Estimation of extreme quantiles from
heavy-tailed distributions in a location-dispersion
regression model
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Goal: estimation of extreme conditional quantiles

Quantile of extreme level a € (0,1) associated with a response variable

YeR given a

Claim severity
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covariate x € R%.

Swedish Motorcycle Insurance

50000 100000 150000 200000 250000 300000 350000

.
LR .t
4 l '.D
.
l’ . . -
o e#"‘-'-*léw’- P R
‘ ‘ :
0.0 ‘0 15 20 25 3.0
Exposure




Outline

@ Location-dispersion regression model
© Inference

© Asymptotic results

@ \Validation on simulated data

© Application to tsunami data
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Location-dispersion regression model for
heavy-tailed distributions

Assume the following regression model between a random response
variable Y € R and a deterministic covariate vector x e IIc R, d > 1:

Y =a(x)+ b(x) Z,
where
@ a:I1—R: (unknown) regression / location function,
@ b:11— R\ {0}: (unknown) dispersion / scaling function,

@ Z is a heavy-tailed random variable with tail-index y >0, i.e. with

survival function Fyz(z) = z7Y/YL(z), with L is a slowly-varying function
such that for all >0,

L
lim (t2) =1l
z—oo L(2)
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1= Consequence: Conditional survival function of Y:

y—a(x))_(y—a(x))1/YL(y—a(x))
bx) ) | b b(x) /)

iy(y|x):=nﬂ>(¥>y|x)=?z(

The tail-index of the response variable does not depend on the
covariate.

= |dentifiability issue: Let (u, po, 13) € (0,1)% such that gz(p) =0
and gz(u3) — gz(u1) =1 where gz() is the quantile associated with
the survival function of Z.

We thus have

a(x) =qy(u2 1 x) and b(x) = gy(us | x) — gy (1 | x),

for all x € IT and where gy (- | x) is the conditional quantile
(associated with the survival function) of Y.



i Data: Multidimensional fixed design setting
{(Y1, x1),...,(Yn, x,)} a n-sample from the location-dispersion
regression model Y; = a(x;) + b(x;)Z;, where Z1,...,Z; are iid from a
heavy-tailed distribution. The design points x; are all distinct from
each other and included in II, a compact subset of R%. Let
{I1;, i =1,...,n} be a partition of IT such that x; € II;.

= Goal: Estimation of extreme conditional quantiles
qy(ay | x) = a(x) + b(x)qz(ay) as a, — 0.

Such quantiles are asymptotically located outside the convex hull of
the sample.

1= Inference: Three step estimation procedure
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Inference

Step 1: Estimation of regression and dispersion functions

= Kernel estimator of the conditional survival function Fy(y | x):
A n
Foy(lx) =) ]l{Y,->y}f Kn(x-10dt,
i=1 I;

with K, (-) :=K(-/h)/h?® where K is a density function on R and
h = hy, is a bandwidth such that s, — 0 as n — oo.
(Muller & Prewitt, 1993).

= Kernel estimator of (non-extreme) conditional quantiles
gy(a| x) for all (x,a) € 1% (0,1):

gny(a] x):= ﬁ;y((x | x) =inf{y, Fpy(y|x) <a.

1= Estimators of position and dispersion functions:
an(x) = Gny (P21 %) and Dp(x) = Gny (13 | %) = Gy (P11 | X)

for all x eIl.
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Step 2: Estimation of the tail-index

iz Estimation of the residuals:
Zi=;—an(x))bn(xp), i=1,...,n.

Due to boundary effects associated with kernel estimators, residuals
7 close to the boundary of IT are not reliable.
(Kyung-Joon & Schucany, 1998).

= Focus on the “interior” points:
Let 1™ :={xe R%, B(x, h) < IT} the erosion of I by B(0, k) and
I,:={iefl,...,n}, x; e 1™} We note my,:=card(,).

1= Hill-type estimator of the tail-index:
1 kaml

?”l = k_ Z log Zmn_irmn _log Zm"_k"’m"’
n ij=0

where Z, k. m, <+ < Zm, m, are the k, order statistics associated
with the estimated residuals Z;, i € 1,,. (Hill, 1975).
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Step 3: Estimation of extreme conditional quantiles
1 From the location-dispersion regression model,
qn,Y((xn | x) = dp(x) + bn(x)Qn,Z(O(n)y

where d,(x) and Z)n(x) are defined as previously and §, z(ay) is a
Weissman-type estimator of the extreme quantiles of Z:

L?n,Z(O(n) = Zm,,—kn,m” (ap mn/kn)_?n )
(Weissman, 1978), with ¥, an estimator of the tail-index Y.

