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NO-REGRET LEARNING AND MIXED NASH EQUILIBRIA:
THEY DO NOT MIX

LAMPROS FLOKAS∗, EMMANOUIL V. VLATAKIS-GKARAGKOUNIS∗, THANASIS LIANEAS†,
PANAYOTIS MERTIKOPOULOS∗∗,], AND GEORGIOS PILIOURAS‡

Abstract. Understanding the behavior of no-regret dynamics in general N-player
games is a fundamental question in online learning and game theory. A folk result in
the field states that, in finite games, the empirical frequency of play under no-regret
learning converges to the game’s set of coarse correlated equilibria. By contrast, our
understanding of how the day-to-day behavior of the dynamics correlates to the game’s
Nash equilibria is much more limited, and only partial results are known for certain
classes of games (such as zero-sum or congestion games). In this paper, we study the
dynamics of follow the regularized leader (FTRL), arguably the most well-studied class
of no-regret dynamics, and we establish a sweeping negative result showing that the
notion of mixed Nash equilibrium is antithetical to no-regret learning. Specifically, we
show that any Nash equilibrium which is not strict (in that every player has a unique
best response) cannot be stable and attracting under the dynamics of FTRL. This
result has significant implications for predicting the outcome of a learning process as it
shows unequivocally that only strict (and hence, pure) Nash equilibria can emerge as
stable limit points thereof.

1. Introduction

Regret minimization is one of the most fundamental requirements for online learning
and decision-making in the presence of uncertainty and unpredictability [13]. Defined as
the difference between the cumulative performance of an adaptive policy and that of the
best fixed action in hindsight, the regret of an agent provides a concise and meaningful
benchmark for quantifying the ability of an online algorithm to adapt to an otherwise
unknown and unpredictable environment.

Arguably, the most widely studied class of no-regret algorithms is the general algorithmic
scheme known as follow the regularized leader (FTRL) [60, 61]. This umbrella learning
framework includes as special cases the multiplicative weights update (MWU) [3, 4, 36, 66]
and online gradient descent (OGD) algorithms [68], both of which achieve a min-max
optimal O(T 1/2) regret guarantee. For obvious reasons, the ability of FTRL to adapt
optimally to an unpredictable environment makes them ideal for applying them in multi-
agent environments – i.e., games. In this case, if all agents adhere to a no-regret learning
process based on FTRL (or one of its variants), as the sequence of play becomes more
predictable, stronger regret guarantees are achievable, possibly down to constant regret, see

∗Department of Computer Science, Columbia University, New York, NY10025.
†School of Electrical and Computer Engineering, National Technical University of

Athens, Athens, Greece.
∗∗Univ. Grenoble Alpes, CNRS, Inria, LIG, 38000, Grenoble, France.
]Criteo AI Lab.
‡Singapore University of Technology and Design, Singapore.
E-mail addresses: lamflokas@cs.columbia.edu, emvlatakis@cs.columbia.edu,

lianeas@corelab.ntua.gr, panayotis.mertikopoulos@imag.fr, georgios@sutd.edu.sg.
2020 Mathematics Subject Classification. Primary 91A26, 37N40; Secondary 91A68, 68Q32, 68T05.
Key words and phrases. Regret; follow the regularized leader; game theory; stability of equilibria.
Acknowledgments of financial support are given in p. 11.

1



2 FLOKAS, VLATAKIS-GKARAGKOUNIS, LIANEAS, MERTIKOPOULOS, AND PILIOURAS

e.g., [6, 7, 23, 34, 41, 42, 54, 62] and references therein. As such, several crucial questions
arise:

What are the game-theoretic implications of the no-regret guarantees of FTRL?
Do the dynamics of FTRL converge to an equilibrium of the underlying game?

A folk answer to this question is that “no-regret learning converges to equilibrium in all
games” [47], suggesting in this way that no-regret dynamics inherently gravitate towards
game-theoretically meaningful states. However, at this level of abstraction, both the type
of convergence as well as the specific notion of equilibrium that go in this statement are
not as strong as one would have hoped for. Formally, the only precise conclusion that can
be drawn is as follows: under a no-regret learning procedure, the empirical frequency of
play converges to the game’s set of coarse correlated equilibria [26, 27].

This leads to an important disconnect with standard game-theoretic solution concepts
on several grounds. First, even in 2-player games, coarse correlated equilibria may be
exclusively supported on strictly dominated strategies [64], so they fail even the most basic
requirements of rationalizability [22, 25]. Second, the archetypal game-theoretic solution
concept is that of Nash equilibrium (NE), and convergence to a Nash equilibrium is a much
more tenuous affair: since no-regret dynamics are, by construction, uncoupled (in the sense
that a player’s update rule does not explicitly depend on the payoffs of other players),
the impossibility result of Hart & Mas-Colell [28] precludes the convergence of no-regret
learning to Nash equilibrium in all games. This is consistent with the numerous negative
complexity results for finding a Nash equilibrium [21, 58]: an incremental method like
FTRL simply cannot have enough power to overcome PPAD completeness and converge to
Nash equilibrium given adversarially chosen initial conditions.

In view of the above, a natural test of whether the dynamics of FTRL favor convergence
to a Nash equilibrium is to see whether they eventually stabilize and converge to it when
initialized nearby. In more precise language, are Nash equilibria asymptotically stable in
the dynamics of FTRL? And, perhaps more importantly, are all Nash equilibria created
equal in this regard?

Our contributions. We establish a stark and robust dichotomy between how the dynamics
of FTRL treat Nash equilibria in mixed (i.e., randomized) vs. pure strategies. For the
case of mixed Nash equilibria we establish a sweeping negative result to the effect that the
notion of mixed Nash equilibrium is antithetical to no-regret learning. More precisely, we
show that any Nash equilibrium which is not strict (in the sense that every player has
a unique best response) cannot be stable and attracting under the dynamics of FTRL.
Schematically:
Informal Theorem: Asymptotically stable point for FTRL =⇒ Pure Nash equilibrium
Equivalently: Mixed Nash equilibrium =⇒ Not asymptotically stable under FTRL
The linchpin of our analysis is the following striking property of the FTRL dynamics:

when viewed in the space of “payoffs” (their natural state space), they preserve volume
irrespective of the underlying game. More precisely, the Lebesgue measure of any open set
of initial conditions in the space of payoffs remains invariant as it is carried along the flow
of the FTRL dynamics (cf. Fig. 2). Importantly, this result is not true in the problem’s
“primal” space, i.e., the space of the player’s mixed strategies: here, sets of initial conditions
can expand or contract indefinitely under the standard Euclidean volume form.

This duality between payoffs and strategies is the leitmotif of our approach and has
a number of important consequences. First, exploiting the volume-preservation property
of FTRL, we show that no interior Nash equilibrium (and, furthermore, no closed set in
the interior of the strategy space) can be asymptotically stable under the dynamics of
FTRL, as this effectively would necessitate volume contraction in the interior of the space
(Theorem 1).
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To move beyond this result and disqualify all non-strict Nash equilibria (not just interior
ones) more intricate arguments are required. In this case, a fundamental distinction arises
between classes of dynamics that may attain the boundary of the players’ strategy space
in finite time versus those that do not. The first case concerns FTRL dynamics with
an everywhere-differentiable regularizer, like the Euclidean regularizer that gives rise to
OGD and the associated projection dynamics. The second concerns dynamics where the
regularizer becomes steep at the boundary of the strategy simplex, e.g., like the Shannon-
Gibbs entropy that gives rise to the multiplicative weights update (MWU) algorithm and
the replicator dynamics. While the interior of the strategy simplex is invariant for the
second class of dynamics, this is not the case for the former: in Euclidean-like cases, the
support of the mixed strategy of an agent may change over time. This leads to an essential
dichotomy in the boundary behavior of different classes of FTRL dynamics. Nonetheless,
despite the qualitatively distinct long-run behavior of the dynamics, a unified message
emerges: under the dynamics of FTRL, only strict Nash equilibria survive (Theorem 2).

