
HAL Id: hal-03038547
https://hal.inria.fr/hal-03038547

Submitted on 3 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CoSim20: An Integrated Development Environment for
Accurate and Efficient Distributed Co-Simulations

Giovanni Liboni, Julien Deantoni

To cite this version:
Giovanni Liboni, Julien Deantoni. CoSim20: An Integrated Development Environment for Accurate
and Efficient Distributed Co-Simulations. ICISE 2020 - 5th International Conference on Information
Systems Engineering, Nov 2020, Manchester / Virtual, United Kingdom. �hal-03038547�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362229247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03038547
https://hal.archives-ouvertes.fr


1

CoSim20: An Integrated Development Environment
for Accurate and Efficient Distributed

Co-Simulations
Giovanni Liboni Safran Tech

Modeling & Simulation
Rue des Jeunes Bois, 78114 Magny-Les-Hameaux, France

giovanni.liboni@safrangroup.com Julien Deantoni I3S/INRIA Kairos
Université Côte d’Azur

Sophia Antipolis, France
julien.deantoni@univ-cotedazur.fr

Abstract—The development of Cyber-Physical Systems involves
several disciplines and stakeholders, which use heterogeneous
models and formalisms to specify the system and make early
validation and verification. In order to understand the behaviour
emerging from the heterogeneous models, a collaborative simula-
tion (co-simulation) can be used. To make it happen, the system
engineer must define a correct coordination of the different
executable models, which can be distributed over different enter-
prises. This is an important but difficult (and error prone) task
that can not be done without information about the behavioral
semantics of each model. In this paper, we introduce an integrated
development environment which allows 1) to import different
executable models (named simulation units), 2) to graphically
connect them with rich connectors and 3) to generate a dedicated,
accurate and efficient distributed co-simulation. The framework
is based on Eclipse EMF for the modeling part and on ∅MQ for
the deployment. It is named CoSim20.

Index Terms—Coordination, Co-Simulation, Master Algo-
rithm, Language Engineering

I. INTRODUCTION

The increasing complexity of Cyber-Physical Systems
(CPS) makes their development a challenging multi-expert
effort. Each expert focuses on a specific aspect of the system
and uses dedicated tools and languages tailored to her or his
domain of expertise [1]. The cooperation among these different
stakeholders is necessary due to the strong inter-dependency
between every parts of the system. Additionally, the emergence
of extended enterprises [2], where enterprises take advantage
of their network organization with many partners to outsource
some expertise, introduces Intellectual Property Rules between
the different experts and their artifacts. Orthogonally, in order
to speed up the time-to-market, Model-Based System Engi-
neering promotes early verification and validation (typically
by using simulation) [3]. In this context, using distributed
collaborative simulation is more and more common since it en-
ables the coordination of heterogeneous models and simulators
(i.e., simulation units), possibly without revealing Intellectual

Work partially founded by the GLOSE bilateral project between INRIA
and Safran.

Properties (e.g., by using black-box simulation units like in
the FMI standard [4]).

However, the heterogeneity of the languages and tools used
by the different experts (from either the cyber and physical
domain) makes the coordination between different simulation
units a difficult task. A simple error in this task can lead to
timing bias that corrupts the co-simulation results [5]–[13].

Several approaches, mostly based on the FMI standard,
were proposed to define the coordination of heterogeneous
simulation units [14]–[20]. However, due to the time-triggered
nature of the co-simulation framework, they failed in ensuring
a correct co-simulation embracing both cyber and physical
models [9], [11]. To embrace the cyber and physical models,
some knowledge about the behavior of the models is essential.
Such information allows to explicitly define a correct coordi-
nation, i.e., a coordination that does not introduce simulation
time delays that can corrupt the results.

In this paper, we introduce CoSim20, an Integrated Develop-
ment Environment (IDE) based on coordination interfaces and
rich connectors, supported by advanced textual and graphical
editors; and from which it is possible to automatically generate
a distributed executable code of the co-simulation.

The next Section overviews other existing approaches and
state the problem. In the Section III, we introduce the language
and tool proposed to define an explicit coordination model.
Then, in Section IV, we detail the distributed algorithm
generated from the models. Finally, in Section V, we show
a use case study, which shows the correctness and efficiency
of the approach.

II. PROBLEM STATEMENT AND RELATED WORK

A collaborative simulation focuses on the orchestration
among different simulation units that represent different parts
of the same system, in order to better understand the emerging
behavior of the system. A simulation unit is an executable
entity, usually a black box, which may for instance encapsulate
a model and its solver, a binary executable process or a proxy
to a hardware device. The orchestration is of prime importance



2

Get and Set FMU data

Coordination 
communication 

points

t

t

Internal evolution 
of a piece-wise 
constant data

Information
lost

Delay due to time-triggered API

doStep(Δt)

Fig. 1: Sources of errors in a time-triggered co-simulation
algorithm.

because it defines the instant when a simulation unit exchanges
data with other simulation units, i.e., when it synchronizes its
internal time in order to produce or consume data at the right
timing.

