
XcalableMP PGAS
Programming
Language

Mitsuhisa Sato Editor

From Programming Model
to Applications

XcalableMP PGAS Programming Language

Mitsuhisa Sato
Editor

XcalableMP PGAS
Programming Language
From Programming Model to Applications

Editor
Mitsuhisa Sato
Programming Envt Research Team
RIKEN Center for Computational Science
Kobe, Hyogo, Japan

ISBN 978-981-15-7682-9 ISBN 978-981-15-7683-6 (eBook)
https://doi.org/10.1007/978-981-15-7683-6

This book is an open access publication.

© The Editor(s) (if applicable) and The Author(s) 2021
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-7683-6
http://creativecommons.org/licenses/by/4.0/

Preface

XcalableMP is a directive-based parallel programming language based on Fortran
and C, supporting the PGAS (partitioned global address space) model for distributed
memory parallel systems. PGAS is a programming model related to distributed
memory system with a shared address space that distinguishes between local (cheap)
and remote (expensive) memory access. It provides an easy and intuitive program-
ming model to describe remote data access. PGAS is an emerging programming
model for exascale computing.

The XcalableMP project has been started in 2008 as a part of MEXT e-science
project, led by Prof. Yutaka Ishikawa, University of Tokyo, Japan. The language
specification working group were organized by Mitsuhisa Sato, University of
Tsukuba, with members from academia, government laboratories, and industries,
who are interested in parallel programming languages. In 2011, version 1.0 of
XcalableMP was published. Since 2011, after the e-science project was ended, the
specification working group has been managed under the PC Cluster Consortium,
Japan. At the same time, the Omni XcalableMP compiler has been developed as
a production-level reference implementation of XcalableMP compiler for C and
Fortran 2008 by RIKEN CCS and University of Tsukuba.

The XcalableMP project has taken an evolutional approach with the following
strategies:

• We focus on migration from existing codes: To facilitate the migration, we
took the directive-based approach to enable parallelization by adding direc-
tives/pragma in the global view programming. As a local view programming,
the coarray feature was supported to replace the MPI communication for the
migration from the MPI.

• Learn from the past: In the past, the Japanese HPC language community had a
lot of experience on High-Performance Fortran. This experience provided useful
insights for the design of the global view programming model.

• Specification designed by community: Programming languages should be shared
by many programmers. For the design of the language specification, the specifi-
cation working group has been organized to collect the idea from the community.

v

vi Preface

Currently, the working group is organized under the PC Cluster Consortium,
Japan.

• Design based on the PGAS model and Coarray Fortran: In XcalableMP, the
PGAS model is adopted as the main programming model since it is an emerging
programming model for exascale computing. In addition, we extend it with the
idea taken from HPF for global view programming. Coarray feature is taken as a
local view programming.

• Used as a research vehicle for researches for programming language: As
advanced researches, an extension to accelerator, XcalableACC, and global task-
parallel programming for XcalableMP 2.0 are explored based on the XcalableMP
language.

This book presents XcalableMP language from its programming model and basic
concept to the experience and performance of applications described in XcalableMP
and some extended research projects using XcalableMP.

Chapter “XcalableMP Programming Model and Language” presents the
overview of XcalableMP programming model and language, followed by
implementation and performance evaluation of a reference prototype compiler
and Omni XcalableMP compiler, in Chapter “Implementation and Performance
Evaluation of Omni Compiler”. Chapter “Coarrays in the Context of XcalableMP”
presents how to design and implement the Coarray feature in the XcalableMP
compiler.

XcalableACC is an extended project to integrate the OpenACC with XcalableMP
for the programming of the cluster with accelerators. Chapter “XcalableACC: An
Integration of XcalableMP and OpenACC” describes the XcalableACC with the
implementation and performance evaluation.

Chapter “Mixed-Language Programming with XcalableMP” presents the mixed-
language programming with XcalableMP. It demonstrates how to use XcalableMP
with other programming languages such as Python. The global view programming
of XcalableMP provides very simple and intuitive programming tools to describe a
part of program controlled by Python.

Chapters “Three-Dimensional Fluid Code with XcalableMP”, “Hybrid-View
Programming of Nuclear Fusion Simulation Code in XcalableMP” and “Paralleliza-
tion of Atomic Image Reconstruction from X-ray Fluorescence Holograms with
XcalableMP” present applications experiences, “Three-Dimensional Fluid Code,”
“Nuclear Fusion Simulation Code,” and “Atomic Image Reconstruction from X-ray
Fluorescence Holograms” described in XcalableMP.

Chapter “Multi-SPMD Programming Model with YML and XcalableMP”
presents the international collaboration with French and German partners.
Framework and Programming for Post-Petascale Computing (FP3C) project
conducted during September 2010–March 2013 aimed to exploit efficient
programming and method for future supercomputers. In the FP3C project, the
mSPMD programming had been proposed with the integration of the XcalableMP
and YML workflow programming environment. The priority program “Software for
Exascale Computing” (SPPEXA) by the collaboration with three countries, Japan,

Preface vii

Germany, and France, had been conducted to address fundamental research on the
various aspects of HPC software during 2016–2018 (phase II). The project “MUST
Correctness Checking for YML and XMP Programs (MYX)” had been selected.
The correctness checking program, MUST is applied to the XcalableMP program.

XcalableMP was taken as a parallel programming language project in FLAG-
SHIP 2020 project which was to develop the Japanese flagship supercomputer,
Fugaku, for improving the productivity and performance of parallel programming.
XcalableMP is now available on Fugaku and the performance is enhanced by the
Fugaku interconnect, Tofu-D. Chapter “XcalableMP 2.0 and Future Directions”
presents the current status of XcalableMP on Fugaku and a proposal for the next
version, XcalableMP 2.0. I conclude this book with challenges for future PGAS
models and some retrospectives about XcalableMP.

I hope this book will provide useful information to the XcalableMP program-
mers. Furthermore, for future exascale computing and beyond, an important role
of programming model is to bridge the gap between a new architecture and
programmer’s view as well as providing a comprehensive architectural view of the
system. I believe that the PGAS model and its extensions will be still an important
and suggestive model integrating computation and memory.

Finally, I would like to thank the members of the XcalableMP Specification
Working Group and all the people who contributed to the XcalableMP project.

Kobe, Japan Mitsuhisa Sato
July 2020

Contents

XcalableMP Programming Model and Language . 1
Hitoshi Murai, Masahiro Nakao, and Mitsuhisa Sato

Implementation and Performance Evaluation of Omni Compiler. 73
Masahiro Nakao and Hitoshi Murai

Coarrays in the Context of XcalableMP . 97
Hidetoshi Iwashita and Masahiro Nakao

XcalableACC: An Integration of XcalableMP and OpenACC 123
Akihiro Tabuchi, Hitoshi Murai, Masahiro Nakao, Tetsuya Odajima,
and Taisuke Boku

Mixed-Language Programming with XcalableMP . 147
Masahiro Nakao

Three-Dimensional Fluid Code with XcalableMP . 165
Hitoshi Sakagami

Hybrid-View Programming of Nuclear Fusion Simulation Code
in XcalableMP . 181
Keisuke Tsugane, Taisuke Boku, Hitoshi Murai, Mitsuhisa Sato,
William Tang, and Bei Wang

Parallelization of Atomic Image Reconstruction from X-ray
Fluorescence Holograms with XcalableMP . 205
Atsushi Kubota, Tomohiro Matsushita, and Naohisa Happo

Multi-SPMD Programming Model with YML and XcalableMP 219
Miwako Tsuji, Hitoshi Murai, Taisuke Boku, Mitsuhisa Sato,
Serge G. Petiton, Nahid Emad, Thomas Dufaud, Joachim Protze,
Christian Terboven, and Matthias S. Müller

XcalableMP 2.0 and Future Directions . 245
Mitsuhisa Sato, Hitoshi Murai, Masahiro Nakao, Keisuke Tsugane,
Tesuya Odajima, and Jinpil Lee

ix

XcalableMP Programming Model
and Language

Hitoshi Murai, Masahiro Nakao, and Mitsuhisa Sato

Abstract XcalableMP (XMP) is a directive-based language extension of Fortran
and C for distributed-memory parallel computers, and can be classified as a parti-
tioned global address space (PGAS) language. One of the remarkable characteristics
of XMP is that it supports both global-view and local-view parallel programming.
This chapter describes the programming model and language specification of XMP.

1 Introduction

Distributed-memory systems are generally used for large-scale simulations. To pro-
gram such systems, Message Passing Interface (MPI) is widely adopted. However,
programming with MPI is difficult because programmers must describe inter-
process communications with consideration of the execution flow of their programs,
which might cause deadlocks or wrong results.

To address this issue, a parallel language named High Performance Fortran (HPF)
was proposed in 1991. With HPF, programmers can execute their serial programs in
parallel by inserting minimal directives into them. If the programmers specify data
distribution with HPF directives, the compilers do all other tasks for parallelization
(e.g. communication generation and work distribution). However, HPF was not
widely accepted eventually because the compilers’ automatic processing prevents
the programmers from performance tuning, and the performance depends heavily
on the environment (e.g. compiler and hardware)

Note For more details, please refer: Ken Kennedy, Charles Koelbel and Hans Zima:
The Rise and Fall of High Performance Fortran: An Historical Object Lesson, Proc.
3rd ACM SIGPLAN History of Programming Languages Conf. (HOPL-III), pp. 7-
1–7-22 (2007).

H. Murai (�) · M. Nakao · M. Sato
RIKEN Center for Computational Science, Kobe, Hyogo, Japan
e-mail: h-murai@riken.jp; masahiro.nakao@riken.jp; msato@riken.jp

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_1&domain=pdf
mailto:h-murai@riken.jp
mailto:masahiro.nakao@riken.jp
mailto:msato@riken.jp
https://doi.org/10.1007/978-981-15-7683-6_1

2 H. Murai et al.

In such circumstance, to develop a new parallel programming model that enables
easy parallelization of existing serial programs and design a new language based on
it, “the XMP Specification Working Group” was established in 2008. This group
utilized the lessons from the experience of HPF to define a new parallel language
XcalableMP (XMP). The group was reorganized to one of the working groups of PC
Cluster Consortium in 2011.

It is learned from the lessons of HPF that more automatic processing of compilers
increases the gap between a program and its execution, and, as a result, decreases the
usability of the language. In XMP, the programmers specify explicitly the details of
parallel programs on the basis of compiler directives to make their execution easy to
understand. In particular, they can specify explicitly communication, synchroniza-
tion, data mapping, and work mapping to facilitate performance tuning. In addition,
XMP supports features for one-sided communication on each process, which was
not available in HPF. This feature might enable programmers to implement parallel
algorithms more easily.

In this chapter, an overview of the programming model and language specifica-
tion of XMP is shown. You can find the latest and complete language specification
of XMP in: XcalableMP Specification Working Group, XcalableMP Specification
Version 1.4, http://xcalablemp.org/download/spec/xmp-spec-1.4.pdf (2018).

1.1 Target Hardware

The target of XcalableMP is distributed-memory multicomputers (Fig. 1). Each
compute node, which may contain several cores, has its own local memory (shared
by the cores, if any), and is connected with the others via an interconnection
network. Each node can access its local memory directly and remote memory (the
memory of another node) indirectly (i.e. via inter-node communication). However,

Fig. 1 Target hardware of XMP

http://xcalablemp.org/download/spec/xmp-spec-1.4.pdf

XcalableMP Programming Model and Language 3

it is assumed that accessing remote memory may be much slower than accessing
local memory.

1.2 Execution Model

The execution entities in an XMP program are referred to as XMP nodes or, more
simply, nodes, which has its own memory and can communicate with each other.

An XcalableMP program execution is based on the Single Program Multiple
Data (SPMD) model, where each node starts execution from the same main routine,
and continues to execute the same code independently (i.e. asynchronously) until it
encounters an XcalableMP construct (Fig. 2).

A set of nodes that executes a procedure, statement, loop, a block, etc. is referred
to as its executing node set, and is determined by the innermost task, loop, or
array directive surrounding it dynamically, or at runtime. The current executing
node set is an executing node set of the current context, which is managed by the
XcalableMP runtime system on each node.

The current executing node set at the beginning of the program execution, or
entire node set, is a node set that contains all the available nodes, which can be
specified in an implementation-defined way (e.g. through a command-line option).

When a node encounters at runtime either a loop, array, or task construct,
and is contained by the node set specified (explicitly or implicitly) by the on clause

Fig. 2 Execution model of
XMP

4 H. Murai et al.

of the directive, it updates the current executing node set with the specified one
and executes the body of the construct, after which it resumes the last executing
node set and proceeds to execute the subsequent statements.

In particular, when a node in the current executing node set encounters a loop
or an array construct, it executes the loop or the array assignment in parallel with
the other nodes, so that each iteration of the loop or element of the assignment is
independently executed by the node in which the specified data element resides.

When a node encounters a synchronization or a communication directive,
synchronization or communication occurs between it and the other nodes. That is,
such global constructs are performed collectively by the current executing nodes.
Note that neither synchronization nor communication occurs unless these constructs
are specified.

1.3 Data Model

There are two classes of data in XcalableMP: global data and local data. Data
declared in an XcalableMP program are local by default.

Global data are distributed onto a node set by the align directive (see
Sect. 2.4). Each fragment of distributed global data is allocated in the local memory
of a node in the node set.

Local data comprises all data that are not global. They are replicated within the
local memory of each of the executing nodes.

A node can access directly only local data and sections of global data that reside
in its local memory. To access data in remote memory, explicit communication
must be specified in such ways as global communication constructs and coarray
assignments (Fig. 3).

Fig. 3 Data model of XMP

XcalableMP Programming Model and Language 5

1.4 Programming Models

1.4.1 Partitioned Global Address Space

XMP can be classified as a partitioned global address space (PGAS) language, such
as Co-Array Fortran [1], Unified Parallel C [2], and Chapel [3].

In such PGAS languages, multiple executing entities (i.e. threads, processes, or
nodes in XMP) share a part of their address space, which is, however, partitioned
and a portion of which is local to each executing entity.

The two programming models, global-view and local-view, that XMP supports
to achieve high performance and productivity on PGAS are explained below.

1.4.2 Global-View Programming Model

The global-view programming model is useful when, starting from a serial version
of a program, the programmer parallelizes it in a data-parallel style by adding
directives with minimum modification. Based on this model, the programmer
specifies the distribution of data among nodes using the data distribution directives.
The loop construct assigns each iteration of a loop to the node at which the
computed data is located. The global-view communication directives are used to
synchronize nodes, maintain the consistency of shadow areas of distributed data,
and move sections of distributed data globally. Note that the programmer must
specify explicitly communication to make all data references in their program local
using appropriate directives.

In many cases, the XcalableMP program following the global-view programming
model is based on a serial program, and it can produce the same result, regardless
of the number of nodes (Fig. 4).

There are three groups of directives for this model:

• Data mapping, which specifies the data distribution and mapping to nodes
• Work mapping (parallelization), which specifies the work distribution and

mapping to nodes.
• Communication and synchronization, which specify how a node communicates

and synchronizes with the other nodes.

Because these directives are ignored as a comment by the compilers of base
languages (Fortran and C), an XcalableMP program can usually be compiled by
them to ensure that they run properly.

1.4.3 Local-View Programming Model

The local-view programming model is suitable for programs that implement an
algorithm and a remote data reference that are to be executed by each node (Fig. 5).

6 H. Murai et al.

Fig. 4 Parallelization based on the global-view programming model

Fig. 5 Local-view programming model

For this model, some language extensions and directives are provided. The
coarray notation, which is imported from Fortran 2008, is one such extension,
and can be used to explicitly specify data on which node is to be accessed. For
example, the expression of A(i)[N] in XcalableMP Fortran is used to access an

XcalableMP Programming Model and Language 7

array element of A(i) located on the node N. If the access is a reference, then
a one-sided communication to read the value from the remote memory (i.e. the
get operation) is issued by the executing node. If the access is a definition, then
a one-sided communication to write the value to the remote memory (i.e. the put
operation) is issued by the executing node.

1.4.4 Mixture of Global View and Local View

In the global-view model, nodes are used to distribute data and works. In the local-
view model, nodes are used to address remote data in the coarray notation. In
application programs, the programmers should choose an appropriate data model
according to the characteristics of their program. Figure 6 illustrates the global view
and the local view of data.

Data can have both a global view and a local view, and can be accessed in both of
the views. XcalableMP provides a directive to give the local name (alias) to global
data declared in the global-view programming model to enable them to also be
accessed in the local-view programming model. This feature is useful to optimize
a certain part of a program by using explicit remote data access in the local-view
programming model.

1.5 Base Languages

The XcalableMP language specification is defined on the basis of Fortran and C as
the base languages. More specifically, the base language of XcalableMP Fortran is
Fortran 90 or later, and that of XcalableMP C is ISO C90 (ANSI C89) or later with
some extensions (see below).

1.5.1 Array Section in XcalableMP C

In XcalableMP C, the base language C is extended so that a part of an array, that is,
an array section or subarray, can be put in an array assignment statement, which
is described in Sect. 1.5.2, and some XcalableMP constructs. An array section is
built from a subset of the elements of an array, which is specified by a sequence of
square-bracketed integer expressions or triplets, which are in the form of:

[base] : [length] [: step]
When step is positive, the triplet specifies a set of subscripts that is a regularly

spaced integer sequence of length length beginning with base and proceeding in
increments of step up to the largest. The same applies to negative step too.

When base is omitted, it is assumed to be 0. When length is omitted, it is assumed
to be the number of remainder elements of the dimension of the array. When step is
omitted, it is assumed to be 1.

8 H. Murai et al.

Fig. 6 Global view and local view

Assuming that an array A is declared by the following statement,
int A[100];

some array sections can be specified as follows:

A[10:10] array section of 10 elements from A[10] to A[19]
A[10:] array section of 90 elements from A[10] to A[99]
A[:10] array section of 10 elements from A[0] to A[9]
A[10:5:2] array section of 5 elements from A[10] to A[18] by step 2
A[:] array section of the whole of A

XcalableMP Programming Model and Language 9

1.5.2 Array Assignment Statement in XcalableMP C

In XcalableMP C, the base language C is also extended so that it supports array
assignment statements just as Fortran does.

With such statement, the value of each element of the result of the right-hand side
expression is assigned to the corresponding element of the array section on the left-
hand side. When an operator or an elemental function is applied to array sections in
the right-hand side expression, it is evaluated to an array section that has the same
shape as that of the operands or arguments, and each element of which is the result
of the operator or function applied to the corresponding element of the operands or
arguments. A scalar object is assumed to be an array section that has the same shape
as that of the other array section(s) in the expression or on the left-hand side, and
where each element has its value.

Note that an array assignment is a statement, and therefore cannot appear as an
expression in any other statements.

In the example below, an array assignment statement in the fourth line copies the
five elements from B[0] to B[4] into the elements from A[5] to A[9].

XcalableMP C
int A[10];
int B[5];

...
A[5:5] = B[0:5];

1.6 Interoperability

Most of the existing parallel applications are written with MPI. It is not realistic to
port them over to XMP because each of them consists of millions of lines.

Because XMP is interoperable with MPI, users can develop an XMP application
by modifying a part of an existing one instead of rewriting it totally. Besides, when
developing a parallel application from scratch, it is possible to use XMP to write a
complicated part of, for example, domain decomposition while they use MPI, which
could be faster than XMP, to write a hot-spot part that need to be tuned carefully. In
addition, XMP is interoperable with OpenMP and Python (see Chap. 5).

It might be difficult to develop an application with just one programming
language or framework since it generally has its own strong and weak points. Thus,
an XMP program is interoperable with those in other languages to provide both high
productivity and performance.

10 H. Murai et al.

2 Data Mapping

2.1 nodes Directive

The nodes directive declares a node array, which is an array-like arrangement of
nodes in a node set. A node array can be multi-dimensional.

XcalableMP C
#pragma xmp nodes p[4]

XcalableMP Fortran
!$xmp nodes p(4)

The nodes directive declares a one-dimensionalnode array p that includes four
nodes. In XMP/C, it is zero-based and consists of p[0], p[1], p[2], and p[3].
In XMP/Fortran, it is one-based and consists of p(1), p(2), p(3), and p(4).

XcalableMP C
#pragma xmp nodes p[2][3]

XcalableMP Fortran
!$xmp nodes p(3,2)

The nodes directive declares two-dimensional node array p that includes six
nodes. In XMP/C, it consists of p[0][0], p[0][1], p[0][2], p[1][0],
p[1][1], and p[1][2]. In XMP/Fortran, it consists of p(1,1), p(2,1),
p(3,1), p(1,2), p(2,2), and p(3,2).

Note The ordering of the elements in a node array follows that of a normal array
in the base language, C or Fortran.

XcalableMP C
#pragma xmp nodes p[*]

XcalableMP Fortran
!$xmp nodes p(*)

An asterisk can be specified as the size in the nodes directive to declare a
dynamic node array. In the above code, one-dimensional dynamic node array p
is declared with an asterisk as the size. The actual size of a dynamic node array is
determined at runtime to fit the size of the current executing node set. For example,
when the programmer runs the sample code with three nodes, the node array p
includes three nodes.

The programmer can also declare multi-dimensional dynamic node arrays with
an asterisk.

XcalableMP C
#pragma xmp nodes p[*][3]

XcalableMP Programming Model and Language 11

XcalableMP Fortran
!$xmp nodes p(3,*)

When the programmer runs the sample code with 12 nodes, the node array p
has a shape of 4 × 3, in C, or 3 × 4, in Fortran.

Note The programmer can put an asterisk only in the last dimension, in XMP/For-
tran, or the first dimension, in XMP/C, of the node array.

Hint The dynamic node array may interfere with compiler optimizations. In
general, programs with static ones achieve better performance.

The programmer can declare a node subarray derived from an existing node array.
Node subarrays can be used, for example, to optimize inter-node communication by
reducing the number of nodes participating in the communication.

XcalableMP C
#pragma xmp nodes p[16]
#pragma xmp nodes q[8]=p[0:8]
#pragma xmp nodes r[4][2]=p[8:8]

XcalableMP Fortran
!$xmp nodes p(16)
!$xmp nodes q(8)=p(1:8)
!$xmp nodes r(2,4)=p(9:16)

In line 1, a node array p including 16 nodes is declared. In line 2, a node
subarray q corresponding to the first half of p is declared. In line 3, a two-
dimensional node subarray r corresponding to the latter half of p is declared.

The programmer can declare an n-dimensional node subarray derived from an
m-dimensional one (Fig. 7).

XcalableMP C
#pragma xmp nodes p[4][2]
#pragma xmp nodes row[4]=p[:][*]
#pragma xmp nodes col[2]=p[*][:]

XcalableMP Fortran
!$xmp nodes p(2,4)
!$xmp nodes row(4)=p(*,:)
!$xmp nodes col(2)=p(:,*)

In line 1, a two-dimensional node array p including 4 × 2 nodes is declared. In
line 2, a node subarray row derived from a single row of p is declared. In line 3, a
node subarray col derived from a single column of p is declared.

12 H. Murai et al.

Fig. 7 Node subarrays

A colon represents a triplet which indicates all possible indices in the dimension.
An asterisk indicates the index of the current executing node in the dimension.
For example, col[2] corresponds to p[0][0:2] on nodes p[0][0] and
p[0][1], and to p[1][0:2] on nodes p[1][0] and p[1][1] in XMP/C.
Similarly, col(2) corresponds to p(1:2,1) on nodes p(1,1) and p(2,1),
and to p(1:2,2) on nodes p(1,2) p(2,2) in XMP/Fortran.

In XMP/C, row[0] corresponds to p[0][0] and p[0][1] on p[:][0]
and p[:][1], respectively; col[0] corresponds to p[0][0], p[1][0],
p[2][0], and p[3][0] on p[0][:], p[1][:], p[2][:], p[3][:],
respectively. In XMP/Fortran, row(1) corresponds to p(1,1) and p(2,1) on
p(1,:) and p(2,:), respectively; col(1) corresponds to p(1,1), p(1,2),
p(1,3), and p(1,4) on p(:,1), p(:,2), p(:,3), p(:,4), respectively.

Note The semantics of an asterisk in a node reference is different from that in a
declaration.

XcalableMP Programming Model and Language 13

2.2 template Directive

The template directive declares a template, which is a virtual array that is used
as a “template” of parallelization in the programs and to be distributed onto a node
array.

XcalableMP C
#pragma xmp template t[10]

XcalableMP Fortran
!$xmp template t(10)

This template directive declares a one-dimensional template t having ten
elements. Templates are indexed in the similar manner to arrays in the base
languages. For the above examples, the template t is indexed from zero to nine (i.e.
t[0] · · · t[9]), in XMP/C, or one to ten (i.e. t(1) · · · t(10)), in XMP/Fortran.

Hint In many cases, a template should be declared to have the same shape as your
target array.

XcalableMP C
#pragma xmp template t[10][20]

XcalableMP Fortran
!$xmp template t(20,10)

The template directive declares a two-dimensional template t that has 10 ×
20 elements. In XMP/C, t is indexed from t[0][0] to t[9][19], and, in XMP/Fortran,
from t(1,1) to t(20,10).

XcalableMP C
#pragma xmp template t[:]

XcalableMP Fortran
!$xmp template t(:)

In the above examples, a colon instead of an integer is specified as the size to
declare a one-dimensional dynamic template t. The colon indicates that the size
of the template is not fixed and to be fixed at runtime by the template_fix
construct (Sect. 2.6).

2.3 distribute Directive

The distribute directive specifies a distribution of the target template. Either of
block, cyclic, block-cyclic, or gblock (i.e. uneven block) can be specified to distribute
a dimension of a template.

14 H. Murai et al.

2.3.1 Block Distribution
XcalableMP C

#pragma xmp distribute t[block] onto p

XcalableMP Fortran
!$xmp distribute t(block) onto p

The target template t is divided into contiguous blocks and distributed among
nodes in the node array p (Fig. 8). Let’s suppose that the size of the template is
N and the number of nodes is K . If N is divisible by K , a block of size N/K is
assigned to each node; otherwise, a block of size ceil(N/K) is assigned to each of
N/ceil(N/K) nodes, a block of size mod(N,K) to one node, and no block to (K −
N/ceil(N/K)− 1) nodes. The block distribution is useful for regular computations
such as a stencil one.

Note The function ceil(x) returns a minimum integer value greater than or equal to
x, and mod(x, y) returns x modulo y.

XcalableMP C
#pragma xmp nodes p[3]
#pragma xmp template t[22]
#pragma xmp distribute t[block] onto p

XcalableMP Fortran
!$xmp nodes p(3)
!$xmp template t(22)
!$xmp distribute t(block) onto p

Since ceil(22/3) is 8, eight elements are allocated on each of p[0] and p[1],
and the remaining six elements are allocated on p[2].

XMP/C

XMP/Fortran

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

p[0], p(1)

p[1], p(2)

p[2], p(3)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 8 Block distribution

XcalableMP Programming Model and Language 15

XMP/C

XMP/Fortran

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

p[0], p(1)

p[1], p(2)

p[2], p(3)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 9 Cyclic distribution

2.3.2 Cyclic Distribution

XcalableMP C
#pragma xmp distribute t[cyclic] onto p

XcalableMP Fortran
!$xmp distribute t(cyclic) onto p

The target template t is divided into chunks of size one and distributed among
nodes in the node array p in a round-robin manner (Fig. 9). The cyclic distribution
is useful for the case where the load on each element of the template is not balanced.

XcalableMP C
#pragma xmp nodes p[3]
#pragma xmp template t[22]
#pragma xmp distribute t[cyclic] onto p

XcalableMP Fortran
!$xmp nodes p(3)
!$xmp template t(22)
!$xmp distribute t(cyclic) onto p

2.3.3 Block-Cyclic Distribution

XcalableMP C
#pragma xmp distribute t[cyclic(w)] onto p

XcalableMP Fortran
!$xmp distribute t(cyclic(w)) onto p

The target template t is divided into chunks of size w and distributed among
nodes in the node array p in a round-robin manner (Fig. 10). The block-cyclic
distribution is useful for the case where the load on each element of the template is
not balanced but the locality of the elements is required.

16 H. Murai et al.

XMP/C

XMP/Fortran

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

p[0], p(1)

p[1], p(2)

p[2], p(3)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 10 Block-cyclic distribution

XcalableMP C
#pragma xmp nodes p[3]
#pragma xmp template t[22]
#pragma xmp distribute t[cyclic(3)] onto p

XcalableMP Fortran
!$xmp nodes p(3)
!$xmp template t(22)
!$xmp distribute t(cyclic(3)) onto p

2.3.4 Gblock Distribution
XcalableMP C

#pragma xmp distribute t[gblock(W)] onto p

XcalableMP Fortran
!$xmp distribute t(gblock(W)) onto p

The target template t is divided into contiguous blocks of size W[0], W[1], · · · ,
in XMP/C, or W(1), W(2), · · · , in XMP/Fortran, and distributed among nodes in
the node array p (Fig. 11). The array W is called a mapping array. The programmer
can specify irregular (uneven) block distribution with the gblock format.

XcalableMP C
#pragma xmp nodes p[3]
#pragma xmp template t[22]
int W[3] = {6, 11, 5};
#pragma xmp distribute t[gblock(W)] onto p

XcalableMP Fortran
!$xmp nodes p(3)
!$xmp template t(22)
integer, parameter :: W(3) = (/6,11,5/)
!$xmp distribute t(gblock(W)) onto p

XcalableMP Programming Model and Language 17

XMP/C

XMP/Fortran

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

p[0], p(1)

p[1], p(2)

p[2], p(3)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 11 Gblock distribution

The programmer can specify an asterisk instead of a mapping array in the
gblock distribution to defer fixing the actual distribution. In such a case, the actual
distribution will be fixed at runtime by using the template_fix construct.

2.3.5 Distribution of Multi-Dimensional Templates

The programmer can distribute a multi-dimensional template onto a node array.
XcalableMP C

#pragma xmp nodes p[2][2]
#pragma xmp template t[10][10]
#pragma xmp distribute t[block][block] onto p

XcalableMP Fortran
!$xmp nodes p(2,2)
!$xmp template t(10,10)
!$xmp distribute t(block,block) onto p

The distribute directive declares the distribution of a two-dimensional
template t onto a two-dimensional node array p. Each dimension of the template
is divided in a block manner and each of the rectangular region is assigned to a node
(Fig. 12).

The programmer can specify a different distribution format in each of the
dimension of a template (Fig. 13).

XcalableMP C
#pragma xmp nodes p[2][2]
#pragma xmp template t[10][10]
#pragma xmp distribute t[block][cyclic] onto p

XcalableMP Fortran
!$xmp nodes p(2,2)
!$xmp template t(10,10)
!$xmp distribute t(cyclic,block) onto p

18 H. Murai et al.

XMP/C XMP/Fortran

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

p[0][0], p(1,1)

p[0][1], p(2,1)

p[1][0], p(1,2)

p[1][1], p(2,2)

Fig. 12 Example of multi-dimensional distribution (1)

XMP/C XMP/Fortran

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

p[0][0], p(1,1)

p[0][1], p(2,1)

p[1][0], p(1,2)

p[1][1], p(2,2)

Fig. 13 Example of multi-dimensional distribution (2)

XMP/C XMP/Fortran

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

p[0], p(1)

p[1], p(2)

p[2], p(3)

p[3], p(4)

Fig. 14 Example of multi-dimensional distribution (3)

When an asterisk is specified in a distribute directive as a distribution
format, the target dimension is “non-distributed.” In the following example, the
first dimension is distributed in a block manner and the second dimension is non-
distributed (Fig. 14).

XcalableMP Programming Model and Language 19

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[10][10]
#pragma xmp distribute t[block][*] onto p

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(10,10)
!$xmp distribute t(*,block) onto p

2.4 align Directive

The align directive specifies that an array is to be mapped in the same way as a
specified template. In other words, an align directive defines the correspondence
of elements between an array and a template, and each of the array element is
allocated on the node where the corresponding template element is assigned.

p[0], p(1)

a[i] / a(i) t[i] / t(i)

p[1], p(2)

p[2], p(3)

p[3], p(4)

Fig. 15 Example of array alignment (1)

p[0][0], p(1,1)

p[0][1], p(2,1)

p[1][0], p(1,2)

p[1][1], p(2,2)

a[i][j] / a(j,i) t[i][j] / t(j,i)

Fig. 16 Example of array alignment (2)

20 H. Murai et al.

a[i][*] / a(*,i) t[i] / t(i)

p[0], p(1)

p[1], p(2)

p[2], p(3)

p[3], p(4)

Fig. 17 Example of array alignment (3)

p[0], p(1)

p[1], p(2)

p[2], p(3)

p[3], p(4)

a[i] / a(i) t[i][*] / t(*,i)

Fig. 18 Example of array alignment (4)

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[8]
#pragma xmp distribute t[block] onto p
int a[8];

5 #pragma xmp align a[i] with t[i]

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(8)
!$xmp distribute t(block) onto p
integer :: a(8)

5 !$xmp align a(i) with t(i)

The array a is decomposed and laid out so that each element a(i) is colocated
with the corresponding template element t(i) (Fig. 15).

The align directive can also be used for multi-dimensional arrays (Fig. 16).
XcalableMP C

#pragma xmp nodes p[2][2]
#pragma xmp template t[8][8]
#pragma xmp distribute t[block][block] onto p

XcalableMP Programming Model and Language 21

int a[8][8];
5 #pragma xmp align a[i][j] with t[i][j]

XcalableMP Fortran
!$xmp nodes p(2,2)
!$xmp template t(8,8)
!$xmp distribute t(block,block) onto p
integer :: a(8,8)

5 !$xmp align a(j,i) with t(j,i)

The programmer can align an n-dimensional array with an m-dimensional
template for n > m (Fig. 17).

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[8]
#pragma xmp distribute t[block] onto p
int a[8][8];

5 #pragma xmp align a[i][*] with t[i]

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(8)
!$xmp distribute t(block) onto p
integer :: a(8,8)

5 !$xmp align a(*,i) with t(i)

When an asterisk is specified as a subscript in a dimension of the target array
in the align directive, the dimension is “collapsed” (i.e. not distributed). In the
sample program above, the first dimension of the array a is distributed onto the
node array p while the second dimension is collapsed.

In XMP/C, a[0:2][:] will be allocated on p[0] while, in XMP/Fortran,
a(:,1:2) will be allocated on p(1).

The programmer also can align an n-dimensional array with an m-dimensional
template for n < m (Fig. 18).

XcalableMP C
#pragma xmp nodes p[2][2]
#pragma xmp template t[8][8]
#pragma xmp distribute t[block][block] onto p
int a[8];

5 #pragma xmp align a[i] with t[i][*]

XcalableMP Fortran
!$xmp nodes p(2,2)
!$xmp template t(8,8)
!$xmp distribute t(block,block) onto p
integer :: a(8)

5 !$xmp align a(i) with t(*,i)

22 H. Murai et al.

When an asterisk is specified as a subscript in a dimension of the target template
in the align directive, the array will be “replicated” along the axis of the
dimension.

In XMP/C, a[0:4] will be replicated and allocated on p[0][0] and p[0][1]
while, in XMP/Fortran, a(1:4) will be allocated on p(1,1) and p(2,1).

2.5 Dynamic Allocation of Distributed Array

This section explains how distributed (i.e. global) arrays are allocated at runtime.
The basic procedure is common in XMP/C and XMP/Fortran with a few specific
difference.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[N]
#pragma xmp distribute t[block] onto p
float *a;

5 #pragma xmp align a[i] with t[i]
:

a = xmp_malloc(xmp_desc_of(a), N);

In XMP/C, first, declare a pointer of the type of the target array; second, align it
as if it were an array; finally, allocate memory for it with the xmp_malloc() func-
tion. xmp_desc_of() is an intrinsic/built-in function that returns the descriptor of
the XMP object (i.e. nodes, templates, or global arrays) specified by the argument.

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(N)
!$xmp distribute t(block) onto p
real, allocatable :: a(:)

5 !$xmp align a(i) with t(i)

allocate(a(N))

In XMP/Fortran, first, declare an allocatable array; second, align it; finally,
allocate memory for it with the allocate statement.

For multi-dimensional arrays, the procedure is the same as that for one-
dimensional ones, as follows:

XcalableMP C
#pragma xmp nodes p[2][2]
#pragma xmp template t[N1][N2]
#pragma xmp distribute t[block][block] onto p
float (*a)[N2];

5 #pragma xmp align a[i][j] with t[i][j]

XcalableMP Programming Model and Language 23

:
a = (float (*)[N2])xmp_malloc(xmp_desc_of(a), N1, N2);

XcalableMP Fortran
!$xmp nodes p(2,2)
!$xmp template t(N2,N1)
!$xmp distribute t(block,block) onto p
real, allocatable :: a(:,:)

5 !$xmp align a(j,i) with t(j,i)
:

allocate(a(N2,N1))

Note If the size of the template is not fixed until runtime, the programmer has to
fix it at runtime with the template_fix construct.

2.6 template_fix Construct

The template_fix construct fixes the shape and/or the distribution of an unfixed
template.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[:]
#pragma xmp distribute t[block] onto p
double *a;

5 #pragma xmp align a[i] with t[i]

int n = 100;
#pragma xmp template_fix t[n]
a = xmp_malloc(xmp_desc_of(a), n);

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(:)
!$xmp distribute t(block) onto p
real, allocatable :: a(:)

5 integer :: n
!$xmp align a(i) with t(i)

n = 100
!$xmp template_fix t(n)

10 allocate(a(n))

24 H. Murai et al.

In the above sample code, first, a template t whose size is unfixed (“:”) is
declared; second, a pointer a, in XMP/C, or an allocatable array a, in XMP/Fortran,
is aligned with the template; third, the size of the template is fixed with a
template_fix construct; finally, the pointer or the allocatable array is allocated
with the xmp_malloc() built-in function in XMP/C or the allocate statement
in XMP/Fortran, respectively.

Note The template_fix constructs can be applied to a template only once.

This construct can also be used to fix a mapping array of a template that is
distributed in “gblock(*)” at declaration.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[:]
#pragma xmp distribute t[gblock(*)] onto p
double *a;

5 #pragma xmp align a[i] with t[i]

int n = 100;
int m[] = {40,30,20,10};

10 #pragma xmp template_fix[gblock(m)] t[n]
a = xmp_malloc(xmp_desc_of(a), n);

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(:)
!$xmp distribute t(gblock) onto p
real, allocatable :: a(:)

5 integer :: n, m(4)
!$xmp align a(i) with t(i)

n = 100
m(:) = (/40,30,20,10/)

10 !$xmp template_fix(gblock(m)) t(n)
allocate(a(n))

XcalableMP Programming Model and Language 25

3 Work Mapping

3.1 task and tasks Construct

The task construct defines a task that is executed by a specified node set. The
tasks construct asserts that the task constructs it surrounds can be executed in
parallel.

3.1.1 task Construct

When a node encounters a task construct at runtime, it executes the associated block
(called a task) if it is included by the node set specified by the on clause; otherwise,
it skips the execution of the block (Fig. 19).

XcalableMP C
#include <stdio.h>
#pragma xmp nodes p[4]

int main(){
5 int num = xmpc_node_num();
#pragma xmp task on p[1:3]
{

printf("%d: Hello\n", num);
}

10

return 0;
}

XcalableMP Fortran
program main
!$xmp nodes p(4)

integer :: num

5 num = xmp_node_num()
!$xmp task on p(2:4)

write(*,*) num, ": Hello"
!$xmp end task

10 end program main

In the above example, nodes p[1], p[2], and p[3] invoke the printf()
function, and p[1] outputs “1: Hello” in XMP/C; p(2), p(3), and p(4) execute
the write statement, and p(2) outputs “2: Hello” in XMP/Fortran.

Note that a new node set is generated by each task construct. Let’s consider
inserting a bcast construct into the task.

26 H. Murai et al.

Fig. 19 Example of task construct (1)

XcalableMP C
#pragma xmp task on p[1:3]
{
#pragma xmp bcast (num)
}

XcalableMP Fortran
!$xmp task on p(2:4)
!$xmp bcast (num)
!$xmp end task

This bcast construct is executed by the node set specified by the on clause of
the task construct. Thus, the node p[1] broadcasts the value of num to p[2]
and p[3] in XMP/C, and p(2) to p(3) and p(4) in XMP/Fortran.

The bcast construct in the above code is equivalent to that in the following
code, where it is executed by a new node set q that is explicitly declared.

XcalableMP C
#pragma xmp nodes q[3] = p[1:3]
#pragma xmp bcast (num) on q

XcalableMP Fortran
!$xmp nodes q(3) = p(2:4)
!$xmp bcast (num) on q

XcalableMP Programming Model and Language 27

Note that the task is executed by the node set specified by the on clause.
Therefore,xmpc_node_num() and xmp_node_num() return the id in the node
set.

For example, consider inserting xmpc_node_num() or xmp_node_num()
into the task in the first program.

XcalableMP C
#include <stdio.h>
#pragma xmp nodes p[4]

int main(){
5 #pragma xmp task on p[1:3]
{

printf("%d: Hello\n", xmpc_node_num());
}

10 return 0;
}

XcalableMP Fortran
program main
!$xmp nodes p(4)

!$xmp task on p(2:4)
5 write(*,*) xmp_node_num(), ": Hello"
!$xmp end task

end program main

The node p[1] outputs “0: Hello” in XMP/C, and p(2) “1: Hello” in XMP/For-
tran.

Note A new node set should be collectively generated by all of the executing nodes
at the point of a task construct unless it is surrounded by a tasks construct.
Therefore, in the above example, p[0] in XMP/C and p(1) in XMP/Fortran must
process the task construct.

3.1.2 tasks Construct

Let’s consider that each of two tasks invokes a function.
XcalableMP C

#pragma xmp nodes p[4]

#pragma xmp task on p[0:2]

28 H. Murai et al.

{
5 func_a();
}
#pragma xmp task on p[2:2]
{

func_b();
10 }

XcalableMP Fortran
!$xmp nodes p(4)

!$xmp task on p(1:2)
call func_a()

5 !$xmp end task
!$xmp task on p(3:4)

call func_b()
!$xmp end task

In the above example, the two tasks cannot be executed in parallel because the
on clauses must be evaluated by all of the executing nodes (Fig. 20).

Fig. 20 Example of task construct (2)

XcalableMP Programming Model and Language 29

Fig. 21 Example of tasks construct

In such a case, the programmer must specify a tasks construct surrounding the
tasks to execute them in parallel (Fig. 21).

XcalableMP C
#pragma xmp nodes p[4]

#pragma xmp tasks
{

5 #pragma xmp task on p[0:2]
{

func_a();
}
#pragma xmp task on p[2:2]

10 {
func_b();

}
}

30 H. Murai et al.

XcalableMP Fortran
!$xmp nodes p(4)

!$xmp tasks
!$xmp task on p(1:2)

5 call func_a()
!$xmp end task
!$xmp task on p(3:4)

call func_b()
!$xmp end task

10 !$xmp end tasks

Because the node sets specified by the on clauses of the task constructs
surrounded by a tasks construct are disjoint, they can be executed in parallel.

3.2 loop Construct

The loop construct is used to parallelize a loop.
XcalableMP C

#pragma xmp loop on t[i]
for (int i = 0; i < 10; i++)

a[i] = i;

XcalableMP Fortran
!$xmp loop on t(i)

do i = 1, 10
a(i) = i

end do

The loop directive above specifies that the iteration i of the following loop is
executed by the node that owns the template element t[i] or t(i), which is
specified in the on clause.

Such a loop must satisfy the following two conditions:

1. There is no data/control dependence among the iterations. In other words, the
iterations of the loop can be executed in any order to produce the same result.

2. Elements of distributed arrays, if any, are accessed only by the node(s) that
own(s) the elements.

The programs below are examples of a right loop directive and a loop statement.
Condition 1 is satisfied because i is the only one index of the distributed array a
that is accessed within the loop, and condition 2 is also satisfied because the indices
of the template in the on clause of the loop directive are identical to that of the
distributed array (Fig. 22).

XcalableMP Programming Model and Language 31

Fig. 22 Example of loop construct (1)

Fig. 23 Example of loop construct (2)

Fig. 24 Example of loop construct (3)

XcalableMP C
#pragma xmp nodes p[2]
#pragma xmp template t[10]
#pragma xmp distribute t[block] onto p

5 int main(){
int a[10];

#pragma xmp align a[i] with t[i]

32 H. Murai et al.

#pragma xmp loop on t[i]
10 for(int i=0;i<10;i++)

a[i] = i;

return 0;
}

XcalableMP Fortran
program main
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p

5 integer a(10)
!$xmp align a(i) with t(i)

!$xmp loop on t(i)
do i=1, 10

10 a(i) = i
enddo

end program main

Then, is it possible to parallelize the loops in the example below where the loop
bounds are shrunk from the above?

XcalableMP C
#pragma xmp loop on t[i]

for(int i=1;i<9;i++)
a[i] = i;

XcalableMP Fortran
!$xmp loop on t(i)

do i=2, 9
a(i) = i

enddo

In this case, conditions 1 and 2 are satisfied and therefore it is possible to
parallelize them. In XMP/C, p[0] processes the indices from one to four and p[1]
from five to eight. In XMP/Fortran, p(1) processes the indices from two to five and
p(2) from six to nine (Fig. 23).

Next, is it possible to parallelize the below loops in which the index of the
distributed array is different?

XcalableMP C
#pragma xmp loop on t[i]

for(int i=1;i<9;i++)
a[i+1] = i;

XcalableMP Programming Model and Language 33

XcalableMP Fortran
!$xmp loop on t(i)

do i=2, 9
a(i+1) = i

enddo

In this case, condition 1 is satisfied but 2 is not, and therefore it is not possible
to parallelize them. In XMP/C, p[0] tries to access a[5] but does not own it. In
XMP/Fortran, p(1) tries to access a(6) but does not own it (Fig. 24).

3.2.1 Reduction Computation

The serial programs below are examples of a reduction computation.
C

#include <stdio.h>

int main(){
int a[10], sum = 0;

5

for(int i=0;i<10;i++){
a[i] = i+1;
sum += a[i];

}
10

printf("%d\n", sum);

return 0;
}

Fortran
program main

integer :: a(10), sum = 0

do i=1, 10
5 a(i) = i

sum = sum + a(i)
enddo

write(*,*) sum
10

end program main

34 H. Murai et al.

Fig. 25 Example of reduction computation (1)

Fig. 26 Example of reduction computation (2)

If the above loops are parallelized just by adding a loop directive, the value of
the variable sum varies from node to node because it is calculated separately on
each node (Fig. 25). The value should be reduced to produce the right result.

XcalableMP C
#pragma xmp loop on t[i]

for(int i=0;i<10;i++){
a[i] = i+1;
sum += a[i];

5 }

XcalableMP Fortran
!$xmp loop on t(i)

do i=1, 10
a(i) = i
sum = sum + a(i)

5 enddo

Then, to correct the error in the above code, add a reduction clause to the
loop directive as follows (Fig. 26).

XcalableMP C
#include <stdio.h>
#pragma xmp nodes p[2]
#pragma xmp template t[10]
#pragma xmp distribute t[block] onto p

XcalableMP Programming Model and Language 35

5

int main(){
int a[10], sum = 0;

#pragma xmp align a[i] with t[i]

10 #pragma xmp loop on t[i] reduction(+:sum)
for(int i=0;i<10;i++){

a[i] = i+1;
sum += a[i];

}
15

printf("%d\n", sum);

return 0;
}

XcalableMP Fortran
program main
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p

5 integer :: a(10), sum = 0
!$xmp align a(i) with t(i)

!$xmp loop on t(i) reduction(+:sum)
do i=1, 10

10 a(i) = i
sum = sum + a(i)

enddo

write(*,*) sum
15

end program main

An operator and target variables for reduction computation are specified in a
reduction clause. In the above examples, a “+” operator and a target variable
sum are specified for the reduction computation to produce a total sum among
nodes.

Operations that can be specified as an operator in a reduction clause are
limited to the following associative ones.

C
+

*
-
&

5 |

36 H. Murai et al.

^
&&
||
max

10 min
firstmax
firstmin
lastmax
lastmin

Fortran
+

*
-
.and.

5 .or.
.eqv.
.neqv.
max
min

10 iand
ior
ieor
firstmax
firstmin

15 lastmax
lastmin

Note The total result is calculated by combining the partial results on all nodes. The
ordering of the combination is unspecified. Hence, if the target variable is a type of
floating point (e.g. float in XMP/C or real in XMP/Fortran), the difference of
the order can make a little bit difference in the result value from that in the original
serial execution.

