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Abstract. LAC is a Ring Learning With Error based cryptosystem that
has been proposed to the NIST call for post-quantum standardization
and passed the �rst round of the submission process. The particularity of
LAC is to use an error-correction code ensuring a high security level with
small key sizes and small ciphertext sizes. LAC team proposes a CPA
secure cryptosystem, LAC.CPA, and a CCA secure one, LAC.CCA, ob-
tained by applying the Fujisaki-Okamoto transformation on LAC.CPA.
In this paper, we study the security of LAC Key Exchange (KE) mech-
anism, using LAC.CPA, in a misuse context: when the same secret key
is reused for several key exchanges and an active adversary has access
to a mismatch oracle. This oracle indicates information on the possible
mismatch at the end of the KE protocol. In this context, we show that an
attacker needs at most 8 queries to the oracle to retrieve one coe�cient of
a static secret key. This result has been experimentally con�rmed using
the reference and optimized implementations of LAC. Since our attack
can break the CPA version in a misuse context, the Authenticated KE
protocol, based on the CCA version, is not impacted. However, this re-
search provides a tight estimation of LAC resilience against this type of
attacks.

1 Introduction

The threat of a quantum computer that breaks most of the current public-key
cryptosystems with Shor's Algorithm [18], led the National Institute of Standards
and Technology (NIST), in 2016, to begin a call for post-quantum safe public-key
cryptography [15]. The NIST speci�cally asked for quantum safe Key Encapsu-
lation Mechanisms (KEMs).

Among the di�erent quantum resistant cryptosystems, those using ideal lat-
tices based on a Ring instantiation of the Learning With Errors problem (RLWE)
[12] are believed to be a promising direction to provide e�cient and secure can-
didates. Indeed, 4 out of the 17 remaining KEMs of the round 2 of the NIST
submissions are ideal lattices based on the RLWE problem [19,1,9,2]. The inter-
est of RLWE based KEM is con�rmed by real life experiments. In 2016, Google
started to experiment RLWE based KEM between Chrome and Google's services.
Moreover, several RLWE-based KEMs are implemented by the Open Quantum
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Safe project in their OpenSSL and OpenSSH forks. This project involves aca-
demics, like University of Waterloo, and technology companies like Amazon Web
Services or Microsoft Research. However, before a world-wide practical deploy-
ment of lattice-based KEMs, it is interesting to assess their security in di�erent
scenarios, for example in misuses conditions.

Motivation

In this paper we study LAC [19], a RLWE candidate to the NIST standardization
process. It di�ers from other RLWE KEMs by its small key and ciphertext sizes,
for an equivalent security level. Such small sizes can be an advantage, particu-
larly in constrained environments and embedded systems. We focus on LAC.KE,
a KEM based on the CPA secure public-key cryptosystem LAC.CPA. In con-
strained environments it's interesting to determine the impact of key caching to
evaluate the requirement of random generation. Furthermore, the speci�cation
of CCA version of LAC uses a static secret key due to security provided by the
Fujisaki Okamoto (FO) transformation [7]. However, as shown in [16,4] without
a secure implementation of FO transformation, a physical attack can bypass se-
curity provided by FO and modi�es a CCA version to a CPA one with a static
secret key.
Our study is inspired by previous works in [4,11,17], which evaluate the resilience
in a misuse context o�ered by two other NIST KEM candidates. Here we propose
to pursue this evaluation with another NIST candidate to determine which one
is the more resilient against this kind of attack.

Previous works

The seminal work of Menezes and Ustaoglu [13] paved the way for active attacks
on KE protocols. The idea of key mismatch attack on LWE based key exchange
was �rst proposed by Fluhrer in [6,5]. In a key mismatch attack, a participant's
secret key is reused for several key establishments, and his private key can be
recovered by comparing the shared secret key of the two participants.

Some lattice-based KEM of the NIST competition were analysed in the key
reused context using a key mismatch oracle. In [3], Baetu et al. proposed a generic
attack for several algorithms using the same structure called meta-algorithm.
However, most of the algorithms attacked in [3] did not pass the �rst round of
the submission, except Frodo-640 and NewHope512. However in [10], Huguenin-
Dumittan et al. pursue the work of generic attack for round 2 candidates. The
security of NewHope1024 CPA algorithm in this misuse scenario is analyzed by
Bauer et al. in [4] and an improvement is proposed in [11]. More recently, in the
same context, an attack on Kyber CPA KEM is proposed by Ding et al. [17].

In [8], Guo et al. presented an attack against the CCA version of LAC. This
attack is theoretically stronger than ours since it does not rely on a misuse
hypothesis but it requires 2162 pre-computations that cannot be achieved in
practice.
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Our contribution

In this article, we investigate the resilience of the LAC KEM under a misuse case:
we assume that the same secret key is reused for multiple key establishment and
we assume that an attacker can use a key mismatch oracle as introduced in [4].

Since LAC uses encoding and compression functions di�erent from a classical
RLWE scheme, Fluhrer's attack [6] cannot be applied directly. Furthermore,
these functions are di�erent from those used in NewHope or Kyber, so we cannot
apply straightforwardly the attacks described in [4,11,17]. A recent independent
work in [10] attacks several round 2 candidates using the generic structure of
these schemes. Their attack is applied to the �rst security level of LAC but is
focused on the theoretical aspect. Our work complete this work by bringing a
practical aspect and an extension to the others security levels.

The main idea of these attacks is to send forged ciphertexts to a victim,
ensuring that its decryption will leak partial information of his static secret
key. LAC algorithms use two encoding functions including an error-correction
code BCH that can correct a limited number of errors. If a message exceeds the
number of errors that the error-correction code can correct, then a decryption
failure occurs. Thus, we propose to use this failure to provide leaks about the
static secret key.

More precisely, we propose a deterministic key mismatch attack on LAC KE
for the �rst two security levels: LAC-128 and LAC-192, which required at most
2 queries per coe�cient of the secret key. Afterwards, we adapt our attack to the
highest security level LAC-256 which is still deterministic but we need at most
8 queries per coe�cient of the secret key.

We experimented our attack with the reference and optimized implementa-
tion in C provided by the LAC team [19] with parameters described in Section
2.2. The code of our attack is available in [14].

