
HAL Id: hal-03043877
https://hal.archives-ouvertes.fr/hal-03043877

Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Regret Minimization Approach to Frameless Irregular
Repetition Slotted Aloha: IRSA-RM
Iman Hmedoush, Cédric Adjih, Paul Muhlethaler

To cite this version:
Iman Hmedoush, Cédric Adjih, Paul Muhlethaler. A Regret Minimization Approach to Frameless
Irregular Repetition Slotted Aloha: IRSA-RM. MLN 2020 - International Conference on Machine
Learning for Networking, Nov 2020, Paris / Virtual, France. �hal-03043877�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362229178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-03043877
https://hal.archives-ouvertes.fr

A Regret Minimization Approach to Frameless
Irregular Repetition Slotted Aloha: IRSA-RM

Iman Hmedoush, Cédric Adjih, and Paul Mühlethaler

Inria, France
<first name>.<last name>@inria.fr

Abstract. Wireless communications play an important part in the sys-
tems of the Internet of Things (IoT). Recently, there has been a trend
towards long-range communications systems for the IoT, including cel-
lular networks. For many use cases, such as massive machine-type com-
munications (mMTC), performance can be gained by moving away from
the classical model of connection establishment and adopting random
access methods. Associated with physical layer techniques such as Suc-
cessive Interference Cancellation (SIC), or Non-Orthogonal Multiple Ac-
cess (NOMA), the performance of random access can be dramatically
improved, giving rise to novel random access protocol designs. This arti-
cle studies one of these modern random access protocols: Irregular Rep-
etition Slotted Aloha (IRSA). Since optimizing its parameters is not an
easily solved problem, in this article we use a reinforcement learning ap-
proach for that purpose. We adopt one specific variant of reinforcement
learning, Regret Minimization, to learn the protocol parameters. We ex-
plain why it is selected, how to apply it to our problem with centralized
learning, and finally, we provide both simulation results and insights
into the learning process. The results obtained show the excellent per-
formance of IRSA when it is optimized with Regret Minimization.

Keywords: IRSA · Regret Minimization · Random Access

1 Introduction

1.1 Communications in the Internet of Things

In recent years there has been an increase in the technological demands on
embedded systems and sensors, that led to the emergence of the Internet of
Things (IoT). The Internet of Things provides a comprehensive set of solutions
that enables the seamless interconnection of a smart community of devices and
sensors. This article focuses on one of the most important challenges for IoT
networks: communications. This has been a highly visited topic for research,
development, and standardization over the past decade because the differences in
IoT applications have resulted in a large variety of requirements and constraints.
These constraints include the ability to support millions of connected devices,
the necessity for low power consumption, and the need for high throughput, low
latency, and high reliability.

2 Iman Hmedoush, Cédric Adjih, Paul Mühlethaler

In the IoT, there has been a recent trend towards using long-range low power
networks: with cellular networks (in 4G with NB-IoT, and LTE-M, in 5G with
URLLC, and NR-light in future 5G Rel. 17), or with networks in the unlicensed
band (LoRaWAN, SigFox). As a consequence, there have been new directions in
the design of IoT protocols to satisfy the critical requirements of IoT applica-
tions, including modern variants of random access methods. One such method
is the focus of this article.

1.2 Modern Random Access Protocols for IoT Communications

A recent family of random access protocols has emerged as a promising solution
for modern random access: Irregular Repetition Slotted Aloha (IRSA)[4], and
its generalization with coding, Coded Slotted Aloha (CSA)[5]. It has become
the focus of the IoT protocol designers’ attention, since it has been shown that
it could asymptotically reach the optimal throughput of one retrieved packet
per slot, in the classical random access collision model (where the maximum
throughput of slotted ALOHA is 1

e). NOMA variants like PDMA/IRSA [6] exist.
The principle is that the users send multiple copies of each of their data

packets to the receiver, which uses Successive Interference Cancellation (SIC) to
resolve the collisions. The transmission is done in slots. Each copy (also known
as a replica) contains the same payload and the same preamble with additional
information about the positions of its copies in other slots. Once one packet
has been received without collision, SIC exploits this information to reconstruct
the physical signal that corresponds to the decoded packet and subtracts this
physical signal at the positions of its other copies.

1.3 Irregular Repetition Slotted Aloha (IRSA)

IRSA is a recent member of the CSA family that is an optimization of Contention
Resolution Diversity Slotted Aloha (CRDSA)[11]. In CRDSA, the users would
repeat their packets twice. In IRSA, the users are allowed to choose the number of
repetitions (repetition degree) according to a probability distribution. In classical
IRSA, we consider a MAC frame of M slots and N users who send their packets
towards a central node. The channel load is defined as g = N

M (i.e. average
number of users per slot). The receiver uses SIC to decode the collided packets.
Each user chooses its repetition degree based on the user degree distribution
Λ = (Λ0, Λ1, . . . ΛD), where Λi is the probability of using the degree i and D is
the maximum degree.

At the end of each frame, the receiver starts performing iterative decoding
using SIC. At each decoding iteration, the receiver starts by searching for the
non-colliding packets (referred to as the singletons). After finding, decoding, and
recovering all the singletons in the frame, the receiver removes their physical
copies from their positions in the frame. This suppresses some collisions and
in turn, can make new singletons appear in the next decoding iteration. The
iterative decoding continues until the receiver can not find any new singletons or
the whole frame is decoded. Fig. 1 represents a simple example used to illustrate

A Regret Minimization Approach to Frameless IRSA: IRSA-RM 3

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

User A

User B

User C

User D

User E

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

 A B C D E

Fig. 1: IRSA representation: transmissions of users in slots (top), coding theory
representation to model the decoding process (Tanner graph, bottom). Notice
that transmissions are in the same frequency channel, hence when two users are
transmitting on the same slot, there is a collision.

the SIC decoding. The figure shows a frame where 5 users compete to send their
packets on 5 slots. The receiver starts by searching for the singletons. As can
be seen from the figure, slot 4 has only one packet from user D, so it can be
decoded on slot 4. Then, with SIC, it can be subtracted from slot 5. This allows
the packet from user B to be a new singleton on slot 5 so that it is decoded from
slot 5 and subtracted with SIC in slots 1, 2, and 3. Now the packet of user A
becomes a new singleton on slot 3 so it is decoded on slot 3 and subtracted from
slots 1 and 2 as well. We can see that the packets of users C and E cannot be
retrieved since none of their replicas had ever become a singleton and they form
a stopping set. At this point, the decoding process stops.

