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Abstract—Since several decades, fault tolerance has become
a major research field, due to transistor shrinking and core
number increasing in System-on-Chip (SoC). Especially, faults
occurring at the Network-on-Chips (NoCs) of those systems
have a significant impact, since NoCs are the key component of
on-chip communication. Several fault tolerant approaches have
been proposed, which are, however, limited against multiple
permanent faults. To reduce the impact of these faults on the
data communications, we propose a bit-shuffling method for
fault tolerant NoCs. The proposed approach exploits, at run-
time, the position of the permanent faults and changes the order
of bits inside a flit. Our bit-shuffling method reduces as much as
possible the fault impact, by transferring the faults from Most
Significant Bits (MSBs) towards Least Significant Bits (LSBs).
With this technique, we show that, in presence of multiple
permanent faults, the Mean Square Error (MSE) on the payload
transmission is reduce from 1017 to 105 under three permanent
fault for 32-bit unsigned integers. This technique also ensures
the correct transmission of headers under multiple permanent
faults.

Index Terms—Network-on-Chip, Fault Mitigation, Approxi-
mate Computing, Bit-Shuffling

I. INTRODUCTION

Due to increasing chip density, platforms are developed
with large number of processing elements, i.e. cores, on a
single System-on-Chip (SoC). However, conventional commu-
nication means, such as buses and point-to-point links, cannot
ensure efficient communication on these multicore and many-
core platforms. To address this gap, Network-on-Chip (NoC)
appeared as a scalable solution to manage communications
between a large number of cores [1].

Meanwhile, the technology scaling and the transistor density
increase enabled voltage reduction. As a result, the intrinsic
failure rate of electronics, due to gate oxide breakdown,
is increased [2]. Moreover, as the transistor size reaches
10 nm and below [3], the engraving thinness causes more and
more hardware defects, due to manufacturing process, creating
permanent faults that affect the reliability of devices [4].
During system operation, electromigration and time-dependent
dielectric breakdown become additional sources of permanent

faults on devices [5]. In this technology era, interconnects and
routers of NoC became more sensitive to permanent faults [6],
affecting their functionality.

Fault tolerance techniques are commonly applied on the
NoC [7] to deal with permanent faults. They are usually based
on i) mitigation through routing algorithms [8], ii) reconfig-
uration [7], iii) correction through circuit replication [4] and
iv) information redundancy [9]. Although the aforementioned
approaches are efficient for single permanent fault, they are
less adequate for multiple permanent faults. They introduce
high costs, in terms of latency, area and power consumption,
while their mitigation capabilities are limited, as discussed in
Section II.

To efficiently deal with multiple permanent faults, we pro-
pose a bit-shuffling hardware technique with low area and
performance overhead. The proposed technique focuses on
reducing the impact of faults, instead of fully mitigating them.
It ensures the protection of Most Significant Bits (MSBs) of
the data, by transferring the impact of the permanent faults to
the Least Significant Bits (LSBs), instead of the MSBs. This is
achieved by dividing a flit into several blocks of bits, named
Sub-Flits (SFs), and by exchanging (shuffling) the position
of the SFs, at run-time. Following the proposed approach,
spatial redundancy is not required, thus the area overhead is
reduced, while faulty routers are not excluded, removing the
negative impact in terms of performance. Moreover, the pro-
posed technique can reduce the impact of multiple permanent
faults, according to the accuracy needed by the application
executed on the NoC based architecture. As a result, it is
especially suitable for several application domains, such as
image processing, data mining, machine learning, information
gathering, etc., where approximate data are tolerated, both for
computations and for communications [10].

The rest of this paper is organized as follows. Section II
presents the related work on fault tolerant NoC. The proposed
bit-shuffling technique is presented in Section III. Section IV
presents the experimental results. Finally, we conclude this
study and we present our future work in Section V.



II. RELATED WORK

Fault tolerant techniques for NoCs can be grouped into four
main categories, described in the following paragraphs.

Routing algorithms are used to avoid faulty paths or faulty
regions in NoCs [8]. For instance, only the remaining healthy
resources of NoCs are used during transmission [11]. These
algorithms are generally table-based [11], including rules to
avoid congestion and deadlock during packet transmissions.
Therefore, as the NoC size increases, the hardware cost
drastically increases. Using routing algorithms is efficient, as
long as the number of faults is limited. Otherwise, the latency
may become higher than the acceptable limit, and thus, some
Intellectual Properties (IPs) become unreachable. Therefore,
this solution is less suitable for large NoCs and multiple faults.