Organization

In Section 2, we introduce some notations, describe LAC.CPA and LAC Key
Exchange Mechanism and present the di�erent parameters used in LAC algo-
rithms. In Section 3, we describe the notion of key mismatch oracle introduced
in [4] and the attack for the �rst two security levels. Finally, in Section 4 we
adapt the attack to the higher security level.

2 Preliminaries

2.1 Notation

Ring de�nition. For an integer q ≥ 1, let Zq be the residue class group modulo
q such that Zq can be represented as {0, . . . , q − 1}. We de�ne Rq being the
polynomial ring Rq = Zq[x]/(xn + 1).
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Polynomial. A polynomial in Rq is of degree at most (n− 1) with coe�cients
in Zq. Given P ∈ Rq, we denote by P [i] or Pi the coe�cient associated with the
monomial xi. P can also be represented as a vector with n coordinates. In the
following, the notation (a)lv (lv ∈ N), where a is a vector (or a polynomial) of
dimension n > lv, means we keep the �rst lv coordinates of a.

Message space. Let the message spaceM be {0, 1}lm and the space of random
seeds S be {0, 1}ls , where lm and ls are two integer values.

Random distribution. Let ψσ be the centred binomial distribution on the
set {−1, 0, 1}. We denote the centred binomial distribution for n independent
coordinates by ψnσ i.e. for a vector a of dimension n each coe�cient is sampled
with the centred binomial distribution. In LAC algorithms we use:

1. ψ1 : Pr(x = 0) = 1
2 , Pr(x = −1) = 1

4 , Pr(x = 1) = 1
4

2. ψ 1
2
: Pr(x = 0) = 3

4 , Pr(x = −1) = 1
8 , Pr(x = 1) = 1

8

Given a set A, U(A) is the uniform distribution over A. We denote by H a hash
function and Samp(D, seed) an algorithm which samples a random variable
according to a distribution D with a given seed.

Error correction code. We denote by [n′, k, d] a set of parameters of an error-
correction code (in our case a binary BCH code). n′ denotes the length of the
codewords, k is the dimension and d is the minimal Hamming distance of the
code.

2.2 LAC

LAC is a Ring-LWE based public key encryption scheme over Rq. In order to
balance performance and size, LAC team chose q = 251, that �ts on one byte.
This choice of a small modulus implies a lower security or a higher decryption
error rate. To overcome these issues, an error-correction code is used, allow-
ing to keep a low decryption error rate and maintain the same security level
than schemes using larger modulus. Three security levels are proposed for LAC:
LAC-128, LAC-192 and LAC-256. In this section, we describe the four algo-
rithms CPA.KeyGen , CPA.Encrypt , CPA.Decrypt , CPA.Decrypt256
of the CPA version of LAC, the four subroutines BCHEncode , BCHDecode ,
Compress and Decompress and the CPA-KEM scheme.

Note that KeyGen and Encrypt are common to the three security levels.
However, the decryption depends on the security level: Algorithm 3 is the de-
cryption process for LAC-128 and LAC-192. The decryption routine for LAC-256
is described in Algorithm 4.
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Algorithm 1

CPA.KeyGen()

Ensure: Key pair (pk, sk)
1: seeda ←− U(S)
2: a← Samp(U(Rq), seeda)) ∈ Rq
3: s←− ψnσ
4: e←− ψnσ
5: b← a× s+ e ∈ Rq
6: return (pk, sk) = ((seeda, b), s)

Algorithm 2

CPA.Encrypt(pk,m, seed)

Ensure: Ciphertext c = (c1, c2)
1: (seeda, b)← pk
2: a← Samp(U(Rq), seeda) ∈ Rq
3: m̂← BCHEncode(m)∈{0, 1}lv
4: r ← Samp(ψnσ , seed)
5: e1 ← Samp(ψnσ , seed)
6: e2 ← Samp(ψlvσ , seed)
7: c1 ← ar + e1 ∈ Rq
8: c2 ← (br)lv + e2 + b q2em̂ ∈ Zlvq
9: if LAC-256
10: c2 ← c2||c2 //D2 encoding
11: end if

12: c2 ← Compress(c2)
13: return c = (c1, c2)

Algorithm 3

CPA.Decrypt(sk, c = (c1, c2))

Ensure: Plaintext m
1: c2 ← Decompress(c2)
2: M̂ ← c2 − (c1sk)lv ∈ Zlvq
3: for i = 0 to lv − 1 do
4: if q

4
≤ M̂i <

3q
4
then

5: m̂i ← 1
6: else

7: m̂i ← 0
8: end if

9: end for

10: m← BCHDecode(m̂)
11: return m

Algorithm 4

CPA.Decrypt256 (sk, c = (c1, c2))

Ensure: Plaintext m
1: c2 ← Decompress(c2)
2: M̂ ← c2 − (c1sk)2lv ∈ Z2lv

q

3: for i = 0 to lv−1 do //D2 Decoding

4: tmp1, tmp2 := M̂ [i], M̂ [i+ lv]
5: if tmp1 <

q
2

6: tmp1 ← q − tmp1
7: else if tmp2 <

q
2

8: tmp2 ← q − tmp2
9: end if

10: if tmp1 + tmp2 − q < q
2

11: m̂i ← 1
12: else

13: m̂i ← 0
14: end if

15: end for

16: m← BCHDecode(m̂)
17: return m

Subroutines

BCHEncode and BCHDecode. The function BCHEncode takes as input a
message m of length lm, pads it with (k− lm) zeros, where k is the dimension of
the BCH code, and returns the corresponding value c on the code. The function
BCHDecode takes as input a message ĉ of length n−1, retrieves the codeword
c closest to ĉ and returns m such that c = mG, where G is the generator matrix
of the code.
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Compress and Decompress. The function Compress takes as input a vari-
able c = (c0, . . . , clenc

) where each coe�cient ci is a 8-bits number and returns
c′ = (c′0, . . . , c

′
lenc

) where each c′i is a 4 bits number obtained by keeping the
highest 4 bits of ci.

The functionDecompress takes as input a variable c′ = (c′0, . . . , c
′
lenc

) where
each coe�cient c′i is a 4-bit number, and returns c̃ = (c̃0, . . . , c̃lenc

) where each
c̃i is a 8 bits number obtained by padding each coe�cient c′i with 4 zero bits.