The remainder of this paper is organized as follows: section 2 introduces re-
lated work on applying machine learning algorithms to random access protocols.
Then, section 3 explains the system model and our problem statement. In sec-
tion 4, we introduce our learning approach: IRSA-RM, and detail the algorithm
structure. Finally, we present our numerical results in section 5 and conclude in
section 6.

2 Related Work

In the literature, several research directions have addressed topics that are re-
lated to modern random access protocols. Naturally, there also exists extensive
literature on random access protocols themselves that date back over several
decades. In this section, we focus on modern random access, and on research

4 Iman Hmedoush, Cédric Adjih, Paul Mühlethaler

studies that applied various reinforcement learning techniques. We identify the
following related topics where machine learning techniques have been used: cog-
nitive networks with spectrum sensing, classic random access protocols in IoT
networks, and finally, more specific machine learning approaches to protocols of
the IRSA family itself, or NOMA-based protocols. In the following, we describe
some of the related articles that have covered these topics. In cognitive networks,
Dynamic Spectrum Access is a wireless network paradigm where the users ex-
ploit their knowledge of the environment in order to successfully access a shared
medium and maximize their throughput. The problem of dynamic spectrum ac-
cess for wireless networks has been recently explored with machine learning tech-
niques in [12] and [13]. It is shown that the problems of joint user association
and spectrum access are typically combinatorial and non-convex, and require
near-complete and accurate information to obtain the optimal strategy. Accord-
ing to [14], developing efficient learning approaches to optimize medium access
has been the center of attention of many research works. In particular, Deep Q-
Learning (DQL) provides promising solutions for the Dynamic Spectrum Access
problem specifically, for IoT networks. In [15], a novel distributed dynamic spec-
trum access algorithm based on deep multi-user reinforcement learning (DRL)
has been proposed. The users transmit over shared channels using a random
access protocol. Time is slotted but no SIC is used in the receiver to resolve
collisions. In the proposed approach, every user maps their current state (the
history of selected actions and past network state observations) to a certain
action (shared orthogonal channel) based on a trained deep-Q network. Their
objective is to maximize a utility function. The proposed algorithm enables the
user to learn good policies in an online distributed manner. The authors of [16]
address the problem of collisions and idle time of random access protocols by
designing a fully distributed IoT protocol to improve the device access to the
shared medium. The proposed online learning scheme is based on designing op-
timized dictionaries of transmission patterns to avoid collisions between users.
The dictionary contains a subset of the possible binary vectors of a length equal
to the total number of slots in the frame. The goal is to select an optimized set of
transmission patterns from the dictionary, where the dictionary is common to all
users. The scheme provides some URLLC guarantees for IoT applications that
require the same time latency, energy efficiency, and low coordination overhead.
Dynamic multi-channel access was also considered in [9], where the user selects
a channel, at each time slot, from multiple correlated channels. Each user can
observe the state of the chosen channel only at a given time slot, which means
that the current state of the system is not fully observable, hence the problem
is modeled as a Partially Observable Markov Decision Process (POMDP). The
aim of the study is to design an adaptive DQN framework that can adapt to
time variations and maximize the long-term expected reward for each user.

Another work direction for designing efficient IoT protocols is to enhance
existing MAC protocols so that they fit the new requirements of IoT networks.
Optimizing the performance of MAC protocols has been addressed in many
research studies over the last forty years. Some of these studies have introduced

A Regret Minimization Approach to Frameless IRSA: IRSA-RM 5

machine learning techniques to variants of the ALOHA protocol family. A novel
Q-learning based on Informed Receiving Protocol has been introduced in [3].
ALOHA-QIR provides some intelligence to the nodes to access the slots that
have a lower probability of collision. The nodes keep hopping to different slots to
learn the optimum ones. In this ALOHA variant, the nodes keep listening during
the hopping while the receiver is informed by the preferred slots of each node by
sending “ping packets”, so the receiver can turn off when needed. The classical Q-
learning algorithm with a simple reward design (±1) is used to learn the optimum
slots to select. The proposed approach helps to achieve over twice the maximum
throughput of Slotted ALOHA. In [17], the IRSA MAC protocol is optimized
using online learning. By considering the base station as the decision-maker, the
performance of IRSA is optimized by maximizing a utility function that reflects
the number of decoded packets. The problem of optimal resource allocation (slots
allocation) is formalized as a Multi-Armed-Bandit (MAB) problem. The authors
use the Bayesian UCB algorithm to solve the MAB problem and compare it
with other commonly used methods. The degree distribution is also optimized
by fixing the degrees and optimizing the probabilities of selecting them (e.g., of
the form Λ2, Λ3, Λ8).

3 System Model and Assumptions

3.1 System Description

We consider IRSA as an access protocol for users (devices) sharing a communi-
cation channel to a receiver. We assume that the receiver is a single base station.
As for other protocols of the CSA family, the access time of the channel is di-
vided into slots of equal duration. The duration of the slot is equal to the time
needed to transmit a packet (including propagation delays, etc.). In our system,
however, we assume that a frameless IRSA is used (as in [7]), as opposed to
the framed, classical version of the IRSA protocols. In framed IRSA, there is a
frame of a predefined length, where each user randomly selects slots, and at the
end of which the decoding is performed. In frameless IRSA, there is a very large
set of slots, potentially infinite. In our model, for practical reasons, this set of
slots always has a fixed size of M slots and it is called a contention round. We
divide the contention round into virtual frames where each virtual frame size is
about 20% of the contention round. When the user decides to send a packet,
the user is associated with a virtual frame. The active user sends the replicas
of its packet only during the virtual frame period. The goal of introducing the
virtual frame is to facilitate the decoding process and rewards computations,
which will be explained more precisely in the next section. At each time slot,
the number of active users is determined by a Poisson arrival rate µ (e.g. the
number of active users on one slot is a random variable Na with distribution

Pr(Na = k) = µke−µ

µ!). In our case, to be consistent with the literature, the ar-
rival rate µ is also denoted network load G. It is the average number of active
users on one slot. Each active user selects a repetition degree to use from a set

6 Iman Hmedoush, Cédric Adjih, Paul Mühlethaler

of multiple allowed degrees which are identical for all users. At the base station,
SIC is used to resolve the collisions. Figure 2 shows the frameless IRSA structure

Fig. 2: IRSA frameless structure

with all active users and their associated virtual frames where they are allowed
to send their packets. Virtual frames can overlap and the transmissions from
different active users can cause, as seen in the figure. Unlike the classical IRSA
decoding, (explained in section 1.3), the base station performs online decoding
by decoding each received slot instead of waiting for the whole frame to end and
then start the decoding process.

