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Goal: estimation of extreme conditional quantiles

Quantile of extreme level α ∈ (0,1) associated with a response variable

Y ∈R given a covariate x ∈Rd .
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Location-dispersion regression model for

heavy-tailed distributions

Assume the following regression model between a random response
variable Y ∈R and a deterministic covariate vector x ∈Π⊂Rd , d ≥ 1:

Y = a(x)+b(x) Z,

where

a :Π→R: (unknown) regression / location function,

b :Π→R+ \ {0}: (unknown) dispersion / scaling function,

Z is a heavy-tailed random variable with tail-index γ> 0, i.e. with
survival function FZ(z) = z−1/γL(z), with L is a slowly-varying function
such that for all t > 0,

lim
z→∞

L(t z)

L(z)
= 1.
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+ Consequence: Conditional survival function of Y:

FY(y | x) :=P(Y > y | x) = FZ

(
y −a(x)

b(x)

)
=

(
y −a(x)

b(x)

)
−1/γL

(
y −a(x)

b(x)

)
,

The tail-index of the response variable does not depend on the
covariate.

+ Identifiability issue: Let (µ1,µ2,µ3) ∈ (0,1)3 such that qZ(µ2) = 0
and qZ(µ3)−qZ(µ1) = 1 where qZ(·) is the quantile associated with
the survival function of Z.

We thus have

a(x) = qY(µ2 | x) and b(x) = qY(µ3 | x)−qY(µ1 | x),

for all x ∈Π and where qY(· | x) is the conditional quantile
(associated with the survival function) of Y.
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+ Data: Multidimensional fixed design setting
{(Y1, x1), . . . , (Yn , xn)} a n-sample from the location-dispersion
regression model Yi = a(xi )+b(xi )Zi , where Z1, . . . ,Zn are iid from a
heavy-tailed distribution. The design points xi are all distinct from
each other and included in Π, a compact subset of Rd . Let
{Πi , i = 1, . . . ,n} be a partition of Π such that xi ∈Πi .

+ Goal: Estimation of extreme conditional quantiles

qY(αn | x) = a(x)+b(x)qZ(αn) as αn → 0.

Such quantiles are asymptotically located outside the convex hull of
the sample.

+ Inference: Three step estimation procedure
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Inference

Step 1: Estimation of regression and dispersion functions

+ Kernel estimator of the conditional survival function FY(y | x):

F̂n,Y(y | x) =
n∑

i=1
1{Yi>y}

∫
Πi

Kh(x − t )d t ,

with Kh(·) := K(·/h)/hd where K is a density function on Rd and
h = hn is a bandwidth such that hn → 0 as n →∞.
(Muller & Prewitt, 1993).

+ Kernel estimator of (non-extreme) conditional quantiles
qY(α | x) for all (x,α) ∈Π× (0,1):

q̂n,Y(α | x) := ˆ̄F←
n,Y(α | x) = inf{y, F̂n,Y(y | x) ≤ α}.

+ Estimators of position and dispersion functions:

ân(x) = q̂n,Y(µ2 | x) and b̂n(x) = q̂n,Y(µ3 | x)− q̂n,Y(µ1 | x)

for all x ∈Π.
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Step 2: Estimation of the tail-index

+ Estimation of the residuals:

Ẑi = (Yi − ân(xi ))/b̂n(xi ), i = 1, . . . ,n.

Due to boundary effects associated with kernel estimators, residuals
Ẑi close to the boundary of Π are not reliable.
(Kyung-Joon & Schucany, 1998).

+ Focus on the “interior” points:
Let Π̃(n) := {

x ∈Rd , B(x,h) ⊂Π
}

the erosion of Π by B(0,h) and
In := {

i ∈ {1, . . . ,n}, xi ∈ Π̃(n)
}
. We note mn := card(In).

+ Hill-type estimator of the tail-index:

γ̂n = 1

kn

kn−1∑
i=0

log Ẑmn−i ,mn − log Ẑmn−kn ,mn ,

where Ẑmn−kn ,mn ≤ ·· · ≤ Ẑmn ,mn are the kn order statistics associated
with the estimated residuals Ẑi , i ∈ In . (Hill, 1975).
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Step 3: Estimation of extreme conditional quantiles

+ From the location-dispersion regression model,

q̃n,Y(αn | x) = ân(x)+ b̂n(x)q̂n,Z(αn),

where ân(x) and b̂n(x) are defined as previously and q̂n,Z(αn) is a
Weissman-type estimator of the extreme quantiles of Z:

q̂n,Z(αn) = Ẑmn−kn ,mn (αnmn/kn)−γ̂n ,

(Weissman, 1978), with γ̂n an estimator of the tail-index γ.