Parameters

In the following we denote the secret key sk by s. Recall that LAC is a RLWE
public-key encryption scheme on Rq = Zq[x]/(xn + 1), with input messages of
length lm.
LAC uses di�erent parameters for its three algorithms:

Name n q Distrib lm lv Code(BCH) D2
[n′, k, d]

LAC-128 512 251 ψ1 256 lm + 144 [511, 367, 33] No
LAC-192 1024 251 ψ 1

2
256 lm + 72 [511, 439, 17] No

LAC-256 1024 251 ψ1 256 lm + 144 [511, 367, 33] Yes

The value lv depends on the BCH code. Let G be a generator matrix of
the BCH code C. By the construction of LAC, G is on systematic form G =
(Idk|An′−k). In fact, we cannot keep only lv bits of a codeword without this
condition. The BCHEncode function takes as input a message m of length lm
and pads it with (k − lm) zeros. We obtain

(m1, . . . ,mlm , 01, . . . , 0k−lm)G = (m1, . . . ,mlm , 01, . . . , 0k−lm |mAn′−k) = c

We omit the (k − lm) zeros of c then lv = lm + (n′ − k).

LAC Key Exchange

We describe the LAC Key Exchange introduced in [19], based on the CPA version
of the LAC public-key encryption scheme.

Alice Bob

(pk, s)←− CPA.KeyGen()
pk−→

r ←− U({0, 1}lm)
c←−CPA.Encrypt(pk, r)
KeyB ← H(pk, r) ∈ {0, 1}lk

c←−
r′ ← CPA.Decrypt(s, c)

KeyA ← H(pk, r′) ∈ {0, 1}lk

If Key Exchange succeeds then r′ = r and KeyB = KeyA.
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3 Attack on LAC Key Exchange

In this section, we present the main result of this paper. We start by de�ning
the scenario of the attack by introducing the oracle de�ned in [4].

3.1 Attack Model

Suppose that Alice does a misuse of the Key Exchange Mechanism by caching
her secret s. More precisely:

Assumption 1 Alice keeps her secret key constant for several CPA key estab-
lishments requests.

Eve is a malicious active adversary who acts as Bob and can cheat and generate
c that is not the encryption of a random r. To mount the active attack, we
suppose that Eve has access to a session key mismatch oracle de�ned as follow.

De�nition 1. A key mismatch oracle outputs a bit of information on the possi-
ble mismatch at the end of the key encapsulation mechanism. In the LAC context,
this oracle, denoted O, takes any message c and any session key guess µ as input
and outputs:

O(c, µ) =
{
1 if H(pk,CPA.Decrypt(s, c)) = µ
−1 otherwise

This oracle can also be used by Bob during an honest key exchange with
Alice, when he veri�es the match between his session key and Alice's one.

The idea of the attack mounted by Eve is to send forged ciphertexts to Alice
to ensure that she obtains information on some coe�cients of Alice's secret key.
As Eve knows that c = (c1, c2) and s are used during the decryption algorithms
(s is multiplied by c1), she will mount an attack using this fact and following
four mains steps:

� Choose a session key µ.
� Construct c1 such that some coe�cients of the secret key are exposed.
� Construct c2 depending of µ such that the result of Alice's decryption can
be monitored as a function of the key guess.

� Call to the oracle O to obtain information about our key guesses.

The following section shows how to choose appropriate (c, µ) to retrieve infor-
mation on s. We assume that Eve has access to the oracle O.

3.2 Attack on LAC-128-KE and LAC-192-KE

First, we use a simpli�ed version where we do not consider Compress and
Decompress functions. We follow the di�erent steps of the decryption algo-
rithm 3.
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Simpli�ed version

In this �rst result, we show how one can forge a LAC ciphertext in order to
impose which plaintext will be obtained after decryption. To do so, we need to
forge c such that the impact of the secret key during the decryption is under our
control.

Proposition 1. Assume that Eve forges c = (c1, c2) such that :

� c1 = −axn−w where w is an integer 0 ≤ w < n and 0 ≤ a < q
4

� c2 = (α0, . . . , αlv−1) where αi =
q
2 or 0 for all i in [0, lv − 1].

Then she can determine the plaintext m that Alice will obtain after decryption.

Proof. When Alice deciphers Eve's ciphertext she:

1. Computes M̂ = c2 − (c1s)lv
2. Compares each coe�cient of M̂ to q

4 and 3q
4 to de�ne m̂

3. Retrieves m using BCHDecode algorithm on m̂

Let c1 = −axn−w and s = s0 + s1x
1 + . . .+ sn−1x

n−1 then

c1s = asw + asw+1x+ . . .+ asn−1x
n−w−1 − as0xn−w − . . .− asw−1xn−1

and the polynomial c1s can be represented as the vector (asw, . . . ,−asw−1)
During the computation of M̂ , two cases are possible:
�w < lv then M̂ = c2− (c1s)lv = (α0−asw, . . . , αw+as0, . . . , αlv−1+asw+lv−1)

�w ≥ lv then M̂ = c2 − (c1s)lv = (α0 − asw, α1 − asw+1, . . . , αlv−1 − asw+lv−1)

After this computation each coe�cient of M̂ is compared to q
4 ≤ M̂i <

3q
4 .

Recall that since s ←− ψnσ , each of its coe�cients belongs to {−1, 0, 1}. Let i be
an integer such that 0 ≤ i < n and j ≡ n− w + i mod n.

If αi =
q
2 one gets:

αi ∓ asj =


q∓2a

2 if sj = ±1
q
2 if sj = 0
q±2a

2 if sj = ∓1

If αi = 0 one gets:

αi ∓ asj =

±a if sj = ∓1
0 if sj = 0
∓a if sj = ±1

In the �rst case, the three possible values for αi ∓ asj lie in
[
q
4 ,

3q
4

[
if 0 ≤

a ≤ q
4 . In the case αi = 0, the three possible values do not lie in

[
q
4 ,

3q
4

[
when

0 ≤ a < q
4 or 3q

4 ≤ a ≤ q.
Thus, Eve can choose a < q

4 and αi =
q
2 or 0 to determine what Alice will

obtain on the �rst lv coordinates of m̂. Then, Eve can deduce, by applying BCH
decoding, what Alice obtains at the end of the decryption procedure.

The next example explains how one can use Proposition 1.