3.2 Problem Statement

Many studies have explored and analyzed the performance of IRSA in an IoT
network. The main purpose of these studies is generally to find and study a better
variant of this protocol. Given any IRSA system, the goal is often to find an
optimized user degree distribution that maximizes a certain metric (throughput,
achievable load, etc). This problem is usually formulated as an optimization
problem which can be described as follows:

maximize
(Λi)

C(Λ0, Λ1, .., ΛD)

subject to 0 ≤ Λi ≤ 1 ∀i
i=D∑
i=0

Λi = 1

(1)

where C is the system criteria that needs to be optimized and D is the maximum
degree. Depending on the system model, more constraints can be added to the
optimization problem. Notice that the system is initially a stochastic optimiza-
tion problem, as the performance depends on the random variables of the users’
arrivals and their degree selections. Pioneering work in [4] adapted the Den-
sity Evolution (DE) method to analyze the asymptotic performance of different

A Regret Minimization Approach to Frameless IRSA: IRSA-RM 7

(framed) variants of the IRSA protocol. It is based on an analogy with LDPC
codes for which DE was initially introduced, as a tool for analyzing the asymp-
totic network capability to approach the error-correcting codes [18]. DE makes
it possible to evaluate how many packets will be decoded, through iterations of
functions, by modeling the decoding process steps: this is valid asymptotically
when the frame size grows to infinity. Then one can compute the function C of
the problem in Eq. (1) (through function iterations).

For several IRSA variants, the problem may still be difficult to solve, for
example, in the case of the non-convexity or non-linearity of the constraints.
But the optimization problem formulation may be useful. For instance, in our
prior work [19], we revisited the variant K-IRSA proposed elsewhere: K-IRSA
is a variant of classical IRSA with multiple packet reception capability at the
receiver. Using a variant of the previous optimization problem Eq. (1), DE was
used to write a new constraint on the edge degree distribution and the system
criterion was to maximize the achievable system load. The OP was solved by
converting the new constraint into a finite set of linear constraints and using the
bisection method on linear problem formulations.

4 IRSA-RM: IRSA Based on Regret Minimization

4.1 Problem Formalization

We adopt the frameless IRSA structure (explained in section 3.1). For simplicity
of presentation, we formulate the problem with two classes of users. The two
classes have different access priorities. The users of the same class share the
same degree distribution (Λi). The base station uses SIC to perform the slot by
slot online decoding. Our objective is to find the best degree distribution for a
known Poisson arrival rate µ = G, that maximizes the weighted throughput of
both classes. Formally, our problem could be written as an optimization problem
using Eq. (1):

maximize
(Λi)

α0TC0 + α1TC1

subject to 0 ≤ Λi ≤ 1 ∀i ∈ [0, 1, 2, .., D]

i=D∑
i=0

Λi = 1

(2)

Where: TC is the throughput of the class C and α0, α1 are constant weights
indicating the importance of the throughput for each class.
One can think of solving such a problem by using the DE tool since frameless
IRSA transmission and decoding using SIC can still be represented by a bipartite
graph [7]. Since the BS performs the decoding for each slot, a part of the bipartite
graph will be available at any time, thus the density evolution equations will not
necessarily represent the decoding state in the middle of the contention round.
Because classical DE [4] is valid only asymptotically and the finite length analysis
can be computationally expensive, we adopt another direction in this article. We

8 Iman Hmedoush, Cédric Adjih, Paul Mühlethaler

propose a new learning framework for optimizing the transmission strategy of
frameless IRSA. We consider a method of offline learning. We assume multi-
agent settings and we apply the method of Regret Minimization, where each
user wants to minimize its regret by taking better next decisions.

4.2 Reinforcement Learning Approaches and Regret Minimization

In this article, we use Reinforcement Learning (RL) to find good solutions of
the problem Eq. (2). A classic reference on reinforcement learning in general is
[8]. As in many network problems, the decisions taken by one node, device, or
one user can be modeled as a Markov Decision Process (MDP) [8, section 3]:
each participant of in the network is an agent, that makes decisions, denoted as
actions, based on some current state from the environment. Rewards for each
taken action are computed and are used to adjust the future choice of actions.
Classical algorithms such as Q-Learning [8, section 6.5], Multi-Armed Bandits
[8, section 2], and others, are well-known.

Applying those to random access introduces several challenges: the first one
is that there are several agents instead of just one (Multi-Agent Reinforcement
Learning, MARL, see [8, section 15.10]); the second one is that, by definition of
random access, each agent only knows part of the network state, if only because
it does not know the actions of other agents (Partial Observable Markov Decision
Process, POMDP, see [8, section 17.3]).

Learning in a multi-agent setting is indeed a complex task: the impact of
the decision taken by one agent may depend on the decisions taken by other
agents in the system. Thus, first, classical RL approaches for a single agent
can create difficulties, such as non-stationarity and oscillations when applied to
multi-agent systems. Second, controlling multiple agents poses additional chal-
lenges compared to single-agent systems such as the definition of the collective
goal of the agents, the heterogeneity of the agents, the ability to operate with a
large number of agents, and partial observability [20].

Frameless IRSA is such a multi-agent system, subject to partial observability.
Numerous learning approaches have been proposed in the literature to handle
POMDP, including Deep Reinforcement learning (DRL) [20]. Many of the al-
gorithms proposed in the literature lose their proof of convergence in a MARL
setting, and there does not necessarily exist a general theory characterizing the
cases under which every MARL algorithm is successful [21]. Their convergence or
non-convergence dynamics is a topic of study by itself, with also strong links with
game theory [21, 1]. Indeed, while applying Q-Learning to frameless IRSA, we
experienced non-convergence, which led us to select an algorithm whose multi-
agent dynamics have been well studied: Regret Minimization (RM) [2].