3.2.2 Parallelizing Nested Loop

Parallelization of nested loops can be specified similarly to a single one, as follows.
XcalableMP C

#pragma xmp nodes p[2][2]
#pragma xmp template t[10][10]
#pragma xmp distribute t[block][block] onto p

XcalableMP Programming Model and Language 37

5 int main(){
int a[10][10];

#pragma xmp align a[i][j] with t[i][j]

#pragma xmp loop on t[i][j]
10 for(int i=0;i<10;i++)

for(int j=0;j<10;j++)
a[i][j] = i*10+j;

return 0;
15 }

XcalableMP Fortran
program main
!$xmp nodes p(2,2)
!$xmp template t(10,10)
!$xmp distribute t(block,block) onto p

5 integer :: a(10,10)
!$xmp align a(j,i) with t(j,i)

!$xmp loop on t(j,i)
do i=1, 10

10 do j=1, 10
a(j,i) = i*10+j

enddo
enddo

15 end program main

3.3 array Construct

The array construct is for work mapping of array assignment statements.
XcalableMP C

#pragma xmp align a[i] with t[i]
:

#pragma xmp array on t[0:N]
a[0:N] = 1.0;

XcalableMP Fortran
!$xmp align a(i) with t(i)

:
!$xmp array on t(1:N)
a(1:N) = 1.0

38 H. Murai et al.

The above is equivalent to the below.
XcalableMP C

#pragma xmp align a[i] with t[i]
:

#pragma xmp loop on t[i]
for(int i=0;i<N;i++)

5 a[i] = 1.0;

XcalableMP Fortran
!$xmp align a(i) with t(i)

:
!$xmp loop on t(i)
do i=1, N

5 a(i) = 1.0
enddo

This construct can also be applied to multi-dimensional arrays.
XcalableMP C

#pragma xmp align a[i][j] with t[i][j]
:

#pragma xmp array on t[:][:]
a[:][:] = 1.0;

XcalableMP Fortran
!$xmp align a(j,i) with t(j,i)

:
!$xmp array on t(:,:)
a(:,:) = 1.0

Note The template appearing in the on clause must have the same shape as the
arrays in the following statement. The right-hand side value in this construct must be
identical among all nodes because the array construct is a global (i.e. collective)
operation.

4 Data Communication

4.1 shadow Directive and reflect Construct

Stencil computation frequently appears in scientific simulation programs, where, to
update an array element a[i], its neighboring elements a[i-1] and a[i+1] are
referenced. If a[i] is on the boundary region of a block-distributed array on a
node, a[i+1] may reside on another (neighboring) node.

XcalableMP Programming Model and Language 39

Since it involves large overhead to copy a[i+1] from the neighboring node
to update each a[i], a technique of copying collectively the elements on the
neighboringnode to the area added to the distributed array on each node is usually
adopted. In XMP, such additional area is called “shadow.”

4.1.1 Declaring Shadow

Shadow areas can be declared with the shadow directive. In the example below, an
array a has shadow areas of width one on both the lower and upper bounds.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t[block] onto p
double a[16];

5 #pragma xmp align a[i] with t[i]
#pragma xmp shadow a[1]

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
real :: a(16)

5 !$xmp align a(i) with t(i)
!$xmp shadow a(1)

In the Fig. 27, shaded elements are those that each node owns and white ones are
shadow.

Note Arrays distributed in a cyclic manner cannot have shadow.

In some programs, it is natural that the widths of the shadow area on the lower
and upper bounds are different. There is also a case where the shadow area exists

Fig. 27 Example of shadow directive (1)

40 H. Murai et al.

Fig. 28 Example of shadow directive (2)

only on either of the bounds. In the example below, it is declared that a distributed
array a has a shadow area of width one only on the upper bound (Fig. 28).

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t(block) onto p
double a[16];

5 #pragma xmp align a[i] with t[i]
#pragma xmp shadow a[0:1]

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
real :: a(16)

5 !$xmp align a(i) with t(i)
!$xmp shadow a(0:1)

The values on the left- and right-hand sides of a colon designate the widths on
the lower and upper bounds, respectively.

4.1.2 Updating Shadow

To copy data to shadow areas from neighboring nodes, use the reflect construct.
In the example below, the shadow areas of an array a that are of width one on both
the upper and lower bounds are updated (Fig. 29).

XcalableMP C
#pragma xmp reflect (a)

#pragma xmp loop on t[i]
for(int i=1;i<15;i++)

5 a[i] = (a[i-1] + a[i] + a[i+1])/3;

XcalableMP Programming Model and Language 41

Fig. 29 Example of reflect construct (1)

Fig. 30 Example of reflect construct (2)

Fig. 31 Example of periodic reflect construct

XcalableMP Fortran
!$xmp reflect (a)

!xmp loop on t(i)
do i=2, 15

5 a(i) = (a(i-1) + a(i) + a(i+1))/3
enddo

With this reflect directive, in XMP/C, node p[1] sends an element a[4] to
the shadow area on the upper bound on node p[0] and a[7] to the shadow area
on the lower bound on p[2]; p[0] sends an element a[3] to the shadow area on
the lower bound on p[1], and p[2] sends a[8] to the shadow area on the upper
bound on p[1].

42 H. Murai et al.

Similarly, in XMP/Fortran, node p(2) sends an element a(5) to the shadow
area on the upper bound on node p(1) and a(8) to the shadow area on the lower
bound on p(3); p(1) sends an element a(4) to the shadow area on the lower
bound on p(2), and p(3) sends a(9) to the shadow area on the upper bound on
p(2).

The default behavior of a reflect directive is to update the whole of
the shadow area declared by the shadow directive. However, there are some
cases where a specific part of the shadow area is to be updated to reduce the
communication cost at a point of the code.

To update only a specific part of the shadow area, add the width clause to the
reflect directive.

The values on the left- and right-hand sides of a colon in the width clause
designate the widths on the lower and upper bounds to be updated, respectively. In
the example below, only the shadow area on the upper bound is updated (Fig. 30).

XcalableMP C
#pragma xmp reflect (a) width(0:1)

XcalableMP Fortran
!$xmp reflect (a) width(0:1)

Note If the widths of the shadow areas to be updated on the upper and lower bounds
are equal, that is, for example, width(1:1), you can abbreviate it as width(1).

Note It is not possible to update the shadow area on a particular node because
reflect is a collective operation.

The reflect directive does not update either the shadow area on the lower
bound on the leading node or that on the upper bound on the last node. However,
the values in such areas are needed for stencil computation if periodic boundary
conditions are used in the computation.

To update such areas, add a periodic qualifier into the width clause. Let’s
look at the following example where an array a having shadow areas of width one
on both the lower and upper bounds appears (Fig. 31).

XcalableMP C
#pragma xmp reflect (a) width(/periodic/1:1)

XcalableMP Fortran
!$xmp reflect (a) width(/periodic/1:1)

The periodic qualifier has the following effects, in addition to that of a normal
reflect directive: in XMP/C, node p[0] sends an element a[0] to the shadow
area on the upper bound on node p[3], and p[3] sends a[15] to the shadow area

XcalableMP Programming Model and Language 43

on the lower bound on p[0]; in XMP/Fortran, node p(1) sends an element a(1)
to the shadow area on the upper bound on node p(4), and p(4) sends a(16) to
the shadow area on the lower bound on p(1).

The shadow directive and reflect construct can be applied to arrays
distributed in multiple dimensions. The following programs are the examples for
two-dimensional distribution.

XcalableMP C
#pragma xmp nodes p[3][3]
#pragma xmp template t[9][9]
#pragma xmp distribute t[block][block] onto p
double a[9][9];

5 #pragma xmp align a[i][j] with t[i][j]
#pragma xmp shadow a[1][1]

:
#pragma xmp reflect (a)

XcalableMP Fortran
!$xmp nodes p(3,3)
!$xmp template t(9,9)
!$xmp distribute t(block,block) onto p
real :: a(9,9)

5 !$xmp align a(j,i) with t(j,i)
!$xmp shadow a(1,1)

:
!$xmp reflect (a)

The central node receives data from the surrounding eight nodes to update its
shadow areas (Fig. 32). The shadow areas of the other nodes are also updated, which
is omitted in the figure.

For some applications, data from ordinal directions are not necessary. In such
a case, the data communication from/to the ordinal directions can be avoided by
adding the orthogonal clause to a reflect construct (Fig. 33).

XcalableMP C
#pragma xmp reflect (a) orthogonal

XcalableMP Fortran
!$xmp reflect (a) orthogonal

Note The orthogonal clause is effective only for arrays more than one dimen-
sion of which is distributed.

44 H. Murai et al.

Fig. 32 Example of multi-dimensional shadow (1)

Besides, you can also add shadow areas to only specified dimension (Fig. 34).
XcalableMP C

#pragma xmp nodes p[3]
#pragma xmp template t[9]
#pragma xmp distribute t[block] onto p
double a[9][9];

5 #pragma xmp align a[i][*] with t[i]
#pragma xmp shadow a[1][0]

:
#pragma xmp reflect (a)

XcalableMP Programming Model and Language 45

Fig. 33 Example of multi-dimensional shadow (2)

XcalableMP Fortran
!$xmp nodes p[3]
!$xmp template t[9]
!$xmp distribute t[block] onto p
real :: a(9,9)

5 !$xmp align a(*,i) with t(i)
!$xmp shadow a(0,1)

:
!$xmp reflect (a)

For the array a, 0 is specified as the shadow width in non-distributed dimensions.

46 H. Murai et al.

Fig. 34 Example of multi-dimensional shadow (3)

4.2 gmove Construct

The programmers can specify a communication of distributed arrays in the form
of assignment statements by using the gmove construct. In other words, with
the gmove construct, any array assignment between two arrays (i.e. global data
movement) that may involve inter-node communication can be specified.

There are three modes of gmove; “collective mode,” “in mode,” and “out mode.”

4.2.1 Collective Mode

The global data movement involved by a collective gmove is performed collec-
tively, and results in implicit synchronization among the executing nodes.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t[block] onto p
int a[16], b[16];

5 #pragma xmp align a[i] with t[i]
#pragma xmp align b[i] with t[i]

:

XcalableMP Programming Model and Language 47

#pragma xmp gmove
a[9:5] = b[0:5];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
integer :: a(16), b(16)

5 !$xmp align a(i) with t(i)
!$xmp align b(i) with t(i)

:
!$xmp gmove

a(10:14) = b(1:5)

In XMP/C, p[0] sends b[0]-b[3] to p[2]-p[3], and p[1] sends b[4] to
p[3]. Similarly, in XMP/Fortran, p(1) sends b(1)-b(4) to p(3)-p(4), and
p(2) sends b(5) to p(4) (Fig. 35).

Fig. 35 Collective gmove (1)

Fig. 36 Collective gmove (2)

Fig. 37 Collective gmove (3)

48 H. Murai et al.

Fig. 38 Collective gmove (4)

Fig. 39 Collective gmove (4)

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t1[16]
#pragma xmp template t2[16]
#pragma xmp distribute t1[cyclic] onto p

5 #pragma xmp distribute t2[block] onto p
int a[16], b[16];
#pragma xmp align a[i] with t1[i]
#pragma xmp align b[i] with t2[i]

XcalableMP Programming Model and Language 49

:
10 #pragma xmp gmove

a[9:5] = b[0:5];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t1(16)
!$xmp template t2(16)
!$xmp distribute t1(cyclic) onto p

5 !$xmp distribute t2(block) onto p
integer :: a(16), b(16)
!$xmp align a(i) with t1(i)
!$xmp align b(i) with t2(i)

:
10 !$xmp gmove

a(10:14) = b(1:5)

While array a is distributed in a cyclic manner, array b is distributed in a block
manner.

In XMP/C, p[0] sends b[0] and b[4] to p[2] and p[3]. p[1] sends b[1]
to p[2]. Each element of p[2] and p[3] will be copied locally. Similarly, in
XMP/Fortran, p(1) sends b(1) and b(5) to p(3) and p(4). p(2) sends b(2)
to p(3). Each element of p(3) and p(4) will be copied locally (Fig. 36).

By using this method, the distribution of an array can be “changed” during
computation.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t1[16]
#pragma xmp template t2[16]
int W[4] = {2,4,8,2};

5 #pragma xmp distribute t1[gblock(W)] onto p
#pragma xmp distribute t2[block] onto p
int a[16], b[16];
#pragma xmp align a[i] with t1[i]
#pragma xmp align b[i] with t2[i]

10 :
#pragma xmp gmove

a[:] = b[:];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t1(16)
!$xmp template t2(16)
integer :: W(4) = (/2,4,7,3/)

5 !$xmp distribute t1(gblock(W)) onto p
!$xmp distribute t2(block) onto p

50 H. Murai et al.

integer :: a(16), b(16)
!$xmp align a(i) with t1(i)
!$xmp align b(i) with t2(i)

10 :
!$xmp gmove

a(:) = b(:)

In this example (Fig. 37), the elements of an array b that is distributed in a block
manner are copied to the corresponding elements of an array a that is distributed in
a generalized-block manner. For the arrays a and b, communication occurs if the
corresponding elements reside in different nodes (arrows illustrate communication
between nodes in the figures).

In the assignment statement, if a scalar (i.e. one element of an array or a variable)
is specified on the right-hand side and an array section is specified on the left-hand
side, a broadcast communication occurs for it.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t[block] onto p
int a[16], b[16];

5 #pragma xmp align a[i] with t[i]
#pragma xmp align b[i] with t[i]

:
#pragma xmp gmove

a[9:5] = b[0];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
integer :: a(16), b(16)

5 !$xmp align a(i) with t(i)
!$xmp align b(i) with t(i)

:
!$xmp gmove

a(10:14) = b(1)

In this example (Fig. 38), in XMP/C, an array element b[0] of node p[0] will
be broadcasted to the specified array section on node p[2] and p[3]. Similarly,
in XMP/Fortran, an array element b(1) of node p(1) will be broadcasted to the
specified array section on node p(3) and p(4).

Not only distributed arrays but also replicated arrays can be specified on the
right-hand side.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[16]

XcalableMP Programming Model and Language 51

#pragma xmp distribute t[block] onto p
int a[16], b[16], c;

5 #pragma xmp align a[i] with t[i]
:

#pragma xmp gmove
a[9:5] = b[0:5];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
integer :: a(16), b(16), c

5 !$xmp align a(i) with t(i)
:

!$xmp gmove
a(10:14) = b(1:5)

In this example, a replicated array b is locally copied to distributed array a
without communication.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t1[4]
#pragma xmp template t2[8]
#pragma xmp distribute t1[block] onto p

5 #pragma xmp distribute t2[block] onto p
int a[4][8], b[4][8];
#pragma xmp align a[i][*] with t1[i]
#pragma xmp align b[*][i] with t2[i]

:
10 #pragma xmp gmove

a[0][:] = b[0][:];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t1(4)
!$xmp template t2(8)
!$xmp distribute t1(block) onto p

5 !$xmp distribute t2(block) onto p
integer :: a(4,8), b(4,8)
!$xmp align a(*,i) with t1(i)
!$xmp align b(i,*) with t2(i)

:
10 #pragma xmp gmove

a(:,1) = b(:,1)

In this example (Fig. 39), in XMP/C, b[0][0:2] on p[0], b[0][2:2] of
p[1], b[0][4:2] on p[2] and b[0][6:2] on p[3] are copied to a[0][:]

52 H. Murai et al.

on p[0]. Similarly, in XMP/Fortran, b(1:2,1) on p(1), b(3:4,1) of p(2),
b(5:6,1) on p(3) and b(7:8,1) on p(4) are copied to a(:,1) on p(1).

4.2.2 In Mode

The right-hand side data of the assignment, all or part of which may reside outside
the executing node set, can be transferred from its owner nodes to the executing
nodes with an in gmove.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[4]
#pragma xmp distribute t[block] onto p
double a[4], b[4];

5 #pragma xmp align a[i] with t[i]
#pragma xmp align b[i] with t[i]

:
#pragma xmp task on p[0:2]
#pragma xmp gmove in

10 a[0:2] = b[2:2]
#pragma xmp end task

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(4)
!$xmp distribute t(block) onto p
real :: a(4), b(4)

5 !$xmp align a(i) with t(i)
!$xmp align b(i) with t(i)

:
!$xmp task on p(1:2)
!$xmp gmove in

10 a(1:2) = b(3:4)
!$xmp end task

In this example, the task directive divides four nodes into two sets, the first-half
and the second-half. A gmove construct that is in an in mode copies data using a
get operation from the second-half node to the first-half node (Fig. 40).

4.2.3 Out Mode

For the left-hand side data of the assignment, all or part of which may reside outside
the executing node set, the corresponding elements can be transferred from the
executing nodes to its owner nodes with an out gmove construct.

XcalableMP Programming Model and Language 53

Fig. 40 In gmove

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[4]
#pragma xmp distribute t[block] onto p
double a[4], b[4];

5 #pragma xmp align a[i] with t[i]
#pragma xmp align b[i] with t[i]

:
#pragma xmp task on p[0:2]
#pragma xmp gmove out

10 b[2:2] = a[0:2]
#pragma xmp end task

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(4)
!$xmp distribute t(block) onto p
real :: a(4), b(4)

5 !$xmp align a(i) with t(i)
!$xmp align b(i) with t(i)

:
!$xmp task on p(1:2)
!$xmp gmove out

10 b(3:4) = a(1:2)
!$xmp end task

54 H. Murai et al.

Fig. 41 Out gmove

A gmove construct that is in out mode copies data using a put communication
from the first-half nodes to the second-half nodes (Fig. 41).

4.3 barrier Construct

The barrier construct executes a barrier synchronization.
XcalableMP C

#pragma xmp barrier

XcalableMP Fortran
!$xmp barrier

You can specify a node set on which the barrier synchronization is to be
performed by using the on clause. In the example below, a barrier synchronization
is performed among the first two nodes of p.

XcalableMP C
#pragma xmp barrier on p[0:2]

XcalableMP Fortran
!$xmp barrier on p(1:2)

XcalableMP Programming Model and Language 55

4.4 reduction Construct

This construct performs a reduction operation. It has the same meaning as the
reduction clause of the loop construct, but this construct can be specified
anywhere executable constructs can be located (Fig. 42).

XcalableMP C
#pragma xmp nodes p[4]

:
sum = xmpc_node_num() + 1;
#pragma xmp reduction (+:sum)

XcalableMP Fortran
!$xmp nodes p(4)

:
sum = xmp_node_num()
!$xmp reduction (+:sum)

You can specify the executing node set by using the on clause. In the example
below, only the values on the last two of the four nodes are targeted by the
reduction construct (Fig. 43).

XcalableMP C
#pragma xmp nodes p[4]

:
sum = xmpc_node_num() + 1;
#pragma xmp reduction (+:sum) on p[2:2]

Fig. 42 reduction construct (1)

56 H. Murai et al.

Fig. 43 reduction construct (2)

XcalableMP Fortran
!$xmp nodes p(4)

:
sum = xmp_node_num()
!$xmp reduction (+:sum) on p(3:4)

The operators you can use in the reduction construct are as follows:
XcalableMP C

+

*
-
&

5 |
^
&&
||
max

10 min

XcalableMP Fortran
+

*
-
.and.

5 .or.
.eqv.
.neqv.
max
min

XcalableMP Programming Model and Language 57

10 iand
ior
ieor

Note In contrast to the reduction clause of the loop construct, which pre-
cedes loops, the reduction construct does not accept operators of firstmax,
firstmin, lastmax, and lastmin.

Note Similar to the reduction clause, the reduction construct may generate
slightly different results in a parallel execution from those in a sequential execution,
because the results depend on the order of combining the value.

4.5 bcast Construct

The bcast construct broadcasts the values of the variables on the node specified
by the from clause, that is, the root node, to the node set specified by the on clause.
If there is no from clause, the first node of the executing node set is selected as the
root node. If there is no on clause, the current executing node set of the construct
is selected as the executing node set.

In the example below, the first node of the node set p, that is, p[0] or p(1), is
the root node (Fig. 44).

XcalableMP C
#pragma xmp nodes p[4]

:
num = xmpc_node_num() + 1;
#pragma xmp bcast (num)

XcalableMP Fortran
!$xmp nodes p(4)

:
num = xmp_node_num()
!$xmp bcast (num)

In the example below, the last node, that is, p[3] or p(4), is the root node
(Fig. 45).

XcalableMP C
#pragma xmp nodes p[4]

:

58 H. Murai et al.

Fig. 44 bcast construct (1)

Fig. 45 bcast construct (2)

num = xmpc_node_num() + 1;
#pragma xmp bcast (num) from p[3]

XcalableMP Fortran
!$xmp nodes p(4)

:
num = xmp_node_num()
!$xmp bcast (num) from p(4)

In the example below, only the last three of four nodes are included by the
executing node set of the bcast construct (Fig. 46).

XcalableMP C
#pragma xmp nodes p[4]

:
sum = xmpc_node_num() + 1;
#pragma xmp bcast (num) from p[3] on p[1:3]

XcalableMP Programming Model and Language 59

Fig. 46 bcast construct (3)

XcalableMP Fortran
!$xmp nodes p(4)

:
sum = xmp_node_num()
!$xmp bcast (num) from p(4) on p(2:4)

4.6 wait_async Construct

Communication directives (i.e. reflect, gmove, reduction, bcast, and
reduce_shadow) can perform asynchronous communication if the async
clause is added. The wait_async construct is used to guarantee the completion
of such an asynchronous communication.

XcalableMP C
#pragma xmp bcast (num) async(1)

:
#pragma xmp wait_async (1)

XcalableMP Fortran
!$xmp bcast (num) async(1)

:
!$xmp wait_async (1)

Since the bcast directive has an async clause, communication may not
be completed immediately after the bcast directive. The completion of that
communication is guaranteed with the wait_async construct having the same
value as that of the async clause. Therefore, between the bcast construct and the
wait_async constructs, you may not reference the target variable of the bcast
directive.

60 H. Murai et al.

Hint Asynchronous communication can be overlapped with the following compu-
tation to hide its overhead.

Note Expressions that can be specified as tags in the async clause are of type int,
in XMP/C, or integer, in XMP/Fortran.

4.7 reduce_shadow Construct

The reduce_shadow directive adds the value of a shadow object to the corre-
sponding data object of the array.

XcalableMP C
#pragma xmp nodes p[2]
#pragma xmp template t[8]
#pragma xmp distribute t[block] onto p
int a[8];

5 #pragma xmp align a[i] with t[i]
#pragma xmp shadow a[1]
:

#pragma xmp loop on t[i]
for(int i=0;i<8;i++)

10 a[i] = i+1;

#pragma xmp reflect (a)
#pragma xmp reduce_shadow (a)

XcalableMP Fortran
!$xmp nodes p(2)
!$xmp template t(8)
!$xmp distribute t(block) onto p

integer a(8)
5 !$xmp align a(i) with t(i)
!$xmp shadow a(1)

!$xmp loop on t(i)
do i=1, 8

10 a(i) = i
enddo

!$xmp reflect (a)
!$xmp reduce_shadow (a)

XcalableMP Programming Model and Language 61

0

XMP/C

a[16]

p[0]

p[1]

p[0]

p[1]

p[0]

p[1]

1 2 3 4

1 2 3 4

1 2 3 4 5

1 2 3 8 5

5 6 7

5 6 7 8

54 6 7 8

104 6 7 8

shadow a[1]

reflect (a)

reduce_shadow(a)

0

XMP/Fortran

a(16)

p(1)

p(2)

p(1)

p(2)

p(1)

p(2)

1 2 3 4

1 2 3 4

1 2 3 4 5

1 2 3 8 5

5 6 7

5 6 7 8

54 6 7 8

104 6 7 8

shadow a[1]

reflect (a)

reduce_shadow(a)

Fig. 47 reduce_shadow construct (1)

0

XMP/C

a[16]

p[0]

p[1]

p[0]

p[1]

p[0]

p[1]

1 2 3 4

1 2 3 4

18 2 3 4 5

8 2 2 3 8 5

5 6 7

5 6 7 8

54 6 7 8 1

104 6 7 16 1

shadow a[1]

reflect (a) width(..)

reduce_shadow(a) width(..)

0

XMP/Fortran

a(16)

p(1)

p(2)

p(1)

p(2)

p(1)

p(2)

1 2 3 4

1 2 3 4

18 2 3 4 5

8 2 2 3 8 5

5 6 7

5 6 7 8

54 6 7 8 1

104 6 7 16 1

shadow a(1)

reflect (a) width(..)

reduce_shadow(a) width(..)

Fig. 48 reduce_shadow construct (2)

For the above example, in XMP/C, a[3] on p[0] has a value of eight, and
a[4] on p[1] has a value of ten. Similarly, in XMP/Fortran, a(4) of p(1) has a
value of eight, and a(5) on p(2) has a value of ten (Fig. 47).

The programmers can add the periodic modifier to the width clause to
reduce shadow objects to the corresponding data object periodically.

XcalableMP C
#pragma xmp reflect (a) width(/periodic/1)
#pragma xmp reduce_shadow (a) width(/periodic/1)

XcalableMP Fortran
!$xmp reflect (a) width(/periodic/1)
!$xmp reduce_shadow (a) width(/periodic/1)

In addition to the first example, in XMP/C, a[0] on p[0] has a value of two,
and a[7] on p[1] has a value of 16. Similarly, in XMP/Fortran, a(1) in p(1)
has a value of two, and a(8) in p(2) has a value of 16 (Fig. 48).

62 H. Murai et al.

5 Local-View Programming

5.1 Introduction

The programmer can use coarrays to specify one-sided communication in the local-
view model.

Depending on the environment, such one-sided communication might achieve
better performance than global communication in the global-view model. However,
it is more difficult and complicated to write parallel programs in the local-view
model because the programmer must specify every detail of parallelization, such as
data mapping, work mapping, and communication.

The coarray feature in XMP/Fortran is upward-compatible with that in Fortran
2008; that in XMP/C is defined as an extension to the base language.

An execution entity in local-view XMP programs is referred to as an “image”
while a node in global-view ones. These two words have almost the same meaning
in XMP.

5.2 Coarray Declaration

XcalableMP C
int a[10]:[*];

XcalableMP Fortran
integer a(10)[*]

In XMP/C, the programmer declares a coarray by adding “:[*]” after the array
declaration. In XMP/Fortran, the programmer declares a coarray by adding “[*]”
after the array declaration.

Note Based on Fortran 2008, coarrays should have the same size among all images.

Coarrays can be accessed in expressions by remote images as well as the local
images.

5.3 Put Communication

When a coarray appears in the left-hand side of an assignment statement, it involves
put communication.

XcalableMP Programming Model and Language 63

Fig. 49 Remote write to a coarray

XcalableMP C
int a[10]:[*], b[10];

if (xmpc_this_image() == 0)
a[0:3]:[1] = b[3:3];

XcalableMP Fortran
integer a(10)[*]
integer b(10)

if (this_image() == 1) then
5 a(1:3)[2] = b(3:5)
end if

The integer in the square bracket specifies the target image index. The
image index is zero-based, in XMP/C, or one-based, in XMP/Fortran.
xmpc_this_image() in XMP/C and this_image() in XMP/Fortran return
the current image index.

In the above example, in XMP/C, an image zero puts b[3:3] to a[0:3] on
image one; in XMP/Fortran, an image one puts b(3:5) to a(1:3) on image two.
Figure 49 illustrates the put communication performed in the example.

5.4 Get Communication

When a coarray appears in the right-hand side of an assignment statement, it
involves get communication.

XcalableMP C
int a[10]:[*], b[10];

if (xmpc_this_image() == 0)
b[3:3] = a[0:3]:[1];

64 H. Murai et al.

Fig. 50 Remote read from a coarray

XcalableMP Fortran
integer a(10)[*]
integer b(10)

if (this_image() == 1) then
5 b(3:5) = a(1:3)[2]
end if

In the above example, in XMP/C, an image 0 gets a[0:3] from an image 1 and
copies it to b[3:3]; in XMP/Fortran, an image 1 gets a(1:3) from an image 2
and copies it to b(3:5) of an image 1. Figure 50 illustrates the get communication
performed in the example.

Hint As illustrated above, get communication involves an extra step to send a
request to the target node. Put communication achieves better performance than
get because there is no such extra step.

5.5 Synchronization

5.5.1 Sync All

XcalableMP C
void xmp_sync_all(int *status)

XcalableMP Fortran
sync all

At “sync all,” each image waits until all issued one-sided communication is
complete and then performs barrier synchronization among the all images.

XcalableMP Programming Model and Language 65

Fig. 51 sync all

In the above example, the left image puts data to the right image and both nodes
invoke sync all. When both nodes return from it, the execution continues to the
following statements (Fig. 51).

5.5.2 Sync Images

XcalableMP C
void xmp_sync_images(int num, int *image-set, int *status)

XcalableMP Fortran
sync images (image-set)

Each image in the specified image set waits until all one-sided communication
issued is complete, and performs barrier synchronization among the images.

XcalableMP C
int image_set[3] = {0,1,2};
xmp_sync_images(3, image_set, NULL);

XcalableMP Fortran
integer :: image_set(3) = (/ 1, 2, 3/)
sync images (image_set)

66 H. Murai et al.

5.5.3 Sync Memory

XcalableMP C
void xmp_sync_memory(int *status)

XcalableMP Fortran
sync memory

Each image waits until all one-sided communication is complete. This func-
tion/statement does not imply barrier synchronization, unlike sync all and
sync images, and therefore can be locally executed.

6 Procedure Interface

Procedure calls in XMP are almost the same as those in the base language.
Procedure calls between other languages or to external libraries are also allowed
if the base language supports them.

In the example below, a function/subroutinesub1() calls another function/sub-
routine sub2() with a distributed array x as an argument.

XcalableMP C
void sub1(){
#pragma xmp nodes p[2]
#pragma xmp template t[10]
#pragma xmp distribute t[block] onto p

5 double x[10];
#pragma xmp align x[i] with t[i]

sub2(x);
}

10 void sub2(double a[10]){
#pragma xmp nodes p[2]
#pragma xmp template t[10]
#pragma xmp distribute t[block] onto p

double a[10];
15 #pragma xmp align a[i] with t[i]

:
}

XcalableMP Fortran
subroutine sub1()
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p

5 real x(10)
!$xmp align x(i) with t(i)

XcalableMP Programming Model and Language 67

call sub2(x)
end subroutine

10 subroutine sub2(a)
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p

real a(10)
15 !$xmp align a(i) with t(i)

:
end subroutine

To handle a parameter or dummy argument as a global data in the callee
procedure, the programmer need to explicitly distribute it with an align directive
(Fig. 52).

If no align directive is specified in the callee procedure for a parameter or
dummy argument that is declared as a global data in the caller procedure, it is
handled as if it were declared in the callee procedure as a local data on each node,
as follows (Fig. 53).

Fig. 52 Passing a global
argument to a global
parameter

68 H. Murai et al.

XcalableMP C
void sub1(){
#pragma xmp nodes p[2]
#pragma xmp template t[10]
#pragma xmp distribute t[block] onto p

5 double x[10];
#pragma xmp align x[i] with t[i]

sub2(x);
}

10 void sub2(double a[5]){
:

}

XcalableMP Fortran
subroutine sub1()
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p

5 real x(10)
!$xmp align x(i) with t(i)

call sub2(x)
end subroutine

10 subroutine sub2(a)
real a(5)
:

end subroutine

7 XMPT Tool Interface

7.1 Overview

XMPT is the tool interface of XMP and inspired by OMPT, which is the tool
interface of OpenMP [4]. Hence, XMPT is designed as event-based and callback-
based as OMPT; that is, for each event at runtime, the corresponding callback is
invoked. One or more XMPT events are defined corresponding to each of XMP
constructs and coarray-related actions (e.g. remote write/read and synchronization).

XMPT is preliminarily implemented in the Omni XMP compiler chapter “Imple-
mentation and Performance Evaluation of Omni Compiler”, and used in MUST [5]
and experimentally in Extrae [6]. More details of the application of XMPT in MUST
are described in [7].

XcalableMP Programming Model and Language 69

Fig. 53 Passing a global argument to a local parameter

7.2 Specification

7.2.1 Initialization

Tool developers can provide the xmpt_initialize function in which they
register a callback for each of the XMPT events of interest, as follows.

C
void xmpt_initialize(...){
xmpt_set_callback(xmpt_event_bcast_begin, callback_bcast_begin);
xmpt_set_callback(xmpt_event_bcast_end, callback_bcast_end);
...

5 }

In the above example, the tool developer implements callbacks
callback_bcast_begin and callback_bcast_end that interact with
his/her tool.

When an XMP program starts execution, the XMP runtime implicitly invokes
xmpt_initialize, if provided, to set up the callbacks.

70 H. Murai et al.

7.2.2 Events

XMPT defines XMPT events each of which corresponds to an XMP construct or a
coarray-related action. Below is the list of XMPT events. For each of the events, the
function signature of the corresponding callback is specifically defined. Note that
the ones from xmpt_event_coarray_remote_write to
xmpt_event_sync_images_end are coarray-related.

xmpt_event_task_begin
xmpt_event_task_end
xmpt_event_tasks_begin
xmpt_event_tasks_end
xmpt_event_loop_begin
xmpt_event_loop_end
xmpt_event_array_begin
xmpt_event_array_end
xmpt_event_reflect_begin
xmpt_event_reflect_begin_async
xmpt_event_reflect_end
xmpt_event_gmove_begin
xmpt_event_gmove_begin_async
xmpt_event_gmove_end
xmpt_event_barrier_begin
xmpt_event_barrier_end
xmpt_event_reduction_begin
xmpt_event_reduction_begin_async
xmpt_event_reduction_end
xmpt_event_bcast_begin
xmpt_event_bcast_begin_async
xmpt_event_bcast_end
xmpt_event_wait_async_begin
xmpt_event_wait_async_end
xmpt_event_coarray_remote_write
xmpt_event_coarray_remote_read
xmpt_event_coarray_local_write
xmpt_event_coarray_local_read
xmpt_event_sync_memory_begin
xmpt_event_sync_memory_end
xmpt_event_sync_all_begin
xmpt_event_sync_all_end
xmpt_event_sync_image_begin
xmpt_event_sync_image_end
xmpt_event_sync_images_all_begin

XcalableMP Programming Model and Language 71

xmpt_event_sync_images_all_end
xmpt_event_sync_images_begin
xmpt_event_sync_images_end

When one of the XMPT events for which callbacks are registered occurs at
runtime, the corresponding callback is invoked by the XMP runtime. For example,
if callbacks are registered for events xmpt_event_bcast_begin and xmpt_
event_bcast_end as in the example in the previous section, the callbacks
callback_bcast_begin and callback_bcast_end are invoked immedi-
ately before and after each of bcast constructs, respectively.

The XMP runtime passes therein all the information about the construct, includ-
ing the mapping of the target global arrays, to the callback as its parameters. Thus,
the tool is able to extract necessary information from the arguments.

References

1. R.W. Numrich, J. Reid, Co-array Fortran for parallel programming, in ACM SIGPLAN Fortran
Forum, vol. 17, No. 2 (ACM, New York, 1998)

2. UPC Consortium, UPC Specifications, v1.2. Lawrence Berkeley National Lab (LBNL-59208)
(2005)

3. D. Callahan, B.L. Chamberlain, H.P. Zima, The cascade high productivity language, in
Proceedings of the 9th Int’l. Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS 2004) (2004), pp. 52–60

4. OpenMP Architecture Review Board, OpenMP Application Programming Interface Version 5.0
(2018)

5. The MUST Project, https://www.itc.rwth-aachen.de/must
6. The Extrae Project, https://tools.bsc.es/extrae
7. J. Protze, C. Terboven, M.S. Müller, S. Petiton, N. Emad, H. Murai, T. Boku. Runtime

correctness checking for emerging programming paradigms, in Proceedings of the First Interna-
tional Workshop on Software Correctness for HPC Applications (Correctness’17). Association
for Computing Machinery (New York, NY, USA, 2017), pp. 21–27. https://doi.org/10.1145/
3145344.3145490

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.itc.rwth-aachen.de/must
https://tools.bsc.es/extrae
https://doi.org/10.1145/3145344.3145490
https://doi.org/10.1145/3145344.3145490
http://creativecommons.org/licenses/by/4.0/

Implementation and Performance
Evaluation of Omni Compiler

Masahiro Nakao and Hitoshi Murai

Abstract This chapter describes the implementation and performance evaluation
of Omni compiler, which is a reference implementation of the compiler for Xcal-
ableMP. For performance evaluation, this chapter also presents how to implement
the HPC Challenge benchmarks, which is a benchmark suite for an HPC parallel
language. The results show that the performance of XMP is comparable to that of
MPI in many cases.

1 Overview

Omni compiler is a source-to-source compiler that translates a sequential code in
C and Fortran with XcalableMP (XMP), XcalableACC (XACC), and OpenACC
directives into a parallel code (https://omni-compiler.org). The translated parallel
code is compiled with a native compiler linked with Omni compiler runtime library.
Omni compiler has been developed by Programming Environment Research Team
of RIKEN Center for Computational Science [1] and HPCS laboratory [2] of
University of Tsukuba in Japan.

2 Implementation

2.1 Operation Flow

In Omni compiler, XcodeML [3] is used to analyze a code in an intermediate code
format of XML expression. Figure 1 shows an operation flow of Omni compiler.
Firstly, Omni compiler translates directives in a user code into the runtime functions.

M. Nakao (�) · H. Murai
RIKEN Center for Computational Science, Kobe, Hyogo, Japan
e-mail: masahiro.nakao@riken.jp; h-murai@riken.jp

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_2

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_2&domain=pdf
https://omni-compiler.org
mailto:masahiro.nakao@riken.jp
mailto:h-murai@riken.jp
https://doi.org/10.1007/978-981-15-7683-6_2

74 M. Nakao and H. Murai

Omni compiler

Fig. 1 Operation flow of Omni compiler (https://omni-compiler.org)

If necessary, a code besides the directives is also modified. Secondly, a native
compiler (e.g., gcc or Intel) compiles the translated code and creates an execution
binary with linking to Omni compiler runtime library. The runtime library uses MPI
in XMP, and CUDA in OpenACC, and both MPI and CUDA in XACC. As for
XMP, Omni compiler may create better runtime libraries by adding a one-sided
communication library to MPI, which is described in Chap. 3.

2.2 Example of Code Translation

This section describes how Omni compiler translates a user code for the global-view
memory model. A code translation for the local-view memory model is described
in Chap. 3.

2.2.1 Distributed Array

Figure 2 shows an XMP example code using an align directive to declare a
distributed array a[][].

double a[10][10];
#pragma xmp align a[i][j] with t[i][j]

void *_XMP_DESC_a;
double *_XMP_ADDR_a;
unsigned long long _XMP_ACC_a_0;
_XMP_init_array_desc(&_XMP_DESC_a, .., sizeof(double), 10, 10);
 :
_XMP_alloc_array(&_XMP_ADDR_a, &_XMP_ACC_a_0, ..., _XMP_DESC_a);

Fig. 2 Code translation of align directive

https://omni-compiler.org

Implementation and Performance Evaluation of Omni Compiler 75

Firstly, Omni compiler deletes a declaration of a local array a[][] and the
align directive. Next, Omni compiler creates a descriptor _XMP_DESC_a by a
function_XMP_init_array_desc() to set information of the distributed array.
Omni compiler also adds a function _XMP_alloc_array() to allocate memory
for the distributed array, and it sets values in an address _XMP_ADDR_a and a
leading dimension _XMP_ACC_a_0. Note that a multidimensional distributed array
is expressed as a one-dimensional array in the translated code since the size of each
dimension of the array may be determined dynamically.

2.2.2 Loop Statement

Figure 3 shows an XMP example code using a loop directive to parallelize the
following nested loop statement depending on the template t. Each dimension of
t is distributed onto two nodes, which is omitted there.

In the translated code above, a pointer _XMP_MULTI_ADDR_a is used which
has the size of each dimension as a head pointer of the distributed array a[][].
To improve performance, operations in a loop statement are performed using the
pointer [4]. Note that this pointer can be used when the number of elements in
each dimension of a distributed array is divisible by the number of nodes. If the
condition is not met, a one dimensional pointer _XMP_ADDR_a and an offset
_XMP_ACC_a_0 are used as shown in the translated code below.

Moreover, because values in ending conditions of the loop statement (i < 10, j <
10) are constants in a pre-translated code and are divisible by the number of nodes,

#pragma xmp loop on t[i][j]
for(int i=0;i<10;i++)
 for(int j=0;j<10;j++)
 a[i][j] = ...

double (*_XMP_MULTI_ADDR_a)[5] = (double (*)[5])(_XMP_ADDR_a);
for(int i=0;i<5;i++)
 for(int j=0;j<5;j++)
 _XMP_MULTI_ADDR_a[i][j] = ...

for(int i=0;i<5;i++)
 for(int j=0;j<5;j++)
 *(_XMP_ADDR_a + i * _XMP_ACC_a_0 + j) = ...

or

Fig. 3 Code translation of loop directive

76 M. Nakao and H. Murai

int b[10];
 :
#pragma xmp bcast (b)

_XMP_M_BCAST_EXEC(b, 10, sizeof(int));

Fig. 4 Code translation of bcast directive

the values are translated to constants (i < 5, j < 5) automatically. If the values are
variables in the pre-translated code or not divisible by the number of nodes, the
runtime function is inserted just before the loop statement to calculate values for
ending conditions. The calculated values are set in newly created variables.

2.2.3 Communication

Figure 4 shows an XMP example code using a bcast directive to broadcast a local
array b. Basically translations of communication directives are simple. The runtime
functions call MPI functions directly.

3 Installation

This section describes how to install the latest Omni compiler version 1.3.2. Omni
compiler is installed by a general installation method on UNIX (./configure;
make; make install). When executing ./configure without options,
only XMP is installed. When installing OpenACC and/or XACC, it is required for
some options to “./configure”, which is described in Sect. 3.5.

3.1 Overview

We provide two versions of Omni compiler, the one is “stable version” and the other
is “nightly build version.” While the stable version is a so-called official version that
has a version number, the nightly build version is a trial version that is released at
midnight on our website (https://omni-compiler.org). Omni compiler is developed
in GitHub repository (https://github.com/omni-compiler/omni-compiler). Our web
server gets the source code from the GitHub repository and generates the nightly
build version every day.

https://omni-compiler.org
https://github.com/omni-compiler/omni-compiler

Implementation and Performance Evaluation of Omni Compiler 77

3.2 Get Source Code

3.2.1 From GitHub

Please visit the GitHub repository (https://github.com/omni-compiler/omni-
compiler) which provides only nightly build version. Otherwise, please execute
the following git command.

$ git clone --recursive https://github.com/omni-compiler/omni-compiler.git

Note that the source code of Omni compiler does not contain that of XcodeML,
so the --recursive option is required. As a supplement, XcodeML is also
developed in the GitHub repository (https://github.com/omni-compiler/xcodeml-
tools).

3.2.2 From Our Website

Please visit our website (https://omni-compiler.org) which provides packages of
stable version and nightly build version. The package of nightly build version is
generated every midnight around 12:00 a.m. (JST) if the latest GitHub repository
was updated yesterday. These packages contain XcodeML.

3.3 Software Dependency

Before installation of Omni compiler, the following software must be installed.

yacc, lex, C Compiler (C99 or over), Fortran Compiler (Fortran 2008 or over),
Java Compiler, MPI (version 2 or over), libxml2, make

3.4 General Installation

This section explains how to install Omni compiler in a general Unix environment.

https://github.com/omni-compiler/omni-compiler
https://github.com/omni-compiler/omni-compiler
https://github.com/omni-compiler/omni-compiler.git
https://github.com/omni-compiler/xcodeml-tools
https://github.com/omni-compiler/xcodeml-tools
https://omni-compiler.org

78 M. Nakao and H. Murai

3.4.1 Build and Install

$./configure --prefix=(INSTALL PATH)
$ make
$ make install

3.4.2 Set PATH

• bash and zsh

$ export PATH=(INSTALL PATH)/bin:$PATH

• csh and tcsh

% setenv PATH (INSTALL PATH)/bin:$PATH

3.5 Optional Installation

3.5.1 OpenACC

Please add “--enable-openacc” and “--with-cuda=(CUDA PATH)”
options to “./configure”.

$./configure --enable-openacc --with-cuda=(CUDA PATH)
$ make
$ make install

It may be possible to generate a more suitable runtime library by adding options
to “nvcc” command, which is used to generate the runtime library for OpenACC
and XACC. In that case, please also add the “--with-gpu-cflags=(NVCC
CFLAGS)” option.

Implementation and Performance Evaluation of Omni Compiler 79

$./configure --enable-openacc --with-cuda=(CUDA PATH) --with-gpu-
cflags=(NVCC CFLAGS)
$ make
$ make install

3.5.2 XcalableACC

Please add “--enable-openacc --enable-xacc” to “./configure”.

$./configure --enable-openacc --enable-xacc
$ make
$ make install

As with OpenACC, if necessary, please add the “--with-cuda=(CUDA
PATH)” and “--with-gpu-cflags=(NVCC CFLAGS)” options to “./con
figure”.

3.5.3 One-Sided Library

Omni compiler may generate a better runtime library by a one-sided library for
XMP. Omni compiler supports the following one-sided libraries.

• Fujitsu MPI Extended RDMA (FJRDMA)
It is low-level communication layer for Fujitsu machines (e.g., the K computer,
FX100, and FX10). When using it, please specify a target machine to ./configure.
(e.g., “$./configure --target=FX100-linux-gnu”)

• GASNet (https://gasnet.lbl.gov)
It is a one-sided communication library developed by U.C. Berkeley.
When using it, please specify “install path of GASNet” and “its con-
duit” to ./configure. (e.g., $./configure --with-gasnet=/usr
--with-gasnet-conduit=ibv)

• MPI version 3
Omni compiler automatically selects MPI version 3 under the following condi-
tions.

– MPI implementation supports MPI version 3
– Specifying neither FJRDMA nor GASNet.

https://gasnet.lbl.gov

80 M. Nakao and H. Murai

4 Creation of Execution Binary

This section describes how to create an execution binary from a code with XMP,
XACC, and OpenACC directives, and how to execute it. Note that Omni compiler
supports only C language for OpenACC.

4.1 Compile

• XMP in C language

$ xmpcc a.c

• XMP in Fortran

$ xmpf90 a.f90

• XACC in C language

$ xmpcc -xacc a.c

• XACC in Fortran

$ xmpf90 -xacc a.f90

• OpenACC in C language

$ ompcc -acc a.c

Implementation and Performance Evaluation of Omni Compiler 81

A native compiler finally compiles the code translated by Omni compiler. Thus,
all compile options of XMP are passed to the native compiler. For example, when
using the optimization option “-O2”, it is passed to the native compiler.

$ xmpcc -O2 a.c

4.2 Execution

4.2.1 XcalableMP and XcalableACC

Because the runtime libraries of XMP and XACC use MPI, a program is
executed via an MPI execution command (e.g., “mpiexec”). However, when
using GASNet, a program is executed via a GASNet execution command (e.g.,
“gasnetrun_ibv”).

$ mpiexec -n 2 ./a.out

$ gasnetrun_ibv -n 2 ./a.out

4.2.2 OpenACC

$./a.out

4.3 Cooperation with Profiler

In order to improve the performance of an application, it is useful to take a profile.
Omni compiler has a function to cooperate with Scalasca (https://www.scalasca.org)
and tlog which are profiling tools. The function can profile the execution of XMP
directives. Note that the function supports only the XMP in C language now.

https://www.scalasca.org

82 M. Nakao and H. Murai

4.3.1 Scalasca

Scalasca is an opensource software that measures and analyzes the runtime behav-
iors.

When profiling all XMP directives that exist in code, please add the
“--profile scalasca” option to a compile command.

$ xmpcc --profile scalasca a.c

When profiling selected XMP directives there, please add the “profile” clause
to the directives and the “--selective-profile scalasca” option to a
compile command.

#pragma xmp bcast (a) profile

$ xmpcc --selective-profile scalasca a.c

Figure 5 shows an example of profiling by Scalasca.

Fig. 5 Profile by Scalasca (https://omni-compiler.org)

https://omni-compiler.org

Implementation and Performance Evaluation of Omni Compiler 83

4.3.2 tlog

Omni compiler package contains tlog that measures executing time of the XMP
directives.

When profiling all XMP directives that exist in code, please add the
“--profile tlog” option to a compile command.

$ xmpcc --profile tlog a.c

When profiling selected XMP directives there, please add the “profile” clause
to the directives as in Sect. 4.3.1 and the “--selective-profile tlog”
option to a compile command.

$ xmpcc --selective-profile tlog a.c

After executing a program, tlog generates a file “trace.log” which stores
profiling results. To open the result, please use the “tlogview” command.
Figure 6 shows an example of profiling by tlog.

$ tlogview trace.log

Fig. 6 Profile by tlog (https://omni-compiler.org)

https://omni-compiler.org

84 M. Nakao and H. Murai

5 Performance Evaluation

In order to evaluate the performance of XMP, we implemented the HPC Chal-
lenge (HPCC) benchmark (https://icl.utk.edu/hpcc/), namely, EP STREAM Triad
(STREAM), High-Performance Linpack (HPL), Global fast Fourier transform
(FFT), and RandomAccess [5]. While the HPCC benchmark is used to evaluate
multiple attributes of HPC systems, the benchmark is also useful to evaluate the
properties of a parallel language. The HPCC benchmark was used at the HPCC
Award Competition (https://www.hpcchallenge.org). The HPCC Award Compe-
tition consists of two classes. While the purpose of class 1 is to evaluate the
performance of a machine, the purpose of class 2 is to evaluate both the productivity
and performance of a parallel programming language. XMP won the class 2 prizes
in 2013 and 2014.

5.1 Experimental Environment

For performance evaluation, this section uses 16,384 compute nodes on the K com-
puter and 128 compute nodes on a Cray CS300 system named “the COMA system.”
Tables 1 and 2 show the hardware specifications and software environments.

For comparison purposes, this section also evaluates the HPCC benchmark in C
language and MPI library. We execute STREAM, HPL, and FFT with eight threads
per process on each CPU of the K computer, and with ten threads per process on
each CPU of the COMA system. Since RandomAccess is not parallelized with
threads and can be executed by the power of only two processes, we execute it
with eight processes on each CPU of both systems.

