a variance tensor
�̂�

2 ∈ R𝐼×𝐽 ×𝐾 is also maintained, in which each element �̂�2 (𝑥)
refers to the variance of corresponding 𝑦 (𝑥).

GPR is computationally demanding as the training scales in
𝑂 (𝑛3) with 𝑛 being the number of observed cells. Thus, applying
such a regression over the overall dataset on the cloud incurs sig-
nificant computation costs. As an alternative, IAM distributes the
training and inference load over the crowdsensors, which further
results in a limited computational cost on the device due to the
relative low number of contributed cells (see § 5).

3.3 Opportunistic P2P Aggregation
Upon the P2P meeting (i.e., discovery through D2D communication)
of two crowdsensors 𝑠 and 𝑠 ′, IAM selects one of them to aggre-
gate their respective tensors Ŷ𝑠 and Ŷ𝑠′ . Assuming the selected
crowdsensor is 𝑠 , then Ŷ𝑠 is updated as the aggregation result of Ŷ𝑠
and Ŷ𝑠′ , and Ŷ𝑠′ is set to null. Then, 𝑠 may relay Ŷ𝑠 when it meets
another crowdsensor, or till the current time window 𝑇+D expires.

The P2P meetings that IAM fosters correspond to a stochastic
process since crowdsensors meet each other in an opportunistic
way based on their own mobility. Upon such a meeting, a straight-
forward aggregation approach would consist in selecting randomly
one of the two crowdsensors to take in charge the aggregation and
relay the resulting tensor, where we assume that all the crowdsen-
sors have equal resource budgets. Instead, we use the respective
quality of inference of the crowdsensor tensors for the relay selec-
tion. The evaluation results confirm the relevance of the criterion,
and suggest it is an indicator of future meeting occurrences (see
§ 5). Precisely, we leverage the inference quality as defined by the
following asymmetric and positive loss function:

𝐷 (Ŷ𝑠 , Ŷ𝑠′) :=
∥(M𝑠′ ∗ ¬M𝑠 ) ∗ (Ŷ𝑠′ − Ŷ𝑠 )∥2

2∥M𝑠′ ∗ ¬M𝑠 ∥2
where: ¬ corresponds to the NOT Boolean operation; andM𝑠 and
M𝑠′ correspond to the mask tensors of 𝑠 and 𝑠 ′.

Algorithm 1
Asymmetric P2P aggregation at 𝑠
Require: local data tensorY𝑠 , localmask tensorM𝑠 , local variance

tensor Σ2
𝑠 , local merge count 𝑛𝑠

Input: remote data tensor Y𝑠′ , remote mask tensorM𝑠′ , remote
variance tensor Σ2

𝑠′ , remote merge count 𝑛𝑠′
1: if 𝐷 (Y𝑠 ,Y𝑠′) < 𝐷 (Y𝑠′,Y𝑠 ) then
2: Y𝑠 ,M𝑠 , 𝑛𝑠 ,Σ2

𝑠 ← Crowdsensing data tensors merger (𝑠, 𝑠 ′)
– see Algorithm 2

3: else
4: Y𝑠 ,M𝑠 , 𝑛𝑠 ,Σ2

𝑠 ← 𝑛𝑢𝑙𝑙

5: end if

Algorithm 1 introduces the aggregation procedure that crowd-
sensor 𝑠 runs upon meeting with crowdsensor 𝑠 ′ (with 𝑠 ′ running
the same algorithm). Only one of the two should perform the actual
aggregation (merge the tensors) and act as the relay node, which we
call the mainstay. The crowdsensor with the lowest loss function
selects itself (Lines 1-2) as the mainstay. The other crowdsensor no
longer maintains its local data (Lines 3-4) so that there is no dupli-
cated uploading. We highlight that the selection of the mainstay
aims at optimizing the quality of the data delivered by the dis-
tributed aggregation process for which we consider the inference
quality as criterion. It is area for future work to increase the over-
all robustness of the opportunistic aggregation protocol by taking
into account additional criteria (e.g., mobility behavior, available
resource, and fault tolerance), for which we may leverage state of
the art algorithms [34], while keeping the process energy-efficient.