Finally, for the case of steep, entropy-like regularizers we prove that not only their
asymptotically stable points but much more generally any asypmptotically stable set must
contain at least one pure strategy profile (Theorem 3).

Related work. The regret properties of FTRL have given rise to a vast corpus of literature
which we cannot hope to review here; for an appetizer, we refer the reader to [12, 60] and
references therein. On the other hand, the long-run behavior of FTRL in games (even finite
ones) is nowhere near as well understood. A notable exception to this is the case of the
replicator dynamics which have been studied extensively due to their origins and connection
with evolutionary game theory, cf. [29, 59, 63, 67] for a review. For the replicator dynamics,
a special instance of the volume preservation principle was first discovered by Akin [1]
and ultimately gave rise to the so-called “folk theorem” of evolutionary game theory:1 in
population games, the notions of strict Nash equilibrium and asymptotic stability coincide
[30]. This instability of mixed Nash equilibria plays a major role in the theory of population
games as it shows that even the weakest form of mixing cannot be stable in an evolutionary
sense. The volume preservation result that we establish here can be seen as a much more
general “learning analogue” of this biological principle and provides an important link
between population dynamics and the theory of online learning in games.

Recent work has examined the non-convergence of FTRL dynamics in more specialized
settings. Coucheney et al. [20] established a version of the folk theorem of evolutionary game
theory for a subclass of “decomposable”, steep FTRL dynamics. By contrast, Mertikopoulos
et al. [42] focused on two-player zero-sum games (and networked versions thereof), and
showed that almost all trajectories of FTRL orbit interior equilibria at a fixed distance
without ever converging to equilibrium, generalizing the previous analysis for replicator
dynamics by Piliouras & Shamma [53]. This is an interior equilibrium avoidance result,
but one that uniquely concerns zero-sum games. Although the above results apply for
continuous-time dynamics, in discrete-time non-convergence results only become stronger.
Bailey & Piliouras [5] proved that discrete-time FTRL diverges away from the Nash
equilibrium in zero-sum games, whereas Cheung & Piliouras [15] established Lyapunov
chaos (volume-expansion, butterfly effects). Understanding the detailed geometry of non-
equilibrating FTRL dynamics, e.g., periodicity/chaos, is an interesting direction where
volume analysis has found application [7, 10, 16, 43, 44, 52]. Non-convergence, recurrence
results have recently been established for FTRL dynamics via volume analysis even outside
normal form games, e.g., in non-convex non-concave min-max differential games [65] and
imperfect information zero-sum games [51]. Finally, such instability, non-convergence

1Interestingly, Akin’s result was established under a special non-Euclidean volume form on the game’s
strategy space, a fact which made any attempts at generalization particularly elusive.
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results have inspired new, dynamics-based, solution concepts for games that generalize
strict Nash while allowing cyclic, recurrent behavior [31, 48–50, 57].

In the converse direction, a complementary research thread has shown strict Nash
equilibria are asymptotically stable under several incarnations of the FTRL dynamics
[11, 18, 20, 38–41]. Our paper establishes the converse to this stability result, thus leading
to the the following overarching principle (which covers all generic N -player games):

Asymptotic stability under FTRL ⇐⇒ Strict Nash equilibrium
This result has significant implications for predicting the outcome of a learning process
as it shows unequivocally that its pointwise stable outcomes are precisely the strict (and
hence, pure) Nash equilibria of the underlying game.

2. Preliminaries

Notation. If f is a function of a single variable, we will abuse notation slightly and extend
it to vector variables x ∈ Rn by letting f(x)← (f(x1), . . . , f(xn)). We will also understand
inequalities involving vectors component-wise, i.e., (x1, . . . , xn) > 0 means that xi > 0 for
all i = 1, . . . , n.

The game. Throughout the sequel, we will focus on finite games. Formally, a finite game
in normal form is defined as a tuple Γ ≡ Γ(N ,A, u) consisting of (i) a finite set of players
i ∈ N = {1, . . . , N}; (ii) a finite set of actions (or pure strategies) Ai = {α1, . . . , αni} per
player i ∈ N ; and (iii) each player’s payoff function ui : A → R, where A :=

∏
iAi denotes

the ensemble of all possible action profiles α = (α1, . . . , αN ). In this general context, players
can also play mixed strategies, i.e., probability distributions xi = (xiαi)αi∈Ai ∈ ∆(Ai)
over their pure strategies αi ∈ Ai. Collectively, we will write Xi := ∆(Ai) for the mixed
strategy space of player i and X :=

∏
i Xi for the space of all mixed strategy profiles

x = (x1, . . . , xN ).
Given a mixed profile x ∈ X , the corresponding expected payoff of player i will be

ui(x) =
∑

α1∈A1

· · ·
∑

αN∈AN
x1,α1 · · ·xN,αN ui(α1, . . . , αN ). (1)

To keep track of the payoffs of each individual action, we will also write

viαi(x) := ui(αi;x−i) (2)

for the payoff of the pure strategy αi ∈ Ai in the mixed profile x = (xi;x−i) ∈ X .2 Hence,
writing vi(x) := (viαi(x))αi∈Ai ∈ RAi for the payoff vector of player i, we get the compact
expression

ui(x) = 〈vi(x), xi〉 =
∑

αi∈Ai
xiαiviαi(x) (3)

where, in standard notation, 〈v, x〉 = v>x denotes the ordinary pairing between v and x.
In terms of solutions, the most widely used concept in game theory is that of a Nash

equilibrium (NE), i.e., a state x∗ ∈ X such that

ui(x
∗) ≥ ui(xi;x∗−i) for all xi ∈ Xi and all i ∈ N . (NE)

Writing supp(x∗i ) = {αi ∈ Ai : x∗iαi > 0} for the support of x∗i , Nash equilibria can be
equivalently characterized via the variational inequality

viα∗i (x∗) ≥ viαi(x∗) for all α∗i ∈ supp(x∗i ) and all αi ∈ Ai, i ∈ N . (4)

In turn, this characterization leads to the following taxonomy:
(1) x∗ is called pure if supp(x∗) =

∏
i supp(x∗i ) is a singleton.

2We are using here the standard game-theoretic shorthand (xi;x−i) := (x1, . . . , xi, . . . , xN ) to highlight
the strategic choice of a given player i ∈ N versus that of the player’s opponents N−i := N\{i}.
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(2) If x∗ is not pure, we say that it is mixed ; and if supp(x∗) = A, we say that it is
fully mixed.

By definition, pure Nash equilibria are themselves pure strategies and correspond to vertices
of X ; at the other end of the spectrum, fully mixed equilibria belong to the relative interior
ri(X ) of X , so they are often referred to as interior equilibria.

Another key distinction between Nash equilibria concerns the defining inequality (NE):
if this inequality is strict for all xi 6= x∗i , i ∈ N , x∗ is called itself strict. Strict Nash
equilibria are pure a fortiori, and they play a key role in game theory because any unilateral
deviation incurs a strict loss to the deviating player; put differently, if x∗ is strict, every
player has a unique best response. Taking this idea further, x∗ is called quasi-strict if (4)
is strict for all αi ∈ Ai \ supp(x∗i ), i.e., if all best responses of player i are contained in
supp(x∗i ). By a deep result of Ritzberger [55], all Nash equilibria are quasi-strict in almost
all games;3 in view of this, we will tacitly assume in the sequel that all equilibria considered
are quasi-strict, a property known as “genericity” [17, 25, 35].

Remark. We should stress here that quasi-strict equilibria need not be pure: they could
be partially or even fully mixed, e.g., as in the case of Stag Hunt, Rock-Paper-Scissors,
Matching Pennies, the Battle of the Sexes, etc. We provide a series of illustrative examples
in the supplement.

Regret. A key requirement in online learning is the minimization of the players’ regret, i.e.,
the cumulative payoff difference between a player’s mixed strategy at a given time and the
player’s best possible strategy in hindsight. In more detail, assuming that play evolves in
continuous time t ≥ 0, the (external) regret of a player i ∈ N relative to a sequence of play
x(t) ∈ X is defined as

Regi(T ) = max
pi∈Xi

∫ T

0

[ui(pi;x−i(t))− ui(x(t))] dt, (5)

and we say that player i has no regret under x(t) if Regi(T ) = o(T ).