Regret Minimization is an algorithm where each agent maintains a set of
weights for actions. Once normalized, the weights indicate the probability that
the agent selects each action. At a given time, after the action selection by one
agent according to weights, each such action i changes the environment state
and has a corresponding reward which is provided by the environment. At the
same given time, an optimal action could have been played by the agent instead,

A Regret Minimization Approach to Frameless IRSA: IRSA-RM 9

which would have resulted in an optimal reward r. The difference between the
optimal reward ropt and the actual reward ri gives the loss of the agent at that
given time: `i = ropt − ri, which is a measure of regret for selecting action i.

The Polynomial Weights algorithm is one of the Regret Minimization algo-
rithms that assigns weights for each action and uses the “loss” concept to update
the weights after each playing round [2]. Formally, it is as follows [2, page 13]:

Initially: w
(1)
i = 1 and p

(1)
i =

1

|X|
for i ∈ X

At time t− 1: an action i ∈ X is selected according to (p
(t−1)
j)j∈X

the reward of action i is computed: r
(t−1)
i

the potential reward of the best action is: r
(t−1)
opt

the loss is computed as: `
(t−1)
i = r

(t−1)
opt − r(t−1)i

Update for time t: w
(t)
i = w

(t−1)
i (1− η`(t−1)i)

p
(t)
i =

w
(t)
i∑

iεX w
(t)
i

(3)

with:
X: the set of possible actions.

w
(1)
i : the initial associated weight to the action i.

w
(t)
i : the associated weight to the action i at time t.

p
(1)
i : the initial probability of using an action i out of |X| actions.

p
(t)
i : the probability of using an action i at time t.
η: the learning parameter (akin to a learning rate).
The weights update is based on two main parameters: the learning parameter to
control the speed of the weight changes, and the loss which specifies the impact
of the played action by computing how far the played action was from optimality.
The weights of the actions are used to compute the probability of using each of
the actions in the next playing round.

Notice that richer variants of Regret Minimization have been proposed, such
as Counterfactual Regret Minimization (CFR) [10]; with IRSA, they would be
well suited for agents with richer interactions, for instance, agents taking deci-
sions on the transmission of each replica (instead of selecting a degree once).

4.3 Applying of Regret Minimization to Frameless IRSA

Returning to our initial problem, we assume that the network consists of users
competing in the same slotted wireless channel to transmit packets towards one
base station using the frameless IRSA protocol. Users are grouped in classes of
different priorities. The users of one class also share the same degree distribu-
tion. As mentioned above, each user has partial observability about the network,
because it does not know on which slots the other agents are transmitting (nor

10 Iman Hmedoush, Cédric Adjih, Paul Mühlethaler

about collisions). However, they have additional information: an important as-
sumption is that the base station is maintaining a discretized estimate Ḡ of the
load G = µ (Poisson agent arrival rate) in the system and broadcasting it to
each agent.

Our objective is to maximize the total throughput of users, for each given
network load G; where the throughput of each class is actually weighted by a
different factor (so that some classes carry more weight, as a priority mechanism).
We assume that each active agent when it decides to send a packet has to send
the packet and its replicas within a virtual frame which is associated to the agent.
It is interesting to look at the base station perspective: it observes singletons on
some slots, collisions on some other slots, and performs SIC for each packet
already decoded.

We adapt the Polynomial Weight RM algorithm detailed in Eq. (3) to solve
our problem. To emphasize the learning aspect, here, the term “agent” will be
used as an equivalent to “user”. In order to map the problem features to RM,
we have the following assumptions and system model:
• A centralized offline learning approach based on Regret Minimization is con-
sidered. A large number of simulations or episodes (as in Q-Learning) are run.
Each episode corresponds to a long contention round. It is intended that after
learning has finished, the weights could be used in an actual network, or in our
case, are actually used as distributions Λ in further simulations without learning.
• The base station is assumed to broadcast a discretized estimate Ḡ (with a fi-
nite number of possible values) of the actual load G: currently Ḡ is the measured
average number of users per slot since the beginning of the contention round.
• The action of each agent is: selecting the number of repetitions (the degree).
• As per Polynomial Weights RM, each of the agents maintains weight tables
(denoted w) which are used to compute the probability of selecting each action,
akin to a probability distribution Λ. We extend it: one different table of weights
is used depending on some state. The agents consider the load estimate given
by the base station as the environment state, and it is discretized to constitute
a finite set of possible states. For each different discretized load estimate, the
agent uses and updates a different set of weights (wi(Ḡ))i∈X .
• Additionally, the agents of the same class are sharing the same weight tables
w table in the learning process. Updates of the weights after each selected action
are thus shared within agents of one class1. The goal of using the same w table
for all the agents of the same class is to drive the agents inside one class to act
cooperatively, and to work in a coordinated manner towards the collective goal.
This may depart from usual assumptions in RM and evolutionary dynamics.
• At the moment an agent selects a degree, the results of this action are unknown
until some time has elapsed (see Sec. 4.4). Thus an approach with delayed up-
dates similar to n-step Sarsa [8, section 7.2] is used.
• The main challenge for applying the Polynomial Weight algorithm is to com-
pute the loss. The loss computation is directly related to the rewards calculation.

1 Note that then the learning also behaves as if one class would be one agent by itself.
The algorithm, and our implementation, also works with non-shared tables.

A Regret Minimization Approach to Frameless IRSA: IRSA-RM 11

As our goal is to optimize the joint throughput, we opt to directly link the re-
wards to the number of decoded agents in each class and set “reward = number
of decoded agents”. Defining an IRSA reward is otherwise difficult.
• The number of decoded and non-decoded users is available at the global sim-
ulator level during our centralized learning process.
We further detail delayed updates and reward computation in the following sec-
tions.