+ Remark: Y and Z have same tail-index. Thus, γ can be estimated
either from the estimated residuals Ẑi (as proposed) or from the
original response variables Yi (would yield a high bias, see numerical
results).
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Asymptotic results

We consider four assumptions.

(A.1) Model. (Y1, x1), . . . , (Yn , xn) are independent observations from the
above defined location-dispersion regression model for heavy-tailed
distributions in the fixed design setting of (Muller & Prewitt, 1993):

max
i=1,...,n

∣∣∣∣λ(Πi )− λ(Π)

n

∣∣∣∣= o(1/n),

max
i=1,...,n

sup
(s,t )∈Π2

i

‖s − t‖ = O
(
n−1/d

)
,

(A.2) Regularity conditions.

a(·) and b(·) are twice continuously differentiable on Π,

b(·) is lower bounded on Π,

FZ(·) is twice continuously differentiable on R.

10 / 29



Under (A.2), the density fZ(·) exists and we let HZ(·) := 1/ fZ(qZ(·)) the
quantile density function and UZ(·) = qZ(1/·) the tail quantile function of Z.

(A.3) Assumptions on the kernel. K s a bounded and even density
with symmetric support S ⊂ B(0,1) and verifying the Lipschitz property:

∃cK > 0, ∀ (u, v) ∈ S2, |K(u)−K(v)| ≤ cK‖u − v‖.

(A.4) Second order condition. For all t > 0, as z →∞,

UZ(t z)

UZ(z)
− tγ ∼ A(z)tγ

tρ−1

ρ
,

where γ> 0, ρ≤ 0 and A is a positive or negative function such that
A(z) → 0 as z →∞. The second-order parameter ρ tunes the rate of
convergence of most extreme-value estimators (de Haan & Ferreira, 2006).
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In the following, we set

κ(d) :=
{

4 if 1 ≤ d ≤ 4
2d/(d −2) if d ≥ 4.

Theorem 1 (Joint asymptotic normality of ân and b̂n)

Assume (A.1)-(A.3) hold and fZ(qZ(µ j )) > 0 for all j ∈ {1,2,3}. If nhd →∞ and

nhd+κ(d) → 0 as n →∞, then, for all sequence (tn) ⊂ Π̃(n),√
nhd

b(tn)

(
ân(tn)−a(tn)
b̂n(tn)−b(tn)

)
d−→N

(
0R2 , λ(Π) ‖K‖2

2 Σ
)

,

where Σ is a covariance matrix depending on µ1,µ2,µ3 and HZ(·).
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Theorem 2 (Asymptotic normality of γ̂n and q̂n,Z)

Assume (A.1)-(A.4) hold. Let kn →∞ be a sequence of integers such that
nhd /(kn logn) →∞, nhd+κ(d)/logn → 0 and

√
kn A(n/kn) → β ∈R as n →∞.

Then,

+
√

kn(γ̂n −γ)
d−→N

(
β/(1−ρ),γ2

)
,

+ For all sequence (αn) ⊂ (0,1) such that nαn/kn → 0 and log(nαn)/
√

kn → 0,√
kn

log
(

kn
nαn

) (
log q̂n,Z(αn)− log qZ(αn)

)
d−→N

(
β/(1−ρ),γ2) .

If ρ≥−κ(d)/(2d), then the rate of convergence of γ̂n is nρ/(1−2ρ) which
coincides with the usual rate of convergence for the estimation of the
tail-index in the non-conditional setting.

If d = 1, this rate is reached for ρ≥−2.

If d = 2, this rate is reached for ρ≥−1.
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Theorem 3 (Asymptotic normality of the estimator of extreme conditional
quantiles)

Assume (A.1)-(A.4) hold an fZ(qZ(µ j )) > 0 for all j ∈ {1,2,3}. Let kn →∞ be a

sequence of integers. Suppose nhd /(kn logn) →∞, nhd+κ(d) → 0 and√
kn A(n/kn) → β ∈R as n →∞.

Then, for all sequences (tn) ⊂ Π̃(n) and (αn) ⊂ (0,1) such that nαn/kn → 0 and
log(nαn)/

√
kn → 0 as n →∞,√

kn

log
(

kn
nαn

) (
q̃n,Y(αn | tn)

qY(αn | tn)
−1

)
d−→N

(
β/(1−ρ),γ2) .

In the case of purely nonparametric estimators of extreme conditional

quantiles, the term
√

kn is replaced by
√

knhd
n (Gardes & Girard, 2008), a

consequence of the curse of dimensionality.
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Validation on simulated data

Experimental design

Bi-dimensional setting: d = 2, Π= [0,1]2.

Fixed design: The xi are chosen on a regular grid of Π.

