
HAL Id: hal-03017222
https://hal.inria.fr/hal-03017222

Submitted on 16 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Déjà vu: Abusing Browser Cache Headers to Identify
and Track Online Users

Vikas Mishra, Pierre Laperdrix, Walter Rudametkin, Romain Rouvoy

To cite this version:
Vikas Mishra, Pierre Laperdrix, Walter Rudametkin, Romain Rouvoy. Déjà vu: Abusing Browser
Cache Headers to Identify and Track Online Users. PETS 2021 - The 21th International Symposium
on Privacy Enhancing Technologies, Jul 2021, Virtual, France. �hal-03017222�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/362228821?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-03017222
https://hal.archives-ouvertes.fr

Proceedings on Privacy Enhancing Technologies ..; .. (..):1–16

Vikas Mishra*, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy

Déjà vu: Abusing Browser Cache Headers
to Identify and Track Online Users
Abstract: Many browser cache attacks have been pro-
posed in the literature to sniff the user’s browsing his-
tory. All of them rely on specific time measurements to
infer if a resource is in the cache or not. Unlike the state-
of-the-art, this paper reports on a novel cache-based at-
tack that is not a timing attack but that abuses the
HTTP cache-control and expires headers to extract
the exact date and time when a resource was cached
by the browser. The privacy implications are serious as
this information can not only be utilized to detect if a
website was visited by the user but it can also help build
a timeline of the user’s visits. This goes beyond tradi-
tional history sniffing attacks as we can observe patterns
of visit and model user’s behavior on the web.
To evaluate the impact of our attack, we tested it on all
major browsers and found that all of them, except the
ones based on WebKit, are vulnerable to it. Since our
attack requires specific HTTP headers to be present, we
also crawled the Tranco Top 100K websites and identi-
fied 12, 970 of them can be detected with our approach.
Among them, 1, 910 deliver resources that have expiry
dates greater than 100 days, enabling long-term user
tracking. Finally, we discuss possible defenses at both
the browser and standard levels to prevent users from
being tracked.

Keywords: web tracking, web privacy, browser cache

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

1 Introduction
Since the early days of the Internet, browsers have con-
stantly tried to optimize performance and improve user

*Corresponding Author: Vikas Mishra: Inria, Univ.
Lille, E-mail: vikas.mishra@inria.fr
Pierre Laperdrix: Univ. Lille, CNRS, Inria, E-mail:
pierre.laperdrix@univ-lille.fr
Walter Rudametkin: Univ. Lille, Inria, E-mail:
walter.rudametkin@univ-lille.fr
Romain Rouvoy: Univ. Lille, Inria, IUF, E-mail:
romain.rouvoy@univ-lille.fr

experience. In particular, browser caching is a feature
that has been widely adopted by all modern browsers.
Caches enable the browser to temporarily store and ac-
cess some previously downloaded resources in a per-
sistent storage, so that they can be reused in the fu-
ture, thus reducing the network bandwidth and the
time to load a web page. However, from basic features,
such as cookies, to more advanced components, such
as WebGL [16], persistent storage has constantly been
abused for malicious intentions [17, 24]. Browser caches
is one of such feature that has received a great deal of
abuse over the years [19, 28, 29]. With the rise in the
discussion on privacy rights on the Internet [23] and
the increasing awareness about privacy issues, browser
vendors started adding various safe-guards against well-
known techniques to track and steal user information.

One such security development was the same-origin
policy [14], which restricts the interaction of resources,
such as scripts, loaded from different origins—i.e., cross-
origin resources. The same-origin policy includes cross-
origin data storage access as well, which enforces the
separation of various browser storages by origin. This
means that data stored in localStorage or IndexedDB
are separated by origin. However, at the time of writing,
except for Safari, none of the other major browsers en-
force this policy for browser caches. This leaves them
exposed to various cache-based attacks, such as his-
tory sniffing [34], or even makes it possible to build
an unique identifier for online tracking [18]. Researchers
have found several ways to probe the cache and extract
browsing history [19, 34, 36].

Browsing history has been shown to be highly
unique and distinct [22, 32], thus it has a great potential
to reveal very sensitive and personal information about
users, such as physical location [29], or even their iden-
tities [36, 37]. The first instance of history sniffing was
reported in 2002 [26] and, since then, it has evolved into
much more complex attacks, one of them being cache
based history attacks [34]. Most of the cache-based at-
tacks are timing attacks that exploit the simple fact
that it takes longer to retrieve a resource from the in-
ternet than from the browser’s cache. However, none of
these history sniffing attacks are able to extract the ex-
act time when a user visited a website and are limited

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 2

to only inferring if a website has been visited before or
not.

Contributions. In this paper, we make the following
contributions:
1. We present a novel attack that abuses HTTP head-

ers to extract the exact time when a resource
(JavaScript, CSS or image files) was cached by the
browser. By setting up a page with a malicious
script, an attacker can probe for the presence of
specific resources and build a timeline of the user’s
visits on different websites (Section 3).

2. We crawl the Tranco Top 100K websites and find
that 91, 755 resources present on 12, 970 websites
can be used to mount our attack. Among these re-
sources, 25% have an expiration date that is higher
than 100 days, providing an adversary a large win-
dow to use them and track a user over time. We
also analyze the servers delivering these resources
and we did not find any server technology with a
default configuration that would make their user-
base more vulnerable (Section 4).

3. We provide an analysis of two concrete applica-
tions, namely tracking and partial history sniffing.
We show that the privacy implications of this attack
are important as we can not only learn if a website
was visited but also when and at which frequency.
It becomes possible to a certain extent to build a
behavioral profile of a user based on her different
visit patterns (Section 5).

4. We discuss possible defenses at both the browser
and the standard levels that could prevent an at-
tacker from finding the exact date when a resource
was cached (Section 6).

Outline. The remainder of the paper is organized as
follows. Section 2 delivers the required background on
browser caching and describes various response headers
used by browsers to enforce their caching policies. Sec-
tion 3 details our attack methodology. Section 4 presents
our evaluation on the Tranco Top 100K websites. Sec-
tion 5 introduces two concrete applications. Section 6
discusses some defenses along with limitations in our
methodology. Section 7 presents related history sniff-
ing attacks and contextualizes our contributions with
respect to the existing work. We finally conclude the
paper in Section 8.

2 Background on Web Caches
All mainstream browsers use memory or disk cache to
reduce the page load time (PLT) of websites by saving
some static and infrequently changed resources, such
as JavaScript files, images and CSS files. Once a re-
source is cached locally, the browser can then fetch the
locally-stored copy, instead of downloading the resource
again from the server, thus saving one round-trip per
resource. This saves both time and network bandwidth.
Nevertheless, when a browser caches a resource, it has
to deal with classical issues that arise from caching, such
as making sure that the resource is always up-to-date.
Browsers manage this problem by using different head-
ers to specify how to manage a resource in the cache.

2.1 HTTP Headers

Whenever the browser needs a given resource, it first
sends a request to a remote server. Then, the server
transmits a response containing both the requested re-
source, as well as HTTP headers specifying information,
such as the MIME type of the resource and cache-related
headers to help the browser determine how to cache the
resource. It is the responsibility of the server owner to
configure these headers properly to achieve the desired
effect on the caches—i.e., to improve the website per-
formance and reduce the PLT, while ensuring that their
users retrieve up-to-date content. The relevant headers
related to the browser caching are:
– Expires: This header is a timestamp that speci-

fies how long the content should be considered as
fresh. It was the standard header to control caches
until the header Cache-Control was introduced in
HTTP/1.1. However, most of the servers and content
providers keep using this header. The value of this
header is the expiry date in the GMT format and
the content is considered stale if the date format is
not accurate;

– Cache-Control: The header Cache-Control spec-
ifies for how long and in which manner the content
should be cached. It was introduced in HTTP/1.1
to overcome the limitations of the Expires header.
Contrary to the Expires header that enables to only
specify an exact end date, Cache-Control enables
a more fine-grained control. Possible values for this
header are the following:
– no-store specifies that the content should not

be cached;

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 3

– no-cache indicates that the resource can be
cached, but the freshness of the resource has
to be validated by the server every time it is
requested. Thus, there is still a request sent to
the server to validate the freshness of the re-
source, but not to download the resource when
it is considered fresh;

– max-age specifies the period, in seconds, the
content should be cached. For example, the
Cache-Control defined with the following value
max-age=3600 means that the content can be
cached and will be considered stale after 60 min-
utes (3, 600 seconds);

– must-revalidate specifies that stale content
cannot be served in any case and the data must
be re-validated from the server before serving,
even in the case where the device has no access
to the internet.

