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ABSTRACT

In this work, we present the system description of the UIAI
entry for the short-duration speaker verification (SdSV)
challenge 2020. Our focus is on Task 1 dedicated to text-
dependent speaker verification. We investigate different
feature extraction and modeling approaches for automatic
speaker verification (ASV) and utterance verification (UV).
We have also studied different fusion strategies for combin-
ing UV and ASV modules. Our primary submission to the
challenge is the fusion of seven subsystems which yields a
normalized minimum detection cost function (minDCF) of
0.072 and an equal error rate (EER) of 2.14% on the eval-
uation set. The single system consisting of a pass-phrase
identification based model with phone-discriminative bot-
tleneck features gives a normalized minDCF of 0.118 and
achieves 19% relative improvement over the state-of-the-art
challenge baseline.
Index Terms: Text-dependent speaker verification, Utter-
ance verification, Fusion, Bottleneck feature, SdSV challenge
2020.

1. INTRODUCTION

Automatic speaker verification (ASV) is the task of verify-
ing whether a speech utterance has been spoken by a claimed
speaker [1, 2]. State-of-the-art ASV systems show promising
performance when several minutes of audio data have been
collected in controlled conditions for both enrollment and ver-
ification. The amount of enrollment and verification speech
is an important factor [3]. While having more speech typ-
ically improves recognition performance, short-duration ut-
terances are often preferable for practical deployment. The
short-duration speaker verification (SdSV) challenge 2020
primarily focuses on the duration factor where speakers are
enrolled and verified with a few seconds of audio data [4].
Besides, the speech corpus for the challenge was recorded
in realistic environments, and the collection protocol was de-
signed to incorporate various kinds of noises in the speech
corpus which introduced mismatches between the enrollment

and the verification phases. The challenge has two indepen-
dent tasks. Our entry focuses on Task 1, which concerns text-
dependent ASV.

In text-dependent ASV, the spoken phonetic contents for
enrollment and verification are assumed to be identical. Typ-
ically, a short sentence or phrase is shared by all users. How-
ever, considering the practical fact that the test speaker can
also utter a wrong phrase [5, 6], there may be four types of
trials, respectively defined as target correct (TC) where the
target speaker utters the correct phrase, target wrong (TW)
where the target speaker utters a different phrase, impostor
correct (IC) where an impostor utters the same phrase as in
speaker enrollment, and impostor wrong (IW) where an im-
postor utters a different phrase compared to speaker enroll-
ment. For evaluation purposes, TC trials are considered as
genuine trials to be accepted, and the remaining three as im-
postor trials to be rejected.

Although methods developed for text-independent ASV
are applicable to text-dependent ASV without any modifica-
tion, they do not generalize well [5]. In particular, the per-
formance severely degrades in the TW condition due to the
similarities in speaker information. The solutions proposed
for text-dependent ASV verify the speaker identity and the
spoken phrase in an integrated manner. Here, the phrase in-
formation is incorporated by capturing contextual informa-
tion with a hidden Markov model (HMM) [5, 7–10], dynamic
time warping (DTW) [10, 11] and pass-phrase identification
[12]. Alternatively, standalone utterance verification (UV)
and ASV modules can be developed, and fused together at
the score or decision level [13].

We investigate both strategies for this challenge. Our sin-
gle system applies joint spoken phrase and speaker identity
verification where phrase information is incorporated with a
pass phrase-dependent background model (PBM) [12]. The
primary system integrates modules developed for separate
tasks. Here, we adopt a cascade fusion strategy where UV is
performed before ASV. We first compute the decision thresh-
old associated with the equal error rate (EER) for UV on
the development set. A verification trial is assigned with an



arbitrarily low ASV score if its UV score is lower than the
threshold. On the other hand, a trial is passed to the ASV
module for scoring if its UV score is greater than or equal to
the threshold. The threshold computed on the development
set is adopted for scoring on the evaluation set. Our UIAI
team is a multi-site collaboration involving four research labs.
Given the emphasis on text-dependent ASV, we investigate
different UV and text-dependent approaches. We develop an
i-vector-based UV method that includes channel variability
compensation. We introduce a text-dependent ASV method
employing phone-based bottleneck features with PBM. We
also explore how a standard ASV system can be improved in
short-duration conditions with different frame-level acoustic
features and utterance-level speaker embeddings. Finally,
we study different system combination strategies suitable
for combining UV and ASV systems. Our primary system,
which is a multi-level fusion of seven different subsystems,
has achieved the fifth rank out of 19 submissions in the
challenge whereas the single system has shown substantial
improvement over the two challenge baselines.