Algorithm 2 details the data merge function that the mainstay 𝑠
runs, provided the tensor Y𝑠′ from 𝑠 ′, to compute the new tensor
Y𝑠𝑠′ . The algorithm distinguishes whether the values from 𝑦𝑠 (𝑥)
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Algorithm 2
Crowdsensing data tensors merger (𝑠, 𝑠 ′) at the mainstay 𝑠

Input: data tensorY𝑠 , mask tensorM𝑠 , variance tensor Σ2
𝑠 , merge

count 𝑛𝑠
Input: data tensor Y𝑠′ , mask tensor M𝑠′ , variance tensor Σ2

𝑠′ ,
merge count 𝑛𝑠′

Output: aggregated data tensor Y𝑠𝑠′ , mask tensorM𝑠𝑠′ , variance
tensor Σ2

𝑠𝑠′ , merge count 𝑛𝑠𝑠′
1: Y𝑠𝑠′ ← 0𝐼×𝐽 ×𝐾

2: Y𝑠𝑠′+ = 𝑛𝑠Y𝑠+𝑛𝑠′Y𝑠′
𝑛𝑠+𝑛𝑠′ ∗ (M𝑠 ∗M𝑠′)

3: Y𝑠𝑠′+ = Y𝑠 ∗ (M𝑠 ∗ ¬M𝑠′)
4: Y𝑠𝑠′+ = Y𝑠′ ∗ (M𝑠′ ∗ ¬M𝑠 )
5: Y𝑠𝑠′+ = (𝛽𝑠Y𝑠/Σ2

𝑠 + 𝛽𝑠′Y𝑠′/Σ2
𝑠′)/(𝛽𝑠Σ

−2
𝑠 + 𝛽𝑠′Σ−2𝑠′ ) ∗ (¬M𝑠 ∗

¬M𝑠′)
6: 𝚺2

𝑠𝑠′ ← (𝛽𝑠𝚺
−2
𝑠 + 𝛽𝑠′𝚺−2𝑠′ )

−1

7: 𝑛𝑠𝑠′ ← 𝑛𝑠 + 𝑛𝑠′
8: M𝑠𝑠′ ←M𝑠 ∨M𝑠′

9: return Y𝑠𝑠′ ,M𝑠𝑠′, 𝑛𝑠𝑠′ , 𝚺2𝑠𝑠′

and 𝑦′𝑠 (𝑥) at 𝑥 result from actual sensor measurements or from
interpolation, as known from the masksM𝑠 andM𝑠′ :

• Line 2 – The two values result from actual sensor measure-
ments: a merged incremental average is applied.
• Lines 3 & 4 – One value results from actual sensor measure-
ments and the other is inferred: the actual sensormeasurement
is considered to be the ground truth and thus it is selected
over the inference.
• Line 5 – The two values result from two inferences: the aggre-
gated value is then computed using the Generalized Product-
of-Expert of GPR, as detailed below.

3.4 Aggregating Multiple GPR Inferences
The Generalized Product-of-Expert is a method that allows combin-
ing estimated results that have been inferred by several experts (e.g.,
interpolations on several crowdsensors). In particular, it enables
weighting the respective importance of the experts according to
the reliability of their inference. Let 𝑝𝑠 (𝑦∗ |𝑥∗, 𝑋𝑠 , 𝑌𝑠 ) denote the
distribution of the measurements for point 𝑥∗, which is inferred by
the crowdsensor 𝑠 , knowing the observed cell values 𝑌𝑠 at points 𝑋𝑠 .
Assuming that𝑚 crowdsensors aggregate their inference results,
the Product-of-Expert for a GPR estimates a value 𝑦∗ at point 𝑥∗
according to the following joint distribution [4]:

𝑝 (𝑦∗ |𝑥∗, 𝑋,𝑌 ) =
𝑚∏
𝑠=1

𝑝
𝛽𝑠 (𝑥∗)
𝑠 (𝑦∗ |𝑥∗, 𝑋𝑠 , 𝑌𝑠 )

where 𝛽𝑠 is a weighting parameter that allows tuning the relative
importance of a crowdsensor 𝑠 according to its inference.

