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Abstract. To understand the behavior emerging from the coordination
of heterogeneous simulation units, co-simulation usually relies on either
a time-triggered or an event-triggered Application Programming Inter-
face (API). It creates bias in the resulting behavior since time or event
triggered API may not be appropriate to the behavioral semantics of the
model inside the simulation unit. This paper presents a new semantic-
aware API to execute models. This API is a simple and straightforward
extension of the Functional Mock-up Interface (FMI) API. It can be
used to execute models in isolation, to debug them, and to co-simulate
them. The new API is semantic aware in the sense that it goes beyond
time/event triggered API to allow communication based on the behav-
ioral semantics of internal models. This API is illustrated on a simple
co-simulation use case with both Cyber and Physical models.

Keywords: co-simulation · API · behavioral semantics

1 Introduction

Cyber-Physical Systems are a class of systems where computation parts (cyber)
and the plant parts (physical) can not be developed in isolation since the be-
havior of one impacts the others. In this context, it is of prime importance that
orchestration of software and physical processes are based on semantic mod-
els that reflect properties of interest in both [14]. Echoing this, such systems are
usually developed by multiple stakeholders, which use domain-specific languages,
tailored both syntactically and semantically to the domain of expertise [10].

One solution to address the orchestration of different processes is the use of
co-simulation, where processes are computed/solved by dedicated tools and kept
in synchronization by a coordination algorithm. Usually, co-simulation makes use
of a common Application Programming Interface (API) to communicate more
easily with the various tools. For instance, the Functional Mockup Interface
(FMI [18]) proposes a homogeneous time-driven interface to realize a computa-
tion step on a solver; this is well suited to the simulation of continuous physical
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processes. Another well-known co-simulation approach is HLA [2], which pro-
poses a homogeneous publish-subscribe event-based API well suited to discrete
event processes.

However, in order to keep during the orchestration the behavioral semantics
specificity of each modeling language, it is important to avoid using an API that
hides semantic specificity in order to homogenize. Not taking care of internal
semantics during the orchestration of such processes may lead to wrong results,
lack of accuracy, and bad simulation performance [16,25,19,9,11].

In this paper, we presented a versatile API, which can be tailored to the in-
ternal model under simulation. By using this API, it is possible to communicate
with the simulation unit according to different semantics (e.g, time-triggered,
event-triggered, mix); according to the internal semantics of the simulation unit.
Additionally, it is also possible to ask the simulation unit to stop under spe-
cific conditions like for instance when crossing a threshold or when it reaches
breakpoint (for debugging purpose).

The next section explains the problems and overviews of the solutions pro-
posed by other approaches. In Section 3, we present the semantic-aware API and
in Section 4, we illustrate its use and benefits on a case study. Finally, before
to conclude in Section 6, we propose a small discussion about the approach in
Section 5.

2 Problem Statement and Related Work

Collaborative simulation of Cyber Physical Systems relies on the data and time
synchronizations between various simulation units; where a simulation unit is,
generally speaking, an encapsulation of a system part execution. Depending on
the co-simulation, a simulation unit can encapsulate different entities amongst
which (but not limited to): a model and its solver, a program together with
its virtual machine, a compiled executable code, a proxy to an existing system
part (hardware/software in the loop). A co-simulation actually implements the
coordination that should ensure a correct3 synchronization between the data
produced and required by different simulation units. The goal is to be able to
understand the behavior emerging from the coordination of the different parts of
the system; either for simulation or analysis. Usually, such parts were developed
by different domain experts, who are using domain specific languages and tools
tailored syntactically and semantically to their needs. Also, most of the time, a
simulation unit is seen as a black box by the coordination to ensure Intellectual
Property preservation.