The specification of HPCC Award Competition class 2 defines the minimum
problem size for each benchmark. While the main array of HPL should occupy
at least half of the system memory, the main arrays of STREAM, FFT, and
RandomAccess should occupy at least a quarter of the system memory. We set each

Table 1 Experimental environment for the K computer

CPU SPARC64 VIIIfx 2.0 GHz, 8 Cores

Memory DDR3 SDRAM 16 GB, 64 GB/s

Network Torus fusion six-dimensional mesh/torus network, 5 GB/s × 10

Library Fujitsu Compiler K-1.2.0-19, Fujitsu MPI K-1.2.0-19, Fujitsu SSLII K-1.2.0-19

Table 2 Experimental environment for the COMA system

CPU Xeon E5-2670v2, 2.5 GHz (Turbo Boost 3.3 GHz), 10 Cores × 2CPUs

Memory DDR3 SDRAM 64 GB, 119.4 GB/s (= 59.7 GB/s × 2 CPUs)

Network InfiniBand FDR, fat-tree, 7 GB/s

Library Intel Compiler 15.0.5, Intel MPI 5.1.1, GASNet 1.26.0, Intel MKL 11.2.4

https://icl.utk.edu/hpcc/
https://www.hpcchallenge.org

Implementation and Performance Evaluation of Omni Compiler 85

problem size to be equal to the minimum size. As for coarray syntax, Omni compiler
uses FJRDMA on the K computer and uses GASNet on the COMA system.

5.2 EP STREAM Triad

5.2.1 Design

STREAM measures the memory bandwidth to use simple vector kernel (a ← b +
αc). STREAM is so straightforward that its kernel does not require communication.

5.2.2 Implementation

Figure 7 shows a part of the STREAM code. In line 1, the node directive declares a
node array p to parallelize the program. In line 2, normal arrays a[], b[], and c[], and
a scalar value scalar are declared. In lines 5 and 14, the barrier directive is inserted
beforexmp_wtime() to measure time. The directives of lines 8–9 are optimization
directives for the Fujitsu compiler. While the #pragma loop xfill ensures one cache
line to store write-only data, the #pragma loop noalias indicates that different
pointer variables cannot possibly indicate the same storage area. These optimization
directives are used on only the K computer. In lines 10–12, STREAM kernel is
parallelized by the OpenMP parallel directive. In line 17, local_performance()

1 #pragma xmp nodes p[*]
2 double a[N], b[N], c[N], scalar;
3 ...
4 for(k=0;k<TIMES;k++){
5 #pragma xmp barrier
6 times[k] = −xmp_wtime();
7
8 #pragma loop xfill
9 #pragma loop noalias

10 #pragma omp parallel for
11 for (i=0; i<N; i++)
12 a[i] = b[i] + scalar * c[i];
13
14 #pragma xmp barrier
15 times[k] += xmp_wtime();
16 }
17 double performance = local_performance(time, TIMES, N);
18 #pragma xmp reduction(+:performance)

Fig. 7 Part of the STREAM code [5]

86 M. Nakao and H. Murai

calculates the performance on each node locally. In line 18, the reduction directive
performs a reduction operation among nodes to calculate the total performance.

5.2.3 Evaluation

First of all, in order to consider the effectiveness of #pragma loop xfill and
#pragma loop noalias, we evaluate STREAM with and without these directives
on a single node of the K computer. We also insert these directives into the
MPI implementation for evaluation. Figure 8 shows that the performance results
with these directives are about 1.46 times better than those without the directives.
Therefore, we use the directives in next evaluations.

Figure 9 shows the performance results and a comparative performance evalua-
tion of both implementations. The comparative performance evaluation is called the
“performance ratio.” When the performance ratio is greater than 1, the performance
result of the XMP implementation is better than that of the MPI implementation.
XMP’s best performance results are 706.38 TB/s for 16,384 compute nodes on the

Pe
rfo

rm
an

ce
 (G

B/
s)

50

40

30

20

10

0

without directives

MPI XMP

with directives

Fig. 8 Preliminary evaluation of STREAM [5]

Number of CPUs

10

10

10

10

10

10

10

7

6

5

4

3

2

1

Pe
rfo

rm
an

ce
 (G

B/
s)

1 2422 26 21028 212 214

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Perfom
ance R

atio

XMP
MPI
Ratio (XMP/MPI)

10

10

10

10

10

10

10

7

6

5

4

3

2

1

Pe
rfo

rm
an

ce
 (G

B/
s)

1 2422 26 28

Number of CPUs

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Perfom
ance R

atio

XMP
MPI
Ratio (XMP/MPI)

The K computer The COMA system

Fig. 9 Performance results for STREAM [5]

Implementation and Performance Evaluation of Omni Compiler 87

K computer, and 11.55 TB/s for 128 compute nodes on the COMA system. The
values of the performance ratio are between 0.99 and 1.00 on both systems.

5.3 High-Performance Linpack

5.3.1 Design

HPL evaluates the floating point rate of execution for solving a linear system of
equations. The performance result has been used in the TOP500 list (https://www.
top500.org). To achieve a good load balance on HPL, we distribute the main array
in a block-cyclic manner. Moreover, in order to achieve high performance with
portability, our implementation calls BLAS [6] to perform the matrix operations.
These techniques are inherited from the MPI implementation.

5.3.2 Implementation

Figure 10 shows that each dimension of the coefficient matrix A[][] is distributed
in the block-cyclic manner. The template and the nodes directives declare a two-
dimensional template t and node array p. The distribute directive distributes t onto
Q × P nodes with the same block size NB. The align directive aligns A[][] with t.

HPL has an operation in which a part of the coefficient matrix is broadcast to the
other process columns asynchronously. This operation, called “panel broadcast,”
is one of the most important operations for overlapping panel factorizations and
data transfer. Figure 11 shows the implementation that uses the gmove directive
with the async clause. The second dimension of array L[][] is also distributed in a
block-cyclic manner and L[][] is replicated. Thus, the gmove directive broadcasts
elements A[j:NB][j+NB:len] to L[0:NB][j+NB:len] asynchronously.

Figure 12 shows that cblas_dgemm(), which is a BLAS function for a
matrix multiplication, applies the distributed arrays L[][] and A[][]. Note
that cblas_dgemm() is executed by multiple threads locally. In lines 2–3,
xmp_desc_of() gets descriptors of L[][] and A[][], and xmp_array_lda() gets
the leading dimensions L_ld and A_ld. In line 5, the L_ld and A_ld are used in

Fig. 10 Block-cyclic
distribution in HPL [5] t

p[0][0]

p[1][0]

p[0][1]

p[1][1]

N

NB

j
i

https://www.top500.org
https://www.top500.org

88 M. Nakao and H. Murai

1 double L[NB][N];
2 #pragma xmp align L[*][i] with t[*][i]
3 ...
4 int len = N − j − NB;
5 #pragma xmp gmove async (tag)
6 L[0:NB][j+NB:len] = A[j:NB][j+NB:len];

j

A[][]

N

len

NBL[][]

L[][]

Fig. 11 Panel broadcast in HPL [5]

1 int L_ld, A_ld;
2 xmp_array_lda(xmp_desc_of(L), &L_ld);
3 xmp_array_lda(xmp_desc_of(A), &A_ld);
4 ...
5 cblas_dgemm(..., &L[0][j], L_ld, ..., &A[i][j], A_ld, ...);

Fig. 12 Calling the function cblas_dgemm() in HPL [5]

10

10

10

10

10

10

10

7

6

5

4

3

2

1

Pe
rfo

rm
an

ce
 (G

Fl
op

s)

Number of CPUs

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Perfom
ance R

atioXMP
MPI
Ratio (XMP/MPI)

1 2422 26 21028 212

Pe
rfo

rm
an

ce
 (G

Fl
op

s)

10

10

10

10

10

10

10

7

6

5

4

3

2

1

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Perfom
ance R

atioXMP
MPI
Ratio (XMP/MPI)

Number of CPUs
1 2422 26 28

The K computer The COMA system

Fig. 13 Performance results for HPL [5]

cblas_dgemm(). Note that L_ld and A_ld remain unchanged from the beginning of
the program, and so each xmp_array_lda() is called only once.

5.3.3 Evaluation

Figure 13 shows the performance results and performance ratios. XMP’s best
performance results are 402.01 TFlops (76.68% of the peak performance) for

Implementation and Performance Evaluation of Omni Compiler 89

4096 compute nodes on the K computer, and 47.32 TFlops (70.02% of the peak
performance) for 128 compute nodes on the COMA system. The values of the
performance ratio are between 0.95 and 1.09 on the K computer, and between 0.99
and 1.06 on the COMA system.

5.4 Global Fast Fourier Transform

5.4.1 Design

FFT evaluates the performance for a double-precision complex one-dimensional
discrete Fourier transform. We implement a six-step FFT algorithm [7, 8] using
FFTE library [9]. The six-step FFT algorithm is also used in the MPI imple-
mentation. In the six-step FFT algorithm, both the computing performance and
the all-to-all communication performance for a matrix transpose are important.
The six-step FFT algorithm reduces the cache-miss ratio by expression of a two-
dimensional array. In order to develop the XMP implementation, we use XMP in
Fortran because FFTE library is written in Fortran and therefore it is easy to call it.
In addition, we use the XMP intrinsic subroutine xmp_transpose() to transpose a
distributed array in the global-view memory model. Figure 14 shows an example of
xmp_transpose(). The first argument is an output array, and the second argument
is the input array. The third argument is an option to save memory, and is “0”
or “1.” If it is “0,” an input array must not be changed. If it is “1,” an input

1 complex*16 a(4,12), b(12,4)
2 !$xmp template ty(12)
3 !$xmp template tx(4)
4 !$xmp nodes p(4)
5 !$xmp distribute ty(block) onto p
6 !$xmp distribute tx(block) onto p
7 !$xmp align a(*,i) with ty(i)
8 !$xmp align b(*,i) with tx(i)
9 call xmp_transpose(a, b, 1)

p(1)

p(3)

p(2)

p(4)a(4,12)b(12,4)

Fig. 14 Action of subroutine xmp_transpose() [5]

90 M. Nakao and H. Murai

array may be changed but less memory may be used. Thus, we use “1” in the
XMP implementation. In Fig. 14, the second dimensions of arrays a() and b() are
distributed in the block manner, and array b() is transposed to array a(). For example,
elements b(1:3,2) on p(2) are transferred to elements a(2,1:3) on p(1).

5.4.2 Implementation

Figure 15 shows a part of the XMP implementation. In lines 1–9, arrays a(), b(),
and w() are distributed in a block manner. The a() is aligned with template ty, and
the b() and w() arrays are aligned with template tx. In lines 16–20, each thread on
all nodes calls the FFTE subroutine zfft1d(), which applies the distributed array b().
Note that the subroutine zfft1d() executes with a single thread locally. In lines 22–
23, the XMP loop directive and the OpenMP parallel directive parallelize the loop
statement. In line 30, xmp_transpose() is used to transpose the distributed two-
dimensional array.

1 complex*16 a(nx,ny), b(ny,nx), w(ny,nx)
2 !$xmp template ty(ny)
3 !$xmp template tx(nx)
4 !$xmp nodes p(*)
5 !$xmp distribute ty(block) onto p
6 !$xmp distribute tx(block) onto p
7 !$xmp align a(*,i) with ty(i)
8 !$xmp align b(*,i) with tx(i)
9 !$xmp align w(*,i) with tx(i)

10
11 integer, save :: ithread
12 !$omp threadprivate (ithread)
13 !$omp parallel
14 ithread = omp_get_thread_num()
15 !$omp end parallel
16 !$xmp loop on tx(i)
17 !$omp parallel do
18 do i=1,nx
19 call zfft1d(b(1,i),ny,−1,cy(1,ithread))
20 end do
21
22 !$xmp loop on tx(i)
23 !$omp parallel do
24 do i=1,nx
25 do j=1,ny
26 b(j,i)=b(j,i)*w(j,i)
27 end do
28 end do
29
30 call xmp_transpose(a,b,1)

Fig. 15 Part of the FFT code [5]

Implementation and Performance Evaluation of Omni Compiler 91

5.4.3 Evaluation

Figure 16 shows the performance results and performance ratios. XMP’s best
performance results are 39.01 TFlops for 16,384 compute nodes on the K computer,
and 0.94 TFlops for 128 compute nodes on the COMA system. The values of the
performance ratio are between 0.94 and 1.13 on the K computer, and between 0.94
and 1.12 on the COMA system.

5.5 RandomAccess

5.5.1 Design

RandomAccess evaluates the performance of random updates of a single table of
64-bit integers which may be distributed among processes. The random update for
a distributed table requires an all-to-all communication. We implement a recursive
exchange algorithm [10], as with the MPI implementation. The recursive exchange
algorithm consists of multiple steps. A process sends a data chunk to another process
in each step. Because RandomAccess requires a random communication pattern, as
its name suggests, the pattern is not supported by the global-view memory model.
Thus, we use the local-view memory model to implement RandomAccess. Note that
the MPI implementation uses functions MPI_Isend() and MPI_Irecv().

5.5.2 Implementation

A source node transfers a data chunk to a destination node, and then the destination
node updates own table using the received data. The MPI implementation repeatedly
executes the recursive exchange algorithm by 1024 elements in the table. The
HPCC Award Competition class 2 specification defines the constant value 1024.
The recursive exchange algorithm sends about half of the 1024 elements in each

10

10

10

10

10

10

10

6

5

4

3

2

1

0

Pe
rfo

rm
an

ce
 (G

Fl
op

s)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Perfom
ance R

atio

Number of CPUs
1 2422 26 21028 212 214

XMP
MPI
Ratio (XMP/MPI)

10

10

10

10

10

10

10

6

5

4

3

2

1

0

Pe
rfo

rm
an

ce
 (G

Fl
op

s)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Perfom
ance R

atio

Number of CPUs
1 2422 26 28

XMP
MPI
Ratio (XMP/MPI)

The K computer The COMA system

Fig. 16 Performance results for FFT [5]

92 M. Nakao and H. Murai

step. Therefore, the chunk size is about 4096 Bytes (= 1024/2 × 64 bits/8). Note
that the destination node cannot know how many elements are sent by the source
node. Thus, the MPI implementation gets the number of elements using the function
MPI_Get_count(). We implement the algorithm using a coarray and the post/wait
directives for the recursive exchange algorithm, and the number of elements is added
to the first element of the coarray.

Figure 17 shows a part of the XMP implementation. In line 2, the coarrays
recv[][][] and send[][] are declared. In line 6, the data chunk size is set at the first
element of the coarray, and it is put in line 7. In line 8, the node sends notification of
the completion of the coarray operation of line 7 to the node p[ipartner]. In line 10,
the node receives the notification from the node p[jpartner], which ensures that the
node p[jpartner] receives the data. In line 11, the node gets the number of elements
in the received data. In line 12, the node updates own table by using the received
data.

5.5.3 Evaluation

Figure 18 shows the performance results and performance ratios. The Giga-updates
per second (GUPS) on the vertical axis is the measurement value, which is the
number of update tables per second divided by 109. XMP’s best performance results
are 259.73 GUPS for 16,384 compute nodes on the K computer, and 6.23 GUPS for
128 compute nodes on the COMA system. The values of the performance ratio are
between 1.01 and 1.11 on the K computer, and between 0.57 and 1.03 on the COMA
system. On the K computer, the performance results for the XMP implementation
are always slightly better than those for the MPI implementation. However, on the
COMA system, the performance results for the XMP implementation are worse than
those for the MPI implementation using multiple CPUs.

1 #pragma xmp nodes p[*]
2 unsigned long long recv[ITER][LOGPROCS][CHUNK]:[*], send[2][CHUNKBIG]:[*];
3 ...
4 for(j=0;j<logNumProcs;j++){
5 ...
6 send[i][0] = nsend;
7 recv[iter_mod][j][0:nsend+1]:[ipartner] = send[i][0:nsend+1];
8 #pragma xmp post(p[ipartner], tag)
9 ...

10 #pragma xmp wait(p[jpartner], tag)
11 nrecv = recv[iter_mod][j−1][0];
12 update_table(&recv[iter_mod][j−1][1], ..., nrecv, ...);
13 ...
14 }

Fig. 17 Part of the RandomAccess code [5]

Implementation and Performance Evaluation of Omni Compiler 93

XMP
MPI
Ratio (XMP/MPI)

Number of CPUs

10

10

10

10

10

10

10

3

2

1

0

-1

-2

-3

Pe
rfo

rm
an

ce
 (G

U
PS

)

1 2422 26 21028 212 214

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Perfom
ance R

atio XMP
MPI
Ratio (XMP/MPI)

10

10

10

10

10

10

10

3

2

1

0

-1

-2

-3

Pe
rfo

rm
an

ce
 (G

U
PS

)

1 2422 26 28

Number of CPUs

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Perfom
ance R

atio
The K computer The COMA system

Fig. 18 Performance results for RandomAccess [5]

5.6 Discussion

We implement STREAM, HPL, and FFT using the global-view memory model,
which enables programmers to develop the parallel codes from the sequential
codes using the XMP directives and functions easily. Specifically, in order to
implement the parallel STREAM code, a programmer only adds the XMP directives
into the sequential STREAM code. The XMP directives and existing directives,
such as OpenMP directives and Fujitsu directives, can coexist. Moreover, existing
high-performance libraries, such as BLAS and FFTE, can be used with an XMP
distributed array. These features improve the portability and performance of XMP
applications.

We also implement RandomAccess using the local-view memory model, where
the coarray syntax enables a programmer to transfer data intuitively. In the
evaluation, the performance of the XMP implementation is better than that of
the MPI implementation on the K computer, but is worse than that of the MPI
implementation on the COMA system.

To clarify the reason why XMP performance is dropped on the COMA system,
we develop a simple ping-pong benchmark using the local-view memory model.
The benchmark measures the latency for transferring data repeatedly between two
nodes. For comparison purposes, we also implement one using MPI_Isend() and
MPI_Irecv() that are used in the MPI version RandomAccess.

Figure 19 shows parts of the codes. In XMP of Fig. 19, in line 5, p[0] puts a
part of src_buf[] into dst_buf[] in p[1]. In line 6, the post directive ensures the
completion of the coarray operation of line 5 and sends a notification to p[1]. In
line 10, p[1] waits until receiving the notification from p[0]. In line 11, p[1] puts
a part of src_buf[] into dst_buf[] in p[0]. In line 12, the post directive ensures the
completion of the coarray operation of line 11 and sends a notification to p[0]. In
line 7, p[0] waits until receiving the notification from p[1]. Figure 19 also shows
the ping-pong benchmark that uses MPI functions.

Figure 20 shows the latency for transferring data. The results on the K computer
show that the latency for the XMP implementation is better than that for the

94 M. Nakao and H. Murai

1 int me = xmpc_node_num();
2 int target = (me == 0)? 1 : 0;
3 ...
4 if(me == 0){
5 dst_buf[0:size]:[target] = src_buf[0:size];
6 #pragma xmp post(p[target], tag)
7 #pragma xmp wait(p[target], tag)
8 }
9 else if(me == 1){

10 #pragma xmp wait(p[target], tag)
11 dst_buf[0:size]:[target] = src_buf[0:size];
12 #pragma xmp post(p[target], tag)
13 }

1 int me;
2 MPI_Comm_rank(..., &me);
3 int target = (me == 0)? 1 : 0;
4 ...
5 if(me == 0){
6 MPI_Isend(src_buf, ..., target, ...);
7 MPI_Wait(...);
8 MPI_Irecv(dst_buf, ..., target, ...);
9 MPI_Wait(...);

10 }
11 else if(me == 1){
12 MPI_Irecv(dst_buf, ..., target, ...);
13 MPI_Wait(...);
14 MPI_Isend(src_buf, ..., target, ...);
15 MPI_Wait(...);
16 }

Fig. 19 Part of the ping-pong benchmark code in XMP and MPI [5]

La
te

nc
y

(m
ic

ro
 s

ec
.)

8 64 512 4096 32768
Transfer Size (Byte)

20

16

12

8

4

0

XMP using FJRDMA
MPI_Isend()/Irecv()

La
te

nc
y

(m
ic

ro
 s

ec
.)

10

8

6

4

2

0
8 64 512 4096 32768

Transfer Size (Byte)

XMP using GASNet
MPI_Isend()/Irecv()

The K computer The COMA system

Fig. 20 Performance results for ping-pong benchmark [5]

Implementation and Performance Evaluation of Omni Compiler 95

MPI implementation for 2048 Bytes or greater transfer size on the K computer.
In contrast, the results on the COMA system show that the latency of the XMP
implementation is always worse than that of the MPI implementation on the COMA
system. The latency of XMP with FJRDMA at 4096 Bytes, which is the average
data chunk size, is 5.83 μs and the latency of MPI is 6.89 μs on the K computer.
The latency of XMP with GASNet is 5.05 μs and that of MPI is 3.37 μs on the
COMA system. Thus, we consider the reason for the performance difference of
RandomAccess is the communication performance. The performance difference
is also due to the differences in the synchronization mechanism of the one-sided
XMP coarray and the two-sided MPI functions. Note that a real application would
not synchronize after every one-sided communication. It is expected that a single
synchronization should occur after multiple one-sided communications to achieve
higher performance.

In addition, the performance results for HPL and FFT are slightly different
from those for the MPI implementations. We consider that these differences are
caused by small differences in the implementations. In HPL, for the panel-broadcast
operation, the XMP implementation uses the gmove directive with the async clause,
which calls MPI_Ibcast() internally. In contrast, the MPI implementation uses
MPI_Send() and MPI_Recv() to perform the operation by the “modified increasing
ring” [11]. In FFT, the XMP implementation uses XMP in Fortran, but the MPI
implementation uses C language. Both implementations call the same FFTE library.
In addition, the MPI implementation uses MPI_Alltoall() to transpose a matrix.
Since xmp_transpose() calls MPI_Alltoall() internally, the performance levels
for both xmp_transpose() and MPI_Alltoall() must be the same. Therefore, the
language differences and refactoring may have caused the performance difference.

6 Conclusion

The chapter describes the implementation and performance evaluation of Omni
compiler. We evaluate the performance of the HPCC benchmark in XMP on the
K computer up to 16,384 compute nodes and a generic cluster system up to
128 compute nodes. The performance results for the XMP implementations are
almost the same as those for the MPI implementations in many cases. Moreover,
it demonstrates that the global-view and the local-view memory models are useful
to develop the HPCC benchmark.

References

1. Programming Environment Research Team, https://pro-env.riken.jp
2. High Performance Computing System laboratory, University of Tsukuba, Japan, https://www.

hpcs.cs.tsukuba.ac.jp

https://pro-env.riken.jp
https://www.hpcs.cs.tsukuba.ac.jp
https://www.hpcs.cs.tsukuba.ac.jp

96 M. Nakao and H. Murai

3. M. Sato et al., Omni compiler and XcodeML: an infrastructure for source-to-source trans-
formation, in Platform for Advanced Scientific Computing Conference (PASC16), Lausanne
(2016)

4. M. Nakao et al., Performance evaluation for Omni XcalableMP compiler on many-core cluster
system based on knights landing, in IXPUG Workshop Asia 2018, Tokyo (2018), pp. 52–58

5. M. Nakao et al., Implementation and evaluation of the HPC challenge benchmark in the
XcalableMP PGAS language. Int. J. High Perform. Comput. Appl. 33(1), 110–123 (2017)

6. BLAS: Basic Linear Algebra Subprograms, http://www.netlib.org/blas/ (2016)
7. D.H. Bailey, FFTs in external or hierarchical memory. J. Supercomput. 4, 23–35 (1990)
8. C. Van Loan, Computational Frameworks for the Fast Fourier Transform (Society for Industrial

and Applied Mathematics, Philadelphia, 1992)
9. D. Takahashi, A Fast Fourier Transform Package, http://www.ffte.jp (2014)

10. R. Ponnusamy et al., Communication overhead on the CM5: an experimental performance
evaluation, in Fourth Symposium on the Frontiers of Massively Parallel Computation (1992),
pp.108–115

11. HPL Algorithm Panel Broadcast, http://www.netlib.org/benchmark/hpl/algorithm.html (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.netlib.org/blas/
http://www.ffte.jp
http://www.netlib.org/benchmark/hpl/algorithm.html
http://creativecommons.org/licenses/by/4.0/

Coarrays in the Context of XcalableMP

Hidetoshi Iwashita and Masahiro Nakao

Abstract Coarray features have been implemented on the Omni XcalableMP
compiler with a source-to-source translator and layered runtime libraries. Three
memory allocation methods for coarrays were implemented for the GASNet and
MPI-3 communication libraries and the native interface of Fujitsu. For the coar-
ray PUT/GET communication, algorithms using DMA (zero-copy) and buffering
were introduced. Important techniques for achieving high performance were the
non-blocking PUT communication implemented in the runtime library and the
optimization for the GET communication in the translator. Using the ping-pong
benchmark and the modified version, the fundamental performance was evaluated
and analyzed. The MPI version of the Himeno benchmark was ported to the coarray
version and modified for fully using the non-blocking PUT. As a result of the
evaluation, the non-blocking coarray version clearly outperformed the original and
non-blocking MPI versions.

1 Introduction

XcalableMP (XMP) [1] has complementary global-view and local-view program-
ming models. The former is a directive-based language extension to the base
languages Fortran and C, and the latter adopts the coarray features defined in Fortran
2008 [2] and a part of the coarray features defined in Fortran 2018 [3]. The purpose
of the coarray features as the local-view part of XMP is (1) writing applications
that are not suitable for global-view programming and (2) writing important parts of
programs that are critical to performance with an easier programming model than
MPI message passing. Therefore, the coarray features in XMP must be naturally

H. Iwashita (�)
Fujitsu Limited, Numazu-shi, Shizuoka, Japan
e-mail: iwashita.hideto@fujitsu.com

M. Nakao
RIKEN Center for Computational Science, Kobe, Hyogo, Japan
e-mail: masahiro.nakao@riken.jp

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_3

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_3&domain=pdf
mailto:iwashita.hideto@fujitsu.com
mailto:masahiro.nakao@riken.jp
https://doi.org/10.1007/978-981-15-7683-6_3

98 H. Iwashita and M. Nakao

merged into the global-view XMP language and must exhibit high performance,
comparable to that of MPI.

The Omni XMP compiler is an open-source implementation developed at RIKEN
and the University of Tsukuba [4]. The kernel of the Omni XMP compiler is a
source-to-source compiler that converts an XMP program into a Fortran program
by calling a runtime library. The coarray translator has been implemented on the
Omni XMP compiler. Since the images are mapped one-to-one to XMP nodes, each
image was implemented as a process, and the definition and reference to coarrays
were implemented as inter-node one-sided communications.

This chapter describes the techniques used in the coarray compiler and the
runtime library, and a comparison to MPI message passing. The remainder of this
chapter is organized as follows. Section 2 introduces the requirements of the coarray
features. Section 3 describes the implementation used to solve the requirements, and
Sect. 4 evaluates the performance and productivity of coarray programs. Related
research is described in Sect. 5, and Sect. 6 concludes this chapter.

2 Requirements from Language Specifications

The XMP Fortran language specification [1] supports many of the coarray features
defined in the Fortran 2008 standard [2], and intrinsic procedures CO_SUM,
CO_MAX, CO_MIN, and CO_BROADCAST defined in the Fortran 2018 standard [3]
are supported. In addition, the XMP C language specification was extended to
support coarray features.

This section introduces the coarray features and what is required of the compiler
in order to implement the coarray features.

2.1 Images Mapped to XMP Nodes

In the Fortran standard, an image is defined as an instance of a program. Each
image executes the same program and has its own individual data. Each image has
a different image index k. While the Fortran standard itself does not specify where
each image is executed, XMP specifies that images are mapped to executing nodes
on a one-to-one basis. Therefore, image k is always executed on executing node k,
where 1 ≤ k ≤ n, and n is the number of images as well as the number of executing
nodes. Since each MPI rank number of MPI_COMM_WORLD (0-origin) is always
mapped to an XMP node number in order, image k corresponds to rank (k − 1).

Note that the executing nodes can be a subset of the entire (initial) node set. For
example, two distinct node sets can execute two coarray subprograms concurrently.
The first executing images at the start of the program are entire images. Coarray
features are compatible with those of the Fortran standard, unless the TASK and END
TASK directives are used. If the execution encounters a TASK directive specified

Coarrays in the Context of XcalableMP 99

with a subset of nodes, then the corresponding subset of images will be the executing
images for the task region. The current number of images and my image number,
which are given by inquire functions num_images and this_image also match
the executing images, and the SYNC_IMAGES statement synchronizes the executing
images. When the execution encounters the END TASK directive corresponding to
the TASK directive, the set of executing images is reinstated.

Requirement for the Implementation The runtime library should manage the
executing image set and the current image index in a stack in order to reinstate
them at the exit point of the task.

2.2 Allocation of Coarrays

A coarray or a coarray variable is a variable that can be referred from the other
images. A coarray with the ALLOCATABLE attribute is called an allocatable
coarray, and is otherwise called a non-allocatable coarray. A non-allocatable
coarray may not be a pointer and must have an explicit shape and the SAVE attribute.
In order to help intuitive understanding, we refer to a non-allocatable coarray a static
coarray. The lifetime of a static coarray is throughout execution of the program on
all images, even if the coarray is declared in a procedure called with a subset of
images.

On the other hand, an allocatable coarray is allocated with the ALLOCATE
statement and freed either explicitly with the DEALLOCATE statement or implicitly
at the end of the scope in which the ALLOCATE statement is executed (automatic
deallocation).

Static coarrays can be declared as scalar or array variables as follows:

real(8), save :: a(100,100)[*]
type(user_defined_type), save :: s[2,2,*]

The square brackets in the declaration distinguish coarray variables from other
(non-coarray) variables. The declaration declares the virtual shape of the images,
and the last dimension must be deferred (as ‘*’).

Allocatable coarrays can be declared as follows:

real(8), allocatable :: b(:,:)[:]
type(user_defined_type), allocatable :: t[:,:,:]

A notable constraint is that at any synchronization point in program execu-
tion, coarrays must have the same dimensions (sizes of all axes) for all images
(symmetric memory allocation). Therefore, a static coarray must have the same
shape for all images during program execution, and an allocatable coarray must be
allocated and deallocated collectively at the same time with the same dimensions
for the executing images. Thanks to the symmetric memory allocation rule, all
executing images can have the same symmetrical memory layout, which makes it

100 H. Iwashita and M. Nakao

possible to calculate the address of the remote coarray with no prior inter-image
communication.

Requirement for the Implementation Static coarrays must be allocated and made
accessible remotely before execution of the user program and made inaccessible
remotely and be freed after execution of the user program. In contrast, allocatable
coarrays must be allocated and made accessible remotely when the ALLOCATE
statement is encountered and made inaccessible remotely and freed when the
DEALLOCATE statement is encountered or the exit point of the scope to which the
corresponding ALLOCATE statement is encountered.

2.3 Communication

Coarray features in XMP include three types of communications between images,
i.e., reference and definition to remote coarrays, collective communications (intrin-
sic subroutines CO_SUM, CO_MAX, CO_MIN, and CO_BROADCAST), and atomic
operations (ATOMIC_DEFINE and ATOMIC_REF). Collective communications
and atomic operations are similar to those in MPI library. Communications for
reference and definition to remote coarrays are characteristic for coarray features.

PUT communication is caused by an assignment statement with a coindexed
variable as the left-hand side expression, e.g.,

a(i,j)[k] = alpha * b(i,j) + c(i,j)

This statement causes the PUT communication to the array element a(i,j) on
image k with the value of the left-hand side. Using the Fortran array assignment
statement, array-to-array PUT communication can be written easily, e.g., the
following statement causes M×N-element PUT communication:

a(1:M,1:N)[k] = alpha * b(1:M,1:N) + c(1:M,1:N)

GET communication is caused by referencing the coindexed object, which is
represented by a coarray variable with cosubscripts enclosed by square brackets,
e.g., s[1,2] and a(i,j)[k], where s and a are scalar and two-dimensional
array coarrays, respectively. A coindexed object can appear in almost any expres-
sion, including array expressions.

Requirement for the Implementation In order to implement definition/reference
to a coindexed variable/object, PUT/GET one-sided communication is suitable
for use. In order to avoid costly processing, such as a remote procedure call,
remote direct memory access-based (RDMA-based) implementation is desirable. In
PUT/GET communication for large data, redundant multiple memory copies should
carefully be avoided for all software layers, the communication library, the runtime,
the Fortran library, and the object.

Coarrays in the Context of XcalableMP 101

2.4 Synchronization

The access order of coarrays between images is explicitly controlled by the
programmer using the image control statement, such as SYNC ALL and SYNC
IMAGES statements. The statement allows the compiler system to make PUT/GET
communication asynchronous. The sequence of execution between the image
control statements is called as a segment. An asynchronous communication must
be completed by the end of the segment.

Inside each image, the compiler must maintain data dependency as before,
even if the program contains coarray communications. The compiler must suppress
the non-blocking communication, which postpones waiting for communication
completion. In order to keep data dependency among the definitions and references
to the same coarray in the same segment, non-blocking communication should be
restricted. The example below in which the same remote coarray is accessed a
number of times inside the same segment.

1 if (this_image()==1) then
2 a[2]=
3 =a[2]
4 a[2]=
5 a[2]=
6 endif

Between lines 2 and 3, the completion wait for PUT communication is necessary
in order to avoid referencing data that is not defined completely. Similarly, between
lines 3 and 4, the completion wait for GET communication is necessary in order to
avoid referencing data that is being updated. However, between lines 4 and 5, the
completion wait is not necessary. The issue of race condition on image 2 cannot be
avoided by the completion wait on image 1 in general, and avoiding this issue is up
to the programmer.

Requirement for the Implementation Unless the same remote data is accessed
from the same segment, non-blocking completion can be delayed until the end
of the segment. Since the data received by the GET communication is usually
referenced soon, non-blocking GET communication is hard to use. Therefore,
if GET communication is always on blocking, then only the flow dependency
(between lines 2 and 3) should be considered.

2.5 Subarrays and Data Contiguity

Except for a dummy argument, an array is fully contiguous across the dimensions.
A subarray of the array can be fully or partially contiguous or non-contiguous. For
example, if an array is declared with the shape a(1:M,1:N), then the whole array
(referenced as a or a(:,:) or a(1:M,1:N)) is fully contiguous and a subarray
a(2:5,3) is partially contiguous. We defined a term contiguous length as the

102 H. Iwashita and M. Nakao

length for which the data is partially contiguous. For example, the contiguous
lengths of a(2,3) and a(2:5,3) are 1 and 4, respectively. a(1:M,1:3) is
two-dimensionally contiguous and has contiguous length 2 × M. a(1:M-1,1:3)
is one-dimensionally contiguous and has a contiguous length (M − 1).

Requirement for the Implementation For high-performance communication, it is
important to find the contiguous length across the dimensions, because thousands of
bytes of contiguous data is needed in order to be comparable to the communication
latency in general, and only the first dimension of the array is not always long
enough.

2.6 Coarray C Language Specifications

The XMP language specification extends the C language to support coarray features.
Array notations, such as subarray and array assignment statements, are adopted in
the C language. In XMP/C, a coarray is a data object but is not a pointer. A coarray
is either (1) of basic type, (2) a structure in which no component is a pointer or (3)
an array of 1, 2, or 3.

XMP/C also has static and allocatable coarrays. Coarray variables declared
directly in the file and declared with the static attribute are static. Coarray
variables can be allocated with intrinsic functions.

3 Implementation

3.1 Omni XMP Compiler Framework

The coarray translator was added to the Omni XMP compiler [4], as shown in
Fig. 1. The Omni XMP compiler is a source-to-source translator that converts XMP
programs into the base language (Fortran or C). The component “coarray translator”
(CAF translator) is located in front of the XMP translator to solve coarray features
previously. The output of the decompiler is a standard Fortran/C program, which
may include calls to the XMP runtime library.

The following procedures are generated in advance or in the coarray translator to
initialize static coarray variables prior to the execution of the user program:

• The built-in main program calls subroutine xmpf_traverse_init, the entry
procedure of initialization subroutines, before executing the user main program.

• Subroutine xmpf_traverse_init is generated by the coarray translator to
call initialization subroutines corresponding to all user-defined procedures.

Coarrays in the Context of XcalableMP 103

Fig. 1 XMP compiler and an example of coarray program compilation

• Each initialization subroutine xmpf_init_foo is generated from user-defined
procedure foo by the coarray translator, which initializes all static coarrays
declared in foo.

3.2 Allocation and Registration

In order to be accessed using the underlying communication library, the allocated
coarray data must be registered to the library. The registration contains all actions
to allow the data to be accessed from the other nodes, including pin-down memory,
acquirement of the global address, and sharing information among all nodes.

3.2.1 Three Methods of Memory Management

The coarray translator and the runtime library implements three methods of memory
management.

• The runtime sharing (RS) method allocates and registers a large memory for
all static and dynamic coarrays at the initialization phase. The registered memory
is shared by all static and allocatable coarrays.

104 H. Iwashita and M. Nakao

• The runtime allocation (RA) method allocates and registers a large memory for
all static coarrays at the initialization phase. The RA method also allocates and
registers each allocatable coarray at runtime.

• The compiler allocation (CA) method allocates all coarray objects by the
Fortran system (at compile time or at runtime), and the address is passed to the
runtime library to be registered.

For the RS and RA methods, since the allocated memory address is determined
in the runtime library, the object code must accept the address allocated inside the
runtime system as an address of a regal Fortran variable. To make this connection,
it was necessary to use the Cray pointer, which is not in the Fortran standard. In
the case of the CA method, the runtime library accepts the address allocated in the
Fortran system and registers to the communication library.

3.2.2 Initial Allocation for Static Coarrays

Static coarrays are allocated and registered in the initialization subroutines
xmpf_init_foo.

In the RS and RA methods, static coarrays are initialized before execution of the
user program, as follows.

• In the first pass, all sizes of static (non-allocatable) coarrays are summed. The
size of each static coarray is evaluated form the lower and upper bounds specified
in the dimension declaration statement of each coarray. The lower and upper
bound expressions, possibly including binary and unary operations, references
to names of constants, and basic intrinsic functions, such as min/max and sum,
are evaluated by constant folding. Since the size of the structure that contains
allocatable or pointer components differs depending on the target compiler,
the coarray translator obtains the necessary parameters to calculate the size of
structures at build time.

• Then, the total size of static coarrays is allocated and the address and size are
registered to the underlying communication library.

• In the second pass, the addresses of all of the coarrays are calculated to share
the registered data. Due to the language specification, the sizes of the same
coarray are the same among all images (nodes). Therefore, the offset from the
base address of the registered data for each coarray can be the same among all
images.

In the RS method, allocatable coarrays also share the registered memory. The total
size of the memory to be registered should be specified with an environment variable
by the user. In the RA method, the total size is fully calculated by the runtime
library, and no information is required of the user because allocatable coarrays will
be dynamically allocated on the other memories.

In the CA method, the Fortran processor allocates each coarray, and the runtime
library then registers the address. Each static coarray is converted into a common

Coarrays in the Context of XcalableMP 105

(external) variable to share between the user-defined procedure (say foo) and its
initialization procedure (xmpf_init_foo). The data is statically allocated by the
Fortran system in a manner similar to the usual common variable. The address is
registered in the initialization procedure via the runtime library.

3.2.3 Runtime Allocation for Allocatable Coarrays

For the RS method, the runtime library has a memory management system for
cutting out and retrieving memory for each allocation and deallocation of coarrays.

Figure 2 illustrates the memory allocation and registration for allocatable
coarrays in the RA and CA methods.

These methods are properly used by the underlying communication library.
For GASNet, only the RS method is adopted because its allocation function can
be used only once in the program. For MPI-3, the CA method is not suitable
because frequent allocation and deallocation of coarrays cause expensive creation

Fig. 2 Memory allocation for coarrays in RA and CA methods. (a) RA method. (b) CA method

106 H. Iwashita and M. Nakao

and freeing of MPI windows. In the case of FJ-RDMA, the RS method has no
advantage over the other methods. Since the allocated address is used for registration
to FJ-RDMA, no advantage was found for managing memory outside of the Fortran
system. The unusual connection through the Cray pointer causes degradation of the
Fortran compiler optimization.

3.3 PUT/GET Communication

In order to avoid disturbing the execution on the remote image, PUT and GET com-
munications are always implemented using remote direct memory access (RDMA)
provided by the communication library (except coarrays with pointer/allocatable
structure components). In contrast, local data access is selective between using
direct memory access (DMA) or using a local buffer. For the buffer scheme, one
of the four algorithms will be chosen.

3.3.1 Determining the Possibility of DMA

Coarray variables must be registered when allocated to be the target of RDMA
communication. In contrast, since the local data, which is the source of PUT or
the destination of GET, was not registered or linked to registered information, the
data could not be the target of DMA communication and had to be communicated
via the registered buffer.

When the local data is an entire coarray or a part of coarray, the coarray must
be registered, and efficient DMA-RDMA communication can be made. Since the
analysis at compile time is limited, we implemented the detector in the runtime
library using binary-tree search, as follows.

1. When a chunk of coarray data is registered to the communication library, the
runtime library adds the set of the local address and the size to a sorted table
called SortedChunkTable. The sort key is the local base address of the data.

2. When a chunk of coarray data is deregistered from the communication library,
the runtime library deletes the record in SortedChunkTable.

3. When a PUT or GET runtime library is called corresponding to a refer-
ence/definition to a coindexed object/variable, the local address is searched in
SortedChunkTable with binary search. The local data is already registered
if addri ≤ addr < addri + sizei for any i, where addr is the said local
address and addi and sizei are the i-th address and size, respectively, in
SortedChunkTable.

If the communication data is large, then the cost of procedure 3 is relatively small
and is worth using. If the data is small, then the buffering algorithm, as shown in
Sect. 3.3.2, may be better.

Coarrays in the Context of XcalableMP 107

3.3.2 Buffering Communication Methods

For the buffer scheme, one of the four algorithms will be chosen depending on
three parameters: the size of the local buffer B and the local and remote contiguous
lengths NL and NR , respectively. Here, B should be large enough to ignore
communication latency overhead and we use approximately 400 kilo-bytes by
default. Unlike the case of MPI message passing, coarray PUT/GET communication
requires only one local buffer for any number of other images. Both NL and NR can
be evaluated at runtime. The Fortran syntax guarantees that NL is a multiple of NR

or NR is a multiple of NL. An algorithm to obtain the contiguous length is shown in
a previous paper [5].

Table 1 summarizes our algorithm for PUT/GET communication for five cases.
The unit size is the chunk length of the PUT/GET communication. Case 0 shows the
algorithm using RDMA-DMA PUT/GET communication, and Cases 1 through 4
show the algorithms using RDMA and local-buffering. Due to its strict condition,
the DMA scheme is rarely used. In addition, this scheme is not always faster than
the buffering scheme for Cases 2 and 3 because of the difference in the unit sizes.
The advantage of Cases 2 and 3 is that the unit size is extended to a multiple of NL

by gathering a number of short contiguous data in the buffer, or by scattering from
the buffer into a number of short contiguous data.

3.3.3 Non-blocking PUT Communication

For higher performance, the PUT communication should be non-blocking, and the
completion wait should be delayed until the end of the segment. Writing and reading
the same remote data from the same image in the same segment appears to be a
very rare case, as described in Sect. 2.4. However, this is difficult to detect with

Table 1 Summary of the PUT/GET algorithm related to NL, NR , and B

Scheme Case Condition Unit size

DMA Local data is registered min(NL,NR)

Buffering 1 NR ≤ B, NR ≤ NL NR

2 NL < NR ≤ B NR

3 NL < B < NR Multiple of NL (≤ B)

4 B < NR, B ≤ NL B (or less than B at last)

Scheme Case PUT action for each unit GET action for each unit

DMA Put once Get once

Buffering 1 Buffer once, and put once Get once, and unbuffer once

2 Buffer for each NL, and put once Get once, and unbuffer for each NL

3 Buffer for each NL, and put once Get once, and unbuffer for each NL

4 Buffer once, and put once Get once, and unbuffer once

108 H. Iwashita and M. Nakao

low cost. Since the subscripts and image indices are often variable expressions, the
compiler rarely selects non-blocking communication and usually generates safe but
slow code. We do not have a reasonable solution for this issue.

In the current implementation, the user selects blocking or non-blocking for PUT
communication at runtime with the environment variable.

3.3.4 Optimization of GET Communication

A reference to an array-coindexed object is converted to a call of a runtime library
function that returns a Fortran array value. For example, array assignment statement:

b(j1:j2) = a(i1:i2)[k]

is converted to

b(j1:j2) = xmpf_coarray_get_generic(dp_a,k,a(i1:i2))

by the coarray translator, where dp_a is the descriptor of coarray a. The issue is
that the result of the library function is an array value, which causes several memory
copies. As a countermeasure, we optimized a specific but common case by the
translator. If a coindexed object is only the right-hand side of an array assignment
statement, then the entire assignment statement can be converted into a single library
call. The above example satisfies this condition and so can be converted again as
follows:

call xmpf_coarray_getsub_generic(dp_a,k,a(i1:i2),b(j1:j2))

In this runtime library subroutine, the variable b(j1:j2) is expected to be the
local target of GET communication, instead of the local buffer that would be
generated by the Fortran runtime.

3.4 Runtime Libraries

The layer of the runtime libraries is shown in Fig. 3. One of the three communication
libraries is selected at the build time of the Omni compiler. The coarray runtime
consists of three layered libraries. The Fortran wrapper mediates the arguments
and the result value of the translated user program (written in Fortran) and
the upper-layer runtime (ULR) (written in C). The (ULR) library performs the
algorithms described above in this section. The lower-layer runtime (LLR) library
abstracts the difference between the communication libraries, except for the memory
management of coarray data.

Coarrays in the Context of XcalableMP 109

Fig. 3 Software stack for
coarray features

3.4.1 Fortran Wrapper

Each set of Fortran wrapper procedures has a generic name and dozens of
corresponding specific names. For example, the object code contains a call to a
function with the generic name xmpf_coarray_get_generic. If the data is a
two-dimensional array of the 16-byte complex type, the Fortran compiler selects the
corresponding specific name xmpf_coarray_get2d_z16 at compile time and
generates the object code by calling a ULR function by the specific name.

The Fortran wrapper accepts Fortran array notations as the arguments and the
result variable and converts these notations into structures that can be handled in
a runtime library written in C. The Fortran wrapper also converts a C pointer to a
Fortran pointer with the shape using the Cray pointer.

The Fortran wrapper calls ULR procedures basically and calls MPI library
functions directly for collective communications.

3.4.2 Upper-layer Runtime (ULR) Library

The major role of ULR is performing the algorithms for coarray data alloca-
tion/registration (Sect. 3.2) and PUT/GET communications (Sect. 3.3). Additionally,
for atomic communications caused by intrinsic subroutines ATOMIC_DEFINE
and ATOMIC_REF, ULR calls the corresponding function of LLR after address
calculation.

3.4.3 Lower-layer Runtime (LLR) Library

The LLR basically abstracts the difference between the communication libraries.
The only exception is the allocation and registration of coarray data. Major functions
are shown below.

• Functions to allocate and register coarray variables, and functions to register
coarray variables that are already allocated. They are alternatively used in the

110 H. Iwashita and M. Nakao

RS and RA methods and in the CA method. Correspondingly, a set of functions
to deregister and deallocate and a set of functions to deregister are provided.

• Fundamental functions for RDMA-DMA GET communication and DMA-
RDMA PUT communication. It is assumed that both remote and local data
are previously registered. Blocking and non-blocking can be switched.

• Functions corresponding to image control statements, atomic subroutines, and
inquire functions.

The LLR also has the features for multi-dimensional data developed for the C
implementation, which are not used in the Fortran implementation because this
implementation is solved in ULR.

3.4.4 Communication Libraries

MPI-3 can be selected for all platforms on which it is implemented. Coarrays
are registered and deregistered at the start and end point of the MPI window.
Coarrays perform one-sided communication by MPI_Put and MPI_Get and are
synchronized by MPI_Win_fence. Implementation on MPI incurs certain costs
for dynamic allocation of coarrays and waiting for communication completion.

GASNet can be selected for more advanced implementation over InfiniBand.
Since allocation and registration of are inseparable and can be performed only once
on GASNet, the implementation allocates and registers a pool of memory, the size
of which should be large enough to contain all static and allocatable coarrays. The
XMP runtime should allocate and deallocate coarrays without using the Fortran
library but using the memory manager constructed for the pool.

FJ-RDMA can be selected for the implementation over the Tofu interconnection
of the K computer and Fujitsu PRIMEHPC FX series supercomputers. Basically,
each coarray is allocated by the Fortran library and the address is registered with
the FJ-RDMA interface FJMPI_Rdma_reg_mem. The address is deregistered
with FJMPI_Rdma_dereg_mem before being deallocated (freed) by the Fortran
library. One-sided communication is performed with FJMPI_Rdma_put and
FJMPI_Rdma_get.

4 Evaluation

We evaluated the Omni XMP coarray compiler in the environments shown in
Table 2.