No-regret learning via regularization. The most widely used method to achieve no-regret
is the class of policies known as follow the regularized leader (FTRL) [60, 61]. Heuristically,
at each t ≥ 0, FTRL prescribes a mixed strategy that maximizes the players’ cumulative
payoff up to time t minus a regularization penalty which incentivizes exploration. Formally,
this is represented by the dynamics

yiαi(t) = yiαi(0) +

∫ t

0

viαi(x(s)) ds {aggregate payoffs}

xiαi(t) = Qiαi(yi(t)) {choice of strategy}

or, in more compact notation:
ẏ(t) = v(Q(y(t))). (FTRL)

In the above, each yiαi plays the role of an auxiliary “score variable” which measures
the aggregate performance of the pure strategy αi ∈ Ai over time. These scores are
subsequently tranformed to mixed strategies by means of a player-specific choice map
yi 7→ xi = Qi(yi) which is defined as

Qi(yi) = arg max
xi∈Xi

{〈yi, xi〉 − hi(xi)} for all yi ∈ Yi := Rni . (6)

In other words, Qi : Yi → Xi essentially acts as a “soft” version of the best-response
correspondence yi 7→ arg maxxi∈Xi〈yi, xi〉, suitably regularized by a convex penalty term
hi(xi). The precise assumptions regarding the regularizer function hi : Xi → R will be

3Specifically, on a set which is open and dense (and hence of full measure) in the space of all games.
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discussed in detail later; for now, we provide two prototypical examples of (FTRL) that
will play a major role in the sequel:

Example 2.1 (Entropic regularization and exponential weights). One of the most widely
used regularizers in online learning is the (negative) Gibbs-Shannon entropy hi(xi) =∑
αi
xiαi log xiαi . A standard calculation then yields the so-called logit choice map, written

in vectorized form as Λi(yi) = exp(yi)/
∑
αi∈Ai exp(yiαi). In turn, this leads to the

exponential weights dynamics:
ẏi(t) = vi(x(t)),

xi(t) = Λi(yi(t)).
(EW)

The system (EW) describes the mean dynamics of the so-called multiplicative weights
update (MWU) algorithm (or “Hedge”); for an (incomplete) account of its long history, see
[3, 4, 13, 24, 32, 36, 37, 66] and references therein.

Example 2.2 (L2 regularization). Another popular choice of regularizer is the quadratic
penalty hi(xi) = (1/2)‖xi‖2. In this case, the associated choice map is the Euclidean
projector on the simplex, Πi(yi) = arg minxi∈Xi‖yi − xi‖, which gives rise to the Euclidean
regularization dynamics

ẏi(t) = vi(x(t)),

xi(t) = Πi(yi(t)).
(ERD)

Beyond the two prototypical examples discussed above, the origin of the dynamics
(FTRL) can be traced to Shalev-Shwartz & Singer [61], Nesterov [46], and, via their link
to online mirror descent (OMD), all the way back to Nemirovski & Yudin [45]. Describing
the history and literature surrounding these dynamics would take us too far afield, so we
do not attempt it.

3. The fundamental dichotomy of FTRL dynamics

To connect the long-run behavior of (FTRL) to the Nash equilibria of the underlying
game, we must first understand how the players’ mixed strategies evolve under (FTRL).
Our goal in this section is to provide some background to this question as a precursor to
our analysis in Section 4. To lighten notation, we will drop in what follows the player index
i, writing for example xα instead of the more cumbersome xiαi ; we will only reinstate the
index i if absolutely necessary to avoid confusion.

3.1. Scores vs. strategies. To begin, we note that (FTRL) exhibits a unique duality: on
the one hand, the variables of interest are the players’ mixed strategies x(t) ∈ X ; on the
other, the dynamics (FTRL) evolve in the space Y of the players’ score variables y(t).
Mixed strategies are determined by the corresponding scores via the players’ choice maps
y 7→ x = Q(y), but this is not a two-way street: as we explain below, the map Q : Y → X
is not invertible, so obtaining an autonomous dynamical system on the strategy space X is
a delicate affair. In the general case, invoking standard arguments from convex analysis
[8, 56] we have y(t) ∈ ∇h(x(t)) + PC(x(t)), where

PC(x) = {y ∈ Y : yα ≥ yβ for all α ∈ supp(x), β ∈ A} (7)

denotes the polar cone to X at x.4

In the entropic case of Example 2.1, the logit choice map Q = Λ only returns fully mixed
strategies since exp(y) > 0. In the relative interior ri(X ) of X , we have by Equation (7)

4In particular, for all y ∈ PC(x), we have yα = yβ whenever α, β ∈ supp(x). The similarity of this
condition to the characterization (4) of Nash equilibria is not a coincidence: x∗ is a Nash equilibrium of Γ

if and only if v(x∗) ∈ PC(x∗) [17, 39].
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XY

x = Π(y)

Figure 1: The inverse images of neighborhoods of different points in X under
the Euclidean choice map Q = Π.

that PC(x) = {(t, . . . , t) : t ∈ R}. As a result, Λ is not surjective; however, up to a multiple
of (1, . . . , 1), it is injective. On the other hand, in the Euclidean framework of Example 2.2,
the choice map Q = Π can also return non-fully mixed strategies. Both Equation (7) and
Fig. 1 show that on the boundary PC(x) is strictly larger compared to the interior. Thus
Π is surjective but not injective, even modulo a subspace of Y.

The key obstacle to mapping the dynamics (FTRL) to X is the lack of injectivity of
Q. In turn, this allows us to make two key observations: (i) there is an important split in
behavior between boundary and interior states; and (ii) this split is linked to whether the
underlying choice map is surjective or not. We elaborate on this below.

3.2. The steep/non-steep dichotomy. The lack of injectivity of Λ on ri(X ) is a technical
artifact of the sum-to-one constraints of the strategy probabilities: knowing all but one
of the strategy probabilities we can easily recover the remaining one. Thus the Y space,
having the same number of coordinates as the X space, also contains redundant information.
With an appropriate projection we can remove this redundancy and restore injectivity in
the interior, deriving the dynamics of x(t) on X . Making this argument precise for the
entropic case of Example 2.1, we obtain the replicator dynamics:

ẋα = xα[vα(x)− u(x)]. (RD)

On the other hand, this is not enough for the Euclidean framework of Example 2.2.
When trajectories approach bd(X ), the positivity constraints xi ≥ 0 kick in finite time.
Unlike the sum-to-one constraints of the previous case, these cannot be resolved with a
dimensionality reduction so we cannot obtain a well-posed dynamical system on X as above.
This problem can only be temporarily avoided for time intervals where supp(x(t)) remains
constant. For these intervals x(t) can be shown to satisfy the projection dynamics [38]

ẋα = vα(x)− |supp(x)|−1
∑

β∈supp(x)
vβ(x) if α ∈ supp(x). (PD)

In contrast to the replicator dynamics, different trajectories of (PD) can merge or split any
number of times, and they may transit from one face of X to another in finite time [38, 39].

The two cases above are not just conveniently chosen examples, but archetypes of
the fundamentally different behaviors that can be observed under (FTRL) for different
regularizers. As we discuss in the supplement, this polar split is intimately tied to the
behavior of the derivatives of h at the boundary of X . To formalize this, we say that h is
steep if ‖∇h(x)‖ → ∞ whenever x→ bd(X ); by contrast, if supx∈X ‖∇h(x)‖ <∞, we say
that h is non-steep. Thus, in terms of our examples, the negentropy function of Example 2.1
is the archetype for steep regularizers, while the L2 penalty of Example 2.2 is the non-steep
one. The split between steep and non-steep dynamics may then be stated as follows:

(1) If h is steep, the mixed-strategy trajectories x(t) = Q(y(t)) carry all the information
required to predict the evolution of the system; in particular, x(0) fully determines
x(t) for all t ≥ 0, and x(0) remains fully mixed for all time.
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(2) If h is non-steep, the trajectories x(t) = Q(y(t)) do not fully capture the state of
the system: x(0) does not determine x(t) for all t ≥ 0, and even the times when x(t)
changes support cannot be anticipated by knowing x(0) alone. For concision, we
defer the precise statement and proof of this dichotomy to the paper’s supplement.