The rest of the paper is organized as follows. Section 2
describes different subsystems developed for the challenge.
Section 3 describes the experimental setup. Section 4 presents
the experimental results. Finally, we conclude in Section 5.

2. SYSTEM DESCRIPTION

In this section, we summarize the subsystems used for our
primary submission to the SdSV challenge.

2.1. Utterance verification

Our UV system relies on speaker embeddings. Although
speaker embeddings mainly encode speaker information,
they contain a considerable amount of information about the
spoken content [14, 15]. This makes them potentially useful
for UV tasks (besides ASV). The UV task in the SdSV chal-
lenge is a closed-set task as there are no out-of-set phrases.
We use an i-vector representation [16] and a probabilistic
linear discriminant analysis (PLDA) back-end for this task.
The setup is similar to the one commonly used in ASV sce-
narios, except that we treat utterance identifiers (rather than
speakers) as the class labels. The i-vectors are projected onto
a 9-dimensional space using linear discriminant analysis
(LDA). Whitening and length normalization are applied to
the projected i-vectors. We then use Gaussian PLDA with a
full-rank subspace to compute the pairwise UV score between
the average i-vector of the claimed phrase and the i-vector of
the test phrase. Finally, we apply score normalization suit-
able for this closed-set scenario where the number of possible
hypotheses is fixed. We use Max norm which subtracts the
maximum score of the other (competing) phrases from the
hypothesized phrase score [13]. We also tried Mean norm but
it performed worse.

2.2. Speaker verification

We develop four standalone ASV systems based on x-vector-
PLDA [17] and Gaussian mixture model-universal back-
ground model (GMM-UBM) [18] approaches.

X-vector-PLDA system: The network architecture for
extracting x-vector speaker embeddings is given in Table 1.
It differs from the x-vector architecture originally reported
in [17] by adding squeeze-and-excitation (SE) [19] modules
to each frame-level time-delay neural network (TDNN) layer.
In addition, three of the frame-level layers are replaced by
residual (RES) blocks [20]. The global mean and standard
deviation pooling layer is replaced with a learnable dictio-
nary encoder (LDE) [21, 22]. The LDE layer is similar to
a GMM: it assigns features into components and computes
statistics locally. We used a variant of LDE with a diagonal
covariance matrix shared across all components. For more de-
tails of the speaker embedding extractor, see [23]. The trials
are scored with a PLDA module [24] trained on the training
embeddings. Finally, adaptive symmetric score normalization
(AS-norm) [25] is applied.

GMM-UBM systems: The success of GMM-UBM sys-
tems in speaker verification with short utterances [3] as well
as text-dependent ASV [5,13,26] motivates us to explore this
approach for the SdSV challenge. Our GMM-UBM systems
are similar to standard GMM-UBM systems except that the
UBMs are trained in a more efficient way. Instead of training
a UBM on the full dataset, we train 10 GMMs on audio data
for each of the 10 phrases independently and create the UBM
by combining the components of the 10 GMMs and normaliz-
ing the mixture weights to unit sum. In the following, we con-
sider three GMM-UBM systems relying on different acoustic
features.

Table 1. Architecture of speaker embedding extractor net-
work. The layers from 1 to 8 and layer 10 are followed by
leaky ReLU activations and batch normalization. The embed-
dings are extracted from layer 10 before applying the activa-
tion function.