Reconfiguration replaces a faulty element of the NoC by
using spare resources at different levels [12]. As spare re-
sources can be used only once, these techniques have large
overhead in terms of area and power consumption, while they
can tolerate few faults. Other reconfiguration approaches use
default-backup paths to avoid data corruptions and packet re-
transmissions [13]. Although default-backup paths have low
area and power consumption, the latency drastically increases
under multiple faults, due to the routing complexity. In the
worst case, several IPs become unreachable.

Circuit replication, called N-Modular Redundancy (N-MR),
replicates N times, fully or partially, the architecture and votes
the replicated outputs. The most popular approach is Triple
Modular Redundancy (TMR) [4], where a module is replicated
three times. To reduce hardware cost, the voter circuit is
excluded from transistor triplication [14] and the circuit parts,
to be triplicated, are isolated [15]. Multiple faults are masked
if they occur in the same module. However, if more than
one module is affected, the voter cannot correct the output.
The overhead in terms of area and power consumption stays
significantly high, e.g., more than three times for TMR.

Information redundancy inserts additional bits inside mes-
sages using Error-Correcting Codes (ECCs). The most com-
monly used coding scheme for NoC is the Hamming code,
which can detect two faulty bits but can correct only one.
Despite the increase of the bus size of the complete NoC,
Hamming code is efficient for correcting single faults [9]. To
increase the number of correctable faulty bits, the message
is encoded on two dimensions [16]. However, using ECCs to
correct more than one faulty bit dramatically increases the area
overhead [17]. As a result, the application of ECC approaches
is limited against multiple faults.

Last but not the least, approximate computing approaches
have been proposed in several research fields, with a similar
idea of transferring the impact of faults towards LSBs, through
bit-shuffling. In telecommunication, interleaving methods
manage burst errors by spreading the errors across several
packets. However, they are limited to serial transmissions [18].
In NoCs, data are forwarded through buses and permanent
faults impact every flit that crosses a faulty bus or router.
Since faults always appear in the same positions in each

flit, the application of interleaving methods is limited in this
context. In memory, bit-shuffling methods, called scrambling,
are used to prevent memories from faults and increase their
lifetime [19].

Contrary to the aforementioned approaches, our work effi-
ciently addresses the mitigation of multiple permanent faults
for data transferred through the NoC, based on a low overhead
hardware mechanism.

III. PROPOSED BIT-SHUFFLING TECHNIQUE

This section presents the proposed bit-shuffling method,
which tackles the impact of multiple permanent faults on the
data traversing the NoC. This is achieved by re-organizing the
data bits to allocate LSBs on faulty locations.

A. Target domain and assumptions

The proposed approach focuses on multiple permanent
faults that are located in i) the interconnection between routers,
and in ii) the buffers and the crossbar within the routers, as
illustrated by the red lightnings in Fig. 1-(a). In the context
of data transferred on NoCs, multiple permanent faults can
appear as several Single Bit Upsets (SBUs) and Multiple Bit
Upsets (MBUs) [20]. While SBUs are composed by several
Single Event Upsets (SEUs), which affects several bits in the
same flit, MBUs are induced by a single SEU which affects
several adjacent bits of the same flit. With nanoscale tech-
nologies and power scaling, devices become more susceptible
to multiple permanent faults [21]. As buffers and crossbar
are the biggest components of a router, they have higher
probability of accumulating faults due to radiation effects,
manufacturing defects or other intrinsic failures. For the same
reasons, interconnections are often impacted by permanent
faults, usually stuck-at or bridge type faults.

This work does not focus on fault detection. We assume
that the positions of the faults are provided by methods such
as Built-In Self-Test (BIST) techniques [12], which diagnose
faults in interconnections and routers using Test Pattern Gen-
erator (TPG) and Output Response Analyzer (ORA) blocks.
In this techniques, TPGs send test packets through the NoC,
while ORAs analyze the received packets to deduce if faults
occurred between these two blocks, providing their positions
and the fault type. As these techniques are largely studied in
the literature, they are not detailed in this paper. Further details
can be found in [22].

