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Abstract The need to improve software engineering practices is continuously ris-
ing and software development practitioners are highly interested in improving their
software systems and the methods to build them. And well, software engineering
research has numerous success stories. The Ernst Denert Software Engineering
Award specifically rewards researchers that value the practical impact of their work
and aim to improve current software engineering practices. This chapter summarizes
the awards history as well as the current reward process and criteria.
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2 M. Felderer et al.

1 Relevance of Software Engineering

The need to improve software engineering practices is continuously rising. While
commercial software systems in the 1980s and 1990s typically comprised a few
hundred thousand lines of code, Windows 10 today has more than 50 million lines
of code. Google’s code base size is estimated at more than 2 billion lines of code,
where thousands of software developers are contributing. There are more than 20
million professional software developers in the world, and in the USA they already
make up 2.5% of the entire workforce. Recent technology advances in connectivity
and artificial intelligence create a plethora of ever-growing software systems that
are impossible to manage without sound software engineering practices.

Software engineering research had numerous success stories in the past. Design
patterns experienced by practitioners were codified by academics and became an
important communication tool for developers across the world. The Representa-
tional State Transfer (REST) architecture style captures key principles for designing
web services and was a fundamental contribution to the world wide web. The ACM
Impact Project traced back the design of many commercial middleware products to
Ph.D. theses on distributed computing from the 1970s. Similar investigations were
done for programming languages, configuration management, code walkthroughs,
and exception handling. While it is still relatively rare that the output of a
software engineering Ph.D. thesis is directly commercialized, the concepts and ideas
sometimes influence commercial products indirectly, and the impact on software
engineering practices is visible only much later.

Software development practitioners are highly interested in improving their
software systems and the methods to build them. Microsoft Research interviewed
3000 Microsoft developers on how they viewed the practical relevance of academic
works in the field. In general, the developers consider the best works in the field
positive and are looking for ways to integrate them into their daily work. However,
some research ideas are also characterized as “unwise,” for example tools that are
not needed, empirical studies that produce no actionable outcome, methods that are
tuned for very specific contexts, approaches that incur such high costs that they
outweigh the benefits.

Therefore, the Ernst Denert Software Engineering Award specifically rewards
researchers that value the practical impact of their work and aim to improve
current software engineering practices. Creating tighter feedback loops between
professional practitioners and academic researchers is essential to make research
ideas ready for industry adoption. Researchers who demonstrate their proposed
methods and tools on non-trivial systems under real-world conditions shall be
supported, so that the gap between research and practice can be decreased.
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2 History of the Ernst Denert Software Engineering Award

“Passion Software-Engineering.” This was the headline of a 2015 newspaper article
about Ernst Denert. And they were absolutely right. Ernst Denert (Fig. 1) is really
passionate about developing software with excellent quality in a predictable and
systematic style. His seminal book on Software-Engineering in 2001,1 the famous
“Black Book on Software-Engineering” is depicted in Fig. 2. This book was the
basis for software development projects at the company sd&m as well as teaching
courses in practical application of software development techniques to industrial
projects.

Fig. 1 Ernst Denert

Ernst Denert furthermore is very much interested in encouraging young people
to study computer science or at least to learn how programming and digitalization
works, but also computer science students to concentrate on software engineering
principles and software development. Starting with a degree in communications
engineering he early moved to computer science in his Ph.D. thesis at TU Berlin,
where software engineering was already an issue.

Then he went to industry and relatively soon started together with colleagues the
already mentioned software development company “sd&m” (Software Design and
Management) in 1982. He headed the company until 2001, when he left for a new
endeavor, namely CEO of the IVU Traffic Technologies AG. He thus moved from
individual software development projects to a software product house.

Ernst Denert was always passionate on Software Engineering. That was why he
also was active in teaching at the Munich University of Technology in 1991, where
he also received an Honorary Professorship position and also founded the Ernst

1Ernst Denert: Software-Engineering, Springer Berlin, 1991.



4 M. Felderer et al.

Fig. 2 Software Engineering
by Ernst Denert2

Denert Software Engineering price back in 1989. The price was at first funded by
the Ernst Denert Stiftung and now is funded by the Gerlind & Ernst Denert Stiftung.

The software engineering community greatfully thanks the Gerlind & Ernst
Denert Stiftung for their continuous support of the community.

As said: It was always an important topic for Professor Denert to push forward
the field of Software Engineering. This was therefore logical to run a special
conference on Software Engineering to bring together the most influential Software
Engineering Pioneers and also publish a proceedings of that happening (Fig. 3).4

Currently, Ernst Denert is also funding and working on a project called “Vitruv,”5

where we can expect a book on software architecture to emerge. We are looking
forward to see many more interesting things to come.

2From https://www.springer.com/de/book/9783642843440.
3From https://www.springer.com/de/book/9783540430810.
4Software Pioneers. Contributions to Software Engineering. Published by Manfred Broy and Ernst
Denert, Springer, 2002.
5https://software-architecture.org/.

https://www.springer.com/de/book/9783642843440
https://www.springer.com/de/book/9783540430810
https://software-architecture.org/
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Fig. 3 Software Pioneers3

3 Award Submission Process

For the 2019 and forthcoming awards, the criteria have changed slightly, the
organization was taken over by the GI, and the form of presentation of the nominated
works has been extended by this book. The call for submissions to the 2019 awards
was roughly as follows.

The Ernst Denert Software Engineering Award for outstanding contributions to
the Software Engineering discipline is awarded by the

• Fachbereich Softwaretechnik of the German Society for Informatics (GI), the
• Suisse Society for Informatics (SI), and the
• Austrian Computing Society (OCG).

The award is given annually and endowed with 5,000 Euros. We gratefully thank
the Gerlind & Ernst Denert-Stiftung for the kind donation of the price and takeover
of the financial costs for the colloquium.

The prize is awarded for excellent work within the discipline of Software
Engineering, which includes methods, tools, and procedures for better and efficient
development of high quality software that was created in the area of SI, OCG, or GI.