1 Remark: Y and Z have same tail-index. Thus, y can be estimated
either from the estimated residuals Z; (as proposed) or from the
original response variables Y; (would yield a high bias, see numerical
results).
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Asymptotic results

We consider four assumptions.

(A.1) Model. (Yi,x1),...,(Yy, x,) are independent observations from the
above defined location-dispersion regression model for heavy-tailed
distributions in the fixed design setting of (Muller & Prewitt, 1993):

max |A(IT;) — g =o0(1/n),

i=1,..,n

max sup ||s—t||:O(n_1/d),
i=1,..., n(s,t)el'['f.

(A.2) Regularity conditions.
@ a(-) and b(-) are twice continuously differentiable on II,
@ b() is lower bounded on II,

@ Fy(1) is twice continuously differentiable on R.
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Under (A.2), the density f7(-) exists and we let Hz () := 1/ fz(qz(-)) the
quantile density function and Uz(-) = gz(1/-) the tail quantile function of Z.

(A.3) Assumptions on the kernel. K s a bounded and even density
with symmetric support S < B(0,1) and verifying the Lipschitz property:

ek >0,V (u,v) €S?, [K(w) —K)| < cxllu—vl.
(A.4) Second order condition. For all >0, as z— oo,

U P
2U2) oy aer L
Uz(2) P

where y>0, p<0 and A is a positive or negative function such that
A(z) — 0 as z — oco. The second-order parameter p tunes the rate of
convergence of most extreme-value estimators (de Haan & Ferreira, 2006).
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In the following, we set

4 if 1=d=<4
2d/(d-2) if d=A4.

K(d) := {
Theorem 1 (Joint asymptotic normality of @, and by,)

Assume (A.1)-(A.3) hold and fz(qz(p;) >0 for all je{1,2,3}. If nh — oo and
nhd*txd) . 0 as n — oo, then, for all sequence (t,) c 1™,

vV nh (an(tn) - a(tn)) d

- £ N (0pz, AAD) K2 2),
b(tn) \bn(tn)—b(t,) (Oge, AGD) K3 2)

where X is a covariance matrix depending on 1,2, M3 and Hz(+).
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Theorem 2 (Asymptotic normality of ¥, and §y,,7)
Assume (A.1)-(A.4) hold. Let k,, — oo be a sequence of integers such that

nh?/(kylogn) — oo, nh®*@/logn — 0 and \/k,A(n/k,) —PER as n — oo.
Then,

= o —Y) = N(B/A-p),Y2),

== For all sequence (a,) < (0,1) such that na,/k, — 0 and log(na,)/

Ve

W(bgﬁn,z(an) —lOng(cxn)) R N(p/a- p)»YZ)-

kn—0,

If p=—«(d)/(2d), then the rate of convergence of ¥, is n?’1=2?) which

coincides with the usual rate of convergence for the estimation of the
tail-index in the non-conditional setting.

@ If d=1, this rate is reached for p=-2.

@ If d=2, this rate is reached for p=-1.
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Theorem 3 (Asymptotic normality of the estimator of extreme conditional
quantiles)

Assume (A.1)-(A.4) hold an f;(qz(un;)) >0 for all j€{1,2,3}. Let k;, — oo be a
sequence of integers. Suppose nh®/(k,logn) — oo, nh®**@ — 0 and
\/k_nA(n/kn) —PeR as n— oo.

Then, for all sequences (t,) <1 and (a,,) < (0,1) such that na,/k, — 0 and
log(nan)/\/k_n—> 0 as n — oo,

1) LN/ -p),¥?).

\/k_n (Qn,Y(an | tn)

log(nlzl,, qY((Xn | tn)

In the case of purely nonparametric estimators of extreme conditional

quantiles, the term +/k,, is replaced by \/k,h¢ (Gardes & Girard, 2008), a
consequence of the curse of dimensionality.
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Validation on simulated data

Experimental design
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Bi-dimensional setting: d =2, IT1=0, 1)2.
Fixed design: The x; are chosen on a regular grid of II.
Norm: || x|l = max(|xV|,]x®]) leading to 1" = [h,1 - h].

Location and dispersion functions: a(x) =1 - cos(n(x'Y + x@)) and
b(x) = exp (—(xV) = 0.5)% - (x® - 0.5)2).

M1 =3/4, g2 =1/2 and p3 =1/4.

Two distributions for Z: Student(v) with v e {1,2,4} df (y=1/v,
p=-2/v) and Burr(a) with a € {1,2,4} as shape parameter (y =1/q,
p=-1).