Several approaches proposed different orchestrations
(mainly based on the FMI Standard). A majority of them
are variants of well-known Jacobi or Gauss-Seidel methods
and are dedicated to (continuous) system of equations [14],
[16]–[21]. All these algorithms implement a time-triggered
coordination that does not correctly support the integration
of heterogeneous simulation units as found in Cyber Physical
Systems; i.e., they do not encompass Cyber simulation units
which are based on discrete time / discrete event models.
These simulation units usually embed so-called piece-wise
constant data where sampling creates bias. For instance,
Figure 1 shows that time triggered sampling can create either
information loss or delays. As shown in [9]–[12], such bias
may invalidate the results of the co-simulation. Consequently,
we consider a coordination as correct when no timing bias
like the ones of Figure 1 are introduced.

Additionally, the emergence of extended enterprises implies
that simulation units may be distributed in different locations,
in particular where the expertise is. This is consequently
important to reduce communication between the different
simulation units to better support distributed coordination.

The reader should note that the problem in Figure 1 is
not related to the sample rate but rather on an inappropriate
communication schema between the simulation unit and the
coordination. One can increase the sample rate but it decreases
the performances (by introducing more message exchanges
between simulation units) and reduces the delays due to the
time-triggered API without removing them (see section V).

In order to define a correct communication schema, the
system engineer must have some information about the be-
havioral semantics of the simulation units. To thwart such
problem, several works on component based architecture de-
scription languages and coordination languages proposed to
exhibit in an interface partial information from the (black
box) components [22]–[26]. As an example, a nice proposition
of behavioral interface has been recently published in [27].
Such interface must give enough information with respect
to the use of the interface, without disclosing the internal
model (to avoid Intellectual Property violation). In our case,
it must provide enough information on how to coordinate the
component. In the context of CPS, we proposed an assisted
tool to easily import and define coordination specific interface,

Native Runtime API
(e.g. FMI, GEMOC)

Simulation
Unit

Runtime
Coordination

API
(e.g. Java,

Python)

Runtime
Coordination

API
(e.g. Java,

Python)

Execution
+

data get/set Action
Exchanges

Simulation
Unit

Native Runtime API
(e.g. FMI, GEMOC)

Coordination
Interface

CoSim20 Runtime Framework

CoSim20 Modeling Environment

Automated
Generation

Coordination
Interface Rich

Connectors

Fig. 2: Overview of the Cosim20 framework.

i.e., an abstraction of the simulation unit behavioral semantics
which is suitable to define an appropriate coordination among
simulation units. This coordination interface can be exploited
to define a coordination algorithm. Coordination languages
such as [26], [28]–[32] proposed sophisticated techniques to
define a correct and efficient coordination among software
components. However, they focused only on discrete-event
coordination and this make these approaches unsuitable to the
coordination of CPS simulation units. In this paper, we pro-
posed a language based on rich connectors explicitly tailored
to the specification of CPS simulation unit coordination.

The proposed language and framework are detailed in the
next sections.

III. COSIM20 MODELING ENVIRONMENT

Figure 2 gives an overview of the proposed framework.
There are two distinct parts: one part dedicated to the modeling
of the co-simulation by using the language provided in the
CoSim20 modeling environment; and one part dedicated to
the co-simulation itself in the distributed CoSim20 Runtime
framework. In the modeling environment, the development
starts by importing a set of existing simulation units with their
native runtime API. A coordination interface is then defined
for each simulation unit, exposing appropriate properties like
input/outputs and their nature (see next subsection). Then,
the interface is used to define rich connectors which specify
the intention of the coordination (see section III-B). Based
on such model, the framework automatically generates for
each simulation unit a Runtime Coordination API and an
algorithm that handles the model execution through its native
runtime API. The runtime coordination API makes use of a
set of distributed queues (generated and configured during the
automatic generation phase) to exchange actions to be realized
by other simulation units in order to realize the coordination.
A distributed master algorithm emerges from such exchanges.

A. Coordination Interface
The proposed Coordination Interface consists in a set of

ports with their properties e.g., direction, type and nature,



3

and a temporal reference. Each port represents a point of
interaction between the internal variable of a simulation unit
and the external environment i.e., the coordination algorithm.

By looking at the various existing approaches and by
realizing various systems, we realized that the information
which is important from the coordination point of view de-
pends on how and when the inputs and outputs are internally
used (i.e., read and/or written) by the simulation unit. Such
information is abstracted by the data nature of the simulation
units inputs/outputs. The different natures of the data found in
CPS have been introduced in several approaches but are nicely
summed up in [10], [33]. We adapted such specification and
ended up with the following data natures:

Continuous : A variable is defined as continuous
if its value is present for all t ∈ T , continuous
and differentiable at any points of its range of
definition;
Piecewise-continuous : A variable is defined as
piecewise-continuous if its value is present at each
instant but it is not continuous and not differen-
tiable at some points (it presents discontinuities);
Piecewise-constant : The value is present at each
instant but it presents discontinuities (typically
due to internal or external assignments) and the
value is constant between two discontinuities;
Transient : The value is present only at specific
points in time and absents at other points in time.
Transient data are usually associated with the
notion of event or signal as found in synchronous
languages.