In this context, various algorithms were proposed to realize the coordina-
tion; well known classics like the Jacobi or Gauss-Siedel algorithms but also
many others variants [23,3,29,8,28,7,22,4,20]. It is worth noticing that all the
proposed algorithms are time-triggered, i.e., simulation units are all executed for
a specific predefined time-step. This is a surprising fact since from the 90’s work

3 this notion is defined later in this section.
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Fig. 1: Time-triggered simulation considered as incorrect.

about coordination languages and architecture description languages (ADLs)
proposed more sophisticated techniques for the correct and efficient coordina-
tion among software components [21,17,13]. Actually, using the same API, be-
ing time-triggered or event-triggered on all the simulation units creates bias in
the understanding of what the simulation units do. For instance, [25,9,16,26]
identified the problem introduced by the use of a time-triggered API on Cyber
simulation units where sampling the behavior at specific point in times creates
artificial delays and loss of information from the coordinator point of view. Such
delay can lead to error in results, to bad performances of the co-simulation, or
both [16].

In this paper, we consider a coordination algorithm as correct if it does not
introduce any delays or lose information during the communication with the
simulation unit. Consequently, delays and information loss that appear when
using a time-triggered API on a piece-wise constant data are considered incorrect
(see Figure 1). Three important things must be noticed at this point. First,
sampling a piece-wise constant value can make sense and does not necessarily
introduce major problem; however, this should be done on purpose and not be
the result of an inappropriate API. Second, there exists in many API (e.g., the
FMI standard [18]) the possibility to avoid such delay, typically by roll-backing
the simulation to a previous state and trying to locate the actual value change.
This can be done only if the simulation can actually be rolled-backed; also this
is costly in terms of simulation-time. Finally, third, it is worth noticing that the
problem is broader than the simple illustrative case. As illustrated in [26], the
coordination algorithm can have an impact on the correctness of the system.

The core of the problem was identified in several papers: it is not appro-
priate for any simulation unit to communicate only through a time-triggered
or event-triggered API. In the literature, some approaches proposed to extend
some existing API to fix a particular problem. This was for instance the case
in [25] where they proposed to add a new parameter to the FMI time-triggered
doStep(∆t) function. The new parameter is nextEventT ime, a placeholder to
store the time at which unpredictable events occurred. [16] went further by
proposing to extend the FMI API with new functions that simulate until input
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and output ports are respectively ready to be read or just written. Finally, the
new features of FMI3.0 for hybrid co-simulation tries to aggregate such proposi-
tions (see chapter 5 of FMI3.0 development version https://fmi-standard.
org/docs/3.0-dev/#fmi-for-hybrid-co-simulation).

However, in all these related works, the problem is not handled in its gener-
ality and they make specific cases of something that should be straightforward.
In order to speak correctly with a simulation unit, you should be aware of its
behavioral semantics and adapt the way to realize the doStep accordingly. As an
abstraction of a simulation unit behavioral semantics, previous works proposed
to focus on the nature of the inputs and outputs of the simulation units [8,24]
like for instance continuous, piecewise-continuous, piecewise-constant or spuri-
ous. We believe this abstraction is very interesting and can be used as a basis
for a semantics-aware API.

3 Proposition

We propose to consider the FMI time-triggered interface doStep(∆t) as a spe-
cific case where we ask a simulation unit to simulate until a specific predicate
characterized by an amount of time spent in the simulation unit4. Following the
same rationale, the proposed semantics-aware API can ask to a simulation unit
to execute until a specific coordination predicate holds. The predicate must be
expressed according to the information from the simulation unit behavioral inter-
face (typically containing input/output nature, time representation, and solver
capability [8,24,16,15]). Consequently, the general form of the proposed doStep
API is:

StopCondition doStep(CoordinationPredicate p)

; where p expresses a condition under which the execution should pause, i.e., the
condition under which the doStep function returns. For instance, considering
the input and output nature as defined in [24] (i.e., continuous, piece-wise con-
stant, piece-wise continuous or spurious), the concept of predicate for a correct
coordination can be defined as shown in the class diagram Figure 2

If the simulation unit supports only temporal predicates, then it corresponds
to the FMI API. However, other coordination predicates have been defined. Here
is a brief description of their meaning and their typical use case.

1. TemporalPredicate is a predicate that becomes true when the internal
time of the simulation unit reaches the value of the predicate. This is the
classical FMI predicate.

2. UpdatedPredicate is a predicate that becomes true as soon as the ref-
erenced variable, which must be a piece-wise constant output, has been as-
signed. It typically corresponds to example from Figure 1, which can then be
managed without data loss, delays, or very small communication step size;
i.e., in a correct way.