Example 1. Suppose that Eve wants that Alice will obtain, after decryption, the
message m = BCHDecode(1, 0, 1, 1, 0, . . . , 0). Then she forges c = (c1, c2) such
that:
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� c1 = − q5x
n = q

5 on Rq. In fact Eve can take any c1 such that c1 = −axn−w
with 0 ≤ a < q

4
� c2 = ( q2 , 0,

q
2 ,

q
2 , 0, . . . , 0)

From c Alice �rst computes:

M̂ = c2 − (c1s)lv

=
(q
2
, 0,

q

2
,
q

2
, 0, . . . , 0

)
− q

5
(s0, s1, . . . , slv ) , si belongs to {−1, 0, 1}

=
(q
2
− q

5
s0,−

q

5
s1,

q

2
− q

5
s2,

q

2
− q

5
s3,−

q

5
s4, . . . ,−

q

5
slv

)
Then, Alice compares each coe�cients of M̂ to q

4 and 3q
4 . She obtains (see proof

of Proposition 1):

m̂ = (1, 0, 1, 1, 0, . . . , 0)

At the end, Alice obtains m by applying BCHDecode algorithm to m̂. Thus,
Eve had forged c such that Alice has m = BCHDecode(1, 0, 1, 1, 0, . . . , 0).

With Proposition 1 we construct a ciphertext such that the secret key has no
impact during decryption. Now Eve needs to construct forged ciphertexts that
allow a key guessing strategy in order to retrieve the secret key. Thus, we need
that the secret key has an impact during decryption if and only if we did a good
key guess.

Proposition 2. Let s′w be a guess done by Eve on the w-th coe�cient of the
secret key s, where 0 ≤ w < n. Assume sw = 1 or −1. If Eve forges c = (c1, c2)
as given in Proposition 1 and modify the �rst coordinate of c2 such that:

� c2 = (as′w, α1, . . . , αlv−1) with
q
8 < a < q

4 .

Then she can verify her key guess from the plaintext computed by Alice from c.

Proof. Suppose that Eve wants to retrieve the w-th coe�cient of s. When Alice
will decipher Eve ciphertext she �rst computes:

M̂ = c2 − (c1s)lv = (as′w − asw, α1 − asw+1, . . .)

According to Proposition 1, Eve can determine what Alice will obtain for every
coe�cient di�erent from her guess s′w. Let see what happens with this coe�cient
by analysing as′w − asw.

as′w − asw =


0 if s′w = sw
2a if s′w = 1 and sw = −1
−2a if s′w = −1 and sw = 1
∓a if s′w = 0 or sw = 0

Let q8 < a < q
4 then q

4 < 2a < q
2 and −2a = q−2a satis�es q2 < q−2a < 3q

4 Then
with a ∈] q8 ,

q
4 [. The key guess is good (resp. wrong) when a 1 (resp. 0) is returned

at the �rst coordinate of m̂. Hence Eve can e�ectively determines what Alice
obtained by applying BCHDecode algorithm to m̂ and thus deterministically
veri�es her key guess from m̂.
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Proposition 2 ensures that if Eve guessed the good key then Alice will obtains
m = BCHDecode(1, . . .). Otherwise, she will obtain m = BCHDecode(0, . . .).
Computational details are given in the following example.

Example 2. Suppose that Eve wants to learn information about the �rst bit of
Alice's secret key. Eve forges c = (c1, c2) such that:

� c1 = − q5x
n = q

5 on Rq.
� c2 =

(
q
5s
′
0, 0,

q
2 ,

q
2 , 0, . . . , 0

)
where s′w is Eve's key guess.

As in Example 1, Alice �rst computes M̂ = c2 − (c1s)lv = ( q5s
′
0 −

q
5s0, −

q
5s1,

q
2

− q5s2,
q
2 −

q
5s3,−

q
5s4, . . . ,−

q
5slv ) where si belongs to {−1, 0, 1}. Then, Alice com-

pares each coe�cients of M̂ to q
4 and 3q

4 . She obtains (see proof of Proposition
2):

m̂ = (1, 0, 1, 1, 0, . . . , 0) if s′0 = −s0 and s0 6= 0

m̂ = (0, 0, 1, 1, 0, . . . , 0) otherwise

At the end, Alice obtains m by applying BCHDecode algorithm to m̂. Thus,
Eve did the good key guess if Alice gets m = BCHDecode(1, 0, 1, 1, 0, . . . , 0).

Proposition 2 already gives interesting information to Eve but it is not enough
to mount an attack since Eve needs a way to verify if Alice obtains:

� either m = BCHDecode(1, 0, 1, 1, 0, . . . , 0)
� or m = BCHDecode(0, 0, 1, 1, 0, . . . , 0)

without knowingm. Moreover, most of the time BCHDecode(1, 0, 1, 1, 0, . . . , 0)
will not di�er from BCHDecode(0, 0, 1, 1, 0, . . . , 0).

To overcome these issues we need to instantiate precisely the oracle given in
De�nition 1 using Proposition 2.

Instantiation of the Oracle. The oracle de�ned in De�nition 1 gives infor-
mation about the success of a key session establishment between Alice and Bob.
Eve can use such an oracle with the help of Proposition 2 and the BCH code
decryption failure to overcome issues mentioned above.

In the sequel, we show how Eve can practically mount an attack by forging
speci�c inputs to this oracle and deduce information on Alice's secret key. The
following theorem and its proof detail this construction then Algorithm 5 and
Algorithm 6 formally describe the attack.

Theorem 1. Let s′w ∈ {−1, 1} be the guessed value of sw (0 ≤ w < n) done by
Eve. If Eve takes a session key µs′w then she can forge cs′w = (c1, c2) depending
of µs′w by using properties given in Proposition 2 such that by calling O(cs′w , µs′w)
with s′w ∈ {−1, 1}, she retrieves the w-th coe�cient of s. In consequence, Eve
needs at most 2 calls to the oracle in order to retrieve a coe�cient of Alice's
secret key.
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Proof. According to Proposition 2, Eve can monitor Alice's decryption procedure
if she does the good key guess.