An essential requirement is applicability and usability in industrial practice.
The practical applicability must be demonstrated. Open source software or results
published as open data are welcome, but commercial products are excluded.

Proposals can be sent by (1) scientific universities in Germany, Austria, and
Switzerland that have the right to confer doctorates in computer science. Univer-



6 M. Felderer et al.

sities may propose dissertations and habilitations. All work with a final examination
in the period from September 1 to August 31 is permitted. (2) Proposals can also be
sent by all software engineers—these are typically members of one of the Software
Engineering divisions within the GI, SI, or OCG. They may propose academic or
non-academic work that they consider worthwhile. This particularly includes work
in the area of open source or open data with relevance to the Software Engineering
field.

Deadline for a proposal in 2019 was December 15.
For dissertations and postdoctoral theses the following documents have been

submitted: dissertation (resp. habilitation), justification of the proposal by the sub-
mitting software engineer/university, the reports of the reviewing experts, whereby
at least one review was prepared by an independent expert, a curriculum vitae of the
Doctoral candidate including a list of publications, and a link to the corresponding
doctoral regulations of the university.

For open source and open data projects the submission had to include a project
description, justification of the proposal by the submitting software engineer, a
laudatio of at least one independent expert, a curriculum vitae of the project
members involved, a list of publications referring to the project, links on the sources
of the published results (e.g., an open data directory), and installation and usage
instructions.

4 Selection Criteria

The jury discussed extensively the criteria to be applied to the submissions and
agreed on the following list of considerations:

1. Above all is the potential to contribute to a better software engineering practice.
Practical applicability of the results is therefore a conditio sine qua non.

2. This applicability needs to be demonstrated (or, if long timescales are involved,
at least demonstrated to be likely).

3. Contributions may aim to be useful directly, e.g., via a tool, or indirectly via
theoretical or empirical insights.

4. They may target the software product or the software development process.
5. They may pertain to “hot” topics or to eternal problems of software development.
6. They may promise large improvements (“tenfold”) in narrow domains of applica-

bility or incremental improvements in broad domains. Domains of applicability
can be narrow or broad with respect to technology assumptions, development
process assumptions, assumptions regarding the target software application
domain, or the set of software development tasks being addressed.

7. These criteria will lead to the need of comparing apples to oranges. When
comparing dissimilar contributions in a neck-and-neck race, the jury will favor
more credible packages over more impressive ones.

8. The best submissions are those that will be viewed as important steps forward
even 15 years from now.
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9. This is not a Ph.D. dissertation price. Submissions can come from individuals or
groups, can take any form, may cover longer or shorter time spans, and do not
even need to be framed as research.

5 Selection Process

From the submitted proposal the jury, which is identical to the editors of this book,
selected an appropriate subset of candidates.

The selected “Ernst Denert Software Engineering Award Nominees,” were asked
to present their results and further empirical findings in the form of a colloquium that
took place in January 15th to 17th, 2020 in the Leibniz Center for Computer Science
at Schloss Dagstuhl (Fig. 4).

Fig. 4 The nominees and the
committee in Dagstuhl6

All nominated candidates and especially the winning person (or group) are
invited to summarize their work in this book.

Further information can be found on the webpage of the Software Engineering
community of the GI.7

6 The Award Nominees and the Winner

Based on the nominations that have been received, the following list of nominees
was selected and invited to a two day Dagstuhl seminar. Each of the candidates had
the possibility to present and defend her or his thesis in front of the committee (in
alphabetical order):

6From https://www.dagstuhl.de/20033.
7https://fb-swt.gi.de/ernst-denert-se-preis.

https://www.dagstuhl.de/20033
https://fb-swt.gi.de/ernst-denert-se-preis
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• Sebastian Baltes, Universität Trier
was nominated by his university with his doctoral thesis on Software Developers’
Work Habits and Expertise. His doctor father was Stephan Diehl, his second
examiner Stefan Wagner.

• Timo Greifenberg, RWTH Aachen
was nominated by his university with his doctoral thesis on Artefaktbasierte
Analyse modellgetriebener Softwareentwicklungsprojekte. His doctor father was
Bernhard Rumpe, his second examiner Steffen Becker.

• Marco Konersmann, Universität Duisburg-Essen
was nominated by his university with his doctoral thesis on Explicitly Integrated
Architecture. His doctor father was Michael Goedicke, his second examiner Ralf
Reussner.

• Marija Selakovic, Technischen Universität Darmstadt
was nominated by her university with her doctoral thesis on Actionable Program
Analyses for Improving Software Performance. Her doctor father was Michael
Pradel, her second examiner Frank Tip.

• Johannes Späth, Paderborn University
was nominated by his university with his doctoral thesis on Synchronized
Pushdown Systems for Pointer and Data-Flow Analysis. His doctor father was
Eric Bodden, his second examiner Karim Ali.

We congratulate Johannes Späth, his doctoral supervisor Eric Bodden, and
Paderborn University for winning the Ernst Denert Software Engineering Award
2019.

Johannes had the possibility to present the most important results of his thesis
called Synchronized Pushdown Systems for Pointer and Data-Flow Analysis during
his talk at the software engineering conference SE 2020 from February 24 to 28,
2020, Innsbruck, Austria and of course also in Chapter 3 of this book.

Fig. 5 Award ceremony in Innsbruck: Professor Denert and Dr. Späth
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Figure 5 shows the laudator Professor Denert handing over the award certificate
to the award winner Johannes Späth after the presentation.

7 Contents of the Book

All the nominees were given the chance to present in the following chapters

• the key findings of the work,
• their relevance and applicability to practice and industrial software engineering

projects, and
• additional information and findings that have only been discovered afterwards,

e.g., when applying the results in industry.

Software Engineering projects are teamwork. In practice outstanding accident
research is also teamwork. This somewhat conflicts with the requirement that a
doctoral thesis is a monograph. To reflect the teamwork idea, quite like Professor
Denert is discussing in Chap. 2, we decided that the following papers, describing this
research can (or should even) be written with co-authors that somehow contributed
to the findings during the thesis development or continue to work with the results.