Coarrays in the Context of XcalableMP 111

Table 2 Specifications of the computers and evaluation environment

RIKEN RCCS
RIKEN RCCS HOKUSAI
GreatWare

CCS, University of
Tsukuba

The K computer Fujitsu PRIMEHPC FX100 HA-PACS/TCA

CPU SPARK64™VIIIfx,
2 GHz, 128 Gflop/s,
8-core, 1 CPU/node

SPARK64™XIfx,
1.975 GHz, 1 CPU/node,
4-SIMD × 32-core

E5-2680 v2 (Ivy Bridge),
10-core, 224 Gflop/s,
2 CPU/node

Memory 16 GB/node, 32 GB/node, 128 GB/node,

Bandwidth 64 GB/s Bandwidth 480 GB/s 119.4 GB/s

Interconnect Tofu Tofu2, 12.5 GB/s × 2 InfiniBand FDR, 7 GB/s

Coarray Omni XcalableMP 1.3.1 Omni XcalableMP 1.3.1 Omni XcalableMP 1.3.1

Fortran Fujitsu Fortran 2.0.0 Fujitsu Fortran 2.0.0 Intel Fortran 16.0.4

MPI Fujitu MPI 2.0.0 Fujitu MPI 2.0.0 Intel MPI 5.1.3

Comm. layer Tofu library Tofu library GASNet 1.24.2
(IBV-conduit, built with
Intel compilers)

Table 3 Ping-pong codes

4.1 Fundamental Performance

Using the EPCC Fortran Coarray micro-benchmark [6], we evaluated the ping-pong
performance of PUT and GET communications compared with MPI_Send/Recv.
The codes are briefly shown in Table 3.

Corresponding to the codes in Table 3, Fig. 4 shows how data and messages are
exchanged between two images or processes. In coarray PUT (a) and GET (b), inter-
image synchronization is necessary for each end of the phases to make the passive
image active and to make the active image passive. Whereas in MPI message passing
(c) and (d), such synchronization is not necessary because both processes are always
active. On the other hand, MPI message passing has its own overhead that coarray
PUT/GET does not have. Since the eager protocol (c) does not use RDMA, the

112 H. Iwashita and M. Nakao

Fig. 4 Diagrams for ping-pong codes. (a) Coarray PUT. (b) Coarray GET. (c) MPI send/recv
eager protocol. (d) MPI send/recv Rendezvous protocol

receiver must copy the received data in the local buffer to the target. The larger the
data, the greater the overhead cost. In the rendezvous protocol (d), negotiations,
including remote address notification, are required prior to communication. The
overhead cost is not negligible when the data is small.

The result of the comparison between coarray PUT/GET and MPI message
passing is shown in Fig. 5. As the underlying communication libraries, FJ-RDMA
and MPI-3 are used on FX100 and GASNet. And MPI-3 is used on HA-PACS.
GET (a) and GET (b) use the code without and with the optimization described
in Sect. 3.3.4, respectively. Bandwidth is the communication data size per elapsed
time, and latency is half of the ping-pong elapsed time. The difference between
GET (a) and GET (b) is the compile time optimization level of the coarray translator
described in Sect. 3.3.4.

The following was found regarding coarray PUT/GET communication.

Bandwidth Coarray PUT and GET slightly outperforms MPI rendezvous com-
munication for large data on FJ-RDMA and MPI-3. On FJ-RDMA/FX100 (a),
the bandwidths of PUT and GET (b) are, respectively, +0.1% to +18% and -0.4%
to +9.3% higher than MPI rendezvous in the rendezvous range of 32k through
32M bytes. In addition, on MPI-3 and/or HA-PACS, the bandwidths of PUT
and GET are, respectively, +0.3% to +0.8% and +0.1% to +1.3% higher in the
rendezvous range of 512k through 32M bytes. Based on the runtime log, zero-
copy communication was confirmed to have been performed both in PUT and
GET (b) by selecting the DMA scheme described in Sect. 3.3.1.

Coarrays in the Context of XcalableMP 113

Fig. 5 Ping-pong performance on Fujitsu PRIMEHPC FX100 and HA-PACS/TCA. (a) FJ-
RDMA/FX100 (CA-method). (b) MPI-3/FX100 (RA-method). (c) GASNet/HA-PACS (RS-
method). (d) MPI-3/HA-PACS (RS-method)

114 H. Iwashita and M. Nakao

However, on GASNet/HA-PACS (c), PUT and GET (b) were only approximately
60% of the bandwidth of MPI rendezvous for a large amount of data. It is
presumed that data copy was caused internally.

Latency On FJ-RDMA (a) and MPI-3 (b) and (d), PUT and GET (b) have larger
(worse) latency than MPI eager communication in the range of ≤16kB on FX100
and ≤256kB on HA-PACS.
Coarray on GASNet (c) behaves differently than other cases on (a), (b), and (d).
Although the latency is larger than that for MPI for all data sizes, the difference
is smaller than in the other cases. At a data size of 8B, the latency of PUT is 2.93
μs and 2.1 times larger than the one of MPI while 5.73μs and 3.7 times larger
for the case of MPI-3 (d).

Effect of GET optimization For all ranges in all cases, GET (a) has a smaller
bandwidth and a larger latency than GET (b). On FJ-RDMA (a), the bandwidth
is 1.41 to 1.85 times improved in the range of 32kB to 32MB by changing
the object code of GET (a) to GET (b). We found GET (a) caused two extra
memory copies. One copy performs the array assignment by the Fortran library,
and the other copy is from the communication buffer to the result variable of the
array function xmpf_coarray_get_generic. The optimization described
in Sect. 3.3.4 eliminated these two data copies.

The large latency of coarray PUT/GET communication is problematic. In the
next subsection, we discuss how this problem should be solved by the compiler and
the programming.

4.2 Non-blocking Communication

For latency hiding, asynchronous and non-blocking features can be expected in
coarray PUT communication. The principle is shown in Fig. 6.

Figure 6a shows the half pattern of the ping-pong PUT communication. Coarray
one-sided communication is basically asynchronous, unless synchronization is
explicitly specified. Therefore, multiple communications without synchronization,
as shown in (b), are closer to actual applications. In addition, coarray one-sided
communication can be optimized using non-blocking communication, as shown in
(c). Blocking and non-blocking communications can be switched with the runtime
environment variable in the current implementation of the Omni compiler. In MPI
message passing, non-blocking communication can be written with MPI_Isend,
MPI_Irecv, and MPI_Wait.

Figure 7 compares blocking/non-blocking coarray PUT and MPI message
passing communications. The two original graphs are the same as those of Fig. 5a.
Four other graphs display the results of the eight-variable ping-pong program, which
repeats the ping phase, sending eight individual variables from one to the other
in order, and, similarly, the pong phase in the opposite direction. Each block size
indicates the size of variables, and latency includes the time for eight variables.

Coarrays in the Context of XcalableMP 115

Fig. 6 Blocking and non-blocking PUT communications. (a) 1-variable/blocking. (b) n-
variable/blocking. (c) n-variable/non-blocking

The following was found from the results:

• Non-blocking PUT significantly improves the latency of PUT communication.
From 8 B to 8 kB, the latency of non-blocking PUT communication is 4.63 times
faster on average than blocking PUT. Compared to the original PUT, from 8 B
to 8 kB, it performs communication eight times for a period of time 2.11 times
longer, on average. Hiding completion wait behind communication (Fig. 6c)
greatly improves the performance.

• Reduction of synchronization (Fig. 6b) itself does not improve the performance.
Compared to the original blocking PUT, eight-variable blocking PUT has 9.5–
10.1 times larger latency for a data set that is eight times larger.

116 H. Iwashita and M. Nakao

Fig. 7 Eight-variable ping-pong latency on PRIMEHPC FX100

• Unless data size exceeds approximately 8 kB, the latency of non-blocking PUT
does not depend on the amount of data. The graph of non-blocking PUT is very
flat, within ±4%, over the range from 8 B to 4 kB.

• MPI eager communication has no effect on non-blocking for latency hiding. The
eager protocol, including the unbuffering process of the receiver, appears not to
be suitable for non-buffering.

• Non-blocking coarray PUT outperforms MPI eager message passing, except for
very fine grain data. The latency of eight-variable non-blocking PUT is −9% to
54% and 18% to 61%, as compared to eight-variable blocking and non-blocking
MPI eager, respectively. At only two plots for 8 B and 16 B, the non-blocking
PUT is 4% and 9% slower than the values for blocking MPI. Otherwise, non-
blocking PUT is faster than MPI eager, and the more block size, the larger
difference in the latency.

Coarrays in the Context of XcalableMP 117

4.3 Application Program

The Himeno benchmark is a part of the 2D Poisson equation solver using the Jacobi
iteration method [7]. The MPI version of the Himeno benchmark is a strong scaling
program distributing up to three-dimensional nodes. The K computer shown in
Table 2 was used in this evaluation.

4.3.1 Coarray Version of the Himeno Benchmark

For comparison, we prepared the following three versions of Himeno programs.

MPI/original The original MPI version of Himeno benchmark was used as a
two-dimensionally distributed in the y and z axes. The x axis was automatically
SIMD-vectorized by the Fortran compiler. The program executes the computa-
tion and communication parts repetitively. The communication part consists of
two steps: z-axis direction communication and y-axis direction communication,
as shown in Fig. 8a. Each communication is written with non-blocking MPI
message passing and completion wait at the end of each step.

MPI/non-blocking The two-step communication was replaced by non-blocking
scrambled communication, as shown in Fig. 8b. With this replacement, the

Fig. 8 Two algorithms of stencil communication in the Himeno benchmark. (a) Original MPI
version. (b) Non-blocking MPI and coarray versions

118 H. Iwashita and M. Nakao

number of communications increases from four to eight per node, but all
communications become independent and can be non-blocking.

Coarray PUT/non-blocking The communication pattern is the same as that of
MPI/non-blocking. The data was declared as a coarray, and each communication
was written with a coarray PUT, i.e., an assignment statement with coindexed
variable as the left-hand side. Since the right-hand side of the statement is a ref-
erence to the same variable as the left-hand side coarray, the PUT communication
was converted to zero-copy DMA-RDMA communication.

4.3.2 Measurement Result

Figure 9 shows the measurement results for Himeno sizes M, L, and XL, executed
on 1×1, 2×2, 4×4, · · · , 32×32 nodes on the K computer. The following results
were obtained:

• PUT non-blocking was the fastest at 76% of the measurement points of the
graph. On 1024 nodes, PUT non-blocking is 1.2%, 27%, and 42% faster than
MPI original for sizes M, L, and XL, respectively.

• As a result of analyzing the contents of elapsed time, it was confirmed that the
difference in the performance is caused by the difference in communication time.
As shown in (b) and (c), the communication times of PUT non-blocking are 56%
and 51% of those of MPI blocking on 256 nodes on L and XL Himeno sizes,
respectively.

• MPI non-blocking is not always faster than the MPI original. The effect of non-
blocking seems to be limited in MPI.

4.3.3 Productivity

Table 4 compares the scale of the source codes. The following features can be found.

• PUT blocking requires fewer characters for programming, especially in sub-
routines initcomm and initmax. The MPI programmer must describe the
Cartesian coordinates to represent neighboring nodes in initcomm, and must
declare MPI vector types to describe the communication pattern in initmax.
In contrast, the coarray programmer easily represents neighboring images with
coindex notation, e.g., [i,j-1,k], and communication patterns with subarray
notations, e.g., p(1:imax, 1:jmax, 1).

• The Fortran statement of the MPI program tends to be longer than that of
coarray. Since, comparing PUT non-blocking to MPI non-blocking, the number
of characters is one third while the number of statements is almost the same. This
means that the coarray program is more compact than the MPI program for each
statement. MPI library functions often require long sequences of arguments.

Coarrays in the Context of XcalableMP 119

Fig. 9 Results for Himeno benchmarks. (a) Himeno size-M (256×128×128). (b) Himeno size-L
(512 × 256 × 256). (c) Himeno size-XL (1024 × 512 × 512)

120 H. Iwashita and M. Nakao

Table 4 Source code scales for the Himeno benchmark

MPI original MPI non-blocking PUT non-blocking

Subroutine LOC SOC Chars LOC SOC chars LOC SOC Chars

Jacobi 50 33 1546 50 32 1546 43 31 1314

Initcomm 65 39 1724 80 54 2380 19 19 421

Initmax 95 77 2336 115 85 2939 71 71 1584

Sendp 152 59 3724 299 91 7617 96 96 2435

Others 248 225 5872 250 227 5923 232 231 5276

Total 610 433 15,202 794 489 29,495 461 448 11,030

LOC: Number of lines of codes excluding comment and empty lines
SOC: Number of Fortran statements, which may span multiple lines
chars: Number of characters excluding those in comment lines

5 Related Work

The University of Rice has implemented coarray features with their own extension
called CAF2.0 [8]. CAF2.0 is a source-to-source compiler based on the ROSE
compiler. GASNet is used as its communication layer. Similarly to our RS and RA
methods, the Cray pointer is used to pass the data allocated in C to Fortran. Houston
University developed UH-CAF on the Open64-base OpenUH compiler [9]. UH-
CAF supports the coarray features defined in the Fortran 2008 standard. As the
communication layer, GASNet and ARMCI can be used selectively. OpenCoarrays
is an open-source software project [10]. OpenCoarrays is a library that can be
used with GNU Fortran (gfortran) V5.1 or later and supports the coarray features
specified in Fortran 2008 and a part of Fortran 2018. As the communication layer,
MPICH and GASNet can be used selectively. In the vendors, Cray and Intel fully
support and Fujitsu partially supports the coarray features specified in Fortran 2008.

In the latest Fortran standard, Fortran 2018, a subset of coarrays is referred to as
a team. It is similar to the executing images in the term of XMP, but does not affect
the parallel execution among images.

While non-blocking PUT communication is effective, non-blocking GET com-
munication is difficult to put into practical use because the acquired data is used
immediately. Cray has the directive extension for prefetching a remote coarray
corresponding to the GET communication.

Coarray C++ is a coarray implementation in C++. The coarray features are
implemented with the template library, unlike XMP/C, which is based on the C
language.

Coarrays in the Context of XcalableMP 121

6 Conclusion

This chapter described the coarray features in the context of XMP and the
characteristic implementation of the coarray translator.

For memory allocation and registration, the RS, RA, and CA methods were
implemented corresponding to the communication library GASNet, FJ-RDMA, and
MPI-3.

For the coarray PUT and GET communications, DMA and four buffering
methods were described. The effect of the non-blocking PUT communication was
analyzed, and the knowledge is used to make the coarray version of the Himeno
benchmark from the original MPI version. The measurement results on 1024 nodes
of the K computer, the coarray version is 27% and 42% faster than the original MPI
version for Himeno sizes L and XL, respectively. The effect of the optimization
of GET communication was also obvious on the ping-pong benchmark on HA-
PACS/TCA and Fujitsu PRIMEHPC FX100.

As an evaluation of productivity, the coarray program uses fewer than half as
many characters as the MPI message passing program to write the same algorithm
as the Himeno benchmark.

Acknowledgments The present research used the computational resources of HA-PACS provided
by the Interdisciplinary Computational Science Program at the Center for Computational Sciences
at the University of Tsukuba.

The results were obtained in part using the K computer at the RIKEN Advanced Institute for
Computational Science.

References

1. XcalableMP Language Specification, http://xcalablemp.org/specification.html
2. J. Reid, JKR Associates, UK. Coarrays in the next Fortran Standard. ISO/IEC

JTC1/SC22/WG5 N1824, April 21, 2010
3. ISO/IEC TS 18508:2015, Information technology – Additional Parallel Features in Fortran,

Technical Specification, December 1, 2015
4. Omni Compiler Project, http://omni-compiler.org
5. H. Iwashita, M. Nakao, M. Sato, Preliminary implementation of coarray Fortran translator

based on Omni XcalableMP, in PGAS2015, Proceedings of 9th International Conference on
PGAS Programming Models, Washington, DC (2015), pp.70–75

6. EPCC Fortran Coarray micro-benchmark suite, https://www.epcc.ed.ac.uk/research/
computing/performance-characterisation-and-benchmarking/epcc-co-array-fortran-micro

7. Himeno Benchmark, http://accc.riken.jp/en/supercom/himenobmt/
8. J. Mellor-Crummey, L. Adhianto, W.N. Scherer III, G. Jin, PGAS’09, 3rd Conference on

Partitioned Global Address Space Programming Models, Ashburn, VA (2009)

http://xcalablemp.org/specification.html
http://omni-compiler.org
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-co-array-fortran-micro
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-co-array-fortran-micro
http://accc.riken.jp/en/supercom/himenobmt/

122 H. Iwashita and M. Nakao

9. D. Eachempati, H.J. Jun, B. Chapman, An open-source compiler and runtime implementation
for coarray Fortran, in PGAS’10, 4th Conference on Partitioned Global Address Space
Programming Models, No.13 (2010)

10. A. Fanfarillo, T. Burnus, V. Cardellini, S. Filippone, D. Nagle, D. Rouson, OpenCoarrays:
open-source transport layers supporting coarray Fortran compilers, in PGAS’14, Proc. of 8th
International Conference on Partitioned Global Address Space Programming Models, No. 4
(2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

XcalableACC: An Integration
of XcalableMP and OpenACC

Akihiro Tabuchi, Hitoshi Murai, Masahiro Nakao, Tetsuya Odajima,
and Taisuke Boku

Abstract XcalableACC (XACC) is an extension of XcalableMP for accelerated
clusters. It is defined as a diagonal integration of XcalableMP and OpenACC, which
is another directive-based language designed to program heterogeneous CPU/accel-
erator systems. XACC has features for handling distributed-memory parallelism,
inherited from XMP, offloading tasks to accelerators, inherited from OpenACC, and
two additional functions: data/work mapping among multiple accelerators and direct
communication between accelerators.

1 Introduction

This chapter describes the specification of XACC (XACC) which is an extension
of XMP version 1.3 [2] and OpenACC version 2.5 [3]. XACC provides a parallel
programming model for accelerated clusters which are distributed memory systems
equipped with accelerators.

In this chapter, terminologies of XMP and OpenACC are indicated by bold font.
For details, refer to each specification [2, 3].

The work on XACC and the Omni XcalableACC compiler was supported by the
Japan Science and Technology Agency, Core Research for Evolutional Science and
Technology program entitled “Research and Development on Unified Environment
of Accelerated Computing and Interconnection for Post-Petascale Era” in the

A. Tabuchi
Fujitsu Laboratories Ltd., Kawasaki, Kanagawa, Japan

H. Murai · M. Nakao (�) · T. Odajima
RIKEN Center for Computational Science, Kobe, Hyogo, Japan
e-mail: h-murai@riken.jp; masahiro.nakao@riken.jp; tetsuya.odajima@riken.jp

T. Boku
Center for Computationl Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
e-mail: taisuke@ccs.tsukuba.ac.jp

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_4

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_4&domain=pdf
mailto:h-murai@riken.jp
mailto:masahiro.nakao@riken.jp
mailto:tetsuya.odajima@riken.jp
mailto:taisuke@ccs.tsukuba.ac.jp
https://doi.org/10.1007/978-981-15-7683-6_4

124 A. Tabuchi et al.

Network

Node

Processor

Accelerator

Host

Memory

Fig. 1 Hardware model

research area of “Development of System Software Technologies for Post-Peta
Scale High Performance Computing.”

1.1 Hardware Model

The target of XACC is an accelerated cluster, a hardware model of which is shown
in Fig. 1.

An execution unit is called node as with XMP. Each node consists of a single
host and multiple accelerators (such as GPUs and Intel MICs). Each host has a
processor, which may have several cores, and own local memory. Each accelerator
also has them. Each node is connected with each other via network. Each node can
access its local memories directly and remote memories, that is, the memories of
another node indirectly. In a host, the accelerator memory may be physically and/or
virtually separate from the host memory as with the memory model of OpenACC.
Thus, a host may not be able to read or write the accelerator memory directly.

1.2 Programming Model

XACC is a directive-based language extension based on Fortran 90 and ISO C90
(ANSI C90). To develop applications on accelerated clusters with ease, XACC
extends XMP and OpenACC independently as follows: (1) XMP extensions are
to facilitate cooperation between XMP and OpenACC directives. (2) OpenACC
extensions are to deal with multiple accelerators.

1.2.1 XMP Extensions

In a program using the XMP extensions, XMP, OpenACC, and XACC directives
are used. Figure 2 shows a concept of the XMP extensions.

XMP directives define a template and a node set. The template represents
a global index space, which is distributed onto the node set. Moreover, XMP

XcalableACC: An Integration of XcalableMP and OpenACC 125

Template

Node #0

Host

Accelerator

Node #1

OpenACC

XcalableACC

XcalableMP

Fig. 2 Concept of XMP extensions

directives declare distributed arrays, parallelize loop statements, and transfer data
among host memories according to the distributed template. OpenACC directives
transfer the distributed arrays between host memory and accelerator memory on
the same node and execute the loop statements parallelized by XMP on accelerators
in parallel. XACC directives, which are XMP communication directives with an
acc clause, transfer data among accelerator memories and between accelerator
memory and host memory on different nodes. Moreover, coarray features also
transfer data on different nodes.

Note that the XMP extensions are not a simple combination of XMP and
OpenACC. For example, if you represent communication of distributed array
among accelerators shown in Fig. 2 by the combination of XMP and OpenACC,
you need to specify explicitly communication between host and accelerator by
OpenACC and that between hosts by XMP. Moreover, you need to calculate
manually indices of the distributed array owned by each node. By contrast, XACC
directives can represent such communication among accelerators directly using
global indices.

1.2.2 OpenACC Extensions

The OpenACC extension can represent offloading works and data to multiple-
accelerators on a node. Figure 3 shows a concept of the OpenACC extension.

OpenACC extension directive defines a device set. The device set represents a
set of devices on a node. Futher, OpenACC extension directives declare distributed
arrays on the device set while maintaining the arrays on the host memory, and
the directives distribute offloading loop statement and memory copy between host
and device memories for the distributed-arrays. Moreover, OpenACC extension
directives synchronize devices among the device set. XACC directives also transfer
data between device memories on the node.

126 A. Tabuchi et al.

Fig. 3 Concept of OpenACC extension

1.3 Execution Model

The execution model of XACC is a combination of those of XMP and OpenACC.
While the execution model of a host CPU programming is based on that of XMP,
that of an accelerator programming is based on that of OpenACC. Unless otherwise
specified, each node behaves exactly as specified in the XMP specification[2] or the
OpenACC specification[3].

An XACC program execution is based on the SPMD model, where each
node starts execution from the same main routine and keeps executing the same
code independently (i.e. asynchronously), which is referred to as the replicated
execution until it encounters an XMP construct or an XMP-extension construct.
In particular, the XMP-extension construct may allocate, deallocate, or transfer data
on accelerators. An OpenACC construct or an OpenACC-extension construct may
define parallel regions, such as work-sharing loops, and offloads it to accelerators
under control of the host.

When a node encounters a loop construct targeted by a combination of XMP
loop and OpenACC loop directives, it executes the loop construct in parallel
with other accelerators, so that each iteration of the loop construct is independently
executed by the accelerator where a specified data element resides.

When a node encounters a XACC synchronization or a XACC communication
directive, synchronization or communication occurs between it and other acceler-
ators. That is, such global constructs are performed collectively by the current
executing nodes. Note that neither synchronizations nor communications occur
without these constructs specified.

1.4 Data Model

There are two classes of data in XACC: global data and local data as with XMP.
Data declared in an XACC program are local by default. Both global data and local

XcalableACC: An Integration of XcalableMP and OpenACC 127

data can exist on host memory and accelerator memory. About the data models of
host memory and accelerator memory, refer to the OpenACC specification[3].

Global data are ones that are distributed onto the executing node set by the
align directive. Each fragment of a global data is allocated in host memory of
a node in the executing node set. OpenACC directives can transfer the fragment
from host memory to accelerator memory.

Local data are all of the ones that are not global. They are replicated in the local
memory of each of the executing nodes.

A node can access directly only local data and sections of global data that
are allocated in its local memory. To access data in remote memory, explicit
communication must be specified in such ways as the global communication
constructs and the coarray assignments.

Particularly in XcalableACC Fortran, for common blocks that include any global
variables, the ways how the storage sequence of them is defined and how the storage
association of them is resolved are implementation-dependent.

2 XcalableACC Language

XACC is roughly defined as a diagonal integration of XMP and OpenACC with
some additional XACC extensions, where XMP directives are for specifying
distributed-memory parallelism, OpenACC for offloading, and the extensions for
other XACC-specific features.

The syntax and semantics of XMP and OpenACC directives appearing in XACC
codes follow those in XMP and OpenACC, respectively, unless specified below.

2.1 Data Mapping

Global arrays distributed with XMP directives can be globally-indexed in Ope-
nACC constructs.Global arraysmay appear in the update, enter data, exit
data, host_data, cache, and declare directives; and the data clauses such
as deviceptr, present, copy, copyin, copyout, create, and delete.
When data transfer of a global array between host and accelerator memory is
specified by an OpenACC directive, it is performed locally for the local section
of the array within each node.

Example

In lines 2–6 of Fig. 4, the directives declare global arrays a and b. In line 8, the
enter data directive transfers a section of a from host memory to accelerator

128 A. Tabuchi et al.

Fig. 4 XACC code with enter_data directive

memory. Note that a is globally-indexed. In line 9, the data directive transfers the
whole of b from host memory to accelerator memory.

2.2 Work Mapping

In order to parallelize a loop statement among nodes and on accelerators, the XMP
loop directive and OpenACC loop directive are used. While an XMP loop
directive parallelizes a loop statement among nodes, an OpenACC loop directive
further parallelizes the loop statement on accelerators within each node. For ease of
writing, the nesting order of XMP loop directive and OpenACC loop directive
does not matter.

When an acc clause appears in an XMP loop directive with a reduction
clause, the directive performs a reduction operation for the variable specified in the
reduction clause on accelerator memory.

Restriction

• In an OpenACC compute region, no XMP directives except for loop directive
without reduction clauses is allowed.

• In an OpenACC compute region, the parameter (i.e., the lower bound, upper
bound, and step) of the target loop must remain unchanged.

• An acc clause can be specified in an XMP loop directive only when a
reduction clause is also specified.

Example 1

In lines 2–6 of Fig. 5, the directives declare global arrays a and b. In line 8, the
copy clause on the parallel directive transfers a and b from host memory

XcalableACC: An Integration of XcalableMP and OpenACC 129

Fig. 5 XACC code with OpenACC loop construct

to accelerator memory. In lines 8–9, the parallel directive and XMP loop
directive parallelize the following loop on an accelerator within a node and among
nodes, respectively.

Example 2

In lines 2–5 of Fig. 6, the directives declare a global array a. In line 7, the
copy clause on the parallel directive transfers a and a variable sum from
host memory to accelerator memory. In lines 7–8, the parallel directive and
XMP loop directive parallelize the following loop on an accelerator within a node
and in among nodes, respectively. After finishing the calculation of the loop, the
OpenACC reduction clause and the XMP reduction clause with acc in lines
7–8 perform a reduction operation for sum first on the accelerator within a node and
then among all nodes.

2.3 Data Communication and Synchronization

When an acc clause is specified in an XMP’s communication and synchronization
directive, the directive works for the data on accelerator memory to transfer it.

The acc clause can be specified on the following XMP’s communication and
synchronization directives:

• reflect
• gmove
• barrier
• reduction
• bcast
• wait_async

130 A. Tabuchi et al.

Fig. 6 XACC code with OpenACC loop construct with reduction clause

Note that while a gmove directive with acc and coarray features can per-
form communication both between accelerators and between accelerator and host
memory that may be on different nodes, other directives with acc can perform
communication only between accelerators.

Example

In lines 2–5 of Fig. 7, the directives declare a global array a. In line 6, the shadow
directive allocates the shadow areas of a. In line 8, the enter data directive
transfers a with the shadow areas from host memory to accelerator memory. In line
9, the reflect directive updates the shadow areas of the distributed array a on
accelerator memory on all nodes.

2.4 Coarrays

In XACC, programmers can specify one-sided communication (i.e., put and get
operation) for data on accelerator memory using coarray features. A combination of

XcalableACC: An Integration of XcalableMP and OpenACC 131

Fig. 7 Code example in reflect construct

coarray and the host_data construct enables one-sided communication between
accelerators.

If coarrays appear in a use_device clause of an enclosing host_data con-
struct, data on accelerator memory is selected as the target of the communication.
The synchronization for Coarray operations on accelerators is similar to that in
XMP.

Restriction

• Coarrays on accelerator memory can be declared only with the declare
directive.

• No coarray syntax is allowed in the OpenACC compute region.

Example

In line 3 of Fig. 8, the declare directive declares a coarray a and an array
b on accelerator memory. In lines 6–7, node 1 performs a put operation, where
the whole of b on the accelerator memory of node 1 is transferred to a on the
accelerator memory of node 2. In lines 9–10, node 1 performs a get operation,
where the whole of a on the accelerator memory of node 3 is transferred to b on
the host memory of node 1. In line 13, the sync all statement in XACC/F or the
xmp_sync_all function in XACC/C performs a barrier synchronization among
all nodes and guarantees the completion of ongoing coarray accesses.

2.5 Handling Multiple Accelerators

XACC also has a feature for handling multiple accelerators. This section provides a
brief overveiw of this feature. Please refer to [4] for more detail.

132 A. Tabuchi et al.

Fig. 8 XACC code with coarray

Fig. 9 XACC code with devices directive

2.5.1 devices Directive

The devices directive declares a device array that corresponds to a device set.
This directive is analogous to the nodes directive for nodes in XMP.

Example

Figure 9 is an example of declaring devices. The device array d corresponds to a set
of entire default devices, and e is a subset of the predefined device array nvidia.
The program must be executed by a node which is equipped with four or more
NVIDIA accelerator devices.

2.5.2 on_device Clause

The on_device clause in a directive specifies a device set that the directive targets.
The on_device clause may appear on parallel, parallel loop,

kernels, kernels loop, data, enter data, exit data, declare,
update, wait, and barrier_device directives.

The directive is applied to each device in the device set in parallel. If there is
no layout clause, the all devices process the directive for same data or work
redundantly.

XcalableACC: An Integration of XcalableMP and OpenACC 133

2.5.3 layout Clause

The layout clause specifies data or work mapping on devices.
The layout clause may appear on declare directives and on loop,

parallel loop, and kernels loop constructs. If the layout clause
appears on a declare directive, it specifies the data mapping to the device set for
arrays which are appeared in data clauses on the directive. “*” represents that the
dimension is not distributed, and block represents that the dimension is divided
into contiguous blocks, which are distributed onto the device array.

Example

Figure 10 is an example of the layout clause. In line 2, the devices directive
defines a device set d. In lines 3–4, the declare directive declares that an array
a is distributed and allocated on d. In lines 6–9, the kernels loop directive
distributes and offloads the following loops to d.

2.5.4 shadow Clause

The shadow clause in the declare directive specifies the width of the shadow
area of arrays, which is used to communicate the neighbor element of the block of
the arrays.

Example

Figure 11 is an example of the shadow clause. In line 2, the devices directive
defines a device set d. In lines 3–5, the declare directive declares that an array
a is distributed and allocated with shadow areas on the device set d. In lines 7–10,
the kernels loop construct divides and offloads the loop to the device set d. In

Fig. 10 Xacc Code example with layout clause

134 A. Tabuchi et al.

Fig. 11 XACC code with shadow clause

Fig. 12 XACC Code with barrier_device construct

line 11, the reflect directive updates the shadow areas of the distributed array a
on the device memory.

2.5.5 barrier_device Construct

The barrier_device construct specifies an explicit barrier among devices at
the point which the construct appears.

The barrier_device construct blocks accelerator devices until all ongoing
asynchronous operations on them are completed regardless of the host operations.

Example

Figure 12 is an example of the barrier_devices construct. In lines 1–
2, the devices directives define device sets d and e. In lines 4–5, the first
barrier_device construct performs a barrier operation for all devices, and the
second one performs a barrier operation for devices in the device set e.

XcalableACC: An Integration of XcalableMP and OpenACC 135

3 Omni XcalableACC Compiler

We have developed the Omni XACC compiler as the reference implementation of
XACC compilers.

Figure 13 shows the compile flow of Omni XACC. First, Omni XACC accepts
XACC source codes and translates them into those in the base languages with
runtime calls. Next, the translated code is compiled by a native compiler, which
supports OpenACC, to generate an object file. Finally, the object files and the
runtime library are linked by the native compiler to generate an execution file.

In particular, for the data transfer between NVIDIA GPUs across nodes, we have
implemented the following three methods in Omni XACC:

(a) TCA/IB hybrid communication
(b) GPUDirect RDMA with CUDA-Aware MPI
(c) MPI and CUDA

Item (a) performs communication with the smallest latency, but it requires a
computing environment equipped with the Tightly Coupled Accelerator (TCA)
feature[1, 7]. Item (b) is superior in performance to Item (c), but also requires
specific software and hardware (e.g., MVAPICH2-GDR and Mellanox InfiniBand).
Whereas (a) and (b) can realize direct communication between GPUs without the
intervention of CPU, Item (c) cannot. It copies the data from accelerator memory to
host memory using CUDA and then transfers the data to other compute nodes using
MPI. Therefore, although its performacnce is the lowest, it requires neither specific
software nor hardware.

Frontend

Omni XACC Compiler
Base language (C or Fortran)

+ OpenACC directive
+ XcalableMP directive

+ XcalableACC directive

Runtime library

Translator

Backend

User code

Translated code

Execution binary

Modified base language
+ Modified OpenACC directive

+ Runtime call

Fig. 13 Compile flow of Omni XcalableACC compiler

136 A. Tabuchi et al.

4 Performance of Lattice QCD Application

This section describes the evaluations of XACC performance and productivity for a
lattice quantum chromodynamics (Lattice QCD) application.

4.1 Overview of Lattice QCD

The Lattice QCD is a discrete formulation of QCD that describes the strong
interaction among “quarks” and “gluons.” While the quark is a species of elementary
particles, the gluon is a particle that mediates the strong interaction. The Lattice
QCD is formulated on a four-dimensional lattice (time: T and space:ZYX axes).
We impose a periodic boundary condition in all the directions. The quark degree
of freedom is represented as a field that has four components of “spin” and three
components of “color,” namely a complex vector of 12 × Nsite components, where
Nsite is the number of lattice sites. The gluon is defined as a 3 × 3 complex matrix
field on links (bonds between neighboring lattice sites). During a Lattice QCD
simulation, one needs to solve many times a linear equation for the matrix that
represents the interaction between the quark and gluon fields. This linear equation
is the target of present work. The matrix acts on the quark vector and has nonzero
components only for the neighboring sites, and thus sparse.

4.2 Implementation

We implemented a Lattice QCD code based on the existing Lattice QCD application
Bridge++[5]. Since our code was implemented by extracting the main kernel of the
Bridge++, it can be used as a mini-application to investigate its productivity and
performance more easily than use of the original Bridge++.

Figure 14 shows a pseudo code of the implementation, where the CG method is
used to solve quark propagators. In Fig. 14, WD() is the Wilson-Dirac operator[6],
U is a gluon, the other uppercase characters are quarks. The Wilson-Dirac operator
is a main kernel in the Lattice QCD, which calculates how the quarks interact with
each other under the influence of the gluon.

Figure 15 shows how to declare distributed arrays of the quark and gluon. In lines
1–8, the quark and gluon structure arrays are declared. The last dimension “[2]” of
both structures represents real and imaginary parts for a complex number. NT, NZ,
NY, and NX are the numbers of TZYX axis elements. In lines 10–18, distributed
arrays are declared where the macro constant values NODES_T and NODES_Z
indicate the number of nodes on the T and Z axes. Thus, the program is parallelized
on T and Z axes. Note that an “*” in the align directive means that the dimension is
not divided. In the shadow directive, halo regions are added to the arrays because

XcalableACC: An Integration of XcalableMP and OpenACC 137

Fig. 14 Lattice QCD pseudo code

1 typedef struct Quark {
2 double v[4][3][2];
3 } Quark_t;
4 typedef struct Gluon {
5 double v[3][3][2];
6 } Gluon_t;
7 Quark_t v[NT][NZ][NY][NX], tmp_v[NT][NZ][NY][NX];
8 Gluon_t u[4][NT][NZ][NY][NX];
9

10 #pragma xmp template t[NT][NZ]
11 #pragma xmp nodes n[NODES_T][NODES_Z]
12 #pragma xmp distribute t[block][block] onto n
13 #pragma xmp align v[i][j][*][*] with t[i][j]
14 #pragma xmp align tmp_v[i][j][*][*] with t[i][j]
15 #pragma xmp align u[*][i][j][*][*] with t[i][j]
16 #pragma xmp shadow v[1:1][1:1][0][0]
17 #pragma xmp shadow tmp_v[1:1][1:1][0][0]
18 #pragma xmp shadow u[0][1:1][1:1][0][0]
19 ...
20 int main(){
21 ...
22 #pragma acc enter data copyin(v, tmp_v, u)

Fig. 15 Declaration of distributed arrays for Lattice QCD

each quark and gluon element is affected by its neighboring orthogonal elements.
Note that “0” in the shadow directive means that no halo region exists. In line 22, the
enter data directive transfers the distributed arrays from host memory to accelerator
memory.

Figure 16 shows how to call WD(). The reflect directives are inserted before
WD() in order to update own halo region. In line 2, “1:0” in width clause means
only the lower halo region is updated because only it is needed in WD(). The u is
not updated before the second WD() function because values of u are not updated

138 A. Tabuchi et al.

1 #pragma xmp reflect(v) width(/periodic/1:1,/periodic/1:1,0,0) orthogonal acc
2 #pragma xmp reflect(u) width(0,/periodic/1:0,/periodic/1:0,0,0) orthogonal acc
3 WD(tmp_v, u, v);
4 #pragma xmp reflect(tmp_v) width(/periodic/1:1,/periodic/1:1,0,0) orthogonal acc
5 WD(v, u, tmp_v);

Fig. 16 Calling Wilson-Dirac operator

1 void WD(Quark_t v_out[NT][NZ][NY][NX], const Gluon_t u[4][NT][NZ][NY][NX],
const Quark_t v[NT][NZ][NY][NX])

2 {
3 #pragma xmp align v_out[i][j][*][*] with t[i][j]
4 #pragma xmp align u[*][i][j][*][*] with t[i][j]
5 #pragma xmp align v[i][j][*][*] with t[i][j]
6 #pragma xmp shadow v_out[1:1][1:1][0][0]
7 #pragma xmp shadow u[0][1:1][1:1][0][0]
8 #pragma xmp shadow v[1:1][1:1][0][0]
9 ...

10 #pragma xmp loop (t,z) on t[t][z]
11 #pragma acc parallel loop collapse(4) present(v_out, u, v)
12 for(int t=0;t<NT;t++)
13 for(int z=0;z<NZ;z++)
14 for(int y=0;y<NY;y++)
15 for(int x=0;x<NX;x++){

Fig. 17 A portion of Wilson-Dirac operator

in WD(). Moreover, the orthogonal clause is added because diagonal updates of the
arrays are not required in WD().

Figure 17 shows a part of the Wilson-Dirac operator code. All arguments in WD()
are distributed arrays. In XMP and XACC, distributed arrays which are used as
arguments must be redeclared in function to pass their information to a compiler.
Thus, the align and shadow directives are used in WD(). In line 10, the loop
directive parallelizes the outer two loop statements. In line 11, the parallel loop
directive parallelizes all loop statements. In the loop statements, a calculation needs
neighboring and orthogonal elements. Note that while the WD() updates only the
v_out, it only refers the u and v.

Figure 18 shows L2 norm calculation code in the CG method. In line 8,
the reduction clause performs a reduction operation for the variable a in each
accelerator when finishing the next loop statement. The calculated variable a is
located in both host memory and accelerator memory. However, at this point, all
nodes have individual values of a. To obtain the total value of the variable a, the
XMP reduction directive in line 18 also performs a reduction operation among
nodes. Since the total value is used on only host after this function, the XMP
reduction directive does not have acc clause.

XcalableACC: An Integration of XcalableMP and OpenACC 139

1 double norm(const Quark_t v[NT][NZ][NY][NX])
2 {
3 #pragma xmp align v[i][j][*][*] with t[i][j]
4 #pragma xmp shadow v[1:1][1:1][0][0]
5 double a = 0.0;
6
7 #pragma xmp loop (t,z) on t[t][z]
8 #pragma acc parallel loop collapse(7) present(v) reduction(+:a)
9 for(int t=0;t<NT;t++)

10 for(int z=0;z<NZ;z++)
11 for(int y=0;y<NY;y++)
12 for(int x=0;x<NX;x++)
13 for(int i=0;i<4;i++)
14 for(int j=0;j<3;j++)
15 for(int k=0;k<2;k++)
16 a += v[t][z][y][x].v[i][j][k]*v[t][z][y][x].v[i][j][k];
17
18 #pragma xmp reduction (+:a)
19 return a;
20 }

Fig. 18 L2 norm calculation code

5 Performance Evaluation

5.1 Result

This section evaluates the performance level of XACC on the Lattice QCD code. For
comparison purposes, those of MPI+CUDA and MPI+OpenACC are also evaluated.
For performance evaluation, we use the HA-PACS/TCA system[7], the hardware
specifications and software environments of which are shown in Table 1. Since each
compute node has four GPUs, we assign four nodes per compute node and direct
each node to deal with a single GPU. We use the Omni OpenACC compiler[8] as a
backend compiler in the Omni XACC compiler. We execute the Lattice QCD codes
with strong scaling in regions (32,32,32,32) as (NT,NZ,NY,NX). The Omni XACC
compiler provides various types of data communication among accelerators[9]. We

Table 1 Evaluation environment

CPU Intel Xeon-E5 2680v2 2.8 GHz × 2 Sockets

Memory DDR3 1866 MHz 59.7 GB/s 128 GB

GPU NVIDIA Tesla K20X (GDDR5 250 GB/s 6 GB) × 4 GPUs

Network InfiniBand Mellanox Connect-X3 Dual-port QDR 8 GB/s

Software Intel 16.0.2, CUDA 7.5.18, Omni OpenACC compiler 1.1

MVAPICH2 2.1

140 A. Tabuchi et al.

1x1 2x1 2x2 4x2 4x4 8x4 8x8 16x8 16x16

120

100

80

60

40

20

0

Ti
m

e
pe

r C
G

 s
ol

ve
 (m

se
c.

)
1.50

1.25

1.00

0.75

0.50

0.25

0.00

Perform
ance ratio for XcalableAC

C

MPI+CUDA ratio

MPI+OpenACC ratio

Number of nodes (NODE_T x NODE_Z)

MPI+CUDA
MPI+OpenACC
XcalableACC

Fig. 19 Performance results

use the MPI+CUDA implementation type because it provides a balance of versatility
and performance.

Figure 19 shows the performance results that indicate the time required to
solve one CG iteration as well as the performance ratio values that indicate the
comparative performance of XACC and other languages. When the performance
ratio value of a language is greater than 1.00, the performance result of the language
is better than that of XACC. Figure 19 shows that the performance ratio values
of MPI+CUDA are between 1.04 and 1.18, and that those of MPI+OpenACC are
between 0.99 and 1.04. Moreover, Fig. 19 also shows that the performance results
of both MPI+CUDA and MPI+OpenACC become closer to those of XACC as the
number of nodes increases.

5.2 Discussion

To examine the performance levels in detail, we measure the time required for the
halo updating operation for two nodes and more. The halo updating operation
consists of the communication and pack/unpack processes for non-contiguous
regions in the XACC runtime.

While Fig. 20 describes communication time of the halo updating time of Fig 19,
Fig. 21 describes pack/unpack time of it. Figure 20 shows that the communication
performance levels of all implementations are almost the same. However, Fig. 21
shows that the pack/unpack performance levels of MPI+CUDA are better than those
of XACC, and that those of MPI+OpenACC are worse than those of XACC. The
reason for the pack/unpack operation performance level difference is that the XACC

XcalableACC: An Integration of XcalableMP and OpenACC 141

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Perform
ance ratio for XcalableAC

C
18

15

12

9

6

3

0

Ti
m

e
pe

r C
G

 s
ol

ve
 (m

se
c.

)

MPI+CUDA
MPI+OpenACC
XcalableACC

MPI+CUDA ratio

MPI+OpenACC ratio

2x1 2x2 4x2 4x4 8x4 8x8 16x8 16x16
Number of nodes (NODE_T x NODE_Z)

Fig. 20 Communication time

MPI+CUDA ratio

MPI+OpenACC ratio

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Perform
ance ratio for XcalableAC

C

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ti
m

e
pe

r C
G

 s
ol

ve
 (m

se
c.

)

2x1 2x2 4x2 4x4 8x4 8x8 16x8 16x16
Number of nodes (NODE_T x NODE_Z)

MPI+CUDA
MPI+OpenACC
XcalableACC

Fig. 21 Pack/unpack time

operation is implemented in CUDA at XACC runtime. Thus, some performance
levels of XACC are better than those of MPI+OpenACC in Fig. 19. However, the
performance levels of XACC in Fig. 21 is worse than those of MPI+CUDA because
XACC requires the cost of XACC runtime calls.

142 A. Tabuchi et al.

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Perform
ance ratio for XcalableAC

C
60

50

40

30

20

10

0

Ti
m

e
pe

r C
G

 s
ol

ve
 (m

se
c.

)

MPI+CUDA
MPI+OpenACC
XcalableACC

MPI+CUDA ratio

MPI+OpenACC ratio

2x1 2x2 4x2 4x4 8x4 8x8 16x8 16x16
Number of nodes (NODE_T x NODE_Z)

Fig. 22 Time excluding halo updating time

Figure 22 shows the overall time excluding the halo updating time, where
performance levels of MPI+CUDA are the best, and those of XACC are almost
the same as those of MPI+OpenACC. The reason for the difference is due to how
to use GPU threads. In the CUDA implementation, we assign loop iterations to
GPU threads in a cyclic-manner manually. In contrast, in the OpenACC and XACC
implementations, how to assign GPU threads is an implementation dependent on
an OpenACC compiler. In the Omni OpenACC compiler, initially loop iterations
are assigned to GPU threads by a gang (threadblock) in a block manner, and then
are also assigned to them by a vector (thread) in a cyclic manner. With the gang
clause with the static argument proposed in the OpenACC specification version 2.0,
programmers can determine how to use GPU threads to some extent, but the Omni
OpenACC compiler does not yet support it.

Figure 23 shows the ratio of the halo updating time to overall time. As can be
seen, as the number of nodes increases, the ratio increases as well. Therefore,
when a large number of nodes are used, there is little difference in performance
level of Fig. 19 among the three implementations. The reason why the ratio of
MPI+CUDA is slightly larger than those of the others is that the time excluding
the halo communication of MPI+CUDA in Fig. 20 is relatively small.

XcalableACC: An Integration of XcalableMP and OpenACC 143

100

80

60

40

20

0

U
pd

at
in

g
ha

lo
 ra

tio
 (%

)

2x1 2x2 4x2 4x4 8x4 8x8 16x8 16x16
Number of nodes (NODE_T x NODE_Z)

MPI+CUDA
MPI+OpenACC
XcalableACC

Fig. 23 Updating halo ratio

6 Productivity Improvement

6.1 Requirement for Productive Parallel Language

In Sect. 5, we developed three Lattice QCD codes using MPI+CUDA,
MPI+OpenACC, and XACC. Figure 24 shows our procedure for developing each
code where we first develop the code for an accelerator from the serial code, and
then extend it to handle an accelerated cluster.

To parallelize the serial code for an accelerator using CUDA requires large
code changes (“a” in Fig. 24), most of which are necessary to create new kernel
functions and to make 1D arrays out of multi-dimensional arrays. By contrast,
OpenACC accomplishes the same parallelization with just small code changes (“b”),
because OpenACC’s directive-based approach encourages reuse of an existing code.
Besides, to parallelize the code for a distributed memory system, MPI also requires
large changes (“c” and “d”), primarily to convert global indices into local indices.

Serial CUDA

OpenACC

MPI+CUDA

MPI+OpenACC

XcalableACC

a

b

c

d

e

Fig. 24 Application development order on accelerated cluster

144 A. Tabuchi et al.

By contrast, XACC requires smaller code changes (“e”) because XACC is also
directive-based language as OpenACC.

In many cases, a parallel code for an accelerated cluster is based on an existing
serial code. The code changes to the existing serial code are likely to trigger program
bugs. Therefore, XACC is designed to reuse an existing code as possible.

6.2 Quantitative Evaluation by Delta Source Lines of Codes

As one of metrics for productivity, Delta Source Lines of Codes (DSLOC) is
proposed[10]. The DSLOC indicates how the codes change from a corresponding
implementation. The DSLOC is the sum of three components: how many lines are
added, deleted, and modified. When the DSLOC is small, the programming costs
and the possibility of program bugs will be small as well. We use the DSLOC to
count the amount of change required to implement an accelerated cluster code from
a serial code.

Table 2 shows the DSLOC where lowercase characters correspond to Fig. 24. The
DSLOC of XACC (b + e) is smaller than MPI+CUDA (a + c) and MPI+OpenACC (b
+ d). The difference between XACC and MPI+CUDA is 420.0%, and that between
XACC and MPI+OpenACC is 39.4%.