– Date The HTTP header Date contains the date
when a message was originated from the server and
its precision is bounded up to seconds.

2.2 Cross-Origin Resource Sharing

Cross-Origin Resource Sharing (CORS) is a mechanism
that allows a resource from one origin to interact in the
context of a different origin. It is a relaxation of another
security mechanism, called same-origin policy, that re-
stricts the interaction of a document or script from one
origin when loaded in a different origin. The origin is for-
mally defined as the scheme (protocol), host (domain),
and port of the URL used to access the resource.

Why does the Same Origin Policy ex-
ist? Many websites use cookies for session and au-
thentication. These cookies are bounded to the do-
main where they are created and the browser at-
taches this cookie to every HTTP call made from
that domain. This includes calls for any static re-
sources like images, JavaScripts, CSS or even AJAX
calls. In the absence of a same-origin policy limiting
cookie access, this presents a cross-origin vulnerabil-
ity. For instance, imagine a scenario where you visit
a website http://maliciouswebsite.com, while being
logged into your email at http://emailprovider.com,
if there was no same-origin policy the malicious ac-
tor can make authenticated request to sensitive API,
like http://emailprovider.com/delete of your email
provider, in the background as the browser will attach
the cookies when triggering this AJAX call. Thus, the

same-origin policy closes such loopholes by restricting
cross-domain HTTP calls.

Why does CORS exist? Nonetheless, there are
legitimate reasons for a website to trigger cross-origin
HTTP requests. A website might use a third-party ana-
lytics script, third-party fonts or a single-page app might
need to make AJAX calls to its API hosted one of its
sub-domains. CORS was created to enable such legiti-
mate cases of cross-origin or cross-domain requests.

In our attack, we use simple CORS request that
relies on the Access-Control-Allow-Origin header
to instruct the client of its preference whether it
wants to allow that domain to access that re-
source or not. In case the server responds with
Access-Control-Allow-Origin: *, then the resource
can be accessed in any domain.

3 Déjà vu: A Cache-based Attack
In this section, we present our threat model and provide
an overview of our attack with the specific mechanics
behind it. The threat model is evaluated later on in
Section 5 with two concrete applications.

3.1 Threat Model

In the novel cache attack presented in this paper, we
employ a threat model wherein the attacker provides a
malicious client-side script to an unsuspecting user on
a cross-origin third-party website. The malicious client-
side script then probes for various resources to extract
the time when they were cached by the client. The at-
tacker can decide which resources to probe based on her
intention since the attacker can learn a lot of personal
and sensitive information based on the resources saved
in the cache.

The attacker can extract browser history similar
to earlier known cache based attacks, as shown by
Bansal et al. in [19], where the authors probed for re-
sources using a Service Worker, and Weinberg et al.
in [36] who probed for resources to extract pages visited
by the user. Browser history has been shown to be highly
unique [22, 32], thus an attacker can infer personal in-
formation about the user ranging from their interests to
their political leanings or even their true identity. In an-
other attack scenario, the attacker might be interested
in crafting a stable and unique identifier for the user in
order to track her visits on multiple websites similar to

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 4

Fig. 1. Overview of the cache-based attack.

other well known tracking techniques [27]. This can be
used to show targeted ads to the users based on their
interests and previous visits to websites.

3.2 Attack Overview

Summary. Any website can learn the exact time and
date up to the second when a vulnerable resource was
cached in the browser. This can then be abused to track
an online user or reveal a part of her browser history.
How does it work? Figure 1 provides an overview
of the attack. A victim is led to a controlled webpage
(Step 1) that will make requests to one or more on-
line resources (Step 2). These resources are hosted ei-
ther on the attacker’s domain or an external one. The
attacker’s server then collects specific HTTP headers,
namely Cache-Control and Expires, from the victim
to calculate the times when each resource was cached in
the browser (Step 3).
Caching and browser security. There exist many se-
curity mechanisms, like SOP [14], CSP [13], or CORS to
control with precision what can be loaded and executed
in the browser. Yet, despite those being in place, it is
still possible to learn the exact time when a resource
was cached. Here are the three different insights that
make our attack possible:
– Almost all modern browsers have single-keyed

caches—i.e., a resource can be shared between mul-
tiple domains. On paper, this design is sound as it
decreases load time on pages that share the exact
same resources. The downside is that an attacker
can abuse this to learn what has been cached by
the browser from its own controlled domain;

– When CORS processes HTTP responses, it filters
headers to only return those that are considered
as safe [4]. For example, the header Date is not
considered as safe but other cache headers like

Cache-Control and Expires are. Our attack relies
on these supposedly "safe" information to infer the
cached date of a resource;

– When a resource is put into the cache, the browser
also stores the complete set of HTTP response head-
ers along with it. As detailed in Section 2, the
browser looks at either the Cache-Control or the
Expires header to know if a resource must be down-
loaded again. The problem is that storing these
headers in the cache completely fixes their values in
time. At any moment, if a resource is fetched from
the cache, it will always be accompanied by these
headers with their original values. The browser will
never update some of them to reflect how much time
has passed since the initial request. Because of this,
any website can get access to the safe-listed headers
and compute the original caching date of a resource.

All in all, as detailed in Section 6.1, countermeasures
can be added at both the browser and standard levels
to protect against the attack. However, current imple-
mentation provided by most browsers make their users
vulnerable to it.

3.3 Date Value Extraction

In an initial investigation, we observed that servers use
one of two following behaviors to manage the freshness
of their resources.

Fixed expiry date. The resource expires at the
exact same date for all users who have it in their cache.
In this configuration, the server returns a dynamically-
calculated Cache-Control:max-age header by subtract-
ing the time of request from the fixed expiry date in the
future, and returning the result in seconds.

User 1 :
Date = Fri, 28 Aug 2020 12:00:00 GMT

Expires = Mon, 31 Aug 2020 12:00:00 GMT

max-age = 259200

User 2 :
Date = Fri, 28 Aug 2020 12:01:00 GMT

Expires = Mon, 31 Aug 2020 12:00:00 GMT

max-age = 259140

Looking at the above example, the difference of 60
seconds between the two requests is directly reflected in
the max-age directive for User 2. Assuming that users do

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 5

not all visit the website at the exact same second, it is
possible to rely on max-age to differentiate users. Once
the attacker knows about the fixed expiry date of a
particular resource, they can calculate the time when a
resource was cached by a client following this equation:

Date = fixed expiry date − Cache-Control:max-age

Fixed expiry duration. In this scenario, the re-
source expires in a fixed amount of seconds for every
user. This translates to a unique Expires header for
each user.