As the objective of the proposed approach is to reduce
the impact of multiple faults, instead of correcting them, the
targeted domains consist of error resilient applications, i.e.
applications which can tolerate errors until a certain level, such
as image processing and machine learning [10].

B. Bit-shuffling principle

We consider classic NoC routing messages of Smsg bits.
Fig. 2 illustrates the organization of such a message into
packets and flits. A message is decomposed into NP packets
of Spck payload bits, each packet contains NF flits of Sflit

data bits and includes a header flit for the control of routing.
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Fig. 1: Illustration of the bit-shuffling technique through an extended original NoC.
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Fig. 2: Message formatting into packets, flits and sub-flits.

Symbol Definition Symbol Definition
Smsg Message size NP =

Smsg

Spck
Number of packets

Spck Payload size NF =
Spck

Sflit
Number of flits

Sflit Size of a flit NSF =
Sflit

SSF
Number of sub-flits

SSF Size of a sub-flit

TABLE I: Notation summary.

As depicted in Fig. 2, we further decompose each flit into
NSF Sub-Flits (SF) of SSF bit size to enable the proposed
bit-shuffling technique. Table I summarizes the notation.

The proposed method applies shuffle and de-shuffle func-
tions that switch, at run-time, two or more SFs within the same
flit, in order to move the impact of errors on LSBs. Fig. 1
illustrates through an example the principles of our approach.
Let’s consider flits crossing a faulty router from north to south,
as shows the purple arrow of Fig. 1-(a). For simplification
reasons, the illustration example considers a single buffer, but

the proposed approach is also applicable with virtual channels.
The example focuses on payload flits, while header flits are
discussed in Section III-D2. As depicted in Fig 1-(b), we
consider Sflit = 8 bits and a SF size equal to SSF = 2.
Therefore, the number of SFs (NSF ) in a flit is equal to
NSF = 4 (SF0 to SF3). When no faults occur, the shuffle
and de-shuffle functions are disabled and each flit crosses the
NoC router without modification.

Let consider now that two permanent faults occur in the
input buffer, affecting the MSBs, i.e., bits 7 and 6 of all
incoming flits. The right part of the Fig 1-(b) illustrates the
crossing of packets without the proposed bit-shuffling method.
The bits 7 and 6 of the two payload flits are affected, leading to
errors included in the range {0,+64,+128,+192}, depending
on the initial value of the affected bits. The left part of the
Fig 1-(b) illustrates the proposed bit-shuffling method. The bit-
shuffling technique is enabled in the input ports of the router,
before crossing the faulty path. The SFs are re-organised by
placing the LSBs on the faulty positions, i.e. SF0 and SF3

are swapped inside each flit. As a result, the impact of the
permanent faults in terms of absolute error for the payload
part is reduced to the range {0,+1,+2,+3} according to the
bit values of the LSBs. Before the flit leaves the NoC router,
the SFs are brought back in their initial position, and then, the
flit is sent to the output port.

C. Method implementation
1) Hardware architecture: To implement the proposed ap-

proach, a classic NoC router is extended with extra hardware
blocks: Shuffle (S) and De-shuffle (D) blocks. The goal of the
shuffle block is to re-organize the SFs with the objective of
minimizing the impact of the faults. The goal of the De-shuffle
block is to bring back the initial order of the SFs. To deal
with the targeted faults, the bit-shuffling method is applied i)
between two routers to mitigate errors on the interconnection



bus, and ii) between the input and output ports to mitigate
errors inside the router. To achieve that, the aforementioned
paths integrate S and D hardware blocks, as depicted in Fig. 1-
(a).

The S and D blocks have the same hardware architecture
which is presented in Fig. 3. It is composed of NSF simple
multiplexers (SSF -to-1) and registers, which contain the con-
figuration of the multiplexers. The only difference between S
and D blocks, is the value of the registers that configures the
MUXs. These values are named S registers and D registers
for a S and D block, respectively. Their values are computed
by the IP core associated to the router. It takes as input the
position of the permanent faults, which is the output of BIST
techniques. The BIST is classic, efficient, localization and fault
characterization technique, detailed in [12].