6.3 Discussion

In “e” of Table 2, four lines for modification are required to implement the XACC
code from the OpenACC code. Figures 25 and 26 show the modification, which
is a part of WD() of Fig. 17. A variable tt is used to be an index for halo region.
The tt is modified from line 6 of Fig. 25 to line 7 of Fig. 26. In Fig. 25, when a
value of a variable t is “NT-1,” that of the variable tt becomes “0” which is the
lower bound index of the first dimension of the array v_out. On the other hand, in
Fig. 26, communication of the halo is performed before execution of WD() by the
reflect directive shown in Fig. 16. Thus, the variable tt need only be incremented
in Fig. 26. There are four such modifications in WD(). Note that XACC does not
keep the semantics of the base code perfectly in this case in exchange for simplified

Table 2 DSLOC of Lattice QCD implementations

a b c d e a + c b + d b+e

DSLOC 552 22 280 201 138 832 223 160

Add 137 20 185 140 134 322 160 154

Delete 73 0 0 0 0 73 0 0

Modify 342 2 95 61 4 437 63 6

XcalableACC: An Integration of XcalableMP and OpenACC 145

1 #pragma acc parallel loop collapse(4) present(v_out, u, v)
2 for(int t=0;t<NT;t++)
3 for(int z=0;z<NZ;z++)
4 for(int y=0;y<NY;y++)
5 for(int x=0;x<NX;x++){
6 int tt = (t + 1) % NT;
7 v_out[tt][z][y][x].v[0][0][0] = ... ;

Fig. 25 Code modification of WD() in OpenACC

1 #pragma xmp loop (t,z) on t[t][z]
2 #pragma acc parallel loop collapse(4) present(v_out, u, v)
3 for(int t=0;t<NT;t++)
4 for(int z=0;z<NZ;z++)
5 for(int y=0;y<NY;y++)
6 for(int x=0;x<NX;x++){
7 int tt = t + 1;
8 v_out[tt][z][y][x].v[0][0][0] = ... ;

Fig. 26 Code modification of WD() in XcalableACC

Table 3 SLOC of Lattice QCD implementations

MPI+CUDA MPI+OpenACC XcalableACC

SLOC 1091 1002 996

#XcalableMP – – 122

#OpenACC – 26 16

#XcalableACC – – 3

#MPI function 39 39 –

parallelization. In addition, there are two lines for modification shown in “b” of
Table 2. It is a very fine modification for OpenACC constraints, which keeps the
semantics of the base code.

As basic information, we count the source lines of codes (SLOC) of each of
the Lattice QCD implementations. Table 3 shows the SLOC excluding comments
and blank lines, as well as the numbers of each directive and MPI functions
included in their SLOC. For reader information, SLOC of the serial version Lattice
QCD code is 842. Table 3 shows that the 122 XMP directives are used in the
XACC implementation, many of which are declarations for function arguments. To
reduce the XMP directives, we are planning to develop a new syntax that combines
declarations with the same attribute into one directive. Figure 27 shows an example
of the new syntax applied to the declarations in Fig. 17. Since the arrays v_out and v
have the same attribute, they can be declared into a single XMP directive. Moreover,
the shadow directive attribute is added to the align directive as its clause. When
applying the new directive to XACC implementation, the number of XMP directives

146 A. Tabuchi et al.

1 void WD(Quark_t v_out[NT][NZ][NY][NX], const Gluon_t u[4][NT][NZ][NY][NX],
const Quark_t v[NT][NZ][NY][NX])

2 {
3 #pragma xmp align [i][j][*][*] with t[i][j] shadow [1:1][1:1][0][0] :: v_out, v
4 #pragma xmp align [*][i][j][*][*] with t[i][j] shadow [0][1:1][1:1][0][0] :: u

Fig. 27 New directive combination syntax that applies to Fig. 17

decreases from the 122 shown in Table 3 to 64, and the XACC DSLOC decreases
from the 160 shown in Table 2 to 102.

References

1. M. Nakao et al., Evaluation of XcalableACC with tightly coupled accelerators/InfiniBand
hybrid communication on accelerated cluster. Int. J. High Perform. Comput. Appl. 35,
109434201882116 (2019)

2. XcalableMP Language Specification, http://xcalablemp.org/specification.html (2017)
3. The OpenACC Application Programming Interface, http://www.openacc.org (2015)
4. XcalableACC Language Specification, https://xcalablemp.org/download/XACC/xacc-spec-1.

0.pdf (2017)
5. Lattice QCD code Bridge++, http://bridge.kek.jp/Lattice-code/index_e.html
6. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445 (1974)
7. HA-PACS, https://www.ccs.tsukuba.ac.jp/supercomputer/
8. A. Tabuchi et al., A source-to-source OpenACC compiler for CUDA, in Euro-Par Workhops

(2013)
9. M. Nakao et al., XcalableACC: extension of XcalableMP PGAS language using OpenACC for

accelerator clusters, in Proceedings of the First Workshop on Accelerator Programming Using
Directives (2014)

10. A.I. Stone et al., Evaluating coarray Fortran with the CGPOP miniapp, in Proceedings of the
Fifth Conference on Partitioned Global Address Space Programming Models (2011)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://xcalablemp.org/specification.html
http://www.openacc.org
https://xcalablemp.org/download/XACC/xacc-spec-1.0.pdf
https://xcalablemp.org/download/XACC/xacc-spec-1.0.pdf
http://bridge.kek.jp/Lattice-code/index_e.html
https://www.ccs.tsukuba.ac.jp/supercomputer/
http://creativecommons.org/licenses/by/4.0/

Mixed-Language Programming
with XcalableMP

Masahiro Nakao

Abstract This chapter presents the mixed-language programming with Xcal-
ableMP and other programming languages. It is supported by the linkage functions
between XcalableMP and MPI library. We also demonstrate how to call XcalableMP
program from Python program (M. Nakao et al., Linkage of XcalableMP and Python
languages for high productivity on HPC cluster system, Proceedings of Workshops
of HPC Asia, No .9, pp.39–47, 2018).

1 Background

To develop applications on high-performance computing (HPC) cluster systems,
Partitioned Global Address Space (PGAS) languages that can demonstrate high
productivity are used [2–5]. Because the use of PGAS languages is familiar in
one-sided communication, applications in PGAS languages can sometimes exhibit
higher performance than those using MPI library by directly using a communication
layer close to hardware [5, 6]. Examples of PGAS languages include XcalableMP
(XMP) [5, 7, 8]; XcalableACC [9–11]; Coarray Fortran [12], PCJ [13], Unified
Parallel C,1 UPC++ [14], HabaneroUPC++ [15], X10 [16], Chapel [17], and
DASH [18].

Although PGAS languages have many advantages, re-implementing an existing
MPI application using a PGAS language is often not realistic for the following
reasons: (1) since the number of lines of a real-world application code may reach
several million, the programming cost for re-implementing is excessive, and (2)
cases where productivity and performance have been improved by PGAS languages
are limited. Moreover, since each programming language generally has its own

1https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf

M. Nakao (�)
RIKEN Center for Computational Science, Kobe, Hyogo, Japan
e-mail: masahiro.nakao@riken.jp

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_5

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_5&domain=pdf
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
mailto:masahiro.nakao@riken.jp
https://doi.org/10.1007/978-981-15-7683-6_5

148 M. Nakao

strong and weak points, it is difficult to develop all parallel applications using just
one programming language.

In order to exploit the advantages of a PGAS language, it is important to
consider the linkage between the PGAS language and other languages. For example,
modifying only a part where the performance or code outlook will be better using
a PGAS language has the potential to partially alleviate the two problems listed in
the previous paragraph because the programming cost of partial re-implementation
is smaller than that of whole re-implementation.

We have designed an XMP language, and developed Omni compiler described in
Chapter 2. This chapter describes the development of linkage functions between
XMP and MPI library for Omni compiler. Moreover, it also describes how to
call XMP program from Python program. Especially, since Python has numerous
scientific computing libraries, we believe that linking Python and XMP will lead to
a significant reduction in programming cost when developing HPC applications.

2 Translation by Omni Compiler

Figure 1 shows an example of a code translation for XMP in C language, where
the code of the left figure is translated into that of the right figure.2 Omni
compiler inserts xmp_init_all() and xmp_finalize_all() automatically to perform
the initialization and finalization processes, respectively. These functions are defined
in Omni compiler runtime library. Since xmp_init_all() calls MPI_Init() and
MPI_Comm_dup() internally to duplicate MPI_COMM_WORLD. Since the
newly duplicated communicator is used to perform XMP communication, user
MPI communication does not conflict with XMP communication. Additionally,
xmp_finalize_all() calls MPI_Finalize() function internally.

In an XMP program, the task directive can divide a node set. The implementation
of the task directive creates a new communicator based on the duplicated commu-
nicator by MPI_Comm_split(). If communication occurs within the range of the
task directive, then the new communicator is used to perform the communication.

Omni compiler renames a user main() as xmpc_main() in order to place the
xmpc_main() between xmp_init_all() and xmp_finalize_all(). New main() calls
xmpc_main(). The above special translation is performed only formain(). For other
functions (such as foo()), renaming is not performed.

2Since Omni compiler performs almost the same operation for an XMP in Fortran code, these
examples are omitted in this chapter.

Mixed-Language Programming with XcalableMP 149

void foo(){
 printf("Hello\n");
}

int main(){
 foo();
 return 0;
}

void foo(){
 printf("Hello\n");
}

static int xmpc_main(int argc, char **argv){
 foo();
 return 0;
}

int main(int argc, char **argv){
 xmp_init_all(argc, argv);
 int r = xmpc_main(argc, argv);
 xmp_finalize_all();
 return r;
}

Fig. 1 Example of translation in Omni compiler [19]

3 Functions for Mixed-Language

For a mixed-language programming with XMP, Omni compiler has the following
functions.

• Calling an MPI program from an XMP program
• Calling an XMP program from an MPI program
• Calling an XMP program from a Python program

3.1 Function to Call MPI Program from XMP Program

Table 1 shows the functions to call an MPI program from an XMP program. These
functions are defined in Appendix A.1 of the XMP specification version 1.4.3

Figure 2 also shows an example of how to use these functions. In line 1 of the
left figure, an XMP header file (xmp.h) is included to use the functions in Table 1.
In line 2, an MPI header file (mpi.h) is included to obtain the information of the MPI
communicator type that is used in line 7. In line 6, xmp_init_mpi() initializes an
MPI environment. In line 8, xmp_get_mpi_comm() returns an MPI communicator
from the information of the executing XMP node set. In line 9, foo() which is
defined in right figure is called. In line 10, xmp_finalize_mpi() finalizes the MPI

3https://xcalablemp.org/download/spec/xmp-spec-1.4.pdf

https://xcalablemp.org/download/spec/xmp-spec-1.4.pdf

150 M. Nakao

Table 1 Functions to call MPI program from XMP program [19]

Language Return value type Function Description

XMP/C Void xmp_init_mpi(int*, char***) Initialize MPI environment

XMP/F (None) xmp_init_mpi()

XMP/C MPI_Comm xmp_get_mpi_comm(void) Create MPI communicator from

XMP/F Integer xmp_get_mpi_comm() XMP node set

XMP/C Void xmp_finalize_mpi(void) Finalize MPI environment

XMP/F (None) xmp_finalize_mpi()

#include <xmp.h>
#include <mpi.h>
#pragma xmp nodes p[*]

int main(int argc, char **argv){
 xmp_init_mpi(&argc, &argv);
 MPI_Comm comm;
 comm = xmp_get_mpi_comm();
 foo(comm);
 xmp_finalize_mpi();

 return 0;
}

#include <mpi.h>

void foo(MPI_Comm comm){
 int rank, size;
 MPI_Comm_rank(comm, &rank);
 MPI_Comm_size(comm, &size);
 :
}

1
2
3
4
5
6
7
8
9

10
11
12
13

Fig. 2 Example of calling MPI program (mpi.c) from XMP program (xmp.c) [19]

environment. Note that xmp_get_mpi_comm() and other MPI functions must be
placed between xmp_init_mpi() and xmp_finalize_mpi().

The implementations of xmp_init_mpi() and xmp_finalize_mpi() are empty
because, as shown in Fig. 1, the xmp_init_all() and xmp_finalize_all() are
always invoked at the beginning and the end of the program, and these
functions initialize and finalize the MPI environment. Next, an implementation
of xmp_get_mpi_comm() will be described. As shown in Sect. 2, the task directive
creates a new MPI communicator. Thus, an MPI communicator is stored at a stack
data architecture in Omni compiler runtime library. The xmp_get_mpi_comm()
returns an MPI communicator at the top of the stack.

An example of compilation using Omni compiler is as follows:

$ mpicc mpi.c -c -o mpi.o
$ xmpcc xmp.c -c -o xmp.o
$ xmpcc mpi.o xmp.o -o a.out

Mixed-Language Programming with XcalableMP 151

Since Omni compiler uses an MPI compiler as a native compiler internally, MPI
programs can also be compiled with the “xmpcc” command as follows:

$ xmpcc mpi.c -o mpi.o

Thus, it is also possible to execute all the compilation work using a single
command as follows:

$ xmpcc mpi.c xmp.c -o a.out

The execution binary is executed using the execution command provided by
user’s MPI environment as follows:

$ mpirun -np 4 a.out

3.2 Function to Call XMP Program from MPI Program

Table 2 shows the functions to call an XMP program from an MPI program.
These functions are defined in Appendix A.2 of the XMP specification version
1.4. Figure 3 shows an example of how to use these functions. In line 1 of the
left figure, an XMP header file is included to use functions in Table 2. In line 7,
xmp_init() initializes an XMP environment, and creates the XMP node set based
on the communicator specified in its argument. In line 8, foo() in the right figure is
called. In line 9, xmp_finalize() finalizes the XMP environment. Note that the XMP
functions must be placed between xmp_init() and xmp_finalize().

Though the xmp_init() is implemented to call the xmp_init_all() function
described in Sect. 2, it also performs the following ingenuities:

Table 2 Functions to call XMP program from MPI program [19]

Language Return value type Function Description

XMP/C Void xmp_init(MPI_Comm) Initialize XMP environment

XMP/F (None) xmp_init(Integer)

XMP/C Void xmp_finalize(void) Finalize XMP environment

XMP/F (None) xmp_finalize()

152 M. Nakao

#include <xmp.h>
#include <mpi.h>

int main(int argc, char **argv){
 MPI_Init(&argc, &argv);

 xmp_init(MPI_COMM_WORLD);
 foo();
 xmp_finalize();

 MPI_Finalize();
 return 0;
}

void foo(){
#pragma xmp nodes p[*]
 :
}

1
2
3
4
5
6
7
8
9

10
11
12
13

Fig. 3 Example of calling XMP program from MPI program [19]

• Before calling xmp_init(), MPI_Init() must be called in the MPI program.
Therefore, we added a procedure that ensures MPI_Init() is not called in
xmp_init_all().

• As shown in Sect. 2, xmp_init_all() duplicates MPI_COMM_WORLD to per-
form XMP communication. We also added a procedure that ensures the commu-
nicator specified in xmp_init() is duplicated instead ofMPI_COMM_WORLD.

Basically, xmp_finalize() is also implemented to call xmp_finalize_all() in
Sect. 2. As with xmp_init(), after calling xmp_finalize(), MPI_Finalize() is called
in an MPI program. Therefore, we added a procedure to ensure that MPI_Finalize()
is not called in xmp_finalize_all().

The method to compile and execute is the same as Sect. 3.1.

3.3 Function to Call XMP Program from Python Program

There are two types of calling an XMP program from a Python program in Omni
compiler; the one is “calling from a parallel Python program,” the other is “calling
from a sequential Python program.”

3.3.1 From Parallel Python Program

Figure 4 shows an example of calling an XMP program from a parallel Python
program. We assume the use of “mpi4py” for a Python MPI environment. In line
2 of the left figure, an XMP package is imported which is in Omni compier. In
line 4, the shared library (bar.so) created from the right figure is read. In line 8,

Mixed-Language Programming with XcalableMP 153

void foo(long a[3], long b[3]){
#pragma xmp nodes p[*]
 :
}

from mpi4py import MPI
import xmp

lib = xmp.Lib("bar.so")
comm = MPI.COMM_WORLD
args = ([1,2,3], [4,5,6])

job = lib.call(comm, "foo", args)

1
2
3
4
5
6
7
8

Fig. 4 Example of calling XMP program (bar.c) from parallel Python program (bar.py) [19]

xmp.Lib.call() calls a parallel XMP program. This function performs initialization
and finalization for an XMP environment internally.

To use the features, the Omni compiler runtime library must be a shared library.
Therefore, we develop a new compile process to create a shared library for Omni
compiler. When adding an option “--enable-shared” to “./configure” as
follows, shared libraries are created.

$./configure --enable-shared

An example of compilation and execution using Omni compiler is as follows.
A shared library is created by “xmpcc” command from a user program. Compile
options used to create the shared library depend on a native compiler (e.g., “-fPIC
-shard” if the native compiler is gcc). The execution binary is executed via
Python.

$ xmpcc -fPIC -shared bar.c -o bar.so
$ mpirun -np 4 python bar.py

3.3.2 From Sequential Python Program

Figure 5 shows an example of calling an XMP program from a sequential Python
program. In line 6, xmp.Lib.spawn() calls a parallel XMP program. The first
argument is number of nodes in XMP. The last argument is an option for asyn-
chronous operation. If it is true, processing may return to python before “foo()”
completes. In line 7, xmp.Lib.wait() waits until “foo()” completes. In line 9,
xmp.Lib.elapse_time() returns processing time for “foo()”.

154 M. Nakao

import xmp

lib = xmp.Lib("test.so")
args = ([1,2,3], [4,5,6])

job = lib.spawn(4, "foo", args, async = True)
job.wait()

print ("elapsed_time:{0}".format(job.elapsed_time()) + "[sec]")

1
2
3
4
5
6
7
8
9

Fig. 5 Example of spawning XMP program from sequential Python program [19]

An example of execution using Omni compiler is as follows. Note that a python
program executes with one process, but an XMP program is executed with number
of processes specified in code.

$ mpirun -np 1 python bar.py

4 Application to Order/Degree Problem

4.1 What Is Order/Degree Program

The order/degree problem is a problem that minimizes the diameter and average
shortest path length (ASPL) among vertices in an undirected graph with a given
number of vertices and degrees. The problem is useful for designing low latency
interconnection networks (http://research.nii.ac.jp/graphgolf).

From the number of vertices (n) and degrees (d), the theoretical lower bounds of
the diameter (Kn,d) and the ASPL (Ln,d) are calculated as follows [20]:

Kn,d =
{ �n−1

2 � if d = 2

�logd−1(
(n−1)(d−2)

d
) + 1� if d > 2

Ln,d =
{

1 if Kn,d = 1
Sn,d+Kn,dRn,d

n−1 if Kn,d ≥ 2

Sn,d =
Kn,d−1∑

i=1

id(d − 1)i−1

http://research.nii.ac.jp/graphgolf

Mixed-Language Programming with XcalableMP 155

Rn,d = n − 1 −
Kn,d−1∑

i=1

d(d − 1)i−1

Figures 6 and 7 show examples of graphs with n = 10 and d = 3 and their
distance matrices. The distance matrix indicates the shortest hop count between
vertices. The diameter is the maximum value of the elements in the distance matrix.
ASPL is the value obtained by dividing the total value of all elements by the number
of elements (n2 − n)/2. While the graph in Fig. 6 has random edges, the graph in
Fig. 7 has edges optimized by our algorithm, which is described in Sect. 4.2. The
diameter and ASPL of Fig. 7 are theoretical lower bounds.

In an effort to expand the order/degree problem into open science, the National
Institute of Informatics has held a “Graph Golf” competition every year since 2015
to search for the smallest diameter and ASPL. A combination of several vertices and
degrees is provided in each of those events. The competition has two categories: one
is the General Graph Category, where vertices are placed freely, and the other is the
Grid Graph Category, where vertices are placed on a two-dimensional grid. This
section deals with the General Graph Category. Table 3 shows the combination of
vertices and degrees used in 2017.

A python program “create-random.py” for the order/degree problem is available
on the official Graph Golf website. The program outputs follow from the number of
vertices and degrees. These calculations use the Python networkx package (https://
networkx.github.io).

• Initial graph with random edges (the graph of Fig. 6 is created by this function)
• Calculation of diameter and ASPL
• Graph figure in Portable Network Graphics (PNG) format (the graphs shown

Figs. 6 and 7 are created by this function)

4.2 Implementation

The “create-random.py” does not search out the smallest diameter and ASPL.
Moreover, to obtain diameter and ASPL of a graph, it is necessary to calculate all
of the shortest paths among its vertices. Although the “create-random.py” calculates
the shortest paths using the shortest_path_lengthmethod of the networkx package,
this method requires a significant amount of time.

To search for the smallest diameter and ASPL, we developed a GraphGolf code
in both Python and XMP/C based on “create-random.py.” A Simulated Annealing
(SA) [21, 22] algorithm is used for optimization. The shortest paths calculation
is parallelized by XMP directives. Figure 8 shows a flow chart for the algorithm.
While Python is used to create initial graph and output the figure, XMP/C is used to
implement other parts.

https://networkx.github.io
https://networkx.github.io

156 M. Nakao

0

1

96

4

5

23

87

0 1 964 52 3 87
0
1

9

6

4
5

2
3

8
7

1 22
13 3

3 3 2
3 3 3

2 2 2
1 1 2

3 2 2
2 3 2

3 2 2
2 2 2

2 1 1 2

2 3 1 2

1 1
1 2 1 2

2 3
2 2 2

3

2 1 2 3
1 1

2 2

2 2
3 1

1 1
2 1

1 1 3 1

3 3

2
1

2
1
1 1

1 1

2
12

1 2

3 1
2

3

2
Fig. 6 Diameter = 3, ASPL = 1.89

Figures 9 and 10 show a portion of our codes. In lines 6–10 of Fig. 9, the number
of vertices and degrees are transformed to allow their use in the program. In lines
12–17, an initial graph is created and set a variable arr. The first element of the
variable arr stores the number of vertices and the degree. In lines 19–20, the initial
graph is passed to the xmp_graphgolf function of Fig. 10, which optimizes it. The
result is saved in a variable arr, which is the same as one of the arguments. After
line 22, the result is transformed into a figure. In lines 1–3 of Fig. 10, the XMP
directives declare the template and node set, and then distributes the template onto

Mixed-Language Programming with XcalableMP 157

Fig. 7 Diameter = 2, ASPL
=1.67

0

1

96

4

5

23

87

0 1 964 52 3 87
0
1

9

6

4
5

2
3

8
7

1 11
11 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 2

1 1 1
1 1 1

2 2 2 2

2 2 2 2

2 2
2 2 2 2

2 2
2 2 2

2

2 2 2 2
2 2

2 2

2 2
2 2

2 2
2 2

2 2 2 2

2 2

2
2

2
2
2 2

2 2

2
21

2 2

2 2
2

2

2

Table 3 Combination of vertices and degrees of General Graph Category in 2017

Number of vertices 32 256 576 1344 4896 9344 88,128 98,304 100,000 100,000

Number of degrees 5 18 30 30 24 10 12 10 32 64

158 M. Nakao

Python XMP/C

Initialize parameters

Cooling cycle ?

Generate next state

Compute energy

Transition

Cooling

Output figure

Create initial graph

Acceptance ?

Terminal ?

No

No

No

Fig. 8 Flow chart of an algorithm in Python and XMP/C

the node set in a block manner. In line 1, the “[:]” means that the template size is
not fixed at this point. In line 9, the template_fix directive determines the template
size vertices, which is the number of vertices. In lines 11–13, a diameter and ASPL
are calculated. The calculation is a state of the “Compute energy” shown in Fig. 8.
This calculation uses the top-down approach of the breadth-first search. In line 10,
the loop directive parallelizes the loop statement to calculate each shortest path in
parallel. In lines 14–15, the reduction directives aggregate a diameter and ASPL
stored at each node.

Mixed-Language Programming with XcalableMP 159

Fig. 9 Code in Python

4.3 Evaluation

To evaluate the performance of the Graph Golf application, we used the “coma”
system located in University of Tsukuba, the specifications of which are shown in
Table 4.

We measured the time required to calculate all of the shortest paths once by
changing the number of nodes. We assigned 20 XMP nodes to each compute node,
and used a medium-sized number of vertices and degrees (n = 9344, d = 10), as
shown in Table 3.

160 M. Nakao

1 #pragma xmp template t[:]
2 #pragma xmp nodes p[*]
3 #pragma xmp distribute t[block] onto p
4
5 void xmp_graphgolf(int *edge)
6 {
7 :
8 int vertices = edge[0];
9 #pragma xmp template_fix t[vertices]

10 #pragma xmp loop on t[i]
11 for(int i=0;i<vertices;i++){
12 : // Calculate diameter and ASPL
13 }
14 #pragma xmp reduction(+:ASPL)
15 #pragma xmp reduction(max:diameter)
16 :
17 }

Fig. 10 Code in XMP/C

Table 4 Coma system specifications

CPU Intel Xeon-E5 2670v2 2.5 GHz 10 Cores × 2 Sockets

Memory DDR3 1866 MHz 59.7 GB/s 64 GB

Network InfiniBand FDR 7 GB/s

Software intel/16.0.2, intelmpi/5.1.1, Omni compiler 1.2.1

Python 2.7.9, networkx 1.9

Figure 11 shows performance results where the bar graph shows the time
measurements, and the line graph shows the parallel efficiency of one XMP node.
The time for one XMP node is 123.17 s, while the time for 1280 XMP nodes
(using 64 compute nodes) is 0.13 s, which is 921 times faster. Since the time
using the Python networkx package is 148.83 s in one CPU core, XMP achieved
a performance improvement of 21%.

From an examination of Fig. 11, we found that the parallel efficiency decreases
as the number of nodes increases. We consider that the following reasons are
responsible for the decrease:

• The ratio of communication time increases. Figure 12 shows the ratio of
communication time and calculation time to the total time. As the number of
nodes increases, the proportion of communication time also increases.

• The parallelized loop lengths are non-uniform. The length of the loop statement
in line 11 of Fig. 10 is 9344, which is the same as the number of vertices. Since
the length is divided by the number of nodes, the length non-uniformity increases
as the number of nodes increases.

Mixed-Language Programming with XcalableMP 161

1 2 4 10 20

Number of XMP nodes

1000

100

10

1

0.1

Ex
ec

ut
io

n
Ti

m
e

(S
ec

.)

40 80 160 320 640 1280

Parallel Efficiency
Execution Time

1.00

0.75

0.50

0.25

0.00

Parallel Efficiency

1.55

0.40
0.21

0.13

3.09

12.33
24.64

123.17
61.60

0.78

6.17

Fig. 11 Performance evaluation

100
90
80
70
60
50
40
30
20
10

0 40 80 160 320 640 1280
Number of nodes

Communication
Calculation

1 2 4 10 20

C
al

c.
/C

om
m

. R
at

io
 (%

)

Fig. 12 Calculation and communication ratio

5 Conclusion

This chapter describes how to use linkage functions between XMP and MPI library
in Omni compiler. Moreover, it also describes how to call an XMP program from a
Python program. Users can call functions written in these languages with a simple

162 M. Nakao

procedure. Since many existing parallel applications are written in MPI library, these
functions can be useful for extending existing applications. Furthermore, it will be
possible to effectively use the high functionality of Python.

References

1. M. Nakao et al., Linkage of XcalableMP and Python languages for high productivity on HPC
cluster system, in Proceedings of Workshops of HPC Asia, No .9 (2018), pp.39–47

2. F. Cantonnet et al., Productivity analysis of the UPC language, in 18th International Parallel
and Distributed Processing Symposium (2004), pp.254–260

3. K. Yelick et al., Productivity and performance using partitioned global address space lan-
guages, in Proceedings of the International Workshop on Parallel Symbolic Computation
(2007)

4. A.I. Stone et al., Evaluating coarray Fortran with the CGPOP Miniapp, in Proceedings of the
Fifth Conference on Partitioned Global Address Space Programming Models (2011)

5. M. Nakao et al., Implementation and evaluation of the HPC challenge benchmark in the
XcalableMP PGAS language. Int. J. High Perform. Comput. Appl. 33, 110–123 (2017)

6. J. Jithin et al., Unifying UPC and MPI runtimes: experience with MVAPICH, in Proceedings
of the Fourth Conference on Partitioned Global Address Space Programming Model (2010),
pp. 5:1–5:10

7. M. Nakao et al., Productivity and performance of the HPC challenge benchmarks with the
XcalableMP PGAS language, in Proceedings of the Fourth Conference on Partitioned Global
Address Space Programming Model (2013), pp. 157–171

8. M. Nakao et al., Productivity and performance of global-view programming with XcalableMP
PGAS language, in Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (2012), pp. 402–409

9. M. Nakao et al., XcalableACC: extension of XcalableMP PGAS language using OpenACC for
accelerator clusters, in Proceedings of the First Workshop on Accelerator Programming Using
Directives (2014), pp.27–36

10. M. Nakao et al., Implementing lattice QCD application with XcalableACC language on
accelerated cluster, in IEEE International Conference on Cluster Computing (CLUSTER)
(2017), pp. 429–438

11. M. Nakao et al., Evaluation of XcalableACC with tightly coupled accelerators/InfiniBand
hybrid communication on accelerated cluster. Int. J. High Perform. Comput. Appl. 33,
109434201882116 (2019)

12. R.W. Numrich et al., Co-array Fortran for parallel programming. SIGPLAN Fortran Forum
17(2), 1–31 (1998)

13. M. Nowicki et al., PCJ - Java library for high performance computing in PGAS model, in
International Conference on High Performance Computing & Simulation (2014), pp. 202–209

14. Y. Zheng et al., UPC++: A PGAS Extension for C++, in IEEE 28th International Parallel and
Distributed Processing Symposium (2014), pp. 1105–1114

15. K. Vivek et al., HabaneroUPC++: a compiler-free PGAS library, in Proceedings of the 8th
International Conference on Partitioned Global Address Space Programming Models, No. 5
(2014), pp. 5:1–5:10

16. C. Philippe et al., X10: an object-oriented approach to non-uniform cluster computing, in
OOPSLA ’05 Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, vol. 40, No. 10 (2005), pp. 519–538

17. B.L. Chamberlain et al., Parallel programmability and the Chapel language. Int. J. High
Perform. Comput. Appl. 21(3), 291–312 (2007)

Mixed-Language Programming with XcalableMP 163

18. K. Fürlinger et al., DASH: a C++ PGAS library for distributed data structures and parallel
algorithms, in IEEE 18th International Conference on High Performance Computing and
Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS) (2016), pp. 983–990

19. M. Nakao et al., Linkage of XcalableMP and Python languages for high productivity on HPC
cluster system, in Workshop on PGAS Programming Models: Experiences and Implementa-
tions (2018)

20. V.G. Cerf et al., A lower bound on the average shortest path length in regular graphs. Networks
4(4), 335–342 (1974)

21. M. Nicholas et al., Equation of state calculations by fast computing machines. J. Chem. Phys.
21(6), 1087–1092 (1953)

22. S. Kirkpatrick et al., Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Three-Dimensional Fluid Code
with XcalableMP

Hitoshi Sakagami

Abstract In order to adapt parallel computers to general convenient tools for
computational scientists, a high-level and easy-to-use portable parallel program-
ming paradigm is mandatory. XcalableMP, which is proposed by the XcalableMP
Specification Working Group, is a directive-based language extension for Fortran
and C to easily describe parallelization in programs for distributed memory
parallel computers. The Omni XcalableMP compiler, which is provided as a
reference XcalableMP compiler, is currently implemented as a source-to-source
translator. It converts XcalableMP programs to standard MPI programs, which
can be easily compiled by the native Fortran compiler and executed on most of
parallel computers. A three-dimensional Eulerian fluid code written in Fortran is
parallelized by XcalableMP using two different programming models with the
ordinary domain decomposition method, and its performances are measured on
the K computer. Programs converted by the Omni XcalableMP compiler prevent
native Fortran compiler optimizations and show lower performance than that of
hand-coded MPI programs. Finally almost the same performances are obtained
by using specific compiler options of the native Fortran compiler in the case of a
global-view programming model, but performance degradation is not improved by
specifying any native compiler options when the code is parallelized by a local-view
programming model.

1 Introduction

Computational scientists usually want to concentrate their attention on their essen-
tial research. Parallel programming is never an objective for them even if com-
putational powers of parallel computers are necessary to advance their subjects,
and this dilemma is annoying them. In order to adapt the parallel computer from a

H. Sakagami (�)
National Institute for Fusion Science, Toki, Japan
e-mail: sakagami.hitoshi@nifs.ac.jp

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_6

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_6&domain=pdf
mailto:sakagami.hitoshi@nifs.ac.jp
https://doi.org/10.1007/978-981-15-7683-6_6

166 H. Sakagami

special kind of machines to general convenient tools for computational scientists, a
high-level and easy-to-use portable parallel programming paradigm is mandatory.
XcalableMP (XMP) [1], which is proposed by the XcalableMP Specification
Working Group, is directive-based language extensions for Fortran and C to easily
describe parallelization in programs for distributed memory parallel computers. The
XMP/F compiler [2], which is provided as a reference XMP Fortran compiler, is
currently implemented as a source-to-source translator. It converts XMP Fortran
programs to standard MPI Fortran programs, which can be easily compiled by the
native Fortran compiler and executed on most of parallel computers.

XMP supports typical data/task parallelization methods with simple directives
under a “global-view” programming model, which is partially based on experiences
of High Performance Fortran [3, 4] and Fujitsu XPF (VPP FORTRAN) [5]. XMP
also supports PGAS (Partitioned Global Address Space) features like Coarray
Fortran [6] as a “local-view” programming model. In addition, combinations of
XMP and OpenMP directives are consistently maintained by the XMP/F compiler.
An essential design principle of XMP is “performance awareness,” which means
that all communications or synchronizations are taken by explicit directives or
Coarray statements and no implicit actions are taken.

First, we used XMP Fortran to parallelize the code using the global-view
programming model, and measured its performance on the K computer. We found
that programs converted by the XMP/F compiler prevent optimizations by the
native Fortran compiler and show lower performance than that of hand-coded
MPI programs, but finally almost the same performances are obtained by using
specific compiler options of the native Fortran compiler. Next we parallelized the
code using the local-view programming model, and also measured its performance
on the K computer. We found that translated programs prevent optimizations by
the native Fortran compiler and show lower performance than that of the global-
view programming model programs. This degradation cannot be solved by simply
specifying native compiler options at this moment, and improvements of the XMP/F
compiler are expected.

2 Global-View Programming Model

IMPACT-3D is a three-dimensional Eulerian fluid code written in Fortran and
it performs compressible and inviscid fluid computation to simulate convergent
asymmetric flows related to laser fusion [7]. A Cartesian coordinate system is
employed and an explicit 5-point stencil in one direction is used in IMPACT-3D
with uniform grid spacing. So it is easy to parallelize the code with the ordinary
domain decomposition method. Communications between neighboring subdomains
are needed to exchange boundary data.

As the global-view programming model is a directive oriented approach, pro-
grams can be incrementally parallelized and different parallelization methods can
be easily tried. Although IMPACT-3D is actually parallelized by three different

Three-Dimensional Fluid Code with XcalableMP 167

methods, original source codes are completely same and there are a few directive
differences among three methods.

2.1 Domain Decomposition Methods

The code is parallelized by three different domain decomposition methods, namely
the domain is divided in (a) only Z direction, (b) both Y and Z directions, and (c) all
of X, Y, and Z directions, which are shown in Fig. 1.

Assume LX, LY, and LZ are system mesh sizes of the code in X, Y, and Z
directions, and NX, NY, and NZ are division numbers in X, Y, and Z directions,
respectively. In the case of only Z domain decomposition method, total amount of
communicated data per domain is proportional to LX · LY , which is not depended
on any division numbers, and communication occurs twice per time step. On the
other hand, data proportional to (LX · LY) ÷ NY must be communicated twice
and that of (LZ · LX) ÷ NZ is also communicated twice per domain per time step
in both Y and Z domain decomposition method. In the case of all of X, Y, and Z
domain decomposition method, data proportional to (LX ·LY)÷ (NX ·NY), (LZ ·
LX)÷ (NZ ·NX), and (LY ·LZ)÷ (NY ·NZ) must be communicated per domain
per time step twice, twice and three times, respectively. Thus total communication
costs in three different domain decomposition methods are depended on a trade-off
between latency and speed. Additional communication is one reduction operation
to obtain a maximum scalar value in whole simulation system.

A node array that corresponds with physical compute units in parallel computer
is defined by node directive, three-dimensional Fortran arrays are decomposed with
template, distribute, and align directives, corresponding DO loops are parallelized
by loop directive and communications between neighboring subdomains are imple-
mented by shadow and reflect directives. The code can be parallelized by using the
“global-view” programming model directives only. Typical XMP Fortran programs
are shown for each decomposition method, in Listing 1 for only Z direction,
Listing 2 for both Y and Z directions, and Listing 3 for all of X, Y, and Z directions.

Fig. 1 IMPACT-3D is parallelized by three different domain decomposition methods. The domain
is divided in (a) only Z direction, (b) both Y and Z directions, and (c) all of X, Y, and Z directions

168 H. Sakagami

lx, ly, lz are Fortran array size of first, second, third dimension, and nx, ny, nz are a
number of division in X, Y, Z directions, respectively. These are also variable names
in the program shown in Listings.

The code is also hand-coded with MPI using the same domain decomposition
methods to compare performances.

Listing 1 Typical XMP programs using the global-view programming model for only Z domain
decomposition method

1 integer parameter :: lx=..., ly=..., lz=...
2 integer parameter :: nz=...
3 !$XMP NODES proc(nz)
4 !$XMP TEMPLATE t(lx,ly,lz)
5 !$XMP DISTRIBUTE t(*,*,BLOCK) ONTO proc
6 real*8 :: physval(6,lx,ly,lz)
7 real*8 :: ram
8 !$XMP ALIGN (*,*,*,k) WITH t(*,*,k) :: physval
9 !$XMP SHADOW (0,0,0,1) :: physval

10 ...
11 !$XMP LOOP (iz) ON t(*,*,iz)
12 !$OMP PARALLEL DO PRIVATE(iy,ix)
13 do iz = 1, lz
14 do iy = 1, ly
15 do ix = 2, lx-1
16 ...
17 physval(..,ix,iy,iz) = ... &
18 physval(..,ix-1,iy,iz) ... physval(..,ix+1,iy,iz)
19 ...
20 ...
21 !$XMP LOOP (iz) ON t(*,*,iz)
22 !$OMP PARALLEL DO PRIVATE(iy,ix)
23 do iz = 1, lz
24 do iy = 2, ly-1
25 do ix = 1, lx
26 ...
27 physval(..,ix,iy,iz) = ... &
28 physval(..,ix,iy-1,iz) ... physval(..,ix,iy+1,iz)
29 ...
30 ...
31 !$XMP REFLECT (physval)
32 !$XMP LOOP (iz) ON t(*,*,iz)
33 !$OMP PARALLEL DO PRIVATE(iy,ix)
34 do iz = 2, lz-1
35 do iy = 1, ly
36 do ix = 1, lx
37 ...
38 physval(..,ix,iy,iz) = ... &
39 physval(..,ix,iy,iz-1) ... physval(..,ix,iy,iz+1)
40 ...
41 ...
42 !$XMP LOOP (iz) ON t(*,*,iz) REDUCTION(max:ram)
43 !$OMP PARALLEL DO REDUCTION(max:ram) PRIVATE(iy,ix)

Three-Dimensional Fluid Code with XcalableMP 169

44 do iz = 1, lz
45 do iy = 1, ly
46 do ix = 1, lx
47 ram = max(ram, ...)

Listing 2 Typical XMP programs using the global-view programming model for both Y and Z
domain decomposition methods

1 integer parameter :: lx=..., ly=..., lz=...
2 integer parameter :: ny=..., nz=...
3 !$XMP NODES proc(ny,nz)
4 !$XMP TEMPLATE t(lx,ly,lz)
5 !$XMP DISTRIBUTE t(*,BLOCK,BLOCK) ONTO proc
6 real*8 :: physval(6,lx,ly,lz)
7 real*8 :: ram
8 !$XMP ALIGN (*,*,j,k) WITH t(*,j,k) :: physval
9 !$XMP SHADOW (0,0,1,1) :: physval

10 ...
11 !$XMP LOOP (iy,iz) ON t(*,iy,iz)
12 !$OMP PARALLEL DO PRIVATE(iy,ix)
13 do iz = 1, lz
14 do iy = 1, ly
15 do ix = 2, lx-1
16 ...
17 physval(..,ix,iy,iz) = ... &
18 physval(..,ix-1,iy,iz) ... physval(..,ix+1,iy,iz)
19 ...
20 ...
21 !$XMP REFLECT (physval) width(0,0,1,0)
22 !$XMP LOOP (iy,iz) ON t(*,iy,iz)
23 !$OMP PARALLEL DO PRIVATE(iy,ix)
24 do iz = 1, lz
25 do iy = 2, ly-1
26 do ix = 1, lx
27 ...
28 physval(..,ix,iy,iz) = ... &
29 physval(..,ix,iy-1,iz) ... physval(..,ix,iy+1,iz)
30 ...
31 ...
32 !$XMP REFLECT (physval) width(0,0,0,1)
33 !$XMP LOOP (iy,iz) ON t(*,iy,iz)
34 !$OMP PARALLEL DO PRIVATE(iy,ix)
35 do iz = 2, lz-1
36 do iy = 1, ly
37 do ix = 1, lx
38 ...
39 physval(..,ix,iy,iz) = ... &
40 physval(..,ix,iy,iz-1) ... physval(..,ix,iy,iz+1)
41 ...
42 ...
43 !$XMP LOOP (iy,iz) ON t(*,iy,iz) REDUCTION(max:ram)
44 !$OMP PARALLEL DO REDUCTION(max:ram) PRIVATE(iy,ix)

170 H. Sakagami

45 do iz = 1, lz
46 do iy = 1, ly
47 do ix = 1, lx
48 ram = max(ram, ...)

Listing 3 Typical XMP programs using the global-view programming model for all of X, Y, and
Z domain decomposition method

1 integer parameter :: lx=..., ly=..., lz=...
2 integer parameter :: nx=..., ny=..., nz=...
3 !$XMP NODES proc(nx,ny,nz)
4 !$XMP TEMPLATE t(lx,ly,lz)
5 !$XMP DISTRIBUTE t(BLOCK,BLOCK,BLOCK) ONTO proc
6 real*8 :: physval(6,lx,ly,lz)
7 real*8 :: ram
8 !$XMP ALIGN (*,i,j,k) WITH t(i,j,k) :: physval
9 !$XMP SHADOW (0,1,1,1) :: physval

10 ...
11 !$XMP REFLECT (physval) width(0,1,0,0)
12 !$XMP LOOP (ix,iy,iz) ON t(ix,iy,iz)
13 !$OMP PARALLEL DO PRIVATE(iy,ix)
14 do iz = 1, lz
15 do iy = 1, ly
16 do ix = 2, lx-1
17 ...
18 physval(..,ix,iy,iz) = ... &
19 physval(..,ix-1,iy,iz) ... physval(..,ix+1,iy,iz)
20 ...
21 ...
22 !$XMP REFLECT (physval) width(0,0,1,0)
23 !$XMP LOOP (ix,iy,iz) ON t(ix,iy,iz)
24 !$OMP PARALLEL DO PRIVATE(iy,ix)
25 do iz = 1, lz
26 do iy = 2, ly-1
27 do ix = 1, lx
28 ...
29 physval(..,ix,iy,iz) = ... &
30 physval(..,ix,iy-1,iz) ... physval(..,ix,iy+1,iz)
31 ...
32 ...
33 !$XMP REFLECT (physval) width(0,0,0,1)
34 !$XMP LOOP (ix,iy,iz) ON t(ix,iy,iz)
35 !$OMP PARALLEL DO PRIVATE(iy,ix)
36 do iz = 2, lz-1
37 do iy = 1, ly
38 do ix = 1, lx
39 ...
40 physval(..,ix,iy,iz) = ... &
41 physval(..,ix,iy,iz-1) ... physval(..,ix,iy,iz+1)
42 ...
43 ...
44 !$XMP LOOP (ix,iy,iz) ON t(ix,iy,iz) REDUCTION(max:ram)

Three-Dimensional Fluid Code with XcalableMP 171

45 !$OMP PARALLEL DO REDUCTION(max:ram) PRIVATE(iy,ix)
46 do iz = 1, lz
47 do iy = 1, ly
48 do ix = 1, lx
49 ram = max(ram, ...)

2.2 Performance on the K Computer

As one node consists of 8 cores in the K computer, one MPI process is dispatched
onto each node and each process performs computations with 8 threads. We run
both XMP and MPI codes with three different decomposition methods and evaluate
the weak scaling on the K computer using Omni XcalableMP 0.7.0 and Fujitsu
Fortran K-1.2.0.15. A number of cores for execution and corresponding simulation
parameters are summarized in Table 1.

Performance are measured by a hardware monitor installed on the K computer,
and MFLOPS/PEAK, Memory throughput/PEAK and SIMD execution usage are
obtained.

2.2.1 Comparison with Hand-Coded MPI Program

MFLOPS/PEAK values for all six cases, namely (MPI, XMP) × (only Z, both Y
and Z, all of X, Y, and Z) are shown in Fig. 2.

Performances of XMP codes are the same as those of MPI codes, and small
differences among three decomposition methods are found. But we can get only
8~9% of peak performance of the K computer. From the hardware monitor, we
found that SIMD execution usage was less than 5% in all cases, and this could
degrade the performance. Most cost intensive DO loops in IMPACT-3D include
IF statements, which are needed to correctly treat extremely slow fluid velocity
regardless of XMP and MPI codes, and the IF statement interrupts the native Fortran
compiler to generate SIMD instructions inside the DO loop. Thus relatively low
performance is obtained.

Table 1 Simulation parameters for global-view programming model

Only Z Both Y and Z All of X, Y and Z

#Core lx=ly=lz nz ny nz nx ny nz

256 1024 32 8 4 4 4 2

2048 2048 256 16 16 8 8 4

16,384 4096 64 32 16 16 8

131,072 8192 128 128 32 32 16

172 H. Sakagami

Fig. 2 MFLOPS/PEAK measured by the hardware monitor installed on the K computer. Solid and
dash lines indicate performances of XMP and MPI codes, respectively. Colors of light gray, gray,
and black indicate only Z domain decomposition, both Y and Z domain decomposition, and all of
X, Y, and Z domain decomposition methods, respectively

2.2.2 Optimization for SIMD

As the true rate of the IF statement is nearly 100% in IMPACT-3D, speculative
execution of SIMD instruction causes almost no overhead. So forcing the compiler
to generate the SIMD instructions could be useful to enhance the performance, and
it can be done with simd=2 compiler option. All codes are recompiled with that
option and rerun. SIMD execution usage increases up to around 50% in all cases,
and we can expect performance improvement. MFLOPS/PEAK values for all cases
are shown in Fig. 3.

Small differences among three decomposition methods are also found with this
compiler option. MPI code performance is improved and we can get up to 20%
of the peak performance. XMP code performance is also improved, but these
are below 15% even MPI and XMP code performance is almost same without
simd=2 option. According to compiler diagnostic of the native Fortran compiler,
the software pipelining is adopted for cost intensive DO loops in the MPI code, but
it is not applied for the source code converted by the XMP/F compiler from the
XMP code. As the XMP/F compiler converts a simple DO statement of “do i = is,
ie” to more general form “do i1 = xmp_s1, xmp_e1, xmp_d1” and the native Fortran
compiler cannot optimize the DO loop because do increment is given by a variable
and it is unknown at compilation time. So we improved the XMP/F compiler to
generate “do i1 = xmp_s1, xmp_e1, 1” form when the do increment is not given
and supposed to be one in the XMP code. As a result, the software pipelining is
also adopted for cost intensive DO loops converted by the XMP/F compiler, but no
performance improvement is obtained. Although Memory throughput/PEAK values

Three-Dimensional Fluid Code with XcalableMP 173

Fig. 3 MFLOPS/PEAK measured by the hardware monitor installed on the K computer with
SIMD optimization by simd=2 compiler option. Solid and dash lines indicate performances of
XMP and MPI codes, respectively. Colors of light gray, gray, and black indicate only Z domain
decomposition, both Y and Z domain decomposition, and all of X, Y, and Z domain decomposition
methods, respectively

of MPI codes are 55%, those of XMP codes are only 37% and this low memory
throughput is one of candidates for low sustained performance.

2.2.3 Optimization for Allocatable Arrays

In the converted code by the XMP/F compiler, all Fortran arrays are treated as
allocatable arrays even the original code uses static arrays. The allocatable array
prevents the native Fortran compiler from optimizing the DO loop with prefetch
instructions because the array size cannot be determined at compilation time, and
it could cause low memory throughput. All Fortran arrays in the hand-coded MPI
code for XYZ decomposition are just replaced by allocatable arrays and we check a
performance difference. Performance of the MPI code are shown in Fig. 4 for static
arrays (light gray dash) and allocatable arrays (gray dash).

MFLOPS/PEAK values are dropped from 20% to 15%, and this performance
degradation without the prefetch instructions is confirmed. To force the native
Fortran compiler to perform the prefetch optimization, we can use prefetch_stride
compiler option. All codes are recompiled with prefetch_stride compiler option and
rerun. Performance improvements by this compiler option are shown in Fig. 4 for
both MPI (gray dash to black dash) and XMP (gray solid to black solid) codes.
MFLOPS/PEAK values are improved by 2~3% with the prefetch optimization.
Finally we can get almost the same performance with XMP as that of MPI when
allocatable arrays are used, but efforts to shrink the performance gap between static
and allocatable arrays are still needed.

174 H. Sakagami

Fig. 4 IMFLOPS/PEAK measured by the hardware monitor installed on the K computer with
prefetch optimization by prefetch_stride compiler option. Solid and dash lines indicate perfor-
mances of XMP and MPI codes, respectively. Colors of light gray, gray, and black indicate static
arrays, allocatable arrays, and allocatable arrays with prefetch optimization, respectively

3 Local-View Programming Model

In the local-view programming model, communications among domains are written
by Fortran Coarray assignment statements, with which two types of one-sided
communications for local data, namely put and get, are adopted. For the sake of
simplicity, we focus on the all of X, Y, and Z domain decomposition method in this
section.