4 Note that, in reference to study on Model of Computations [27] that this may be
done only for timed simulation units.

https://fmi-standard.org/docs/3.0-dev/#fmi-for-hybrid-co-simulation
https://fmi-standard.org/docs/3.0-dev/#fmi-for-hybrid-co-simulation
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Fig. 2: Minimal but extendable set of predicates.

3. ReadyToReadPredicate is a predicate that becomes true just before the
simulation units actually read the referenced variable. It is typically used
if there is a need to provide an input to a simulation unit that actually
reads (non necessarily in a deterministic way) this input at specific points
in time. Instead of periodically providing the input data (consequently with
unavoidable delays), the data is provided only when needed by the simulation
unit.

4. ThresholdPredicate is a predicate that becomes true when the refer-
enced variable crosses the defined threshold (according to the crossing di-
rection5). It is typically used when a simulation unit is waiting for a specific
threshold on a value from another simulation unit. Instead of periodically
providing the input data (consequently with unavoidable delays) to be tested
and possibly using rollback for more precision, the data is provided only when
the condition is reached.

5. EventPredicate is a predicate that becomes true when the referenced
event occurs. While this is in our implementation only used for cyber events,
it may also be extended to encompass discontinuities or other kinds of events
on (piecewise) continuous signals.

6. BinaryPredicate defines the disjunction of other predicates.

Finally, the proposed API also provides the classical function like for instance
loadModel, get/set Variable, get/set State and terminate.

What is important is the (preliminary) definition of the coordination pred-
icate, which is, according to our experiments, the minimal set of predicates to
have an accurate coordination i.e., without loosing any data, events or signals.
Note that for now, we are only using the disjunction of predicates since it is not
clear about the meaning of their conjunction. For instance, existing works about
Event constraints suggest using Union or Inf/Sup constraints instead of AND

5 It can be either from above to below, from below to above or both.
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since they intrinsically embed a notion of order which is not existing into the
classical Boolean operators [1,12].

To these predicates, many others could be added like for instance a disconti-
nuity predicate that stops when a discontinuity is detected on a piece-wise con-
tinuous variable (see description of the Event predicate). Another more complex
predicate could be a Büchi predicate, which is verified when a specific state-
based observation occurs. There is no real reason to limit the kind of predicate
that can be defined, as long as it makes sense according to the simulation unit
execution semantics.

In other words, based on the simulation unit behavioral interface, one can
speak about the simulation in terms of predicates which are relevant in the par-
ticular simulation units used in the co-simulation. For instance, considering a
simulation unit interface of an untimed simulation unit, no temporal predicate
can be used. In the same idea, if the simulation unit exposes only (piece-wise)
continuous variable, then it should not be possible to refer to these variable up-
dates (since it creates an undesired connection with the internal simulation unit
discretization step). In short, the acceptable predicates for a specific simulation
unit can be inferred from the simulation unit behavioral interface of such simu-
lation unit. However, it is also important that each tool specifies the predicates
it supports.

The value returned by the doStep function must allow the coordinator
to understand why the simulation was actually paused, so that it can do the
appropriate action. For instance, if the simulation unit was paused due to an
UpdatedPredicate, then the variable that has been updated should be com-
municated to the appropriate simulation unit input (after being sure that the
receiving simulation unit is at the same time than the emitting simulation unit,
aligning the time if needed). For now, we used a simple form a StopCondition
but it might be aligned with the Predicate class diagram. The Figure 3 shows
a minimal proposition for a simple StopCondition. The StopReason is a pred-
icate type defining why the simulation was paused; the elementName defines the
referenced element link with the stop reason and the stopTime stores the internal
time of the simulation unit when paused.

Fig. 3: Simple StopCondition, returned by the doStep function.

Remarque 1 : This is not clear yet how the link should be made between
the name of an exposed variable in the simulation unit behavioral interface and
the actual variable inside the model under simulation. For now, we are using
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qualified names instead of simple names like in the simulation unit behavioral
interface. Similarly, for experimental facilities, we are using a Double to encode
time in the co-simulation. It does not mean that the time is internally a double
(since it may be encoded by super dense time for instance) but it provides a
helpful homogenization of the time from the coordination point of view.