7.1 Thanks

We gratefully thank Professor Ernst Denert for all his help in the process and the
Gerlind & Ernst Denert Stiftung for the kind donation of the price and takeover
of the financial costs for the colloquium. We also thank all the people helping in
the organization, including Katrin Hölldobler for managing the submission and
the selection process, the colloquium, and the book organization. We thank the
organization team of Castle Dagstuhl, whose customary overwhelming hospitality
allowed us to run the colloquium. Furthermore, we thank the organization team
of the software engineering conference SE 2020 to host the award ceremony in
Innsbruck. Finally, we thank the GI, the OCG, and the SI computer science societies
and especially their Software Engineering divisions for their support in making this
price a success.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Software Engineering

Ernst Denert

Abstract “A Passion for Software-Engineering.” This was the headline of a 2015
newspaper article about Ernst Denert. And they were absolutely right. Ernst Denert
is really passionate about developing software with excellent quality in a predictable
and systematic style. Furthermore, he is very much interested in encouraging
young people to study computer science or at least to learn how programming
and digitalization works, as well as computer science students to focus on software
engineering principles and software development. This chapter is a personal view
of Ernst Denert on the software engineering discipline.

A personal view on the Software Engineering discipline.

1 1968

“What we need, is software engineering,” said F.L. Bauer in 1968, and he organized
the conference in Garmisch that founded our profession. The following is a transla-
tion of an excerpt from his report (available only in German) on this conference in
the Informatik-Spektrum1 25 years later:

One day, annoyed by the fact that in the end, nothing more than yet another pure academic
project could emerge, I commented: “The whole trouble comes from the fact that there is so
much tinkering with software. It is not made in a clean fabrication process, which it should
be.” Noticing that this shocked some of my colleagues, I added: “What we need, is software
engineering.” That made an impact.

1Quoted from F.L. Bauer: Software Engineering—wie es begann, (Software Engineering—How it
Began) Informatik-Spektrum, Oct. 1993, page 259.

E. Denert (�)
Grünwald, Germany
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12 E. Denert

The official conference report2 recorded the following:
The phrase ‘software engineering’ was deliberately chosen as being provocative, in imply-
ing the need for software manufacture to be based on the types of theoretical foundations
and practical disciplines, that are traditional in the established branches of engineering.

The aim was that software development should become an engineering discipline
with a systematic method of working, roughly according to the schema

plan—design—produce—check—install—maintain.

Just like a house needs a construction plan and a machine needs a design drawing,
so a software system needs an architecture.

2 Software Architecture

Software architecture is the supreme discipline of software engineering. It covers
the design of software systems as a whole, with their technical functionality and
the interfaces to the outside world, as well as the internal structure at every level of
detail. At a high level, software architecture is concerned with the construction of
a system made up of modules, the interaction between these modules in executable
processes, and the distribution of the system over hardware components. At a
detailed level, software architecture is concerned with the design of individual
modules: on the one hand, with their external view, that is, their interface to other
modules, and on the other hand, with their internal structure, that is, which functions
operate on which data.

In IT, the word “architecture” has become established as a “superior” designation
for various types of structures, and this is also true in the case of software. Software
architecture is a buzzword that is much overused. It has many interpretations, with
the understanding sometimes being that architecture in itself is something good.
That is not true—some architecture is bad. Sometimes we hear, “Our software has
no architecture.” That is also not correct; every system has an architecture. What is
generally meant is that the structure of the system is poor or inconsistent, it exists
undocumented only in the minds of some programmers or is completely unknown.
Nevertheless, it does exist.

Such structures are frequently represented in graphic form with boxes and lines
between the boxes, mostly without defining precisely what they mean. The boxes
represent components, modules, functions, files, and processes; the lines and arrows
represent various types of relationship, references, data flows, calls, and much more.
There is often no consensus over them, not even within a project, a department, and

2SOFTWARE ENGINEERING, Report on a conference sponsored by the NATO SCIENCE
COMMITTEE, Garmisch, Germany, Oct. 7–11, 1968, chapter 1, page 13.
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certainly not within whole commercial businesses, and just as little in scientific
institutions.

My definition of software architecture is that it is the static and dynamic
structures that shape a software system, considered from three perspectives, referred
to as views: the application, design, and program views. We think about the
system differently in each view. And thinking needs language. All people think
in their native language, musicians think in notes, architects think in drawings,
medical professionals think in Latin terms, mathematicians think in formulas. And
programmers think in programming languages. However, that is not enough to
design software architecture; each view has its own terminology, concepts, and
forms of presentation:

2.1 Application View

For this view, we have to understand the language of the users and think in
concepts and the terminology of the application, regardless of the type of the
application (business, technical, scientific, media, etc.). In business systems, this
view is concerned with data, technical functionality, and business processes, as well
as interaction with users (dialogs) and neighboring systems; in technical systems,
the view is concerned with the physical machinery and control processes. Technical
content is described with natural language and more or less formal representations.

2.2 Design View

This view is concerned with the modular design of a software system—that is, its
construction from modules with their static and dynamic relationships. Graphical
representations are very popular, both informal ones as well as those with formal
syntax and semantics, such as UML. Natural language is also used here. On the one
hand, the technical concepts of the application view shape the design; they should be
clearly recognizable in the design. On the other hand, the design defines the system
platform that the software runs on.

2.3 Program View

Here, formal languages dominate programming languages, interfaces of frameworks
and libraries (APIs), and communication protocols. The development environment
and tools, as well as programming rules, shape the method of working. The high-
level program structures are predetermined by the design; in particular, the directory
structure of the source code is predetermined by the modularization.
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At first glance, the architecture views look like development phases. They can
be seen as such, but I consider the architecture of a software system primarily in
terms of the result—that is, what it is or what it should be—rather than in terms of
how it is created. Just imagine, a ready-to-use software system has to be approved
before it is used, just like trains, new models of automobiles, or medical devices.
The test required for this purpose examines the system’s actual architecture, based
on its documentation and above all how it is manifested in code; it does not examine
how the system has been created. In this results-based examination, development
processes and procedure models are not important—regardless of whether they are
agile or based on phases.