User 1 :
Date = Fri, 21 Aug 2020 04:08:15 GMT

Expires = Mon, 24 Aug 2020 04:08:15 GMT

max-age = 259200

User 2 :
Date = Fri, 21 Aug 2020 16:23:42 GMT

Expires = Mon, 24 Aug 2020 16:23:42 GMT

max-age = 259200

In the above example, both users have the exact
same max-age header and they each have a unique
Expires header. For tracking purposes, getting the
unique Expires header may be sufficient but, if the at-
tacker wants to know when the resource was put in the
cache to build a behavioral profile of the user, she can
use the following formula:

Date = Expires − fixed expiry duration

3.4 Vulnerable Resources Identification

Before conducting the attack, it is necessary to identify
online resources that can be fetched—or probed—from
any domain and that have either a fixed expiry date or
a fixed expiry duration. To identify them, we perform
two crawls of the same websites at different times, t1
and t2, and collect the response headers of all images,
CSS and JavaScript files requested on the page. Specific
details of the crawl and what we found are reported in
Section 4.1. Listing 2 presents the algorithm we used to
detect servers with vulnerable configurations, based on
the following rules:
– The value of Access-Control-Allow-Origin re-

sponse header must be "*". Since we are interested
in extracting the time a resource was cached from

#For a resource which was crawled at t1 and t2
#r: dictionary of response headers from both the crawls
#Et1 : Expiry header at t1
#Et2 : Expiry header at t2
#CCMAt1 : max-age directive from crawl 1
#CCMAt2 : max-age directive from crawl 2
#ACAOt1 : Access-Control-Allow-Origin header at t1
#ACAOt2 : Access-Control-Allow-Origin header at t2

def isVulnerable(r):
if (r[ACAOt1] == '*' and r[ACAOt2] == '*' and

'age' not in r):↪→

if (r[Et2] − r[Et1] = t2 − t1):
return True

if (r[CCMAt1] − r[CCMAt2] = t2 − t1):
return True

return False

Fig. 2. Pseudo code to identify vulnerable resources.

a cross-origin context, it is necessary for these re-
sources to have this header, otherwise the browser
will block the request and the probing script will
encounter a CORS error;

– The resource should not be cached by any inter-
mediary proxy as the response headers would be
identical when the resource is requested at different
times. We identify such resources by the presence
of the age response header. If it is not present, the
resource is not cached by any proxy;

– If the resource has Cache-Control:max-age in both
the crawls, the difference between values of this di-
rective from the two crawls must be equal to the
difference between the time of the crawls t1 and t2,
thus reflecting a fixed expiry date;

– If the resource has the Expires header in both the
crawls, the difference between the values of this
header must be equal to the difference between the
time of the crawls t1 and t2, thus reflecting a fixed
expiry duration.

It should be noted that in order to conduct this attack
over a long period of time, an attacker must perform reg-
ular crawls to maintain a list of vulnerable resources. As
the web is very dynamic with servers that keep chang-
ing, it should be checked often that each resource is still
online and and that they still meet the criteria presented
in Listing 2.

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 6

Table 1. Number of resources shared by multiple websites in our
dataset of resources common between the two crawls.

#websites #distinct resources

1 3,000,562
1-10 94,283
10-100 4,298
100-1000 324
>1000 21

Total 3,099,488

4 Empirical Evaluation

4.1 Dataset Description

Section 3.4 describes the methodology we follow to iden-
tify the resources that are vulnerable and can be used
by our probing script. Our methodology requires two
crawls at different times hence, we crawled the Top 100K
websites from the Tranco list [33] on the 2nd and the
3rd of June, using Headless Chrome instrumented with
Puppeteer [10] and recorded response headers of all the
JavaScript, CSS and image resources from the home-
pages and 5 subpages of each of these websites. We
were able to collect response headers from 393, 428 web-
pages on 78, 532 websites on the 2nd and 391, 806 web-
pages on 78, 623 websites on the 3rd. These crawls re-
sulted in us collecting response headers of 12, 606, 963
and 12, 564, 824 resources, respectively. However, we are
only interested in those resources and websites that are
common in both crawls. After filtering the dataset, we
are left with 10, 614, 460 resources representing 382, 774
webpages from 76, 819 websites that are common be-
tween both crawls.
Resource sharing. Out of 10, 614, 460 resources found
to be common between the two crawls, only 3, 099, 488
of them are distinct as many of them are present in
multiple websites and web-pages. Table 1 shows the
number of resources along with the number of web-
sites where it was seen during our crawls. We can
see that 3, 000, 562 of them are only present in one
website—i.e. they are unique to a particular web-
site. On further investigation of these resources, we
found that most of these were served from the same
domain as the website while the rest of them were
served from various CDNs. We also found several re-
sources which were present in many websites. For in-
stance, the table shows that about 21 resources were
seen in more than 1, 000 websites. All of these 21

resources can be categorized as analytics. These re-
sources include fbevents.js, google-analytics.js,
addthis_widget.js, adsbygoogle.js, etc. Out of all
the resources in our database, google-analytics is the
most commonly used resource and is present in 18, 011
websites.

4.2 Crawl Analysis

We use the rules described in Section 3.4 to filter out
the resources from the 3, 099, 488 distinct resources ob-
tained through our crawls and the results can be found
in Table 2. The first rule requires the Access-Control-
Allow-Origin header to be set to * so that they can
be accessed in a third-party domain. Out of 3, 099, 488
resources, 616, 190 have an Access-Control-Allow-Origin
header value of *.

The second rule requires that the age header should
not be present to exclude resources that are cached by
intermediary proxies. In our pool of distinct resources,
there are 2, 145, 938 resources which do not have the age
header.

Our dataset has 1, 586, 347 resources that have the
Expires header and 2, 277, 277 the Cache-Control:max-
age directive. This shows the extent of the usage of the
Expires header even though it has been deprecated and
replaced by the Cache-Control:max-age directive.

Finally, we check the times collected during our
crawl on each of these resources to keep all those that
are vulnerable to our attack and whose presence in the
browser cache can be probed (see pseudo code in Fig-
ure 2). In total, there are 91, 755 resources which can be
exploited to instrument our attack. These resources are
present on 44, 795 webpages from 12, 970 websites and
visits to these pages can be detected by our attack.

Table 2. Number of resources satisfying the rules.

Rule #resources

1 Access-Control-Allow-Origin = * 616,190
2 age header not present 2,145,938
3 ’Expires’ header present 1,586,347
4 ’Cache-Control:max-age’ header present 2,277,277
5 Pseudo-code (cf. Figure2) 91,755

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 7

Table 3. Number of distinct resources of type image, CSS and
JavaScript common in both crawls.

Resource # resources # vulnerable

Image 1,680,543 63,335 (3.77%)
JavaScript 898,358 18,125 (2.02%)

CSS 520,587 10,295 (1.98%)

Total 3,099,488 91,755 (2.96%)

4.2.1 Types of Vulnerable Resources

As explained in Section 4.1, during our crawls, we only
store header information about resources whose content-
type header contains either javascript, image or CSS.
Table 3 shows the distribution of collected resources
along with number of them that are found to be vul-
nerable. From the table, we can observe that the max-
imum number of vulnerable resources identified from
our crawls of Tranco Top 100K websites are images,
followed by JavaScript and CSS resources. The vulner-
ability of a resource depends on the configuration of
caching headers provided by the servers, hence it is hard
to reason about such results.

4.2.2 Vulnerability Window

We define the vulnerability window (VW) as the du-
ration for which a particular resource is cached in the
browser. This duration also denotes the amount of time
until which our probing script can detect the presence of
a cached resource. As explained in Section 2, the server
decides the freshness period of the resource and commu-
nicates this information to clients using either Cache-
Control:max-age or Expires header. Figure 3 shows a
CDF of vulnerability window of all the resources found
to be vulnerable to our attack.

We can see from Figure 3 that about 30% of vulner-
able images, 35% of vulnerable JavaScripts and 30% of
vulnerable CSS resources have a VW greater than 100
days, which means that, if a user visits a website that
leads to one of these resources being cached, they might
remain cached for at least the next 100 days. We also
observe that ~55% of JavaScript resources have a VW
less than 7 days, whereas only 40% of CSS resources
have a VW as short as 7 days and the images are in be-
tween the two with ~55% of them having a VW shorter
than 7 days.

0 1 10 100

Vulnerability Window (Days)

0.0

0.2

0.4

0.6

0.8

1.0

P
(X

)

JS

CSS

Image

Fig. 3. CDF of vulnerability window for images, CSS and
JavaScript resources (X-axis has a logarithmic scale).