The aggregation of multiple GPR inferences is a generalized
Product-of-Expert, which accounts for multiple inference distribu-
tions 𝑝𝑠 of an arbitrary point 𝑥∗. According to [1], it combines many
Gaussian distributions with mean ˆ̀𝑠 (𝑥∗) and variance �̂�2𝑠 (𝑥∗) from

any crowdsensor 𝑠 , and the aggregation result is defined as:

ˆ̀(𝑥∗) = �̂�2 (𝑥∗)
𝑚∑
𝑠=1

𝛽𝑠 (𝑥∗)�̂�−2𝑠 (𝑥∗) ˆ̀𝑠 (𝑥∗)

�̂�2 (𝑥∗) = [
𝑚∑
𝑠=1

𝛽𝑠 (𝑥∗)�̂�−2𝑠 (𝑥∗)]−1

A generalized Product-of-Expert of a GPR allowsmerging several
inferences (i.e., 𝑚 = 2 inferences in our case) in a cost-effective
way, as it is characterized by a O(𝑛) time complexity with 𝑛 being
the number of merged points. The opportunistic aggregation on
the move is asymmetric, as captured by the loss function 𝐷 . Our
evaluation shows that assigning a greater 𝛽 to the crowdsensor
acting as the mainstay (i.e., resulting in the lesser loss function)
leads to a higher aggregation accuracy (see § 5).

4 IAM-BASED CROWDSENSING SYSTEM
DESIGN

The IAM solution allows mapping quantitative spatio-temporal
physical phenomena through opportunistic data interpolation and
aggregation across the participating mobile crowdsensors. Any
mobile crowdsensing application dealing with urban environmental
monitoring (e.g., noise level, air quality, temperature, etc.) may build
upon IAM to produce such a knowledge in a fully decentralized
way. Still, the actual D2D meeting of the contributing crowdsensors
within the area under monitoring depends on the size of the target
area and the density of the contributing crowd. In practice, the
monitoring of large areas requires running an ultimate aggregation
process at a server to connect the islets that the crowd covers.

Figure 1 illustrates the resulting operation of a IAM-based crowd-
sensing system: crowdsensors sense, pre-process and interpolate
the data, then they relay and aggregate the sensing data in a P2P
way using wireless D2D communication (e.g., Wi-Fi Direct or Blue-
tooth technologies), so as to favor ubiquitous computation and
thereby limit the dependence on the server infrastructure. At the
end of the monitoring period D, the remaining mainstays send
their tensors to the server, which composes the tensors. Focusing
on the illustrative figure: C aggregates data from B and D, and then
uploads to the server the results of the three aggregations across A,
B, D and itself. Similarly, the distant mainstay E, which aggregates
its contributions with the ones of H, G and F, provides the resulting
tensor to the server.