# Layer type CNN kernel size Output dim.

1 TDNN-SE 5 512
2,3 TDNN-RES-SE 5 512
4,5 TDNN-RES-SE 7 512
6,7 TDNN-RES-SE 1 512
8 TDNN-SE 1 128
9 LDE aggregation — 8,192
10 FC — 512
11 FC-softmax — #speakers



2.3. Joint utterance and speaker verification

We perform joint verification of spoken content and speaker
identity based on PBMs [12]. In this approach, PBMs are first
derived from the GMM-UBM using maximum a posteriori
(MAP) adaptation with pass phrase-specific audio data. Dur-
ing the enrollment phase, target speaker models are created
by MAP adaptation from the best-matched PBM instead of
the single UBM in a GMM-UBM system. The best-matched
PBM is found in the maximum likelihood (ML) sense. In the
test phase, we first determine the best-matched PBM for the
test utterance. Finally, we compute the log-likelihood ratio
score between the target model and the best-matched PBM.
Our primary submission includes two PBM systems based on
two different sets of bottleneck features (BN) extracted with
deep neural networks (DNNs).

Phone-discriminative bottleneck (Phone-BN) features
are extracted by a DNN trained on phone labels obtained us-
ing an HMM. We use the in-domain audio data of the SdSV
challenge along with phone sequence information. We chose
the flat-start method [27] for HMM training as phone-level
alignments are not available. First, we train HMM-based
monophone models by pooling all the utterances and their
corresponding phone sequences. Parameters of the phone-
based HMMs are then re-estimated in an iterative manner
using the Baum-Welch algorithm. We consider 42 HMMs
that correspond to the number of unique phones in the train-
ing data. We consider a 3-state (excluding start and end-state)
left-to-right topology without skipping state transitions. We
also model silences and pauses between words. We gener-
ate phone-level alignments and discard silences and pauses.
Then we train a DNN to classify phones. The frame-level
output of one hidden layer [28] is then projected using prin-
cipal component analysis (PCA) to obtain lower-dimensional
Phone-BN features. Figure 1 illustrates the Phone-BN feature
extraction system.

Stream-wise time-contrastive learning based BN (sTCL-
BN) features are extracted in a similar way, except that the
phone classes used as DNN training targets are found in an
unsupervised way [28, 29]. First, all the speech utterances
are randomly concatenated into a single stream. This stream
is segmented into fixed-duration chunks that capture short-
term context. Given the desired number N of classes, N
chunks are taken at a time, and data points in the n-th chunk
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Fig. 1. Phone-BN feature extraction system.

are assigned to class label n where n ∈ {1, 2, ..., N}. The
process is repeated until all data points have been assigned.
A segment-based clustering algorithm [28, 29] is applied to
group similar chunks together and update the class labels
until convergence. We then train a DNN to discriminate the
obtained labels. The frame-level output of a hidden layer is
projected into a low dimensional space using PCA to obtain
sTCL-BN features.

3. EXPERIMENTAL SETUP

3.1. Dataset description

The audio data for the SdSV challenge was created from the
DeepMine dataset collected by crowdsourcing [30, 31]. Task
1 involves speech files from 963 speakers as in-domain audio
data. There is no development set which could be used for pa-
rameter tuning and optimization. We have created a develop-
ment set by randomly choosing a subset of 63 speakers from
this in-domain data. Similarly to the evaluation set, we enroll
each speaker with three utterances for phrase-specific targets.
If adequate data for a speaker-phrase combination is not avail-
able, we disregard that target model. The remaining sentences
are used for test. We obtain a total of 519 target models and
4,810 speech utterances for test in the development set. The
number of trials is summarized in Table 2. Similarly to the
evaluation set, there is no cross-lingual trial. We have also
discarded same-gender trials by clustering i-vectors for the
63 speakers (averaged over all utterances) into two pseudo-
gender classes and keeping the trials for which the speakers
in the enrollment model and the test utterance fall into the
same class.

Table 2. Number of trials per condition in the development
set.

TC TW IC IW Total
4,810 19,236 119,737 478,946 622,729

The remaining in-domain data from 900 speakers consist-
ing of 94,661 utterances are considered for system develop-
ment in addition to the other permitted audio data, such as
VoxCeleb and LibriSpeech. The evaluation set consists of
12,404 enrollment models, 69,542 utterances, and 8,306,700
trials.

3.2. Dataset and parameters for system training

We refer the seven subsystems in the UIAI entry as S1–S7.
S1 is the UV system and it uses mel-frequency cepstral co-

efficient (MFCC) features. We extract 20-dimensional static
MFCCs, apply a RASTA filter [32], and compute deltas and
double-deltas to create 60-dimensional features. Utterance-
level cepstral mean and variance normalization (CMVN)



is applied after discarding non-speech frames using energy-
based activity detection (SAD). A 512-component UBM is
trained on in-domain training data. The T-matrix is estimated
with 600 factors on the same audio data. The extracted i-
vectors are projected to 9 dimensions using LDA based on
phrase labels.