Associated with the direction of the data, the data nature, as
defined above, gives information on important points in time
at which coordination should be done. Typically, if the output
of a simulation unit is declared as piecewise-constant, then the
coordination model is interested in the points in time at which
the data is written; so that it can be updated in the connected
simulation unit input port(s). If the data nature is transient,
then important points in time are the instants when the data is
present. If the data nature is continuous, then there is no real
interest in any point in time; what is important is to sample
data fast enough to avoid losing quick variation (i.e., Nyquist-
Shannon law should actually hold). Finally, in addition to
the previous case, if the data nature is piecewise-continuous,
then it is important to be noticed about any discontinuity
in the signal. All in one, the data nature gives hints to the
coordination of what is the event of interest on the data. Of
course one can decide knowingly to sample piecewise-constant
data, aware of potential problems as illustrated in Figure 1.

Due to the heterogeneity of formalism participating in
the system, the time representation can be different across
the simulation units. Even if physical time (with or without
relativity effects) is mainly used in CPS simulation units it
can also be polychronous. The temporal reference specifies
the magnitude used to measure time (e.g., the angle of a
camshaft [34] or a distance).

Other (less important) properties like, for instance, the initial

Fig. 3: Screenshot of the interface definition in the tool, with
properties of ports.

value of a port can also be defined.
An example of a coordination interface in the proposed

framework is represented in textual and graphical form in
Figure 3, together with the property windows of a port. Note
that the properties are automatically imported if the SUPath
point to a standard Functional Mockup Unit (FMU) [4]. Also
in the definition of this interface, the user can decide if
the value must be plotted during the co-simulation or not
(isMonitored attribute on Figure 3).

B. Model Coordination Language

Once the interfaces are defined, we propose to use rich con-
nectors to specify how the coordination between the different
simulation units must be realized. A rich connector defines the
conditions and constraints under which data exchanges have
to occur. Inspired by coordination languages like REO [28]
and Wright [26], the coordination model is defined by the
behaviours defined in the rich connectors between ports from
the coordination interfaces.

This section describes the basic syntax and semantics of
these rich connectors, showing how they are combined to
specify the coordination between simulation units in an un-
ambiguous way.

The main element of MCL is a MCLSpecification
that imports Coordination Interfaces and contains a set of
Connectors. A connector is defined based on the ports
defined in the interfaces of different simulation units. More
precisely, a connector defines three main concepts: the actual
interaction, defined as a directed-graph topology of the system,
the triggering conditions, defined as a set of conditions that
trigger the interaction, and the synchronization constraint,
defined as a temporal constraint that must hold before to
perform the interaction.

An Interaction defines a relation between two or more ports
defined in different interfaces. Each interaction can specify one
or more assignment defined as a directed edge that connects a
source port (defined as output) with one or more target ports



4

(defined as inputs). The global set of interactions is then used
to generate the global topology of the system.

A Triggering Condition defines the condition at which
the interactions must be realized. It is based on the data
natures of the ports involved in the related interactions. For
instance, if the data involved are all of continuous nature, so
the triggering condition can specify a sample rate at which the
data exchange occurs. As another example, if an interaction
involves a piecewise-constant output port, the triggering con-
dition can refer to each update of this port (instead of using
a time-triggered approach). This coordination consequently
removes delays or information losses (see Section V). The
triggering conditions proposed in the framework are aligned
with the expressiveness of predicates defined in [35] and
appropriated to the data nature defined earlier in this section.
More precisely, we defined the following triggering conditions:

1) time condition: the interaction is (classically) triggered
periodically. It can be used on data of any nature;

2) event condition: the interaction is triggered when an
event occurs on the output port. This allows to react at
the exact time an event occurs in the simulation unit. It
can be used on transient and piecewise-continuous data;

3) data update condition: the interaction is triggered each
time the data of the output port is updated (i.e., written)
by the simulation unit. This allows to propagate fresh
data to the connected simulation units. It can be used
on piecewise-constant data;

4) data read condition: the interaction is triggered each
time the data of the input port is ready to be read by
the simulation unit. This allows to provide fresh data to
the simulation unit. It can be used on piecewise-constant
data.

Based on the triggering information, the framework is able
to statically know if there exists a suitable coordination or not.
For instance, if there is a loop between two simulation units
linked with two connectors, both stating data update condition,
then it is not possible to determine a suitable schedule for the
simulation without forcing a rollback. Instead, the designer is
proposed to sample one of the data, consciously introducing
a possible coordination related delay. We believe this is an
interesting feature to guide the designer in the coordination
process. However, elaborated recommendations beyond non-
correct coordination models are left for future works.

The Synchronization Constraint defines the relation be-
tween the temporal references in different simulation units.
It specifies when the actual interaction can be accomplished.
Usually, the most used synchronization constraint specifies that
the internal time must be equal i.e., synchronized, in order to
exchange data between two models.

