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Editorial Summary: The genome assembler WENGAN produces high-quality human genome sequences at low 1 
computational cost. 2 
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Generating accurate genome assemblies of large, repeat-rich human genomes has proved difficult using only 

long, error-prone reads, and most human genomes assembled from long reads add accurate short reads to polish 

the consensus sequence. Here we report an algorithm for hybrid assembly, WENGAN, that provides highest 

quality at low computational cost. We demonstrate de novo assembly of four human genomes using a 

combination of sequencing data generated on ONT PromethION, PacBio Sequel, Illumina and MGI technology. 

WENGAN implements efficient algorithms to improve assembly contiguity as well as consensus quality. The 

resulting genome assemblies have high contiguity (contig NG50:17.24-80.64 Mb), few assembly errors (contig 

NGA50:11.8-59.59 Mb), good consensus quality (QV:27.84-42.88), and high gene completeness (BUSCO 

complete: 94.6-95.2%), while consuming low computational resources (CPU hours:187-1,200). In particular, 

the WENGAN assembly of the haploid CHM13 sample achieved a contig NG50 of 80.64 Mb (NGA50:59.59 

Mb), which surpasses the contiguity of the current human reference genome (GRCh38 contig NG50:57.88 Mb). 

This is a post-peer-review, pre-copyedit version of an article published in Nature Biotechnology. 
The final authenticated version is available online at: http://dx.doi.org/10.1038/s41587-020-00747-w 
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Introduction 3 

Genome assembly is the process by which an unknown genome sequence is constructed by detecting 4 

overlaps between a set of redundant genomic reads. Most genome assemblers represent the overlap information 5 

using different kinds of assembly graphs [1, 2]. The main idea behind these algorithms is to reduce the genome 6 

assembly problem to a path problem where the genome is reconstructed by finding "the" true genome path in a 7 

tangled assembly graph [1, 2]. The entanglement comes from the complexity that repetitive genomic regions 8 

induce in the assembly graphs [1, 2]. The first graph-based genome assemblers used overlaps of variable length 9 

to construct an overlap-graph [2]. The main goal of the overlap graph approach and of its subsequent evolution, 10 

namely the string graph [3], is to preserve as much as possible the reads information [2, 3]. However, the read-11 

level graph construction requires an expensive all-vs-all read comparison [3]. The read-level nature implies that 12 

a path in such a graph represents a read layout, and a subsequent consensus step must be performed in order to 13 

improve the quality of bases called along the path [3]. These graph properties are the foundation of the overlap-14 

layout-consensus (OLC) paradigm [3-5].  15 

 16 

A seemingly counterintuitive idea is to fix the overlap length to a given size (k) to build a de Bruijn 17 

graph [1]. However, de Bruijn graphs have several favorable properties making them the method of choice in 18 

many modern short-read assemblers [6-8]. In this approach, the fixed-length exact overlaps are detected by 19 

breaking the reads into consecutive k-mers [1]. The k-mers are usually stored in hash tables (constant query 20 

time), thus avoiding entirely the costly all-vs-all read comparison [6-8]. Unlike a string graph, the de Bruijn 21 

graph is a base-level graph [1, 6-8], thus a path (contig) represents a consensus sequence derived from a pileup 22 

of the reads generating the k-mers (k-mer frequency). Moreover, the de Bruijn graph is useful for characterizing 23 

repeated as well as unique sequences of a genome (repeat graph [9]). However, by splitting the reads into k-24 

mers, valuable information from the reads may be lost, especially when these are much longer than the selected 25 

k-mer size [3]. 26 

 27 

The type of overlap detected, and therefore the type of assembly graph constructed, is related to the 28 

sequencing technology used to generate the reads. One class of modern high-throughput sequencing machines 29 

produces short (100-300 bp) and accurate (base-error < 0.1% ) reads [10, 11], and a second class produces long 30 

( >10kb) but error-prone (base-error < 15%) reads [12, 13]. Despite the high per base error rate of long-reads, 31 

the latter are the better choice for genome reconstruction [14], as longer overlaps reduce the complexity of the 32 

assembly graph [15], and therefore more contiguous genome reconstructions are achievable [14].  33 

 34 

Independent of the sequencing technology, the goals of a genome assembler are to reconstruct the 35 

complete genome in (1) the fewest possible consecutive pieces (ideally chromosomes) with (2) the highest base 36 

accuracy while (3) minimizing the computational resources (the 1-2-3 Goals). Short-read de Bruijn graph 37 

assemblers are good for accomplishing goals 2 and 3 [6-8], while long-read assemblers excel at achieving goal 38 

1 [4, 5]. 39 

 40 
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Modern long-read assemblers widely adopted the OLC-paradigm [4, 5, 16-19] and new algorithms 41 

have substantially accelerated the all-vs-all read comparison [16-19]. Such progress has been possible by 42 

avoiding entirely the long-reads error-correction step [16-19], and by representing the long-reads as fingerprints 43 

derived from a subset of special k-mers (i.e. minimizers [20], minhash [19] etc.). The reduced long-read 44 

representation is appropriate for detecting overlaps >2kb in a fast way [16, 18, 19]. The newest long-read 45 

assemblers are therefore starting to be good also at goal 3 [16, 18, 19]. However, assembling uncorrected long-46 

reads has the undesirable effect of giving more work to the consensus polisher [17, 19, 21-23]. Genome 47 

assembly polishing is the process of improving the base accuracy of the assembled contig sequences [17, 19, 48 

21-24]. Usually, long-read assemblers perform a single round of long-read polishing [16, 18, 19], that is 49 

followed by several rounds of polishing with long [17, 19, 21, 23] and short [17, 22, 24] reads using third-party 50 

tools [17, 19, 21-24].  51 

 52 

Currently, polishing large genomes, such as the human genome, can take much more computational 53 

time than the long-read assembly itself [16, 18, 19]. Even after several rounds of polishing, a substantial fraction 54 

of consensus errors remains, hampering the subsequent genome analyses such as gene and protein prediction 55 

[25]. Lastly, PacBio recently introduced High-Fidelity reads (HiFi reads), increasing significantly the base 56 

accuracy of long reads [26]. This technology moves the polishing bottleneck to the upfront by generating 57 

multiple error-prone reads (10 passes) of circularized fragments (10-20kb size) [26]. Each fragment is then 58 

computationally corrected to generate a single consensus long read (>10kb) with high base accuracy (base-error 59 

< 1%). To fully exploit HiFi reads, new assemblers have been developed [27, 28] that do not require a final 60 

polishing phase [28]. 61 

 62 

When this assembly approach employs short-read polishing [17, 22, 24], then it corresponds to a long-63 

read-first hybrid assembly strategy [29, 30]. Another hybrid assembly strategy consists in starting the assembly 64 

process with short reads [31]. However, none of the described hybrid strategies employs the short-reads to 65 

tackle the problem of assembly contiguity, i.e. they do not aim at joining two long reads by a short-read contig, 66 

and therefore exploit only partially the short-read sequence information.  67 

 68 

Here we introduce WENGAN, a hybrid genome assembler that, unlike most long-read assemblers, 69 

entirely avoids the all-vs-all read comparison, does not follow the OLC paradigm, and integrates short-reads in 70 

the early phases of the assembly process (short-read-first). We validated WENGAN with standard assembly 71 

benchmarks. Our results demonstrate that WENGAN optimizes the 1-2-3 Goals and is particularly effective at 72 

low long-read coverage (15X). Furthermore, we show that the WENGAN assemblies performed by combining 73 

ultra-long Nanopore reads with short or HiFi reads surpass the contiguity of the current human reference 74 

genome.  75 

76 
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Results 77 

The WENGAN algorithm 78 

WENGAN starts by building short-read contigs using a de Bruijn graph assembler [6-8] (Figure 1.1). 79 

Then, the pair-end reads are pseudo-aligned [32] back to detect and error-correct chimeric contigs as well as to 80 

classify them as repeats or unique sequences (Figure 1.2). Repeated sequences induce complex de Bruijn graph 81 

topologies in their neighborhood, and short-read assemblers can choose wrong paths while traversing such 82 

complex regions, thus leading to chimeric contigs (Supplementary Fig. 1). Chimeric short-read contigs limit the 83 

accuracy and contiguity of the assembly when left  uncorrected (Supplementary Fig. 2). Each short-read contig 84 

is therefore scanned base-by-base and split at sub-regions lacking pair-end read support (Supplementary Fig. 1).  85 

 86 

Following short-read contigs correction, we generate synthetic paired-reads of different insert sizes 87 

from long-read sequences, which are mapped to the corrected short-read contigs (Figure 1.3). The spectrum of 88 

synthetic libraries is used to span the genomic repeats. For instance with ultra-long nanopore reads, we can 89 

create a spectrum composed of 24 synthetic libraries with insert sizes ranging from 0.5kb to 90 

200kb (Supplementary Fig. 3). Matched pairs are stored with a reference to the long-read from which they were 91 

extracted (colors appearing in pairs, Figure 1.3). Using the mapped pairs and the corrected short-read contigs, 92 

we then build the Synthetic Scaffolding Graph (SSG). The SSG is an extension of the scaffolding graph [33], 93 

where there is an additional edge-labeling function that labels (colors) the SSG edges with the long-reads 94 

(Figure 1.3-4). After the SSG construction (Figure 1.4) and subsequent repeat masking (Figure 1.5), we employ 95 

the SSG to compute implicit approximate long-read multiple alignments by searching for transitive long-read-96 

coherent paths (Figure 1.6). The aim of this graph operation (called transitive reduction) is to restore the full 97 

long-read information in the SSG. Each successful reduction modifies the weight as well as the shape of the 98 