We also noticed that CSS and JavaScript resources
have comparatively higher VW’s as compared to image
resources. MDN guide on HTTP-Caching [15], recom-
mending the usage of a technique called revving [35] for
JavaScripts and CSS, gives us a clue on the reason for
such a behavior. It is recommended to set expiration
times as far in the future as possible for the best re-
sponsiveness and performance. Then, when it is time to
update these resources, developers only have to modify
the name of the resource so that the change is propa-
gated to all clients on future visits. This way, developers
do not have to worry about ever serving stale content
and hence being able to set long expiration times.

Another interesting observation can be made from
Figure 3. We notice that 11,646 websites serve a very
high number of resources with an expiry duration of less
than 30 days and a smaller—but significant—number
of 1,910 websites serve resources with an expiry dura-
tion greater than 100 days. 574 of them have resources
between 30 days and 100 days. We believe the reason
for this behavior is because of the difference in use-case
of these resources. For instance, looking at image re-
sources, ~65% of them have a VW less than 30 days
and ~30% of them have a VW greater than 100 days,
which means that there are only about 5% of vulnera-
ble images which have a VW between 30 days and 100
days. The reason being, there are some images which
are specific to a page or are part of a dynamic page,
for example, an image of a politician on news website’s
front-page on a given day. Whereas there are some im-
ages which are shared by other pages of the website and
are expected to remain unchanged for longer duration,
for example, the logo of the website. For images that
are present on all pages, it makes sense for the server
to fix a long expiry date, whereas the website does not

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 8

Table 4. 10 most common values of server header with different
versions of the same server grouped together. For instance,

Nginx/1.15.3 and Nginx/1.13.7 are grouped as Nginx.

Server # resources # vulnerable

Nginx 760,546 27,058 (3.56%)
Cloudflare 577,052 2,747 (0.48%)
Apache 552,584 5,712 (1.03%)
Microsoft 243,999 3,642 (1.49%)
AmazonS3 107,319 1,335 (1.24%)
Tengine 74,641 1,245 (1.67%)

NetDNA-cache/2.2 37,258 357 (0.96%)
Akamai 35,276 5967 (16.91%)

Google Tag Manager 29,355 0 (0%)
ESF 25,565 0 (0%)

want to take up space in the browser cache for too long
for resources which are specific to a page or are part
of a dynamic page. Thus, we believe that images that
have a VW of greater than 30 days (~35% of vulnera-
ble images) are those which are mostly site-wide shared
resources, such as logo.

4.2.3 Servers Exposing Vulnerable Resources

Out of 3, 099, 488 distinct resources common between
the two crawls, 2, 841, 435 of them have a server [12]
header, which contains information about the software
(CDN’s in some cases) used by the origin server to han-
dle the particular request. Table 4 shows the 10 most
common values of the server header along with the
number of resources which they served in our dataset.
The table also shows the number of vulnerable resources
with a particular value of the server header. Nginx,
Cloudflare, and Apache are the Top 3 values of the
server header observed in our dataset. It is important
to note that Nginx and Apache are what we would nor-
mally consider a server, while Cloudflare provides var-
ious CDN services that automatically optimize the re-
sources for quality and performance.

We can see from the table that Nginx has the high-
est number of vulnerable resources followed by Akamai
and Apache. Figure 4 shows a CDF plot for the vulner-
ability windows for these 3 servers. We can see from the
figure that Apache has the highest fraction of resources
with higher vulnerability windows as compared to Aka-
mai and Nginx. For instance, ~28% of resources served
by Apache have a vulnerability window greater than 7
days whereas only ~25% of resources served by Akamai

0 1 10 100

Vulnerability Window (Days)

0.0

0.2

0.4

0.6

0.8

1.0

P
(X

)

nginx

Akamai

apache

Fig. 4. CDF of vulnerability window for Top 3 vulnerable servers
(X-axis has a logarithmic scale).

and ~19% of resources served by Nginx show the same
vulnerability window.

In the end, we did not find any specific correla-
tion between vulnerable resources and affected servers.
There are no servers which by default serve a resource
with the headers expected for this attack.

4.3 Performance Evaluation of the Attack

We tested our attack on all the major desktop and mo-
bile browsers. Table 5 shows the results of our tests. Our
script fails in Safari and every browser on iOS devices
because WebKit—Safari’s browser engine—implements
cache isolation by default. This means that a resource
saved in the cache for domain A will be downloaded
again when requested by our probing script embedded
in domain B. Our attack also failed in iOS browsers,
such as Chrome and Firefox, because Apple enforces
every browser on iOS to use WebKit behind the scene.

Another important distinction between our attack
and other timing-based cache attacks for history sniffing
is that we do not need to download the resource, as we
are only interested in the response headers and not the
response body. Hence, we do not send GET queries, but
instead rely on HEAD queries, which are much faster. This
also makes our attack independent of the size of the re-
sources being probed, unlike other timing attacks. How-
ever, this does not hold true for using our attack when
building a tracking identifier since we use GET queries in
that case to poison the cache.

Based on our tests with two recent laptop devices on
Linux, and a MacBook Pro 2018 running MacOS 10.14,
a OnePlus 7T running on Android 10, and various net-
work conditions, such as over 4G, WiFi and Ethernet:

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 9

Table 5. Browser compatibility

Platform Browser Attack Success

Desktop
Chrome 84 3

Safari 13.1 7

Firefox 80 3

Opera 70 3

Brave 1.12 3

Tor browser 9.5.4 (Standard) 3

Mobile
Chrome 84 (Android) 3

Safari 13.1 (iOS) 7

Firefox 80 (Android) 3

Opera 59.1 (Android) 3

Brave 1.12 (Android) 3

an attacker can expect to probe over 300 URLs/second
when the resources being probed are in the cache, while
they can probe over 100 URLs/second when the re-
sources are not found in the browser’s cache. In essence,
an attacker could feasibly check thousands of resources
in under 30 seconds without having any noticeable im-
pact on the device—or the webpage—performance.

5 Privacy Implications
In this section, we explore two concrete applications of
our attack to understand the privacy implications be-
hind it. We use the data collected from our crawl to
evaluate their effectiveness and highlight the potential
problems of extracting the exact time when a resource
was put into the cache.

5.1 History Sniffing.

Illegal access of browser history through probing is com-
monly referred to as history sniffing. The techniques
to access the browser history include using CSS selec-
tors and cache-based attacks. However, most of the pre-
viously known cache-based attacks are timing attacks
that rely on the difference in the time it takes to down-
load the resource from the server directly or using a
cached copy. All of these attacks are limited to only in-
ferring if a resource is in the cache and none of them are
able to extract the exact time when it was cached. Thus,
contrary to more traditional history sniffing, the attack
presented in this paper presents two major differences.

Time of visit. We can not only know if a page
was visited, but also when it was visited. Depending on
the website, some resources are shared across all pages
of the same website like a custom CSS file or a third-
party library. Relying on this type of resources provides
the time of the initial visit but not more. Other websites
have resources that are used on a single page. For exam-
ple, news websites and blogs often have unique images
at the top of each of their article. This presents some
serious privacy implications as this information can be
leveraged to build a timeline of the user’s visit. We can
learn if a visit to a particular domain was just a one-
off or if it is repeated and part of the user daily rou-
tine, showing a keen interest to the topics discussed on
the visited pages. This information can also be abused
to better target the user and understand her preferred
time for reading news, watching videos or shopping. Ad
companies could then predict when she will be online to
deliver an ad at just the right time. All in all, knowing
if a page was visited is already concerning, but knowing
exactly when adds an additional layer of intrusiveness
that has not been seen before in more traditional sniff-
ing.

Partial history. As discussed previously, not all
pages are vulnerable to the attack as they may not
present resources that can be probed on any domain.
However, even if the reconstructed browser history is
partial, it can still present some sensitive information on
the user. Moreover, the presence of a vulnerable resource
in a webpage does not necessarily mean that our attack
would succeed in detecting if the webpage is present in
the user’s browsing history. Vulnerability simply means
that our probing script can detect if a resource is in
the browser cache or not. To infer a website visit from
a cached resource requires us to have the knowledge of
whether that resource is present in any other website
or not. For instance, if we detect that a resource A is
cached after a visit to a particular website X and that
resource is not used by any other website then we would
be able to infer that the user has visited the website X.