An example of rich connectors in the proposed framework
are represented in textual and graphical form, as shown in
Figure 4. In addition, the editor proposes completion, syntactic
checking, etc.

From an implementation point of view, the modelling en-
vironment is defined on top of technologies from the Eclipse
Modeling project 1.

1https://www.eclipse.org/modeling

Fig. 4: Screenshot of the definition of rich connectors in the
proposed tool.

IV. COSIM20 RUNTIME FRAMEWORK

In this section, we present a distributed algorithm generated
from the information of the modeling environment introduced
in the previous section. More specifically the source code
implementing the algorithm is generated using the coordi-
nation specification contained in the rich connectors and the
coordination interfaces.

Before falling into the details of the algorithm presented in
Listing 1, we introduce the general idea.

The main idea is that a connector creates an Initia-
tor/Follower relationships on the ports it connects, depend-
ing on its triggering conditions. An initiator port initiates
the data exchange and choose the time at which it oc-
curs. On the opposite, a follower port waits for the initia-
tor and does not know about the time at which the data
exchange must occur. For instance, the triggering condition
of the connector cpuTemp2 in Figure 4 is “when value on
overHeatController.cpuTemperature is ready to
be read”. This means that each time the overHeatController
simulation unit internally reads the cpuTemperature variable,
it pauses just before the reading so that a fresh value can be
provided to it (see [35] for details). In this case, the target
of the connector initiates the data exchange by querying for
a value at a specific point in time (to the related follower
ports, i.e., the source of the connector). For this mechanism
to work correctly, it requires that the simulation unit which
exposes the follower ports did not simulate beyond the point
in time at which the value is queried. More generally it
means that each simulation unit that exposes a follower port

https://www.eclipse.org/modeling


5

should not simulate beyond the minimum point in time of the
simulation units exposing the initiator ports. We name this
point in time the Temporal Horizon of the simulation unit.
Rephrased, it means that a simulation unit which has at least
a follower port can never simulate beyond its temporal horizon
to be able to correctly handle queries from its connected
initiator ports. Sometimes, it is possible to take advantage of
deterministic triggering conditions. For instance, the triggering
condition of the fanSpeed connector on Figure 4 is “every
5 on CPUinBoxWithFan.time”. In this case, statically,
the follower ports know when the data exchange will happen
(every 5 time units of the CPUinBoxWithFan simulation
units). We refer to such ports as DeterministicFollowerPort.

The proposed algorithm runs in parallel for each simulation
unit (in the runtime coordination interface of Figure 2). The
list of initiator ports, follower ports and deterministic follower
ports are parameters of this algorithm, generated from the
modeling environment (see line 1 in Listing 1). The algorithm
also relies on (1) the native runtime interface of the simulation
unit to perform the computational concern and (2) on a
distributed communication technology to exchange actions to
be performed across the system by other simulation units.
It means that an initiator port will send actions to be done
by the simulation unit of the associated follower port. These
actions are stored in the simulation todo list, which is a list
of actions to be done, sorted according to the time at which
action must be done. The next action in the todo list is the
action with the smallest time. An action is a request to the
simulation unit. There are three kinds of action: publish(data,
time) to ask a simulation unit to publish a data on a port
at a specific time, set(data, value, time) to ask a simulation
unit to internally assign a data to value at a specific point in
time and updateTH(time) to update the temporal horizon of
the simulation unit.

Before to actually run the co-simulation, it computes, ac-
cording to the list of its initiator port triggering conditions, the
predicate at which it is mandatory to pause the simulation. For
instance, if we consider the triggering condition of connector
cpuTemp2 already explained, the predicate requires that the
simulation must pause when the cpuTemperature variable
is (internally) ready to be read. The conjunction of such
predicates required by the initiator ports is then constructed
(line 2).

After the initialization and while the simulation is running,
the next action in the todo list is taken (line 4). Note that, a
simulation unit can assign itself actions to do, typically if it
possesses initiator ports for which actions to be done are a
priori known (e.g., to publish a data on a port at every 5 time
units).

Each action must be done at a specific point in time, this
is the current action time attribute. If the time of the current
action is the current simulation time (i.e., the time at which
the simulation unit is actually paused) then it performs the
action (see lines 5 and 6 of Listing 1).

If the current action is in the future, the simulation unit has
to check if it can actually simulate or not (lines 7 and 8). For
that, we first check, according to the current action, initiator
predicates and deterministic follower ports, what we have

to do in the future and how much we can simulate. If we
cannot advance in time (the max step size is 0) it means that
we have to wait for a new temporal horizon from another
simulation unit (i.e., we wait for the temporal horizon from a
simulation unit connected to the actual simulation unit through
an initiator/follower relation) (line 10). Also, before to wait,
we have to reschedule the current action by putting it in the
todo list (line 9).