SSG (Figure 1.6). After restoring the long-read information, we order and orient the short-read contigs by 99 

applying an approximation algorithm [34] that uses all the connectivity information at once to produce an 100 

optimal assembly backbone (Figure 1.7). The solution is validated by checking the distance constraints that the 101 

reduced long-read-coherent paths impose on the assembly backbone (Figure 1.8).  102 

 103 

A property of the SSG is that all edges connecting two short-read contigs (called mate-edges) are 104 

spanned by at least one long-read. We therefore use the inner long-read sequence of the synthetic mate-pairs 105 

that span the mate-edge to build a long-read consensus sequence using a partial order alignment graph [17,35] 106 

(Figure  1.9). The corresponding short-read contig-ends are then aligned [36] to the mate-edge consensus 107 

sequence to determine the correct boundaries, thus filling the gap between the two short-read contigs. We 108 

computed the Pearson correlation of the mate-edge length before and after filling the gap for a total of 283,727 109 

mate-edges. The correlation is very high (R2 > 0.99) even for large gaps (>100kb, Supplementary Fig. 4). 110 

 111 

The final steps use the SSG to polish the mate-edge consensus sequences by finding long-read-112 

coherent paths that traverse the repeated regions (i.e. P4 and P6 for R1, Figure 1.10) or pairwise alignments [36] 113 
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between the repetitive short-read contigs and the mate-edge consensus sequences (Figure 1.10). Finally, the 114 

hybrid contigs are reported in FASTA format (Figure 1). 115 

116 
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WENGAN surpasses the contiguity of GRCh38 117 

To explore the contiguity limit of WENGAN, we assembled the human haploid cell line CHM13, which 118 

has been sequenced with a plethora of technologies including accurate short Illumina reads, long and accurate 119 

PacBio/HiFi reads [28], and ultra-long Nanopore reads [30]. In particular, the HiFi reads were generated using a 120 

large insert-size library (20 kb) at 30X of genome coverage, with half of the HiFi data (N50) contained in 121 

accurate reads larger than 17 kb (Supplementary Table 1). Similarly, the Nanopore reads were generated using 122 

an ultra-long read protocol optimized for MinION [29] resulting in 30X genome coverage by reads of at least 123 

100 kb (Supplementary Table 1).  124 

We generated two WENGAN assemblies, one that combines 60X of Illumina 125 

reads (2x250bp,  Supplementary Table 2) with ultra-long Nanopore reads, termed WENGAN (ILL+UL), and a 126 

second one that combines both long-read technologies, termed WENGAN (HIFI+UL). The WENGAN (ILL+UL) 127 

assembly has a total length of 2.84Gb with half of the genome contained in contig sequences larger than 71.25 128 

Mb (NG50, Figure 2A). Similarly, The WENGAN (HIFI+UL) assembly has a total length of 2.84Gb with a contig 129 

NG50 of 80.64 Mb (Figure 2A). The contig NG50 of both WENGAN assemblies exceed the contiguity of the 130 

human reference genomes GRCh37 and GRCh38 (Figure 2A and Supplementary Fig. 5).  131 

 132 

We compared WENGAN to state-of-the-art non-hybrid long-read assemblers (Figure 2) using public 133 

assemblies generated from ultra-long Nanopore [5, 18, 19, 30] or PacBio/HiFi reads [5, 27, 28] (Supplementary 134 

Table 3, Methods: Assembly validation). These genome assemblies of CHM13 represent the quality that can be 135 

achieved using the two long-read technologies independently. In terms of assembly contiguity, the NG50 of 136 

WENGAN (ILL+UL) is almost twice as long compared to PEREGRINE (HiFi) [27] (NG50: 38.11Mb) and 137 

CANU (HiFi) [5] (NG50: 46.82Mb), is substantially longer than the assembly generated by SHASTA (UL) 138 

[19] (NG50: 58.09Mb), and has similar NG50 as the assemblies generated by FLYE (UL) [18] (NG50: 70.32Mb) 139 

and CANU (UL) [5] (NG50: 77.96Mb). The WENGAN (HIFI+UL) assembly reaches an NG50 of 80.64Mb, which 140 

outperforms all aforementioned assemblers, except for the recently developed HICANU (HiFi) assembler [28] 141 

(NG50: 82.40Mb, Figure 2A). An assessment of the assembly quality with QUAST [37] based on a whole 142 

genome alignment to the GRCh38 reference and subsequent masking of complex genomic regions (see 143 

Methods), reveals that both WENGAN assemblies have a low rate of assembly errors (avg: 107.5, Figure 2B), 144 

which is comparable or lower than its peers, except for SHASTA (78 errors). Replacing the GRCh38 reference by 145 

the curated CHM13 assembly generated by the T2T consortium (v0.7) [30] confirms the low error rate achieved 146 

by WENGAN (Supplementary Table 4).  147 

 148 

We evaluated the consensus quality of the assemblies using an independent set of BAC sequences of 149 

CHM13 located in unique genomic regions [30] (Supplementary Table 5). Our analysis shows that WENGAN 150 

(ILL+UL) and WENGAN (HIFI+UL) assemblies achieved median consensus qualities (median QV ≥ 36.06 and 151 

QV ≥ 42.88) that exceed the base quality of Nanopore assemblers, and are comparable to the base qualities of 152 

HiFi assemblers (Figure 2C). Moreover, the WENGAN and HiFi assemblies excel at BUSCO completeness with a 153 
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recovery of at least 94.5% of the BUSCO genes (Figure 2D). In terms of computational resources, WENGAN 154 

(ILL+UL) took 1,198 CPU hours (max. RAM 646Gb, 38 hours real-time). WENGAN’s runtime was at least 183 155 

times faster than CANU’s (UL) (~219,000 CPU hours) [19], while at the same time using less memory than 156 

other assemblers such as FLYE and SHASTA. Interestingly, generating HiFi consensus reads for 30X human 157 

genome coverage requires ~40,000 CPU hours [28], which is ~40 times more computationally intensive than 158 

the WENGAN (ILL+UL) de novo assembly. Disregarding the excessive generation time for HiFi reads, WENGAN 159 

(HIFI+UL) took 981 CPU hours (max. RAM 125Gb, 85 hours real-time), which is more efficient than 160 

HICANU (5,000 CPU hours) [28], but less efficient than PEREGRINE (58 CPU hours) [28]. 161 

 162 

We assessed the performance of the assemblers in hard-to-assemble regions such as the repeat 163 

sequences annotated in the curated CHM13 T2T-X chromosome [30], the Major Histocompatibility Complex 164 

(MHC), and Segmental Duplications (SDs). The T2T-X chromosome (154Mb, v0.7) is the first human 165 

chromosome completely assembled [30], thus useful to assess the performance of assemblers across all the 166 

repeat families. The MHC region is repetitive and highly polymorphic  [29], while SDs are the most complex 167 

repeats annotated in the human genome [38] with more than 100Mb of the SD sequence composed of repeats 168 

larger than 100kb (Supplementary Fig. 6A). The T2T-X chromosome is covered by 2 and 4 contigs with a total 169 

size of 150.9 Mb and 150.56 Mb in WENGAN (HIFI+UL) and WENGAN (ILL+UL), respectively (Supplementary 170 

Fig. 7). Both WENGAN assemblies solve more than 99.6% of the total interspersed repeats annotated in the 171 

curated T2T-X chromosome, which is better or comparable to its peers (Supplementary Table 6). All evaluated 172 

CHM13 assemblies span the 4.97Mb MHC region in a single contig (Supplementary Fig. 8), with the WENGAN 173 

assemblies reaching an NGA50 of 2.8Mb (Supplementary Fig. 8). The WENGAN assemblies resolve between 174 

168-176 BAC sequences (Supplementary Table 5), which is better than PEREGRINE (136), comparable to 175 

SHASTA (176) and lower than FLYE (253), CANU (314) and HICANU (326). While the BACs library is enriched 176 

in SDs [30], it does not represent the full range of SDs annotated in GRCh38 (175Mb). The WENGAN 177 

assemblies resolve between 60.9-65.9Mb (Figure 2E) of the SDs annotated in GRCh38 [38], which is better 178 

than PEREGRINE, comparable to HICANU and lower than FLYE, SHASTA and CANU (Supplementary Fig. 6). 179 

However, none of the assemblers resolved more than 42% of such hard-to-assemble regions, with the best 180 

performer just assembling 22% (CANU (UL): 23.4Mb) of the SDs ≥ 100kb (104.7Mb, Supplementary Fig. 6). 181 

Even with ultra-long-reads or accurate HiFi reads, a further improvement of the algorithmic approaches will be 182 

necessary to complete the assembly of SDs [38].  183 

 184 

Overall, we demonstrated that WENGAN achieved a genome assembly quality that rivals the curated 185 

CHM13 assembly (v0.7) generated by the T2T consortium [30]. Furthermore, replacing the PacBio/HiFi reads 186 

for short reads produced a highly competitive assembly contiguity and quality.  187 

188 
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Evaluation of assembly accuracy and contiguity using BIONANO 189 

optical mapping 190 

We observed that the distance between the NG50 and NGA50 values increases at greater assembly 191 

contiguity ( ̅ 	= 39.6Mb, Figure 2A), which is likely caused by real sequence variation between the sequenced 192 