4. Convergence analysis and results

We now turn to the equilibrium convergence properties of (FTRL). The central question
that we seek to address here is the following: Which Nash equilibria can be stable and
attracting under (FTRL)? Are all equilibria created equal in that regard?

4.1. Notions of stability. At a high level, a point is (a) stable when every trajectory that
starts nearby remains nearby; and (b) attracting when it attracts all trajectories that start
close enough. Already, this heuristic shows that defining these notions for (FTRL) is not
straightforward: the target points are strategy profiles in X , while the dynamics (FTRL)
evolve in the dual space Y. When h is steep, we can define an equivalent presentation of
(FTRL) on X , so this problem can be circumvented by working solely with mixed strategies;
however, when h is non-steep, this is no longer possible and we need to navigate carefully
between X and Y. In view of this, we have the following definitions:

• x∗ ∈ X is stable if, for every neighborhood U of x∗ in X , there exists a neighborhood
U ′ of x∗ such that x(t) = Q(y(t)) ∈ U for all t ≥ 0 whenever x(0) = Q(y(0)) ∈ U ′.

• x∗ ∈ X is attracting if there exists a neighborhood U of x∗ in X such that
x(t) = Q(y(t))→ x∗ whenever x(0) = Q(y(0)) ∈ U .

• x∗ ∈ X is asymptotically stable if it is both stable and attracting.
For obvious reasons, asymptotic stability is the “gold standard” for questions pertaining
to equilibrium convergence and it will be our litmus test for the appropriateness of an
equilibrium x∗ ∈ X as an outcome of play. Specifically, if a Nash equilibrium is not
asymptotically stable under (FTRL), it is not reasonable to expect a no-regret learner to
converge to it, meaning in turn that it cannot be justified as an end-state of the players’
learning process. We expound on this below.

4.2. Volume preservation. A key observation regarding asymptotic stability is that neigh-
borhoods of initial conditions near an asymptotically stable point should “contract” over
time, eventually shrinking down to the point in question. Our first result below provides an
apparent contradiction to this principle: it shows that volume is preserved under (FTRL),
irrespective of the underlying game.

Proposition 1. Let R0 ⊆ Y be a set of initial conditions for (FTRL) and let Rt = {y(t) :
y(0) ∈ R0} denote its evolution under (FTRL) after time t ≥ 0. Then, vol(Rt) = vol(R0).

Proposition 1 (which we prove in the supplement through an application of Liouville’s
formula) is surprising in its universality as it holds for all games and all instances of
(FTRL). As such, it provides a blanket generalization of the well-known volume-preserving
property for the replicator dynamics established by Akin [1], as well as subsequent results
for zero-sum games [42].

4.3. Instability of fully mixed equilibria. As stated above, the volume-preserving property
of (FTRL) would seem to suggest that no strategy can be asymptotically stable. However,
this is a figment of the duality between strategy and score variables: a mixed strategy
orbit x(t) = Q(y(t)) could converge in X , even though the corresponding dual orbit y(t)
diverges in Y (for an illustration, see Fig. 2 above). This again brings into sharp contrast
the behavior of (FTRL) at the boundary of X versus its behavior at the interior. Our first
instability result below shows that the volume-preserving property of (FTRL) rules out
the stability of any fully mixed equilibrium, in any game:
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(ERD) (EW)(PD) x = Π(y)

Strategy space (X )

(RD)x = Λ(y)

Strategy space (X )Score space (Y)

Figure 2: The duality between scores and strategies under (FTRL): the dynamics
are volume-preserving in Y, but a volume of initial conditions could either collapse
in finite time (in the Euclidean case, left), or shrink asymptotically (in the logit
case, right). This is due to the vastly different geometric properties of each
system.

Theorem 1. A fully mixed Nash equilibrium cannot be asymptotically stable under (FTRL).

The main idea of the proof of Theorem 1 relies on a tandem application of Proposition 1
together with the dimensionality reduction idea we discussed for the entropic case in
Section 3. In the resulting quotient space, the inverse image of an interior point x∗ ∈ ri(X )
is a single point and the induced dynamics remain volume-preserving. If x∗ is asymptotically
stable, a limit point argument rules out the possibility of a trajectory entering and
exiting a small neighborhood of its preimage infinitely many times. At the same time,
Lyapunov stability and volume preservation imply that the dynamics are locally recurrent.
This contradicts the transient property established above and proves that x∗ cannot be
asymptotically stable; the details involved in making these arguments precise are fairly
intricate, so we defer the proof of Theorem 1 to the supplement.

This universal instability result has significant implications as it provides a dynamic
justification of the fragility of fully mixed Nash equilibria. Theorem 1 illustrates this
principle through the lens of regret minimization: any deviation from a fully mixed
equilibrium invariably creates an opportunity that can be exploited by a no-regret learner.
When every player adheres to such a policy, this creates a vicious cycle which destroys any
chance of stability for fully mixed equlibria.

4.4. The case of partially mixed equilibria. Taking this premise to its logical extreme, a
natural question that arises is whether this instability persists as long as even a single player
employs a mixed strategy at equilibrium. In the previous case, after the dimensionality
reduction argument we described in Section 3, neighborhoods of fully mixed equilibria
in the space of strategies (X ) correspond to sets of finite volume in the space of payoffs
(Y). On the contrary, the case of partially mixed equilibria is much more complex because
neighborhoods of points on the boundary of X correspond to sets of infinite volume in the
space of payoffs – and this, even after dimensionality reduction (cf. Fig. 1). Because of
this, volume preservation arguments cannot rule out asymptotic stability of Nash equilibria
lying at the boundary of the strategy space: indeed, pure Nash equilibria also lie on the
boundary but they can be asymptotically stable [17, 20, 38, 39].

In view of the above, it is not a priori clear whether partially mixed equilibria would
behave more like pure or fully mixed ones – or if no conclusion can be drawn whatsoever. Our
next result shows that the dynamics of FTRL represent a very sharp selection mechanism
in this regard:

Theorem 2. Only strict Nash equilibria can be asymptotically stable under (FTRL).
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Corollary 1. If x∗ is partially mixed, it cannot be asymptotically stable under (FTRL).

Viewed in isolation, Theorem 1 would seem to be subsumed by Theorem 2, but this is
not so: the former plays an integral role in the proof of the latter, so it cannot be viewed
as a special case. In more detail, the proof of Theorem 2 builds on Theorem 1 along two
separate axes, depending on whether the underlying regularizer is steep or not:
(1) In the steep case, as we discussed in Section 3 there is a well-posed dynamical system

on X . As we show in the supplement, each face of X is forward-invariant in this system,
so x∗ must also be asymptotically stable when constrained to the face X ∗ of X spanned
by supp(x∗). The conclusion of Theorem 2 then follows by noting that x∗ is interior in
X ∗ and applying Theorem 1 to the restriction of the underlying game to X ∗.

(2) The non-steep case is considerably more difficult because (FTRL) no longer induces
a well-posed system on X . In lieu of this, by examining the finer structure of the
inverse image of x∗, it is possible to show the following: for every small enough
compact neighborhood K of x∗ in X , there exists a finite time τK ≥ 0 such that
supp(x(t)) = supp(x∗) for all t ≥ τK whenever x(0) ∈ K. As it turns out, the dynamics
after t ≥ τK locally coincide with the mixed strategy dynamics of (FTRL) applied to
the restriction of the underlying game to the face X ∗ of X spanned by x∗. Since x∗ is
a fully mixed equilibrium in this restricted game, it cannot be asymptotically stable.