Remarque 2 : According to our definition, FMI is a specific mold of our in-
terface since it defines only (piece-wise) continuous variables and (and it does
not allow for Threshold predicate injection). Consequently, the only acceptable
predicate is a Temporal predicate.

We show in the next section how this API, implemented for language devel-
oped in the GEMOC studio [6], provides a simple way to gain in term of accuracy
and performance during the coordination of multiple simulation units. However,
in the next subsection, we overview how it can be used for other usages, typically
debugging.

Example of Extension of the API for Debugging

In this subsection, we show an implementation experimented in the GEMOC
studio to use the very same API for debugging. Our goal was to implement
the functionality of an API as defined in the usual debugger. We consider this
useful for the developer of one simulation unit when she/he wants to debug
the simulation unit in the context of the other simulation units. For this rea-
son, we considered that breakpoints are defined with another interface and con-
sidered only the way to execute the simulation unit. To define the new use
of the interface, we simply defined the necessary Predicate for debugging (see
Figure 4) and implemented the corresponding management of the Predicate in
a wrapper. Details can be found here: https://github.com/jdeantoni/
cosimulationOfCpuHeatManagement. Furthermore, it is interesting to re-
alize that debugging equational simulation units could use a totally different
notion of breakpoint. For instance, one could want to pause the simulation when
the derivative of a specific output reaches a symptomatic threshold, in order
to check different values in the system and try to understand what actually
happens. In this case, Predicates should be defined accordingly.

Once again, we tried to provide an extendable simulation API, focused on
co-simulation but suitable for different activities.

4 Case Study

We used the management of a CPU temperature as a simple but representative
case study6. This system is made up of 3 simulation units (see Figure 5). CPUin-
BoxWithFan and fanControler have been developed in the OpenModelica tool7

to respectively define the CPU in a box which is cooled by a fan and the controller

6 the associated code can be retrieved from http://i3s.unice.fr/˜deantoni/
cosim-cps2020.

7 https://openmodelica.org.

https://github.com/jdeantoni/cosimulationOfCpuHeatManagement
https://github.com/jdeantoni/cosimulationOfCpuHeatManagement
http://i3s.unice.fr/~ deantoni/cosim-cps2020
http://i3s.unice.fr/~ deantoni/cosim-cps2020
https://openmodelica.org
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Fig. 4: Simple StopCondition, return by the doStep function.

Fig. 5: Simple but representative case study for co-simulation.

of the fan speed (a simple Proportional controller). The heat between the box
and the CPU is transferred according to the fan speed. The overHeatController
has been developed as a state machine in the GEMOC studio8.

In the CPUinBoxWithFan simulation unit, the CPU is activated as long as
the stopWorking input is equal to false. When activated, the CPU produces
heat, which is exchanged with the air of its box more or less rapidly depending
on the fanSpeedCommand input (∈ [0..10] where at 0 the fan is stopped and at
10 the fan is at full speed).

In the overHeatController simulation unit, a state machine is defined. It
monitors periodically (every 3 seconds) the cpuTemperature and if it exceeds a
specific threshold, the switch event occurs and the state machine enters in a new
state where it monitors the CPU temperature every 5 seconds. If it goes above
a specific threshold, the switch event occurs and the state machine enters the
first state (see Figure 6).

To connect the different simulation units we relied on strategies defined
in [16]. Consequently the temperature from CPUinBoxWithFan to overHeat-

8 http://eclipse.org/gemoc.

http://eclipse.org/gemoc
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Fig. 6: Over Heat Controller state machine.

Controller is only exchanged when the later simulation unit is ready to read the
data. Similarly, the change of the stopWorking input is only done only when the
switch event occurs. Between the two simulation units obtained from Modelica,
the connectors define classical time trigger communication.