We are repeatedly faced with the differentiation between “rough” and “detailed,”
such as the differentiation between a rough specification and a detailed specification.
This is useful if the rough form is a precise abstraction of the detailed form, but not if
rough means only “thereabouts.” A rough presentation is also good if it gives a good
overview of complex content with a lot of details. However, the application view
must in no way be understood as rough, with the design view being a refinement of
the application view. Precise details are important in all views.

3 Software Development

Engineering-based software development is of course based on an architecture plan,
but in practice there is still a lot of “tinkering” (F.L. Bauer) even today, although this
is now referred to as being “agile.”

Over the decades, many concepts for processes in software projects have been
published and practiced. Various designations based on graphical representations
have been defined for the structured process in phases: waterfall model, spiral
model, and V model. These metaphors are not significantly enlightening in terms
of facts, but they are the object of ideological discussions.

In large organizations, and state organizations in particular, there is a tendency
to implement phase and maturity models in a formal, bureaucratic way. The best-
known examples are the Capability Maturity Model (CMMI) of the Software
Engineering Institute (SEI) in the USA and the German V model. On the other
hand, and as a countermovement, a good 20 years ago agile methods came into
being, starting with Extreme Programming (XP) and today, primarily Scrum.

Making a plan is an alien concept to proponents of agile; writing down
requirements and an architecture design is deemed to be a waste of time and effort.
Instead, in a series of steps, mostly referred to as sprints, something is instantly
programmed that could be useful to the user. If this gives rise to bungled program
structures, refactoring is conducted. That is strange: we do not think about the
software structure at the beginning, but when it is ruined after multiple programming
sprints, we start to repair it. That is not a structured way of working. There is
no engineering-based methodology in the agile methods; consequently, the Scrum
guide makes no mention of software engineering.
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In his book “Agile!,” Bertrand Meyer offers a profound, factual presentation,
analysis, and assessment of the agile methods. I have only one thing to add to this,
the best thing about the agile methods is their name: agile—a terrific marketing gag.
Who dares to say, we are not agile, we work in a structured way?

In a nutshell: regardless of how a team works—with an engineering method,
using agile methods, or in some other way—thought must be given to the software
architecture. It can be designed before programming and written down, or inge-
niously hacked into the code—but the software architecture must have been thought
about. In the end, something is definitely written down—in the code. Hopefully, it
works. In code veritas.

4 Teamwork

Software systems are complex and large; they can consist of hundreds of thousands
or even millions of lines of code. They cannot be developed by one person alone;
teamwork is required. This requires structure—in the software, an architecture and
in the team, a division of tasks. Not everyone can do everything at any time.

Recently, teamwork has been idealized: mixed groups, with no manager, in
flat hierarchies, acting under their own responsibility and self-organizing, they
achieve everything easily in daily standup meetings, from sprint to sprint. Deep and
thorough contemplation by individuals—for example, about aspects of architecture
such as the modularity of a software—is not required. The German Wikipedia article
about Scrum states the following: “The development team is responsible . . . for
delivery . . . is self-organizing.”

Responsibility cannot be ascribed to a team; it can only be ascribed to individual
persons. And a professional project team does not come together like a group of
friends organizing a party; it is initially put together by someone with personnel
responsibility. If there are no further specifications, an informal organization does
arise along with leadership, but there are no clear, binding responsibilities. A friend
of mine caricatures it with the following saying: “Team = Toll, ein anderer macht’s”
(great, somebody else will do it).

In contrast, one of the fundamental experiences of my (professional) life is that
people want to and must be led. Of course, the military type of leadership with
command and obedience does not come into question for software developers;
it is more like that of a football trainer of a professional team or the conductor
of a symphony orchestra. A project lead must be convincing and must have the
professional skill to instruct employees in both a communicative and a motivational
way and to ensure that they (can) achieve good results. On the occasion of the



16 E. Denert

25th anniversary of the Software Engineering Conference in Garmisch, I wrote
something in an Informatik-Spektrum article that still holds true today3:

Good team spirit is more important for the success of a software project than all
technology. Therefore, management must constantly strive to ensure conditions for a
good atmosphere—a manager must create a good quality of working life. Of course, the
atmosphere can only arise in the team itself, with everyone contributing to it; the better the
communication and understanding, the better the atmosphere.

5 A Final Wish

Looking back over a quarter of a century of the Software Engineering Prize showed
me that a large part of the work is concerned with analytical processes, such as
analyzing code and models, but design methods rarely appear. This is regrettable,
because software engineering is the doctrine of shaping, designing, building, and
developing software systems. Why is there no software engineering school at some
universities that states, by way of a standard: This is how you should do it? I would
be happy for there to be two or three that compete with one another, possibly with
each having a different orientation with regard to the types of systems, be they
technical, operational, or media systems.

Is it down to the lack of practical relevance or the short-winded academic
life, in which primarily six-page articles are published with the aim of improving
the citation index? Textbooks are now rarely written. I would like a constructive
software engineering doctrine, as a book, available on paper and of course digitally,
supplemented by a website with code examples and further materials.

Most Computer Science graduates who go into business practice work on
developing software—for new systems as well as existing ones. Such a doctrine
should serve to accompany them on their journey, explaining specifically how to
develop. We may then hear in companies, “We follow the X school”—that would
be something.

And it could help software engineering, our practical and very relevant discipline,
gain standing in the public view again, from which, just like Computer Science, it
has disappeared, overrun by the ubiquitous buzzwords.