4.5. Stable limit sets. We conclude our analysis with a result concerning more general
behaviors whereby the dynamics of FTRL do not converge to a point, but to a more
general invariant set – such as a chain of stationary points interconnected by solution
orbits, a structure known as a heteroclinic cycle [see e.g., 29, 59, and references therein].
As an example, in the case of two-player zero-sum games with a fully mixed equilibrium,
it is known that the trajectories of (FTRL) form periodic orbits (cycles). However, these
orbits are not asymptotically stable: if the initialization of the FTRL dynamics is slightly
perturbed, the resulting trajectory will be a different periodic orbit, which does not converge
to the first (in the language of dynamical systems, the cycles observed in zero-sum games
are not limit cycles). We are thus led to the following natural question:

What type of invariant structures can arise as stable limits of (FTRL)?
To state this question formally, we will require the setwise version of asymptotic stability: a
set S is called asymptotically stable under (FTRL) if a) all orbits x(t) = Q(y(t)) of (FTRL)
that start sufficiently close to S remain close; and b) all orbits that start nearby eventually
converge to S. Then, focusing on the case of steep dynamics to avoid more complicated
statements, we have:

Theorem 3. Every asymptotically stable set of steep (FTRL) contains a pure strategy.

The proof of Theorem 3 relies on an “infinite descent” argument whereby the faces of
X that intersect with S are eliminated one-by-one, until only pure strategies remain as
candidate elements of S with minimal support; we provide the details in the supplement.

The importance of Theorem 3 lies in that it provides a succinct criterion for identifying
possible attracting sets of (FTRL). Indeed, by Conley’s decomposition theorem (also
known as the “fundamental theorem of dynamical systems”) [19], the flow of (FTRL) in
an arbitrary game decomposes into a chain recurrent part and an attracting part (see
[49, 50] for several examples/discussion in the case of replicator dynamics). The recurrent
part is exemplified by the periodic orbits that arise in zero-sum games with an interior
equilibrium (there are no attractors in this case) [42]. Theorem 3 goes a long way to
showing that the attracting part of (FTRL) always intersects the extremes of the game’s
strategy space – i.e., the players’ set of pure strategies. A special case of Theorem 3,
in the case of replicator dynamics, was employed in [48] as a step in the definition of
new, dynamics/decomposition-based solution concepts. Formalizing the exact form of this
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decomposition in arbitrary games is an open direction for future research with far-reaching
implications for the theory of online learning in games.

5. Concluding remarks

The well known universal existence theorem for (mixed) Nash equilibria in general
games has been very influential not only from a mathematics perspective but also from a
public policy one as it seems to suggest that there is no inherent tension in any societal
setting between the single-minded pursuit of individual profits and societal stability. Nash
equilibria satisfy both desiderata simultaneously. Thus, there is in principle no need for
centralized intervention and guidance as market forces will converge upon such a solution.

Our results present an argument in the opposite direction. Unless the game has a
pure Nash equilibrium, which is definitely not satisfied in numerous strategic interactions,
then societal systems do not self-stabilize, even if they are driven by our most effective
payoff seeking dynamics, i.e., gradient learning and its follow-the-regularizer-leader variants.
Exploring the tradeoffs between individual optimality and societal stability is thus a much
more subtle issue than it first meets the eye, and we hope that we inspire follow-up work
that can elucidate these questions further.
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Appendix A. An ontology of Nash equilibria: representative examples

In the archetypal game of Prisoner’s Dilemma (left), it is easy to check that the unique
Nash equilibrium is the mutual betrayal which is strict (and hence pure). On the other
hand, Matching Pennies (right) is an example of a zero-sum game whose unique Nash
equilibrium is fully mixed but still quasi-strict (since all strategies present in its support are
unilateral best responses to it). We mention the above to clarify that quasi-strict does not
mean pure equilibria and includes also the fully mixed Nash equilibrium; the terminology
is, perhaps, unfortunate, but otherwise deeply entrenched in the game-theoretic literature
[25].

Appendix B. Basic properties of the FTRL dynamics

B.1. Definitions from dynamical systems. In this appendix, we provide some general
preliminaries from general topology and the theory of dynamical systems that we will use
freely in the sequel.

A key notion in our analysis is that of (Poincaré) recurrence. Intuitively, a dynamical
system is recurrent if, after a sufficiently long (but finite) time, almost every state returns



12 FLOKAS, VLATAKIS-GKARAGKOUNIS, LIANEAS, MERTIKOPOULOS, AND PILIOURAS

Player Y
B S

Player X B (3, 3) (0, 5)

S (5, 0) (1, 1)

Player Y
H T

Player X H (1,−1) (−1, 1)

T (−1, 1) (1,−1)

Table 1: Prisoner’s Dilemma (left) & Matching Pennies (right).

arbitrarily close to the system’s initial state.5 More formally, given a dynamical system on
X that is defined by means of a semiflow Φ: X × [0,∞)→ X , we have:6

Definition 1. A point x ∈ X is said to be recurrent under Φ if, for every neighborhood U
of x in X , there exists an increasing sequence of times tn ↑ ∞ such that Φtn(x) ∈ U for all
n. Moreover, the flow Φ is called (Poincaré) recurrent if, for every measurable subset A of
X , the set of recurrent points in A has full measure.

The above definition directly implies that the flow Φt(x) from a recurrent point x cannot
converge to any x′ 6= x. Poincaré’s recurrence theorem gives sufficient condition for the
existence of such points.

Theorem B.1 (Poincaré Recurrence Theorem). If a flow Φ preserves volume and its orbits
are bounded, then almost every point is recurrent under Φ.

The key notion in the above formulation of the theorem is that of volume preservation:
formally, a flow Φ is volume-preserving if vol(Φt(R)) = vol(R) for any set of initial
conditions R ⊆ X . A useful condition to establish this property is via Liouville’s formula,
as stated below:

Theorem B.2 (Liouville’s formula). Let Φ be the flow of a dynamical system with infin-
itesimal generator V , i.e., Φt(x) is the solution trajectory of the ordinary differential
equation

d

dt
x(t) = V (x(t)) (B.1)

with initial condition x(0) = x. Then, letting Rt = Φt(R) for an arbitrary measurable set
R, we have

d

dt
vol[Rt] =

∫
Rt

div[V (x)] dx (B.2)

Corollary 2. If V is incompressible over Rn (i.e., div V (x) = 0 for all x ∈ Rn), the induced
flow Φ is volume-preserving.

B.2. Structural properties of the FTRL dynamics: the steep/non-steep dichotomy. To
proceed with our analysis, we will need to clarify the precise technical requirements for
the dynamics’ regularizer function h. These are as follows: (i) h ∈ C0(Rn+) ∩ C2(Rn++),
i.e., h is continuous on Rn+ and two times continuously differentiable on Rn++; (ii) h is
strongly convex on X ; and (iii) the inverse Hessian H(x) = Hess(h(x))−1 of h admits a
Lipschitz extension to all of X such that z>H(x)z > 0 whenever supp(z) ⊇ supp(x). These
conditions are purely technical in nature and they are satisfied by all the regularizers used in
practice, cf. [2, 9, 14, 33, 38, 60] and references therein. As we discussed in the main body
of our paper, there is an important distinction to be made depending on whether h is steep
or non-steep. Formally, we say that h is steep if ‖∇h(x)‖ → ∞ whenever x→ bd(X ) and

5Here, “almost” means that the set of such states has full Lebesgue measure.
6A smooth map Φ: X × [0,∞) → X is called a semiflow if Φ0(x) = x and Φt+s(x) = Φs(Φt(x)) for

all x ∈ X and all t, s ≥ 0. Heuristically, Φt(x) ≡ Φt(x) describes the trajectory of the dynamical system
starting at x.
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Figure 3: Steep vs. non-steep regularizers (note in particular the singular
behavior of the gradient at the boundary in the case of steep regularizers).

rank(H(x)) = |supp(x)| for all x; by contrast, if supx∈X ‖∇h(x)‖ <∞ and rank(H(x)) = n,
we say that h is non-steep. The qualititative difference in behavior between these cases is
illustrated in the figure below (which shows the very different behavior of the derivates of
h near the boundary of the state space).