S2 is the x-vector-PLDA ASV system. The x-vector
extractor is trained on YouTube audio data from VoxCeleb-
1 [33] and VoxCeleb-2 [34]. Recordings from the same
YouTube video source are concatenated together. The scor-
ing back-end (PLDA, centering, whitening, AS-norm) is
trained on the in-domain data. For PLDA, the training labels
are pairs of speaker and phrase IDs. Both in-domain and
VoxCeleb data are augmented 5-fold using Kaldi’s [35] aug-
mentation recipes which include reverberation and additional
noise, babble, or music. The input features for the embed-
ding extractor are 60-dimensional, cepstral mean normalized
MFCCs extracted with Kaldi. Kaldi’s energy based VAD is
applied to remove non-speech frames.

S3–5 are the GMM-UBM based ASV systems. Ten
phrase-specific 512-component GMMs are trained on the
in-domain data and merged into a 5120-component UBM.
The target speaker models are created by MAP adaptation
with a relevance factor of 3. We use three different acoustic
front-ends. System S3 is based on 60-dimensional MFCCs
including deltas and double-deltas. System S4 uses linear-
frequency cepstral coefficients (LFCCs) with the same di-
mension. System S5 uses 66-dimensional overlapped block
transform coefficients (OBTCs) computed with two blocks
of sizes 9 and 13 [36]. The pre- and post-processing stages
are identical for the three feature sets. We use 20 mel filters
and retain the energy coefficients. The features are processed
with RASTA filtering and utterance-level CMVN. We do not
apply SAD since this degraded performance.

S6 is the PBM-based joint verification system with Phone-
BN features. The DNN feature extractor consists of 7 fully-
connected layers with 1024 neurons and sigmoid activation.
Its inputs are 57-dimensional RASTA-filtered MFCCs includ-
ing deltas and double-deltas with a context of 11 frames. The
number of outputs is 42. The DNN is trained on the in-domain
data using CNTK [37]. We compute BN features by pro-
jecting the output of the second hidden layer on each time
frame into a 57-dimensional vector using PCA. The PCA ma-
trix is computed on 10,000 randomly selected utterances from
the training part of LibriSpeech. We use the open-source ro-
bust voice activity detector (rVAD) [38] to discard non-speech
frames from the enrollment and test utterances before apply-
ing utterance-level CMVN. The HMM used for extracting the
phone labels does not discard non-speech frames, but it uses
utterance-level CMVN. We use HTK [27] to build the HMM
system. The Phone-BN features are then used with the PBM
system where a gender-independent GMM-UBM with 2048
Gaussian components is trained using 60, 000 utterances from
LibriSpeech. We create the target models using MAP adapta-

tion with 3 iterations. We adapt only the mean vectors with a
relevance factor of 10.

S7 is the PBM-based joint verification system with sTCL
features. The DNN feature extractor uses the same input fea-
tures as S6. We use rVAD [38] to discard non-speech frames,
and we consider N = 10 unsupervised classes as in our pre-
vious study [28]. The DNN and the PBMs are trained on the
same audio data using the same hyper-parameters as S6.

3.3. Performance evaluation

The primary metric for the challenge is the normalized mini-
mum detection cost function (minDCF) [4]. The EER is also
reported. These are computed by treating TC trials as genuine
and by pooling the remaining three as impostor. We computed
those metrics on the development set using our own scoring
script while the challenge organizers computed performance
on the evaluation set. We also report the performance for the
three sub-conditions and their average values on the develop-
ment set.
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Fig. 2. DET plots of the UIAI systems along with baselines.

4. RESULTS

The ASV performance of the individual subsystems on the
development set is shown in Table 3. The first row shows
the ASV result of the UV system S1 which performs well
in wrong pass-phrase conditions (TW and IW). However, the
performance for the IC condition is random with about 50%
EER as this system does not use speaker information. The
next row shows the performance for the x-vector-based ASV
system S2. Although it yields promising performance in the



Table 3. Results (EER in % / minDCF) in the development set for the individual subsystems included in the UIAI primary
submission.