A DCB

Aggregation
Storage
Visualization

Sensing
Preprocessing
Interpolation

E HGF

Relaying
Aggregation
Uploading

Figure 1: A IAM-based crowdsensing system
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4.1 Aggregation Process at the Crowdsensors

Algorithm 3
Crowdsensing process at crowdsensor 𝑠
Require: previous time window 𝑇 , current time window 𝑇+D
Require: data tensor Y𝑠 (𝑇 ) related to previous time window,

current data tensor Y𝑠 (𝑇+D )
1: while true do
2: while Within 𝑇+D do
3: Collect sensing data and fill Y𝑠 (𝑇+D ) //
4: AggregateY𝑠 (𝑇 ) upon P2P meeting tillY𝑠 (𝑇 ) sets to 𝑛𝑢𝑙𝑙
5: end while
6: Interpolate Y𝑠 (𝑇+D ) //
7: if Y𝑠 (𝑇 ) has not been relayed yet then
8: Upload Y𝑠 (𝑇 ) to the server
9: end if
10: end while

Algorithm 3 outlines the periodic process that IAM runs on every
participating crowdsensor 𝑠 to compute and relay/upload Y𝑠 . The
process iterates over time windows of duration D (Lines 1 and 2).
Within a given time window 𝑇+D , two processes run in parallel:
(i) the collection of the measurements provided by the embedded
sensors to update the tensor Y𝑠 (𝑇+D ) of the current time window
(Line 3), and (ii) the opportunistic aggregation of the local tensor of
the previous time window 𝑇 with the one of the peer that 𝑠 meets
(Line 4 – See detail in § 3.3).

At the end of the current time window, the spatio-temporal in-
terpolation is applied on the associated local tensor to infer missing
values (Line 6 – See detail in § 3.2). We highlight that the interpola-
tion runs locally, only once and prior to the aggregation process
running over the next time window. This allows: (i) minimizing the
number of interpolation occurrences and thereby the resource cost
on the device, and (ii) leveraging the locally completed tensor to
assess the quality of the local measurements against the ones of the
peers that the node meets, which determines the mainstay.

Finally, still at the end of the current time window𝑇+D , the node
sends its local tensor to the server, unless it was relayed to another
crowdsensor (Lines 7-9).

4.2 Prototype Implementation
The IAM solution assumes an ad hoc framework supporting the
opportunistic meeting and collaboration of peer nodes using D2D
communication, such as our middleware presented in [6] or other
solutions in [10, 20, 21]. The IAM prototype is thus specifically
focused on the implementation of the distributed, collaborative
interpolation and aggregation, further targeting Android smart-
phones/tablets as crowdsensors.

The prototype is available at https://github.com/sensetogether/
IAM; it requires a Python 3 environment as well as the following
third-party packages for data analytics: NumPy (https://numpy.org)
handling multi-dimensional arrays (tensors) and Scikit-learn (https:
//scikit-learn.org) implementing various machine learning algo-
rithms that is used for GPR training/inference. The key components
of our prototype implementation are:

• Pre-processing reads the sensed data that is stored in a local
file, and creates the corresponding tensors Y andM. The
tensor size is an application-specific parameter that is con-
figured so as to map the target physical phenomenon P over
the chosen A and D. Precisely, the tensor size depends on
the required sensing resolution, the geographical space that
needs to be covered, and the time window.
• Interpolation creates a GPR model, trains the model based
on theM ∗Y observed cells, and uses the trained model to
infer and produce the approximation tensor Ŷ along with
the variance tensor Σ2. The interpolation has a O(𝑛3) time
complexity with 𝑛 being the number of observed cells.
• Aggregation computes the loss function of two tensors from
a pair of crowdsensors, makes the aggregation decision, then
merges the two tensors into one, and updates the current
data, mask and variance tensors Ŷ,M and Σ2, respectively,
following Algorithm 1. The aggregation process on each
crowdsensor has a O(𝑝) time complexity, where 𝑝 is the
number of P2P meetings.

5 EVALUATION
IAM supports the opportunistic aggregation of the sensing data
along with the interpolation of a physical phenomenon, provided
relevant measurements from the crowdsensors. We assess the effec-
tiveness of the IAM distributed approach using a dataset collected
with the Ambiciti crowdsensing application (available on Google
Play and App Store) for environmental monitoring.