Proof of Concept. A PoC of this sniffing tech-
nique can be found at https://github.com/mishravikas/
PETS_dejavu where we test if the user has visited
one of the 5 websites that are vulnerable in the
Tranco Top 100 list.

5.1.1 Resources Unique to a Website

Considering that websites are interconnected with many
resources being shared among many websites and web-

https://github.com/mishravikas/PETS_dejavu
https://github.com/mishravikas/PETS_dejavu

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 10

pages, not all vulnerable resources can be associated
with an individual website. Thus we calculate the num-
ber of resources which are only used by one website in
our dataset of 100K websites to figure out how many of
them could be used to infer visit to a particular website.
Out of 91, 755 distinct resources common between the
two crawls, 87, 812 of them are only used in one web-
site while the remaining are present in more than one
website. This translates to 8, 456 websites which have
at-least one resource that is used by only that website
in our dataset of 100K websites. Thus, visits to these
8, 456 websites can be inferred by probing for a single
resource.

Out of these 8, 456 websites, 26 of them are ranked
in the Tranco Top 100, 168 are ranked in Top 1K, while
1, 306 belong to the Tranco Top 10K list. Figure 5 de-
picts the distribution of website rankings that are vul-
nerable to our attack.

Our results show that the vulnerable websites are
somewhat evenly distributed in the Tranco ranking,
popular websites are also vulnerable, and the popularity
of a website does not appear to have a huge impact on
its vulnerability to our attack.

0 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Tranco Rank

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

V
u
ln

e
ra

b
le

 W
e
b
si

te
s

Fig. 5. Histogram showing Tranco ranking of websites vulnerable
to our attack. X-axis shows the range of Tranco ranks whereas

the Y-axis repors on the number of vulnerable websites.

5.1.2 Resources Unique to a Sub-page

Since we collected in our crawls resources from 5 sub-
pages of each of the 100K websites, we can analyse if
it is possible to detect specific page visit and not just
the website visit. For instance, if a website has a unique
resource in each of the sub-page then the presence of

that resource in a user’s browser cache would indicate
that the user has visited that specific page. We found
that out of 91, 755 distinct vulnerable resources, 58, 496
of them are only used in a single sub-page and are not
shared by any other sub-page. This translates to 9, 705
pages crawled which have at-least one resource used
in only that specific page. These sub-pages belong to
5, 574 websites, thus some of these sub-pages belong to
the same website. On further investigation, we observed
that most of these websites and sub-pages are either
blogs, news providers or other article based websites.

This has severe privacy concerns as it leads to vari-
ous behavioural detection. For instance, in our dataset,
we noticed that news websites follow the pattern of hav-
ing a unique image in each of the news article, thus it is
possible to detect specific news articles read by a user
on the vulnerable news provider’s websites. This results
in an attacker inferring political leanings of a user, their
preferred news provider as well as their daily habits.

5.1.3 Categories of Vulnerable Websites

We use the category feature of SimilarWeb [11] to clas-
sify the websites in our dataset to 24 possible cate-
gories. We were able to classify 56,767 websites from
our dataset of 76,819 websites as the remaining websites
were unknown to the service. Table 6 shows the list of
all 24 categories along with the total number of web-
sites along with the ones that are vulnerable. The high-
est number of vulnerable websites belongs to the Com-
puter Electronics and Technology category with 1,918
websites, even though they are represented a lot in our
dataset compared to other ones. These websites are fol-
lowed closely by News and Media at 1,787 websites and
Science and Education at 1,107. On the opposite side,
the Pets and Animals category is the least vulnerable
one in our dataset with only 34 of them being vulnera-
ble.

Table 6 also shows the Vulnerability Ratio (VR) and
the top ranked vulnerable website for that category. Vul-
nerability ratio is calculated by dividing the number of
vulnerable websites by the total number of websites in
each category. The Lifestyle category has the highest
vulnerability ratio at 0.4. In other words, 40% of all web-
sites categorised as Lifestyle were found to be vulnerable
to our attack. Furthermore, websites categorised as Ref-
erence Materials have the lowest VR of 0.12. Finally, re-
garding vulnerable websites with detectable sub-pages,
we do not notice any specific trends. Between 35% to

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 11

Table 6. Complete list of categories sorted by total number of websites.

Category # Websites # Vulnerable VR # with Top Website (rank)Websites detectable sub-pages

Computers Electronics and Technology 13,477 1,918 0.14 1002 (52.2%) microsoft.com (5)
Science and Education 7,501 1,107 0.15 363 (32.8%) archive.org (88)
News and Media 6,197 1,787 0.29 660 (36.9%) qq.com (9)
Arts and Entertainment 4,610 1,088 0.24 397 (36.5%) netflix.com (4)
Finance 3,447 568 0.16 265 (46.7%) alipay.com (57)
Law and Government 2,907 399 0.14 108 (27.1%) loc.gov (323)
Games 2,131 381 0.18 203 (53.2%) roblox.com (208)
Business and Consumer Services 2,110 411 0.20 203 (49.4%) zillow.com (338)
Ecommerce and Shopping 1,703 390 0.23 216 (55.4%) tmall.com (7)
Health 1,686 371 0.22 170 (44.6%) mama.cn (149)
Travel and Tourism 1,372 331 0.24 142 (42.9%) tripadvisor.com (311)
Lifestyle 1,371 558 0.41 316 (56.6%) nike.com (481)
Adult 1,255 161 0.13 66 (41.0%) pornhubpremium.com (2922)
Food and Drink 1,060 254 0.24 113 (44.5%) dianping.com (1586)
Sports 933 302 0.32 133 (44.0%) espn.com (308)
Community and Society 754 144 0.20 57 (39.6%) jw.org (1346)
Vehicles 707 207 0.30 93 (44.9%) cars.com (2637)
Hobbies and Leisure 642 96 0.15 52 (54.2%) shutterstock.com (286)
Jobs and Career 620 102 0.16 55 (53.9%) zhaopin.com (1264)
Heavy Industry and Engineering 609 116 0.20 49 (42.2%) bp.com (3252)
Home and Garden 554 163 0.30 90 (55.2%) gome.com.cn (354)
Gambling 487 61 0.13 22 (36.1%) bet9ja.com (701)
Reference Materials 486 60 0.12 26 (43.3%) britannica.com (456)
Pets and Animals 148 34 0.23 18 (52.9%) edh.tw (2608)

55% of all vulnerable websites are also subject to sub-
page detection across almost all categories.

Overall, this analysis of website category shows that
no single category can be targeted more than another as
it all depends in the end on how a website is structured
and configured.

5.1.4 Case Study: News websites

In this subsection, we present a case study demonstrat-
ing feasibility of such an attack on news websites. The
objective being - extracting the articles read by a user
on websites of these news providers. The attack is sim-
ple for news websites because almost every news article
has a unique image-resource embedded in it. We probe
for the presence of this resource in a user’s cache and
deduce if they have read the article or not based on the
results of our probe.

We manually visited the websites of 5 popular
American news providers, namely msn.com (rank 49),
cnn.com (rank 63), cnbc.com (rank 182), nbcnews.com
(rank 405) and msnbc.com (rank 1439), on Monday,
31 Aug 2020. We found that all of these websites in-
cluded an image with a unique URL in most of their

news articles. The images from cnbc.com and cnn.com
had a fixed expiry duration where the images were
served with a dynamic Expires header and a con-
stant Cache-Control:max-age header. On the other
hand, images from msn.com, nbcnews.com, msnbc.com
were served with a fixed expiry date and a constant
Expires headers.