2) Shuffle and Deshuffle registers computation: The com-
putation of the register values applied to the MUXs of the
shuffle and deshuffle blocks is done by the sorting algorithm
presented in Algorithm 1. This algorithm is similar to bubble
sort [23]. Its aim is to compute the bit-shuffling configuration
that minimizes the impact of faults in order to configure
the registers that control the multiplexers. The algorithm is
executed on the dedicated IP core of the router based on the
BIST results (position of the faults). This algorithm takes as
input a mask of error position, having the same size as the
databus of the considered NoC. Each bit of this error position
mask defines the state of the datapath bit-line: a ’0’ indicates
that the path of the bit is fault-free and a ’1’ indicates that the
path of the bit is faulty. For sake of clarity, we organize the
error position mask bits in NSF groups of SSF bits, which are
named SubMask in Algorithm 1. In this way, each SubMask
gives the fault impact value of the associated subflit. For
example, if we consider a 16-bit datapath with 4-bit subflits,
where bits 6, 7 and 13 are faulty, we have an error position
mask = [0010, 0000, 1100, 0000] that gives SubMask[0] = 0,
SubMask[1] = 12, SubMask[2] = 0, and SubMask[3] = 2.

In lines 1−5 of the Algorithm 1, the variables and registers
are initialized. Each register is set with the value of its position
(S register = [3, 2, 1, 0]), hence the data cross the block
without modification.

In lines 7 − 16, a bubble sort algorithm computes the
values of the deshuffling register, according to the input
SubMask[NSF ]. For that, the sort algorithm orders the
SubMask values in a decreasing order and applies the
same ordering on the table D register. For example, if
SubMask[1] is inferior to SubMask[2], the two values are
swapped, and the values D register[1] and D register[2]
are also swapped. When the computation is over, the
deshuffling register contains the multiplexer configuration
D register[NSF ] for the architecture presented in Fig. 3. In
this way, the i-th value of the register indicates which input
subflit is set into the i-th output subflit.

Finally, as the hardware architectures of a S and D blocks
are similar, the shuffling register is simply computed from the
deshuffling one, as shown from lines 18 to 20.
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Input: SubMask[NSF ]
Output: S register[NSF ], D register[NSF ]

1: // Variable Initializations
2: reset register(S register)
3: reset register(D register)
4: inversion ← TRUE
5: // Deshuffling Register Computation
6: for ((i = 0 to NSF − 2) && (inversion)) do
7: inversion ← FALSE
8: for (j = 0 to NSF − 2− i) do
9: if (SubMask[j] < SubMask[j + 1]) then

10: swap(SubMask[j], SubMask[j + 1])
11: swap(D register[j], D register[j + 1])
12: inversion ← TRUE
13: end if
14: end for
15: end for
16: // Shuffling Register Computation
17: for (i = 0 to NSF − 1) do
18: S register[D register[i]] ← i
19: end for
20: return S register[NSF ], D register[NSF ]
Algorithm 1: Shuffling/deshuffling registers update

D. Packet organization

To efficiently protect the communication with the proposed
method, the following packet organization has to be consid-
ered. However, as packet organization is always included in
common NoC through the Network-interface (NI), which is
the link between an IP core and a router, the proposed method
does not require extra hardware.

1) Data Organization: The implementation of the proposed
method must take into account the data size (Sdata) and the flit
size (Sflit) to organize the flits inside the Network Interfaces
(NIs) of the NoC. For sake of clarity, we define as Most
Significant Subflit (MSS) the SF including the MSB of the
flit, and Low Significant Subflit (LSS) the SF including the
LSB of the flit. Considering different data sizes, three cases,
illustrated in Fig. 4, can occur:
a) Sdata = Sflit, this is the straightforward case, since the

data are placed inside the flits without any reorganization,
as show in Fig. 4a. The LSBs of the data are placed on the
LSSs, and the MSBs of the data are placed on the MSSs.

b) Sdata < Sflit, more than one data is sent in one flit.
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Fig. 4: Flit organization illustrations 32-bit flit for different data sizes.

Hence, the data are interleaved within the flit, as shown
in Fig. 4b: the MSBs of the data are grouped inside the
MSSs, and the LSBs of the data are placed in the LSSs.

c) Sdata > Sflit, a data is sent on several flits. The LSBs
and MSBs of the data are equally distributed on the flits,
as illustrated in Fig. 4c.