If the max step size is greater then 0, then it is add
to the initiator predicates (line 12) and the simulation is
restarted (doStep line 13). When the simulation pauses, the
now variable is updated according to the stop condition
of the doStep call. This stop condition makes explicit the
reason why the simulation actually stopped. Pragmatically
it refers to the part of the predicate that became true and
the algorithm can consequently determine the actions to be
submitted to other simulation units. For instance, if the stop
condition tells that the simulation units are ready to read
the cpuTemperature (see connector cpuTemp2) then the
publish(cpuTemperature, now) action is sent to the simula-
tion unit that contains the CPU temperature variable. Thanks
to the temporal horizon mechanism (lines 8 to 10), the time in
the simulation unit that will receive the action will be lower or
equals to the local now sent in the publish action. Eventually,
the emitter of the action will receive a set action with the
requested value of the variable at the correct time. Finally,
depending on the stop condition reason, the current action
may be accomplished or not. If not, it is rescheduled (lines
16 and 17).

Algorithm 1 Pseudo-Code for the Wrapper Coordination
Algorithm.

1: function COSIMULATE(Set<Port>initiatorPort,
Set<Port>followerPorts, Set<Port>deterministic-
FollowerPorts)

2: initiatorPred← setOwnedInitiatorPredicate()
3: while simulationIsRunning do
4: currentAction← todo.getNextAction()
5: if now = currentAction.TH then
6: realize(action)

7: maxStepSize← getNextStepSize(action)
8: if maxStepSize = 0 then
9: todo.add(action)

10: waitTH()
11: else
12: predicate← maxStepSize∪ initiatorPred
13: stopCondition← su.doStep(predicate)
14: now ← stopCondition.time
15: submitActionsToOtherSU(StopCondition)
16: if currentAction! = done then
17: todo.add(action)

If the coordination defined by the rich connector does
not violate constraints (see the previous section) then this
algorithm ensures that no action in the past will be present
in the todo list of a simulation unit. In other words, there is
no need to rollback. Additionally, as shown in the next section,



6

Fig. 5: Internal State Machine of the ctrl Simulation Unit.

such an algorithm drastically reduce the number of required
communication between simulation units and avoid timing bias
like the one of Figure 1.

From an implementation point of view, the data exchanges
are realized by using the ∅MQ library2. This allowed us to
define runtime coordination API in different languages and to
abstract the network stack by using ∅MQ distributed queues.
Moreover, since the topology is static and a priori known
(defined in the modeling environment), we chose a point-
to-point communication to avoid having a router that may
introduce performance bottleneck due to the single-point-of-
routing.

V. VALIDATION OF THE APPROACH AND RESULTS

As a representative case study, we used a CPU cooling
system composed of 3 simulation units (see Figure 4). The
BoxWithCPU and the FanController have been developed in
OpenModelica3 and then exported as two different FMUs.
They define, respectively, a CPU in a box which is cooled by a
fan, and the proportional controller of the fan speed. The heat
is transferred according to the fan speed between the CPU and
the box. These units represent the Physical part of our system.
The overHeatController has been developed as a state machine
in the GEMOC studio4 and then exported as a simulation
unit (see Figure 5). This unit represents the Cyber part of
the system. This cyber part evaluates guards of outgoing
transitions each time it enters a state. Consequently, in the
normalTemp state the cpuTemperature variable is read
every 3 seconds and in the tooHot state the CPU temperature
is read every 5 seconds.

We defined for each simulation unit its coordination in-
terface (according to their internal semantics) and the co-
ordination by using rich connectors. In this experiment, we
defined two different coordination models: a (classical) time-
triggered coordination, in which data are exchanged periodi-
cally between the simulation units; and a hybrid coordination
model that takes advantage of data nature and rich connector
triggering conditions proposed in our approach.

2https://zeromq.org/
3https://openmodelica.org/
4http://eclipse.org/gemoc

The hybrid coordination is defined in Listing V. There are
four Connectors. The two first ones define a time triggered
data exchange between the plant and the pid simulation units.
Both sampling periods are 5 units of time (i.e., 5 seconds) as
defined lines 6 and 12. For the third connector (line 17) the
data exchange is done only when the ctrl is ready to read the
cpuTemperature. Finally, for the fourth connector (line 23)
the interaction is realized each time the switch internal event
of the ctrl occurs.� �
1 load "overHeatController.mbi" as ctrl
2 load "fanController.mbi" as pid
3 load "CPUinBoxWithFan.mbi" as plant
4

5 Connector cpuTemp
6 when every 5 plant.t
7 sync pid.t = plant.t
8 do
9 plant.cpuTemperature -> pid.cpuTemperature
10

11 Connector fanSpeed
12 when every 5 plant.t
13 sync pid.t = plant.t
14 do
15 pid.fanSpeedCommand -> plant.fanSpeedCommand
16

17 Connector cpuTemp2
18 when value on ctrl.cpuTemperature is

ReadyToRead
19 sync ctrl.t = plant.t
20 do
21 plant.cpuTemperature -> ctrl.cpuTemperature
22

23 Connector switchCPUState
24 when event on ctrl.switch occurs
25 sync ctrl.t = plant.t
26 do
27 plant.stopWorking -> not plant.stopWorking� �

In opposite in the time triggered coordination, all connec-
tors exchange data with a fixed sample rate. We realized
experiments with a sample rate (∆t) of 1 second, 5 sec-
onds and 10 seconds. The framework automatically generated
the executable codes (see https://project.inria.fr/icise2020/ for
videos and screenshots). Table I reports some results from
the experiments: the number of communication points be-
tween BoxWithCPU and OverHeatCTRL, and the associated
CPUtemperature delays between the production of the value
by the plant and its reading by the ctrl. The CPU temperature
delay is a cumulative delay caused by the non-synchronization
between the internal sample rate of the ctrl and the delay
introduced by the sampling rate. The elapsed time is the clock
time spent to simulate 30’000 seconds of the system (about
8 hours and 20 minutes of simulated time). What we can
learn from this table is that the delay decreases when the
sampling rate increases. This is expected since the data is
fresher when sampled internally by the controller. However,
the number of communication points and the time needed to
simulate increases since more time is spent to communicate.
In the opposite, the proposed approach, taking advantage of
the rich connector, allow to remove the temporal delay by
exchanging data only when required by the internal semantics
of the simulation unit. In this case, we can see that the number
of communication between the simulation units is reduced to
its strict minimum to have 0 delay in the CPUTemperature.

https://zeromq.org/
https://openmodelica.org/
http://eclipse.org/gemoc
https://project.inria.fr/icise2020/


7

14000 15000 16000 17000 18000 19000
Time (s)

70

75

80

85

90
Te

m
pe

ra
tu

re
 (°

C)

Hybrid
TT

0

1

On
/O

ff

Fig. 6: Comparison betweent the results obtained by using
Time-Triggered (TT) and Hybrid coordination. The ∆ step
size is set at 5 seconds.

TABLE I: Experimental number of Communication Points and
Delay on the CPU temperature variable for the Time-Triggered
(TT) coordination and the Hybrid coordination.

CPU Cooling System Simulation
Communication Points CPUTemperature Elapsed

Per Variable (#) Delay (seconds) Time
∆Size isStopped Temp Avg. Max (seconds)

T
T

1 30000 30000 82 190 335

5 6000 6000 792.7 890 138

10 3000 3000 2361.8 1969 89

C
oS

im
20

1 100 9022 0 0 210

Since communication points are reduced to their minimum, the
performance is the one required to have correct results.

Additionally, Figure 6 gives a graphical representation of
the CPUTemperature delay on variables that measure the
temperature (top) and the switch of the fan (bottom). Com-
pared to the values obtained by the hybrid approach, Time-
Triggered values are shifted on the right due to the introduced
cumulative delay. As already explained, to minimize this issue
it is possible to reduce the ∆ step size, but the number of com-
munication points and the simulation time will respectively
increase. It is important to see here that a coordination which
does not consider the data nature of input/output can introduce
delay and consequently provide erroneous results.

VI. CONCLUSION

In this paper, we proposed an integrated modeling en-
vironment dedicated to the modeling of co-simulation. It
provides rich editors (with completion, syntax check, graphical
editing, etc) to support a language based on rich connectors.
Rich connectors enable the definition of correct coordination
between simulation units of Cyber Physical Systems. Addi-
tionally, the IDE automatically generates code for distributed
co-simulation. The generated code is based on point-to-point
coordination between simulation units. A case study shows
the different benefits of the proposed framework. First, by

proposing appropriate connectors it allows the designer to
define a correct coordination, i.e., coordination for which
the co-simulation does not introduce unexpected delays. This
is important since early V&V should not be biased due to
the co-simulation framework. Second, it reduces the com-
munication between the units to their strict minimum to en-
sure correctness. Less communication means better simulation
performance. Finally, the high degree of automation in the
framework removes the time-consuming task of writing a
correct coordination. Many future works are envisioned for
the framework. First, we are discussing with Safran to put the
framework open source so that it helps to create a community
beyond the company itself. Second, we plan to add features
in the IDE to represent the actual network and help in the
deployment of the different simulation units on the different
nodes (according to the expected number of communications
between nodes). Finally, amongst other future work, we would
like to investigate how to embed rich connectors in existing
model-based system engineering tools.

REFERENCES

[1] B. Combemale, J. Deantoni, B. Baudry, R. B. France, J. Jézéquel, and
J. Gray, “Globalizing modeling languages,” Computer, vol. 47, no. 6,
pp. 68–71, June 2014.

[2] H. Jagdev and J. Browne, “The extended enterprise—a context for man-
ufacturing,” Production Planning & Control - PRODUCTION PLAN-
NING CONTROL, vol. 9, pp. 216–229, 04 1998.

[3] J. A. Estefan et al., “Survey of model-based systems engineering (mbse)
methodologies,” Incose MBSE Focus Group, vol. 25, no. 8, pp. 1–12,
2007.