3.1 Communications Using Coarray

Just same as the MPI program, DO loop boundaries in the original source code must
be modified and communications must be explicitly written by Coarray assignment
statements. Typical XMP Fortran programs using put communications are shown
in Listing 4, which is corresponding to Listing 3. Division numbers are defined
just as variables, not parameters to easily change them by input data without
recompilations. As Coarray features in Fortran 2008, which is supported by the
XMP/F compiler at that time, do not include reduction operations, the code to
obtain the maximum value of the scalar variable in whole simulation system must
be hand-coded. But Coarray features in Fortran 2015 support reduction operations
by intrinsic subroutines, and these codes are simply replaced with co_max intrinsic
subroutine, which is shown in Listing 5. These intrinsic subroutines are partially
supported by the current XMP/F compiler.

Three-Dimensional Fluid Code with XcalableMP 175

Listing 4 Typical XMP programs using the local-view programming model with put communi-
cations for all of X, Y, and Z domain decomposition method

1 integer, parameter :: lx=..., ly=..., lz=...
2 real*8 :: ram
3 real*8, allocatable :: rami(:)
4 real*8, allocatable :: physval(6,:,:,:)[:]
5 real*8 :: ramc[*]
6 ...
7 limgn = THIS_IMAGE()
8 lsx = lx / nx
9 lsy = ly / ny

10 lsz = lz / nz
11 linxp = limgn + 1
12 linxm = limgn - 1
13 linyp = limgn + nx
14 linym = limgn - nx
15 linzp = limgn + (nx*ny)
16 linzm = limgn - (nx*ny)
17 allocate(physval(6,0:lsx+1,0:lsy+1,0:lsz+1)[*])
18 allocate(rami(nx*ny*nz))
19 ...
20 physval(:,lsx+1,:,:)[linxm] = physval1(:,1,:,:)
21 physval(:,0,:,:)[linxp] = physval1(:,lsx,:,:)
22 SYNC ALL
23 !$OMP PARALLEL DO PRIVATE(iy,ix)
24 do iz = 1, lsz
25 do iy = 1, lsy
26 do ix = 1, lsx
27 ...
28 physval(..,ix,iy,iz) = ... &
29 physval(..,ix-1,iy,iz) ... physval(..,ix+1,iy,iz)
30 ...
31 ...
32 physval(:,:,lsy+1,:)[linym] = physval1(:,:,1,:)
33 physval(:,:,0,:)[linyp] = physval1(:,:,lsy,:)
34 SYNC ALL
35 !$OMP PARALLEL DO PRIVATE(iy,ix)
36 do iz = 1, lsz
37 do iy = 1, lsy
38 do ix = 1, lsx
39 ...
40 physval(..,ix,iy,iz) = ... &
41 physval(..,ix,iy-1,iz) ... physval(..,ix,iy+1,iz)
42 ...
43 ...
44 physval(:,:,:,lsz+1)[linzm] = physval1(:,:,:,1)
45 physval(:,:,:,0)[linzp] = physval1(:,:,:,lsz)
46 SYNC ALL
47 !$OMP PARALLEL DO PRIVATE(iy,ix)
48 do iz = 1, lsz
49 do iy = 1, lsy
50 do ix = 1, lsx

176 H. Sakagami

51 ...
52 physval(..,ix,iy,iz) = ... &
53 physval(..,ix,iy,iz-1) ... physval(..,ix,iy,iz+1)
54 ...
55 ...
56 !$OMP PARALLEL DO REDUCTION(max:ram) PRIVATE(iy,ix)
57 do iz = 1, lsz
58 do iy = 1, lsy
59 do ix = 1, lsx
60 ram = max(ram, ...)
61 ...
62 ramc = ram
63 SYNC ALL
64 if(limgn .eq. 1) then
65 rami(1) = ram
66 do i = 2, nx*ny*nz
67 rami(i) = ramc[i]
68 end do
69 ram = max(rami)
70 ramc = ram
71 end if
72 SYNC ALL
73 if(limgn .ne. 1) then
74 ram = ramc[1]
75 end if

Listing 5 Reduction operations can be replaced by an intrinsic subroutine

1 ...
2 call CO_MAX(ram)
3 ...

Differences of programs between put and get communications are only in Coar-
ray assignment and related sync all statements, and the other parts are completely
same. Ttypical XMP Fortran programs related with get communications are shown
in Listing 6. Note that related sync all statement must be written after put or before
get communications.

Listing 6 Typical XMP programs using the local-view programming model with get communica-
tions for all of X, Y, and Z domain decomposition method

1 ...
2 SYNC ALL
3 physval(:,lsx+1,:,:) = physval1(:,1,:,:)[linxp]
4 physval(:,0,:,:) = physval1(:,lsx,:,:)[linxm]
5 ...
6 SYNC ALL
7 physval(:,:,lsy+1,:) = physval1(:,:,1,:)[linyp]
8 physval(:,:,0,:) = physval1(:,:,lsy,:)[linym]

Three-Dimensional Fluid Code with XcalableMP 177

9 ...
10 SYNC ALL
11 physval(:,:,:,lsz+1)= physval1(:,:,:,1)[linzp]
12 physval(:,:,:,0)= physval1(:,:,:,lsz)[linzm]
13 ...

3.2 Performance on the K Computer

We run three XMP codes using the global-view programming model, and the
local-view programming model with put and get communications, and local-
view communications are implemented on Fujitsu RDMA. Each process performs
computations with 8 threads just like before and we evaluate the weak scaling on
the K computer using Omni XcalableMP 0.9.1 and Fujitsu Fortran K-1.2.0.18.
A number of cores for execution and corresponding simulation parameters are
summarized in Table 2 and performance are also measured by the hardware monitor
installed on the K computer. As versions of both Omni XcalableMP and Fujitsu
Fortran compilers are different from those of previous section, we also rerun the
global-view programming model code. MFLOPS/PEAK values for all cases are
shown in Fig. 5.

Performances using the global-view programming model are almost same as
those in previous section, but the local-view programming model shows very low
performances, namely 3% of peak performance of the K computer. From the
hardware monitor, we found that SIMD execution usage was less than 0.2% in
local-view programming model cases, this means that cost intensive DO loops
in IMPACT-3D are not SIMDized at all even with simd=2 and prefetch_stride
native Fortran compiler options. All Fortran allocatable coarrays in the local-view
programming model codes are converted to pointer arrays by the XMP/F compiler.
The pointer array prevents the native Fortran compiler from SIMDizing the DO
loop even it is forced to SIMDize the loop by simd=2 compiler option because
the compiler thinks that variables may be overlapped and SIMD execution causes
incorrect calculations. To tell the compiler that variables are not overlapped, we can
specify noalias option and SIMD execution usage is improved to 15%. But prefetch
instructions are still suppressed and the pointer array may prevent other compiler
optimizations, performances are not improved at all.

Table 2 Simulation
parameters for local-view
programming model

All of X, Y and Z

#Core lx=ly=lz nx ny nz

256 1024 4 4 2

2048 2048 8 8 4

16,384 4096 16 16 8

178 H. Sakagami

Fig. 5 MFLOPS/PEAK measured by the hardware monitor installed on the K computer. Gray
dash line indicates performance of the global-view programming model. Gray and black solid lines
indicate performances of the local-view programming model with put and get communications,
respectively

4 Summary

We have parallelized a three-dimensional fluid code with XMP Fortran using the
global-view programming model and compared XMP performances with those of
the hand-coded MPI program on the K computer. We found that performances of
XMP programs are the same as those of MPI programs but these are only 8~9% of
peak performance of the K computer. It was found that this relative low performance
is due to lack of SIMD execution according to SIMD execution usage by the
hardware monitor. We forced the native Fortran compiler to SIMDize loops with
the specific compiler option, and found that performance of MPI programs reach
to 20% of peak performance even those of XMP programs remain around 15%.
It was found that this relative low performance is due to low memory throughput
according to Memory throughput/PEAK by the hardware monitor. Finally we could
get almost the same performance of XMP codes as those of MPI codes by using
additional specific compiler option of the native Fortran compiler.

Next we parallelized the code using the local-view programming model, and also
measured its performance on the K computer. We found that translated programs
prevent SIMDization by the native Fortran compiler and show only 3% of peak
performance of the K computer, much lower performance than that of the global-
view programming model programs. This degradation cannot be solved by simply
specifying native compiler options at this moment, and improvements of the XMP/F
compiler are expected.

These kinds of advanced performance optimization techniques of the native
Fortran compiler are not clear and may be somewhat difficult for computational

Three-Dimensional Fluid Code with XcalableMP 179

scientists, but XMP programming still requires much less efforts than those for MPI
programming.

Acknowledgments This work was partially supported by JSPS Grant-in-Aid for Scientific
Research (C) (25400539). Part of the research was funded by MEXT’s program for the Devel-
opment and Improvement for the Next Generation Ultra High-Speed Computer System, under its
Subsidies for Operating the Specific Advanced Large Research Facilities.

References

1. XcalableMP, http://www.xcalablemp.org/
2. Omni XMP compiler, http://omni-compiler.org/xcalablemp.html
3. High Performance Fortran, http://hpff.rice.edu/
4. K. Kennedy, C. Koelbel, H. Zima, Proceedings of the 3rd ACM SIGPLAN Conference on History

of Programming Languages (2007), pp. 7-1–7-22
5. Y. Zhang, H. Iwashita, K. Ishii, M. Kaneko, T. Nakamura, K. Hotta, Proceedings of the 6th

International Workshop on OpenMP (2010), pp. 133–148
6. J. Reid, Coarrays in the Next Fortran Standard, ISO/IEC JTC1/SC22/WG5 N1787 (2009)
7. H. Sakagami, H. Murai, Y. Seo, M. Yokokawa, IEEE/ACM SC2002 Conference, pap147 (2002)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.xcalablemp.org/
http://omni-compiler.org/xcalablemp.html
http://hpff.rice.edu/
http://creativecommons.org/licenses/by/4.0/

Hybrid-View Programming of Nuclear
Fusion Simulation Code in XcalableMP

Keisuke Tsugane, Taisuke Boku, Hitoshi Murai, Mitsuhisa Sato,
William Tang, and Bei Wang

Abstract XcalableMP(XMP) supports a global-view model that allows program-
mers to define global data and to map them to a set of processors, which execute
the distributed global data as a single thread. In XMP, the concept of a coarray
is also employed for local-view programming. In this study, we port Gyrokinetic
Toroidal Code - Princeton (GTC-P), which is a three-dimensional gyrokinetic PIC
code developed at Princeton University to study the microturbulence phenomenon
in magnetically confined fusion plasmas, to XMP as an example of hybrid memory
model coding with the global-view and local-view programming models. In local-
view programming, the coarray notation is simple and intuitive compared with
Message Passing Interface (MPI) programming, while the performance is com-
parable to that of the MPI version. Thus, because the global-view programming
model is suitable for expressing the data parallelism for a field of grid space data,
we implement a hybrid-view version using a global-view programming model to
compute the field and a local-view programming model to compute the movement
of particles. The performance is degraded by 20% compared with the original MPI
version, but the hybrid-view version facilitates more natural data expression for
static grid space data (in the global-view model) and dynamic particle data (in
the local-view model), and it also increases the readability of the code for higher
productivity.

K. Tsugane
Fujitsu Laboratories Ltd., Kawasaki, Kanagawa, Japan
e-mail: tsugane.keisuke@fujitsu.com

T. Boku
Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
e-mail: taisuke@ccs.tsukuba.ac.jp

H. Murai · M. Sato (�)
RIKEN Center for Computational Science, Kobe, Hyogo, Japan
e-mail: h-murai@riken.jp; msato@riken.jp

W. Tang · B. Wang
Princeton Institute for Computational Science and Engineering, Princeton University, Princeton,
NJ, USA

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_7

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_7&domain=pdf
mailto:tsugane.keisuke@fujitsu.com
mailto:taisuke@ccs.tsukuba.ac.jp
mailto:h-murai@riken.jp
mailto:msato@riken.jp
https://doi.org/10.1007/978-981-15-7683-6_7

182 K. Tsugane et al.

1 Introduction

In XMP, the global-view model allows programmers to define global arrays, which
are distributed to processors by adding the directives. Some typical communication
patterns are supported by directives, such as data exchange between neighbor
processors in stencil computations. In contrast to the global-view model, the local-
view model describes remote memory access using the node (processor) index. This
operation is implemented as one-sided communication. XMP employs the coarray
concept from Coarray Fortran as a local-view programming model. A coarray is
a distributed data object, which is indexed by the coarray dimension that maps
indices to processors. In XMP, the coarray is defined in C as well as Fortran. In the
local-view model, a thread on each processor executes its own local computations
independently with remote memory access to data located in different processors
by coarray access. The local-view model requires that programmers define their
algorithms by explicitly decomposing the data structures and controlling the flow in
each processor. The data view is similar to that in MPI, but coarray remote access
provides a more intuitive view of accessing the data in different processors, thereby
increasing productivity.

In this chapter,1 we consider a hybrid-view programming approach, which
combines the global-view and local-view models in XMP according to the char-
acteristics of the distributed data structure of the target application. The global-view
model allows programmers to express regular parallel computations such as domain
decomposition with stencil computation in a highly intuitive manner simply by
adding directives to a serial version of code. However, it is difficult to describe
parallel programs in the global-view model when more irregular communication
patterns and complex load balancing are required on the processing. Thus, local-
view programming is necessary in these situations.

We apply this hybrid-view programming for Gyrokinetic Toroidal Code -
Princeton (GTC-P)[4], which is a large-scale plasma turbulence code that can
be applied at the International Thermonuclear Experimental Reactor (ITER [13])
scale and beyond for next-generation nuclear fusion simulation. The GTC-P is an
improved version of the original GTC[2] and it is a type of gyrokinetic Particle-
in-Cell (PIC) code with two basic data arrays: global grid data that corresponds to
the physical problem space and particle data that corresponds to particles moving
around the grid space. The original GTC-P was written in C as a form of hybrid
programming with OpenMP and MPI. In this code, the grid data and particle data
are mapped onto MPI processes and exchanged. As found with most codes of this
type, it is difficult to manage complex data distributions and communication for both
grid data and particle data during code development. Furthermore, to simulate the

1The original version of this chapter was published in: Keisuke Tsugane, Taisuke Boku, Hitoshi
Murai, Mitsuhisa Sato, William M. Tang, Bei Wang, “Hybrid-view programming of nuclear fusion
simulation code in the PGAS parallel programming language XcalableMP.” Parallel Computing
57: 37–51 (2016).

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 183

microturbulence phenomenon in plasmas for magnetically confined fusion devices,
non-flat domain decomposition is necessary in one dimension, as well as paralleliz-
ing multiple dimensions, to obtain accurate large-scale simulations. Therefore, the
number of computations becomes extremely large for next-generation and large-
scale reactors such as ITER.

We consider both types of data models in XMP, i.e., global-view and local-
view models, which are suitable for representing grid space data and particle data,
respectively, because of their data distribution and communication pattern. In this
study, we implement the GTC-P code in two ways: using XMP with a local-
view only model, and with a combination of local-view and global-view models,
where we evaluate the performance and productivity of these approaches. As the
preliminary result, we implemented and evaluated the GTC-P in XMP hybrid-view
model[15]. Moreover, we indicate the causes of performance degradation for GTC-
P in XMP and evaluate the GTC-P of hybrid versions written in XMP+OpenMP and
MPI+OpenMP in this study.

The remainder of this chapter is organized as follows. Next, we briefly describe
the GTC-P nuclear fusion simulation code in Sect. 2. Section 3 describes the
implementation of GTC-P using Hybrid programing model of XMP. We report the
performance and productivity evaluation in Sect. 4, and related works in Sect. 5.
Finally, we conclude our study in Sect. 6.

2 Nuclear Fusion Simulation Code

Typical methods used to simulate the microturbulence phenomenon in magnetically
confined fusion plasmas include the Monte Carlo method and the PIC method. In
this study, we only consider the gyrokinetic PIC method among them as a target
application to explain the GTC and GTC-P code briefly.

2.1 Gyrokinetic PIC Simulation

The simulation of the gyrokinetic PIC method uses a space grid to calculate the field
and for the particle trajectory calculation, which does not depend on the grid when
moving in the free space. Figure 1 shows an image of a gyrokinetic PIC simulation
with a two-dimensional block distribution. The typical behavior of the gyrokinetic
PIC code is as follows.

1. Add the charge of the particle to the nearby grid points.
2. Solve the electric field affected by the electrostatic potential by calculating the

charge density of the nearby grid points using Poisson’s equation.
3. Interpolate the electric field in the current position based on each particle in the

nearby grid points and move the position of the particle in the space.

184 K. Tsugane et al.

Fig. 1 Image from a gyrokinetic PIC simulation with a two-dimensional block distribution; (A)
Calculation of the field using the nearby grid points and (B) the movement of a particle. The dashed
lines indicate processor boundaries

During each step, a process must communicate with another if that process holds
the data for the space in the grid that is affected, as shown in Fig. 1 (A), or if the
particle data move from or to that process, as shown in Fig. 1 (B). Based on the
above, if the size of the distributed domain, e.g., the grid in Fig. 1, is not changed, the
data distribution employed in the global-view programming model is suitable and
the communication between nearby grid points can be described by the reflect
directive in XMP coding. In contrast, if the number of particles on each distributed
domain changes dynamically during each time step of the simulation, such as
particle motion, coarray communication is required using local-view programming.

2.2 GTC

GTC is a three-dimensional (3D) gyrokinetic PIC code, which was developed by
DOE SciDAC, UC Irvine, etc.[2] for studying the microturbulence phenomenon
in plasmas for magnetically confined fusion devices. Figure 2 shows a conceptual
image of a 3D torus physical space. GTC treats the physical space and the movement
of particles in three directions: the toroidal direction around the major axis, the
poloidal direction around the magnetic axis, and the radial direction of the minor
radius from the magnetic axis. The cross-section of the toroidal direction is known

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 185

Fig. 2 Conceptual image of the three-dimensional torus space in GTC-P[10]

as the poloidal plane. GTC-P is a modified version of GTC, where there are several
differences in the parallelization scheme. Moreover, GTC-P is implemented as two
versions in the C and Fortran languages, whereas the original GTC is coded in
Fortran. In this study, we focus on the C implementation of GTC-P.

GTC parallelizes the problem according to three levels. Processing on the
space grid domain in the toroidal direction and the processing of particles in each
domain are mapped onto MPI processes. Also, the grid-related calculation and
particles in each distributed domain are further subdivided using OpenMP for each
process. GTC-P has four levels of parallelism with additional parallelism in the
radial direction. The total number of MPI processes that need to be executed is
Nt × Nr × Nrp, where Nt is the number of domains decomposed in the toroidal
direction, Nr is the number of domains decomposed in the radial direction, and Nrp

is the number of particles decomposed in each of the distributed domains.
There is a difference in the number of grid points on the poloidal plane, as

demonstrated in Fig. 3 (left). The toroidal domain can be distributed with equally
sized intervals, but the radial domain cannot be distributed with equally sized
intervals due to the large difference in the domain size depending on its position
in space. Therefore, in order to align as much as possible the number of grid points
to be mapped on each process, the outer area of the radial domain is distributed as
short radial interval and its inner area is distributed as long radial interval, such as
Fig. 3 (right).

GTC-P has mainly six computational kernels. The charge kernel deposits the
charge from particles onto the grid using the four-point approximation of nearby

186 K. Tsugane et al.

radial direction

poloidal angle

radial interval

Fig. 3 Example showing the grid points on the poloidal plane in GTC-P[3] (left). Image of
the radial domain decomposition on poloidal plain. The dashed line shows the border of the
decomposition (right)

grid points. The poisson, field, and smooth kernels solve the gyrokinetic
Poisson’s equation, compute an electric field, and smooth the charge and potential
with a filter on the grid, respectively. The push kernel interpolates the electric field
onto particles using the field. The charge and push kernels account for large
percentage of the elapsed time in this simulation [4, 16].

3 Implementation of GTC-P by Hybrid-view Programming

In this section, we describe how to implement GTC-P using hybrid programming
model of XMP.

3.1 Hybrid-View Programming Model

XMP allows the use of hybrid-view programming, which combines the global-view
and local-view models. The global-view model allows programmers to express regu-
lar parallel computations, such as domain decomposition with stencil computation,
in a highly intuitive manner simply by adding directives to a serial version of the
code. On the other hand, when the data distribution cannot be simply described
in domain decomposition manner or the communication pattern is complicated,
the global-view model is not suitable, and more dynamism is required to express
the code naturally. Thus, the coarray notation provided by the local-view model is
required in this case, and it is possible to program in a flexible manner using these
models.

Figure 4 shows a skeleton code of the implementation of a gyrokinetic PIC
simulation with XMP. In this example, the grid uses a two-dimensional block

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 187

1 double f[X][Y]; /* Electric field data */
2 double p[N]; /* Particle data */
3 double send[N], recv[N]:[*];
4 #pragma xmp align f[i][j] with T(i, j)
5 #pragma xmp shadow f[1:1][1:1]
6
7 for(t=0; t<TIME; t++) {
8 /* Calculate the grid−related work */
9 #pragma xmp reflect(f)

10 /* Calculate the particle−related work */
11 /* Pack the communication elements from array "p" to array "send" */
12 /* Calculate the destination process "pe" and communication size "icount" */
13 recv[0:icount]:[pe] = send[0:icount];
14 xmp_sync_all(NULL); /* Synchronization */
15 }

Fig. 4 Example showing the implementation of a gyrokinetic PIC simulation with XMP

distribution and each block has a sleeve area, which is used to calculate the field with
the nearby grid points based on the shadow directive. The particle movement is
represented by the coarray notation where the communication elements are packed
in the array send. Based on the above, we describe the two implementations of
GTC-P using XMP. First, we implement the XMP-localview version using coarray
communication, which is equivalent to using MPI point-to-point communication
with the exception of MPI collective communication (as shown below). Next, the
XMP-hybridview version is implemented by describing the fields using a distributed
array with the reflect directive for overlapped sleeve area communication and
the distributed data in the global-view programming model, as well as using the
coarray notation to move the particle data. In addition, we use the bcast and
reduction directives instead of MPI collective communication (MPI_Bcast
and MPI_Allreduce) in both versions.

3.2 Implementation Based on the XMP-Localview Model:
XMP-localview

In GTC-P, the communication processes required to move particles between
grids and to exchange grid points are represented by MPI_Sendrecv or
MPI_Isend/Irecv, where most of the communication is performed between
adjacent processes in one dimension. GTC-P has the steady state exchange
of particles between neighboring subdomains. Because the number of particles
changes dynamically, this implementation uses the coarray notation in the local-
view programming model.

188 K. Tsugane et al.

Figures 5 and 6 show the particle data movement using MPI and the corre-
sponding the coarray notation in GTC-P, respectively. In the exchange of coarray
notation for particle data movement, it communicates the number of particles and
the particle data, i.e., nsendright and sendright, with the adjacent process
on the neighbor to the right. In addition, Figs. 7 and 8 show the exchange of grid
points using MPI and the corresponding coarray notation in GTC-P, respectively. In
the example of the coarray notation for the exchange of grid points, after copying
a value to a one-dimensional array, i.e., sendr or Xsendr, it communicates with
the adjacent process on the neighbor to the right. Because the coarray notation is
non-blocking communication, xmp_sync_image on the sixth line of Fig. 6 and
the seventh line of Fig. 8 are required to guarantee that communication has been
completed between two processes, in this case, the neighboring (right_pe) and
current processes.

1 /* send # of particles to right neighbor and recv from left neighbor */
2 MPI_Sendrecv(&nsendright, 1, MPI_INT, right_pe, sendtag,
3 &nrecvleft, 1, MPI_INT, left_pe, recvtag, comm, &status);
4 /* send particles to right neighbor and recv from left neighbor */
5 MPI_Sendrecv(sendright, nsendright, MPI_DOUBLE, right_pe, sendtag,
6 recvleft, nrecvleft, MPI_DOUBLE, left_pe, recvtag, comm, status);

Fig. 5 Particle data movement using MPI point-to-point communication in GTC-P

1 /* send # of particles to right neighbor */
2 nrecvleft:[right_pe] = nsendright;
3 /* send particles to right neighbor */
4 recvleft[0:nsendright]:[right_pe] = sendright[0:nsendright];
5 /* synchronization */
6 xmp_sync_image(right_pe, NULL);

Fig. 6 Particle data movement using the coarray notation in GTC-P

1 double *sendr, *recvl;
2
3 for(i=0;i<nloc_over;i++)
4 sendr[i]=phitmp[i*(mzeta+1)+mzeta];
5
6 MPI_Sendrecv(sendr,nloc_over,MPI_DOUBLE,right_pe,
7 isendtag,recvl,nloc_over,MPI_DOUBLE,left_pe,
8 irecvtag,toroidal_comm,&istatus);

Fig. 7 Exchange of grid points using MPI point-to-point communication in GTC-P

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 189

1 double Xsendr[nloc_over],Xrecvl[nloc_over]:[*];
2
3 for(i=0;i<nloc_over;i++)
4 Xsendr[i]=phitmp[i*(mzeta+1)+mzeta];
5
6 Xrecvl[0:nloc_over]:[right_pe]=Xsendr[0:nloc_over];
7 xmp_sync_image(right_pe, NULL);

Fig. 8 Exchange of grid points using the coarray notation in GTC-P

3.3 Implementation Based on the XMP-Hybridview Model:
XMP-Hybridview

In the XMP-hybridview implementation, all of the space grid data are denoted by
a global-view model with compile-time mapping and the sleeve data are exchanged
by XMP directives, whereas the particle data movements are denoted by a local-
view model with the coarray notation, as shown Fig. 6. It is necessary to represent
an unequal block size for domain decomposition in the radial dimension. Because
this dimension’s space grid is denoted in the global-view model, we apply the
gblock notation to represent it correctly in the same manner as the original MPI
implementation. The gblock notation can control the variable block size of each
domain on the mapped space position. This feature is especially important for
porting GTC-P onto XMP with a global-view model. Figure 10 shows an example of
the GTC-P implementation with the XMP global-view programming model using
gblock. The 11th line of this example denotes the block size distribution in the
radial dimension. Because of describing the data distribution by global-view model,
we can describe the loop distribution only to insert loop directive onto the serial
code that is from the 28th to 30th lines of this example. In addition, OpenMP
directives can be combined with XMP such as the 27th line.

The calculation of the grid-related works, such as the deposit of the charge
from particles onto the grid using a four-point approximation of grid points, the
computation of an electronic field, and the interpolation of the electronic field onto
particles, are similar to four-point stencil calculation on the poloidal plain. In these
codes, we can describe the loop parallelization by inserting loop directive onto the
serial version. Appropriate directives are used for each dimension of the distributed
array in XMP, and we further synchronize the sleeve data that overlap at each end of
the distributed domain, which we can describe simply using the reflect directive.
Figure 9 shows an example of the reflect directive, which is the same as the
communication described in Figs. 7 and 8. Thus, we can describe it using a directive
on one line, which is much simpler compared with the MPI notation in Figs. 7 and 8.
When the width clause is specified, it can be designated as part of the sleeve
elements and the periodic is used to update the sleeve area of the global lower
(upper) bound based on the global upper (lower) bound (Fig. 10).

190 K. Tsugane et al.

1 #define n_t 2
2 /* Number of the toroidal domain decomposition */
3 #define n_r 4
4 /* Number of the radial domain decomposition. */
5 #define n_rp 2
6 /* Number of the particle decomposition. */
7
8 #define nloc_over 107722
9

10 double phitmp[nloc_over_all][2*n_t];
11 int b[n_r*n_rp]
12 = {10967,10967,14086,14086,16164,16164,12644,12644};
13 /* Block size of each process in the "gblock" distribution. */
14
15 #pragma xmp nodes P2(n_r * n_rp, n_t)
16 /* Number of processes (nodes). */
17 #pragma xmp template T(0:nloc_over−1, 0:2*n_t−1)
18 /* Template length. */
19 #pragma xmp distribute T(gblock(b), block) onto P2
20 /* Distribution format of the template. */
21 #pragma xmp align phitmp[i][j] with T(i, j)
22 /* Alignment of an array with a template.*/
23 #pragma xmp shadow phitmp[0][1:0]
24 /* Assignment of the sleeve area. */
25 /* ... */
26 #pragma xmp loop (i, j) on T(i, j)
27 #pragma omp parallel for
28 for (i = 0; i < nloc_over; i++)
29 for (j = 0; j < mzeta; j++)
30 phitmp[i][j] = func(i, j);

Fig. 9 Exchange of grid points using the reflect directive in GTC-P

1 #pragma xmp reflect (phitmp) width (0,/periodic/1:0)

Fig. 10 Example showing GTC-P implementation using the XMP global-view programming
model

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 191

4 Performance Evaluation

4.1 Experimental Setting

We evaluated the performance of our two implementations using a massively paral-
lel GPU cluster: HA-PACS[1] at the Center for Computational Sciences, University
of Tsukuba. Table 1 shows the computing environment employed for one node. HA-
PACS is a GPU cluster, but we only utilized CPUs in this study. We have a plan to
extend this research using a GPU-enabled version of XcalableMP, XcalableACC
[9] to make use of GPU of HA-PACS. We apply the optimization option for
NUMA with ‘numactl -localalloc’, and disable the CPU affinity setting
of MVAPICH2 with MV2_ENABLE_AFFINITY=0.

As preliminary evaluations, we investigate the amount of the memory usage and
the performance of communication using XMP and MPI. First, we indicate the
comparison of the memory usage when one array is allocated in the local-view
model, global-view model, and MPI. They are evaluated with ‘getpid()’ and
‘grep VmHWM /proc/[pid]/status’ from C program during execution.
An array size is 1 MB. We show the minimum size in the each amount of the
memory usage when four node execution. The tests showed that the amount of mem-
ory usage of all programming models is almost same according to Table 2. Then,
we evaluate the performance of XMP and MPI communication with Ping-Pong
program, which is defined by a power of two communication size, because XMP
coarray is implemented by GASNet[6] which is a communication library optimized
for some interconnections specifies, e.g., InfiniBand and Gemini. Figure 11 shows
the performance of XMP coarray and MPI_Send/Recv communication. XMP is
a good performance if the transfer size is about 65,536 Bytes or less, whereas MPI
is a good performance if it is more than about 65,536 Bytes. We used a parameter
of GASNet GASNET_IBV_PORTS="mlx4_0:1+mlx4_0:2" which specifies

Table 1 Machine
environment (HA-PACS
cluster)

Intel Xeon E5-2670 × 2 (2.6 GHz)

CPU CPU (8 cores/CPU) × 2 = 16 cores

Memory 128 GB, DDR3 1600 MHz

Interconnection InfiniBand : Mellanox Connect-X3

Dual-port QDR

OS CentOS 6.4

C Compiler gcc 4.4.7

MPI MVAPICH2 2.0

GASNet 1.24.0

Table 2 The amount of the memory usage for several different programming models (KB)

MPI Local-view Global-view

19,488 19,532 19,888

192 K. Tsugane et al.

Fig. 11 Ping-Pong communication bandwidth with MPI (MPI_Send/Recv) and XMP (coarray)

Table 3 Evaluation of the
weak scaling of
decomposition for each
domain using problems
ranging from 16 to 512
processes

Problem size A Default Toroidal Radial Particle

mstep 100 20 20 20

mpsi 90 90 90–2880 90

mzetamax 64 2–64 2 2

Particles per cell 100 100 100 100–3200

to use two ports of Infiniband, but we could get the performance of only single port
of Infiniband. It may be an issue with GASNet library.

The GTC-P simulation size is determined by several important numerical
parameters. Table 3 shows the default parameters for problem size A provided
by GTC-P, where we modified the parameters to evaluate weak scaling based on
problem size A. Strong scaling was evaluated using the minimum parameters in the
decomposition of each domain shown in Table 3, where mstep is the number of
calculation steps, mzetamax is the number of grid points in the toroidal dimension,
and mpsi is the number of grid points in the radial domain. Because the number of
grid points in the poloidal plane and in the toroidal domain must be the same during
decomposition, this was also changed in the parameter set for problem size A.

First, we used up to 32 nodes of HA-PACS where 16 processes ran on each node
and the total number of processes ranged from 16 to 512. The processes mapped to
evaluate the decomposition on each domain are shown in Table 4. As described
above, three problem dimensions were considered: toroidal, radial, and particle.
When we decomposed these dimensions into parallel processes, we always fixed the
decomposition number on two dimensions (e.g., toroidal and radial) as 2 × 2 and
we varied the decomposition size in the other dimension (e.g., particle) from 4 to
128, thereby scaling the total number of processes from 16 to 512. However, during
decomposition on the toroidal dimension, we fixed the decomposition number on the

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 193

Table 4 Process mapping to
evaluate the scaling of
decomposition for each
domain (Nt xNrxNrp)

Processes Toroidal Radial Particle

16 2 × 2 × 4 2 × 4 × 2 2 × 2 × 4

32 4 × 2 × 4 2 × 8 × 2 2 × 2 × 8

64 8 × 2 × 4 2 × 16 × 2 2 × 2 × 16

128 16 × 2 × 4 2 × 32 × 2 2 × 2 × 32

256 32 × 2 × 4 2 × 64 × 2 2 × 2 × 64

512 64 × 2 × 4 2 × 128 × 2 2 × 2 × 128

radial and particle dimensions as 2 × 4. This was due to variations in the number
of calculations because increasing the toroidal dimension also changes the poloidal
planes, as described above. We used this scheme to change the scaling dimension.

Second, we used 16 nodes where one process ran on each node and the number of
threads ranged from 1 to 16 in each process. The processes mapped on each domain
to evaluate the decomposition are 2 × 4 × 2 and 2 × 2 × 4.

4.2 Results

With weak scaling, Figs. 12, 13, and 14 shows the elapsed time for both calculation
and communication of MPI, XMP-localview, and XMP-hybridview required to
scale the number of processes from 16 to 512, where decomposition on the toroidal

Fig. 12 Elapsed time of the decomposition on toroidal dimension from 16 to 512 processes in
weak scaling

194 K. Tsugane et al.

Fig. 13 Elapsed time of the decomposition on radial dimension from 16 to 512 processes in weak
scaling

Fig. 14 Elapsed time of the decomposition on particle dimension from 16 to 512 processes in
weak scaling

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 195

and particle dimensions exhibited good scalability, whereas scaling on the radial
dimension was poor. Figure 13 shows that the performance of decomposition on the
radial dimension decreased as the number of nodes increased compared with the
other two types of domain decomposition, as shown in Figs. 12 and 14. Most of the
communications are performed at the neighboring surface during decomposition on
any dimension and the total amount of communication data does not vary greatly;
thus, we focused on the calculation load balance between processes. Table 5 shows
the difference between the maximum and minimum calculation times required
for each type of decomposition, where the calculation time was defined as the
computational time required for each process except the communication time. This
table shows that the calculation time for processes differed greatly with radial
dimension decomposition as the number of processes increased. This phenomenon
occurred with all three implementations, including MPI.

This may be explained by the method used to decompose the domain in the radial
dimension. For other dimensions, it is easy to decompose the domain completely
and equally for all processes. However, decomposition is complicated in the radial
dimension because the domain volume varies in the inner part and outer part due to
the torus form of the problem space. The volume and the corresponding grid size

Table 5 Load imbalance:
maximum and minimum
times required to calculate the
processes with toroidal,
radial, and particle
decomposition [s] (number of
local grid points in each
poloidal plane)

Toroidal

Processes Minimum Maximum

16 8.408406 (19805) 8.548204 (19916)

32 8.440145 (19805) 8.541321 (19916)

64 8.44846 (19805) 8.631631 (19916)

128 8.511492 (19805) 8.718713 (19916)

256 8.6418 (19805) 8.853517 (19916)

512 8.865397 (19805) 9.109388 (19916)

Radial

Processes Minimum Maximum

16 8.114932 (10967) 8.270015 (16164)

32 8.083982 (12104) 8.539186 (24200)

64 8.075058 (14130) 9.487029 (33462)

128 8.070919 (17422) 11.014277 (74745)

256 8.232447 (23198) 12.686402 (141700)

512 8.763279 (34522) 16.508915 (270844)

Particle

Processes Minimum Maximum

16 8.408406 (19805) 8.548204 (19916)

32 8.406107 (19805) 8.558563 (19916)

64 8.394203 (19805) 8.565195 (19916)

128 8.394159 (19805) 8.562974 (19916)

256 8.393343 (19805) 8.591214 (19916)

512 8.390172 (19805) 8.641762 (19916)

196 K. Tsugane et al.

Fig. 15 Breakdown of the minimum and maximum calculation times on the radial domain
decomposition using 512 processes

are calculated based on the formula used to describe the torus shape, which implies
that an error is incurred during integer rounding to determine the number of grids.
Table 5 shows that the number of total grid points assigned to the processes with the
maximum and minimum calculation times differed greatly. Also, Fig. 15 shows the
breakdown of the minimum and maximum calculation times on the radial domain
decomposition 512 processes. The difference between the calculation times of the
grid-related works, such as charge, push, poisson, field, and smooth,
increased on radial domain decomposition. During each time step, the computation
of all processes must be bounded as a barrier operation and the increase in the integer
rounding error according to the problem size (i.e., weak scaling) causes a greater
load imbalance, which degrades the overall performance.

On the other hand, the communication time of XMP-localview and XMP-
hybridview on the radial dimension increases as the number of nodes increased
compared with the MPI, as shown in Fig. 13. We explored the number of send calls
and each communication size because the performance of communication on XMP
and MPI are reversed at about 65,536 Bytes according to Fig. 11. Figure 16 shows
the number of send calls in process number 0 on each domain decomposition
classified as the communication size of more than 65,536 Bytes and 65,536 Bytes
or less. In the radial domain decomposition, the number of send calls at more
than 65,536 Bytes increases compared with the toroidal and particle decomposition.
Therefore, the performance of XMP-localview and XMP-hybridview is degraded
compared with MPI. The results were the XMP-localview implementation obtains
approximately the same performance as the MPI implementation while the perfor-
mance degradation using XMP-hybridview is increased by up to 20% compared
with the MPI implementation.

With strong scaling, Figs. 17 and 18 show the elapsed time for both calculation
and communication of MPI, XMP-localview, and XMP-hybridview, where the
decomposition on the radial and particle dimensions, respectively. The perfor-
mances of XMP-localview and XMP-hybridview on the particle dimension are

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 197

Fig. 16 Number of send calls in process number 0 on each domain decomposition from 16 to
512 processes in weak scaling

Fig. 17 Elapsed time of the decomposition on radial dimension from 16 to 512 processes in strong
scaling

almost same compared with MPI, as shown Fig. 18, while the elapsed time of the
decomposition on the radial dimension increases as the number of nodes increases,
as shown Fig. 17.

198 K. Tsugane et al.

Fig. 18 Elapsed time of the decomposition on particle dimension from 16 to 512 processes in
strong scaling

Fig. 19 Number of send calls in process number 0 on each domain decomposition from 16 to
512 processes in strong scaling

We explored the number of send calls and each communication size same as
weak scaling. Figure 19 shows the number of send calls in process number 0 on
radial and particle domain decomposition classified as the communication size of
more than 65,536 Bytes and 65,536 Bytes or less. The number of send calls on the

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 199

Fig. 20 Elapsed time of the decomposition on radial and particle dimension from 1 to 16 threads

radial domain decomposition at 65,536 Bytes or less increases compared with the
particle decomposition. Therefore, the performance of XMP-localview and XMP-
hybridview are increased compared with MPI on radial domain decomposition from
128 to 512 processes in strong scaling.

Figure 20 shows the elapsed time of the decomposition on radial and particle
dimension, i.e., 2 × 4 × 2 and 2 × 2 × 4, ranged from 1 to 16 threads per
process using 16 nodes where one process ran on each node. The results were the
performance of XMP implementation with thread parallelization is scaled the same
as MPI.

4.3 Productivity and Performance

A good programming environment should facilitate high performance and high pro-
ductivity, but high performance is sometimes obtained by low-level programming
such as MPI, which unfortunately yields low productivity.

The XMP-localview implementation is simple and intuitive compared with MPI
because the coarray communication is expressed in the form of an array assignment
statement, as shown Figs. 6 and 8. In coarray notation, the communication size
and data are intuitively represented by array section and the data type is checked
automatically. The performance of XMP-localview is comparable to that of the MPI
version.

In XMP-hybridview, the global data structure required for the field data is
described in the global-view model, which is almost the same as that in the serial

200 K. Tsugane et al.

code without particle calculation to communicate to the other process, and its data
distribution is annotated by the directives, as shown in Fig. 10. This improves the
readability of the code because it is unnecessary for users to describe the many
arguments on a line such as MPI APIs, thereby facilitating the easy maintenance
of the program and simple parallelization from the original sequential code. For
the global data structure, the communication with the overlapped sleeve area in the
distributed calculation domain can be described in only one line of the reflect
directive, as shown in Fig. 9.

Table 6 shows the delta Source Lines of Code (SLOC) [14] for several imple-
mentations. This metric indicates how many lines of code changed from the serial
implementation of GTC-P, which shows modified, added, and deleted lines. Due
to the reasons described above, the amount of code added and modified from the
serial implementation is smaller with the XMP-hybridview implementation than
the MPI implementation. In both of XMP implementations, the deleted lines are
larger than MPI implementation because the explicit memory free is unnecessary
for the distributed array and communication buffer for coarray in the global scope.
In summary, XMP-hybridview implementation increases productivity.

The difference in performance between XMP-hybridview and MPI is attributable
to the increase in the communication size of the reflect directive. The reflect
directive is responsible for the communication designated as the sleeve area by the
width clause, but it cannot update partially the sleeve area. Figure 21 shows that
the two-dimensional array is distributed to two nodes and exchanged the sleeve area
in MPI and XMP implementations. In GTC-P, there is a communication pattern
updated only in inner sleeve area which is represented as the hatching areas in
Fig. 21 (left).

Table 6 Differences in the
delta SLOC from Serial
implementation for several
different implementations of
GTC-P

XMP

Serial MPI Localview Hybridview

SLOC 4110 5427 5398 5179

Modified – 170 168 158

Added – 1319 1303 1112

Deleted – 2 15 43

Total delta SLOC – 1491 1486 1313

Fig. 21 Updating of the sleeve area with MPI and XMP-localview (left), and XMP-hybridview
(right) in GTC-P. The hatching areas are communicated to nearby node

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 201

5 Related Research

GTC or GTC-P have been executed and optimized on some platforms. X. Liao
et al.[7] optimized GTC to use offload-programming model for the Intel Xeon
Phi accelerator, and evaluated the performance on MilkyWay-2 supercomputer. K.
Madduri et al.[8] described the optimization for multi- and many-core systems,
and evaluated on some systems including Graphic Processing Unit (GPU) based
on NVIDIA Fermi architectures. In our study, we focus on the evaluation of not
only the performance but also the productivity for GTC-P.

PIC method is often implemented some PGAS parallel programming languages.
H. Sakagami and T. Mizuno[12] implemented 2D particle code, ESPAC2: 2D
electrostatic plasma, based on PIC method using High Performance Fortran (HPF)
[5] which is directive-based language similar to OpenMP and supports the global-
view model. The particle data is distributed into the block, while the electrostatic
field is replicated onto each process. After the distributed particle data is calculated
in each process, the reduction operation is executed to update the particle data of
electrostatic field on each time step. The data distribution is an easy expression
which is annotated by directives in HPF. R. Preissl et al.[11] introduced hybrid
PGAS+OpenMP approach for 3D PIC code, Gyrokinetic Tokamak Simulation
(GTS) which is implemented in MPI+OpenMP. As PGAS parallel programming
language, they used Coarray Fortran. The one-sided communication in Coarray
Fortran is simple and more intuitive notation compared with MPI programming
because it is expressed in the form of array assignment statement. However, the
description of data distribution is same as MPI. To use simple coarray communica-
tion and easy data distribution by directives, we consider a hybrid-view approach,
which combines the global-view and local-view models in XMP.

6 Conclusion

In this study, we implemented two versions of GTC-P, a large-scale nuclear fusion
simulation code, using the global-view and local-view programming models in
XMP for parallel programming languages, and we evaluated their performance and
productivity. The first version, XMP-localview, only uses coarray communication
in the local-view programming model, which simply replaces MPI point-to-point
communication, except for collective communication such as MPI_Allreduce. The
second version, XMP-hybridview, uses the distribution of the calculation domain
and the reflect directive in the global-view programming model, as well as
coarray communication for particle motion in the local-view programming model.
Experimental evaluations showed that the XMP-localview implementation obtained
approximately the same performance as MPI, whereas the XMP-hybridview imple-
mentation degraded the performance by 20%. In addition, we obtained high

202 K. Tsugane et al.

productivity with the XMP implementation. In XMP-localview, the coarray notation
is simpler and more intuitive compared with MPI programming, and the XMP-
hybridview allows more natural data expression for both static grid space data (in
the global-view model) and dynamic particle data (in the local-view model), thereby
increasing the readability of the code.

References

1. Center for Computational Sciences, University of Tsukuba, HA-PACS project, http://www.
ccs.tsukuba.ac.jp/eng/research-activities/projects/ha-pacs/. Accessed 16 Mar 2009

2. DoE SCiDAC, UC Irvine, etc., Gyrokinetic toroidal code, http://phoenix.ps.uci.edu/GTC/.
Accessed 16 Mar 2009

3. S. Ethier, W.M. Tang, Z. Lin, Gyrokinetic particle-in-cell simulations of plasma microturbu-
lence on advanced computing platforms. J. Phys. Conf. Ser. 16(1), 1–15 (2005)

4. S. Ethier, M. Adams, J. Carter, L. Oliker, Petascale parallelization of the gyrokinetic toroidal
code, in Proceedings of the 9th International Meeting on High Performance Computing for
Computational Science (VECPAR), California (2010), pp. 1–9

5. C.H. Koelbel, M.E. Zosel, The High Performance Fortran Handbook (MIT Press, Cambridge,
1993)

6. LBNL FTG, U.C. Berkeley, GASNet specification version 1.8 (2006), http://gasnet.lbl.gov/
dist/docs/gasnet.pdf. Accessed 16 Mar 2009

7. X. Liao, L. Xiao, C. Yang, Y. Lu, Milkyway-2 supercomputer: system and application. Front.
Comput. Sci. 8(3), 345–356 (2014)

8. K. Madduri, K.Z. Ibrahim, S. Williams, E.-J. Im, S. Ethier, J. Shalf, L. Oliker, Gyrokinetic
toroidal simulations on leading multi- and manycore HPC systems, in Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC), Seattle (2011), pp. 23:1–23:12

9. M. Nakao, H. Murai, T. Shimosaka, A. Tabuchi, T. Hanawa, Y. Kodama, T. Boku, M. Sato,
XcalableACC: extension of XcalableMP PGAS language using OpenACC for accelerator
clusters, in Proceedings of the First Workshop on Accelerator Programming Using Directives
(WACCPD), New Orleans (2014), pp. 27–36

10. H. Nuga, A. Fukuyama, Kinetic modeling of the heating processes in tokamak plasmas. PhD
Thesis, Kyoto University (2011), pp. 1–111

11. R. Preissl, N. Wichmann, B. Long, J. Shalf, S. Ethier, A. Koniges, Multithreaded global
address space communication techniques for gyrokinetic fusion applications on ultra-scale
platforms, in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Seattle (2011), pp. 78:1–78:11

12. H. Sakagami, T. Mizuno, Compatibility comparison and performance evaluation for Japanese
HPF compilers using scientific applications. Concurr. Comput. Pract. Exp. 27, 555–573 (2002)

13. Y. Shimomura, R. Aymar, V. Chuyanov, M. Huguet, R. Parker, Iter overview. Nucl. Fusion
39(9Y), 1295–1308 (1999)

14. A. Stone, J. Dennis, M. Strout, Evaluating coarray Fortran with the CGPOP Miniapp, in
Proceedings of 5th International Conference on PGAS Programming Models, Texas (2011),
pp. 1–10

15. K. Tsugane, H. Nuga, T. Boku, H. Murai, M. Sato, W. Tang, B. Wang, Hybrid-view
programming of nuclear fusion simulation code in the PGAS parallel programming language
XcalableMP, in Proceedings of the 20th IEEE International Conference on Parallel and
Distributed Systems (ICPADS), Hsinchu (2014), pp. 640–647

http://www.ccs.tsukuba.ac.jp/eng/research-activities/projects/ha-pacs/
http://www.ccs.tsukuba.ac.jp/eng/research-activities/projects/ha-pacs/
http://phoenix.ps.uci.edu/GTC/
http://gasnet.lbl.gov/dist/docs/gasnet.pdf
http://gasnet.lbl.gov/dist/docs/gasnet.pdf

Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP 203

16. B. Wang, S. Ethier, W. Tang, T. Williams, K.Z. Ibrahim, K. Madduri, S. Williams, L. Oliker,
Kinetic turbulence simulations at extreme scale on leadership-class systems, in Proceedings
of the International Conference on High Performance Computing, Networking, Storage and
Analysis, Denver (2013), pp. 82:1–82:12

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Parallelization of Atomic Image
Reconstruction from X-ray Fluorescence
Holograms with XcalableMP

Atsushi Kubota, Tomohiro Matsushita, and Naohisa Happo

Abstract X-ray fluorescence holography is a three-dimensional middle range local
structure analysis method, which can provide three-dimensional atomic images
around specific elements within a radius of a few nanometers. Three-dimensional
atomic images are reconstructed by applying discrete Fourier transform (DFT)
to hologram data. Presently, it takes long time to process this DFT. In this
study, the DFT program is parallelized by using a parallel programming language
XcalableMP. The DFT process, whose input is 21 holograms data of 179 × 360
points and output is a three-dimensional atomic image of 1923 points, is executed
on PC cluster which consists of 8 nodes of Intel Xeon X5660 processors and 96
cores in total and we confirmed that the parallelized DFT execution is 94 times
faster than the sequential execution.