CHM13 sample and the GRCh38 reference genome. Given this limitation of the reference-based validation, we 193 

additionally used an independent de novo BIONANO genome map of CHM13 [30] to assess the correctness of 194 

the WENGAN assemblies. The BIONANO map is 2.97 Gb in size with 255 contigs and an N50 of 59.6 Mbp. The 195 

BIONANO map is integrated with the sequence assembly by identifying in silico the nicking endonuclease-196 

specific sites on the contig sequences (in silico map) followed by alignment of both maps (Figure 3). Conflicts 197 

between the two maps are identified and resolved, and hybrid scaffolds are generated by using the Bionano 198 

maps to join the contig sequences and vice versa (Figure 3). A total of 72 cuts at conflicting sites were made in 199 

32 contig sequences of the WENGAN (ILL+UL) assembly, leading to a corrected contig NGA50 of 50.73 Mb. 200 

The WENGAN (HIFI+UL) assembly after BIONANO conflicts correction has an NGA50 of 59.59Mb (52 cuts in 201 

24 contigs). Both corrected WENGAN assemblies are more contiguous than the GRCh37 reference 202 

genome (Figure 2A). Notably, the contiguity of the corrected WENGAN (HIFI+UL) assembly surpasses the one 203 

of the GRCh38 reference genome (59.59 vs 57.88 Mb, Figure 2A). The hybrid scaffolding produced a 204 

maximum of 102 super-scaffold sequences with a total size of 2.83Gb and an N50 of at least 80Mb (Figure 3) 205 

for both WENGAN assemblies. Only 0.8% (max: 22.42 Mb) of the WENGAN sequence was not integrated into the 206 

hybrid scaffolds (short contigs). The BIONANO scaffolding of CHM13 demonstrates that both unpolished 207 

WENGAN assemblies are functional and appropriate for subsequent genome analyses.  208 

209 
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WENGAN optimizes the 1-2-3 de novo assembly goals 210 

To validate WENGAN on diploid human genomes, we assembled three human samples, HG00733, 211 

NA24385, and NA12878, which were sequenced with very long reads (Supplementary Table 1). All sequencing 212 

data were obtained from public repositories (Supplementary Tables 1 and 2). HG00733 was sequenced using 213 

the PacBio Sequel I to 90X genome coverage with N50 ≥ 33.2kb. NA24385 and NA12878 were sequenced 214 

using the Oxford Nanopore technology at 60X and 35X genome coverage and N50s of 54kb and 72kb, 215 

respectively. The sequence data of NA24385 and NA12878 were generated using an ultra-long-read protocol 216 

[29] for ONT MinION and contain at least 3.3X genome coverage in reads larger than 100 kb (Supplementary 217 

Table 1). The long-read data were combined with at least 50X of short-read coverage (pair-ends: 2x150bp or 218 

2x250bp, Supplementary Table 2). 219 

 220 

WENGAN was benchmarked in its three assembly modes, namely WENGANM (MINIA3 [6]), 221 

WENGANA (ABYSS2 [7]) and WENGAND (DISCOVARDENOVO [8]). We compared WENGAN to six state-of-the-222 

art assemblers (Table 1). The list is composed of 5 long-read-only assemblers [4, 5, 16, 18, 19] and a hybrid 223 

assembler [31] (MASURCA, Table 1). All benchmarked genome assemblies were generated by the developer of 224 

the respective assembler (Supplementary Table 3). In particular, the SHASTA assemblies were generated using 225 

an independent Nanopore dataset [19], with a genome coverage of ~60X, and including at least 6X coverage of 226 

ultra-long-reads (>100kb).  227 

 228 

For NA12878 (Table 1), WENGAN produced the most contiguous assemblies, with contig NG50s of 229 

17.24, 25.99, and 35.31 Mb for WENGANM, WENGANA and WENGAND, respectively. The best long-read 230 

assembler among the four evaluated, namely FLYE (NG50 22.91Mb), is comparable to WENGANA (NG50 231 

25.9Mb), but is surpassed by WENGAND (NG50 35.3Mb). All the other evaluated assemblers are outperformed 232 

by any WENGAN mode (NG50 >= 17.24Mb, Table 1, Supplementary Fig. 9). Moreover, WENGAN increased the 233 

contiguity of the short-read-only assemblies by a factor of 1,833X, 2,014X and 388X, for MINIA3 (NG50 234 

9.6kb), ABYSS2 (NG50 12.9kb) and DISCOVARDENOVO (NG50 91kb), respectively (Supplementary Table 7). 235 

The WENGAND assembly of HG00733 has the fewest gaps of any PacBio CLR assembly of a human genome, 236 

with more than half of the genome contained in contig sequences at least 32.3 Mb long (Table 1, Supplementary 237 

Fig. 9), a substantial improvement in contiguity over the FALCON (NG50 22,3Mb) and SHASTA (NG50 21.7Mb) 238 

assemblies (Table 1). The WENGAND assembly of NA24385 (NG50 50.59Mb) more than doubles the contiguity 239 

of SHASTA (NG50 20.35Mb, Table 1), surpasses the contiguity of the GRCh37 reference (NG50 38.5Mb), and 240 

matches the contiguity of the GRCh38 reference (Supplementary Fig. 9).  241 

 242 

The structural quality was determined using QUAST [37] . The WENGAN assemblies cover up to 96.3% 243 

of the reference genome with few assembled sequences (< 0.4%) unmapped to GRCh38 (Table 1, Ref. 244 

Covered% and U. length), and the contigs have fewer duplicates than the contigs of its peers (except SHASTA, 245 

Table 1, Duplication ratio). The NGA50 (which corresponds to the NG50 corrected of assembly errors) of 246 
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WENGAND (16.41-24.52 Mb) is the highest across the three assembled genomes (Table 1, Supplementary Fig. 247 

9). For NA12878, the NGA50 of WENGAN (11.8Mb-16.41Mb) almost doubles the ones of 248 

MASURCA (5.69Mb), WTDBG2 (7.38Mb) and CANU (7.12Mb) (Table 1). Moreover, WENGAN consistently 249 

showed a lower number of assembly errors than its peers (Table 1, Supplementary Table 8). The only exception 250 

is SHASTA, a conservative assembler [19], that has a lower number of assembly errors than WENGAND on the 251 

HG00733 (107 vs. 119) and NA24385 (126 vs. 156) genomes. However, WENGAND reaches higher NGA50s 252 

than SHASTA and almost doubles the NGA50 achieved by SHASTA on the NA24385 genome (24.5 vs. 14.3 Mb, 253 

Table 1, Supplementary Fig. 9). 254 

 255 

The consensus accuracy of genome assemblies was determined using different sequence analyses 256 

(Table 1, Supplementary Table 9). The level of polishing of the assemblies goes from none to 257 

complete (Table 1), including examples of long-read-only (SHASTA and FALCON) and hybrid (short+long reads, 258 

CANU and FLYE) polishing (Table 1). For all three genomes, WENGAN reaches a higher consensus accuracy than 259 

unpolished or long-read-only polished assemblies (Table 1). In the NA12878 genome, the hybrid polished 260 

assemblies of CANU and MASURCA have better short indel rates than the WENGAN assemblies, but WENGAN 261 

has better than or comparable medium and long indel rates (Table 1). Moreover, unlike long-read assemblers, 262 

the majority (≥73%) of the WENGAN consensus errors are located in the mate-edge consensus 263 

sequences (Supplementary Fig. 10), representing at most 10% of the WENGAN assembled sequence. The 100-264 

mer analysis reveals that the WENGAN assemblies contain at least 84.5% of the 100-mers of the 265 

reference  (Table 1). The BUSCO gene completeness of the WENGAN assemblies ranges from 94.62% to 95.20%, 266 

which is higher than the result of any other evaluated assembler and reflects the high consensus quality and 267 

contiguity of the WENGAN assemblies (Table 1). Hybrid polishing of the FLYE assembly consumed 755 CPUs 268 

hours (Supplementary Table 10). While the hybrid polishing removed millions of consensus errors 269 

(Table 1,  Supplementary Table 10), and increased the median quality value and the BUSCO gene completeness 270 

(to 23.39 and 89.7%), the hybrid polished FLYE assembly still has a lower quality than any of the unpolished 271 

WENGAN assemblies (Table 1).  272 

 273 

We analyzed how hard-to-assemble regions are resolved on these diploid human 274 

genomes (Supplementary Figures 11A and 12). WENGAN with ultra-long reads spans the MHC region with less 275 

than 4 contigs (Supplementary Fig. 11B). The top performers, namely CANU (NA12878), FALCON (HG00733), 276 

and WENGAND (NA243875), solve the MHC region in a single contig achieving NGA50s ≥ 277 

3.5Mb (Supplementary Fig. 11B). However, all the evaluated assemblers produce a mix of haplotypes, and 278 

therefore subsequent phasing must be performed to fully solve the MHC region [29]. Regarding segmental 279 

duplications (Supplementary Fig. 12), WENGANM and WENGANA resolve over 41Mb (~6Mb of SDs > 100Kb), 280 

which is better than WTDBG2 (17Mb) and comparable to SHASTA ( ̅=42Mb, Supplementary Fig. 12). 281 