3E. Denert: Software-Engineering in Wissenschaft und Wirtschaft: Wie breit ist die Kluft?
(Software Engineering in Science and Business: How Wide Is the Gap?) Informatik-Spektrum,
Oct. 1993, page 299.
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Applications of Synchronized Pushdown
Systems

Johannes Späth

Abstract A precise static data-flow analysis transforms the program into a context-
sensitive and field-sensitive approximation of the program. It is challenging to
design an analysis of this precision efficiently due to the fact that the analysis
is undecidable per se. Synchronized pushdown systems (SPDS) present a highly
precise approximation of context-sensitive and field-sensitive data-flow analysis.
This chapter presents some data-flow analyses that SPDS can be used for. Further
on, this chapter summarizes two other contributions of the thesis “Synchronized
Pushdown System for Pointer and Data-Flow Analysis” called BOOMERANG and
IDEal. BOOMERANG is a demand-driven pointer analysis that builds on top of
SPDS and minimizes the highly computational effort of a whole-program pointer
analysis by restricting the computation to the minimal program slice necessary
for an individual query. IDEal is a generic and efficient framework for data-flow
analyses, e.g., typestate analysis. IDEal resolves pointer relations automatically and
efficiently by the help of BOOMERANG. This reduces the burden of implementing
pointer relations into an analysis. Further on, IDEal performs strong updates, which
makes the analysis sound and precise.

1 Introduction

Our economy as well as our society more and more depends on software solutions.
In the era of digitalization almost every company hires software developers to build
new or integrate existing software solutions to improve workflows and thus the
company’s productivity, and to monitor processes or experiment with new business
models. The increase in demand also increases the amount of software code written.

Additionally, companies move their solutions to cloud resources and let them
exchange sensitive data between internal or external services and company
machines and desktop computers. The demand in cloud services simplifies cyber-
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attacks. The services are reachable from within a network. Therefore no service can
trust any user input, and security must be also taken care of at implementation level.

Spotting security bugs on the software implementation level, however, is a
cumbersome task and extremely challenging, even for experts. It is frequently a
chain of events within the software that attackers abuse to access the system. Take
for example a SQL injection attack; a SQL injection allows an attacker to read,
manipulate, or even delete contents of a database. First, this attack requires a hacker
to be able to manipulate external input data and second, the execution of a SQL
command that relies on the manipulated data. Therefore, it is the combination
of at least two lines of code that contribute to software being vulnerable to a
SQL injection attack. Modern software projects commonly consist of hundreds of
thousands to millions of lines of code [7, 19, 36], and finding the right sequence of
events manually is near to impossible, particularly because most parts of modern
software are third-party libraries that are developed externally.

This advocates for automated solutions to detect security bugs in code. Static
data-flow analysis is one automated technique. Apart from many applications
in compilers and bug detection [16, 31, 43], a static data-flow analysis has the
capability to detect SQL injections directly within the code base [27, 29]. In general,
static data-flow analysis reasons about the flow of program variables within the
software without executing it, which means static analysis can be applied and used
before the software is even tested. Static analysis can, at least in theory, trace all
data-flows along all potential execution paths within software and hereby provides
provable guarantees that the analysis does not miss a single pattern it is looking
for. This is a helpful property from a security perspective, where missing a single
security bug suffices for an attacker to take over the whole system.

However, the size of modern software applications not only challenge manual
inspection but even limit automated static data-flow analyses. Static analyses are
said to be imprecise and slow. They generate a large amount of false warnings and
take hours or days to complete. In all cases, neither developers nor security experts
are willing to use data-flow techniques on a daily basis [15].

There are various design dimensions of a static analysis fine-tuning its pre-
cision (i.e., reduce the false warnings). A data-flow analysis can be intra- or
interprocedural. In the former, effects of a call site on a data-flow are over-
approximated, while in the latter, effects are precisely modelled by analyzing the
called method(s). Additionally, an interprocedural data-flow analysis is precise if it
is context-sensitive, which means the data-flow analysis correctly models the call
stack and the data-flow returns to the same call site it enters the method. A design
dimension for the static analysis of object-oriented languages is field-sensitivity. A
field-sensitive data-flow analysis reasons precisely with data-flows in the case the
data escapes to the heap, i.e., when it is stored within a field of an object and loaded
later during execution again.

Apart from being precise, a static analysis is also expected to guarantee sound-
ness. For example, a compiler only applies a code optimization if the optimization
does not change the program’s behavior under any given user input. An analysis
detecting unchecked null pointer dereferences better finds all critical dereferences



Applications of Synchronized Pushdown Systems 21

within the program, a single false negative, i.e., if the analysis misses reporting an
unchecked flow, may lead to a program crash.

In practice, no static analysis can find all optimizations, all bugs, or all vulnerabil-
ities within a program (no false negatives) and detect those with perfect precision (no
false positives). False positives and false negatives are the fundamental consequence
of Rice’s theorem [35], which states that checking any semantic properties of a
program is an undecidable problem. Consequently, any model for static analysis is
forced to over- or under-approximate the actual runtime semantics of the program.
Over-approximations add false positives to the result and reduce the precision of
the analysis, while under-approximations introduce false negatives and lower the
analysis’ recall.

Apart from the effect on precision and recall, the approximation is also the
influencing factor on the performance of a data-flow analysis. An interprocedural
data-flow is less efficient to compute in comparison to an intraprocedural analy-
sis. Adding context- or field-sensitivity to an interprocedural analysis introduces
additional complexity within the model and negatively affects the computational
effort. Therefore, balancing precision, recall, and performance of a static analysis is
a tedious task.

The core contribution of the thesis is a new approach to data-flow analyses
that balances precision and performance while retaining the analysis’ recall. The
solution, called synchronized pushdown systems (SPDS), models a context-, field-,
and flow-sensitive data-flow analysis taking the form of two pushdown systems [9].
One system models context-sensitivity, and the other one models field-sensitivity.
Synchronizing the data-flow results from both systems provides the final results of
the data-flow analysis. A context- and field-sensitive analysis is undecidable [32]
and forces SPDS to over-approximate. SPDS, though, are specifically designed to
expose false positives only in corner cases for which the thesis hypothesizes (and
confirms in the practical evaluation) that they are virtually non-existent in practice:
situations in which an improperly matched caller accesses relevant fields in the same
ways as the proper caller would.