The vulnerability window of the images from these
websites ranges from 1 hour for cnn.com to 90 days for
nbcnews.com and msnbc.com. For images from msn.com
and cnbc.com, the vulnerability window was found to
be 5 days and 30 days respectively. Thus, if the user
reads the article on the day of publication, our attack
can detect that for as long as 90 days for some cases
and as short as 1 hour for cnn.com.

This case study highlights the seriousness of our at-
tack as learning a user’s news preferences has serious
privacy implications. It could reveal their political lean-
ings, sexual orientation or even their financial interests
based on the types of articles they read.

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 12

5.2 User Tracking

Another application of this attack is about identifying
a user on any given web page. It is possible to create
an identifier by combining the times when some spe-
cific resources were cached in the user’s browser while
bypassing any other tracking mechanisms, like cook-
ies or browser fingerprinting [31]. Looking at the tab
"about:cache" in Firefox, which lists all resources cached
in the browser, some elements can stay on disk for as
long as ten years (even if the expiration date is set even
further in time).

However, as mentioned previously, extraction of
timestamps only works for vulnerable resources. Thus,
out of 3, 099, 488 distinct resources in our dataset,
91, 755 of them can be used for tracking as they were
found to be vulnerable, as shown in Table 2. ~31%
(28, 892) of these resource had a vulnerability window
greater than 100 days i.e these resources could possibly
remain in a browser’s cache for longer than 100 days and
any identifier built using these resources can be consid-
ered stable for that duration. Still, the biggest weakness
of this attack is that it is difficult to scale past a cer-
tain number of users. If a website has a high traffic, it
would be very difficult to distinguish every single user
without a specially crafted algorithm as the precision of
the cache headers is bounded to seconds.

Proof of Concept. A PoC of this tracking tech-
nique can be found at https://github.com/mishravikas/
PETS_dejavu. It is important to note that our PoC
is basic and a more advanced script can be developed
to probe different resources for users who would visit
the website at the same time. Furthermore, the probing
script could be modified with additional complexity by
first querying with a HEAD query to ensure that the user’s
cache is not poisoned. However, if none of the resources
being probed turn out to be in the cache, another probe
with a GET query could be performed in order to poison
the user’s cache with the desired resources and create
an identifier for the user to identify them on their next
visit.

6 Discussion

6.1 Defenses

To prevent an attacker from finding the exact date when
a resource was cached, we detail several possible defense
solutions:

Deploy cache isolation. Using a double-keyed
cache by including both the URL of the resource and
the domain of the top-level document on which the re-
quest was made effectively mitigates the attack. The
attacker is then unable to test for resources outside of
the domains that she owns. Safari is resistant to our at-
tack as it has been using the eTLD+1 of the top-level
document as a second key since 2013 [1]. A possibility
of using a triple-keyed approach is even being discussed
by the WHATWG and browser vendors to protect from
attacks inside sub-frames in the same document [3, 5, 7].
However, partitioning of the cache limits the re-usability
of third-party resources such as commonly used scripts
and fonts. In such a scenario, each website would need
to download and store its own copy of a resource even if
it was cached earlier for a different origin. Experiments
ran by the Google Chrome team [6] show that overall
network load increases by around 3% while cache misses
increase by about 2%. Third-party fonts seem to be the
most affected with an increase of cache misses by 7%
while JavaScript and CSS files are at 5% and 3% re-
spectively. A more targeted countermeasure would be
to partition the cache for only those resources that set
access-control-allow-origin: *. This approach will thwart
the attack while still keeping the performance advan-
tages of shared caches for authorized domains.

Refresh the headers of cached resources. An-
other approach to protect against the attack is for the
browsers to refresh the Cache-Control and Expires head-
ers every time the resource is requested, even when the
resource is loaded from the cache. This way, if the at-
tacker probes for a resource, she will not be able to dis-
tinguish between the resource being loaded for the first
time and a resource being loaded from the cache. To
accompany this change, developers must then adopt a
revved naming convention so that new versions of scripts
are downloaded as soon as they are released. Introduced
by Steve Souders in 2008 [35], revving consists in includ-
ing the version number in the scripts’ name. If a script
is not updated frequently, developers can put an ex-
piry date that is very far in the future to prevent server
load and an uptick in version will trigger an automatic
change for all clients.

Remove the Cache-Control and Expires head-
ers from the CORS-safelisted response headers.
By removing these two HTTP headers from the list of
authorised response headers, an attacker would not be
able to calculate when a specific resource was cached.
Out of the three solutions detailed here, this is likely
the simplest one with the least amount of impact, as
it would not overload CDNs and it would not require

https://github.com/mishravikas/PETS_dejavu
https://github.com/mishravikas/PETS_dejavu

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 13

developers to completely change their naming conven-
tions.

6.2 Limitations

In this study, we set out to understand the extent to
which HTTP cache headers could be abused for history
sniffing. Here, we discuss some limitations inherent to
our approach.

6.2.1 Impact of User’s Location

For our evaluation, we performed crawls from a single
address in our research lab. While crawling from a differ-
ent location could impact the exact numbers of vulner-
able resources we detected with the presence of proxies
or different expiry dates, we believe this difference to be
marginal and does not impact the qualitative aspect of
our findings.

6.2.2 Repeatability of the History Sniffing Attack

Our attack uses the HTTP HEAD method to avoid vul-
nerable resources being downloaded and cached unnec-
essarily. This has the important advantage of not pollut-
ing the cache, making the attack repeatable. Of course,
the attack can only be repeated for resources that have
not been modified by the server (as well as the fact
the resources must meet the criteria we have specified
in Section 3.4). An extensive history attack requires a
large list of vulnerable resources to test for. We obtain
the list of resources through web crawls, and the list
must be regularly updated to obtain new resources, as
well as purge old ones. The time between crawls and the
natural churn of the web may lead to some discrepancies
when probing a large list of resources.

A variant of our attack might use the HTTP GET
method. However, this would lead to downloading re-
sources and polluting the cache. In some use-cases such
as online tracking, this may be desirable since additional
information, such as timings, can be calculated in addi-
tion to the Date headers. Furthermore, an attacker may
be able to filter polluted cached items from those cached
through organic processes by using the timestamps to
discriminate them.

6.3 Vulnerability Disclosure

We reported our attack on cache headers to the
Chrome and Firefox teams. Despite detailed explana-
tions, Google triaged the vulnerability as a duplicate,
comparing it to timing attacks based on the actual mea-
surement of time. Mozilla acknowledged our attack and
told us that double-keyed cache was added in 2019 to the
Firefox codebase and could be activated by switching
the browser.cache.cache_isolation preference to true [2].

6.4 Cache Partitioning Update (November
2020)

While the bulk of this study was conducted in the first
half of 2020, some important changes have happened
regarding countermeasures in browsers. In Chrome 86
released on October 6th, triple-keyed cache was de-
ployed for all users [8, 30]. Since a lot of browsers are
depending on the same code base, we expect Brave,
Edge, Opera and Chromium-based browsers to integrate
these changes relatively fast. Regarding Firefox, the
cache_isolation preference has still not been switched
on by default as Mozilla developers are working to iso-
late not only the cache but also the different stacks of
the browser [9].

7 Related Work
Browsing history of end users can reveal a lot of per-
sonal and sensitive information about them, such as
their age, gender and even their identities [36, 37]. It has
been shown to be highly unique and distinct with only a
subset of the user’s history needed to perform identifica-
tion [22, 32]. History sniffing has been a popular research
topic since 2002, when attackers discovered a way to ex-
ploit :visited selector to detect the links visited by a
user [20, 26]. Since then, several other techniques have
been devised and published on this topic [19, 29, 34, 36].
In this section, we present some of the main techniques
published over the years for history sniffing, which can
be broadly classified into two categories: Visited-link
and Cache-timing attacks. Finally, we compare our at-
tack presented in this paper and we show that it is fun-
damentally different from other published contributions,
as we are able to learn not only the fact that a website
has been visited, but also the exact time when it was
visited, hence the order of websites visited by the user.