WENGAND resolves more SD sequences with ultra-long nanopore reads (56.09-60.12 Mb) and matches the top 282 

performer CANU on NA12878 (56.09 vs 56.98Mb). With PacBio reads, the FALCON assembler resolves 6.4Mb 283 

more SD sequences than WENGAND (Supplementary Fig. 12). The SD analysis of these three diploid samples 284 

shows that WENGANA and WENGANM are more conservative than WENGAND for SDs assembly, and that 285 
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WENGAND is comparable to the top performers (FLYE, CANU), while achieving a lower rate of assembly 286 

errors (Table 1, Figure 2B, Supplementary Fig. 12).  287 

 288 

In terms of computational resources, the WENGAN assemblies consumed less than 1,000 CPU-289 

hours (Table 1, Supplementary Table 8, max. elapsed time of 45 hours). WENGANM, the fastest WENGAN mode 290 

based on MINIA3, consumed ~738 times less CPU-hours than CANU (203 vs.~150,000 hours, Table 1) and only 291 

required 53Gb of RAM to complete the assembly (Table 1). 292 

 293 

Collectively, the benchmark results demonstrate that WENGAN is the only genome assembler evaluated 294 

that optimizes all of the 1-2-3 de novo assembly goals, namely, contiguity, consensus accuracy, and 295 

computational resources.  296 

297 
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WENGAN is effective at low long-read coverage 298 

We investigated the required long-read coverage to produce de novo assemblies with NG50 of at least 299 

10Mb. Moreover, we assessed the suitability of the BGI sequencing technology [11] (MGIseq-2000) as an 300 

alternative to Illumina SBS [10] for hybrid assembly using matched short-read genomic data. We sequenced the 301 

NA12878 human cell line using the short-read sequencers NovaSeq-6000 [10] and MGIseq-2000 [11] as well as 302 

the long-read sequencer ONT PromethION [13] (Methods section). We generated a total of 548.2 million pair-303 

end reads (2x150bp) of sequence (53.06X) from both short-read sequencers (Supplementary Table 2). 304 

Furthermore, three flow-cells of PromethION produced a total of 10.4 million reads (40X) with a N50 of 17.18 305 

kb (Supplementary Table 1). We randomly subsampled the long-read data from 10X to 30X of genome 306 

coverage in increasing batches of 5X. The N50 was nearly identical for all the long-read subsamples (N50 = 307 

19.6 kb, Supplementary Table 11). WENGAN and the best long-read assembler among those evaluated, namely 308 

FLYE (v2.5), were used to build hybrid and long-read assemblies for each subsample (Figure 4, Supplementary 309 

Table 12). 310 

 311 

A major increase in contiguity for WENGAN was observed when going from 10X to 15X of long-read 312 

coverage (Figure 4A, Supplementary Table 12). In particular, we observed an NG50 increase from 2.5, 2.9, 6.9 313 

Mb to 7.4, 8.2, 15.5 Mb for WENGANM, WENGANA, and WENGAND, respectively. At shallow long-read 314 

coverage (10-15X), FLYE is outperformed by all WENGAN modes. Over 20X coverage, FLYE outperforms 315 

WENGANM and is comparable in contiguity to WENGANA (Figure 4). Notably, WENGAND using 15X long-read 316 

coverage leads to an NG50 of 15Mb, which FLYE can only reach at 30X long-read coverage (Figure 4A).  317 

 318 

All assemblies generated by WENGAN cover more than 93.8% of the reference genome at any long-319 

read coverage (Figure 4B). As expected, FLYE achieves its highest consensus quality at 30X long-read 320 

coverage (max QV=21.08, Supplementary Table 13). Polishing FLYE with long and short (NovaSeq) reads 321 

increased its median consensus quality to QV=27.21 (Supplementary Table 14). Almost all WENGAN 322 

assemblies achieve higher consensus quality than the polished FLYE assembly (min WENGAN QV=27.67 323 

excluding WENGANA-BGI-10X, Figure 4B, Supplementary Tables 12 and 13). 324 

 325 

The contiguity and consensus quality of the WENGAN assemblies vary more as a function of 326 

WENGAN’s mode than with the type of short-read data used (Figure 4A-B). Indeed, under the same WENGAN 327 

mode, the largest difference in contiguity between the short-read technologies of Illumina and BGI is 328 

NG50=2.8Mb (WENGAND at 30X, Figure 4A) and their consensus quality is almost identical (Figure 4B). 329 

WENGANM required a maximum of 187 CPU hours (max elapsed time < 18.1 hours on 20 CPUs) and 44 Gb of 330 

RAM to complete the assemblies  (Figure 4B, Supplementary Table 12). To our knowledge, this is the first time 331 

that a genome assembler reaches a contiguity of 10Mb and consensus quality of QV 29.4 on such minimal and 332 

accessible sequencing and computing resources. 333 

 334 
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We checked the assemblies of FLYE and WENGAN to see if they solved the 4.97Mb MHC 335 

region (Figure 4C). The WENGAN assemblies at low coverage (≤ 20X) reach higher NGA50 than the FLYE 336 

assemblies (Figure 4C, Supplementary Fig. 13). However, FLYE over 25X coverage assembles the MHC region 337 

in less than two contigs with a NGA50 of 4Mb (Figure 4C, Supplementary Fig. 13).  338 

 339 

In summary, we demonstrated that WENGAN reduces the computational resources and the long-read 340 

coverage required for assembling a human genome. WENGAN produced a high quality assembly with NG50 > 341 

10Mb (QV > 29) by combining 20X long-read coverage with 50X short-read coverage using less than one day 342 

of computing time on a low-end server (20 cores, ≤50Gb RAM).  343 

344 
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Discussion 345 

We have demonstrated that WENGAN is the only genome assembler that optimizes the three main goals of de 346 

novo assembly algorithms, namely, contiguity, consensus accuracy and computational resources. Furthermore, 347 

WENGAN is effective at shallow long-read coverage (≥15X), and in combination with ultra-long-reads generated 348 

de novo assemblies that surpass the contiguity of the human reference genome GRCh38. We introduced a 349 

hybrid assembly combining accurate PacBio/HiFi reads with ultra-long Nanopore reads and achieved an 350 

assembly quality that rivals the quality of the assembly generated by the T2T consortium (v0.7) [30]. 351 

Additionally, we observed no significant difference in assembly quality between using the short-read platforms 352 

Illumina NovaSeq-6000 [10] or MGIseq-2000 [11] for hybrid assembly with WENGAN. Moreover, WENGAN 353 

produces high quality assemblies with any combination of short-read (NovaSeq or MGIseq-2000) and long-read 354 

(ONT MinIon/PromethION or PacBio Sequel I) technologies. 355 

 356 

Unlike current long-read assemblers, WENGAN generates functional and ready to use genome reconstructions. 357 

The consensus quality benchmark demonstrated that short-read polishing remains mandatory for assemblies 358 

generated from Nanopore and PacBio CLR reads (Table 1, Supplementary Tables 3, 9, and 13).  Although 359 

PacBio’s HiFi-reads represent an option that mitigates the post-assembly polishing, and, in combination with 360 

ultra-long Nanopore reads generates assemblies with the highest contiguity, this comes at a reduced throughput 361 

(~10 CLR reads to generate 1 HiFi read) and a substantially increased computational resources [26, 28].  We 362 

found that hybrid WENGAN assemblies provide a computationally efficient solution for human genome 363 

assembly to date, producing, at the same time, highly competitive assembly contiguity and quality.  364 

 365 

Previous genome assemblers cannot cope with the high-throughput of a long-read and a short-read sequencer. 366 

Although other long-read-only assemblers may have a similar real-time execution [19](1 day), they require less 367 

accessible computational resources, more long-read coverage, and process half the data compared with 368 

WENGAN. Still, our analyses of hard-to-assemble regions demonstrated that further algorithmic improvements 369 

are necessary for all examined assemblers. Even though we have centered our analysis on human genomes, 370 

WENGAN also achieves high assembly quality of non-human genomes (Complete BUSCO genes ≥ 95%, 371 

Supplementary Table 15). Moreover, the WENGAN approach also provides a natural framework to combine 372 

long-read with linked-read data, and/or Sanger size short-reads [39], and/or optical maps (BIONANO), which 373 

may lead to the assembly of ’telomere-2-telomere’ scaffolds without the need for extra polishing and finishing 374 

methods. Therefore, WENGAN should facilitate the democratization of de novo assembly of human genomes, 375 

enabling high-quality genome-assembly for many applications. The WENGAN assembler is available at GITHUB 376 

(https://github.com/adigenova/wengan) and CODE OCEAN 377 

(https://doi.org/10.24433/CO.9469612.v1).  378 
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Figure legends: 394 

Figure 1: The WENGAN algorithm. The WENGAN workflow consists of first assembling and error correcting 395 

the short-read contigs (1-2), creating a spectrum of synthetic mate-pair libraries from long-reads (3), and 396 

building of the Synthetic Scaffolding Graph (SSG, 4). The SSG is used to compute approximate long-read 397 

overlaps by building long-read-coherent paths (5-6). The long-read overlaps restore the long-read information 398 

and facilitate the construction and validation of the assembly backbone (7-8). The SSG is used to fill the gaps 399 

by building for each mate-edge a consensus sequence using the Partial Order Alignment graph (9). In the final 400 

step the SSG is used to polish the consensus sequences (10). The repeat contigs (2-10) are drawn uncollapsed to 401 

explain the WENGAN steps. 402 

 403 

Figure 2:  WENGAN assemblies of the haploid CHM13 genome. A) The barplot shows the contig 404 