2 Motivating Examples

In this section, we show several code flaws that a static data-flow analysis can detect.
We highlight null pointer dereference analysis, taint analysis, typestate analysis
and, an analysis that detects cryptographic misuses. Null pointer dereference
analysis is a classical code flaw regularly faced by developers. Taint analysis is
primarily used to detect security-related issues such as injection flaws or privacy
leaks. Typestate analysis detects misuses of stateful APIs. The research that the
thesis presents is fundamental, yet it applies to all these types of data-flow analyses.
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2.1 Null Pointer Analysis

Null pointer dereferences cause NullPointerExceptions, one of the most com-
mon exception faced by Java developers [18, 26]. A static null pointer analysis
detects statements in a program that dereference a potentially uninitialized variable.
In Java this typically occurs for fields that are neither initialized nor initialized with
null.

1 class Car{
2 Engine engine;
3
4 public class Car(){}
5
6 void drive(){
7 //throws a NullPointerException, if called on blueCar.
8 this.engine.start();
9 }

10
11 void setEngine(Engine e){
12 this.engine = e;
13 }
14
15 public static void main(String...args){
16 Car redCar = new Car();
17 redCar.setEngine(new Engine());
18 redCar.drive();
19
20 Car blueCar = new Car();
21 blueCar.drive();
22 }
23 }

Fig. 1 An application that crashes in a NullPointerException at runtime in line 8

Figure 1 showcases a program that throws a NullPointerException in line 8
when called from Car::main() in line 21. The program does allocate two Car

objects in line 16 and in line 20. For the second object, stored in variable blueCar,
no call to setEngine() is present and the field engine remains uninitialized.

Detecting this bug statically is challenging as the analysis needs to be context-
sensitive to give precise information when the null pointer exception may occur.
The analysis needs to distinguish the two objects and the two calling contexts of
drive() in line 21 and in line 18. Under the former, the program crashes, whereas
under the latter calling context, the program does not crash as setEngine() has
priorly been called.

A common approach to model context-sensitivity is the k-limited call-strings
approach, which limits the stack of calls by a fixed level of k. In practice, limits
of length 1 to 3 are standard to achieve scalable solutions [24, 28]. For object-
oriented program, these small values quickly lead to imprecise or unsound results,
depending on if the analysis designer choses to over- or under-approximate. SPDS
do not require to approximate the call stack.
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24 class Application{
25 Map<String,String> requestData = new TreeMap<>();
26 Connection conn = ...;
27
28 /** Entry point to the web application.
29 * The HttpServletRequest object contains the payload.
30 */
31 void doGet(HttpServletRequest req, ...){
32 String val = req.getParameter("data"); //Untrusted data
33 Map<String,String> map = this.requestData;
34 map.put("data", val);
35 }
36
37 /** Executes two SQL commands to store this.requestData to the database.
38 */
39 void writeToDatabase(){
40 Map<String,String> map = this.requestData;
41 Statement stmt = this.conn.createStatement();
42 for(Entry<String,String> entry : map.getEntries()){
43 String key = entry.getKey();
44 String value = entry.getValue();
45 String keyQuery = "INSERT INTO keys VALUES (" + key+ ");";
46 stmt.executeQuery(keyQuery);//No SQL injection
47 String keyValueQuery = "INSERT INTO " + key +
48 " VALUES (" + value + ");";
49 stmt.executeQuery(keyValueQuery); //SQL injection
50 }
51 }
52 }

Fig. 2 A web application vulnerable to a SQL injection attack

2.2 Taint Analysis

Injection flaws are the most predominant security vulnerabilities in modern soft-
ware. Injection flaws occur in a program when untrusted data reaches a statement
that executes a command (for instance, bash) or when the untrusted data is used
to construct a SQL query that is interpreted and executed. In 2017, OWASP1

lists Injections as the top category of vulnerabilities with the highest risk of
being exploited. A typical example of an injection attack for a database-backed
software system is a SQL injection. If a software system contains a SQL-injection
vulnerability, the database can be compromised and manipulated, and the system is
no longer trustworthy. An attacker can read, add, and even remove data from the
database.

A system is vulnerable to a SQL injection attack, if the system does not
properly sanitize user input and uses the input to execute a dynamically constructed
SQL command. Figure 2 demonstrates a minimal back-end of a web application
vulnerable to a SQL injection. The back-end maps each incoming request to a call
to doGet() within the application and hands over a HttpServletRequest object

1https://www.owasp.org/.

https://www.owasp.org/
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that represents the request with its parameter. Method doGet() loads the user-
controllable parameter "data" from the request object in line 32 and stores the
String as value into a TreeMap. The TreeMap is maintained as field requestData

of the Application object.
Assume the application to persist the map to the database at a later time of execu-

tion by calling writeToDatabase. The method writeToDatabase dereferences the
field this.requestData to variable map in line 40 and iterates over all entries of
map. For each entry, it constructs and executes two SQL queries (calls in line 46 and
in line 49). The first query string only includes a key of the map, whereas the second
query contains both, the key and the value of each map’s entry. As the value of the
map contains untrusted data, the application is vulnerable to a SQL injection attack
in line 49, which executes the query string contained in variable keyValueQuery.
With a correct sequence of characters, the attacker can end the SQL insert command
and execute any other arbitrary SQL command. For example, a command to delete
the whole database.

Static data-flow analysis is an effective technique in preventing such injection
flaws. However, detecting the SQL injection flaw in the example by means of a data-
flow analysis is challenging to implement efficiently if the analysis is required to be
precise and sound at the same time (i.e., no false positive and no false negatives). A
precise and sound abstraction for the heap is required to model the data-flow through
the map.

Injection flaws are detected by a static taint analysis, a special form of data-
flow analysis. In the case of a taint analysis for SQL injections, a taint is any user-
controllable (and hence also attacker-controllable and thus untrusted) input to the
program. Starting from these inputs, a taint analysis models program execution and
computes other aliased variables that are also tainted, i.e., transitively contain the
untrusted input. When a tainted variable reaches a SQL query, the analysis reports
a tainted flow. For the code example in Fig. 2, variable val in method doGet()

is tainted initially. To correctly flag the code as vulnerable, the static taint analysis
must model variable value in line 44 to be aliased to val.