5.1 Experiment Setup and Dataset
The experiment supporting our evaluation focuses on urban noise
monitoring using crowdsensing. The dataset contains the measure-
ments collected by the Ambiciti application in an opportunistic
way [11]. The partner company Ambiciti provided us the dataset
used for evaluation, which specifically relates to the contributions
gathered in Paris over year 2017 and includes about 950k entries
from 550 crowdsensors.

The dataset entries are tuples of the form: <device ID, latitude
index, longitude index, timestamp index, observation value> with the
observation value being the average sound level expressed in dB(A).
Note that a sound level in dB(A) is a logarithmic quantity and hence
sound levels cannot be simply averaged. Instead, the sound levels
in dB(A) are first converted into their energy equivalents, and then
the energy equivalents are averaged algebraically, and finally the
resulted energy equivalent is converted back to its dB(A) value.

Preprocess Interpolate Aggregate

Figure 2: Producing a noise map using IAM (zoomed scale)

In the above context, IAM manages tensors that deal with the
monitoring of the noise level over the whole area A of the city
during D = 24 hours. We decompose the city area into a 100 × 100
grid, and the sensing data that are collected during 1 hour are stored
in the dedicated cell. Over 1 day, this results in a 100×100×24 tensor,
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which contains at most 240𝑘 of data entries. Figure 2 illustrates
the data analysis procedure for the computation of the urban noise
map, using the IAM prototype. The figure zooms on the 5 × 5 × 1
snapshot for which the crowdsensors provide sensor measurements.
This highlights that the dataset is very sparse, which is the case
with most crowdsensing applications and our reference application
in particular.

We use the Root Mean Square Error (RMSE) to evaluate the
accuracy of the interpolated and aggregated tensors. For cross-
validation, we run 100 rounds of training followed by tests. At each
round, both the training and evaluation sets are randomly shuffled,
that is, for interpolation, 70% of the dataset is used for training (i.e.,
as actual observations to complete the tensor) and 30% to test (i.e.,
to assess the estimated values against the ground truth). Regard-
ing aggregation, the entire approximation tensor is used for the
evaluation.

In the following evaluation, the experiments are run either on
a DELL Precision 7520 workstation, used both as the centralized
server (§ 5.2) and for simulation (§ 5.3), or on Android smartphones
as end device testbed (§ 5.4). The D2D communication is assumed to
be supported by the WiFi-Direct protocol, and we use the distance
to detect P2P encounters [6].

5.2 Assessment of the Interpolation Methods
Figure 3 compares the robustness of the three inference strate-
gies that are commonly used to interpolate physical phenomena
(see § 2.2): Ordinary Kriging with Gaussian variogram model (OK-
Gaussian), CP decomposition with Alternating Least Square (CP-
ALS), and Gaussian Process Regression with Matern kernel (GPR-
Matern). The interpolation is performed at the server (without in-
volving any aggregation), using the dataset from which we selected
the day during which the largest amount of crowdsensing data
were collected. The same experiments were run using the whole
dataset and the same trends were observed. On the figures, the box
corresponds to the interquartile range, the orange line is the me-
dian and the green triangle is the mean. At first sight, OK-Gaussian
seems to be accurate and hence promising, given the low RMSE
interquartile range and median. However, some wrong inferences
lead to abnormal values as illustrated by the high RMSE mean value
of 47. Similarly but to a lower extent, CP-ALS shows some abnormal
RMSE. Instead, GPR-Matern provides both an accurate and robust
inference: a stable RMSE without outliers –hence characterized by
the lowest variance– is observed.