4.4 Delayed Updates

Each agent sends within its virtual frame size on the one side, and the base
station decodes slot by slot on the other side. Therefore, the base station needs
to wait, at least, for the end of the virtual frame to decide if one agent can be
decoded or not. Hence, to accurately compute a reward, one delay needs to be
introduced: this is illustrated in Fig. 3. As shown in the figure, agent A starts

Fig. 3: Reward computation and update delays

to be active at time τ and sends its packets using the action i, e.g. sending i
replicas, (i = 4 in this case), within the associated virtual frame spanning the
time from τ to τ + V FA − 1. Only at time τ + V FA, can one be certain that
all replicas of A have been sent. But decoding can be further delayed: during
this virtual frame, other agents could become active and transmit in overlapping
virtual frames (possibly shifted in time, see Fig. 2) and could induce collisions
that need to be resolved in order to recover one of the replicas of A. But in turn,
those other agents might collide with agents whose virtual frames are occurring
even later, etc.2 For practical purposes, an additional decoding delay denoted
∆ has to be introduced after which the base station would consider the slots

2 It is indeed possible to construct a frameless IRSA scenario where one user can be
only decoded after an arbitrarily large delay.

12 Iman Hmedoush, Cédric Adjih, Paul Mühlethaler

definitely non-decodable. As a result, in our simulator, we compute the rewards
of an action selected at time τ , only at time t = τ + V FA +∆, and perform the
RM weight update at that time. This is similar to n-step Sarsa [8, section 7.2],
with n = V FA +∆.

4.5 Reward and Loss Computation

We assume that there are two classes C0 and C1, and that the class C0 always
has a higher priority than the class C1. This priority difference is introduced in
the reward computation of each class. As the base station decodes the slots up
to time t, (see Fig. 3), it computes the number of decoded agents of each class
up to the time t. The associated reward of an agent A that played an action i
at the time τ is computed at the time t as follows:

ri(A) = PC0,t if A ∈ C0

ri(A) = αPC1,t + (1− α)PC0,t if A ∈ C1

(4)

where:
ri(A): is the associated reward of action i from the agent A in the class C.
PC,t: is the number of decoded packets of agents of class C up to time t.
α: is the parameter that weights the priority of classes.

On Eq. (4), notice that as α is smaller, the priority of class C0 is higher.
Notice also that the reward of each agent is computed based on the collective
amount of decoded packets of all agents (of the same class), and hence they act
cooperatively. This is in opposition to the selfish behavior of the agents if the
reward was based exclusively on the individual performance of each agent.

Now, more importantly, in IRSA, reward computation is difficult, because
the decoding process is iterative: it is difficult to assert if an individual action
is responsible for undecoded packets. A straightforward reward is used here:
essentially the number of decoded packets (or a function of it). In other RL
algorithms, this would not work as the reward would grow linearly with time.
In RM, however, only the loss (regret) is used for the updates, and it is the
difference of reward between the best action and the taken action. In our case,
the loss translates as the number of packets that the taken action had prevented
from being decoded, which is exactly the meaningful information.

But then in addition to computing the actual reward using Eq. (4), corre-
sponding to the played action i, it is necessary to compute the optimal reward
that the agent could receive if it played the optimal action at time τ . This has
a cost and increases complexity. In the case of a single-agent system, with no
delay in update computation, the optimal reward can also be computed at time
t by trying all possible actions at a playing time t−1 and considering the action
that yields the maximum reward as the optimal action to take at the time t− 1.
If the action space is large, this process could already be costly.

However, it is more complicated in a multi-agent system where 1) reward
computation is delayed (here: by necessity), 2) where other agents are also in-
teracting in the environment in the interval between the action of one node and

A Regret Minimization Approach to Frameless IRSA: IRSA-RM 13

C 1

A 3 B 2 C 1

A 1

A 2

A 3

Agent

(like main
simulation)

B 2

B 2

B 1
(like main

simulation)B 2

B 3

C 1

C 1

C 1

Action

Reward
computation

 for A

...
time

C 1

C 2

C 3

D 2

Alternate simulations for D ...

D 2

D 2

(like main
simulation)

...Main
simulation

Alternate
simulations for A

Alternate
simulations for B

Alternate
simulations for B

Reward
computation

 for B

Reward
computation

 for C

Fig. 4: Alternate simulations for agents A, B, C, and D

its associated reward computation. To handle this, in practice, we maintain one
main simulation where each action selected by one agent is actually performed.
But we also maintain alternate simulations (equivalent to “alternate realities”
in mundane terms), that differ from the main simulation only by one action of
one agent. Each action of an agent indeed results in creating one new associated
alternate simulation for each of its other possible actions (initialized as a copy
of the main simulation). At the time of the reward computation for the agent,
the reward is computed in each of its alternate simulations: since in its alternate
simulations the only difference is the action of the agent (not those of other
agents), the difference of reward between different actions can be immediately
ascribed to the actions themselves. Fig. 4 illustrates alternate simulations, in a
scenario where 3 actions 1, 2, 3 are possible, and where agent A selects action 3,
agent B selects action 2, agent C selects action 1, and agent D selects action
2 in the main simulation. The alternate simulations correspond to simulations
where one agent selects each of the 2 alternate actions.

Consider an agent A of class C that selected an action i ∈ X at time τ .
Its optimal reward is computed as follows:

ropt(A) = max
j∈X

rj(A) with X = {0, 1, . . . , D} (5)

And the loss of playing an action i, by an agent A at time τ is computed
using the following equation:

`i(A) =
ropt(A)− ri(A)

N
(6)

where:
ri, is the associated reward of action i, which is computed using Eq. (4) and the

14 Iman Hmedoush, Cédric Adjih, Paul Mühlethaler

knowledge of the class C of node A.
N : is a normalizing factor, taken to be the total number of users in the system.

We summarize the design of our offline regret minimization-based learning
algorithm: it is an adaptation of n-step Sarsa [8, section 7.2], where the Q table
update is replaced by the weight update from the Polynomial Weights Regret
Minimization Eq. (3), and where agents of the same class, share the same weights.

5 Numerical Results

In this section, the performance achieved by IRSA-RM as a random access MAC
protocol is illustrated through simulations. There are two phases: first, the learn-
ing phase, whose objective is to obtain good degree distributions; second, the
performance evaluation of these distributions as is common in IRSA evaluation.

We developed our own simulator for IRSA and RM. For all results, a con-
tention round of M = 500 slots is used, the virtual frame size is set to V F = 150
slots, while the decoding delay is ∆ = 50 slots. For all simulations, both classes
have equal arrival rates. The maximum possible degree (action) is D = 10. Dif-
ferent cases of class priority are studied; the results are always obtained for two
classes, and two different values of the priority parameter: α = 0.1 and α = 0.3:
in both cases, the class C0 has a higher priority than the class C1.