An error-correction code can correct at most d−1
2 errors (where d is the

minimal Hamming distance of the BCH code). The idea is that after comparison
with q

4 and 3q
4 , m̂ is a codeword with d

2 errors if Eve did the wrong key guess,
causing a decoding error. Suppose Eve wants to retrieve the w-th coe�cient of
s:

1. Eve chooses a codeword called cdword with a 1 at the �rst coordinate such
that cdword = mG where G is the generator matrix of the BCH code

2. Eve injects d−1
2 errors to cdword at any coordinate except the �rst one

3. Eve chooses a verifying q
8 < a < q

4 according to Proposition 2
4. Eve constructs c1, c2 with her key guess at the �rst bit of c2: c2[0] = as′w

and such that after comparison with q
4 and 3q

4 , Alice retrieves cdword with
d−1
2 errors or cdword with d

2 errors
5. Eve sends c = (c1, c2) to Alice

With this construction, Alice obtains a codeword with d
2 errors if Eve provides

a wrong key guess. At this point, Eve's session key is sessE = H(pk,m) and
Alice's session key sessA depends on Eve's key guess. Eve can verify whether
she did the correct key guess with the oracle as follow:

If s′w = 1 and O(c, sessE) = 1 then sw = −1 and sessA = sessE

Else If s′w = −1 and O(c, sessE) = 1 then sw = 1 and sessA = sessE

Otherwise sw = 0

Algorithm 5 and Algorithm 6 are based on the construction described in the
proof of Theorem 1. Here, we �x the constant a to q

7 in the construction of c1.

Algorithm 5 forge(hyp,bit)

Ensure: Forge ciphertext c = (c1, c2)
1: c1 := − q

7
xn−bit

2: m := [0 : for i := 0 to 255]
3: m[0] := 1
4: codeword := (m||0..0)G
5: Add d−1

2
errors to codeword (but not

on codeword[0])
6: For i = 0 to Len(codeword) :
7: if i == 0 :
8: c2[0]← hyp× q

7

9: else if codeword[i] == 1 :
10: c2[i]← q

2

11: else

12: c2[i]← 0
13: end if

14: end for

15: Return(m, c = (c1, c2))

Algorithm 6 recoverOneBit(bit)

Ensure: A bit of s
1: m, c := forge(−1, bit)
2: If O(c,m) == 1 :
3: Return 1
4: end if

5: m, c := forge(1, bit)
6: If O(c,m) == 1 :
7: Return −1
8: end if

9: Return 0

Using Theorem 1, a key of length n can be fully recovered with at most 2×n
requests to the oracle. LAC-128 works with keys of length n = 512 and LAC-192
with length n = 1024.
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Full version

The subroutine Compress removes the 4 lowers bits of each coe� of c2. They
are replaced by 4 zero-bit when the subroutine Decompress is applied at the
beginning of the decryption process. Thus, each coe�cient of c2 can be only
equal to 16, 32, 64, 128 and any sum of theses values.
For c2 in our attack, we only consider the values q

7 , −
q
7 and q

2 . In our implemen-
tation [14] we approximate q

7 ≈ 32, − q7 ≈ 128 + 64 + 16 = 210 and q
2 ≈ 128.

Proposition 2 is still veri�ed and we still retrieve s with at most 2× n requests
to the oracle by the Theorem 1.

In comparison of the recent work of Huguenin-Dumittan et al. in [10], our
upper-bound for LAC128 is 2 times less than theirs. Indeed, they need at most
211 queries to retrieve the entire secret key, while we need at most 210 queries.

Implementation results

We have developed a C implementation of the attack (see [14]). To assess its
e�ciency we use the reference code of LAC [19] as a target. In the following, we
present practical results on the average of 1000 attacks launched on 1000 random
secret keys for LAC-128 and LAC-192. Timing results have been evaluated on
core i5-8350U at 1.90GHz.

Nb of coe� of sk Average oracle requests Average time
LAC-128 512 896 2, 94 ms
LAC-192 1024 1920 15, 53 ms

The size of LAC-192 secret key is 2 times larger than LAC-128 one, but the
number of required request to retrieve sk is more than 2 times larger. This is
due to a di�erent probability distribution between these two levels of security.
In average we need 1, 75 × 512 oracle requests for LAC-128 and 1, 875 × 1024
requests for LAC-192. For both cases, the practical result is less than the upper
bound of 2× n where n = 512 or 1024.

4 Attack on LAC-256-KE

4.1 Attack on LAC-256-KE

Since LAC-256 encryption usesD2 encoding , the decryption procedure is slightly
di�erent. Let c = (c1, c2), D2 encoding duplicates the coordinate of c2: c2 =
(c2||c2). The use of this encoding allows to decrease decoding errors.

In Attack on LAC-128/192 we forged c1 as a monomial to avoid linear combi-
nation between coe�cients of s during computation of c1s. This allows to do key
guess on only one coe�cient of s. But, despite the use of a monomial for c1, D2
encoding ensures that each coe�cient of c1s is a linear combination of at least 2
coe�cients of s. It implies that we need to do key guesses on two coe�cients of
s. In this section, we adapt our previous attack to allow to do two key guesses
rather than one. The attack procedure is the same as previously:



Attack on LAC Key Exchange in Misuse Situation 13

� Choose a session key µ.
� Construct c1 such that some coe�cients of the secret key are exposed.
� Construct c2 depending of µ such that the result of Alice's decryption can
be monitored as a function of the key guess.

� Call to the oracle O to obtain information about our key guesses.

For the sake of clarity all proposition proofs are in Appendix.

CPA.Decrypt256 description

The �rst step of the decryption it's to compute M̂ = c2 − (c1s)2lv as previously.
However the comparison is di�erent for LAC-256. The decryption algorithm
considers two cases

Case 1. If M̂ [i] and M̂ [i + lv] <
q
2 or M̂ [i] and M̂ [i + lv] ≥ q

2 then algorithm

CPA.Decrypt256 checks whether: M̂ [i]+M̂ [i+lv ]
2 ∈] q4 ,

3q
4 [

Case 2. If M̂ [i] < q
2 and M̂ [i + lv] ≥ q

2 or M̂ [i] ≥ q
2 and M̂ [i + lv] <

q
2 then

CPA.Decrypt256 checks whether |M̂ [i]−M̂ [i+lv ]|
2 ∈]0, q4 [

In the following we notice when we are in the case 1 or 2.

4.2 Attack on LAC-256-KE simpli�ed

As previously we �rst use a simpli�ed version where we do not considerCompress
and Decompress subroutines.