ID Method Short-term features Task TW IC IW Pooled Avg.
S1 i-vector MFCC UV 0.08 / 0.005 51.64 / 1.00 0.08 / 0.005 18.29 / 1.00 17.27 / 0.337
S2 x-vector MFCC ASV 9.11 / 0.575 0.82 / 0.041 0.12 / 0.004 0.93 / 0.085 3.35 / 0.207
S3 GMM-UBM MFCC ASV 8.35 / 0.431 0.91 / 0.040 0.60 / 0.019 1.36 / 0.090 3.29 / 0.164
S4 GMM-UBM LFCC ASV 10.69 / 0.535 1.27 / 0.057 0.77 / 0.028 1.68 / 0.116 4.24 / 0.206
S5 GMM-UBM OBTC ASV 7.82 / 0.405 0.85 / 0.035 0.60 / 0.016 1.22 / 0.085 3.09 / 0.152
S6 PBM Phone-BN Both 0.07 / 0.008 1.31 / 0.051 0.01 / 0.001 0.81 / 0.029 0.46 / 0.020
S7 PBM sTCL-BN Both 0.14 / 0.011 1.74 / 0.062 0.01 / 0.001 1.07 / 0.038 0.63 / 0.025

Table 4. Results (EER in % / minDCF) of single and primary systems in the development and evaluation sets. The x-vector
based baseline achieves 9.05% EER and 0.529 minDCF while the i-vector/HMM baseline achieves 3.49% EER and 0.146
minDCF.

System TW IC IW Pooled Avg. Eval set. (Pooled)
Single (S6) 0.07 / 0.008 1.31 / 0.051 0.01 / 0.001 0.81 / 0.029 0.46 / 0.020 3.83 / 0.118

Primary (fusion S1-S7) 0.06 / 0.006 0.32 / 0.015 0.00 / 0.000 0.17 / 0.007 0.13 / 0.007 2.14 / 0.072

IC and IW conditions, it performs poorly in the TW condi-
tion. Similarly, the GMM-UBM systems perform relatively
well in the IC and IW conditions but they fail in the TW con-
dition. Our results also indicate that the GMM-UBM systems
give competitive performance compared to the x-vector sys-
tem. The short-term OBTC features outperform MFCCs in
all cases. Out of the two PBM-based methods, the one based
on Phone-BN features performs consistently better and both
of these methods outperform other subsystems in terms of av-
erage EER and minDCF. S6 achieves the lowest average and
pooled EERs as well as minDCFs. For this reason, we select
it as the single system for the challenge.

We build the primary system submitted to the challenge
by combining the modules for UV and ASV. We fuse S1, S6
and S7 for the UV task and all the subsystems except S1 for
the ASV task. The subsystems for each task are combined by
linear score weighting where the weights are optimized on the
development set by linear search. The UV and ASV system
are then combined by cascade fusion as described earlier. The
trials with wrong pass-phrases as detected by the fused UV
system are assigned an ASV score of −100, while the trials
with correctly detected pass-phrases are retained with fused
ASV score.

Table 4 summarizes the results achieved by the single sys-
tem and the primary system on the development and evalua-
tion sets. The single system outperforms the two challenge
baselines, especially in terms of minDCF. Figure 2 shows the
DET plots of the submitted systems along with the baselines.

5. CONCLUSIONS

We have described the UIAI systems submitted to the SdSV
challenge 2020 for text-dependent ASV. The systems devel-
oped are a fusion of different subsystems using various front-
ends and back-ends. To deal with the pass-phrase verification
problem, we combined the UV system with ASV in a cas-
cade mode. Our development set created with a subset of
limited in-domain data generalized well to the evaluation set
by estimating suitable fusion parameters and by demonstrat-
ing systematic improvement. However, there was a substan-
tial performance gap between the development and evaluation
set possibly due to the large number of speakers and presence
of unknown noises in the evaluation set.

Systems studied for the challenge submissions were de-
veloped independently by four different sites using various
features and classifiers. This work could be extended towards
a more systematic comparison of front-end acoustic features
and different back-end classifiers. For instance, our phone-
bottleneck features could be studied with x-vector system
adopted for this work.
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