With this organization, the MSS always hold the important
data, compared to the LSSs, making efficient the bit-shuffling
method, even when the datapath is impacted by multiple
permanent faults.

2) Header Protection: Header flits consist of control data,
and these data contain in particular information for the packet
routing. Hence, errors cannot be tolerated in these flits. To
handle that, the proposed approach is extended as follows: For
NoCs using large data buses (i.e. 64 bits), header flits usually
include several unused bits, which are placed on the LSBs.
When faults occur on the MSBs, inducing faulty routing, our
bit-shuffling method transfers the faults on the unused SFs,
ensuring a correct control of the flit. However, header flits with
small data buses (i.e. 16 bits) do not usually include enough
unused bits, and another solution must be included to ensure
correct routing. To address this, the header flit is divided into
two flits, which artificially inserts unused bits. Hence, half
of the new header flits can be used to tolerate errors, with a
small impact on the NoC latency, i.e. adding only one flit in
a packet.

IV. EXPERIMENTAL RESULTS

In this section, we compare the behavior of the proposed ap-
proach with state-of-the-art approaches. Section IV-A presents
the evaluation of payload and header protections under multi-
ple faults. Then, the proposed approach is validated with two
benchmarks: i) Sobel filter and ii) k-mean clustering algorithm
in Section IV-B. Finally, Section IV-C presents the hardware
implementation costs.

A. Packet Level Simulations

1) Payload mitigation: We evaluate the robustness of the
proposed method considering random 32-bit payload flits,
which contain 32-bit unsigned integer data organized into 4-
bit subflits. As we focus on approximate applications, payload
flits can tolerate data approximation up to a certain level.
Therefore, we used the Mean Square Error (MSE) metric to
quantify the impact of faults, considering each possible fault
position on the payload flit. Fig. 5 compares the results of i)

the proposed approach (shuffled), with ii) flits protected with
Hamming code and iii) unprotected flits. In this figure, we can
observe that for one permanent fault, Hamming code is able
to correct the data which means that the MSE is equal to zero
while the shuffling method reduces the MSE from 1.9× 1017

to 2.1× 101. However, when more than one permanent faults
are present, the Hamming code is not able to correct faulty
bits and can even make false correction. In this case, the MSE
obtained with the Hamming code is approximately equal to
the MSE obtained when no protection is used, while the bit-
shuffling method drastically reduces the MSE. For example,
when three permanent faults are present, the MSE is reduced
from around 6×1017 (Hamming and unprotected) to 2.2×105
with bit-shuffling.
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Fig. 5: Payload flit accuracy.

2) Header Protection: Regarding the protection of header
transmissions, which cannot tolerate any corruption, we an-
alyze the percentage of correct header transmissions (i.e.
no control bits are faulty) in function of the number of
permanent faults, in Fig. 6. We consider different methods
for this evaluation: i) unduplicated and unprotected (U/U), ii)
unduplicated and with Hamming code (U/H), iii) unduplicated
and shuffled (U/S), iv) duplicated and unprotected (D/U), v)
duplicated and with Hamming code (D/H), and vi) duplicated
and shuffled (D/S) headers.

Fig. 6a presents the percentage of correct transmissions for
a 64-bit header flit that contains 32 control bits, i.e. there is
32 unused bits in the header. In this case, header duplication
is unnecessary until 5 faults per header, while the Hamming
code ensures the correct header transmission when only one
fault occurs. In Fig. 6b, a 32-bit header flit which contains 32



control bits is considered, i.e. there is no unused bits in the
header. In this case, header duplication is necessary to achieve
100% of correct header transmissions up to 3 faults against 0
fault without header duplication. In both cases, the Hamming
code is able to manage only one fault per header. Furthermore,
we observe that applying shuffling to the header flit can assign
unused bits on multiple permanent faulty bits (equal to the
number of unused bits in one header). For large databus, the
header duplication is not required to manage fault(s) with the
bit-shuffling technique. However, when a small data bus is
used, header duplication is useful, as shown in Fig. 6b.

Notice that, today’s NoC are typically based on large bus
i.e. 64 bits. Hence, the duplication of headers is a solution
that requires to be applied only in specific conditions, as the
shuffling technique is sufficient by itself.
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Fig. 6: Header flit accuracy.