Of course, we handled these different cases by using different Predicates in
the doStep function call. However, one can notice that the coordination algo-
rithm will not be generic anymore but dedicated to the topology of simulation
units and the information on the connectors. For this specific use case, the coor-
dination algorithm is provided on Listing 1.1. Lines 4 to 6, the predicate for the
overHeatController simulation unit is defined as “the variable cpuTemperature
is ready or the switch event occurs”. Line 7, the dostep function is called and
lines 8 to 16 the result of the function is managed. If the simulation was paused
due to the variable cpuTemperature which is ready to be read, then a function
(simulateBoxAndFanControl defined line 19) is called to set the CPUinBoxWith-
Fan simulation unit at the same time as the over heat controller simulation unit.
Once done, the expected value is exchanged between the FMU. If the simulation
was paused due to the occurrence of the switch event, then the receiving simu-
lation unit is at the time when the event occurred, so the stopWorking variable
is changed. The temporal connector between the fan controller and the CPU,
as defined in Figure 5, requires to simulate both models until a specific point in
time. In lines 21 to 36, the simulation units must reach an expectedTime. If there
is one (or several) intermediate temporal steps in between now and the expected
time (i.e., now%5 = 0 in our case), then the simulation units are simulated until
this point in time and data are exchanged as expected.

Listing 1.1: Coordination Algorithm dedicated to the example on Figure 5 using
the proposed interface

1 public void coSimulate (double endtime ) {
//now = 0 ; l o ca l I sS topped = f a l s e ;

3 while (now < endTime ){
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ReadyToReadPredicate r2rp ( ”cpuTemperature” ) ;
5 EventPredicate ep ( ” switch ” ) ;

BinaryPred icate bp ( r2rp , ep ) ;
7 StopCondit ion sc = contro lerSU . doStep (bp) ;

i f ( sc . stopReason == READYTOREAD) {
9 simulateBoxAndFanControl ( sc . stopTime ) ;

double cpuTemperature = c . boxSU . read ( ”cpuTemperature” ) ;
11 contro lerSU . s e tVar i ab l e ( ”cpuTemperature” , cpuTemperature ) ;

} else { // event occured
13 simulateBoxAndFanControl ( sc . stopTime ) ;

l o ca l I sS topped = ! l o ca l I sS topped ;
15 boxSU . wr i t e ( ” stopWorking” ) . with ( l o ca l I sS topped ) ;

}
17 }

19 public void simulateBoxAndFanControl (double expectedTime ) {
double de l t a = expectedTime − now ;

21 while ( de l t a + (now % 5) >= 5) { //\Delta t == 5 f o r each connector
↪→ from boxSU and fanContro l l e rSU
double stepToDo = (5−(now % 5) ) ;

23 boxSU . doStep ( stepToDo ) ;
fanContro l l e rSU . doStep (5) ;

25 double cpuTemperature = boxSU . read ( ”cpuTemperature” ) ;
fanContro l l e rSU . wr i t e ( ”cpuTemperature” ) . with ( cpuTemperature ) ;

27 int fanCommand = fanContro l l e rSU . read ( ”fanSpeedCommand” ) ;
boxSU . wr i t e ( ”fanSpeedCommand” ) . with ( fanCommand) ;

29 double boxTemperature = boxSU . read ( ”BoxTemperature” ) ;
now += stepToDo ;

31 de l t a = expectedTime − now ;
}

33 i f ( de l t a > 0) {
boxSU . doStep ( de l t a ) ;

35 now += de l t a ;
}

37 }

The results from the beginning of the co-simulation obtained with this setup
are provided in Figure 7. The reader should notice that the points are only
retrieved as specified in Figure 5, i.e., at the exact time it is needed to have a
correct co-simulation. For instance on Figure 7, we can see that a first paused was
realized by the overheat controller at time 2, i.e., which is the non deterministic
time spent for the state machine to enter in the normalTemp state, where the
guard of output transition is evaluated and consequently the CPU temperature
is read. Then, pauses are realized every 5 seconds and every multiple of 3 (the
reading period in the first state of overHeatController). This way, we reduce the
number of communication points to their strict minimum to have a correct co-
simulation and we avoid the delays introduced by the classical sampling strategy.