Proposition 3. Assume that Eve forges c = (c1, c2) such that:

� c1 = −axn−w where w is an integer 0 ≤ w < (n− lv) and 0 ≤ a < q
4

� c2 = (α0, . . . , αlv−1, αlv , . . . , α2lv−1) where αi =
q
2 or 0 for all i in [0, 2lv−1]

Then she can determine the plaintext m that Alice obtains after decryption.

Example 3. Suppose that Eve wants that Alice obtains, after decryption, the
plaintextm = BCHDecode(1, 1, 0, 1, 0, . . . , 0). Eve forges c = (c1, c2) such that:

� c1 = − q5x
n = q

5 on Rq.
� c2 = ( q2 ,

q
2 , 0,

q
2 , 0 . . . , 0||

q
2 ,

q
2 , 0,

q
2 , 0 . . . , 0). The symbol || delimit the lv �rst

part to the lv second part of c2 (we duplicate c2 due to D2 encoding in
Algorithm 2). The two parts are symmetric .

When Alice deciphers c, she computes M̂ = c2−(c1s)2lv and uses the comparison
procedure describes in Algorithm 4 to obtain m̂ of length lv. If c1 and c2 are
constructed according to Proposition 3, then (cf Proof 5):

� If c2[i] = c2[i+ lv] =
q
2 then m̂[i] = 1

� If c2[i] = c2[i+ lv] = 0 then m̂[i] = 0
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Then, with our c2 = ( q2 ,
q
2 , 0,

q
2 , 0 . . . , 0||

q
2 ,

q
2 , 0,

q
2 , 0 . . . , 0) Alice obtains m̂ =

(1, 1, 0, 1, 0, . . . , 0). Thus, Alice retrieves m = BCHDecode(1, 1, 0, 1, 0, . . . , 0).

So Eve can choose a < q
4 and αi =

q
2 or 0 to know what Alice obtains on the

lv coordinates of m̂ and then Eve can deduce what Alice obtains at the end of
decryption form. Eve needs to construct forged ciphertexts which allow to verify
her key guesses.

Proposition 4. Let s′w and s′w+lv
be guesses done by Eve on the w-th and

w+ lv coe�cients of the secret key s. Assume sw, sw+lv = 1 or −1. If Eve forges
c = (c1, c2) as given in Proposition 3 and modify the �rst and lv-th coordinates
of c2 such that:

� c2 = (as′w, α1, . . . , αlv−1, as
′
w+lv

, . . . , αlv−1
) with q

8 < a < q
4 .

Then she can verify her key guesses from the plaintext computed by Alice from
c.

Example 4. Suppose that Eve wants to learn information about the �rst and the
lv-th bit of Alice's secret key. Eve forges c = (c1, c2) such that:

� c1 = − q5x
n = q

5 on Rq.
� c2 = ( q5s

′
0,
q
2 , 0,

q
2 , 0 . . . , 0||

q
5s
′
lv
, q2 , 0,

q
2 , 0 . . . , 0) where s

′
0 and s

′
lv
are key guesses

When Alice deciphers c she computes M̂ = c2−(c1s)2lv and uses the comparison
procedure describes in Algorithm 4 to obtain m̂ of length lv. If c1, c2, s

′
0 and s

′
lv

are constructed according to Proposition 4, then (cf Proof 5):

� If s′0 = −s0 and s′lv = −slv then m̂[0] = 1
� Else m̂[0] = 0
� The value of the others coe�cients of m̂ are determined as in the previous
example

If Eve does correct key guesses then Alice obtains m̂ = (1, 1, 0, 1, 0, . . . , 0). Oth-
erwise, Alice obtains m̂ = (0, 1, 0, 1, 0, . . . , 0)

Proposition 4 ensures that Eve can know what Alice obtains if Alice's secrets
coe�cients are di�erent from 0. Let see what happens when one of the two
coe�cient is equal to 0.

Proposition 5. Let s′w and s′w+lv
be guesses done by Eve on the w-th and

w+ lv coe�cients of the secret key s. Assume sw = 0 or sw+lv = 0. If Eve forges
c = (c1, c2) as given in Proposition 3 and modify the �rst and lv-th coordinates
of c2 such that:

� c2 = (as′w, α1, . . . , αlv−1, as
′
w+lv

, . . . , αlv−1) with
q
6 < a < q

4 .

Then she can verify her key guesses from the plaintext computed by Alice from
c.
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Proposition 5 works like Proposition 4 but for the case where one of the two
targeted coe�cient is equal to 0. However, as previously, Proposition 4 and
Proposition 5 are not enough to mount an attack for the same reasons:

� Eve needs a way to verify what Alice obtains.
� A bit of di�erence on m̂ is corrected by the BCH code. Thus, at the end of
the decryption procedure Alice and Eve have the same plaintext.

Nonetheless, Eve can use Proposition 4 and Proposition 5, the BCH code de-
cryption failure and the oracle to overcome these issues.

Theorem 2. Let s′w, s
′
w+lv

∈ {−1, 1} be the guessed values of sw and sw+lv done
by Eve. If Eve takes a session key µs′w,s′w+lv

then she can forge cs′w,s′w+lv
= (c1, c2)

depending of µs′w,s′w+lv
by using properties given in Proposition 2 such that by

calling O(cs′w,s′w+lv
, µs′w,s′w+lv

) with s′w, s
′
w+lv

∈ {−1, 0, 1}, she retrieves the w-th

and w + lv-th coe�cients of s. In consequence, Eve needs at most 8 × (n − lv)
calls to the oracle in order to retrieve two coe�cients of Alice's secret key.