The following lemma illustrates the relation between mixed strategies and
score vectors and the mirror map (6) that defines the dynamics (FTRL). We
focus on the perspective of an arbitrary player, say i, and for ease of notation
we write Q, x and y instead of Qi, xi and yi respectively. The lemma begins
to illustrate the gulf between the steep and non-steep cases.

Lemma B.1. x = Q(y) if and only if there exist µ ∈ R and να ∈ R+ such that, for all
α ∈ A, we have: a) yα = ∂h

∂xα
+ µ− να; and b) xανα = 0 In particular, if h is steep, we

have να = 0 for all α ∈ A.

Proof. Recall that

Q(y) = arg max
x∈X

{〈y, x〉 − h(x)}

= arg max

{∑
α∈A

yαxα − h(x) :
∑
α∈A

xα = 1 and ∀α ∈ A : xα ≥ 0

}
The result follows by applying the Karush–Kuhn–Tucker (KKT) conditions to this opti-
mization problem and noting that, since the constraints are affine, the KKT conditions are
sufficient for optimality. Our Langragian is

L(x, µ, ν) = (
∑
α∈A

yαxα − h(x))− µ(
∑
α∈A

xα − 1) +
∑
α∈A

ναxα

where the set of constraints (i) of the statement of the lemma are the stationarity constraints,
which in our case are ∇L(x, µ, ν) = 0 ⇔ ∇(

∑
α∈A yαxα − h(x)) = µ∇(

∑
α∈A xα − 1) −∑

α∈A να∇xα , while the set of constraints (ii) of the statement of the lemmas are the
complementary slackness constraints. Note that complementary slackness implies that
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whenever να > 0 whenever α /∈ supp(x). Finally, if h is steep, we have |∂αh(x)| → ∞ as
x→ bd(X ), which implies that the KKT conditions admit a solution with να = 0. �

The following lemma shows that if the support of x(t) does not change over
a given interval of time, then the evolution of the players’ mixed strategies
under (FTRL) follows a certain differential equation that can be calculated
explicitly. The lemma below also shows that the trajectory of play coincides
with the trajectory that would have resulted if the game were constrained to
the strategies present in the support of x(t). Again, for ease of notation we
focus on player i and omit i from all subscripts.

Proposition B.1. Let x(t) = Q(y(t)) be a mixed strategy orbit of (FTRL), and let T be an
interval over which supp(x(t)) is constant. Then, for all t ∈ T , x(t) satisfies the mixed
strategy dynamics:

ẋα =
∑

β∈supp(x)
[Hαβ(x)−Hα(x)Hβ(x)] vα(x), (FTRL-s)

where Hα(x) =
[∑

β,β′∈supp(x)Hββ′(x)
]−1/2∑

β∈supp(x)Hαβ(x). In particular, we have
the following dichotomy:

(1) If h is steep, the dynamics (FTRL-s) are well-posed, i.e., they admit unique global
solutions from any initial condition x ∈ X (including the boundary). Moreover,
the faces of X are forward-invariant under (FTRL-s): the support of x(t) remains
constant for all t ≥ 0.

(2) If h is non-steep, the dynamics (FTRL-s) are not well-posed: solutions x(t) to
(FTRL-s) exist only up to a finite time, after which the support of x(t) may change.

Proof. For the first part of the lemma, we follow a line of reasoning due to [38]. Specifically,
letting gα(x) = ∂αh(x), Lemma B.1 yields

yα(t) = gα(t) + µ(t), ∀t ∈ I, ∀α ∈ A∗ (B.3)

Since yα and gα are both smooth, so is µ(t). Thus, differentiating with respect to t we get

ẏα(t) =
∑
β∈A

∂2h

∂xβ∂xα
ẋβ(t) + µ̇(t)

=
∑
β∈A∗

∂2h

∂xβ∂xα
ẋβ(t) + µ̇(t)

since for all t ∈ I and β ∈ A \ A∗, xβ(t) = 0, and thus ẋα(t) = 0. Multiplying with the
inverse of the Hessian, and omitting t for brevity, we get

ẋα =
∑
β∈A∗

Hαβ ẏβ +
∑
β∈A∗

Hαβµ̇ (B.4)

By the definition of the dynamics, ẏβ = vβ and since the support remains constant∑
α∈A∗ ẋα = 0. Summing up Equation (B.4) for α ∈ A∗ we get∑

α,β∈A∗
Hαβvβ +Gµ̇ = 0⇔ µ̇ = −

∑
β∈A∗ Hβvβ

G
(B.5)

where G =
∑
β,β′∈supp(x)Hββ′(x). Substituting the latter and ẏβ = vβ to Equation (B.4)

we get the desired result.
For the second part of the lemma, the well-posedness of (FTRL-s) follows from the

fact that H(x) admits a Lipschitz continuous extension to all of x; moreover, by the rank
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assumption, the field Hα(x) is also Lipschitz continuous (since the denominator does not
vanish; recall that imH(x) = Rsupp(x)). Finally, forward invariance follows by noting that,
for every initial condition x ∈ X , the quantity

∑
α∈supp(x) xα(t) is a constant of motion

(identically equal to 1), and that ẋα = 0 whenever xα = 0. �

A key take-away from the above result is that, in the steep case, the dynamics
(FTRL-s) can be seen as a patchwork of dynamical systems, each evolving on
a specific face of x, and each a continuous extension of the other at the points
where they come into contact. Neither of the above is true for the non-steep
case.

B.3. Volume preservation in Y and ri(X ).

After restating it, we proceed to show Proposition 1 by simply applying
Liouville’s formula (Theorem B.2).

Proposition 1. Let R0 ⊆ Y be a set of initial conditions for (FTRL) and let Rt = {y(t) :
y(0) ∈ R0} denote its evolution under (FTRL) after time t ≥ 0. Then, vol(Rt) = vol(R0).

Proof. We have to show that the dynamics of (FTRL) (i.e., ẏ(t) = v(Q(y(t)))) are incom-
pressible. For any player i and any α ∈ Ai we have

∂viα
∂yiα

=
∑
β∈Ai

∂viαi
∂xiβ

∂xiβ
∂yiα

= 0, (B.6)

because vi does not depend on xi. We thus obtain divy v(y) = 0, i.e., the dynamics (FTRL)
are incompressible. The result then follows from Liouville’s formula �

In the following lemma, we show that the flow defined by FTRL in the interior
ri(X ) of X is incompressible under a suitably defined measure. For that, using
Liouville’s formula, we first show that in the so-called z-space, i.e., a “slice”
of the payoff space, the respective flow is incompressible. Using that, we can
easily get a diffeomorphism from ri(X ) to the z-space, we define the volume
of a set in ri(X ) to be the volume of the corresponding set in the z-space,
and thus incompresssibility in the interior comes for free.

Lemma B.2. There exists a measure µx for which the flow in the interior of X is incom-
pressible, i.e., for any subset U ⊂ ri(X ) of initial conditions, and any t0 ≥ 0 so that for
any 0 ≤ t ≤ t0: Φ(U, t) ⊂ ri(X ), it is µx(U) = µx(Φ(U, t)).

Proof. First we go on to define the z-space. The intuition for defining and using the z-space
can be based on Lemma B.1 which implies that for any x ∈ ri(X ), any two corresponding
points y, y′ in the y-space differ by a constant, since for all i and αj ∈ Ai, yiαj = ∂h

∂xiαj
+µi

and y′iαj = ∂h
∂xiαj

+ µ′i for some µi and µ′i (recall x ∈ ri(X ) implies νiαj = 0). Thus,
all y’s that correspond to an x ∈ ri(X ) form an equivalent class. For each class, we
pick as representative the y in the class that has 0 in some specific coordinate α̂i, for
every player i. The set of representatives form the z-space and there is a a one to one
correspondence of points of ri(X ) to points in the z-space which moreover can be used to
define an incompressible flow in ri(X ).
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So, for a benchmark strategy α̂i ∈ Ai for every player i ∈ N and for all α ∈ Ai\{α̂i} ≡ Âi
consider the corresponding score differences

ziα = yiα − yiα̂i . (B.7)

Obviously, ziα = yiαi − yiα̂i is identically zero so we can ignore it in the above definition.
In so doing, we obtain a linear map Πi : RAi → RÂi sending yi 7→ zi; aggregating over
all players, we also write Π for the product map Π = (Π1, . . . ,ΠN ) sending y 7→ z. For
posterity, note that this map is surjective but not injective,7 so it does not allow us to
recover the score vector y from the score difference vector z.