NG50/NGA50 of WENGAN and other state-of-the-art long-read assemblers, as well as of the current human 405 

reference genomes. NG50 is the contig length such that using longer contigs produces half (50%) of the bases of 406 

the reference genome. NGA50 is NG50 corrected of assembly errors. NG50 and NGA50 were computed using 407 

as genome size the total contig lengths of GRCh38 (2.94Gb). B) Assembly errors predicted by QUAST using as 408 

reference GRCh38 (autosomes + X and Y). Assembly errors overlapping centromeric regions or segmental 409 

duplications were excluded from the analysis. C) Consensus quality assessment by alignment of 30 unique BAC 410 

sequences to the assembled contigs using the BACVALIDATION tool. D) Gene completeness was determined 411 

using the BUSCO tool. E) Segmental Duplications (SD) resolved by the genome assemblies. An SD is 412 

considered resolved if the aligned contig extends the SD flanking sequences by at least 50kb (See Methods 413 

section). Different CHM13 assemblers are represented using the same color across the five panels of the figure. 414 

 415 

Figure 3: BIONANO scaffolding of the WENGAN assemblies of CHM13. We show the largest super-scaffold 416 

produced by merging the BIONANO map (BNG) and the WENGAN contigs (WG) generated by combining ultra-417 

long NANOPORE reads (rel3) with PACBIO/HIFI (20kb) or ILLUMINA (2x250 bp) reads. The name of the 418 

scaffolded WENGAN contigs is displayed (WSC). Brackets in the contig name indicate that the contig was 419 

corrected by the BIONANO map, and the numbers are the start-stop coordinates of the error-free contig region. In 420 

parenthesis, we show the contig orientation in the super-scaffold. The white text in the alignments displays the 421 

number of nicking matching sites, the total number of nicking sites in the BNG contig, and the length in 422 

megabases of the alignment. The blue bar in the BNG contigs shows examples of joins guided by the WENGAN 423 

contigs. 424 
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Figure 4:  De novo genome assemblies of NA12878 varying the long-read coverage and the short-read 425 

technology. A) The de novo assemblies were sorted by NG50 at each long-read coverage (lolliplot). We 426 

computed the NGA50 (which corresponds to the NG50 corrected of assembly errors) of each assembly using 427 

QUAST (see Methods section). B) The consensus quality (see Methods section) of each genome assembly as 428 

well as the CPU-hours required for the assembly are reported. C) The WENGAN and FLYE assemblies of the 429 

complex MHC region located in Chr6:28,477,797-33,448,354 (4.97Mb). The MHC sequence was aligned to the 430 

genome assemblies and the aligned blocks ≥ 30kb with a minimum identity of 95% were kept. The alignment 431 

breakpoints (vertical black lines) indicate a contig switch, alignment error or gap in the assembly. The 432 

assemblies of the MHC region are displayed in tracks by long-read coverage.   433 
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Tables  434 

    NA12878 HG00733  NA24385  
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Sh
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ts
  Contigs 

(>=50kb)  490 425 364 1,111 798 934 797 387 649 826 270 660 

T. lengh (Mb)  2,779 2,780 2,823 2,876 2,824 2,701 2,898 2,812 2,802 2,893 2,871 2,819 

NG50 (Mb) 17.24 25.99 35.31 8.43 10.41 11.84 22.91 32.35 21.71 22.33 50.59 20.35 

St
ru

ct
ur

al
 q

ua
lit

y 

Ref. Covered (%)  94.22 94.30 95.25 95.80 95.05 91.70 95.56 95.12 94.98 96.06 96.36 95.61 

Dup. ratio  1.002 1.002 1.006 1.013 1.008 0.991 1.025 1.004 1.002 1.020 1.011 1.002 

U. length (Mb)  5.21 4.76 8.63 24.68 9.42 32.13 21.29 6.96 6.49 15.41 10.54 6.52 

NGA50 (Mb)  11.82 14.34 16.41 5.69 7.12 7.38 12.36 17.31 12.99 14.61 24.52 14.32 

Max. aln (Mb)  45.66 75.32 72.84 32.62 34.07 70.48 78.99 71.03 78.22 71.68 75.56 75.65 

Asm. errors  153 91 158 275 194 124 177 119 107 198 156 126 

C.
 R

 CPU hours (h)  203 725 589 20,000 ~150,000 891 5,000 936 ~768 20,000 963 ~768 

Max. RAM (Gb)  53 45 622 500 - 222 600 644 ~966 - 651 ~692 

Consensus Accuracy                         

In
de

ls 

Short (Mb)  1.99 1.72 0.85 0.56 0.57 27.16 37.3 / 2.65  0.64 3.09 1.19 0.62 3.38 

Rate (bp)  1,381 1,592 3,252 4,966 4,828 98 74 / 1,047  4,372 899 2,323 4,499 828 

Medium (Mb)  0.45 0.43 0.29 0.38 0.35 1.85 2.43 / 0.74  0.27 0.7 0.28 0.29 0.73 

Rate (bp)  6,049 6,358 9,447 7,335 7,766 1,442 1,142 / 3,753 10,161 3,982 10,046 9,608 3,817 

Long (kb)  17.95 18.73 17.74 19.21 45.96 12.64 15.60 / 16.49 22.9 18.13 17.65 24.85 23.05 

Rate (kb)  153 146 157 145 60 211 178 / 169 121 153 157 113 121 

per 100kb 102 90 53 47 55 1,135 1,471 / 147 36 141 62 39 152 

100-mer comp. (%)  84.24 84.82 87.44 87.54 86.41 29.47 22.47 / 81.47 87.45 79.84 86.42 88.53 79.38 

Median QV  27.84 28.41 31.02 27.10 28.79 17.08 16.41 / 23.48 26.42 23.36 27.30 - - 

Gene completeness                          

BU
SC

O
 

# Complete  3,884 3,893 3,898 3,866 3,882 1,974 2,268 / 3,680 3,907 3,788 3,874 3,904 3,752 

% Complete  94.64 94.86 94.98 94.20 94.59 48.10 55.26 / 89.67 95.20 92.30 94.40 95.13 91.42 

Table 1: WENGAN assemblies of the diploid NA12878, HG00733 and NA24385 genomes. Structural and 435 

consensus accuracy was determined as described in detail in the Methods section (Assembly validation). All the 436 

assemblies were built by the assembler developers. In particular, all the NA12878 assemblies were generated 437 

using the Oxford Nanopore (rel5) plus Illumina data at the assembly or polishing steps (Except WTDBG2). The 438 

CANU assembly was hybrid polished with NANOPOLISH x 2, RACON x 2, and PILON x 2. The FLYE assembly was 439 

hybrid polished with RACON x 2 and NTEDIT x 3 (Method section). The SHASTA assemblies were polished using 440 

only Nanopore reads with HELEN and MARGINPOLISH. The FALCON assembly was polished using only PacBio 441 

CLR reads with QUIVER. The WENGAN, MASURCA and WTDBG2 assemblies were not polished by external tools. 442 

The reported CPU time does not include the CPU time spent polishing the assembly with external tools. NG50 443 

and NGA50 were computed using as genome size the total chromosome lengths of GRCh38 (3.088 Gb). 444 

Assembly errors overlapping centromeric regions or segmental duplications of GRCh38 were excluded from the 445 

analysis. The indels were called from aligned blocks ≥ 1kb at average identity ≥ 99%, and were classified 446 

according to their length into Short [1-2bp], Medium [3-50bp) and Long [>50bp]. The indel-rate was computed 447 



21 

dividing the amount of assembly sequence aligned by the number of indels called on such alignments. The 448 

"indels per 100kb" is computed by QUAST from aligned blocks ≥ 0.5kb with a minimum identity ≥ 80%. The 449 

100-mers completeness is the fraction of distinct 100-mers in the GRCh38 reference (2.835 Gb) that are 450 

captured in the corresponding assembly. Consensus statistics before and after the polishing are included for the 451 

FLYE assembly.  452 
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Online Methods 453 

The WENGAN algorithm 454 

Short-read assembly. 455 

WENGAN can employ MINIA3 [6], ABYSS2 [7] or DISCOVARDENOVO [8] as the de Bruijn graph based short-read 456 

assembler. All three short-read assemblers are able to assemble a human genome in less than a day. MINIA3 and 457 

ABYSS2 were intended for low-memory assembly of large genomes. They are able to assemble human genomes 458 

using less than 40Gb of RAM [6,7]. MINIA3 is the fastest method, consuming less than 77 CPU hours to 459 

complete a human genome assembly (Supplementary Table 7). Its speed comes from the novel unipath 460 

algorithm BCALM2 [40] that uses minimizers [20] to compress quickly and with low memory the de Bruijn 461 

graph [40]. MINIA3 can be used iteratively to implement a multi-k-mer assembly approach. We used k-mer sizes 462 

of 41, 81 and 121 in all the WENGANM assemblies described (Supplementary Table 7). ABYSS2 uses a Bloom 463 

filter and rolling hash function as the main techniques to implement the de Bruijn graph-based assembly [7]. 464 

After filling the Bloom filter, ABYSS2 selects solid reads (that is, reads composed only of solid k-mers, namely 465 

those for which frequency(k) > 2) as seeds to create the unipaths. These are extended left and right by 466 

navigating in the de Bruijn graph until a branching vertex or a dead-end is encountered. In our benchmark tests 467 

ABYSS2 required on average 481 CPU hours to assemble a human genome (Supplementary Table 7). All the 468 

ABYSS2 assemblies were run using a Bloom Filter size of 40Gb (B=40G), four hash functions (H=4), solid k-469 

mer with a minimum frequency of 3 (kc=3), k-mer size 96, and until the contig step only. DISCOVARDENOVO is 470 

a more specialized algorithm designed to assemble a single PCR-free paired-end Illumina library containing 471 