Figure 4 shows the execution time of the three interpolation ap-
proaches. We run the experiments over the 365 days of our dataset,
where the number of observed cells varies every day. The execution
time of CP-ALS is constant in O(𝑅𝐼 𝐽𝐾) regardless of the number of
available observed cells since the computation applies on the entire
fixed-size tensor. Both OK-Gaussian and GPR-Matern have a time
complexity in O(𝑛3) with 𝑛 being the number of observed cells used
to fit the model. The execution time of GPR-Matern is lower than
OK-Gaussian, and below CP-ALS when the number of observed cells
is less than 2800. Note that in our dataset, the number of observed
cells collected by crowdsensors per day remains lower than 1500.
We further evaluated the efficiency of the three interpolation meth-
ods in terms of memory consumption. GPR-Matern consumes the

least memory: around 3.114𝑀𝐵, with a variance of 1.718. While the
memory consumption associated with CP-ALS (resp. OK-Gaussian)
is of 3.258𝑀𝐵 with a variance of 0.422 (resp. 4.644𝑀𝐵 with a vari-
ance of 1.437). Note that the memory consumption is stable and
does not depend on the number of observed cells since our approach
always uses a fixed-size tensor that is filled with zeros in the ab-
sence of observations. Overall, GPR-Matern is the most efficient in
terms of accuracy and robustness, while its execution time is also
relatively lower.

Focusing on GPR, we assess the accuracy of the following kernels
in Figure 5: constant, RBF, rational quadratic, and Matérn. The
rational quadratic and Matérn kernels are the most accurate, while
the former slightly outperforms the latter. However, the execution
time of the quadratic kernel is twice as much as that of the Matérn
kernel. We therefore leverage GPR with Matern kernel within IAM.

5.3 Distributed vs Centralized Aggregation
We compare the overall performance of the distributed vs central-
ized interpolation-mediated aggregation using our 1-year dataset.
In the centralized aggregation case, the server collects all the
sensing data and performs the aggregation and interpolation based
on the whole dataset. As for the distributed aggregation (see Fig-
ure 2), we consider the following methods:
• Ideal iterative aggregation is a theoretical and sequential
case in which the aggregation starts at the first crowdsensor
that aggregates its tensor with the next crowdsensor and the
aggregation process repeats with the following crowdsensors
until the last crowdsensor is reached. This is the ideal case
for which we ignore the actual locations of the crowdsensors.
• Base stochastic aggregation represents the real-life sce-
nario: an aggregation occurs when at least two crowdsensors
meet, as detected using the actual location and time proxim-
ity available from the dataset. The aggregation process thus
depends on the mobility of the contributing users. Upon a
meeting, the mainstay is selected randomly and 𝛽 = 𝛽 ′ = 1
for the generalized Product-of-Expert (see Algorithm 2). Ul-
timately, all the tensors are uploaded to and merged at the
server, either directly or via a relay depending on the crowd-
sensors’ P2P meetings.
• IAM opportunistic aggregation is similar to the above
stochastic aggregation with the exception of the selection
of the mainstay and the chosen 𝛽 values. It follows our Al-
gorithms 1 & 2, and we set 𝛽𝑠 = 1.5 (resp. 𝛽𝑠′ = 0.5) for
crowdsensor 𝑠 with lower 𝐷 (resp. 𝑠 ′ with higher 𝐷).

As illustrated in Figure 6, the execution time associated with
the centralized aggregation (and interpolation) at the server sig-
nificantly increases when the number of crowdsensors gets high.
Instead, when the interpolation and aggregation are mainly per-
formed by crowdsensors, the server execution time is almost neg-
ligible regardless of the number of crowdsensors. In addition, the
storage requirement is minimized on the server because the data
tensor size is always unchanged when aggregating new incoming
data (via linear operations).