Proof. The idea is the same as LAC-128 and 192, Eve takes c2 to ensure, after
comparison in CPA.Decrypt256 , that m̂ is a codeword with d

2 errors if she did

a wrong key guess. Since at most d−1
2 errors can be corrected, a decoding errors

occurs.
According to Proposition 4 and Proposition 5, Eve can monitor Alice's decryp-
tion procedure if she does the good key guess.
Suppose Eve wants to retrieve the w-th and the (w + lv)-th coe�cients of s:

1. Eve chooses a codeword called cdword with a 1 at the �rst coordinate such
that cdword = mG where G is the generator matrix of the BCH code

2. Eve injects d−1
2 errors to cdword at any coordinate except the �rst one

3. Eve chooses a verifying q
8 < a < q

4 if she is on the case of Proposition 4 or
q
6 < a < q

4 if she is on the case of Proposition 5
4. Eve constructs c1 and c2 with her key guesses at the �rst and lv-th coe�cient

of c2: c2[0] = as′w and c2[lv] = as′w+lv
and such that after comparison, Alice

retrieves cdword with d−1
2 errors or cdword with d errors

5. Eve sends c = (c1, c2) to Alice

With this construction Alice obtains a codeword with d
2 errors if Eve does a

wrong key guess. At this point, Eve's session key is sessE = H(pk,m) and
Alice's session key sessA depends on Eve's key guesses. Eve can verify if she did
a good key guess with the oracle.
First Eve determines if sw and sw+lv are di�erent from 0 (see Proposition 4):

If s′w = 1, s′w+lv = 1 and O(c, sessE) = 1 then sw = −1 and sw+lv = −1
Else If s′w = −1, s′w+lv = −1 and O(c, sessE) = 1 then sw = 1 and sw+lv = 1

Else If s′w = 1, s′w+lv = −1 and O(c, sessE) = 1 then sw = −1 and sw+lv = 1

Else If s′w = −1, s′w+lv = 1 and O(c, sessE) = 1 then sw = 1 and sw+lv = −1
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If the oracle does not return 1, then Eve determines which coe�cient is equal to
0 (see Proposition 5):

If s′w = 1, s′w+lv = 1 and O(c, sessE) = 1 then sw = −1 and sw+lv = 0

or sw = 0 and sw+lv = −1
If s′w = −1, s′w+lv = 1 and O(c, sessE) = 1 then sw = 0 and sw+lv = −1
Else If O(c, sessE) = −1 then sw = −1 and sw+lv = 0

Else If s′w = −1, s′w+lv = −1 and O(c, sessE) = 1 then sw = 1 and sw+lv = 0

or sw = 0 and sw+lv = 1

If s′w = 1, s′w+lv = 1 and O(c, sessE) = 1 then sw = 0 and sw+lv = 1

Else if O(c, sessE) = −1 then sw = 1 and sw+lv = 0

Otherwise sw = 0 and sw+lv = 0

Eve can applies this procedure for 0 ≤ w < (n− lv) to retrieve the entire secret
key.

To recover the entire key we need at most 8× (n− lv) requests to the oracle
due to Theorem 2, where lv = 400 and n = 1024.

Full version

The subroutine Compress removes the 4 lowers bits of each coe� of c2. They
are replaced by 4 zero-bit when the subroutine Decompress is applied at the
beginning of the decryption process. So each coe�cient of c2 can be only equal
to 16, 32, 64, 128 and any sum of these values.

For c2 in our attack we choose a ≈ q
7 for Proposition 4 and a ≈ q

5 for
Proposition 5. Then, we only consider the values q

7 , −
q
7 ,

q
5 , −

q
5 and q

2 . In our
implementation [14] we approximate q

7 ≈ 32, − q7 ≈ 128 + 64 + 16 = 210 or
− q7 ≈ 128 + 64 + 32 = 224 (we use two di�erent values to compensate the ap-
proximation), q5 ≈ 16+32 = 48, − q5 ≈ 128+64 = 192 and q

2 ≈ 128. Proposition 4
and Proposition 5 are still veri�ed and we still retrieve s with at most 8×(n− lv)
requests to the oracle by the Theorem 2.

Implementation results

We assess our attack implementation [14] plug in the reference code of LAC.
Following results are the average of 1000 attacks launched on 1000 random se-
cret keys for LAC-256. Timing results have been evaluated on core i5-8350U at
1.90GHz.

Nb of coe� of sk Average oracle requests Average time
LAC-256 1024 3355 30, 31 ms

In average we need 5, 4× (1024− 400) oracle requests that is much less than the
upper bound of 8× (n− lv) requests
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5 Conclusion

In this paper, we show how to mount an attack on CPA version of LAC-KE
when the same secret key is reused. Moreover, on constrained environment this
attack can be applied on the CCA version by applying physical attack on the
Fujisaki-Okamoto transformation as shown in [7,16]. We prove that this attack
needs at most 8 × 1024 queries of key exchanges. This low number of queries
to recover the secret con�rmed the necessity to not reuse the same private key
even for a very small number of key exchanges. One can compare this number
with the key mismatch attack on NewHope in [11] that requires 882, 794 queries
and the one on Kyber in [17] that requires 2, 4 × 1024 queries. Hence, in the
context of key reuse, LAC-256 is much less resilient than NewHope but a little
more resilient than Kyber. It is important to note that this situation is a misuse
and thus, LAC is still believed to be safe when a fresh secret key is used for each
exchange. (The same remark applies to NewHope and Kyber.)
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Appendix

Proof of Proposition 3

Proof. Assuming Alice receives c = (c1, c2) then she:

1. Computes M̂ = c2 − (c1s)2lv

2. Compares q
4
< M̂ [i]+M̂ [i+lv ]

2
< 3q

4
or 0 < |M̂ [i]−M̂ [i+lv ]|

2
< q

4
for i = 0 to lv − 1 to

de�ne each coe�cient of m̂
3. Retrieves m using BCHDecode algorithm on m̂

Let c1 = −axn−w and s = s0 + s1x
1 + . . .+ sn−1x

n−1 then c1s = asw + asw+1x+
cldots +asn−1x

w − as0xw−1 − · −asw−1x
n−1.

c1s can be represented as a vector: (asw, . . . ,−asw−1). During the computation of
M̂ two cases are possible:

� w < 2lv then M̂ = c2−(c1s)2lv = (α0−asw, α1−asw+1, . . . , αw+as0, . . . , α2lv−1+
as(2lv−1+w mod n))

� w ≥ 2lv then M̂ = c2−(c1s)2lv = (α0−asw, α1−asw+1, . . . , α2lv−1−as(2lv−1+w mod n))

Recall that since s←− ψnσ , each of its coe�cients belongs to {−1, 0, 1}. Let i be an integer
such that 0 ≤ i < lv and j ≡ i+w mod n. For decryption there are the three following
cases. (We cannot have the case where M̂ [i] = αi+ asj and M̂ [i+ lv] = αi+lv − asj+lv
because that implies j + lv ≤ w + lv and w < j with lv > 0 and j ≥ 0.)

https://github.com/ayotnomis/LACAttack
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/pqcrypto-2016-presentation.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/pqcrypto-2016-presentation.pdf
https://eprint.iacr.org/2016/1109
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions


Attack on LAC Key Exchange in Misuse Situation 19

1. M̂ [i] = αi − asj and M̂ [i+ lv] = αi+lv − asj+lv If αi = q
2
one gets:

� If sj = sj+lv or sj + sj+lv = −1 we are in the Case 1 described in 4.1, where
αi − asj = M̂ [i]. Then

αi = αi+lv =
q

2
,
(αi − asj) + (αi+lv − asj+lv )

2
=


q−2a

2
if sj = sj+lv = 1

q+2a
2

if sj = sj+lv = −1
q
2

if sj = sj+lv = 0
q+a
2

if sj + sj+lv = −1

These 3 values lie in
]
q
4
, 3q

4

[
if 0 ≤ a < q

4
.