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 14

Visited-link attacks. In 2002, A. Clover reported
a way to detect what pages have been visited by a user
using CSS selector :visited [26]. This selector is used
to apply different styles, such as color, to previously vis-
ited links stored in the browser history. For a long time,
attackers could use getComputedStyle and other simi-
lar functions, such as querySelector, to get the styling
of every element in DOM, including elements of the
:visited class. The attacker then simply had to query
the current style of an element with an uri pointing
to a potential link the user might have visited. When
the style returned by the selector was consistent with
the ones defined for elements of :visited class, the at-
tacker would know that the user has previously visited
that link. This vulnerability was fixed by major browser
vendors by modifying the results of selectors applied on
elements of :visited class. For instance, Firefox [21]
fixed it by lying on getComputedStyle and other func-
tions, such as selectors, and by limiting various other
styling options for visited links.

However, this was not the end of visited-link at-
tacks as browser vendors introduced more advanced
API’s to manipulate various components of the ren-
dering process, such as the Paint API, and exposed
them to JavaScript: the attacks became more advanced.
Weinberg et al. [36] presented an attack using re-paint
events to sniff history and also demonstrated interac-
tive ways to trick users into leaking their history, such
as CAPTCHAS, and inferring the color of the links us-
ing reflections on the webcam. Smith et al. [34] demon-
strated new attacks belonging to this category by abus-
ing the CSS Paint API, CSS 3D transforms and SVG
fill-coloring.

Cache-timing attacks. Timing attacks have been
well-known for quite a long time with the initial idea of
using them in the context of browsing history and caches
being introduced by Felten et al. [28]. They were able to
measure the time difference to load resources that are
present in a browser’s cache, as compared to the ones
which the user’s client sees for the first time. Since then,
cache-timing attacks have been re-visited by researchers
multiple times, with each iteration demonstrating more
severe implications and improving the effectiveness and
scale of deployment. Jia et al. [29] demonstrated geo-
location inference attack using browser-cache, where
they were able to geo-locate a user based on their
browsing history on 62% of Alexa Top 100 websites.
C. Bansal et al. [19] demonstrated robust cache-attacks
and improved the efficiency of the timing-attacks by
utilizing Web Worker API, while also improving the

repeatability of the attack by eliminating cache con-
tamination during cache probing.

Although the underlying objective—i.e., history
sniffing—of our attack and both these categories of at-
tacks remains the same, our attack differs from visited-
link attacks since we do not rely on any style probing,
while also not relying on time measurements to probe
resources present in browser cache, unlike cache-timing
attacks. Furthermore, unlike any other history sniffing
attack, our method also succeeds in getting the exact
time when a user visited a particular website, which is
a first for history attacks to the best of our knowledge.
The closest class of attacks which can be associated with
the one we present in this paper is probably the cache-
timing attacks as similar to our attack they also misuse
the browser cache as a persistent and shared data store.

To the best of our knowledge, abusing Cache-
Control:max-age and Expires headers to get the Date
and time of a website visit has not been reported before.
Furthermore, since we do not rely on any time measure-
ments for our attack, it is immune to the safe-guards
added by browser vendors over the years to mitigate
against potential security threats such as, Firefox lim-
iting the resolution and precision of the timing API, or
Chrome’s solution of disabling re-paints for targets asso-
ciated with a link which was released in Chrome 67 [25]
to mitigate attacks based on CSS Paint API.

8 Conclusion
In this paper, we presented a novel browser cache attack
that does not rely on timing measurements to detect if
a resource exists in the cache. We showed how caching
headers can be abused to extract the exact date and
time a user visited a webpage that included a vulnerable
resource. We also show applications of our attack for
history sniffing as well as tracking. We found all major
browsers, except Safari, to be vulnerable to our attack.
Our attack works for third-party scripts because it relies
on CORS safe-listed headers.

We analyzed static resources on the Tranco
Top 100K websites and show that 12, 970 of them in-
clude vulnerable resources and visits to 8, 456 websites
can be detected by a single resource probe. We also anal-
yse the possibility of detecting visits to not only a web-
site but also webpages of a website. We show that visits
to 9, 705 webpages from 5, 574 websites can be detected
by a single resource probe with many of them belong-
ing to news providers. This presents serious privacy im-

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 15

plications as it is possible to infer user behaviour and
preferences such as their preferred source of news and
their political leanings.

Browsers that implement cache-isolation are resis-
tant to this attack, as well as many of the cache-based
timing attacks. Currently, only Safari does this by de-
fault, but plans to activate this feature in Firefox, or
implement it in Chrome, are a step in the right direction
and would improve privacy and security at the expense
of some loss in caching performance.

Acknowledgments
We thank our shepherd Richard McPherson and the
anonymous reviewers for their helpful feedback. This
work is funded by the ANR FP-Locker project under
grant number ANR-19-CE39-00201.

References
[1] Optionally partition cache to prevent using cache for track-

ing – WebKit Bug tracker. https://bugs.webkit.org/show_
bug.cgi?id=110269, 2013.

[2] Add Cache-Isolation behind a pref – Mozilla Central. https:
//hg.mozilla.org/mozilla-central/rev/a5e791146ef5, 2019.

[3] Double-keyed HTTP cache – WHATWG Fetch GitHub
Repository. https://github.com/whatwg/fetch/issues/904,
2019.

[4] CORS safelisted headers from the Fetch living standard
– WHATWG Standards. https://fetch.spec.whatwg.org/
#cors-safelisted-response-header-name, 2020.

[5] Determine the scope to which storage and communications
should be scoped in the third-party context – Mozilla Bug
tracker. https://bugzilla.mozilla.org/show_bug.cgi?id=
1558932, 2020.

[6] Explainer - Partition the HTTP Cache – GitHub. https:
//github.com/shivanigithub/http-cache-partitioning, 2020.

[7] HTTP Cache Threat Model - Partitioning the cache.
https://docs.google.com/document/d/1U5zqfaJCFj_
URrAmSxJ0C7z0AilLLJ30lgAqShVWnck/, 2020.

[8] Issue 910708: Split Disk Cache Meta Bug – Chrome Bug
tracker. https://bugs.chromium.org/p/chromium/issues/
detail?id=910708, 2020.

[9] [meta] Top-level site partitioning – Mozilla Bug tracker.
https://bugzilla.mozilla.org/show_bug.cgi?id=1590107,
2020.

[10] Puppeteer repository – GitHub. https://github.com/
puppeteer/puppeteer, 2020.

[11] SimilarWeb: Website Traffic Statistics & Analytics. https:
//www.similarweb.com/, 2020.

[12] Server response header – MDN Web Docs. https://
developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Server.

[13] Content Security Policy (CSP) – MDN Web Docs. https:
//developer.mozilla.org/en-US/docs/Web/HTTP/CSP,
2019.

[14] Same-origin policy (SOP) – MDN Web Docs. https://
developer.mozilla.org/en-US/docs/Web/Security/Same-
origin_policy, 2019.

[15] HTTP Caching – MDN Web Docs. https://developer.
mozilla.org/en-US/docs/Web/HTTP/Caching, 2020.

[16] WebGL: 2D and 3D graphics for the web – MDN Web
Docs. https://developer.mozilla.org/en-US/docs/Web/
API/WebGL_API, 2020.

[17] Gunes Acar, Christian Eubank, Steven Englehardt, Marc
Juarez, Arvind Narayanan, and Claudia Diaz. The web never
forgets: Persistent tracking mechanisms in the wild. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pages 674–689, 2014.

[18] Mika D Ayenson, Dietrich James Wambach, Ashkan Soltani,
Nathan Good, and Chris Jay Hoofnagle. Flash cookies and
privacy ii: Now with html5 and etag respawning. Available
at SSRN 1898390, 2011.

[19] Chetan Bansal, Sören Preibusch, and Natasa Milic-Frayling.
Cache timing attacks revisited: Efficient and repeatable
browser history, os and network sniffing. In Hannes Fed-
errath and Dieter Gollmann, editors, ICT Systems Secu-
rity and Privacy Protection, pages 97–111, Cham, 2015.
Springer International Publishing.