We further assess the benefit of the decentralized IAM approach
to crowdsensing from a financial perspective. We specifically com-
pare the IAM solution with the more classical centralized one,
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Figure 7: Monthly financial cost of a
cloud-based deployment
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Figure 8: Aggregation accuracy - RMSE

which often relies on a cloud platform for data analysis and stor-
age. This is in particular the configuration of the crowdsensing
system of the Ambiciti company that provided us the dataset:
the system initially used the Google Cloud Platform (GCP, https:
//cloud.google.com/products/), which we consider as an illustrative
candidate for estimating the budget associated with a cloud-based
configuration. In a nutshell, the price depends on the amount of
network traffic, the amount of storage needed, and the load associ-
ated with the computation (e.g., execution time associated with the
analysis). Figure 7 estimates the monthly financial cost associated
with running centralized vs distributed crowdsensing while using
the GCP platform as the server and assuming that each crowdsensor
sends a 2𝑀𝐵 packet every day. The cost associated with the cen-
tralized approach increases linearly because the number of uploads
and the computation involved to interpolate the phenomena are
both high. Instead, the costs of the stochastic and opportunistic
approaches remain low because communication toward the cloud
is reduced and only lightweight aggregation is performed on the
cloud. Our IAM opportunistic aggregation outperforms the sto-
chastic approach because we further reduce the computing load on
the cloud. In general, the IAM decentralized solution significantly
alleviates the dependence on the infrastructure server, thereby en-
abling the wider adoption of crowdsensing systems by communities
of users concerned with environmental monitoring.

Figure 8 provides the RMSE of the three distributed aggrega-
tions compared to the centralized approach that serves as reference.
Although the ideal iterative aggregation avoids the processing of
interpolation and aggregation on the cloud, the RMSE mean (resp.

median) equals 2.213 (resp. 2.345). The accuracy of the stochastic ag-
gregation is quite similar, with a RMSE mean of 2.212, and a RMSE
median of 2.341. Our opportunistic aggregation performs better
than the other distributed approaches with a RMSE mean (resp. me-
dian) of 2.102 (resp. 2.225). Still, as expected, the decentralization
impacts on the overall aggregation result, which is to be compared
to the resulting resource gains. It is part of our future work to
investigate further enhancement of the distributed interpolation-
mediated aggregation by, e.g., accounting for the significance of
the measurements gathered at a node when interpolating.

5.4 IAM Impact on the Device Resources
We now focus on the resource consumption of IAM on the end
device, for which we analyze the execution time (depending on
the number of observed cells and of aggregations) and power con-
sumption (depending on the execution time and D2D protocol). We
empirically assess the performance associated with the IAM pro-
totype in terms of execution time and energy consumption, using
Android smartphones.

Figure 9 compares the amount of traffic uploaded to the server in
the centralized vs distributed cases. The traffic is evaluated based on
the number of actual P2P aggregations (within relays). As expected,
the distributed aggregation reduces the amount of traffic uploaded
to the server and hence the cellular network occupancy is kept
to a minimum. Furthermore, the IAM opportunistic aggregation
drastically reduces the uploading to the server by 54.2% compared
to the stochastic aggregation. A portion of the traffic sent to the
server is replaced by the D2D forwarding among crowdsensors;
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Figure 9: Directly uploaded messages
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Figure 11: Energy consumed by IAM

there are more aggregations and thus more P2P traffics generated
when the number of crowdsensors increases. This result supports
our mainstay selection: crowdsensors with better inference quality
tend to have more relays/aggregations.

Then, we run experiments on a SAMSUNG GALAXY S7 smart-
phone embedding a 3000 mAh battery capacity. Figure 10 shows
the interpolation execution time depending on the number of cells
(i.e., area at the target scale) covered by the crowdsensor, and the
aggregation execution time depending on the number of aggrega-
tions. Note that the figure shows no more than 500 entries, which
is in practice a very high number of cells contributed/visited by
one crowdsensor per day. As expected, the interpolation is compu-
tationally intensive compared to the aggregation, whose execution
time is comparatively negligible: the interpolation takes a couple
of minutes when the number of observed cells is greater than 500,
while the aggregation takes less than 100 seconds for a number
of aggregations below 500 and for a number of observed cells per
crowdsensor varying from 1 to 500. The aggregation shows a linear
time complexity.