We start with the learning phase, whose objective is to find good degree
distributions with respect to Eq. (2), interpreted through Eq. (4). In this phase,
agents are restricted to one fixed subset X of actions from the set of all possible
actions X ⊂ {0, 1, 2, . . . , D}. Several such subsets are selected. For each action
subset, several learning processes are run: the total user Poisson arrival rate G =
µ is fixed during each of them, and one learning process is run for each G taken
from 0.1 to 1.2 with step 0.1. At the end of each learning process, for each class
C, the RM algorithm yields some weights (wC,i(Ḡ))i∈X from which probabilities
of selecting actions are derived (pC,i(Ḡ))i∈X which are directly interpreted as

lambda distributions (e.g. ΛRM
i (X,C, Ḡ) , pC,i(Ḡ)). Each learning process is

run for E = 5000 episodes, and the learning rate η is set to 0.04.
We then compute the performance when applying the obtained distributions.

Our main metric is the throughput, e.g. how many decoded packets are recovered
per slot. We evaluate the throughput for different loads: but for these simulations,
the load does not represent a Poisson arrival rate, but an exact load g = N

M , e.g.
there are g×M users exactly, as is common in IRSA performance evaluation. We
represent throughput versus load in figures, as is done in [4, fig. 5] for instance.

For each selected action set, the throughputs of each of the classes C0 and C1

are computed from an average of 300 simulations for a given load g. Note also
that for a given load g, one uses the distribution (ΛRM

i (X,C, Ḡ))i∈X obtained in
the learning phase by first selecting the Ḡ ∈ {0.1, 0.2, 0.3 . . . 1.2} closer to g. The
scaled throughputs are represented in Fig. 5. The scaling factor is 2, to account
for the fact that the actual load of one class is 1

2g, and to make it comparable to
classical IRSA (without classes). Thus, the graph for a “perfect” random access
protocol would be a line y = x for x ∈ [0, 1]. The priority parameter α is set to

A Regret Minimization Approach to Frameless IRSA: IRSA-RM 15

0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

 Accurate throughput for actions act01234 and alpha 0.1
 T_c0-act01234
 T_c1-act01234

(a) Achieved throughput of both classes,
actions [0,1,2,3,4]

0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 Accurate throughput for actions act079 and alpha 0.1

 T_c0-act079
 T_c1-act079

(b) Achieved throughput of both classes,
actions [0,7,9]

0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 Accurate throughput for actions act136 and alpha 0.1

 T_c0-act136
 T_c1-act136

(c) Achieved throughput of both classes,
actions [1,3,6]

0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 Accurate throughput for actions act235 and alpha 0.1

 T_c0-act235
 T_c1-act235

(d) Achieved throughput of both classes,
actions [2,3,5]

Fig. 5: Achieved throughput for frameless IRSA with two classes after using a
Regret Minimization based offline learning algorithm

0.1: this means that the agents of class C1 would trade 10 lost packets of class
C1 for 1 successfully decoded packet of class C0.

We selected various action sets with different features: some with a continuous
set of degrees (0, 1, 2, 3, 4), some with high degrees, some with a mix of both high
and low degrees. As the class C1 tends to a strategy that weights 10 times more
than the throughput of the class C0, we expect it to choose the actions that
limit the collisions with the packets of the class C0, if possible, until around the
throughput of class C0 is somewhere 5× to 10× higher.

Fig. 5 reports the results for 4 different action sets. We are interested in
assessing the quality of the priority mechanism introduced by having different
distributions for the classes: it can be measured from the gap between the achiev-
able throughput of the two classes. From the results (confirmed by others not
presented here), we find that the first defining feature is the inclusion or not of
action 0 in the action set: Fig. 5a and Fig. 5b represent results from two different
subsets of actions that include action 0. We can see that the usual sharp decrease

16 Iman Hmedoush, Cédric Adjih, Paul Mühlethaler

of throughput with IRSA around g = 1, does not occur for class C0: only the
throughput of class C1 decreases at higher loads. The priority mechanism is thus
working very well, as class C1 leaves room for class C0, indeed as its distribution
is: ΛRM({0, 1, 2, 3, 4}, 1, 1.2) = (Λ0 = 0.594, Λ1 = 0.088, Λ2 = 0.086, Λ3 = 0.101, Λ4 = 0.130),
with Λ0 = 0.594, around 60% of its transmissions are suppressed at load g = 1.2.

In Fig. 5c and Fig. 5d, we used different actions sets, this time without action
0. We observe that this time, the class C1 experiences the classical IRSA sharp
decrease at a higher load. Introducing action=1 in the set, seems to slightly allow
differentiation between classes: for action set X = {1, 3, 6}, Λ1(C0) = 0.412 and
Λ1(C1) = 0.590, therefore a noticeable amount of packet transmission is just
one single transmission (e.g. no repetition). Transmissions with such degree=1
colliding on the same slot cannot be retrieved by SIC, hence automatically result
in lost packets (and lost slots). Therefore, at higher loads, the protocol has
to find a balance between this phenomenon (wasting slots), and higher degree
repetitions, that can benefit from SIC, but also risk blocking a number of slots,
if undecoded. Action 1 appears safer, from shown values of Λ1.

In [4], a framework for finding degree distributions was proposed for framed
IRSA, using Density Evolution (for deterministic performance evaluation), and
using Differential Evolution (as a heuristic for finding a solution of Eq.(1)):
this method aims to find the distribution with the highest load threshold G∗,
that is, the load up to which packet loss is vanishingly small when frame size
increases towards infinity. These distributions are good comparison points, even
though they are optimized for a different context. Fig. 6 shows the comparison
between the achieved throughput by IRSA-RM with two classes and the achieved
throughput by using the IRSA degree distribution Λ2 = 0.5, Λ3 = 0.28, Λ8 = 0.22
from [4] (named there “Λ3(x)”) which we refer to as “external distribution”.
Fig. 6a shows a higher achieved throughput for the class C0 using the learned
set of actions {0, 1, 2, 4, 6} with IRSA-RM compared to an external distribution.
This is due to the priority mechanism: using the action 0 a sizeable amount
of time from the class C1 leaves free slots for the class C0. This same effect
appears in Fig. 6b, thanks to degree = 1. In contrast, the achieved throughput
for both classes in Fig. 6c and Fig. 6d is comparable to throughput of the external
distribution (always close, and for load g > 0.8, better for 1

4 of the points,
otherwise worse). Both IRSA-RM and and the external distribution achieve the
same maximum load 0.8. This comparison proves that our learning algorithm
operates very well in its objective of finding good distributions.