[20] David Baron. :visited support allows queries into global
history – Mozilla Bug tracker. https://bugzilla.mozilla.org/
show_bug.cgi?id=147777, 2002.

[21] David Baron. Preventing attacks on a user’s history through
CSS :visited selectors – Mozilla Hacks Blog. https://hacks.
mozilla.org/2010/03/privacy-related-changes-coming-to-css-
vistited/, 2010.

[22] Sarah Bird, Ilana Segall, and Martin Lopatka. Replication:
Why We Still Can’t Browse in Peace: On the Uniqueness
and Reidentifiability of Web Browsing Histories. In Sixteenth
Symposium on Usable Privacy and Security (SOUPS 2020),
pages 489–503. USENIX Association, August 2020.

[23] Norman E Bowie and Karim Jamal. Privacy rights on the
internet: self-regulation or government regulation? Business
Ethics Quarterly, 16(3):323–342, 2006.

[24] Yinzhi Cao, Song Li, and Erik Wijmans. (Cross-)Browser
Fingerprinting via OS and Hardware Level Features. In 24th
Annual Network and Distributed System Security Sympo-
sium, NDSS 2017, San Diego, California, USA, February 26
- March 1, 2017. The Internet Society, 2017.

[25] Chromium. CVE-2018-6137: Leak of visited status of page
in Blink. https://chromereleases.googleblog.com/2018/05/
stable-channel-update-for-desktop_58.html, 2018.

[26] Andrew Clover. CSS visited pages disclosure – BUGTRAQ
mailing list posting. https://seclists.org/bugtraq/2002/Feb/
271, 2002.

[27] Steven Englehardt and Arvind Narayanan. Online tracking:
A 1-million-site measurement and analysis. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’16, page 1388–1401, New York,
NY, USA, 2016. Association for Computing Machinery.

[28] Edward W Felten and Michael A Schneider. Timing attacks
on web privacy. In Proceedings of the 7th ACM conference
on Computer and communications security, pages 25–32,

https://bugs.webkit.org/show_bug.cgi?id=110269
https://bugs.webkit.org/show_bug.cgi?id=110269
https://hg.mozilla.org/mozilla-central/rev/a5e791146ef5
https://hg.mozilla.org/mozilla-central/rev/a5e791146ef5
https://github.com/whatwg/fetch/issues/904
https://fetch.spec.whatwg.org/#cors-safelisted-response-header-name
https://fetch.spec.whatwg.org/#cors-safelisted-response-header-name
https://bugzilla.mozilla.org/show_bug.cgi?id=1558932
https://bugzilla.mozilla.org/show_bug.cgi?id=1558932
https://github.com/shivanigithub/http-cache-partitioning
https://github.com/shivanigithub/http-cache-partitioning
https://docs.google.com/document/d/1U5zqfaJCFj_URrAmSxJ0C7z0AilLLJ30lgAqShVWnck/
https://docs.google.com/document/d/1U5zqfaJCFj_URrAmSxJ0C7z0AilLLJ30lgAqShVWnck/
https://bugs.chromium.org/p/chromium/issues/detail?id=910708
https://bugs.chromium.org/p/chromium/issues/detail?id=910708
https://bugzilla.mozilla.org/show_bug.cgi?id=1590107
https://github.com/puppeteer/puppeteer
https://github.com/puppeteer/puppeteer
https://www.similarweb.com/
https://www.similarweb.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Server
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Server
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Server
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://bugzilla.mozilla.org/show_bug.cgi?id=147777
https://hacks.mozilla.org/2010/03/privacy-related-changes-coming-to-css-vistited/
https://hacks.mozilla.org/2010/03/privacy-related-changes-coming-to-css-vistited/
https://hacks.mozilla.org/2010/03/privacy-related-changes-coming-to-css-vistited/
https://chromereleases.googleblog.com/2018/05/stable-channel-update-for-desktop_58.html
https://chromereleases.googleblog.com/2018/05/stable-channel-update-for-desktop_58.html
https://seclists.org/bugtraq/2002/Feb/271
https://seclists.org/bugtraq/2002/Feb/271

Déjà vu: Abusing Browser Cache Headers to Identify and Track Online Users 16

2000.
[29] Yaoqi Jia, Xinshu Dong, Zhenkai Liang, and Prateek Sax-

ena. I know where you’ve been: Geo-inference attacks via
the browser cache. IEEE Internet Computing, 19(1):44–53,
2014.

[30] Eiji Kitamura. Gaining security and privacy by partitioning
the cache. https://developers.google.com/web/updates/
2020/10/http-cache-partitioning, 2020.

[31] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry.
Beauty and the beast: Diverting modern web browsers to
build unique browser fingerprints. In 2016 IEEE Symposium
on Security and Privacy (SP), pages 878–894. IEEE, 2016.

[32] Lukasz Olejnik, Claude Castelluccia, and Artur Janc. Why
Johnny Can’t Browse in Peace: On the Uniqueness of Web
Browsing History Patterns. In 5th Workshop on Hot Topics
in Privacy Enhancing Technologies (HotPETs 2012), Vigo,
Spain, July 2012.

[33] Victor Le Pochat, Tom van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczynski, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In 26th Annual Network and Dis-
tributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019. The Inter-
net Society, 2019.

[34] Michael Smith, Craig Disselkoen, Shravan Narayan, Fraser
Brown, and Deian Stefan. Browser history re: visited. In
12th USENIX Workshop on Offensive Technologies (WOOT
18), 2018.

[35] Steve Souders. Revving Filenames. https://www.
stevesouders.com/blog/2008/08/23/revving-filenames-dont-
use-querystring/, 2008.

[36] Zachary Weinberg, Eric Y Chen, Pavithra Ramesh Jayara-
man, and Collin Jackson. I still know what you visited last
summer: Leaking browsing history via user interaction and
side channel attacks. In 2011 IEEE Symposium on Security
and Privacy, pages 147–161. IEEE, 2011.

[37] Gilbert Wondracek, Thorsten Holz, Engin Kirda, and
Christopher Kruegel. A practical attack to de-anonymize
social network users. In 2010 IEEE Symposium on Security
and Privacy, pages 223–238. IEEE, 2010.

https://developers.google.com/web/updates/2020/10/http-cache-partitioning
https://developers.google.com/web/updates/2020/10/http-cache-partitioning
https://www.stevesouders.com/blog/2008/08/23/revving-filenames-dont-use-querystring/
https://www.stevesouders.com/blog/2008/08/23/revving-filenames-dont-use-querystring/
https://www.stevesouders.com/blog/2008/08/23/revving-filenames-dont-use-querystring/

	Déjàvu: Abusing Browser Cache Headers to Identify and Track Online Users
	1 Introduction
	2 Background on Web Caches
	2.1 HTTP Headers
	2.2 Cross-Origin Resource Sharing

	3 Déjà vu: A Cache-based Attack
	3.1 Threat Model
	3.2 Attack Overview
	3.3 Date Value Extraction
	3.4 Vulnerable Resources Identification

	4 Empirical Evaluation
	4.1 Dataset Description
	4.2 Crawl Analysis
	4.2.1 Types of Vulnerable Resources
	4.2.2 Vulnerability Window
	4.2.3 Servers Exposing Vulnerable Resources

	4.3 Performance Evaluation of the Attack

	5 Privacy Implications
	5.1 History Sniffing.
	5.1.1 Resources Unique to a Website
	5.1.2 Resources Unique to a Sub-page
	5.1.3 Categories of Vulnerable Websites
	5.1.4 Case Study: News websites

	5.2 User Tracking

	6 Discussion
	6.1 Defenses
	6.2 Limitations
	6.2.1 Impact of User's Location
	6.2.2 Repeatability of the History Sniffing Attack

	6.3 Vulnerability Disclosure
	6.4 Cache Partitioning Update (November 2020)

	7 Related Work
	8 Conclusion