Now, under FTRL, the score differences (B.7) evolve as

żiα = viα(x(t))− viα̂i(x(t)). (B.8)

7Specifically, Πi(yi) = Πi(y
′
i) if and only if y′iαi = yiαi + c for some c ∈ R and all αi ∈ Ai.
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Our first step below is to show that (B.8) constitutes a well-defined dynamical system on z
as long as the correpsonding x’s remain in ri(X ).

To do so, consider the reduced mirror map Q̂i : RÂi → Xi defined as

Q̂i(zi) = Qi(yi) (B.9)

for some yi ∈ RAi such that Πi(yi) = zi. That such a yi exists is a consequence of Πi being
surjective; furthemore, that Q̂i(zi) is well-defined is a consequence of the fact that Qi is
invariant on the fibers of Πi. Indeed, by construction, and as long as the corresponding x’s
remain in ri(X ) we have Πi(yi) = Πi(y

′
i) if and only if y′iα = yiα + c for some c ∈ R and all

α ∈ Ai. Hence, by the definition of Qi, we get

Qi(y
′
i) = arg max

xi∈Xi

{
〈yi, xi〉+ c

∑
α∈Ai xiα − hi(xi)

}
= arg max

xi∈Xi
{〈yi, xi〉 − hi(xi)} = Qi(yi), (B.10)

where we used the fact that
∑
α∈Ai xiα = 1. The above shows that Qi(y′i) = Qi(yi) if

and only if Πi(yi) = Πi(y
′
i), so Q̂i is well-defined. Letting Q̂ ≡ (Q̂1, . . . , Q̂N ) denote

the aggregation of the players’ individual mirror maps Q̂i, it follows immediately that
Q(y) = Q̂(Π(y)) = Q̂(z) by construction.

Hence, the dynamics (B.8) may be written as

ż = V (z), (B.11)

where
νiα(z) = viα(Q̂i(z))− viα̂i(Q̂i(z)). (B.12)

These dynamics obviously constitute an autonomous system.
Next, we show incompressibiity of the z-space. Indeed, for all α ∈ A we have

∂νiα
∂ziα

=
∑
β∈Ai

∂νiαi
∂xiβ

∂xiβ
∂ziα

= 0, (B.13)

because vi does not depend on xi. We thus obtain ∇z · V (z) = 0, i.e., the dynamics (B.11)
are incompressible.

For the last step, for a set A ⊂ ri(X ) define µx(A) := µz(Q
−1(A)), where µz is the

Lebesgue measure in the z-space. Then for any U ⊂ ri(X ), as long as Φ(U, t) remains in
ri(X ), it is

µx(U) = µz(Q
−1(U)) = µz(Q

−1(Φ(U, t))) = µx(Φ(U, t))

as needed. �

Appendix C. Proof of Theorem 1

Below we show that there are no asymptotically stable sets (or points) in
ri(X ). Indeed, if this were the case, there would be a full-measure set of
initial conditions outside the asymptotically stable set A∗ that converges
to A∗, while at the same time its trajectories are bounded (by stability).
This contradicts Poincaré’s recurrence theorem, because the flow in ri(X ) is
volume-preserving by Lemma B.2.

Theorem C.1. Let A∗ be a closed set of ri(X ). Then A∗ is not asymptotically stable under
FTRL.
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U

U0

A∗ x0

E

Φ(E, t)

Poincaré Reccurence

Figure 6: The various sets in the proof of Theorem C.1.

Proof. To reach a contradiction, let A∗ be an asymptotically stable set, i.e., attracting and
Lyapunov stable, belonging in ri(X ). Since A∗ is attracting, there exists a neighborhood U
of A∗ all points of which converge to A∗. Without loss of generality, since A∗ is closed, we
may assume that U lies in ri(X ), and its closure is disjoint from the boundary of X .

Now, since A∗ is Lyapunov stable, there exists some neighborhood U0 of A∗ so that
whenever x(0) ∈ U0, x(t) ∈ U . Pick some x0 ∈ U0 \A∗. Since A∗ is closed and U0 is open,
there is a small enough neighborhood E of x0 so that all points of E lie inside U0 \ A∗.
By Lyapunov stability, for all t ≥ 0, Φ(E, t) ⊆ U . But then the set E∞ = ∪t≥0Φ(E, t) is
bounded, having positive measure that does not change over time (Lemma B.2). Therefore
it is a Poincaré recurrent set. But this means that all but a measure zero set of initializations
in E lead to recurrent trajectories that return infinitely often to E. Picking E to be bounded
away from A∗ (which is a closed set) we conclude that there are points in E (and thus U)
that do not converge to A∗, a contradiction. �

Now, given that any singleton set {x}, x ∈ X , is closed, the above yields:

Theorem C.2. There are no asymptotically stable points in ri(X )

Theorem 1 (restated below) then follows as a corollary.

Theorem 1. A fully mixed Nash equilibrium cannot be asymptotically stable under (FTRL).

Appendix D. Proof of Theorem 2: the non-steep case

Our goal in this appendix is to provide the proof of Theorem 2, which we restate below
for convenience:

Theorem 2. Only strict Nash equilibria can be asymptotically stable under (FTRL).

Because of the fundamental dichotomy between steep and non-steep FTRL dynamics,
we will break the proof in two cases, treating here the non-steep regime; the steep case
will be proved in Appendix E as a consequence of a more general result. The fundamental
distinction between the two cases is that, in the non-steep regime, the mixed-strategy
dynamics of (FTRL) could change support infinitely many times, which means that the
type of volume-preservation arguments employed in the previous section cannot work
(because the corresponding preimages in the z-space could have infinite volume; see below
for a graphical illustration). However, as we show below, this “change of support” is a
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blessing in disguise: if x∗ is asymptotically stable, nearby trajectories will end up employing
only those strategies present in x∗ in finite time.

(PGD)

Collapse of Volume Preservation

Payoff Space Representation

r r

State Space Representation

r r

y = Q(x)

x = Q−1(y)

bd(X )

Figure 7: From payoffs to strategies and back, the non-steep case: deformation
of neighborhoods under the Euclidean projection map Q = Π.

The following lemma shows that, for generic games, if the underlying regular-
izer is non-steep, all trajectories starting near an asymptotically stable point
x∗ attain the face of x∗ in some uniform, finite time. The intuition for this is
that, generically, for any player i, the coordinates of yi that correspond to
the support of x∗i increase with a “speed” that is uniformly higher than those
strategies not supported in x∗. The regularizer of player i could possibly
act in favor of the coordinates that do not belong to the support, but in a
bounded way, since it is non-steep. Thus, there is a time after which the
coordinates of yi corresponding to the support are bigger enough than the
other coordinates, so that the mirror map Qi keeps returning a point with
support equal to the support of x∗i .

Lemma D.1. Let x∗ be an asymptotically stable equilirium of a generic finite game Γ,
with the regularizers used, being non-steep. For any neighborhood U of x∗, there exists a
neighborhood U0 of x∗ and a finite time T0 such that if x(t) = Q(y(t)) is an orbit of FTRL
starting at x(0) ∈ U0, then supp(x(t)) = supp(x∗) for all t ≥ T0.