B. Application Level Evaluations

1) Experimental Setup: For the rest of the experiments,
we consider data exchanges between a main memory and a
core, located in a distance of 2-hops of a large mesh NoC,
as illustrated in Fig.7. A XY routing algorithm is used to
transmit data through the NoC, with 32-bit flit size, composed
of 4-bit SFs. Hence, each flit has 8 SFs. The purple arrow
depicts the routing path from memory to core for the load
operation. The blue arrow is the routing path from the core to
the memory for the store operation. The proposed bit-shuffling
method is implemented through the S and D blocks to mitigate

permanent faults inside routers and interconnections. The red
flashes represent faults on the data path, impacting flits. We
consider: i) one 3-bit Multiple Cell Upsets (MCUs) permanent
fault on the loading path (bits 27, 28 and 29) with stuck-at one
fault model, and ii) two 2-bit MCUs permanent faults on the
storing path (bits 7, 8 and 24, 25) with stuck-at zero fault
model.
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Fig. 7: Localisation of faults on the load and the store paths
for the two benchmarks deployed on a part of large mesh NoC.

2) Sobel Filter: For the first experiment, we simulate the
execution of a Sobel filter, used for edge detection in image
processing. Initial and output images are stored in the memory,
shown at the top of Fig. 7. During load operations, 8-bit data
(unsigned integer) transit the NoC through the purple path.
During store operations, 64-bit data (double precision) transit
the NoC through the blue path. As the flit size of the NoC is
32 bits, data are organized within flits, as described in Section
III-D1.

To evaluate our approach, the Peak Signal-to-Noise Ratio
(PSNR) is computed based on the fault-free reference. We
compare the results of the Sober filter with the proposed bit-
shuffling approach, the Hamming code approach and without
any fault-tolerant technique. Fig. 8a shows the result obtained
without any fault injection, i.e., the fault-free reference. Fig. 8b
shows the result of the Sobel filter without any fault-tolerant
technique. We observe that the edges intensities are drastically
reduced, due to the stuck-at zero faults occurring at the store
path. Moreover, stuck-at one faults on the load path induce
anomalies in the original image, which are detected by the
gradient computation of Sobel filter. Hence, noisy edges (not
present in the fault-free reference) appear. According to these
defects, the PSNR metric is equal to 13.07. On the contrary,
when the bit-shuffling method is applied, the impact of faults



can be significantly reduced, as shown in Fig. 8c. In this case,
the obtained image is very close to the reference image, despite
the existence of faults. Indeed, our method achieves a PSNR
equal to 34.58, which represents a gain of a factor of 2.5.
Fig. 8d presents the Sobel result obtained when an Hamming
code is applied. We can observe that the obtained result is
worse than the result without any fault-tolerant method. This
result is due to the fact that Hamming code cannot correct
more than one fault and detect more than two faults in the same
flit. Moreover, when multiple faults occur, false correction can
be done which false the result. In this case, the computation
of the PSNR gives no result considering the divergence of the
result compared to the reference.

3) K-Means Clustering Algorithm: For the second experi-
ment, we simulate the K-means clustering algorithm, typically
used in signal processing and data mining, e.g., image classifi-
cation and voice identification. The algorithm’s input is a set of
random data to be clustered, by minimizing the square distance
between centroids and their data, through an iterative process.
Experiments are simulated with a C++ testbench, using 32-bit
signed fixed-point data with 1 bit for the integer part. We use
20 data sets composed of 15 centroids and 1000 sample data
are generated by centroids. The number of iterations for each
data set is limited to 150.

To evaluate the results, the MSE of the centroid positions
and the Clustering Error Rate (CER) are computed. Fig. 9
depicts the results for the first data set. The fault-free result
is given in Fig. 9a and it is used as reference for MSE and
CER computation. Fig. 9b depicts the obtained output under
faults, without fault-tolerant method. In this case, the K-mean
algorithm cannot perform clusters, due to the square distance
computation, which is totally distorted by the presence of the
permanent faults on the load and store paths. On the contrary,
the proposed bit-shuffling method enables a correct clustering,
which is visually very close to the reference, as shown on
Fig. 9c. To further evaluate our approach, we compare the
MSE and CER considering all 20 data sets. The bit-shuffling
method, under permanent faults, reduces the mean centroid
positions MSE from 1.45×10−2 to 7.47×10−8 and the CER
from 92.83% to 0.09%, compared to the version without fault-
tolerant method. Fig. 9d displays the results obtained when
Hamming code is used. On this figure, clusters are not visible,
leading to low quality result, as in the case no fault-tolerant
method is used to protect the data. The evaluation of the
metrics gives us a mean centroid position MSE of 1.17×10−2

and a CER of 91.86%.