≥150 base-pair reads. DISCOVARDENOVO is greedier in terms of memory than MINIA3 and ABYSS2. We 472 

observed a memory peak of 650Gb in our human assemblies (Supplementary Table 7). However, 473 

DISCOVARDENOVO better leverages the pair-end information and therefore produces the most contiguous short-474 

read assemblies of all three tested assemblers (average contig NG50 69kb, Supplementary Table 7). All the 475 

selected short-read assemblers refine the constructed de Bruijn graph by removing sequencing errors and 476 

collapsing the genomic variants (SNPs, indels) to produce accurate consensus contigs [6-8]. 477 

Pair-end pseudo-alignment as building block for genome assembly. 478 

In the same way as k-mers are the elemental building blocks of de Bruijn graph assemblers; WENGAN relies on 479 

pair-end pseudo-aligments as the elemental building blocks for the de novo assembly. We recently introduced 480 

an alignment-free method called FAST-SG [32] that uses unique k-mers to compute a pseudo-alignment of pair-481 

end reads from long or short-reads technologies. Here, we present its successor, which we called FASTMIN-SG, 482 

which implements the same ideas of FAST-SG but using minimizers [20] and chaining with the MINIMAP2 API 483 

[41]. The uniqueness of the pseudo-alignment is now determined using the MINIMAP2 mapping quality 484 

score which gives a higher score to a primary chain when its best secondary chain has a weak pseudo-485 

alignment. 486 

To perform a pseudo-alignment of pair-ends from short-read sequencing technologies, we use (10,21)-487 

minimizers for querying and indexing. We discard pair-end pseudo-alignments when one of the mates has a 488 



23 

mapping quality score ≤ 30 or covers ≤ 50% of the read bases. For mapping synthetic pair-ends extracted from 489 

long-read technologies, we use (5,20)-minimizers and a read length of 250 base pairs. A synthetic pair-end is a 490 

fragment of length d for which we have access to the long-read of origin, the position of the fragment in the 491 

long-read and the inner long-read sequence between both mates of the synthetic fragment. All the synthetic 492 

fragments are extracted from the long-reads using a moving window of 150bp in forward-reverse orientation. 493 

We create a spectrum of synthetic mate-pair libraries (Supplementary Fig. 3) by extracting pair-ends at different 494 

distances. The range of distances depends on the long-read lengths but go from 0.5kb to a maximum of 500kb 495 

with ultra-long nanopore reads. For noisy PacBio reads, we use homopolymer compressed k-mers [41] for 496 

indexing and querying the synthetic pair-ends. We discard synthetic pair-end alignments when one of the mates 497 

has a mapping quality score ≤ 40 or covers ≤ 65% of the synthetic read bases. The information associated to the 498 

long-read of each synthetic pair is stored in the read names for computing approximate long-read alignments 499 

later. FASTMIN-SG, like MINIMAP2, uses presets to modify multiple parameters, thus simplifying its usability. 500 

Currently, it has presets for raw PacBio reads (pacraw), HiFi reads (pacccs), raw (ontraw) and ultra-501 

long (ontlon) Oxford Nanopore reads, and pair-ends (shortr) from short-read technologies (supporting Illumina 502 

or BGI). The pseudo-alignments are reported in SAM format. 503 

Detection and split of chimeric short-read contigs. 504 

The de Bruijn graph is complex around repeat sequences, and short-read assemblers can choose wrong paths 505 

while traversing such complex regions, thus leading to chimeric contigs (Supplementary Fig. 1). To detect 506 

potential chimeric contigs not supported by the short-reads, we map the pair-end reads back to the assembled 507 

short-read contigs using FASTMIN-SG (preset shortr). From the pair-end pseudo-alignments, we infer the 508 

average ̅ and standard deviation σ of the insert-sizes distribution of the genomic library. Then, pair-ends 509 

mapped within contigs at the expected orientation and distance ([ ̅ − 2.5 , ̅ + 2.5 ]) are transformed into 510 

physical fragments. For each contig, we create an array of length equal to the contig length, and the contig 511 

fragments are used to increase the physical coverage of the contig bases. We then scan the physical coverage 512 

array base by base to detect Low Quality Intervals (LQI) that have fragment coverage below a minimum depth 513 

threshold (def:7). LQIs are classified according to their contig location as internal, start, end or whole. Finally, 514 

contigs are trimmed/split at the boundaries of the LQIs. 515 

The Synthetic Scaffolding Graph (SSG). 516 

We build on top of the work of Huson et al. [33] to extend the scaffolding graph formulation and create the 517 

Synthetic Scaffolding Graph (SSG). In brief, the contig scaffolding problem was defined by Huson et al. [33] as 518 

the determination of an order and orientation of a set of contigs that maximizes the amount of satisfied mate-519 

pair links. The scaffolding graph G=(V,E), with vertex set V and edge set E, is a weighted, undirected multi-520 

graph, without self-loops [33]. Each contig Ci is modeled by two vertices (v,w) and an undirected contig-edge 521 

(e). The length of e is set to the contig length l(Ci). The contig orientation is represented by associating each of 522 

the contig ends to one of the two vertices (i.e. tail(Ci)=v and head(Ci)=w). Then traversing from 523 

tail(Ci)→head(Ci) or head(Ci)→tail(Ci) implies forward or reverse contig orientation, respectively. Now, 524 

consider a pair of mate-reads f and r originated from a synthetic mate-pair library with mean insert size ̅, 525 

standard deviation σ and orientation forward-reverse that uniquely matches two different contigs Ci and Cj. The 526 
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uniquely mapped mate-pair induces a relative orientation and approximate distance between the two contigs. 527 

Such information is represented by adding a mate-edge e into the graph. The length of the mate-edge e is 528 

computed by subtracting from the expected mate-pair distance ( ̅) the amount of overlap that each contig has 529 

with the mate-pair considering the read mapping orientations: l(e):=	 ̅ − ( ( ) − ( )) − ( −530 

( )). Moreover, the standard deviation σ(e) of each mate-edge e is set equal to the standard deviation of 531 

the synthetic mate-pair library. If there is more than one mate-edge e between the same ends of two contigs  532 

and , we can bundle [33] the mate-edge e by computing from the set of mate-edges , , … . , the length of 533 

e as ( ) ≔	 ⁄  and its deviation as ( ) = 1⁄   where: = ∑ ( )
( )

  and = ∑
( )

  [33]. Additionally, 534 

the weight w(e) of a bundled mate-edge e is set to∑ ( ), otherwise to 1. 535 

 536 

The Synthetic Scaffolding Graph (SSG) is an edge-bundled scaffolding graph G=(V,E), built from a 537 

spectrum of synthetic mate-pair libraries, where there is an edge-labelling function (F) that maps the long reads 538 

to the edges through the synthetic mate-pair pseudo-alignments. 539 

Computing approximate long-read overlaps with the SSG. 540 

Since the SSG is built from a spectrum of synthetic mate-pair libraries (i.e. 1kb to 10kb, Figure 1.3), it contains 541 

mate-edges from the short (1kb) to the long (10kb) range of connectivity (i.e. e1, e4, Figure 1.5). Now, consider 542 

a mate-edge e from v to w that are also connected by a transitive path = ( , , , … , ) of mate-edges 543 

( , , … ), contig-edges ( , , … ) and long-read labels ( ) = ( ( ), ( ), ( ), … ( )). We can 544 

compute the path length l(P) and its standard deviation σ(P) as follows [33]: ( ) = ∑ ( ) + ∑ ( ) and 545 

( ) = ∑ ( ) . A mate-edge e from v to w (i.e. e4, Figure 1.5) can be transitively reduced on the path 546 

P (i.e. 2 = ( ( ), , , , ℎ ( )), Figure 1.6) if e and P have similar lengths and the long-read labels 547 

of e are coherent with every edge  of : | ( ) − ( )| ≤ 4max	( ( ), ( )) and ( ) ⊂ ( )	∀	 	 ∈ . If 548 

this is the case, then the transitive path P (i.e. P2) is long-read coherent with the mate-edge e (i.e. ) and 549 

represents an approximate overlap of length l(P) among all the long-reads composing the mate-edge e (F(e)). 550 

We store the overlap information by removing e (i.e. e4) from the SSG and incrementing the weight of every 551 

mate-edge  in P by w(e) (i.e. ( , )+= ( ), Figure 1.6). Before starting the computation of 552 

approximate long-read overlaps, the repetitive contig-edges are masked, the mate-edges are sorted by ascending 553 

length l(e), and the set of biconnected components of the SSG is computed. The masking of repetitive contig-554 

edges is performed by estimating the average coverage of unique genomic regions using as proxy the 555 

longest (10%), all likely to be single copy, short-read contigs (ū). Contig-edges with an average coverage 556 

> 1.5 ∗  are masked by default. This repeat masking procedure is similar to but simpler than the A-statistic 557 

and threshold (~1.44) introduced by Myers et al. [3]. Transitive long-read-coherent path search takes place 558 

inside each biconnected component. In practice, we use a depth-first search algorithm to enumerate all the long-559 

read-coherent paths of a given mate-edge e. At each edge extension, we extend the path only if the new added 560 

edge is long-read-coherent with the given mate-edge e ( ( ) ⊂ ( )). We stop searching when the size of a 561 

partial path P is larger than 80 vertices or its length is longer than expected (l(P)>l(e) and | ( ) − ( )| 	>562 