A data-flow analysis trivially detects the alias relationship when the analysis
uses an imprecise model. For instance, the field-insensitive model taints the whole
TreeMap object when the tainted variable val is added to the map in line 34.
While field-insensitivity is trivial to model, the analysis results are highly imprecise.
Not only are the values of the map tainted, but also any key and the field-
insensitive analysis imprecisely marks the constructed SQL query in line 45 as
tainted. Therefore, a field-insensitive analysis reports a false positive, as it marks
line 46 to execute an unsanitized SQL query.

Field-sensitive data-flow analyses track data-flows through fields of objects and
are more precise than field-insensitive analyses. A field-sensitive analysis only
reports a single SQL injection for the example. However, the detection of the alias
relationship between the variables value and val is more than non-trivial for a field-
sensitive static analysis. The analysis must model the complete data-flow through
the map, which spans from the call to put() in line 34 to the call in line 44 and
involves several accesses to the heap. For instance, at the call to put() in line 34,
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1 public V put(K key, V value) {
2 TreeMap.Entry<K,V> parent = //complex computation done

earlier
3 TreeMap.Entry<K,V> e = new TreeMap.Entry<>(key, value,

parent);
4 fixAfterInsertion(e);
5 }
6 private void fixAfterInsertion(Entry<K,V> x) {
7 while (x != null && x != root && x.parent.color == RED) {
8 //removed many branches here...
9 x = parentOf(x);

10 rotateLeft(parentOf(parentOf(x)));
11 }
12 }
13 private void rotateLeft(TreeMap.Entry<K,V> p) {
14 if (p != null) {
15 TreeMap.Entry<K,V> r = p.right;
16 p.right = r.left;
17 if (l.right != null) l.right.parent = p;
18 //removed 8 lines with similar field accesses
19 r.left = p;
20 p.parent = r;
21 }
22 }

Listing 1 Excerpt code example of TreeMap which is difficult to analyze statically.

the value val escapes as second argument to the callee’s implementation of the
method put() of the class TreeMap.

Listing 1 shows an excerpt of the callee’s code taken from the Java 8 imple-
mentation2 of TreeMap. The class contains an inner class TreeMap.Entry that lists
three fields (parent, right, and left), each of type TreeMap.Entry. Method
put() creates a TreeMap.Entry that wraps the inserted element (value). The
TreeMap.Entry is then used to balance the tree (call to fixAfterInsertion() in
line 56). The method fixAfterInsertion() iterates over all parent entries and
calls rotateLeft() to shift around elements within the tree (line 62). The latter
method stores to and loads from the fields parent, right, and left of the class
TreeMap.Entry.

The field-sensitive static taint analysis tracks variable value, which is the
second parameter of method put(). To cope with heap-reachable data-flows,
field-sensitive analyses commonly propagate data-flow facts in the form of access
paths [1, 2, 4, 5, 6, 10, 14, 41, 42]. An access path comprises a local variable followed

2http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/eab3c09745b6/src/share/classes/java/util/TreeMap.
java.

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/eab3c09745b6/src/share/classes/java/util/TreeMap.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/eab3c09745b6/src/share/classes/java/util/TreeMap.java
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by a sequence of field accesses, and every field-store statement adds an element to
the sequence. The while-loop of fixAfterInsertion (line 59) in combination
with the three field stores (lines 68, 71, and 72) within the method rotateLeft()

represents a common code pattern3 that leads to the generation of access paths
of all combinations contained in the set T = {this.f1.f2. · · · .fn.value | fi ∈
{right, left, parent}, n ∈ N}. The data-flow analysis reports the variable value

of method writeToDatabase() to alias to variable val of method doGet() only if
the correct access path exists in the respective set T of the statements retrieving the
value from the map (getEntries() in line 42 and getValue() in line 44).

The set of data-flow facts T is unbounded. Because most static data-flow
algorithms require a finite data-flow domain, they typically use k-limiting to limit
the field sequence of the access paths to length k [6]. When an access path of
length larger than k is generated, the analysis conservatively over-approximates the
(k + 1)th field. Therefore, not only will the field value of a TreeMap.Entry of the
map be tainted, but any other field will be tainted as well. For example, any key

inserted into the map imprecisely is tainted as TreeMap.Entry has a field key. For
this particular example, infinitely long field sequences are generated and for any
value of k, k-limiting imprecisely reports key to alias to value.

Access graphs represent one approach that avoids k-limiting [13, 17]. They
model the “language” of field accesses using an automaton. Access graphs represent
the set T finitely and precisely. However, just as access paths, also access graphs
suffer from the state explosion we show in Listing 1. In the illustrated situation, the
flow-sensitive analysis must store a set similar to T (not necessarily the same) of
data-flow facts, i.e., access graphs, at every statement, and potentially every context
where a variable pointing to the map exists. Given the large size of T , computing
the data-flow fixed-point for all these statements is highly inefficient, and the use of
access graphs does not improve it.

The thesis presents the solution SPDS that does not suffer from the state
explosion, because a pushdown system efficiently represents millions and even
infinitely many access paths in one concise pushdown automaton holding data-flow
results for all statements.

2.3 Typestate Analysis

A typestate analysis is a static data-flow analysis used, for instance, to detect
misuses of Application Programming Interfaces (APIs) and is capable of detecting
erroneous API uses at compile time, i.e., before execution. Typestate analyses use
an API specification, mostly given in the form of a finite state machine (FSM)

3Recursive data structures, for instance LinkedList and HashMap, generate such patterns.
Additionally, using inner classes provokes these patterns as the compiler automatically stores the
outer class instance within a field of the inner class.
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encoding the intended usage protocol of the API. Based on the specification, the
analysis verifies the usage of the API within the code. For example, before an object
is destructed, it must be in a state marked as accepting state within the FSM.

The API of the type java.io.FileWriter shipped with the standard Java
Runtime is a textbook example4 of an API for which a typestate analysis is helpful
in preventing resource leaks. The API can be used to write data from the program
to a file on the disk.