Recall that each crowdsensor executes the interpolation only
once, which is themost computation-intensive operation. Assuming
the crowdsensor has 500 observed cells, an interpolation consumes
the most energy with 88mAh, and an aggregation consumes only
2mAh. Figure 11 estimates the energy consumed by a smartphone
that implements the interpolation and opportunistic aggregation
when the P2P meeting frequency varies: the more frequent is the
aggregation, themore energy is consumed. Nevertheless, the related
energy consumption remains under control because in practice
the crowdsensor usually has already relayed/aggregated its data
before encountering around 8 crowdsensors for a single day. In
summary, the interpolation of 500 observed cells and 8 aggregations
for a day cost only 2.88% of the battery capacity. With respect to
communications, based on the power assessment in [15], uploading
via cellular network consumes 8.9 (resp. 4) times of the D2D relay
energy via Bluetooth (resp. Wi-Fi).

6 DISCUSSION
To the best of our knowledge, our work is the first to investigate and
design a fully distributed interpolation and aggregation based on
the opportunistic encounters of crowdsensors. Our key hypothesis
is that the number of encounters –both past and future– is corre-
lated to the number of observations and thus the inference quality.

Other common criteria such as device resource/status may be fur-
ther considered when selecting the mainstay. Still, our evaluation
does not analyze the power consumption due to D2D communica-
tion, as we rely on the results of previous studies that show that
D2D networking is cheaper than cellular networking [2, 5, 34]. It
is part of our future work to further investigate the overall effec-
tiveness of IAM in terms of resource efficiency vs data accuracy,
compared to the centralized approach. In addition to the required
energy efficiency and accuracy for any crowdsensing system, en-
suring privacy is another key concerns for the end-users. Here, we
claim that the fully decentralized approach of IAM outperforms the
centralized approach in terms of privacy, further considering the
opportunistic, impromptu encounters of the crowdsensors, which
subsequently share aggregated & interpolated tensors about en-
vironmental phenomena. The opportunistic approach then raises
the potential issue of un-trustworthy crowdsensors that may con-
tribute malicious data. While the IAM solution presented in the
paper assumes trustworthy crowdsensors providing equally accu-
rate measurements, our aim in the near future is to investigate
mechanisms that filter anomalous data (e.g., outliers) to deal with
untrustworthy contributors.

7 CONCLUSION
One of the major benefits of crowdsensing is the possibility to moni-
tor environmental phenomena at the urban scale, simply leveraging
the abundance and capacity of people’s smartphones. In practice,
the people’s mobility makes the crowdsensing contribution un-
evenly distributed over space and time, which requires the analysis
of the contributed observations that is in general performed at a
central, often cloud-based, server. However, as the number of con-
tributors grows, the increasing number of observations that the
crowdsensing systems must process gets challenging: the high net-
work and financial cost associated to a cloud-centric system hinders
the widespread deployment of crowdsensing, and the high compu-
tational cost due to the large amount of data makes intractable the
modeling of the environmental phenomenon.

We tackle the above issues by exploiting the increasing com-
puting capacity of today’s smartphones, that is, we distribute the
interpolation and aggregation associated with the sensing data at
the powerful end devices. To do so, we introduce IAM that runs
on the smartphone to capture complex relationships among the
collected observations across both space and time by relying on
Gaussian Process Regression and 3D tensors. Then, the resulting
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tensors are opportunistically combined together following a sto-
chastic process based on the physical encounters of people. The
benefit of our approach is threefold: (i) each crowdsensor (i.e., ex-
pert) independently establishes an interpolation of the region it
covered; (ii) the aggregation resulting from the Product-of-Experts
is sharper than any of the individual tensor and renders much
more tractable the establishment of the overall tensor; and (iii) the
computation achieved on the device is limited, and thus not energy-
exhausting. Indeed, the evaluation using a real-world dataset shows
that our approach significantly reduces the transmission to, and
the computing resource consumed on, the infrastructure server,
compared to the centralized approach.
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