Sample size n=10,000.



Implementation of the estimators

@ The kernel K is the product of two univariate quartic kernels:
15 2 212 212
K{w,v) =15 (1-u)" (1-v°) Lgu=nLyui<ay

@ The bandwidth h=h, =0n"'6, where 0 =1271/2 is the standard
deviation of the coordinates of the design points (optimal choice for
density estimation in the Gaussian case).

@ The sequence kj, is chosen by minimizing the asymptotic mean
squared error.

@ Order of the extreme conditional quantile: a, =1/n.

@ N =100 replications.
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Estimation of the location function (Student distribution)

Theoretical a Estimated a - 1 df

/\

17 / 29



Estimation of the dispersion function (Student distribution)

Theoretical b Estimated b -1 df
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Estimation of the tail-index (Student distribution)
v=1df

iy

14

1.2

10

0.6
L

True tail-index, tail-index estimated on the residuals, tail-index estimated
on original response variables (as functions of k).
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Estimation of extreme conditional quantiles (Student distribution)

Estimated quantile - 1 df

Theortieal quantile - 1 dt

— 7 TT—
— —
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Estimated quantile - 2 dr

Theoretical quantile - 4 df
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Relative MSE: comparison with two purely nonparametric estimators

n Student, v=1 Student, v=2 Student, v=4
400 | 0.547 (0.890, 0.976) | 0.129 (0.643, 0.630) | 0.062 (0.442, 0.458)
1,600 | 0.138 (0.867, 0.893) | 0.065 (0.533, 0.458) | 0.020 (0.284, 0.352)
3,600 | 0.145 (0.855, 0.837) | 0.048 (0.477, 0.431) | 0.012 (0.226, 0.306)
6,400 | 0.061 (0.845, 0.776) | 0.032 (0.456, 0.454) | 0.011 (0.206, 0.253)
10,000 | 0.045 (0.820, 0.723) | 0.026 (0.425, 0.435) | 0.013 (0.184, 0.222)
n Burr, a=1 Burr, a=2 Burr, a =4
400 | 0.525 (0.746, 0.588) | 0.197 (0.329, 0.285) | 0.104 (0.129, 0.176)
1,600 | 0.182 (0.796, 0.637) | 0.068 (0.348, 0.260) | 0.038 (0.124, 0.168)
3,600 | 0.157 (0.825, 0.625) | 0.056 (0.333, 0.264) | 0.023 (0.118, 0.149)
6,400 | 0.096 (0.827, 0.591) | 0.054 (0.311, 0.271) | 0.020 (0.107, 0.122)
10,000 | 0.070 (0.845, 0.563) | 0.030 (0.301, 0.262) | 0.023 (0.102, 0.107)

1 The relative MSE increases with the tail heavyness.

i Unsurprisingly, the semi-parametric estimator performs better than

the nonparametric ones (Gardes & Girard, 2008).

21 /29




Application to tsunami data

"Tsunami Causes and Waves” dataset, neips:/ /v kaggie. con/nosa/seisnicwaves.
Maximum wave height recorded at stations where a tsunami occured.
We focus on the 2011 Tohoku tsunami, in Japan. This earthquake was
the cause of the Fukushima nuclear disaster: A wave height =15m
flooded the nuclear plant, protected by a seawall of only 5.7m.

Data:
@ Maximum wave height Yi,...,Y, (in m) recorded at n =5364
stations. The values are ranging from 0 to 55.88m.

@ Latitudes xil),...,xﬁ,}) and longitudes of stations: x?),...,xﬁ,m.

Goal: Estimation of return levels of wave heights associated with small

probability.
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Maximum wave height recorded at each station

2011 Tohoku tsunami, Japan, * is the epicenter.
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Estimation of location and dispersion functions

Left: location, Right: dispersion. Bottom: projections on the principal axis
(of the station locations) depicted as a straight line on the top panel. The

vertical line is the epicenter.
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Estimation of the tail-index

Test for constant tail-index (Einmahl, de Haan & Zhou, 2016).
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Left: Hill estimator (as a function of k;) computed on the residuals and
on the original response variable. Right: quantile-quantile plot associated
with k;,, = 82.
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Estimation of the extreme conditional quantile of order «,, =10/n.

The estimated quantiles of the maximum wave height are ranging from 0
to 60.53m, with largest values close to the epicenter.

26 / 29



Further work

@ Extension to random design,
@ Extension to over domains of attraction (exponential tails, ...)

@ Other risk measures (expected shortfall, expectiles, ...)
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