Next, we study the impact of the priority parameter α on the achieved
throughput in both classes. In Fig. 7a, we compare the achieved throughput
of both classes where α = 0.1 and α = 0.3 when using the action set {0, 7, 9}.
As previously in Fig. 5a, with α = 0.1, and action 0 in the action set, the
priority mechanisms work well. The gap between the achievable throughput of
both classes decreases (in blue) when α is increased to 0.3, as expected. Indeed
Λ0(C1, g = 1.2) decreases from 0.759 to 0.591 (hence action 0 is less used). When
action 0 is not available, as in Fig. 7b with action set {1, 3, 5}, the best option for
the class C1 to increase the throughput of the other class is to choose the action

A Regret Minimization Approach to Frameless IRSA: IRSA-RM 17

0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

1.0
 Throughput of act01246 compared with an external distribution alpha0.1

 T_c0
 external T_c0
 T_c1
 external T_c1

(a) Throughput comp. between actions
{0, 1, 2, 4, 6} and an external distribution

0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 Throughput of act168 compared with an external distribution alpha0.1

 T_c0
 external T_c0
 T_c1
 external T_c1

(b) Throughput comparison between ac-
tions {1, 6, 8} and an external distribution

0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 Throughput of act235 compared with an external distribution alpha0.1

 T_c0
 external T_c0
 T_c1
 external T_c1

(c) Throughput comparison between ac-
tions {2, 3, 5} and an external distribution

0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 Throughput of act246 compared with an external distribution alpha0.1

 T_c0
 external T_c0
 T_c1
 external T_c1

(d) Throughput comparison between ac-
tions {2, 4, 6} and an external distribution

Fig. 6: Throughput comparison between different set of actions and an external
distribution (Λ2 = 0.5, Λ3 = 0.28, Λ8 = 0.22)

1 (as Λ1(C1) = 0.594 for g = 1.2, α = 0.1). As explained previously, the impact
is still limited as shown by the small gap, and small difference when α = 0.3
(and Λ1(C1) = 0.538 for g = 1.2, α = 0.3). Indeed, the class C1 has no other
choice than to send at least one replica, which will always occupy some slot(s).
Finally, Fig. 8 reports the convergence of the RM learning process. The learning
parameter was set to η = 0.04. Recall that the learning algorithm updates the
weights of the actions (wi)i∈X for each selected action after the proper update
delay, and that these weights are used to compute the probabilities (pi)i∈X of
selecting each action according to Eq. (3). Again, these are equivalent to a degree
distribution Λ. In Fig. 8a, for a network load G = 0.8 and α = 0.1, we show
the evolution of the probabilities during learning for the action set {0, 1, 3, 6}
at the end of each episode. The probabilities of selecting the smaller degrees 0
and 1 are dropping while the probabilities to use the larger degrees 3 and 6 are
rising. The changes stop around episode 3300 where the probabilities start to
plateau (it is also true for class C1). Disregarding action 0 (and to some extent,

18 Iman Hmedoush, Cédric Adjih, Paul Mühlethaler

0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 Throughput comparison for actions act079

 T_c0-alpha 0.1
 T_c1-alpha 0.1
 T_c0-alpha 0.3
 T_c1-alpha 0.3

(a) Throughput of actions {0, 7, 9} for α =
0.1 and α = 0.3

0.2 0.4 0.6 0.8 1.0 1.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 Throughput comparison for actions act135
 T_c0-alpha 0.1
 T_c1-alpha 0.1
 T_c0-alpha 0.3
 T_c1-alpha 0.3

(b) Throughput of actions {1, 3, 5} for α =
0.1 and α = 0.3

Fig. 7: Throughput comparison for different set of actions and different priority
parameter values

0 1000 2000 3000 4000 5000
episode

0.0

0.1

0.2

0.3

0.4

0.5

Pr
[a

ct
io

n]

The probability to use an action with g 0.8 in class 0
cluster/res-rm-e5000-lr0.04-g0.8-alpha0.1-act0136

action=0
action=1
action=2
action=3
action=4
action=5
action=6
action=7
action=8
action=9
action=10

(a) The convergence of the probabilities of
taking the actions {0, 1, 3, 6} for class C0

0 1000 2000 3000 4000 5000
episode

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
[a

ct
io

n]
The probability to use an action with g 0.8 in class 1
cluster/res-rm-e5000-lr0.04-g0.8-alpha0.1-act0136

action=0
action=1
action=2
action=3
action=4
action=5
action=6
action=7
action=8
action=9
action=10

(b) The convergence of the probabilities of
taking the actions {0, 1, 3, 6} for class C1

0 1000 2000 3000 4000 5000
episode

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
[a

ct
io

n]

The probability to use an action with g 0.7 in class 0
cluster/res-rm-e5000-lr0.04-g0.7-md6-alpha0.1-act12345

action=0
action=1
action=2
action=3
action=4
action=5
action=6

(c) The convergence of the probabilities of
taking the actions {1, 2, 3, 4, 5} for class C0

0 1000 2000 3000 4000 5000
episode

0.00

0.05

0.10

0.15

0.20

0.25

Pr
[a

ct
io

n]

The probability to use an action with g 0.7 in class 1
cluster/res-rm-e5000-lr0.04-g0.7-md6-alpha0.1-act12345

action=0
action=1
action=2
action=3
action=4
action=5
action=6

(d) The convergence of the probabilities of
taking the actions {1, 2, 3, 4, 5} for class C1

Fig. 8: The convergence of the probabilities of taking the actions for both classes
and for different sets of actions

A Regret Minimization Approach to Frameless IRSA: IRSA-RM 19

action 1) is the result of class C0 attempting to maximize its throughput. On
the other hand, probabilities of action 0 and 1 have the inverse behavior for class
C1; notice that because G is not so high, action 0 is still not the most selected.
In Fig. 8c and Fig. 8d, we show the convergence of the probabilities for another
set of actions without action 0 and for a network load G = 0.7 and α = 0.1.
The probabilities show a form of convergence around episodes 3100 − 3200 for
both classes. Notice that the learning rate could be a function of the episodes
as in 1/(episode index), but for practical purposes, our fixed learning parameter
appears sufficient for our learning phase.