1 Introduction

X-ray fluorescence holography (XFH) is a three-dimensional middle range local
structure analysis method, which can prove 3D atomic images around specific
elements within a radius of a few nanometers[4]. Compared to other method such
as X-ray diffraction, which has been widely used for structure analysis of crystals
and other materials, XFH is more sensitive to atomic fluctuations, and therefore it is
useful for characterization of local lattice distortions.

In the XFH method, hologram data are obtained by experiments done at large
synchrotron facilities such as SPring-8 and KEK-PF. Three-dimensional atomic
images are reconstructed from the obtained holograms by Barton’s method[1, 2].

A. Kubota (�) · N. Happo
Hiroshima City University, Hiroshima, Japan
e-mail: kubota@hiroshima-cu.ac.jp; happo@hiroshima-cu.ac.jp

T. Matsushita
Nara Institute of Science and Technology, Ikoma, Nara, Japan
e-mail: t-matusita@ms.naist.jp

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_8

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_8&domain=pdf
mailto:kubota@hiroshima-cu.ac.jp
mailto:happo@hiroshima-cu.ac.jp
mailto:t-matusita@ms.naist.jp
https://doi.org/10.1007/978-981-15-7683-6_8

206 A. Kubota et al.

In Barton’s method, it takes long time to reconstruct the atomic images from the
obtained holograms.

In distributed-memory computing environment such as PC clusters and super-
computers, hybrid parallelization is widely used by describing inter- and intra- node
parallelism with Message-Passing Interface (MPI) [6] and OpenMP [7], respec-
tively. However, it is pointed out that MPI programs tend to be complicated and
error-prone. Therefore, in order to improve productivity of parallel programming, a
variety of parallel programming languages, language extensions, and libraries have
been proposed. Some examples of them are High Performance Fortran (HPF) [5],
CoArray adopted in Fortran2008, UPC [9], which is based on C language, and
XcalableMP [10], in which distribution of data and parallelization of loops are
specified by directives. New parallel programming languages such as X10 [8] and
Chapel [3] are also proposed.

We adopted a hybrid parallel programming approach, in which inter- and intra-
node parallelism are described in XcalableMP and OpenMP, respectively, to paral-
lelize the existing atomic image reconstruction program by Barton’s method written
in C language because it can be parallelized with small amount of modification.

In the rest of this chapter, X-ray fluorescence holography and reconstruction of
atomic images are explained in Sect. 2. Parallelization of atomic image reconstruc-
tion is explained in Sect. 3 and its performance results are shown in Sect. 4. Finally,
concluding remarks are given in Sect. 5

2 X-ray Fluorescence Holography

There are two modes in XFH, namely the normal mode and the inverse mode. In
this chapter, we focus on the inverse mode because it is mainly used in experiments
of XFH recently. Please refer to the literatures such as [4] in details.

In the inverse mode, the angle of a sample material to the incident X-ray is varied
as shown in Fig. 1 and intensity of X-ray fluorescence emitted from atoms in the
sample is measured by the detector.

As shown in Fig. 2, the incident X-ray approaching atom A and another incident
X-ray also approaching atom A after scattered by atom B form a constant wave of X-
ray around atom A. The pattern of the constant wave from atom A varies according
to the angle of the incident X-ray and resulted in the variation of the intensity of
the X-ray fluorescence from atom A. Experimental data obtained by measuring the
intensity of X-ray fluorescence make a hologram of the atomic image.

Incident X-ray wave approaching atom A directly corresponds to reference wave
of ordinary hologram and incident X-ray wave approaching atom A after scattered
by atom B corresponds to object wave.

Parallelization of Atomic Image Reconstruction from Holograms 207

Fig. 1 Inverse mode of XFH

Fig. 2 Difference of optical path length in inverse mode

2.1 Reconstruction of Atomic Images

When the intensity Iλ(l, θ, φ) measured at polar coordinate system k(l, θ, φ) on a
hologram on a sphere by incident X-ray of wave length λ, the position of an atom
in the sample can be calculated as follows.

208 A. Kubota et al.

Suppose atom A and B are located at the origin and r(x, y, z) in the sample,
the atomic image of atom b can be reconstructed by calculation similar to three-
dimensional discrete Fourier Transform. In atomic images reconstructed from
holograms obtained by several wave lengths, real atomic images are enhanced and,
at the same time, ghost images are reduced[4]. In order to reduce the processing
time, atomic images are reconstructed from the hologram on the sphere of radius l

as shown in Eq. (1):

χ(x, y, z) =
∑
θ

∑
φ

∑
λ

−Iλ(θ, φ) exp(i2π(|r| − kr)/λ) sin θ (1)

The input data are stored in double precision floating point number format.
Coordinate on the sphere is represented in the polar coordinate system ranging from
θ = 1◦ to 179◦ and from φ = 0◦ to 359◦ by 1◦ grid on each angle. The output data are
grid points values on the rectangular coordinate system ranging from −10 to 10.0 Å
by 0.1 Å grid on each axis. The complex numbers at grid points calculated by the
reconstruction are stored in the output file.

192 grid points are laid on each axis on the rectangular coordinate system ranging
from −9.6 to 9.6 Å by 0.1 Å grid in order to parallelize the reconstruction easily on
PC cluster, it is explained in detail in Sect. 4.

Because the grid points of input data are located on the polar coordinate system
and, on the other hand, those of output data are on the rectangular coordinate system,
it is difficult to apply the fast Fourier transform (FFT) algorithm to DFT and it takes
long time to calculate DFT.

We estimate that it may take a few days to reconstruct the three-dimensional
atomic images from holograms measured by experiments. Because crystal structure
of sample and its lattice constant are already known by other methods, in order
to reduce the time required for reconstruct atomic images for crystal with a
certain lattice constant, for example, 2 Å, three-dimensional atomic images are
estimated with several two-dimensional atomic images on x–y planes at z =
−4,−2, 0, 2, 4 Å. If needed, atomic images at z = −1.9 and 2.1 Å are reconstructed
to analyze atomic fluctuations and lattice distortions.

Thus, it takes long time to analyze the crystal structure because reconstruction of
two-dimensional atomic images and observation of the atomic images repeatedly.

2.2 Analysis Procedure of XFH

In XFH, experimental data are analyzed in the following procedure. The most time-
consuming step is reconstruction while pre- and post- steps are also needed.

1. experiment
2. removal of background waves
3. completion of sphere data

Parallelization of Atomic Image Reconstruction from Holograms 209

4. reconstruction of atomic images and
5. display of them

Because it is known that low frequency noise called background wave is included
in hologram data obtained by XFH experiments, the noise is removed before
reconstruction.

In the experiment, the intensity of X-ray fluorescence emitted from sample is
measured, while it is slanted from θ = 0 to 75◦ and rotated from φ = 0 to 360◦ at
each θ in Fig. 1. For θ > 75◦, the meaningful intensity is not measured because
the surface of the sample and the incident X-ray are nearly parallel. By making use
of symmetry of crystal structure of the sample, the hologram data on the sphere
ranging from θ = 0 to 180◦ are completed. An example of hologram on the sphere
shown in Fig. 3 is obtained by their pre-processes such as removal of background
waves and completion of sphere data.

The values on grid points of the reconstructed atomic images are merely
values proportional to existence probability of atom at each grid point on the x-
y-z rectangular coordinate system. For a grid point, the value of low existence
probability is noise and its atom image is not displayed if the value is less than
threshold value and reconstructed images are displayed as shown in Fig. 4.

Fig. 3 An example hologram obtained by an experiment

210 A. Kubota et al.

Fig. 4 An example of
reconstructed
three-dimensional atom
images

3 Parallelization

As pointed out in Sect. 2, it is an issue that it takes long time to analyze the
crystal structure because reconstruction of two-dimensional atomic images and
observation of the images are repeated several times. We therefore try to improve
the reconstruction of three-dimensional atomic images by parallelizing DFT with
parallel programming language XcalableMP and parallel API OpenMP on multi-
node PC clusters.

OpenMP [7] is a parallel programming API which enables parallelization by
inserting directives in sequential programs. It enables parallelization of loops with
data parallelism easily and high performance on shared-memory machines can be
achieved. Similar to OpenMP, XcalableMP [10] is a parallel programming language
which also enables parallelization by inserting directives in sequential programs.
Data distribution among distributed-memory computing environment such as multi-
node PC clusters and supercomputers can be specified by inserting directives. Both
OpenMP and XcalableMP are designed so that directives related to parallelization
are ignored when the program is compiled to a sequential executable. Thus both
sequential and parallel programs are maintained in one common source code. In
addition, XcalableMP and OpenMP can be used at the same time for hybrid inter-
and intra- node parallelization.

In this section, hybrid parallelization of reconstruction in two steps as follows:

1. parallelization of reconstruction of two-dimensional atomic images by OpenMP
on single PC node and

2. parallelization of reconstruction of three-dimensional atomic images by Xcal-
ableMP and OpenMP on multi-nodes

Parallelization of Atomic Image Reconstruction from Holograms 211

3.1 Parallelization of Reconstruction of Two-Dimensional
Atomic Images by OpenMP

Presently, according to the Eq. (1), in the loop of reconstruction of two-dimensional
atomic images at certain z on x-y plane, five loops of x, y, θ , φ, and λ are nested
from outer to inner loop. In this chapter, θ loop denotes the loop which accesses
contiguous elements in a dimension of array θ for short.

The strategy of optimization and parallelization of two-dimensional reconstruc-
tion is as follows:

1. Replace trigonometric function calls with array references
2. Apply loop interchange and
3. Choose a loop to be parallelized

These optimization and parallelization are explained below.
In reconstruction of two-dimensional atomic images, some calls of trigonometric

functions such as sin and cos in nested loops are replaced with references of arrays.
The values of the trigonometric functions are stored in the arrays before entering the
nested loops.

In this study, this nested loop is interchanged to λ, x, y, θ , and φ from outer to
inner loop to improve the cache hit ratio. The size of the three-dimensional input
array whose dimensions are λ, θ , and φ is about 10 MB and may not be stored on
the secondary cache. In order to improve the cache hit ratio, when λ is fixed at the
most outer loop, 500 KB data of the input array for a λ are stored on the cache and
accessed repeatedly in the nested loop of x, y, θ , and φ. In the original loop nests,
the index range of the inner-most λ loop is at most 20. After interchanging loops,
the index range of the inner-most φ is 360 and it is expected that SIMD instructions
in general purpose processors such as Intel AVX can be applied to the inner-most
loop.

After these optimizations, the x loop in the nested loops is parallelized by
OpenMP directive so that the performance of reconstruction of two-dimensional
atomic images is improved.

3.2 Parallelization of Reconstruction of Three-dimensional
Atomic Images by XcalableMP

In reconstruction of three-dimensional atomic images, according to the Eq. (1),
by extending the optimized and parallelized nested loop of reconstruction of two-
dimensional atomic images as described in Sect. 3.1, the six loops of λ, z, x, y, θ ,
and φ are nested from outer to inner loop. Similar to the two-dimensional loop, the
values of some trigonometric functions are calculated in advance before entering
the six nested loop.

212 A. Kubota et al.

Among the six nested loops, the outer z loop and the inner x loop are parallelized
by XcalableMP and OpenMP. In other words, the nested loops are parallelized
among inter-nodes by the z loop level and also parallelized within each node by
the x loop level. The parallelized kernel loop of three-dimensional atomic image
reconstruction is shown in Fig. 5. Other combinations of parallelizing x, y, and z

loops are also performed and discussed in Sect 4.
In this study, z loop is parallelized by XcalableMP directives and the output

arrays are distributed contiguously, namely BLOCK distribution, among nodes
in z dimension as shown in Fig. 6. All of the input data are read on every
node simultaneously and stored replicated. The data of atomic images, which are
distributed among nodes in z dimension, are calculated on each node, aggregated to
one root node as shown in Fig. 7, and finally written to the output file on the root
node.

4 Performance Evaluation

In this section, we show the performance results of parallel runs of reconstruction of
two-dimensional atomic images parallelized by OpenMP executed on a single node
and reconstruction of three-dimensional atomic images parallelized by XcalableMP
and OpenMP on a multi-node PC cluster. Comparison of XcalableMP and MPI
for multi-node parallelization with respect to the performance and productivity of
programming are also demonstrated.

The PC cluster consist of eight nodes and each node has two sockets of six-
core Intel Xeon X5660 2.8 GHz and 24 GB main memory. The nodes are connected
with InfiniBand DDR (4 Gbps) and Gigabit Ethernet. The size of smart cache on
Xeon X5660 is 12 MB. The program is compiled with XcalableMP 1.2.2 and Intel
Compiler 18.0.1 with -O3 -XHOST optimization option.

4.1 Performance Results of Reconstruction
of Two-Dimensional Atomic Images

The program of reconstruction of two-dimensional atomic images is executed on
a single node of the PC cluster. The input data are obtained in an experiment in
which lead zirconate titanate (PZT) is used as a sample in the experiment and 21
types of incident X-rays are entered to the sample while varying angles ranging
from θ = 1 to 179◦ and from φ = 0 to 359◦. The output is an two-dimensional array
[x][y] = [192][192] for a certain z.

In Table 1, the execution time of the original, array reference of trigonometric
function calls, and loop interchange on one node. Execution time and speed-up ratio

Parallelization of Atomic Image Reconstruction from Holograms 213

Fig. 5 Kernel loop of three-dimensional atomic image reconstruction

214 A. Kubota et al.

Fig. 6 Input and output
arrays and specification of
their distribution by
XcalableMP directives

Fig. 7 Aggregation of arrays
by XcalableMP

Table 1 Performance results of reconstruction of two-dimensional atomic images by OpenMP
on Xeon X5660

Array references and OpenMP(s)

Original (s) loop exchange (s) 12 threads Speed-up ratio

972.473 914.301 75.814 12.8

of the program parallelized by OpenMP with 12 threads on two sockets of six-core
Xeon are 75.814 s and 12.8, respectively.

Here, let us consider the effect of the loop interchange. The size of input three-
dimensional double precision array (λ, θ , φ) is about 10 MB. Before the loop
interchange, loops x and y are the outer loops and 10 MB input data is repeatedly
referenced in the nest of inner three loops λ, θ , and φ. Because the size of smart
cache is 12 MB, it is assumed that the input data are spilled out of the cache and
cache misses are occurred frequently. On the contrary, λ loop is placed at the outer-
most the loop nests by the loop interchange and a part of the input data is repeatedly
referenced in the inner loops θ and φ. This fragment of the input data is about
500 KB and can be stored in the smart cache.

Parallelization of Atomic Image Reconstruction from Holograms 215

4.2 Performance Results of Reconstruction
of Three-dimensional Atomic Images

The reconstruction of three-dimensional atomic images is executed mainly on the
six nested loops of λ, z, x, y, θ , and φ.

The input and output data are stored in three-dimensional arrays of [λ][θ][φ] =
[21][179][360] and [z][x][y] = [192][192][192], respectively. The output array is
divided in z dimension and distributed among nodes on the PC cluster.

The z loop and x loop in the reconstruction program are parallelized by Xcal-
ableMP and OpenMP, respectively. The performance results of parallel execution
on the PC cluster are shown in Tables 2 and 3. For the size of output [z][x][y] =
[192][192][192], because the estimation time of the sequential execution is too long,
it is executed when the total number of threads is greater than or equal to eight as
shown in Table 2. The #Threads columns of both Tables 2 and 3 stand for the total
number of threads, which is the product of the number of nodes and the number
threads per node. In addition to the total execution time, time for reading from the
input file, aggregating the atomic images distributed among nodes, and writing to
the output file.

The performance results of reconstruction of only for eight x–y planes at
Z = 0, 1. . . 7 are shown in Table 3. Because it takes a few hours in the sequential
execution, this reconstruction is executed with threads ranging from 1 to 96.

The speed-up ratio of reconstruction of atomic images of both 192 and 8 x–
y planes are depicted in Fig. 8. Both horizontal and vertical axes are logarithmic
scales. The Z8 graph is the speed-up ratio to the one thread execution in Table 3. The
Z192 graph is the speed-up ratio to the eight thread execution in Table 2 multiplied
by 8. In both lines in Fig. 8, it is confirmed that nearly ideal speed-up is achieved.
The speed-up ratio values at 96 threads for Z8 and Z192 are 94.21 and 94.23,
respectively.

Table 2 Performance results for reconstruction (z:192) parallelized by XcalableMP

#Threads Execution (s) Input (s) Aggregation (s) Output (s)

8 (8 × 1) 21,683.076 0.781 0.176 9.772

48 (8 × 6) 3,623.352 0.721 0.163 9.731

96 (8 × 12) 1,840.942 0.767 0.174 9.701

Table 3 Performance results for reconstruction (z:8) parallelized by XcalableMP

#Threads Execution (s) Input (s) Aggregation (s) Output (s)

1 (1 × 1) 7,214.325 0.745 0.007 0.301

8 (8 × 1) 923.830 0.473 0.009 0.303

12 (1 × 12) 603.962 0.459 0.005 0.310

48 (8 × 6) 151.574 0.458 0.008 0.303

96 (8 × 12) 76.576 0.455 0.009 0.310

216 A. Kubota et al.

Fig. 8 The speed-up ratio of execution parallelized by XcalableMP

Because the sizes of input and output data are small, the ratio of the file I/O
time to the total execution time is very small and the time of aggregation of
distributed data to one root node by gmove construct of XcalableMP is also very
short. Therefore, high performance is achieved without parallel file I/O.

4.3 Comparison of Parallelization with MPI

In order to compare the productivity of parallel programming, we also implemented
the reconstruction of three-dimensional atomic images with MPI. The number of
lines of the program in C already parallelized by OpenMP is 350 and the number of
modified or inserted lines for multi-node parallelization by XcalableMP is 32, while
that by MPI is 53. This program can be parallelized with less effort in XcalableMP
than in MPI.

Table 4 summarizes the execution time and the number of modified and inserted
lines. The size of the reconstructed atomic images is [z][x][y] = [192][192][192]
and 96 threads are used in total on the eight-node PC cluster. The difference of the
execution time parallelized by XcalableMP and MPI is small. We confirmed that the
higher productivity of parallel programming is achieved by XcalableMP than MPI
without sacrificing performance.

Table 4 Execution
parallelized by XcalableMP
and MPI (z:192, 96 threads)

Parallelization Time (s) #Modifed lines

XcalableMP 1, 840.942 32

MPI 1, 817.042 53

Parallelization of Atomic Image Reconstruction from Holograms 217

Data aggregation of the reconstructed atomic images distributed among nodes
is described by gmove statement by XcalableMP, while called MPI_Gatherv
library function by MPI. We confirmed XcalableMP compiler transfers gmove to
appropriate MPI library functions.

5 Conclusion

This chapter describes parallelization of reconstruction of three-dimensional atomic
images in X-ray fluorescence holography, which is an analysis method of material
science. In order to execute it on large-scale PC clusters and supercomputer, we
adopt hybrid parallelization, or inter- and intra-node parallelization by XcalableMP
and OpenMP.

The program, whose input is 21 holograms data of 179 × 360 points and output is
a three-dimensional atomic image of 1923 points, is executed on PC cluster which
consists of eight nodes of Intel Xeon X5660 processors and 96 cores in total, is
executed in 1841 s, or about half an hour. We estimated that it would take a few
days to execute this reconstruction sequentially. We confirmed that the performance
is improved by parallelization to the practical use.

We also confirmed that the higher productivity of parallel programming is
achieved by XcalableMP than MPI without sacrificing performance.

Acknowledgments The part of this work was supported by JSPS Grant-in-Aid for Scientific
Research on Innovative Areas “3D Active-Site Science,” Grant Number 26105013.

References

1. J.J. Barton, Photoelectron holography. Phys. Rev. Lett. 61(12), 1356–1359 (1988)
2. J.J. Barton, Removing multiple scattering and twin images from holographic images. Phys.

Rev. Lett. 67(22), 3106–3109 (1991)
3. B.L. Chamberlain, Chapel, chapter 6, in Programming Models for Parallel Computing, ed. by

P. Balaji (The MIT Press, Cambridge, 2015)
4. K. Hayashi, N. Happo, S. Hosokawa, Evaluation of local lattice distortion by X-ray

fluorescence holography. JSSRR 26(4), 195–205 (2013) [in Japanese]
5. High Performance Fortran Forum, High Performance Fortran Language Specification (Ver.

2.0) (1997)
6. Message Passing Interface Forum, MPI: Message Passing Interface Version 3.1 (2015), https://

www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
7. OpenMP Architecture Review Board, OpenMP Application Program Interface Version 5.0

(2018), https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

218 A. Kubota et al.

8. V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, D. Grove, X10 Language Specification
Version 2.6.2 (2019), http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

9. UPC Consortium, Berkeley UPC – Unified Parallel C Version 2019.4.2 (2019), http://upc.lbl.
gov

10. XcalableMP Specification Working Group, XcalableMP Language Specification Version 1.4
(2018), https://xcalablemp.org/download/spec/xmp-spec-1.4.pdf

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://upc.lbl.gov
http://upc.lbl.gov
https://xcalablemp.org/download/spec/xmp-spec-1.4.pdf
http://creativecommons.org/licenses/by/4.0/

Multi-SPMD Programming Model
with YML and XcalableMP

Miwako Tsuji, Hitoshi Murai, Taisuke Boku, Mitsuhisa Sato,
Serge G. Petiton, Nahid Emad, Thomas Dufaud, Joachim Protze,
Christian Terboven, and Matthias S. Müller

Abstract This chapter describes a multi-SPMD (mSPMD) programming model
and a set of software and libraries to support the mSPMD programming model. The
mSPMD programming model has been proposed to realize scalable applications on
huge and hierarchical systems. It has been evident that simple SPMD programs
such as MPI, XMP, or hybrid programs such as OpenMP/MPI cannot exploit
the postpeta- or exascale systems efficiently due to the increasing complexity of
applications and systems. The mSPMD programming model has been designed to
adopt multiple programming models across different architecture levels. Instead of
invoking a single parallel program on millions of processor cores, multiple SPMD
programs of moderate sizes can be worked together in the mSPMD programming
model. As components of the mSPMD programming model, XMP has been sup-
ported. Fault-tolerance features, correctness checks, and some numerical libraries’
implementations in the mSPMD programming model have been presented.

M. Tsuji (�) · H. Murai · M. Sato
RIKEN Center for Computational Science, Kobe, Japan
e-mail: miwako.tsuji@riken.jp; h-murai@riken.jp; msato@riken.jp

T. Boku
Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
e-mail: taisuke@ccs.tsukuba.ac.jp

S. G. Petiton
LIFL, Université de Lille, Lille, France
e-mail: serge.petiton@univ-lille.fr

N. Emad · T. Dufaud
Li-Parad, UVSQ, Versailles, France
e-mail: nahid.emad@uvsq.fr; thomas.dufaud@uvsq.fr

J. Protze · C. Terboven · M. S. Müller
RWTH Aachen University, Aachen, Germany
e-mail: protze@itc.rwth-aachen.de; terboven@itc.rwth-aachen.de; mueller@itc.rwth-aachen.de

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_9

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_9&domain=pdf
mailto:miwako.tsuji@riken.jp
mailto:h-murai@riken.jp
mailto:msato@riken.jp
mailto:taisuke@ccs.tsukuba.ac.jp
mailto:serge.petiton@univ-lille.fr
mailto:nahid.emad@uvsq.fr
mailto:thomas.dufaud@uvsq.fr
mailto:protze@itc.rwth-aachen.de
mailto:terboven@itc.rwth-aachen.de
mailto:mueller@itc.rwth-aachen.de
https://doi.org/10.1007/978-981-15-7683-6_9

220 M. Tsuji et.al.

1 Introduction

From petascale, post-petascale to exascale, supercomputers will be larger, denser,
and more complicated. A huge number of cores will be arranged in a multi-
level hierarchy, such as a group of cores in a node, a group or cluster of nodes
tightly linked, and a cluster of clusters. Because it is not easy to fully utilize such
systems for current programming models such as simple SPMD, OpenMP+MPI,
it is essential to adopt multiple programming models across different architecture
levels. In order to exploit the performance of such systems, we have proposed a
new programming model called the multi-SPMD (mSPMD) programming model,
where several MPI programs and OpenMP+MPI programs work together conducted
by a workflow programming[14]. To develop each of the mSPMD components in
a workflow, XcalableMP (XMP) has been supported. In this chapter, we introduce
the mSPMD programming model, and a development and execution environment
implemented to realize the mSPMD programming model.

2 Background: International Collaborations
for the Post-Petascale and Exascale Computing

There were two important international collaborative projects to plan, implement,
and evaluate the multi-SPMD programming model. In this section, we describe the
projects briefly.

Firstly, Framework and Programming for Post-Petascale Computing (FP3C)
project conducted during September 2010–March 2013 aimed to exploit efficient
programming and method for future supercomputers. The FP3C project was a
French-Japan research project, where more than ten Universities and research insti-
tutes participated. Featured topics of the project were new programming paradigms,
languages, methods, and systems for the existing and future supercomputers. The
mSPMD programming had been proposed in the FP3C project. Many important
features in the mSPMD programming model had been implemented during the
project period.

The priority program “Software for Exascale Computing” (SPPEXA) had been
conducted to address fundamental research on the various aspects of HPC soft-
ware during 2013–2015 (phase-I) and 2016–2018 (phase-II). The project “MUST
Correctness Checking for YML and XMP Programs (MYX)” had been selected
as a phase-II program of the SPPEXA. As the name of the project suggested, the
MYX project combined MUST, developed in Germany, YML, developed in France,
and XMP, developed in Japan, to investigate the application of scalable correctness
checking methods. The deliverable from the MYX project will be described in
Sect. 8.

Multi-SPMD Programming Model with YML and XcalableMP 221

3 Multi-SPMD Programming Model

3.1 Overview

While most programming models consider MPI+X such as MPI+OpenMP, or
MPI+X1+X2 · · · , we consider X1+MPI (or XMP) +X2 and propose a multi-SPMD
(mSPMD) programming model where MPI programs and OpenMP+MPI programs
work together in the context of a workflow programming model. In other words,
tasks in a workflow are parallel programs written in XMP, MPI, or their hybrid with
OpenMP.

Figure 1 shows the overview of the mSPMD programming model. In the target
systems we have expected, there should be non-uniform memory access (NUMA),
general-purpose many-core CPUs, and accelerators such as GPU. We employ a
shared memory programming model within a node, or a group of cores, and
GPGPU programming on an accelerator. In a group of nodes, we have considered
a distributed parallel programming model. Between these groups of nodes, there is
a workflow programming model to manage and control several distributed parallel
programs and hybrid programs of the distributed parallel and shared programming
models. To realize this framework, we support XcalableMP (XMP) to describe
the distributed parallel programs in a workflow as well as MPI, which is a de-
facto standard for distributed parallel programming. For the shared programming
and GPGPU, as well as XMP+OpenMP, MPI+OpenMP, MPI+GPGPU such as
CUDA, OpenACC, we support a runtime library called StarPU. The StarPU
library[1], which is a task programming library for hybrid architectures, enables
us to implement heterogeneous applications in a uniform way. XMP provides an
extension to enable work-sharing among CPU cores and GPU [7]. YML[2–4]—a
development and execution environment for a scientific workflow—is used for the
workflow execution.

Fig. 1 An overview of multi-SPMD programming model

222 M. Tsuji et.al.

3.2 YML

YML[2–4] is a workflow programming environment for a scientific workflow. YML
had been developed to execute a workflow application in a grid and P2P environment
and provides the following software:

• Component (task) generator,
• Workflow compiler, and
• Workflow scheduler.

The YML workflow compiler supports an original workflow language called
YvetteML, which allows us to describe dependency between tasks easily. Some
details of the YvetteML are described later, in Sect. 4.2. A workflow written in the
YvetteML would be compiled by the YML workflow compiler into a DAG of tasks.
The YML workflow scheduler interprets the DAG to execute the defined workflow.
Depending on the available systems, the scheduler uses different middleware, such
as XtremWeb for a P2P, OmniRPC[9] for a grid. The YML component generator
generates executable programs from “abstract” and “implementation” descriptions
of a component. Figures 2 and 3 show examples of “abstract” and “implementation,”
respectively. Note that in Fig. 3, while we show an example using XMP, the original
YML had supported neither XMP nor MPI. The XMP and MPI supports were added
by extending YML and middleware.

3.3 OmniRPC-MPI

YML has been designed to execute workflow applications over various environ-
ments, such as clusters, P2P, and single processors. During the execution, the YML
workflow scheduler dynamically loads a backend library for its environment. Each
of the backend libraries calls APIs defined in middleware libraries. For example, in

Fig. 2 An example of “Abstract” in YML

Multi-SPMD Programming Model with YML and XcalableMP 223

Fig. 3 An example of “Implementation” in YML

a grid environment, the OmniRPC backend linked with the OmniRPC middleware
library should be loaded.

The OmniRPC [9] is a grid RPC facility for cluster systems. The OmniRPC
supports a master-worker programming model, where remote serial programs (rexs)
are executed by exec, rsh or ssh.

To realize the mSPMD programming model, we have implemented an MPI
backend and extended the OmniRPC to OmniRPC-MPI for a large scale cluster
environment. The OmniRPC-MPI library provides the following functions:

• invoke a remote program (worker program) over a specified number of nodes.
• communication between the workflow scheduler and the remote programs.

– the scheduler sends a request to execute a certain task to a remote program.
– the scheduler listens to the communicator and receives a termination message

from a remote program.

• manage remote programs and computational resources.

224 M. Tsuji et.al.

4 Application Development in the mSPMD Programming
Environment

In this section, we describe how to develop applications in the mSPMD program-
ming environment.

4.1 Task Generator

Figure 4 shows the YML Component generator extended for the mSPMD program-
ming environment. The generator takes an implementation source code, such as the
one shown in Fig. 3. Then, combining the implementation and abstract source codes,
it generates several intermediate files: (1) an XMP source code, which extracts
task procedure itself defined by a user and (2) an interface definition file, which
includes some communication functions used to communicate with a workflow
scheduler. The YML Component generator calls (1) an XMP compiler to translate
the XMP source code to a C-source code with XMP runtime library calls and (2) a C-
compiler to compile the C-source code generated by the XMP compiler. The YML
Component generator calls (1) an OmniRPC-generator to translate the interface
definition to a C-source code and (2) a C-compiler to compile the C-source code
generated by the OmniRPC-generator. Finally, the YML Component generator calls
a linker to link the compiled object files and external libraries such as an MPI library.

Fig. 4 YML Component (task) generator extended for the mSPMD programming environment

Multi-SPMD Programming Model with YML and XcalableMP 225

During a workflow application execution, the remote programs generated by
the YML Component generator are invoked and managed by the YML workflow
scheduler and the OmniRPC-MPI middleware.

4.2 Workflow Development

A workflow application in the mSPMD is defined by a workflow description
language called YvetteML. The YvetteML allows us to define the dependencies
between tasks easily. Figure 5 shows an example of the YvetteML, which computes
an inversion of a matrix by the Block Gauss–Jordan method. In the YvetteML, the
following directives are supported:

compute call a task
par parallel loop or region

each index of the loop can be executed in parallel, or

Fig. 5 An example of an application written in YvetteML

226 M. Tsuji et.al.

each code block defined by // in a par region can be executed in parallel
ser serial loop
wait wait until the corresponding signal has been issued by notify
notify issues a specific signal for wait

4.3 Workflow Execution

The YML workflow compiler compiles the YvetteML into a directed acyclic graph
(DAG), and the YML workflow scheduler interprets the DAG to execute a workflow
application.

Figure 6 illustrates a workflow execution in the mSPMD programming model.
First, mpirun kicks the YML workflow scheduler. The YML workflow scheduler,
which has been linked with the OmniRPC-MPI library, interprets the DAG of
a workflow application and asks the invocation a task specified by YvetteML
compute (task-name) to the OmniRPC-MPI library. The OmniRPC-MPI library
finds a remote program which includes the specified task, and invokes the remote
program over the specified number of nodes by calling MPI_Comm_spawn, and
sends a request to perform the specific task.

While actual communications, node management, and task scheduling have been
supported by the OmniRPC-MPI library, the YML workflow scheduler schedules a
“logical” order of tasks based on the DAG of an application.

Fig. 6 A workflow execution of the mSPMD

Multi-SPMD Programming Model with YML and XcalableMP 227

5 Experiments

In this section, we demonstrate the performance of the mSPMD programming model
and our implementation.

Table 1 shows the specification of the K computer, which has been used for the
experiments.

In our experiments, the Block Gauss–Jordan (BGJ) method, which computes
the inversion of a matrix A, has been considered. Figure 7 shows the algorithm
of the BGJ method. The workflow for the BGJ method written in YvetteML
has been shown in Fig. 5. As shown in Table 2, tasks in the workflow process
block(s). In order to investigate the performance over different levels of hierarchical
parallelism:

• the total size of the matrix A is fixed to 32,768 × 32,768, but the number of
blocks is varied from 1 × 1 to 16 × 16.

• the total number of processes (cores) for a workflow is fixed to 4096, but the
number of processes for each task is varied from 8 to 4096.

Table 1 Specification of K
computer

CPU Fujitsu SPARC64VIIIfx, 8 core, 2.00 GHz

Memory 16 GB , 64 GB/s

Cache L1: 32 + 32 KB/core, L2: 6 MB/core

Network Tofu (6D mesh/torus) Interconnect

5 GB/s × 2

Fig. 7 Algorithm of the Block Gauss–Jordan method

228 M. Tsuji et.al.

Table 2 Tasks in the Block Gauss–Jordan workflow application. The input/output of the tasks
such as Ai,j , Bi,j , Ci,j , · · · are blocks of a matrix

Task Description

inversion(Ai,j) Compute the inversion of a block Ai,j

prodMat(Ai,j , Bi,j) Compute Bi,j = Ai,jBi,j

mProdMat(Ai,j , Bi,j ,Ci,j) Compute Ci,j = −Ai,jBi,j

prodDiff(Ai,j , Bi,j ,Ci,j) Compute Ci,j = Ci,j − Ai,jBi,j

Table 3 # of blocks, block
sizes and # of tasks in the
Block Gauss–Jordan method

of blocks 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16

Block size 32,7682 16,3842 81922 40962 20482

of tasks 3 18 108 696 4848

Fig. 8 Execution time of the BGJ workflow applications

Therefore, if we have a single block and assign all processes for a task, then it
is almost equivalent to a distributed parallel application. On the other hand, if we
divide a matrix into many small blocks and assign a process for each block, it is
almost a traditional workflow application. Table 3 shows the block size and the
number of tasks for each number of blocks. If we assign 512 processes for each
task, then at most eight tasks can be executed simultaneously.

Figure 8 shows the execution time of the BGJ workflow applications for the
number of blocks and the number of processes per task. The results show that the
best performance has been realized when we divide a matrix into 8 × 8 blocks and
assign 256 processes for each task. Our framework of the mSPMD programming
model can realize such an appropriate combination of different parallelisms and
can allow application developers to control the different parallelism levels easily.
On the other hand, the extreme cases—1 × 1 block and 16 × 16 blocks—have not
performed well. Also, assigning too many processes for small tasks, for example,

Multi-SPMD Programming Model with YML and XcalableMP 229

Fig. 9 Execution timeline of the BGJ workflow application with 8 × 8 blocks

2048 processes for 8 × 8 blocks, more than 256 processes for 16 × 16 processes,
show poor performance.

Figure 9 shows the execution timeline (from left to right) of the BGJ workflow
application with 8 × 8 blocks. As shown in the figure, at the first step, the task
of inversion (B = A−1) must be executed solely since the other tasks on the
first step use the result of the inversion. After the second step, some of the matrix
calculations such as A = A × B,C = −(B × A),C = C − (B × A) on the kth
step and the inversion on k + 1th step can be overlapped. For other programming
models such as flat-MPI, it is not easy to execute tasks or functions on different
steps simultaneously. On the other hand, the mSPMD programming model and
our programming environment allow application developers to describe this sort
of applications easily.

6 Eigen Solver on the mSPMD Programming Model

In this section, as a use case of the mSPMD programming model, we introduce an
eigen solver implemented on the mSPMD programming model.

230 M. Tsuji et.al.

6.1 Implicitly Restarted Arnoldi Method (IRAM), Multiple
Implicitly Restarted Arnoldi Method (MIRAM) and Their
Implementations for the mSPMD Programming Model

The iterative methods are widely used to solve eigenvalue programs in scientific
computation. Implicitly Restarted Arnoldi Method (IRAM) [10] is one of the
iterative methods to search the eigen elements λ s.t. Ax = λx of a matrix A.

Figure 10 shows the algorithm of IRAM. IRAM is a technique that combines
the implicitly shifted QR mechanism with an Arnoldi factorization and the IRAM
can be viewed as a truncated form of the implicitly shifted QR-iteration. After the
first m-step Arnoldi factorization, the eigen pairs of a Heisenberg matrix H are
computed. If the residual norm is small enough, the iteration is stopped. Otherwise,
the shifted QR by selecting shifts based on eigenvalues of the Heisenberg matrix
is computed. Using these new vectors and H as a starting point, we can apply p

additional steps of the Arnoldi process to obtain an m-step Arnoldi factorization.
Multiple IRAM (MIRAM) is an extension of IRAM, which introduces two or

more instances of IRAM. The instances of IRAM work on the same problem, but
they are initialized with different subspaces m1,m2, · · · . At the restarting point,
each instance selects the best (mbest , Hbest , Vbest , fbest) from l IRAM instances.

In the mSPMD programming model, MIRAM has been implemented, as shown
in Fig. 11. The source code written in YvetteML is shown in Fig. 12. The YML
workflow scheduler invokes l IRAM instances and a data server. Each of IRAM

Fig. 10 Algorithm of IRAM

Multi-SPMD Programming Model with YML and XcalableMP 231

Fig. 11 Overview of MIRAM on the mSPMD programming model

Fig. 12 MIRAM workflow

232 M. Tsuji et.al.

instances computes an Arnoldi iteration asynchronously over n nodes and sends the
resulting (m,H, V, f) to the data server. The data server keeps the best result and
sends it to each IRAM. Each IRAM restarts with the (m,H, V, f) sent by the data
server.

6.2 Experiments

Here, we show the result of experiments on the T2K-Tsukuba supercomputer. The
specification of the T2K Tsukuba is shown in Table 4. In the experiments, we use a
matrix called Schenk/nlpkkt240 from the SuiteSparse Matrix Collection [11], where
n = 27,993,600 and the number of non-zero elements are 760,648,352.

Figure 13 shows the results of MIRAM with IRAM solvers of m = 24, 32, 40
(left) and 3 independent runs of IRAM solvers of the m = 24, 32, 40 (right). While
MIRAM converged around 450 iterations, none of 3 IRAMs could not converge
until 500 iterations.

This MIRAM example shows that by using the mSPMD programming model,
two different accelerations can be achieved. While the workflow programming
model of the mSPMD accelerates the convergence of the Arnoldi iterations, the
distributed parallel programming model speeds up each iteration of the Arnoldi
method.

Table 4 Specification of T2K Tsukuba

CPU Opteron Barcelona B8000, 4 cores, 4 sockets, 2.3 GHz

Memory 32 GB

Network Fat-tree, full-bisection interconnection quad-rail of InfiniBand

Fig. 13 Results of MIRAM with 3 IRAM solvers (right) and 3 independent runs of IRAM (left)

Multi-SPMD Programming Model with YML and XcalableMP 233

7 Fault-Tolerance Features in the mSPMD Programming
Model

7.1 Overview and Implementation

As well as scalability and programmability, reliability is an important issue in
exascale computing. Since the number of components of an exascale supercomputer
should be tremendously large, it is evident that the mean time between failure
(MTBF) of a system decreases as the number of the system’s components increases.
Therefore, fault tolerance becomes essential for systems and applications. Here, we
develop a fault-tolerance mechanism in an mSPMD programming model, and its
development and execution environment. The fault tolerance in the mSPMD pro-
gramming model can be realized without modifying applications’ source codes[13].

Figure 14 illustrates the fault-tolerant mechanism in the mSPMD programming
model. If the workflow scheduler can find an error in a task and execute the
task again on different nodes, then we can realize a fault-tolerance and resilience
mechanism automatically.

We have extended the OmniRPC-MPI described in Sect. 3.3 to detect errors
in remote programs and notify the errors to the YML workflow scheduler. For
these purposes, heartbeat messages between master and remote programs have been
introduced in the OmniRPC-MPI library. If an error is detected in a remote program,
then it is reported to the YML workflow scheduler as a return value of existing
APIs. The OmniRpcProbe(Request r) API has been designed to listen to the
status of a requested task in a remote program. This returns success if the remote
program sends a signal to indicate the requested task r has successfully finished. On
the other hand, if heartbeat messages from the remote program executing the task r
have stopped, OmniRpcProbe(Request r) returns fail.

The YML scheduler re-schedules the failed task if it receives fail signal
from the OmniRPC-MPI library. The re-scheduling method is simple; The YML
scheduler puts the failed task at the head of the “ready” task queue.

7.2 Experiments

We have performed some experiments to investigate the overhead of the fault
detection and the elapsed time when errors occur on a cluster shown in Table 5. The
BGJ method shown in Sect. 5 had been used. The size of a matrix is 20,480× 20,480
and divided into

234 M. Tsuji et.al.

Fig. 14 Overview of fault tolerance in the mSPMD programming model

Table 5 Specification of a
FX10 cluster

CPU Fujitsu SPARC64VIIIIfx, 16 core, 1.65 GHz

Memory 32 GB, 85 GB/s

Cache L1: 32 + 32 KB/core, L2: 6 MB/core

Network Tofu (6D mesh/torus) Interconnect

5 GB/s × 2

Multi-SPMD Programming Model with YML and XcalableMP 235

of blocks 1 × 1 2 × 2 4 × 4 8 × 8

Block size 20,4802 10,2402 51202 25602

1024 cores (64 nodes) are used for each workflow, and 64–1024 cores are
assigned for each task in a workflow.

Firstly, we have considered the overhead of the heartbeat messages used to
detect errors in remote programs. Figure 15 shows the performance of the normal
and fault-tolerant mSPMD programming executions using between 64 and 1024
compute cores per task. The dotted lines are the results of fault-tolerant mSPMD
programming executions, and the solid lines are those of the regular mSPMD
programming executions. As shown in the figure, the best combination of the
number of blocks and the number of processes per task is 4 × 4 blocks and 512
processes for both cases of with and without fault-tolerance support. The overhead
of using a heartbeat message is very small and is 2.3% on average and 4.7% at a
maximum.

Then, we have investigated the behavior and performance of the fault-tolerant
mSPMD programming execution when errors occur. Instead of waiting for real
errors, we have inserted fake errors that stop heartbeat messages from remote
programs randomly with a certain error probability computed by an expected

 0

 100

 200

 300

 400

 500

 600

 700

 64 256 512 1024

Ex
ec

ut
io

n
tim

e
(s

ec
)

(procs/task)

20480x20480 Matrix, 1024 processes in total

01x01 woft
02x02 woft
04x04 woft
08x08 woft
01x01 w/ft
02x02 w/ft
04x04 w/ft
08x08 w/ft

Fig. 15 Execution time with and without FT for the number of cores for each task. The graph
legends show the number of blocks

236 M. Tsuji et.al.

 0

 100

 200

 300

 400

 500

 600

 700

 64 256 512 1024

Ex
ec

ut
io

n
tim

e
(s

ec
)

(procs/task)

20480x20480 Matrix, 1024 processes in total

02x02
04x04
08x08

Fig. 16 Execution time with FT for the number of cores for each task under fake errors. The graph
legends show the number of blocks

MTBF (90,000 s). Figure 16 shows the performance of the fault-tolerant mSPMD
programming execution under fake errors. Unfortunately, for the case of 1×1 block
and 1024 processes per task, it was not possible to complete the workflow, since
the face error ratio used in the experiment is higher than real systems. For the other
cases, the applications can be completed. The best combination of the number of
blocks and the number of processes per task is 4 × 4 blocks and 256 processes,
while it was 512 processes under the “no-error” condition. This is because the tasks
executed on a relatively small number of nodes are relatively easy to recover when
they fail.

8 Runtime Correctness Check for the mSPMD
Programming Model

8.1 Overview and Implementation

The mSPMD programming model has been proposed to realize scalability for large
scale systems. Additionally, as we discussed in Sect. 7, we support fault-tolerant

Multi-SPMD Programming Model with YML and XcalableMP 237

features in the mSPMD programming model. In this section, we discuss another
important issue in large scale systems, productivity.

One of the reasons for the low productivity in distributed parallel programs is
the difficulty of debugging. Several libraries and tools have been proposed to help
and debug parallel programs. MUST (Marmot Umpire Scalable Tool) [5, 6, 12]
is a runtime tool that provides a scalable solution for efficient runtime MPI error
checking. The MUST has supported not only MPI but also XcalableMP (XMP) [8].

In this section, we discuss how to adapt the MUST library to the SPMD programs
in the mSPMD programming model and enable the MUST correctness checking for
the mSPMD. Computational experiments have been performed to confirm MUST’s
operation in the mSPMD and to estimate the overhead of the correctness checking.

The mSPMD programming model consists of workflow scheduler, middleware,
remote programs, and so on. Each of the remote programs includes user-defined
tasks and control sections where the remote program communicates with the work-
flow scheduler. In this work, we focus on the user-defined tasks within the remote
programs, and the correctness check by the MUST library should be applied only
to the user-defined tasks. Figure 17 shows an overview of the application execution
in the mSPMD programming model and the target of the correctness check by the
MUST library in the mSPMD programming model. While MUST checks the MPI
and XMP communications shown in orange letters, MPI_Comm_spawn used to
invoke remote programs, MPI_Send used to send a request to the remote programs,
must be ignored.

Fig. 17 Applying MUST to the mSPMD programming model. Only communication functions
written in red letters are checked, MPI functions written in black letters are not checked

238 M. Tsuji et.al.

MUST replaces MPI functions starting with MPI_ such as MPI_Send with their
own MPI functions, including correctness check and actual communication. The
functions starting with MPI_ such as MPI_Send in standard MPI libraries wrap the
functions starting with PMPI_ which perform communication. In order to avoid
the correctness check for the control sections, we define some macro to use PMPI
functions directly (Fig. 18). Moreover, to reserve an additional process for MUST
in remote programs, we define the macro to invoke remote programs (Fig. 19).

The original MUST creates an output file named MUST_Output.html for
each of parallel applications. On the other hand, in the mSPMD programming
model, there are one or more parallel applications simultaneously. Therefore, we
modify the MUST library to generate different MUST_Output_<id>.html files
for different remote programs. So far, we give a process id of the rank-0 of a remote
program as the <id> the output file. Figure 20 shows an example of the output file
generated by MUST in the mSPMD programming model.

8.2 Experiments

We have performed some experiments to evaluate the execution times and to
investigate applications’ behaviors with and without the MUST library. In these
experiments, the Oakforest-PACS (OFP) system has been used. Table 6 shows the
specification of the OFP. For remote programs, we adopt the flat-MPI programming
model where each MPI process runs on each core.

We focus on collective communication (MPI_Allreduce) and point to point
communication (Pingpong) and consider codes with and without error for each.
Figure 21 shows the tasks used in the experiments. From the top to bottom, allreduce
(w/o error), allreduce (w/ error, type mismatch), pingpong (w/o error), pingpong
(w/ error, type mismatch), allreduce (w/ error, operation mismatch), and allreduce
(w/ error, buffer size mismatch). Also, we consider different numbers of iterations

Fig. 18 The Macro to disable
the MUST correctness check

Fig. 19 The Macro to invoke
remote programs with n + 1
processes where “+1” is kept
for MUST

Multi-SPMD Programming Model with YML and XcalableMP 239

Fig. 20 Screenshot of the output file generated by MUST in the mSPMD programming model

Table 6 The specification of
the Oakforest-PACS

CPU Intel Xeon Phi 7250 (KNL), 68 core, 1.4 GHz

Memory 96 GB(DDR) + 16 GB(MCDRAM)

Network Intel Omni-Path Network, 100 Gpbs

Compiler intel/2018.1.163

MPI library impi/2018.1.163

OS CentOS 7

and different interval seconds between MPI function calls in each test code for the
overhead evaluations.

Table 7 shows the applications’ behaviors and the statuses of error reports, when
applying or not applying MUST. While the datatype conflict and operation conflict
errors are reported when we apply the MUST, the applications are completed
without any report when we do not apply the MUST even though the results of
the reduction should be wrong.

Figure 22 shows the execution time of the mSPMD programming executions with
and without the MUST library. Workflow applications include between 1 and 32
tasks of MPI_Allreduce. Figure 23 shows the results for MPI_Send/Recv. Each task
uses 32 processes in all experiments. As shown in Fig. 22, the overhead to check
and record errors of collective communication is ignorable if we do not perform
communication very intensively. On the other hand, if collective communication
functions called very frequently, then the overheads become large even if there is
no error. As shown in Fig. 23, the overhead of the MUST library is small if there is
no error in point to point communication functions. However, it takes more time if
there are some errors. The fact indicates that there is almost no overhead to check
point to point communication, but it takes some time to analyze and record errors in
the point to point communication functions.