4max	( ( ), ( ))). If there is more than one long-read-coherent path, we choose the path having the maximum 563 

number of hits from the long-reads supporting the given mate-edge e. For very long mate-edges (l(e) ≥ 100kb), 564 
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we stop searching if we find more than 100 long-read-coherent paths. All the selected long-read-coherent paths 565 

are stored in a path database for later use.  566 

 567 

The final SSG graph is created by performing first bundling and then transitive reduction (approximate 568 

long-read overlaps) of mate-edges. From now on, we will refer to this simply as the reduced SSG. 569 

Generation of the assembly backbone with the SSG. 570 

Computation of approximate long-read overlaps allows to solve the scaffolding problem using all the synthetic 571 

mate-pair libraries simultaneously. Given the reduced SSG, our goal is to determine an optimal set of vertex 572 

disjoint paths covering all the contig-edges with a maximum total weight of the mate-edges. Since this 573 

optimization problem is NP-hard, we use Edmond’s maximum weighted matching approximation algorithm that 574 

guarantees to find an optimal solution with a worst-case performance ratio = ( ) ( )⁄ > 2/3 [34]. The 575 

matching algorithm implementation is based on an extensive use of priority queues, leading to an Ο(V	E	log(V)) 576 

time complexity [42, 43]. All the contig-edges, as well as the mate-edges associated to repetitive contigs or 577 

having a weight smaller than 5, are masked during the matching cover step. After computing the matching 578 

cover, all the contig-edges are added to the matching cover solution and we use a depth-first-search approach to 579 

detect simple cycles. If such cycles are found, the set of biconnected components of the graph is computed and 580 

simple cycles are destroyed by removing the mate-edge of lowest weight in each biconnected component. In 581 

practice, the matching cover solutions contain few cycles (< 10 on human genomes) and we observed 582 

performance-ratios higher than > 0.8. The set of optimal simple paths (lines or scaffolds) is what we call the 583 

assembly backbone. 584 

Validation of the assembly backbone with the SSG. 585 

We validate the assembly backbone using the physical genomic coverage obtained from the computation of the 586 

approximate long-read overlaps. The key idea is to identify suspicious mate-edges e (corresponding to 587 

potentially incorrect joins) not supported/covered by long-read overlaps longer than  (by default ≥ 20 ). 588 

We first assign genomic coordinates to each line = ( , , … , ) from 1 to ( ), taking into account 589 

the orientation of the contig-edges and the ordering and distance provided by the matched mate-edges. In a 590 

second step, all the contig-edges are converted into physical genomic fragments as well as the mate-edges 591 

spanned by long-reads longer than O. In a third step, if the vertices v,w of a reduced mate-edge e belong to the 592 

same line   and the length of l(e) is longer than O, we create a new simple path pf that goes from v to w in the 593 

line . The new simple path pf is converted into a physical genomic fragment f only if the length of pf is similar 594 

to the length of the reduced mate-edge e, that is, if | ( ) − ( )| ≤ 4max	( ( ), ( )). If that is the case, the 595 

simple path pf increases the physical genomic coverage of the line . In a forth step, once the physical genomic 596 

coverage of all the lines  have been computed, we look for all the intervals inside a scaffold having a lack of 597 

physical coverage at the mate-edge locations and we tag such mate-edges as potentially erroneous joins. A line 598 

 is split at potential error joins only if the number of long-reads supporting the suspicious mate-edge e is less 599 

than mlr (default mlr≤4). In practice, we observe that the physical path coverage of human assemblies is around 600 

20X (30X long-read coverage), thus usually less than 200 mate-edges are removed.  601 



26 

Gap filling with the SSG. 602 

A property of the SSG is that all the mate-edges are spanned by at least one long-read. Therefore, after 603 

construction and validation of the assembly backbone, we proceed to create a consensus sequence for each of 604 

the matched mate-edges. We start by ordering the lines by decreasing length, which imposes a global order to 605 

the mate-edges and consequently to the long-read sequences. For each mate-edge e, we select the N best long-606 

reads (default: 20) spanning e. The long-read selection is done by counting, with the edge-labeling function 607 

F(e), the number of synthetic mate-pairs contributed by the long-read  to compose the mate-edge e. This 608 

means that, the more synthetic mate-pairs are contributed by long-read , the greater is the confidence that the 609 

long-read  spans e. All the selected long-read sequences are sorted according to the mate-edges order using an 610 

external merge sort algorithm to create a long-read sequence database. Following the long-read database 611 

creation, we build a consensus sequence for each mate-edge using the partial order alignment graph [35]. For 612 

each mate-edge, we select the long-read contributing the most synthetic mate-pairs as consensus template, then 613 

the remaining long-reads spanning e are aligned to the template using a fast implementation of Myers  bit-vector 614 

algorithm [36]. The long-read alignments are scanned to partition the long-reads into non-overlapping windows 615 

of size w (by default 500bp) on the template sequence. The long-read chunks that have an average identity 616 

lower than 65% are removed from the corresponding windows. The purpose is to use high-quality alignments to 617 

build the template consensus. For each window w, we call the consensus sequence using a SIMD accelerated 618 

implementation of the partial order alignment graph [17]. The mate-edge consensus is built by joining the 619 

window sequences. Finally, the corresponding contig-ends are aligned (using once again Myers  bit-vector 620 

algorithm) to the mate-edge consensus sequence to determine the correct mate-edge sequence boundaries, thus 621 

filling the gap between the two contig-edges.  622 

Polishing with the SSG. 623 

Since not all the contig-edges are part of the assembly backbone (as is the case for the contig-edges related to 624 

repeats or short sequences), we can use them to improve the consensus base accuracy of the mate-edge 625 

sequences. To this end, we use two polishing strategies, one based on the SSG and a second based on pairwise 626 

alignments. The graph polisher uses the reduced SSG to find transitive long-read-coherent paths as before, but 627 

masking the contig-edges composing the assembly backbone. Since now we navigate on more complex parts of 628 

the SSG (unmasked repeat sequences), we limit the path search to a maximum of 5 million iterations on each 629 

mate-edge. Once a long-read-coherent path has been found, we align the contig-edges (with the proper 630 

orientation) to the mate-edge sequence using Myers  bit-vector algorithm [36]. Then, the alignments are 631 

trimmed as a function of the average long-read-depth of the mate-edge consensus sequence. We thus expect a 632 

minimum identity between 80% and 99% when the average long-read-depth of the consensus sequence is 633 

between 1 and 20, respectively. If a contig-edge maps with an identity higher than the expected and the 634 

alignment covers at least 75% of the contig-edge, we replace the corresponding mate-edge aligned sequence by 635 

the contig-edge aligned sequence, thus polishing the mate-edge sequence. The alignment polisher searches for 636 

matches between the singleton contig-edges and all the mate-edge consensus sequences. In brief, we first index 637 

all the mate-edge consensus sequences using (5,17)-minimizers [20]. Minimizers are stored in a hash table and 638 

the ones having a frequency higher than 1000 are excluded. The (5,17)-minimizers of the contig-edges are 639 

scanned on the mate-edge sequence index to collect HSPs or exact (5,17)-minimizer matches. HSPs are sorted 640 
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by mate-edges and hits are identified by finding the longest strictly increasing subsequence (co-linear chain) 641 

between the contig and the mate edges. After collecting all the hits, we use a greedy algorithm to determine a 642 

layout of contig-edge hits along the mate-edge sequence. The greedy algorithm starts by sorting the contig-edge 643 

hits by number of minimizer matches and then adds the hits to the layout only if there is no overlap with a 644 

previously added hit. We then proceed as in the graph polisher to align and polish the mate-edge sequence using 645 

the best-hit layout. Finally, WENGAN outputs the sequence of each line plus the sequence of contig-edges (>5kb) 646 

not used in the polishing steps. 647 

WENGAN assemblies of CHM13 648 

The WENGAN (HIFI+UL) assembly of the haploid CHM13 genome was generated using the WENGANM mode. 649 

The PacBio/HiFi reads were assembled with MINIA3 using an iterative multi-k-mer approach with the following 650 

k-mer sizes: 41, 81, 121, 161, 201, 251, 301, and 351. The PacBio/HiFi reads were then included in all the 651 

subsequent WENGANM steps (Figure 1). The WENGAN (ILL+UL) assembly was generated using the WENGAND 652 

mode. The specific commands to reproduce both WENGAN assemblies are provided in the Supplementary 653 

Material (Subsection 1.2). 654 

Assembly validation. 655 

Genome assemblies generated by WENGAN and other assemblers were assessed by whole genome alignment to 656 

the human reference genome using the QUAST [37] (Version: 5.0.2) tool. QUAST was run with the options "–657 

large –min-identity 80 –fragmented" using the GRCh38 (patch 19) reference (autosomes plus X and Y). 658 

Additionally, we ran a QUAST analysis using as reference the curated CHM13 assembly (chm13.draft_v0.7, 659 

2.9384 Gb) generated by the T2T consortium [30] for all the CHM13 assemblies (Supplementary Table 4). 660 

Several assembly metrics (i.e. NG50, NGA50, largest alignment block, indels per 100kb, genome fraction, and 661 

others) were collected from the QUAST report. QUAST assembly errors overlapping centromeric regions or 662 

segmental duplications annotated in GRCh38 were excluded from the analysis using the script and annotation 663 

files provided by Shafin et al. [19] ("quast_sv_extractor.py -s empty -d GRCh38_masked_regions.bed -c 664 

centromeres.bed -q quast-all_alignments.tsv"). The procedure masked a total of 610Mb of the GRCh38 665 

reference. Assembly errors before and after the masking of highly repetitive regions are reported. The consensus 666 

quality was determined by computing a more stringent alignment allowing a maximum of 1% divergence using 667 