6 Conclusion

In this article, we studied one of the modern random access protocols: Irreg-
ular Repetition Slotted Aloha (IRSA) in its frameless version. We adapted a
reinforcement learning approach based on Regret Minimization to optimize the
transmission strategy of this protocol, and thus proposed the protocol “IRSA-
RM”. RM is well suited to IRSA, as in both cases, one uses a set of probabilities
of selecting a given number of repetitions Λ. The learning is performed offline:
it learns the main protocol parameters (the user degree distribution) for a set
of predefined network loads. After the learning phase, the parameters can be
later used in a network: assuming that the estimate of the load is broadcast by
the base station, each device will select the set of parameters that were learned
with the closest load. We detailed precisely the mapping between our problem,
optimizing IRSA, and the centralized learning approach with RM, including de-
layed updates, reward computation, and alternate simulations, the introduction
of priority classes, etc. Simulation results show a very high level of performance
of IRSA when it is optimized with Regret Minimization, and how IRSA-RM
behaves for different types of actions (degrees) sets. Future work will include
considering richer actions, more sophisticated RM techniques such as CFR, and
applying Deep Reinforcement Learning techniques.

References

1. Daan Bloembergen, Karl Tuyls, Daniel Hennes, and Michael Kaisers. Evolutionary
Dynamics of Multi-Agent Learning: A Survey. JAIR, 53:659–697, August 2015.

2. Avrim Blum and Yishay Mansour. Learning, Regret Minimization, and Equilibria.
In Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors,
Algorithmic Game Theory, pages 79–102. Cambridge University Press, 2007.

3. Y. Chu, P. D. Mitchell, and D. Grace. ALOHA and Q-Learning based medium
access control for Wireless Sensor Networks. In Proceedings of ISWCS 2012, pages
511–515, August 2012. ISSN: 2154-0225.

4. Gianluigi Liva. Graph-Based Analysis and Optimization of Contention Resolution
Diversity Slotted ALOHA. IEEE Trans. Commun., 59(2):477–487, February 2011.

5. Enrico Paolini, Gianluigi Liva, and Marco Chiani. Coded Slotted ALOHA: A
Graph-Based Method for Uncoordinated Multiple Access. IEEE Trans. Inform.
Theory, 61(12):6815–6832, December 2015.

20 Iman Hmedoush, Cédric Adjih, Paul Mühlethaler

6. C. R. Srivatsa and C. R. Murthy. Throughput Analysis of PDMA/IRSA under
Practical Channel Estimation. In 2019 IEEE 20th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), pages 1–5,
July 2019. ISSN: 1948-3252.

7. C. Stefanovic, P. Popovski, and D. Vukobratovic. Frameless ALOHA Protocol for
Wireless Networks. IEEE Commun. Lett., 16(12):2087–2090, December 2012.

8. Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction.
Adaptive computation and machine learning series. The MIT Press, Cambridge,
Massachusetts, second edition, 2018.

9. S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari. Deep Reinforcement
Learning for Dynamic Multichannel Access in Wireless Networks. IEEE Trans.
Cogn. Commun. Netw., 4(2):257–265, June 2018.

10. Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Re-
gret Minimization in Games with Incomplete Information. page 8.

11. Casini,E., De Gaudenzi, R. and Del Rio Herrero, O. “Contention Resolution Diver-
sity Slotted ALOHA (CRDSA): An Enhanced Random Access Scheme for Satellite
Access Packet Networks”, IEEE Trans. Wirel. Commun., vol. 6, no. 4, pp. 1408-
1419, April 2007.

12. Fooladivanda,D., Al Daoud,A., Rosenberg,C. “Joint Resource Allocation and User
Association for Heterogeneous Wireless Cellular Networks”, IEEE Transactions on
Wireless Communications, 2011, vol. 12, pp. 384-390.

13. Ge,X., Li, X., Jin,H., Cheng,J. and Leung,V.C.M. “Joint User Association and User
Scheduling for Load Balancing in Heterogeneous Networks”,IEEE Transactions on
Wireless Communications, 2018, vol. 17, pp. 3211-3225.

14. Luong, N. C. et al. “Applications of Deep Reinforcement Learning in Communi-
cations and Networking: A Survey”, IEEE Communications Surveys & Tutorials,
vol. 21, no. 4, pp. 3133-3174, Fourthquarter 2019,

15. Naparstek,O., Cohen,K. “Deep Multi-User Reinforcement Learning for Distributed
Dynamic Spectrum Access”, IEEE Trans. Wirel. Commun., 2019, vol. 18, pp. 310-
323.

16. Destounis,A., Tsilimantos,D., Debbah, M. and Paschos,G.S. ”Learn2MAC: On-
line Learning Multiple Access for URLLC Applications,” IEEE INFOCOM 2019
- IEEE Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), Paris, France, 2019, pp. 1-6.

17. Toni, L. and Frossard, P. “IRSA Transmission Optimization via Online Learning”,
2018.

18. Wang, L., Xiao J. and Guanrong, C. “Density evolution method and threshold
decision for irregular LDPC codes”, International Conference on Communica-
tions, Circuits and Systems (IEEE Cat. No.04EX914), Chengdu, 2004, Vol.1, doi:
10.1109/ICCCAS.2004.1345932, pp. 25-28.

19. Hmedoush, I., Adjih, C., Mühlethaler, P. and Kumar, V., “On the Performance of
Irregular Repetition Slotted Aloha with Multiple Packet Reception”, 2020 Inter-
national Wireless Communications and Mobile Computing (IWCMC), Limassol,
Cyprus, 2020, pp. 557-564, doi:10.1109/IWCMC48107.2020.9148173.

20. Nguyen,T. T., Nguyen N. D. and Nahavandi,S., “Deep Reinforcement Learning for
Multiagent Systems: A Review of Challenges, Solutions, and Applications”, IEEE
Transactions on Cybernetics, vol. 50, no. 9, pp. 3826-3839, Sept. 2020

21. Klos, T., Jan van Ahee , G., and Tuyls, K., “Evolutionary Dynamics of Regret
Minimization”, Proceedings of the 2010 European conference on Machine learning
and knowledge discovery in databases: Part II. 2010,Vol.6322, pp. 82-96