C. Hardware Implementation Cost

The proposed S and D blocks have been synthesized on
28 nm FDSOI technology through in High Level Synthesis
(HLS) tools of Mentor Graphic by targeting a clock frequency
of 1 GHz. As comparison, we also synthesized an extended
Hamming checker, which is usually used inside NoC routers.
Table II shows the area, power, and slack required for different
flit and SF sizes. We compute slack as the difference between
the critical path and the target clock.

Sflit 16 32 64
SSF 4 8 4 8 16 4 8 16 32

Shuffling/De-shuffling blocks
Area (µm²) 105.8 77.4 355.0 187.8 147.0 1273.6 596.7 344.2 288.4

Power (mW) 0.103 0.093 0.233 0.205 0.178 0.652 0.435 0.357 0.360
Slack (ns) 0.82 0.81 0.75 0.71 0.72 0.45 0.75 0.72 0.45

Hamming Checker
Area (µm²) 308.9 519.0 1318.0

Power (mW) 0.370 0.663 1.695
Slack (ns) 0.48 0.31 0.15

CONNECT Router [24]
Area (µm²) 21247.8 33441.0 57302.3

Power (mW) 18.522 29.092 50.147
Bit-Shuffling overheadI

Area (%) 4.98 3.64 10.61 7.41 4.40 22.23 10.41 6.01 5.03
Power (%) 5.56 5.02 8.01 7.05 6.12 13.00 8.67 7.12% 7.18

Hamming checker overhead
Area (%) 36.84 30.95 33.76

Power (%) 41.35 38.50 44.33

TABLE II: Comparison of hardware implementation.

For 64-bit flits with 8-bit SF, the area of one S or D block is
only 596.66 µm2 and it consumes 0.435 mW. We observe that
more area is required for smaller SF, due to the higher number
of multiplexers (a smaller SSF means a higher NSF ). Overall,
if the flit size increases, the area and power for the S and D
blocks also increase, however, they remain small compared to
the Hamming implementation. The Hamming checker requires
more area and power than the proposed technique, e.g., for 64-
bits, it requires 1, 318.00 µm2 and consumes 1.69 mW, while
it is able to correct only a single error.

Finally, we integrated the proposed method in the state-
of-the-art CONNECT router based on a 5-ports router, with
four virtual channels of 8-flit depth, and a round-robin arbi-
tration [24]. Table II provides the area and power cost of this
router, considering 28 nm FDSOI technology. For 64-bits flit,
the router requires 57, 302.3 µm2 area and consumes 29 mW.

To apply the proposed bit-shuffling method over the CON-
NECT router, we need to include five S and five D blocks,
one for each port. To compare with Hamming error correction
code, we integrate five Hamming checkers in the inputs and
five Hamming checkers in the outputs of CONNECT router.
Table II compares the area and power overhead of the proposed
bit-shuffling method and the Hamming checker, over the
CONNECT router. From the obtained results, the proposed
method provides a lightweight solution capable of handling
multiple faults. For instance, for 64-bit flit with 8-bit SFs,
the area overhead of the proposed approach is only 10.41%
and the power overhead 8.67%, compared to 33.76% area and
44.33% power overhead inserted by the Hamming checkers.

V. CONCLUSION

In this work, a bit-shuffling technique for NoC is proposed
to mitigate permanent faults through a re-organization of
the flits which contain data. The proposed approach swaps
sets of bits, called subflits, transferring faults from MSBs to
LSBs, to maintain the correct value of MSBs. The obtained
results demonstrate the efficiency of our technique, even when
multiple MBUs occur, which significantly affect the data. In
addition, it inserts lower area, power and critical path over-
heads than existing state-of-the-art methods, such as Hamming
code. The method also ensures the correct transmission of
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Fig. 8: Sobel filter results.
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Fig. 9: K-means clustering results for the first data set.

headers for packet forwarding through faulty NoCs, which
keeps the routing algorithm running smoothly.
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