In the Figure 8, the first point in time is the one when the state machine
switch from the normalTemp state to the tooHot state. It occurred at time
14679. Consequently, as long as the state machine remains in this state, data
are retrieved every 5 seconds as specified in the temporal connectors and in
the reading period from the state machine. However, since the state machine
entered in the tooHot state at time 14679, then the simulation unit was paused
after 5 seconds, i.e., at 14684, while the temporal connectors induce a pause
every 5 seconds. We can see here that the internal semantics of the simulation
is consistently exposed and took into consideration.
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Fig. 7: Results obtained at the begin of the co-simulation.

Finally, in Figure 9, the simulation is run for 8 hours and 20 minutes (30000
seconds). For this simulation, we obtained 15023 communication steps without
sacrificing accuracy over performance. If we were using a time-triggered interface
and allowed an error up to 100ms, then we would have 300’000 communication
step and a loss of accuracy. Additionally, we believe that the proposed interface is
intuitive to use and may be extended for different purposes. In the next section,
before to conclude, a small discussion about implementation is made.

5 Discussion

We argued that the proposed interface is extendable, efficient, and intuitive to
use. In this section, we discuss some of these points according to our experiment
in implementing the API in the GEMOC studio.

Concerning the implementation of the predicates, two main points can be
addressed. First, its efficiency strongly relies on how the API is internally imple-
mented. In our case we modified the code generation to generate a pause when
needed. For instance, for the Updated predicate, all assignments are instrumented
to create a pause. This has only a minor impact on performance. However, if the
implementation is done in a wrapper where all micro steps are checked to see if
a variable has been updated, then the execution may suffer from a slowdown.
The same phenomenon happens for the Threshold predicate. If one sample the
variable to check the crossing, the execution will be slow down and the exact
point in time when the crossing occurs may be missed. It is better to inject the
actual zero crossing in the model (typically in the equation set) to ensure better
performance and accuracy. This is what is expected to be done in collaboration
with Safran. Also, the implementation of the predicates must actually follow the
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Fig. 8: Results obtained when the controller enters in the tooHot state.
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Fig. 9: Results obtained when running the coordination algorithm.

semantics of the simulation unit. For instance, if a simulation unit is executing a
model developed in a synchronous language [5], then all the assignments should
NOT be caught since according to the synchronous semantics, data are latched
at specific points in time. In our implementation, we relied on annotations to
provide flexibility on the exposed semantics. Consequently, the tool developer is
in charge of providing the expected semantics.

Concerning the extension of the predicate, there are two minors points to take
care of. First, it is important to rely on a mechanism to clearly specify which
predicate is supported for a specific simulation unit. This may for instance be
done in an artefact equivalent of the FMI model description. Second, there is a
risk of an uncontrolled evolution of predicates, leading to a predicate tower of
Babel. This is a long term issue and we believe there are few risks it happens. If
the road to this situation is taken, it may be interesting to provide an official set
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of predicate extension repository, where people can look for existing predicate
before to create their own and where all predicates are put together.

6 Conclusion

We presented in this paper a new API, initially thought as a co-simulation inter-
face. However, it can be used for different purposes. It uses the proposed notion
of predicate to represent the condition under which a simulation unit must be
paused. These predicates can be of different nature depending on the use of
the API. In each case, it relies on the information provided about the simula-
tion unit. In the co-simulation case, it relies on the data nature (continuous,
piece-wise continuous, etc) exposed by the simulation unit. This information is
an abstraction of the internal behavioral semantics of the simulation unit. We
developed a case study where we showed how the API can be used in a semantic-
aware way. The use of the API adapts the number of co-simulation steps to the
internal behavior of the simulation units, keeping only the communication points
required for a correct co-simulation. We believe such communication between the
coordination algorithm and the simulation unit provides the basis for an analysis
of a co-simulation.

In future works, we first want to focus on the automated generation of the
coordination algorithm. As shown in Listing 1.1, the coordination is dedicated
to a specific simulation and it may be tricky to write it by hand for a more
complex system. Additionally, it becomes important to allow for the distribution
of co-simulation. Our approach, by limiting the number of co-simulation steps
to the minimum, is well appropriate to distribution. This is why we are actually
finishing the development of the generator of distributed coordination algorithm
based on our interface. Another future work concern the integration of such
approach into a system engineering approach but this is a longer term work.
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