[4] Modelisar, “FMI for Model Exchange and Co-Simulation,” July 2014.
[Online]. Available: https://fmi-standard.org/downloads#version2

[5] C. Thule, C. Gomes, J. Deantoni, P. G. Larsen, J. Brauer, and
H. Vangheluwe, “Towards the Verification of Hybrid Co-simulation
Algorithms,” in Workshop on Formal Co-Simulation of Cyber-Physical
Systems (SEFM satellite), Toulouse, France, Jun. 2018. [Online].
Available: https://hal.inria.fr/hal-01871531

[6] S. Mustafiz, C. Gomes, H. Vangheluwe, and B. Barroca, “Modular
design of hybrid languages by explicit modeling of semantic adaptation,”
in 2016 Symposium on Theory of Modeling and Simulation (TMS-
DEVS), April 2016, pp. 1–8.

[7] F. Cremona, M. Lohstroh, D. Broman, M. Di Natale, E. A. Lee, and
S. Tripakis, “Step Revision in Hybrid Co-simulation with FMI,” in 14th
ACM-IEEE International Conference on Formal Methods and Models
for System Design. Kanpur, India: IEEE, Nov. 2016.

[8] F. Cremona, M. Lohstroh, S. Tripakis, C. Brooks, and E. A. Lee, “FIDE:
An FMI integrated development environment,” in 31st Annual ACM
Symposium on Applied Computing. Pisa, Italy: ACM New York, NY,
USA, 2016, pp. 1759–1766.

[9] J.-P. Tavella, M. Caujolle, S. Vialle, C. Dad, C. Tan, G. Plessis, M. Schu-
mann, A. Cuccuru, and S. Revol, “Toward an accurate and fast hybrid
multi-simulation with the FMI-CS standard,” in 21st IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA).
Berlin, Germany: IEEE, Sep. 2016, pp. 1–5.

[10] J.-P. Tavella, M. Caujolle, C. Tan, G. Plessis, M. Schumann, S. Vialle,
C. Dad, A. Cuccuru, and S. Revol, “Toward an Hybrid Co-
simulation with the FMI-CS Standard,” apr 2016. [Online]. Available:
https://hal-centralesupelec.archives-ouvertes.fr/hal-01301183

[11] S. Centomo, J. Deantoni, and R. De Simone, “Using SystemC
Cyber Models in an FMI Co-Simulation Environment,” in 19th
Euromicro Conference on Digital System Design 31 August - 2
September 2016, ser. 19th Euromicro Conference on Digital System
Design, vol. 19, Limassol, Cyprus, Aug. 2016. [Online]. Available:
https://hal.inria.fr/hal-01358702

[12] G. Liboni, J. Deantoni, A. Portaluri, D. Quaglia, and R. De Simone,
“Beyond Time-Triggered Co-simulation of Cyber-Physical Systems
for Performance and Accuracy Improvements,” in 10th Workshop
on Rapid Simulation and Performance Evaluation: Methods and
Tools, Manchester, United Kingdom, Jan. 2018. [Online]. Available:
https://hal.inria.fr/hal-01675396

https://fmi-standard.org/downloads#version2
https://hal.inria.fr/hal-01871531
https://hal-centralesupelec.archives-ouvertes.fr/hal-01301183
https://hal.inria.fr/hal-01358702
https://hal.inria.fr/hal-01675396


8

[13] C. Gomes., B. J. Oakes., M. Moradi., A. T. Gámiz., J. C. Mendo.,
J. Denil., S. Dutré., and H. Vangheluwe., “Hintco – hint-based con-
figuration of co-simulations,” in Proceedings of the 9th International
Conference on Simulation and Modeling Methodologies, Technologies
and Applications - Volume 1: SIMULTECH,, INSTICC. SciTePress,
2019, pp. 57–68.

[14] T. Schierz, M. Arnold, and C. Clauß, “Co-simulation with commu-
nication step size control in an fmi compatible master algorithm,” in
Proceedings of the 9th International MODELICA Conference; Munich;
Germany, no. 076. Linköping University Electronic Press, 2012, pp.
205–214.

[15] M. U. Awais, P. Palensky, A. Elsheikh, E. Widl, and S. Matthias, “The
high level architecture rti as a master to the functional mock-up interface
components,” in Computing, Networking and Communications (ICNC),
2013 International Conference on. IEEE, 2013, pp. 315–320.

[16] B. Wang and J. S. Baras, “Hybridsim: A modeling and co-simulation
toolchain for cyber-physical systems,” in Proceedings of the 2013
IEEE/ACM 17th International Symposium on Distributed Simulation
and Real Time Applications, ser. DS-RT ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 33–40. [Online]. Available:
http://dx.doi.org/10.1109/DS-RT.2013.12

[17] B. Van Acker, J. Denil, H. Vangheluwe, and P. De Meulenaere, “Gen-
eration of an optimised master algorithm for fmi co-simulation,” in
Proceedings of the Symposium on Theory of Modeling & Simulation:
DEVS Integrative M&S Symposium, ser. DEVS ’15. San Diego, CA,
USA: Society for Computer Simulation International, 2015.

[18] D. Broman, C. Brooks, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis,
and M. Wetter, “Determinate composition of fmus for co-simulation,”
in Proceedings of the Eleventh ACM International Conference on
Embedded Software. IEEE Press, 2013, p. 2.