Proof. By the genericity assumption, all Nash equilibria are quasi-strict. Clearly we have
that for any player i, uiα(x∗) > uiβ(x∗) for all α ∈ supp(x∗i ) ≡ A∗i and βi /∈ supp(x∗i ).
Thus, by continuity there exists some neighborhood U of x∗ and a c > 0 so that for any
x ∈ U and any player i, uiα(x) > uiβ(x) + c for all α ∈ A∗i , β ∈ Ai \ A∗i . Additionally,
we can choose U small enough so that for all x ∈ U , supp(x∗) ⊆ supp(x). Since x∗ is
asymptotically stable there exists a neighborhood U0 of x∗ so that x(t) ∈ U for all t
whenever x(0) ∈ U0, and limt→∞ x(t) = x∗.
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Consider some x(0) ∈ U0 and let α ∈ A∗, β ∈ A \ A∗. For ease of notation in the
following we focus on the perspective of an arbitrary player, say i, and omit i from the
subscripts.

By Lemma B.1, for any t ≥ 0 there exist a µ(t) and non negative vα(t)’s so that

yα(t) = gα(x(t)) + µ(t) ∀α ∈ A∗

yα(t) = gα(x(t)) + µ(t)− vβ(t) ∀β ∈ A \ A∗

since, by complementary slackness, vα(t) = 0, whenever xα(t) > 0. Subtracting we get

yα(t)− yβ(t) = gα(x(t))− gβ(x(t)) + vβ(t) ≤ vβ(t) +G (D.1)

with the inequality following, for some constant G, by h being non-steep.
On the other hand by the definition of the dynamics, using Equation (D.1) and that

uα(x(t)) > uβ(x(t)) + c, for all t (since x(0) ∈ U0), we get

yα(t)− yβ(t) = yα(0)− yβ(0)) +

∫ t

0

[uα(x(s))− uβ(x(s))]ds

> gα(x(0))− gβ(x(0)) + vβ(0) + ct

≥ ct+ vβ(0)−G
with the last inequality following again by h being non-steep. Combining the latter with
Equation (D.1), and since vβ(0) ≥ 0, we get

vβ(t) +G > ct+ vβ(0)−G⇒ vβ(t) > ct− 2G

which implies that for t ≥ 2G
c it is vβ(t) > 0. This in turn, by complementary slackness,

yields xβ(t) = 0 for all t ≥ 2G
c , implying supp(x(t)) ⊆ supp(x∗). By the choice of U and

since ∀t : x(t) ∈ U we have supp(x(t)) ⊇ supp(x∗) and thus setting T0 = 2G
c proves the

claim, since the above holds for any player i. �

The main result of this section is the following theorem that covers the
non-steep case, stating that for generic games at an asymptotically stable
point under non-steep regularizers, every player plays a pure strategy. The
proof combines results presented above. It reaches a contradiction by showing
that points in a small enough neighborhood of the asymptotically stable
point x∗, instead of converging to it as they ought to, they follow recurrent
trajectories. In a first step it finds points that after a finite time T0 reach and
stay forever at the simplex formed by the support of x∗ (using Lemma D.1),
which moreover have non-zero volume in that simplex. But then, these points
follow FTRL trajectories in the restricted simplex (Proposition B.1) and x∗
belongs in the interior of this simplex. However, we already know this cannot
be the case in the interior (Theorem C.2) and we follow a similar reasoning.

Theorem D.1. If x∗ ∈ X is an asymptotically stable point under non-steep regularizers of
a generic game Γ, then it consists of only pure strategies.

Proof. Let x∗ ∈ X be asymptotically stable, A∗ = supp(x∗), with |A∗i | = | supp(x∗i )| ≥ 2
for some player i, and X ∗ be its respective simplex. Since x∗ is attracting, there exists
some (bounded) neighborhood U of x∗ for which if x(0) ∈ U , then limt→∞ x(t) = x∗.
By Lemma D.1, there exists a neighborhood U0 of x∗ and a finite time T0 such that if
x(t) = Q(y(t)) is an orbit of FTRL starting at x(0) ∈ U , then supp(x(t)) = A∗ for all
t ≥ T0.

By Proposition B.1, for t ≥ T0 all trajectories satisfy Equation (FTRL-s) and these
trajectories coincide with the trajectories of a generic game Γ′ played on A∗, with the
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restricted simplex being X ∗. At the same time, similar to the proof of Theorem C.1,
Φ(U0, T0) is a bounded (as a subset of U

⋂
X ∗), positive measure for X ∗ (as the evolution of

an open set after a finite time (recall |A∗i | ≥ 2 for some i)), and invariant (Lemma B.2) set of
X ∗ and, therefore, it is also Poincaré recurrent, contradicting that for x(0) ∈ Φ(U0, T0) ⊆ U ,
limt→∞ x(t) = x∗, as implied by the asymptotic stability of x∗. Thus, if x∗ ∈ X is
asymptotically stable then | supp(x∗i )| = 1 for all i. �

As we stated in the beginning of this appendix, the steep case of Theorem 2 comes as a
corollary (Corollary 3) of a more general result on asymptotically stable sets that we prove
in the next section (Theorem 3).

Appendix E. Proof of Theorem 3 and Theorem 2: the steep case

The following theorem shows that any asymptotically stable set A cannot
be contained in the interior of any non-singleton face X ′. This comes as a
consequence of Theorem C.1. When the regularizers are steep, any point
starting in ri(X ′) stays in ri(X ′) over time and A being asymptotically stable
implies that A

⋂
X ′ is an asymptotically stable set under the FTRL dynamics

of the restricted game played on X ′. But for the restricted game Theorem C.1
applies excluding the possibility of A

⋂
X ′ being an asymptotically stable set

inside ri(X ′).

Theorem E.1. Let A ⊆ X be an asymptotically stable set intersecting a non-singleton face
X ′ of X . Then, A

⋂
X ′ cannot be contained in the relative interior of X ′.

Proof. To reach a contradiction let A intersect a non-singleton face X ′ of X and A′ = A
⋂
X ′

be a subset of the relative interior of X ′. We will show that if this is the case then A′ is an
asymptotically stable set under the dynamics of FTRL restricted to X ′, that lies in the
relative interior of X ′. This contradicts Theorem C.1.

To reach the contradiction, we go on to prove that A′ is an asymptotically stable
set under FTRL dynamics in X ′. We will crucially use that with steep regularizers for
any x(0) ∈ ri(X ′), x(t) ∈ ri(X ′), for all t ≥ 0, i.e., X ′ is forward invariant under FTRL
(Proposition B.1).

To show Lyapunov stability of A′ in X ′ pick any neighborhood U ′ of A′ in X ′. It can be
written as U ′ = U

⋂
X ′ for some neighborhood U of A in X . Since A is Lyapunov stable,

there exists a neighborhood U0 of A in X such that for any x(0) ∈ U0, it is x(t) ∈ U for all
t ≥ 0. Let U ′0 = U0

⋂
X ′. Using that X ′ is forward invariant, the latter implies that for

any x(0) ∈ U ′0 = U0

⋂
X ′, it is x(t) ∈ U

⋂
X ′ = U ′ for all t ≥ 0, as needed.

We use similar ideas to show that A′ is attracting in X ′. Since A is attracting in X
there exist a neighborhood U of A in X such that for any x(0) ∈ U , x(t) → A. Let
U ′ = U

⋂
X ′. The latter combined with the forward invariance of X ′ implies that for any

x(0) ∈ U
⋂
X ′ = U ′, x(t)→ A

⋂
X ′ = A′, as needed. �

As a corollary of the above theorem we may get Theorem 3, restated below.
Whenever an asymptotically stable set intersects a non-singleton face it
must intersect its respective boundary, and thus a face of smaller dimension.
Consequently, “in the long run”, it must intersect a singleton face. Put
differently, it should contain a point consisting of only pure strategies.

Theorem 3. Every asymptotically stable set of steep (FTRL) contains a pure strategy.

Proof. Let A be asymptotically stable and Xmin be a face of minimal dimension intersected
by A which is not a singleton. By Theorem E.1, A cannot be contained in the relative
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interior of Xmin, so it must intersect the boundary of Xmin. However, this means that A
intersects a face of dimension strictly smaller than that of Xmin, a contradiction. Thus,
Xmin is a singleton and A must contain a vertex of X . �

Corollary 3. If x is an asymptotically stable point, then it consists of only pure strategies.
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