MINIMAP2 [41] program (MINIMAP2 options: cxasm10 –cs -r2k), then contig-to-reference alignments longer 668 

than 1kb were scanned by PAFTOOLS (option call -l1000 -L1000) to call Single Nucleotide Variants, insertions 669 

and deletions. Additionally, we used the 100-mers completeness analysis to assess with an alignment-free 670 

method the consensus quality of the genome assemblies using the KMC [44] k-mer counter (Version 3.1.0). The 671 

GRCh38 (patch 19) reference genome has a total of 2,835,070,131 distinct 100-mers and those were intersected 672 

with the 100-mers of the genome assemblies using the KMC_TOOLS utility (option intersect -ci1 -cx1000). The 673 

gene completeness of the genome assemblies was assessed with the BUSCO [45] program (Version 3.0.2) using 674 

the MAMMALIA ODB9 gene set (4,104 BUSCO groups). The single plus duplicated complete BUSCO gene counts 675 

are reported. The consensus quality of the genome assemblies was determined by aligning orthogonal BAC or 676 

Fosmid sequences data  (Supplementary Table 16). The statistics were computed considering fully resolved 677 

BAC/Fosmid only. The BAC/Fosmid consensus quality analysis was performed using the BACVALIDATION tool 678 
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(https://github.com/skoren/bacValidation). The amount of Segmental Duplication (SD) 679 

resolved by the genome assemblies of CHM13, HG00733, NA12878 and NA24385 was determined using 680 

SEGDUPPLOTS [38] (https://github.com/mvollger/segDupPlots). SEGDUPPLOTS aligns the 681 

assembled contigs to GRCh38 and considers an SD as resolved when the aligned contig extends the SD flanking 682 

sequences by at least 50kb. The sequence of the T2T-X chromosome was repeat-masked with the 683 

REPEATMASKER program (version 4.1.0, search engine: HMMER v3.2.1, options: "-species human -gff -xm") 684 

using the DFAM(v3.1) database. The contigs of the CHM13 assemblies were anchored to the T2T-X 685 

chromosome using MASHMAP (version v2.0) and then masked with REPEATMASKER using the aforementioned 686 

options. Finally, the WENGAN assemblies of CHM13 were validated and scaffolded using the hybridScaffold.pl 687 

program (BIONANO Solve3.4_06042019a) (with the options -c hybridScaffold_DLE1_config.xml -B 2 -N 2) 688 

and the BIONANO map assembled by the T2T-consortium [30]. 689 

Hybrid polishing of FLYE assemblies 690 

We polished the FLYE assemblies of NA12878 using the same sequencing reads employed in the WENGAN 691 

assemblies. We used two rounds of long-read polishing with RACON [17] followed by three rounds of short-read 692 

polishing with NTEDIT [24]. The commands executed as well as the consensus quality improvement after each 693 

round of polishing are provided in the Supplementary Material (Supplementary Tables 10 and 14). 694 

Genome sequencing of NA12878. 695 

The genomic DNA from the GM12878 human cell line was purchased from the Coriell Institute (cat. no. 696 

NA12878, RRID:CVCL_7526).  697 

MGI sequencing 698 

Library preparation for the NA12878 sample was performed with the MGIEasy DNA Library Prep Kit V1.1 699 

(MGI, 940-200022-00) following the manufacturer’s instructions. Briefly, 1μg of genomic DNA at a 700 

concentration of 12.5ng/μL was fragmented with an E220 Covaris program optimized to yield fragments of 701 

450bp average length. A double-sized selection was performed with AMPure XP beads (Beckman Coulter) at 702 

0.52X ratio followed by a 0.15X ratio as recommended by MGI. A total of 50ng of fragmented DNA was used 703 

for the end repair and A-tailing reaction following the manufacturer’s instructions. A set of adapters with 8 704 

barcodes were ligated to the repaired DNA for one hour at 23 C. After purification with AMPure XP beads 705 

(Beckman Coulter) at a 0.5X ratio, the DNA was subjected to PCR enrichment following the manufacturer’s 706 

instructions. A total of 330ng of PCR product was hybridized with the Split Oligo (MGI, 940-200022-00) for 707 

the circularization step followed by digestion. Circularized ssDNA was purified with Library Purification Beads 708 

(MGI, 940-200022-00) and quantified with an ssDNA assay on a Qubit 3 fluorometer (Thermo Fisher). For the 709 

linear amplification to generate DNA nanoballs (DNBs), 75fmol of circularized ssDNA were used. The DNB 710 

library was loaded in a single lane and sequenced on a MGISEQ-2000 instrument with a paired-end modus and 711 

read length of 150bp with the MGISEQ-2000RS High-throughput Sequencing Set PE150 (MGI, 1000003981) 712 

according to (DNBs) manufacturer’s instructions.  713 
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Illumina sequencing 714 

Library was prepared using the TruSeq DNA PCR-Free Library Prep kit (Illumina, FC-121-3001) following the 715 

TruSeq DNA PCR-free reference guide (Illumina, 1000000039279v00). Briefly, 1μg of genomic DNA was 716 

used for fragmentation on an E220 Covaris to yield insert sizes of 350bp. The DNA was end-repaired, 717 

adenylated and subjected to adapter ligation as described in the reference guide. The library was quantified 718 

using the KAPA Lib Quantification Kit (Roche, LB3111) and dsDNA HS assay (Qubit). The average fragment 719 

size was estimated with a HS DNA kit (Agilent) on a 2100 Bioanalyzer (Agilent). A S2 flow cell was loaded 720 

with 2.2nM on a NovaSeq6000 instrument to generate 2x151 paired-end reads. 721 

 722 

Oxford Nanopore sequencing 723 

Three flow cells were run with the sample NA12878. One flow cell was loaded with a library prepared from 724 

unsheared genomic DNA. For the additional two sequencing runs, [14μg of] NA12878 genomic DNA was 725 

mechanically sheared with Megaruptor 3 (Diagenode) [at a concentration of 70 ng/μL in a volume of 200μL] 726 

with manufacturer’s recommended speed to get sheared DNA with an average fragment length of 30Kb. Size 727 

selection was performed with Blue PippinTM (Sage Science) to remove fragments shorter than 10Kb using a 728 

0.75% agarose cassette, the S1 marker and a high-pass protocol (Biozym, 342BLF7510). A further clean-up 729 

with AMPure XP beads (Beckman Coulter) on the size-selected DNA was performed at a 1X ratio for one 730 

library. Fragment size was assessed with the gDNA 165kb Analysis Kit on a FemtoPulse (Agilent) and the 731 

concentration of DNA was assessed using the dsDNA HS assay on a Qubit 3 fluorometer (Thermo Fisher). For 732 

each of the three sequencing runs, one library was prepared with the SQK-LSK109 Ligation Sequencing kit 733 

(ONT) per flow cell following the instructions of the 1D Genomic DNA by Ligation protocol from Oxford 734 

Nanopore Technologies. Briefly, 1.1 to 1.3μg of genomic DNA was used for the DNA repair reaction with 735 

NEBNext Ultra II End Repair/dA-Tailing Module (New England Biolabs, E7546S) and NEBNext FFPE DNA 736 

Repair Module (NEB, M6630S). Upon clean-up with AMPure XP beads (Beckman Coulter) at 1X ratio, the 737 

end-repaired DNA was incubated for one hour at room temperature with Adapter Mix (ONT, SQK-LSK109), 738 

Ligation Buffer (ONT, SQK-LSK109) and NEBNext Quick Ligation Module (NEB, E6056S). The ligation 739 

reaction was purified with AMPure XP beads (Beckman Coulter) at a 0.4X ratio and L Fragment Buffer (ONT, 740 

SQK-LSK109). A total of 600ng ( 25fmol) of the generated libraries were loaded into the flow cell (FLO-741 

PR002) on a PromethION instrument (ONT) following the manufacturer’s instructions. The Nanopore reads 742 

were base-called using GUPPY (v3.0.3) with the high accuracy FLIP-FLOP model. 743 

Data availability 744 

All sequence datasets and de novo genome assemblies described in the manuscript are publicly available 745 

through the corresponding repositories. Specific hyperlinks for the four human datasets are provided in the 746 

Supplementary Material: Supplementary Table 1 provides hyperlinks for all the long-read datasets; 747 

Supplementary Table 2 provides hyperlinks for all the short-read datasets; Supplementary Table 3 provides 748 

hyperlinks for all the de novo assemblies used in the benchmark; Supplementary Table 16 provides hyperlinks 749 

for the BAC/Fosmid sequences used for consensus quality assessment. The BIONANO data of CHM13 is 750 

available at https://github.com/nanopore-wgs-consortium/CHM13. Specific hyperlinks for the 751 



30 

non-human datasets are provided in the Supplementary Table 17. The supplementary files, including all the 752 

WENGAN assemblies described in the present manuscript, are available through Zenodo at 753 

https://zenodo.org/record/3779515.  The specific commands for each WENGAN assembly are 754 

provided in the Supplementary Material (Subsection 1.2). The NovaSeq6000, MGISEQ-2000RS and 755 

PromethION sequence data of NA12878 were submitted to the Sequence Read Archive (SRA) under the 756 

BioProject PRJNA603060.  757 

Code availability 758 

The WENGAN code (version 0.2) used in this manuscript is freely available at 759 

https://github.com/adigenova/wengan and is distributed under the MIT open source license. 760 
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