240 M. Tsuji et.al.

Fig. 21 The tasks used in experiments. From the top to bottom, allreduce (w/o error), allreduce
(w/ data type error), pingpong (w/o error), and pingpong (w/ error), allreduce (w/ operation error),
allreduce (w/ data size error)

Multi-SPMD Programming Model with YML and XcalableMP 241

Table 7 Applications’ behaviors and the statuses of error reports

w/ MUST w/o MUST

Allreduce w/o error Completed Completed

Allreduce w/ Completed Completed

Type conflict error Error reports No report

Pingpong w/o error Completed Completed

Pingpong w/ Completed Completed

Type conflict error Error reports No report

Allreduce w/ Completed Completed

Operation conflict error Error reports No report

Allreduce w/ Failed Failed

Buffer size conflict error Error reports Simple error reports

0

20

40

60

80

100

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

0

50

100

150

200

1 2 4 8 16 32 1 2 4 8 16 32

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

(sec)
(sec)

tasks tasks

(Allreduce+ 1-sec sleep)x100 (Allreduce+ 0.01-sec sleep)x10000

Fig. 22 Execution time when a workflow includes 1, 2, · · · 32 tasks executing MPI_Allreduce
repeatedly every 1-s (left) and every 0.01-s

0

50

100

150

200

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

0

50

100

150

200

NoError-NoMUST NoError-MUST

Error-NoMUST Error-MUST

(sec)
(sec)

tasks tasks

(Send + 1-sec sleep
Recv+ 1-sec sleep)x50

(Send + 0.01-sec sleep
Recv+ 0.01-sec sleep)x5000

1 2 4 8 16 32 1 2 4 8 16 32

Fig. 23 Execution time when a workflow includes 1, 2, · · · 32 tasks executing MPI_Send/Recv
repeatedly every 1-s (left) and every 0.01-s

242 M. Tsuji et.al.

9 Summary

In this chapter, we have presented the mSPMD programming model and program-
ming environment, where several SPMD programs work together under the control
of a workflow program. YML, which is a development and execution environment
for scientific workflows, and its middleware OmniRPC, have been extended to
manage several SPMD tasks and programs. As well as MPI, XMP, a directive-
based parallel programming language, has been supported to describe tasks. A task
generator has been developed to incorporate XMP programs into a workflow. Fault-
tolerant features, correctness check, and some numerical libraries’ implementations
in the mSPMD programming model have been presented.

References

1. C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures. Concurr. Comput. Pract. Exp. 23, 187–
198 (2011). Euro-Par 2009

2. O. Delannoy, YML: A Scientific Workflow for High Performance Computing, PhD thesis,
University of Versailles Saint-Quentin (2006)

3. O. Delannoy, N. Emad, S. Petiton, Workflow global computing with YML, in The 7th
IEEE/ACM International Conference on Grid Computing (2006), pp. 25–32

4. O. Delannoy, S. Petiton, A peer to peer computing framework: design and performance
evaluation of YML, in 3rd International Workshop on Algorithms, Models and Tools for
Parallel Computing on Heterogeneous Networks (2004), pp. 362–369

5. T. Hilbrich, F. Hasel, M. Schulz, B.R. de Supinski, M.S. Muller, W.E. Nagel, Runtime MPI
collective checking with tree-based overlay networks, in Proceedings of the 20th European
MPI Users’ Group Meeting (EuroMPI 13) (ACM, Madrid, 2013), pp. 129–134

6. T. Hilbrich, J. Protze, M. Schulz, B.R. de Supinski, M.S. Muller, MPI runtime error
detection with MUST: advances in deadlock detection, in International Conference on High
Performance Computing, Networking, Storage and Analysis (SC12) (IEEE, Washington, DC,
2012)

7. T. Odajima, T. Boku, M. Sato, T. Hanawa, Y. Kodama, R. Namyst, S. Thibault, O. Aumage,
Adaptive task size control on high level programming for GPU/CPU work sharing, in
International Symposium on Advances of Distributed and Parallel Computing (ADPC 2013)
(2013), pp. 59–68

8. J. Protze, C. Terboven, M.S. Müller, S. Petiton, N. Emad, H. Murai, T. Boku, Runtime
correctness checking for emerging programming paradigms, in Proceedings of the First
International Workshop on Software Correctness for HPC Applications (2017), pp. 21–27

9. M. Sato, M. Hirano, Y. Tanaka, S. Sekiguchi, OmniRPC: a grid RPC facility for cluster and
global computing in OpenMP, in International Workshop on OpenMP Applications and Tools
(2001), pp. 130–136

10. D.C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue
calculations, in Parallel Numerical Algorithms. ICASE/LaRC Interdisciplinary Series in
Science and Engineering Book Series (ICAS), vol. 4 (Springer, Dordrecht, 1997), pp. 119–
165

11. SuiteSparse Matrix Collection, https://sparse.tamu.edu/
12. The MUST Project, https://www.itc.rwth-aachen.de/must

https://sparse.tamu.edu/
https://www.itc.rwth-aachen.de/must

Multi-SPMD Programming Model with YML and XcalableMP 243

13. M. Tsuji, S. Petiton, M. Sato, Fault tolerance features of a new multi-SPMD programming/ex-
ecution environment, in Proceedings of the First International Workshop on Extreme Scale
Programming Models and Middleware SC15 (ACM, Austin, 2015), pp. 20–27. https://doi.org/
10.1145/2832241.2832243

14. M. Tsuji, M. Sato, M. Hugues, S. Petiton, Multiple-SPMD programming environment
based on pGAs and workflow toward post-petascale computing, in Proceedings of the 2013
International Conference on Parallel Processing (ICPP-2013) (IEEE, Lyon, 2013), pp. 480–
485

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/2832241.2832243
https://doi.org/10.1145/2832241.2832243
http://creativecommons.org/licenses/by/4.0/

XcalableMP 2.0 and Future Directions

Mitsuhisa Sato, Hitoshi Murai, Masahiro Nakao, Keisuke Tsugane,
Tesuya Odajima, and Jinpil Lee

Abstract This chapter presents the XcalableMP on the Fugaku supercomputer, the
Japanese flagship supercomputer developed by FLAGSHIP2020 project in RIKEN
R-CCS. The porting and the performance evaluation were done as a part of this
project, and the XcalableMP is available for the Fugaku users for improving the
productivity and performance of parallel programing. The performance of Xcal-
ableMP on the Fugaku is enhanced by the manycore processor and a new Tofu-D
interconnect. We are now working on the next version, XcalableMP 2.0, for cutting-
edge high-performance systems with manycore processors by multithreading and
multi-tasking with integrations of PGAS model and synchronization models. We
conclude this book with retrospectives and challenges for future PGAS models.

1 Introduction

We have been developing a production-level XcalableMP compiler, and make it
available for the K computer’s users as well as the users of conventional clusters.
RIKEN R-CCS has been carrying out the FLAGSHIP 2020 Project [1] to develop
the Japanese flagship supercomputer system following the K computer, the Post-
K, formally named as “Fugaku” later, since 2014. In the project, XcalableMP was
taken as a parallel programming language project for improving the productivity and
performance of parallel programing. XcalableMP is now available on Fugaku and
the performance is enhanced by the Fugaku interconnect, Tofu-D. The next section
describes the XcalableMP on Fugaku.

M. Sato (�) · H. Murai · M. Nakao · T. Odajima · J. Lee
RIKEN Center for Computational Science, Kobe, Japan
e-mail: msato@riken.jp; h-murai@riken.jp; masahiro.nakao@riken.jp; tetsuya.odajima@riken.jp;
jinpil.lee@riken.jp

K. Tsugane
Fujitsu Laboratories Ltd., Kawasaki, Kanagawa, Japan
e-mail: tsugane.keisuke@fujitsu.com

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_10

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_10&domain=pdf
mailto:msato@riken.jp
mailto:h-murai@riken.jp
mailto:masahiro.nakao@riken.jp
mailto:tetsuya.odajima@riken.jp
mailto:jinpil.lee@riken.jp
mailto:tsugane.keisuke@fujitsu.com
https://doi.org/10.1007/978-981-15-7683-6_10

246 M. Sato et al.

The XcalableMP project has been started from 2008 and the discussion on
XcalableMP 1.x has converged. We are now working on a new version, XcalableMP
2.0, targeted for cutting-edge high-performance systems with manycore processors
by multithreading and multi-tasking with integrations of PGAS model and synchro-
nization models. In this new programming model, the execution of the program is
decomposed into several tasks executed according the dependency between tasks.
This model will enable less overhead of synchronization by eliminating expensive
global synchronization, overlap between computation and communication in many-
core, and light-weight communication by RDMA in PGAS model. We will extend
this programming model to combine several kinds of accelerators such as GPU,
FPGA, and special-purpose processors with large-scale general-purpose manycore
systems. It enables some tasks to be offloaded into the accelerators such as FPGA
as well as each core in modern manycore processor. We consider this configuration
as a general global architecture of the future system as some part of system will
be specialized for high performance and power efficiency. Our programming model
will make it easy to adopt the existing computational science program to the new
systems.

In Sect. 3, a proposal for XcalableMP 2.0 is presented, followed by retrospectives
and challenges for future PGAS models in Sect. 4.

2 XcalableMP on Fugaku

In this section, we report our early experience and the preliminary performance of
XcalableMP on Fugaku. The Fugaku is a huge-scale system with general-purpose
manycore processors. The node processor is a single chip, Fujitsu A64FX, which
consists of 48 cores with 2 or 4 cores dedicated for OS activities, 32 GiB HBM2
memory, with Tofu-D interconnect, and a PCI express controller in the chip together.
The Fugaku system consists of 158,976 nodes in 432 racks. The Fugaku is scheduled
to be put into operation for public service around 2021. In 2020, the installation is
completed and the system partially serves the early access program.

XcalableMP is available as a parallel programming language for the Fugaku,
supported by R-CCS team with Fujitsu. C and Fortran are supported as base
languages with XcalableMP 1.2 compliant.

We report the preliminary performance of XcalableMP program running on the
Fugaku.1

We used the following versions:

• Omni XcalableMP Version: 1.3.2, Git Hash: 6d23f46.
• Language specification: 1.2.25.

1The reported results were obtained on the evaluation environment in the trial phase. Note that the
performance is not guaranteed at the start of its operation.

XcalableMP 2.0 and Future Directions 247

The performance of XcalableMP on the Fugaku is enhanced by the manycore
processor and a new Tofu-D interconnect.

2.1 Performance of XcalableMP Global View Programming

We executed the IMPACT-3D, described in Chap. 6, for the evaluation of Xcal-
ableMP global view programming in the Fugaku, using up to 512 nodes. The
scalability on Fugaku is shown in Fig. 1, comparing to the MPI version. The program
is parallelized by hybrid XMP-OpenMP parallel programming: An XMP node is
assigned to a node, and 48 OpenMP threads are running within a node. The problem
size is 512 × 512 × 512 with three-dimensional block distribution. The compile
option is “-Kfast”.

As shown in the figure, we found a good scalability in Fugaku, and the
performance is better than that by MPI thanks to the optimized XMP runtime for
communications in the stencil computation [2].

2.2 Performance of XcalableMP Local View Programming

Fugaku has a customized interconnection, called Tofu-D, which provides hardware-
supported RDMA (Remote Direct Memory Access) operations. We implemented
the XMP runtime library to make use of Tofu-D for one-sided communication for

Fig. 1 Speedup of Impact3D on Fugaku and performance comparing to K computer

248 M. Sato et al.

the XMP local view programming. The library is implemented by using a low-level
communication layer, uTofu API [3], provided by Fujitsu.

For performance evaluation of XMP local view programming, we used CCS
QCD and NTChem-MINI taken from the coarray version of Fiber Miniapp Suite [4,
5].

To run CCS QCD mini-application [6], eight XMP nodes are assigned to one
node, running in a flat XMP mode. The size and conditions are as follows:

• Target data: Class 2 (32 × 32 × 32 × 32) (strong scaling).
• Compiler options: -Kfast, zfill, simd=2.
• Timing region: sum of “Clover + Clover_inv Performance” and “BiCGStab

(CPU: double precision) Performance” of the built-in timing feature.

Figure 2 shows the speedup of the Fugaku, comparing to the performance of
the K computer. The XMP version archives almost same performance of the MPI
version. Note that the reason of the performance degradation of the XMP version on
the K computer is the overhead of allocation for allocatable coarray used as a buffer
for communication. It is improved by removing this overhead by using the uTofu
communication layer.

The NTChem-MINI is a mini-application taken from NTChem [7], a high-
performance software package for molecular electronic structure calculation. An
XMP node is assigned to one node, and within a node, BLAS functions are executed
using 48 cores. The size and conditions are set as follows:

• Target data: taxol (strong scaling).
• Compiler options: -Kfast, simd=2.
• Timing region: “RIMP2_Driver” of the built-in timing feature.

Fig. 2 Speedup of CCS QCD on Fugaku and performance comparing to the K computer

XcalableMP 2.0 and Future Directions 249

Fig. 3 Speedup of NTChem-MINI on Fugaku and performance comparing to the K computer

As shown in Fig. 3, the XMP versions archive almost the same performance of
the original MPI versions.

3 Global Task Parallel Programming

Recently, large-scale clusters of manycore processors such as Intel Xeon Phi have
been deployed in many sites from the latest Top500 Lists. In order to program
manycore processors, OpenMP is widely used as a shared-memory programming
model. Most OpenMP programs are written using work sharing constructs for
loops, which involves a global synchronization. However, especially in modern
manycore processors, the global synchronization cost for work sharing becomes
bigger, and the load imbalance among cores lead to the performance degradation
as the number of cores on the processor increases. Task parallel programming
using task dependency in OpenMP 4.0 is a promising candidate to facilitate the
parallelization for such manycore processors because it enables users to avoid global
synchronization by fine-grained task-to-task synchronization through user-specified
data dependencies.

We are interested in extending the task parallel programming model to the
PGAS model of XcalableMP for distributed memory systems. As well as removing
expensive global synchronization, it is expected to enable the overlapping of
communication and computation. For XMP 2.0, we propose the global task parallel
programming.

In OpenMP, the task dependency in a node depends on the order of reading and
writing to data based on the sequential execution. Therefore, the OpenMP multi-

250 M. Sato et al.

tasking model cannot be applied to describe the dependency between tasks running
in different nodes since threads of each nodes are running in parallel.

We propose new directives for communication with tasks in XMP, and they
enable users to write easily the multi-tasking execution based on XMP language
constructs. The tasklet directive generates a task for the associated structured block
on the node specified by the on clause, and the task is scheduled and immediately
executed by an arbitrary thread in the specified node if there is no task dependency. If
it has any task dependencies, the task execution is postponed until all dependencies
are resolved. The tasklet gmove directive copies the variable of the right-hand side
(RHS) into the left-hand side (LHS) of the associated assignment statement for local
or distributed data in tasks. If the variable of the RHS or the LHS is the remote
data, this directive may synchronize on data dependency between nodes and execute
communication. The tasklet reflect directive is a task-version of reflect operation. It
updates halo regions of the array specified to array-name in tasks. In this directive,
data dependency is automatically added to these tasks based on the communication
data because the boundary index of the distributed data is dynamically determined
by XMP runtime system.

We have designed a simple code translation algorithm from the proposed
directives to XMP runtime calls with MPI and OpenMP. We have evaluated
the performance using block-Cholesky Factorization Program on KNL based-
system, Oakforest-PACS. Through the experiment, we confirmed the advantage
of task parallelism over the traditional loop-based data parallelism. At the same
time, we found the performance problems on communication between multiple
threads (MPI_THREAD_MULTIPLE). Currently, we are investigating a lower-level
communication API for efficient one-sided communication of PGAS operations in
multithreaded execution environment.

Details of the proposal in this chapter are described in [8].

3.1 OpenMP and XMP Tasklet Directive

While OpenMP originally focuses on work sharing for loops as the parallel
for directive, OpenMP 3.0 introduces task parallelism using the task directive. It
facilitates the parallelization where work is generated dynamically and irregularly
as in recursive structures or unbounded loops. The depend clause on the task
directive is supported from OpenMP 4.0 and specifies data dependencies with
dependence-type in, out, and inout. Task dependency can reduce the global
synchronization of a thread team because it can execute fine-grained synchroniza-
tion between tasks through user-specified data dependencies.

XcalableMP 2.0 and Future Directions 251

Fig. 4 Syntax of the
tasklet, taskletwait,
and tasklets directives in
XMP

To support task parallelism in XMP as in OpenMP, the tasklet direc-
tive2 is proposed in XMP 2.0. Figure 4 describes the syntax of the tasklet,
tasklets, and taskletwait directives for the multi-tasking execution in
XMP. The tasklet directive generates a task for the associated structured block
on the node specified by the on clause, and the task is scheduled and immediately
executed by an arbitrary thread in the specified node if there is no task dependency. If
it has any task dependencies, the task execution is postponed until all dependencies
are resolved. These behaviors occur when these tasks are surrounded by tasklets
directive. When these tasks are not surrounded by the tasklets directives, they
are executed sequentially at the specified node. The tasklet directive supports
several clauses for the description of the task dependency. The in, out, and inout
clauses represent the task dependency in a node. When in, out, or inout clause
presents on the tasklet directive, the generated task has each data dependency
in a node. The behavior of these data dependencies is same as OpenMP task
depend clause: flow, anti, and output dependencies.

The taskletwait directive waits on the completion of the generated tasks
on each node. Since the directive does not involve the barrier synchronization, the
barrier directive in XMP is also required in order to guarantee that all tasks of
all nodes are finished at this point. There is an implicit barrier on each node at the
end of the tasklets directive.

In OpenMP, the task dependencies are created according to the order of reading
and writing to data based on the sequential execution in a node. Therefore, the
OpenMP task parallel model cannot be directly applied to describe the dependency
between tasks running in different nodes since threads of each nodes are running in
parallel.

In OmpSs [10], interactions between nodes are described through the MPI
task that is executing MPI communications. Task dependency between nodes
is guaranteed by the completion of MPI point-to-point communication in tasks.
While this approach can satisfy dependencies between nodes, it may cause further
productivity degradation because it forces users to use a combination of two
programming models that are based on different description formats. Therefore,
we propose new directives for communication with tasks in XMP, and they enable

2There is the task directive in XMP, it is different from OpenMP’s one.

252 M. Sato et al.

users to write easily the multi-tasking execution for clusters by only using language
constructs.

3.2 A Proposal for Global Task Parallel Programming

In order to support multi-tasking execution for distributed memory parallel systems,
we need to perform point-to-point communication within tasks in local task
dependency graphs. While XMP provides some directives for communication, many
of these are performed collectively, and cause an implicit synchronization among
execution nodes. This causes a performance degradation, because tasks participating
in communications, such as broadcast, wait for synchronization until all tasks
are completed. For XMP 2.0, we propose two directives, tasklet gmove and
tasklet reflect, as shown in Fig. 5, to describe interactions between nodes
in tasks by point-to-point communication, for inter-node data dependency. These
communications are only synchronized between the sender and receiver of the
communication in each task.

These details are as follow:
tasklet gmove directive: Although this copies the variable from the right-

hand side (RHS) into the left-hand side (LHS) of the associated assignment
statement for local or distributed data like the gmove directive, it is executed in
tasks. The copy operation is basically performed on all execution nodes. However, if
the distributed array is specified at the associated assignment statement, only nodes
with the distributed array execute the operation in the task. The execution nodes can
also be determined by the on clause. When the in, out, or inout clause is present
on the tasklet gmove directive, the generated task has the corresponding data
dependency in a node, similar to the tasklet directive.

tasklet reflect directive: Although this updates halo regions of the array
specified to array-name as in the reflect directive, it is executed in tasks.
For example, when updating one side of a halo region for a one-dimensional
distributed array on two nodes, these communications are separated into four tasks:
the sender of the upper element on node 1, the receiver of the upper halo region
on node 1, the sender of the lower element on node 2, and the receiver of the
lower halo region on node 2. In this directive, data dependency is automatically
added to these generated tasks based on the communication data, because the
boundary index of the distributed array is dynamically determined by the XMP

Fig. 5 Syntax of the
tasklet gmove and
tasklet reflect
directives in XMP

XcalableMP 2.0 and Future Directions 253

Fig. 6 Example of the tasklet and tasklet gmove directives

runtime system. The chunksize clause can be matched the task dependency
descriptions of users using the dependency generated by the tasklet reflect
directive. When users calculate an array in block units, such as in the cache blocking
technique for a node with data dependency, the user-specified task dependency
and generated data dependency for halo exchange may not identically match. By
specifying the chunksize clause, the halo region is distributed logically to equal-
sized contiguous chunks, and data dependencies for the halo exchange are generated
automatically by the XMP runtime system based on the specified chunk size.

Figure 6 presents an example of the tasklet gmove directive. In this
example, array A[] with length three is distributed to three nodes in equal-sized
contiguous blocks. This code creates three kinds of tasks. TaskA and taskC are
executed on nodes specified by the on clause. TaskB is executed on nodes 1
and 2, because these nodes have the specified distributed array A[0] or A[1] in
the associated assignment statement under the tasklet gmove directive. There
is a flow dependency between taskA and taskB on node 1 by A[0]. After the
execution of taskA, taskB sends A[0] to node 2, which is determined by the
distributed array A[1]. In node 2, taskB receives A[0] from node 1 in A[1]. When
the receive operation in taskB is finished, taskC is immediately started, because
the flow dependency of A[1] is satisfied. TaskC sends the A[1] to variable B of
node 3. Because the variable B is a local variable for each node, the communication
destination is determined from the execution nodes specified by the on clause.

3.3 Prototype Design of Code Transformation

We have designed a simple code transformation from the code using the proposed
directives to the code with XMP runtime calls using MPI and OpenMP. As for a

254 M. Sato et al.

preliminary evaluation, we have made a hand-translated MPI and OpenMP code by
using the proposed transformation.

The tasklets directive is converted into the OpenMP parallel and
single directives. The execution node is determined by the on clause, which is
translated to an if statement. The tasklet gmove and tasklet reflect
directives are converted into MPI_Send/Recv(), and these MPI functions are
executed in OpenMP tasks with data dependency specified by users. In the case that
an MPI blocking call, such as MPI_Send/Recv(), occurs in these codes, a deadlock
may occur depending on the task scheduling mechanism, from the combination
of MPI and OpenMP. To prevent this deadlock, in the actual implementation we
used MPI asynchronous communications, such as MPI_Isend/Irecv(), MPI_Test(),
and the OpenMP taskyield directive, which makes the current task become
suspended at the time point at which it is invoked, and may result in switching
to different tasks.

3.4 Preliminary Performance

We measured the performance on the Oakforest-PACS [11] systems at at the
Joint Center for Advanced High-Performance Computing (JCAHPC) [9], under
cooperation with the Center for Computational Sciences, University of Tsukuba and
the Information Technology Center, the University of Tokyo. This system has 8,208
computing nodes, each of which consists of an Intel Xeon Phi (KNL) processor
and the Intel Omni-Path architecture as an interconnection. In this evaluation, we
selected the Flat and Quadrant modes for KNL. While the Intel Xeon Phi 7250
has 68 cores, a 64 core usage per node is recommended in this system. Some
cores are used to assist the OS, interrupt handling, and for communication progress.
Moreover, in order to avoid OS jitters, only core 0 is set to receive OS interruptions.

We used blocked Cholesky factorization as our benchmark. It calculates the
decomposition of a Hermitian positive-definite blocked matrix into the product of
a lower triangular matrix and its conjugate transpose. The calculation consists of
four BLAS or LAPACK functions, POTRF, TRSM, GEMM, and SYRK, which are
performed in block units. Figure 7 shows the Blocked Cholesky factorization code
in the XMP tasklet directive.

We compare the performance in two parallelization approaches, “Parallel Loop”
and “Task,” in MPI and OpenMP. The “Parallel Loop” version is the conventional
barrier-based implementation, described by work sharing for loops using the
parallel for directive and independent tasks using the task directive without
the depend clause. Although this version of blocked Cholesky factorization is
applied on the overlap of the communication and computation at the process level, it
performs the global synchronization in work sharing. The “Parallel Loop” version of
the Laplace equation solver does not include the overlap of the communication and
computation. The “Task” version is implemented using our proposed model, based
on task dependency using the depend clause, instead of global synchronization.

XcalableMP 2.0 and Future Directions 255

1 double A[nt][nt][ts*ts], B[ts*ts], C[nt][ts*ts];
2 #pragma xmp nodes P(*)
3 #pragma xmp template T(0:nt−1)
4 #pragma xmp distribute T(cyclic) onto P
5 #pragma xmp align A[*][i][*] with T(i)
6
7 #pragma xmp tasklets
8 for (int k = 0; k < nt; k++) {
9 #pragma xmp tasklet out(A[k][k]) on T(k)

10 potrf(A[k][k]);
11
12 #pragma xmp tasklet gmove in(A[k][k]) out(B) on T(k:)
13 B[:] = A[k][k][:];
14
15 for (int i = k + 1; i < nt; i++) {
16 #pragma xmp tasklet in(B) out(A[k][i]) on T(i)
17 trsm(B, A[k][i]);
18
19 #pragma xmp tasklet gmove in(A[k][i]) out(C[i]) on T(i:)
20 C[i][:] = A[k][i][:];
21 }
22 for (int i = k + 1; i < nt; i++) {
23 for (int j = k + 1; j < i; j++) {
24 #pragma xmp tasklet in(A[k][i], C[j]) out(A[j][i]) on T(j)
25 gemm(A[k][i], C[j], A[j][i]);
26 }
27 #pragma xmp tasklet in(A[k][i]) out(A[i][i]) on T(i)
28 syrk(A[k][i], A[i][i]);
29 }
30 }

Fig. 7 Blocked Cholesky factorization code in the XMP tasklet directive

We also show the result of these benchmarks implemented by MPI and OmpSs as
“Task (OmpSs).” This implementation is described in the in, out, and inout
clauses with the OmpSs task directive. The parallel and single regions are
not required in the OmpSs programming model. Except for these differences, this is
almost the same as the Task version.

We evaluated these benchmarks on the following node configurations. For the
Oakforest-PACS system, it is on 1–32 nodes, one process per node, 64 cores per
process, and one thread per core. The problem size of these benchmarks is set
by a matrix size of 32,768 × 32,768 and a block size of 512 × 512 in double
precision arithmetic. The matrix is distributed by a two-dimensional block-cyclic
data distribution in blocked Cholesky factorization.

Figure 8 illustrates the performance and breakdown of blocked Cholesky factor-
ization on the Oakforest-PACS. The breakdown indicates the average time required

256 M. Sato et al.

(a
)

(b
)

F
ig
.8

Pe
rf

or
m

an
ce

an
d

br
ea

kd
ow

n
of

bl
oc

ke
d

C
ho

le
sk

y
fa

ct
or

iz
at

io
n

on
th

e
O

ak
fo

re
st

-P
A

C
S

sy
st

em
.(
a)

Pe
rf

or
m

an
ce

.(
b)

B
re

ak
do

w
n

at
32

no
de

s
ex

ec
ut

io
n

XcalableMP 2.0 and Future Directions 257

for each operation performed on all threads, because tasks executed on threads
differ each time the program is executed. The “wait” in the breakdown represents
the waiting time of the thread, including the global synchronization. The “comm”
indicates the time from the start of the communication to the end. In Fig. 8a, the
“Task” version shows a better performance than the barrier-based “Parallel Loop”
implementation. The reason that the “Task” version outperforms the “Parallel Loop”
version is that the global synchronization uses a higher cost for the work sharing of
loops and among tasks, as shown in Fig. 8b. The relative performance of the “Task”
version compared with the “Parallel Loop” version is 123% (Fig. 8).

3.5 Communication Optimization for Manycore Clusters

In the global task parallel programming model, the communication may happen
at each pair of tasks between nodes. In order to enable the communication
in multithreaded environment, we may use MPI_THREAD_MULTIPLE as the
MPI thread-safety level, because tasks executed on threads may communicate
simultaneously. We have examined the basic performance of multithreaded com-
munications by using the Ping-Pong benchmark. This benchmark is based on the
OSU Micro-Benchmarks 5.3.2 [12] developed by the Ohio State University. we
also show the aggregated bandwidth when multiple threads (i.e., two, four, or eight
threads) communicate at the same time. Figure 9 illustrates the communication
performance on the Oakforest-PACS system. The performance of multithreaded
communication with MPI_THREAD_MULTIPLE degrades compared to a single-
threaded communication as the number of threads increases. As with the result
on the Oakforest-PACS system, the performance of communication on a sin-
gle thread is better compared to that for multithreaded communication with
MPI_THREAD_MULTIPLE. Therefore, the communication performance may be
improved if all communications are delegated to the communication thread. To
delegate the communications to a single thread, we create a global queue that is
accessible by all threads, so that the tasks enqueue the communication requests into
this queue and wait for the communication to complete. Meanwhile, the commu-
nication thread dequeues the requests for communication to perform the requested
communications, and checks the communication completion. The communication
thread executes only the communication, and the other threads perform computation
tasks.

Figure 8 shows the performance and breakdown of blocked Cholesky factor-
ization with the communication optimization denoted as “Task (opt).” The “Task
(opt)” version of blocked Cholesky factorization performs better than the multi-
tasking execution with MPI_THREAD_MULTIPLE. The reason for this is that
the communication time decreases compared with the “Task” version, as shown in
Figs. 8, because of the use of the communication thread. The relative performances
compared with the barrier-based “Parallel Loop” implementation improve to 138%
on the Oakforest-PACS systems.

258 M. Sato et al.

(a
)

(b
)

F
ig
.9

Pe
rf

or
m

an
ce

of
th

e
Pi

ng
-P

on
g

be
nc

hm
ar

k
on

th
e

O
ak

fo
re

st
-P

A
C

S
an

d
C

O
M

A
sy

st
em

s.
(a

)
O

ak
fo

re
st

-P
A

C
S.

(b
)

C
O

M
A

XcalableMP 2.0 and Future Directions 259

4 Retrospectives and Challenges for Future PGAS Models

Since 2007, we have been developing the XcalableMP PGAS language and its
reference implementation by the Omni compiler.

In this section, the challenges for future PGAS models are presented with some
retrospectives on our project.

4.1 Low-Level Communication Layer for PGAS Model

PGAS is implemented by Remote Memory Access (RMA) providing light-weight
one-sided communication and low overhead synchronization semantics. For pro-
grammers, both PGAS and RMA are programming interfaces and offer several
constructs such as remote read/write and synchronizations.

Remote Direct Memory Access (RDMA) is a mechanism (operation) to access
data in remote memory by giving address in (shared) address space. It can be
done without involving the CPU or OS at the destination node. Recent advanced
interconnect such as Cray Aries interconnect and Fujitsu Tofu of K computer and
Tofu-D of Fugaku support remote DMA operations which strongly support efficient
one-sided communication.

For the most PGAS runtimes, one-sided communication operations such as
Remote Direct Memory Access (RDMA) functions in the MPI are used to imple-
ment remote put/get operations in the PGAS languages. Although MPI3 provides
several RMA APIs as library interface, the advantages of direct use of RMA/RDMA
Operations are as follows:

• Multiple data transfers can be performed with a single synchronization operation.
• Some irregular communication patterns can be more economically expressed.
• The RDMA can be significantly faster than send/receive on systems with

hardware support for remote memory access.

We found the multiple data transfers for the stencil computation can be optimized
by using a single synchronization operation at the end [13]. As described in Chap. 3,
our XMP Coarray were implemented by both MPI and Fujitsu low-level Tofu API.
In case of MPI, we used “passive target” mode in MPI one-sided communication. It
is noted that the MPI flush operation and synchronization do not sometimes match
to implement “sync_images”, and the complex “window” management to expose
the memory as a coarray. Finally, Fujitsu RDMA interface is much faster than MPI
in the K computer.

Other problem is the communication in the multithreaded environment.
As described in the previous sections, we found the performance problem of
MPI_THREAD_MULTIPLE. As the connection-less semantics of RDMA would
be suited to communications in multithreaded environment, we believe that a new
design of low-level communication layer would be a desirable solution in near
future.

260 M. Sato et al.

4.2 XcalableMP as a DSL for Stencil Applications

The Domain Specific Language (DSL) is a promising approach to make the
programing easy in a specific domain. Many DSLs such as OpenFOAM in CFD
are successful.

Many DSLs are proposed to describe the typical stencil computation. On the
other hand, we propose the mixed-language programming with XcalableMP in
Chap. 5. Using this model, the main kernel of the computation can be written
in XcalableMP and other controls, input/output and house-keeping operation are
written by other familiar languages such as Python. In this case, a part of XMP
is thought as a kind of DSL to write the stencil computation with global view
programming.

The advantages of this approach are as follows:

• By using the XMP global view programming model, the stencil computation can
be described in a simple loop based on its original sequential program.

• The stencil communication can be done by the XMP optimized stencil commu-
nication runtime [13].

• The advanced optimization of the stencil operations is enabled by a set of the
directives for the extended stencil optimization such as a loop unrolling and
temporal blocking, added in the latest XcalableMP specification, version 1.4 [14].

4.3 XcalableMP API: Compiler-Free Approach

Although many PGAS languages, such as UPC and Chapel, CAF, have proposed,
it is hard to say that they are fully accepted by the community of parallel program-
ming. Recently, the libraries supporting the PGAS model, such as OpenShmem [15],
GlobalArray [16], even MPI3 RMA, are getting popular for programming some
specific applications. Furthermore, many C++ template-based design for PGAS,
such as UPC++ [17], DASH [18], are proposed as a compiler-free approach, as C++
template provides powerful abstraction mechanism. This approach may increase
portability, clean separation from base compiler optimization, but a problem is that
it is sometimes hard to debug in C++ template once a programmer writes wrong
programs.

The approach of extending the language given by the support of the compiler, the
compiler-approach, may give:

• A new language, or language extension provides easy-to-use and intuitive feature
resulting in better productivity.

• This approach enables the compiler analysis for further optimization, such as
removal of redundant sync and selection of efficient communication.

In reality, the compiler-approach is not easy to be accepted for deployment and
supports in many sites, resulting in the failure of wide dissemination.

XcalableMP 2.0 and Future Directions 261

We will have a plan to design the library interface for XcalableMP programming
model, XMP API, which is aiming to provide the most equivalent programming
functions by the set of libraries.

4.4 Global Task Parallel Programming Model for Accelerators

The task-based programming recently supported in OpenMP 4.0 enables to expose
a lot of parallelism by executing several tasks of the program in the form of task-
graph. To accelerate the task-based parallel program by accelerators such as GPU
and FPGA, it is useful for some tasks frequently executed in parallel to be offloaded
to accelerators as an asynchronous task executed by accelerators.

In previous section, the global task parallel programming model is presented.
The next step will be that this global task parallel programming model is extended
to tasks offloaded to accelerators attached to each node in accelerated clusters.

Exploration of new high-performance architectures from programing model’s
point of view is an important challenge. Future parallel architecture will be more
heterogenous having many kinds of accelerators and devices attached to the nodes
and directly connected between accelerators by some dedicated interconnect. To
program such a complex and heterogenous parallel system, the global task parallel
programming model will give a flexible and decomposable model to exploit such
heterogenous high-performance architecture.

References

1. Flagship 2020 Project (Supercomputer Fugaku), https://www.r-ccs.riken.jp/en/overview/
exascalepj/

2. H. Murai, M. Sato, An efficient implementation of stencil communication for the XcalableMP
PGAS parallel programming language, in 7th International Conference on PGAS Program-
ming Models, Edinburgh (2013)

3. FUJITSU Ltd., Development Studio uTofu User’s Guide (2020)
4. RIKEN Advanced Institute for Computational Science (RIKEN AICS), Fiber Miniapp Suite

(2104), fiber-miniapp.github.io
5. H. Murai, M. Nakao, H. Iwashita, M. Sato, Preliminary performance evaluation of coarray-

based implementation of fiber Miniapp suite using XcalableMP PGAS language, in Second
Annual PGAS Applications Workshop (PAW), Denver, CO (2017)

6. CCS QCD Solver benchmark program, https://www.ccs.tsukuba.ac.jp/qcd/
ccsqcdsolverbenchmic/

7. NTChem Overview, https://www.r-ccs.riken.jp/software_center/software/ntchem/overview/
8. K. Tsugane, J. Lee, H. Murai, M. Sato Multi-tasking execution in PGAS language XcalableMP

and communication optimization on many-core clusters, in HPC Asia 2018, Tokyo (2018), pp.
75–85

9. Joint Center for Advanced High Performance Computing (JCAHPC), Basic Specification of
Oakforest-PACS, http://jcahpc.jp/files/OFP-basic.pdf

https://www.r-ccs.riken.jp/en/overview/exascalepj/
https://www.r-ccs.riken.jp/en/overview/exascalepj/
fiber-miniapp.github.io
https://www.ccs.tsukuba.ac.jp/qcd/ccsqcdsolverbenchmic/
https://www.ccs.tsukuba.ac.jp/qcd/ccsqcdsolverbenchmic/
https://www.r-ccs.riken.jp/software_center/software/ntchem/overview/
http://jcahpc.jp/files/OFP-basic.pdf

262 M. Sato et al.

10. D. Alejandro, A. Eduard, B. Rosa M, L. Jesus, M. Luis, M. Xavier, P. Judit, OmpSs: a proposal
for programming heterogeneous multi-core architectures. Parallel Process. Lett. 21, 173–193
(2011)

11. Joint Center for Advanced High Performance Computing (JCAHPC), Basic Specification of
Oakforest-PACS, http://jcahpc.jp/files/OFP-basic.pdf

12. OSU Micro-Benchmarks, http://mvapich.cse.ohio-state.edu/benchmarks/
13. H. Iwashita, M. Nakao, H. Murai, M. Sato, A source-to-source translation of coarray Fortran

with MPI for high performance, in HPC Asia 2018, Tokyo (2018)
14. XcalableMP Language Specification v 1.4, https://xcalablemp.org/download/spec/xmp-spec-

1.4.pdf
15. OpenShmem, http://www.openshmem.org/site/
16. Global Arrays, https://hpc.pnl.gov/globalarrays/
17. Y. Zheng, A. Kamil, M.B. Driscoll, H. Shan, K. Yelick, UPC++: a PGAS extension for

C++, in 2014 IEEE 28th International Parallel and Distributed Processing Symposium (2014),
pp. 1105–1114

18. K. Fuerlinger, T. Fuchs, R. Kowalewski, DASH: a C++ PGAS library for distributed data
structures and parallel algorithms, in 2016 IEEE 18th International Conference on High Perfor-
mance Computing and Communications; IEEE 14th International Conference on Smart City;
IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
Sydney, NSW (2016), pp. 983–990. https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0140

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://jcahpc.jp/files/OFP-basic.pdf
http://mvapich.cse.ohio-state.edu/benchmarks/
https://xcalablemp.org/download/spec/xmp-spec-1.4.pdf
https://xcalablemp.org/download/spec/xmp-spec-1.4.pdf
http://www.openshmem.org/site/
https://hpc.pnl.gov/globalarrays/
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0140
http://creativecommons.org/licenses/by/4.0/

	Preface
	Contents
	XcalableMP Programming Model and Language
	1 Introduction
	1.1 Target Hardware
	1.2 Execution Model
	1.3 Data Model
	1.4 Programming Models
	1.4.1 Partitioned Global Address Space
	1.4.2 Global-View Programming Model
	1.4.3 Local-View Programming Model
	1.4.4 Mixture of Global View and Local View

	1.5 Base Languages
	1.5.1 Array Section in XcalableMP C
	1.5.2 Array Assignment Statement in XcalableMP C

	1.6 Interoperability

	2 Data Mapping
	2.1 nodes Directive
	2.2 template Directive
	2.3 distribute Directive
	2.3.1 Block Distribution
	2.3.2 Cyclic Distribution
	2.3.3 Block-Cyclic Distribution
	2.3.4 Gblock Distribution
	2.3.5 Distribution of Multi-Dimensional Templates

	2.4 align Directive
	2.5 Dynamic Allocation of Distributed Array
	2.6 template_fix Construct

	3 Work Mapping
	3.1 task and tasks Construct
	3.1.1 task Construct
	3.1.2 tasks Construct

	3.2 loop Construct
	3.2.1 Reduction Computation
	3.2.2 Parallelizing Nested Loop

	3.3 array Construct

	4 Data Communication
	4.1 shadow Directive and reflect Construct
	4.1.1 Declaring Shadow
	4.1.2 Updating Shadow

	4.2 gmove Construct
	4.2.1 Collective Mode
	4.2.2 In Mode
	4.2.3 Out Mode

	4.3 barrier Construct
	4.4 reduction Construct
	4.5 bcast Construct
	4.6 wait_async Construct
	4.7 reduce_shadow Construct

	5 Local-View Programming
	5.1 Introduction
	5.2 Coarray Declaration
	5.3 Put Communication
	5.4 Get Communication
	5.5 Synchronization
	5.5.1 Sync All
	5.5.2 Sync Images
	5.5.3 Sync Memory

	6 Procedure Interface
	7 XMPT Tool Interface
	7.1 Overview
	7.2 Specification
	7.2.1 Initialization
	7.2.2 Events

	References

	Implementation and Performance Evaluation of Omni Compiler
	1 Overview
	2 Implementation
	2.1 Operation Flow
	2.2 Example of Code Translation
	2.2.1 Distributed Array
	2.2.2 Loop Statement
	2.2.3 Communication

	3 Installation
	3.1 Overview
	3.2 Get Source Code
	3.2.1 From GitHub
	3.2.2 From Our Website

	3.3 Software Dependency
	3.4 General Installation
	3.4.1 Build and Install
	3.4.2 Set PATH

	3.5 Optional Installation
	3.5.1 OpenACC
	3.5.2 XcalableACC
	3.5.3 One-Sided Library

	4 Creation of Execution Binary
	4.1 Compile
	4.2 Execution
	4.2.1 XcalableMP and XcalableACC
	4.2.2 OpenACC

	4.3 Cooperation with Profiler
	4.3.1 Scalasca
	4.3.2 tlog

	5 Performance Evaluation
	5.1 Experimental Environment
	5.2 EP STREAM Triad
	5.2.1 Design
	5.2.2 Implementation
	5.2.3 Evaluation

	5.3 High-Performance Linpack
	5.3.1 Design
	5.3.2 Implementation
	5.3.3 Evaluation

	5.4 Global Fast Fourier Transform
	5.4.1 Design
	5.4.2 Implementation
	5.4.3 Evaluation

	5.5 RandomAccess
	5.5.1 Design
	5.5.2 Implementation
	5.5.3 Evaluation

	5.6 Discussion

	6 Conclusion
	References

	Coarrays in the Context of XcalableMP
	1 Introduction
	2 Requirements from Language Specifications
	2.1 Images Mapped to XMP Nodes
	2.2 Allocation of Coarrays
	2.3 Communication
	2.4 Synchronization
	2.5 Subarrays and Data Contiguity
	2.6 Coarray C Language Specifications

	3 Implementation
	3.1 Omni XMP Compiler Framework
	3.2 Allocation and Registration
	3.2.1 Three Methods of Memory Management
	3.2.2 Initial Allocation for Static Coarrays
	3.2.3 Runtime Allocation for Allocatable Coarrays

	3.3 PUT/GET Communication
	3.3.1 Determining the Possibility of DMA
	3.3.2 Buffering Communication Methods
	3.3.3 Non-blocking PUT Communication
	3.3.4 Optimization of GET Communication

	3.4 Runtime Libraries
	3.4.1 Fortran Wrapper
	3.4.2 Upper-layer Runtime (ULR) Library
	3.4.3 Lower-layer Runtime (LLR) Library
	3.4.4 Communication Libraries

	4 Evaluation
	4.1 Fundamental Performance
	4.2 Non-blocking Communication
	4.3 Application Program
	4.3.1 Coarray Version of the Himeno Benchmark
	4.3.2 Measurement Result
	4.3.3 Productivity

	5 Related Work
	6 Conclusion
	References

	XcalableACC: An Integration of XcalableMP and OpenACC
	1 Introduction
	1.1 Hardware Model
	1.2 Programming Model
	1.2.1 XMP Extensions
	1.2.2 OpenACC Extensions

	1.3 Execution Model
	1.4 Data Model

	2 XcalableACC Language
	2.1 Data Mapping
	Example

	2.2 Work Mapping
	Restriction
	Example 1
	Example 2

	2.3 Data Communication and Synchronization
	Example

	2.4 Coarrays
	Restriction
	Example

	2.5 Handling Multiple Accelerators
	2.5.1 devices Directive
	Example
	2.5.2 on_device Clause
	2.5.3 layout Clause
	Example
	2.5.4 shadow Clause
	Example
	2.5.5 barrier_device Construct
	Example

	3 Omni XcalableACC Compiler
	4 Performance of Lattice QCD Application
	4.1 Overview of Lattice QCD
	4.2 Implementation

	5 Performance Evaluation
	5.1 Result
	5.2 Discussion

	6 Productivity Improvement
	6.1 Requirement for Productive Parallel Language
	6.2 Quantitative Evaluation by Delta Source Lines of Codes
	6.3 Discussion

	References

	Mixed-Language Programming with XcalableMP
	1 Background
	2 Translation by Omni Compiler
	3 Functions for Mixed-Language
	3.1 Function to Call MPI Program from XMP Program
	3.2 Function to Call XMP Program from MPI Program
	3.3 Function to Call XMP Program from Python Program
	3.3.1 From Parallel Python Program
	3.3.2 From Sequential Python Program

	4 Application to Order/Degree Problem
	4.1 What Is Order/Degree Program
	4.2 Implementation
	4.3 Evaluation

	5 Conclusion
	References

	Three-Dimensional Fluid Code with XcalableMP
	1 Introduction
	2 Global-View Programming Model
	2.1 Domain Decomposition Methods
	2.2 Performance on the K Computer
	2.2.1 Comparison with Hand-Coded MPI Program
	2.2.2 Optimization for SIMD
	2.2.3 Optimization for Allocatable Arrays

	3 Local-View Programming Model
	3.1 Communications Using Coarray
	3.2 Performance on the K Computer

	4 Summary
	References

	Hybrid-View Programming of Nuclear Fusion Simulation Code in XcalableMP
	1 Introduction
	2 Nuclear Fusion Simulation Code
	2.1 Gyrokinetic PIC Simulation
	2.2 GTC

	3 Implementation of GTC-P by Hybrid-view Programming
	3.1 Hybrid-View Programming Model
	3.2 Implementation Based on the XMP-Localview Model: XMP-localview
	3.3 Implementation Based on the XMP-Hybridview Model: XMP-Hybridview

	4 Performance Evaluation
	4.1 Experimental Setting
	4.2 Results
	4.3 Productivity and Performance

	5 Related Research
	6 Conclusion
	References

	Parallelization of Atomic Image Reconstruction from X-ray Fluorescence Holograms with XcalableMP
	1 Introduction
	2 X-ray Fluorescence Holography
	2.1 Reconstruction of Atomic Images
	2.2 Analysis Procedure of XFH

	3 Parallelization
	3.1 Parallelization of Reconstruction of Two-Dimensional Atomic Images by OpenMP
	3.2 Parallelization of Reconstruction of Three-dimensional Atomic Images by XcalableMP

	4 Performance Evaluation
	4.1 Performance Results of Reconstruction of Two-Dimensional Atomic Images
	4.2 Performance Results of Reconstruction of Three-dimensional Atomic Images
	4.3 Comparison of Parallelization with MPI

	5 Conclusion
	References

	Multi-SPMD Programming Model with YML and XcalableMP
	1 Introduction
	2 Background: International Collaborations for the Post-Petascale and Exascale Computing
	3 Multi-SPMD Programming Model
	3.1 Overview
	3.2 YML
	3.3 OmniRPC-MPI

	4 Application Development in the mSPMD Programming Environment
	4.1 Task Generator
	4.2 Workflow Development
	4.3 Workflow Execution

	5 Experiments
	6 Eigen Solver on the mSPMD Programming Model
	6.1 Implicitly Restarted Arnoldi Method (IRAM), Multiple Implicitly Restarted Arnoldi Method (MIRAM) and Their Implementations for the mSPMD Programming Model
	6.2 Experiments

	7 Fault-Tolerance Features in the mSPMD Programming Model
	7.1 Overview and Implementation
	7.2 Experiments

	8 Runtime Correctness Check for the mSPMD Programming Model
	8.1 Overview and Implementation
	8.2 Experiments

	9 Summary
	References

	XcalableMP 2.0 and Future Directions
	1 Introduction
	2 XcalableMP on Fugaku
	2.1 Performance of XcalableMP Global View Programming
	2.2 Performance of XcalableMP Local View Programming

	3 Global Task Parallel Programming
	3.1 OpenMP and XMP Tasklet Directive
	3.2 A Proposal for Global Task Parallel Programming
	3.3 Prototype Design of Code Transformation
	3.4 Preliminary Performance
	3.5 Communication Optimization for Manycore Clusters

	4 Retrospectives and Challenges for Future PGAS Models
	4.1 Low-Level Communication Layer for PGAS Model
	4.2 XcalableMP as a DSL for Stencil Applications
	4.3 XcalableMP API: Compiler-Free Approach
	4.4 Global Task Parallel Programming Model for Accelerators

	References