Norm: ‖x‖ = max(|x(1)|, |x(2)|) leading to Π̃(n) = [h,1−h]2.

Location and dispersion functions: a(x) = 1−cos
(
π(x(1) +x(2))

)
and

b(x) = exp
(−(x(1) −0.5)2 − (x(2) −0.5)2

)
.

µ1 = 3/4, µ2 = 1/2 and µ3 = 1/4.

Two distributions for Z: Student(ν) with ν ∈ {1,2,4} df (γ= 1/ν,
ρ=−2/ν) and Burr(α) with α ∈ {1,2,4} as shape parameter (γ= 1/α,
ρ=−1).

Sample size n = 10,000.
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Implementation of the estimators

The kernel K is the product of two univariate quartic kernels:

K(u, v) =
(

15

16

)2 (
1−u2)2 (

1− v2)2
1{|u|≤1}1{|v |≤1},

The bandwidth h = hn =σn−1/6, where σ= 12−1/2 is the standard
deviation of the coordinates of the design points (optimal choice for
density estimation in the Gaussian case).

The sequence kn is chosen by minimizing the asymptotic mean
squared error.

Order of the extreme conditional quantile: αn = 1/n.

N = 100 replications.
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Estimation of the location function (Student distribution)
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Estimation of the dispersion function (Student distribution)
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Estimation of the tail-index (Student distribution)
ν= 1 df

True tail-index, tail-index estimated on the residuals, tail-index estimated
on original response variables (as functions of kn).
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Estimation of extreme conditional quantiles (Student distribution)



Relative MSE: comparison with two purely nonparametric estimators

n Student, ν= 1 Student, ν= 2 Student, ν= 4
400 0.547 (0.890, 0.976) 0.129 (0.643, 0.630) 0.062 (0.442, 0.458)

1,600 0.138 (0.867, 0.893) 0.065 (0.533, 0.458) 0.020 (0.284, 0.352)

3,600 0.145 (0.855, 0.837) 0.048 (0.477, 0.431) 0.012 (0.226, 0.306)

6,400 0.061 (0.845, 0.776) 0.032 (0.456, 0.454) 0.011 (0.206, 0.253)

10,000 0.045 (0.820, 0.723) 0.026 (0.425, 0.435) 0.013 (0.184, 0.222)

n Burr, α= 1 Burr, α= 2 Burr, α= 4
400 0.525 (0.746, 0.588) 0.197 (0.329, 0.285) 0.104 (0.129, 0.176)

1,600 0.182 (0.796, 0.637) 0.068 (0.348, 0.260) 0.038 (0.124, 0.168)

3,600 0.157 (0.825, 0.625) 0.056 (0.333, 0.264) 0.023 (0.118, 0.149)

6,400 0.096 (0.827, 0.591) 0.054 (0.311, 0.271) 0.020 (0.107, 0.122)

10,000 0.070 (0.845, 0.563) 0.030 (0.301, 0.262) 0.023 (0.102, 0.107)

+ The relative MSE increases with the tail heavyness.

+ Unsurprisingly, the semi-parametric estimator performs better than
the nonparametric ones (Gardes & Girard, 2008).
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Application to tsunami data

”Tsunami Causes and Waves” dataset, https://www.kaggle.com/noaa/seismic-waves.
Maximum wave height recorded at stations where a tsunami occured.
We focus on the 2011 Tohoku tsunami, in Japan. This earthquake was
the cause of the Fukushima nuclear disaster: A wave height ≥ 15m
flooded the nuclear plant, protected by a seawall of only 5.7m.

Data:

Maximum wave height Y1, . . . ,Yn (in m) recorded at n = 5364
stations. The values are ranging from 0 to 55.88m.

Latitudes x(1)
1 , . . . , x(1)

n and longitudes of stations: x(2)
1 , . . . , x(2)

n .

Goal: Estimation of return levels of wave heights associated with small

probability.
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Maximum wave height recorded at each station

2011 Tohoku tsunami, Japan, ∗ is the epicenter.
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Estimation of location and dispersion functions

Left: location, Right: dispersion. Bottom: projections on the principal axis

(of the station locations) depicted as a straight line on the top panel. The

vertical line is the epicenter.
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Estimation of the tail-index

Test for constant tail-index (Einmahl, de Haan & Zhou, 2016).

Left: Hill estimator (as a function of kn) computed on the residuals and

on the original response variable. Right: quantile-quantile plot associated

with kn = 82.
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Estimation of the extreme conditional quantile of order αn = 10/n.

The estimated quantiles of the maximum wave height are ranging from 0

to 60.53m, with largest values close to the epicenter.
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Further work

Extension to random design,

Extension to over domains of attraction (exponential tails, ...)

Other risk measures (expected shortfall, expectiles, ...)
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