[19] V. Savicks, M. Butler, and J. Colley, “Co-simulating event-b and contin-
uous models via fmi,” in Proceedings of the 2014 Summer Simulation
Multiconference. Society for Computer Simulation International, 2014,
p. 37.

[20] J. Bastian, C. Clauß, S. Wolf, and P. Schneider, “P.: Master for co-
simulation using fmi,” in 8th International Modelica Conference, 2011.

[21] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema,
T. Bapty, J. Batteh, H. Tummescheit, and C. Sureshkumar, “Model-
based integration platform for fmi co-simulation and heterogeneous
simulations of cyber-physical systems,” in Proceedings of the 10 th
International Modelica Conference; Lund; Sweden, no. 096. Linköping
University Electronic Press, 2014, pp. 235–245.

[22] I. Crnkovic and M. P. H. Larsson, Building reliable component-based
software systems. Artech House, 2002.

[23] N. Medvidovic and R. N. Taylor, “A framework for classifying and
comparing architecture description languages,” ACM SIGSOFT Software
Engineering Notes, vol. 22, no. 6, pp. 60–76, 1997.

[24] G. A. Papadopoulos and F. Arbab, “Coordination Models and Lan-
guages,” Advances in Computers, vol. 46, no. C, pp. 329–400, 1998.

[25] D. Luckham, Rapide: A language and toolset for causal event modelling
of distributed system architectures, 11 2006, pp. 88–96.

[26] R. J. Allen, “A formal approach to software architecture,” Carnegie
Mellon University, Tech. Rep. CMU-CS-97-144, 1997.

[27] D. Leroy, E. Bousse, M. Wimmer, T. Mayerhofer, B. Combemale,
and W. Schwinger, “Behavioral interfaces for executable DSLs,”
Software and Systems Modeling, Apr. 2020. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02565549

[28] F. Arbab, “Reo: A channel-based coordination model for component
composition,” Mathematical. Structures in Comp. Sci., vol. 14, no. 3,
p. 329–366, Jun. 2004. [Online]. Available: https://doi.org/10.1017/
S0960129504004153

[29] G. A. Papadopoulos and F. Arbab, “Coordination models and languages,”
Advances in computers, vol. 46, pp. 329–400, 1998.

[30] A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis, “Rigorous component-based system design using the bip
framework,” IEEE Software, vol. 28, no. 3, pp. 41–48, 2011, cited By
164. [Online]. Available: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-79955558541&doi=10.1109%2fMS.2011.27&partnerID=
40&md5=760d39c68c54d3989b85d37c252bad9a

[31] D. Gelernter and N. Carriero, “Coordination languages and their signif-
icance,” Communications of the ACM, vol. 35, no. 2, p. 96, 1992.

[32] N. Busi, R. Gorrieri, and G. Zavattaro, “On the expressiveness of linda
coordination primitives,” Information and Computation, vol. 156, no.
1-2, pp. 90–121, 2000.

[33] D. Broman, L. Greenberg, E. A. Lee, M. Masin, S. Tripakis, and M. Wet-
ter, “Requirements for hybrid cosimulation standards,” in Proceedings
of the 18th International Conference on Hybrid Systems: Computation

and Control, ser. HSCC ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 179–188.

[34] C. André, F. Mallet, and R. De Simone, “Modeling Time(s),” in
ACM/IEEE Int. Conf. on Model Driven Engineering Languages and
Systems (MoDELS/UML), ser. Lecture Notes in Computer Sciences, vol.
LNCS 4735. Nashville, TN, United States: Springer, Oct. 2007, pp. pp.
559–573, the original publication is available at www.springerlink.com
(http://dx.doi.org/10.1007/978-3-540-75209-7 38). [Online]. Available:
https://hal.inria.fr/inria-00204489

[35] G. Liboni and J. Deantoni, “A semantic-aware, accurate and efficient
api for (co-)simulation of cps,” 4th Workshop on Formal Co-Simulation
of Cyber-Physical Systems – conjointly with the 18th edition of the
International Conference on Software Engineering and Formal Methods,
pp. 1–16, 2020.

http://dx.doi.org/10.1109/DS-RT.2013.12
https://hal.archives-ouvertes.fr/hal-02565549
https://doi.org/10.1017/S0960129504004153
https://doi.org/10.1017/S0960129504004153
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955558541&doi=10.1109%2fMS.2011.27&partnerID=40&md5=760d39c68c54d3989b85d37c252bad9a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955558541&doi=10.1109%2fMS.2011.27&partnerID=40&md5=760d39c68c54d3989b85d37c252bad9a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955558541&doi=10.1109%2fMS.2011.27&partnerID=40&md5=760d39c68c54d3989b85d37c252bad9a
https://hal.inria.fr/inria-00204489

	Introduction
	Problem Statement and Related Work
	CoSim20 Modeling Environment
	Coordination Interface
	Model Coordination Language

	CoSim20 Runtime Framework
	Validation Of The Approach And Results
	Conclusion
	References