� Otherwise we are in the Case 2 described in Paragraph 4.1, where αi−asj = M̂ [i]:

αi = αi+lv =
q

2
,
|(αi − asj)− (αi+lv − asj+lv )|

2
=


a
2

if sj + sj+lv = 1
a if sj = −1, sj+lv = 1

or sj = 1, sj+lv = −1

These values lie in
[
0, q

4

[
if 0 ≤ a < q

4
.

Then for both cases, if c1 = −axn−w with αi, αi+lv = q
2
, we can ensure that we have

a 1 after comparison.
If αi = 0 then we are in the Case 1 described in Paragraph 4.1, where αi−asj = M̂ [i]:

(αi − asj) + (αi+lv − asj+lv )
2

=


a if sj = sj+lv = −1
0 if sj = −sj+lv or sj = sj+lv = 0
−a if sj = sj+lv = 1
±a

2
otherwise

Then these 3 values do not lie in ] q
4
, 3q

4
[ for 0 ≤ a < q

4
.

2. M̂ [i] = αi+asj and M̂ [i+ lv] = αi+lv +asj+lv . The proof is the same as above.
We give here the di�erent decryption cases:

� If αi = q
2
then two cases are possible: if sj = sj+lv or sj + sj+lv = 1 then we are

in the decryption Case 1 otherwise in the Case 2.
� If αi = 0 then we are in the decryption Case 1.

3. M̂ [i] = αi−asj and M̂ [i+ lv] = αi+lv +asj+lv . The proof is the same as above.
We give here the di�erent decryption cases:

� If αi = q
2
then two cases are possible: if sj = −sj+lv or sj = 0, sj+lv = 1 or

sj = −1, sj+lv = 0 then we are in the decryption Case 1, otherwise in the Case 2.
� If αi = 0 then we are in the decryption Case 1.

Proof of Proposition 4

Proof. According to Proposition 3 Eve can determine what Alice obtains at the end of
the decryption procedure for every coe�cient di�erent from the key guesses. Assume
that Eve wants to retrieve the w-th and (w + lv)-th coe�cients of s. Let M̂ = c2 −
(c1s)2lv , due to 0 ≤ w < (n − lv) the only case to consider is M̂ [0] = as′w − asw and
M̂ [lv] = as′w+lv − asw+lv .
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Let s′w = s′w = 1 and q
8
< a < q

4
, so we are in the Case 1 described in Paragraph

4.1. Let see what happens with
M̂0+M̂lv

2
=

as′w−asw+as′w+lv
−asw+lv

2
:

a− asw + a− asw+lv

2
=


2a if sw = sw+lv = −1
0 if sw = sw+lv = 1
3a
2

if sw = 0, sw+lv = −1
or sw = −1, sw+lv = 0

a
2

otherwise

Then only the case
a−asw+a−asw+lv

2
= 3a

2
can put a 1 to m̂0 if q

8
< a < q

4
.

With the same condition on a and with the same method Eve can have :

� If s′w = s′w+lv = 1 and m̂0 = 1 then sw = sw+lv = −1
� If s′w = s′w+lv = −1 and m̂0 = 1 then sw = sw+lv = 1
� If s′w = 1, s′w+lv = −1 and m̂0 = 1 then sw = −1 and sw+lv = 1
� If s′w = −1, s′w+lv = 1 and m̂0 = 1 then sw = 1 and sw+lv = −1

Proof of Proposition 5

Proof. Assume that Eve wants to retrieve the w-th and (w + lv)-th coe�cients of s.
As Proof 5 the only case to consider is M̂ [0] = as′w−asw and M̂ [lv] = as′w+lv−asw+lv .

Suppose q
6
< a < q

4
, s′w = 1 and s′w+lv = 1. Let see what happens with

M̂0+M̂lv
2

=
as′w−asw+as′w+lv

−asw+lv

2
(Case 1 described in Paragraph 4.1):

a− asw + a− asw+lv

2
=



3a
2

if sw = −1 and sw+lv = 0
or sw = 0 and sw+lv = −1

a
2

if sw = 0 and sw+lv = 1
or sw = 1 and sw+lv = 0

a if sw = sw+lv = 0

With q
6
< a < q

4
then only the case where the result is 3a

2
can put a 1 to m̂w. However

Eve needs to determine if sw = −1 or sw+lv = −1.

Suppose a < q
4
, s′w = −1 and s′w+lv = 1, sw = −1 and sw+lv = 0 or sw = 0 and sw+lv =

−1. Here, we need to consider the both decryption cases described in Paragraph 4.1.
Let see what happens:

� If sw = −1 and sw+lv = 0 we are in Case 1 4.1 thus q
4
< a < 3q

4
.

� If sw = 0 and sw+lv = −1 we are in Case 2 4.1 thus 0 < |−a−2a|
2

< q
4
which implies

0 < a < 3q
8
.

However a < q
4
, then only one case can put a 1 to m̂0.

With the same condition on a and with the same method, Eve can retrieve the
others values:

� If s′w = 1, s′w+lv = 1 and m̂0 = 1 then sw = −1, sw+lv = 0 or sw = 0, sw+lv = −1
� If s′w = −1, s′w+lv = 1 and m̂0 = 1 then sw = 0, sw+lv = −1 else sw = −1,
sw+lv = 0

� If s′w = −1, s′w+lv = −1 and m̂0 = 1 then sw = 1, sw+lv = 0 or sw = 0, sw+lv = 1
� If s′w = 1, s′w+lv = −1 and m̂0 = 1 then sw = 0, sw+lv = 1 else sw = 1,
sw+lv = 0
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