To use the API, the developer must first construct a FileWriter by supplying
a File object that the FileWriter shall write to. Calling the method write on
the FileWriter object with the respective data as argument tells the FileWriter

which data shall be written into the File. Writing the content of a file to disk is
an expensive operation delegated to the operation system, and the API delays the
respective system calls to the close() method of the FileWriter object. The API
assumes the close() method to be called exactly once prior to the destruction of
the object. If the user of the API does not call close(), the file remains open. The
file resource is blocked by the process, and other processes may not read and write
the same file and the program has a resource leak. Additionally, data is never written
to the file as the output is only flushed to the file upon calling close().

Figure 3 shows the finite state machine that represents a correct usage pattern
for the API. The state labeled by I is the initial state. The transition into this state
is labeled by <init> and refers to the constructor of a FileWriter object. The
accepting states are the states I and C, the latter is the state in which the FileWriter

object is correctly closed. All transitions into the C state are labeled by close. The
state machine lists a third state (W) that the object switches into after a write call.
In this state, data has been written to the FileWriter object but not yet persisted to
the actual file on disk. Therefore, it is not an accepting state.

Fig. 3 The API usage pattern
encoded as finite state
machine for the class
java.io.FileWriter

I W C
<init> write close

close

write

The program in Fig. 4 shows a code snippet that uses the API. The code
constructs a FileWriter object and stores it into field writer of the Example

object. After method bar() is called, the field writer is loaded and the contained
FileWriter object is closed in line 81.

One challenge of a typestate analysis is to perform strong updates when the state
of an object changes. At the close() call in line 81, it is not clear which actual

4In Java 7, try-with-resources blocks were introduced to automatically close and release
file handles. We assume the developer does not use these syntax elements.
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Fig. 4 Simple, but
challenging program to
analysis for a typestate
analysis

75 class Example{
76 FileWriter writer;
77 public void foo() throws IOException {
78 File file = new File("Data.txt");
79 this.writer = new FileWriter(file);
80 bar();
81 this.writer.close();
82 }
83 }

object is closed. If method bar() allocates a new FileWriter and overwrites the
field writer, the FileWriter allocated in line 79 remains open and the typestate
analysis cannot strongly update the state of the latter object. If the analysis detects
only a single object to ever be pointed to by field writer at statement 81, a strong
update can be made. However, the typestate analysis suddenly requires precise
points-to information, which is notoriously challenging to obtain efficiently.

Points-to analysis computes points-to information. Despite much prior effort, it
is known that a precise points-to analysis does not scale for the whole program [25].
Instead, the typestate analysis only requires points-to information for a rather small
subset of all pointer variables, namely the variables pointing to objects that the
FileWriter is stored within.

The thesis presents BOOMERANG, a demand-driven, and hence efficient, points-
to analysis that computes results for a query given in the form of a pointer variable
at a statement. BOOMERANG is precise (context-, flow-, and field-sensitive). Based
on BOOMERANG, the thesis presents the data-flow framework IDEal , a framework
that is powerful enough to encode a typestate analysis that performs strong updates.

2.4 Cryptographic Misuses

Almost any software system processes, stores, or interacts with sensitive data.
Such data typically includes user credentials in the form of e-mail addresses and
passwords, as well as company data such as the company’s income, employee’s
health, and medical data. Cryptography is the field of computer science that develops
solutions to protect the privacy of data and to avoid malicious tampering.

Software developers should have a basic understanding of key concepts in
cryptography to build secure software systems. Prior studies [8, 30] have shown
that software developers commonly struggle to do so and as a result fail to
implement cryptographic5 tasks securely. While cryptography is a complex and
difficult-to-understand area, it also evolves quickly and software developers must
continuously remain informed about broken and out-dated cryptographic algorithms
and configurations.

5Hereafter, used interchangeably with crypto.



Applications of Synchronized Pushdown Systems 29

84 public class Encrypter{
85 private SecretKey key;
86 private int keyLength = 448;
87
88 public Encrypter(){
89 KeyGenerator keygen = KeyGenerator.getInstance("Blowfish");
90 keygen.init(this.keyLength);
91 this.key = keygen.generateKey();
92 }
93
94 public byte[] encrypt(String plainText){
95 Cipher cipher = Cipher.getInstance("AES");
96 //cipher.init(Cipher.ENCRYPT_MODE, this.key);
97 byte[] encText = cipher.doFinal(plainText.getBytes());
98 return encText;
99 }

100 }

Fig. 5 An example of a misuse of a cryptographic API

But it is not only the lack of education on the developer’s side, common crypto
APIs are also difficult to use correctly and securely. For instance, implementing
a data encryption with the Java Cryptographic Architecture6 (JCA), the standard
crypto API in Java, requires the developer to combine multiple low-level crypto
tasks such as secure key generation, choosing between symmetric or asymmetric
crypto algorithms in combination with matching block schemes and padding modes.
While the JCA design is flexible to accommodate any potential combination, it
yields to developers implementing crypto tasks insecurely by misusing the API.

Figure 5 demonstrates an example code that incorrectly uses some of the
JCA’s classes for encryption. At instantiation time of an Encrypter object, the
constructor generates a SecretKey for algorithm "Blowfish" (parameter to the
call to getInstance() in line 89) of size 448 (parameter to call in line 90). In
line 91, the key is stored to field key of the constructed Encrypter instance. The
Encrypter object’s public API offers a method encrypt(), which, when called,
creates a Cipher object in line 95. The Cipher object is configured to encrypt data
using the "AES" algorithm (parameter to the call to getInstance() in line 95).
The developer commented out line 96 that (1) initializes the algorithm’s mode and
(2) passes the SecretKey stored in field key to the Cipher object. The call to
doFinal() in line 97 performs the encryption operation and encrypts the content of
the plainText and stores it in the byte array encText.

There are four API misuses in this code example. First, the developer
commented-out a required call in line 96. Second, if the developer includes the
line in the comment, the generated key ("Blowfish") and the encryption cipher
("AES") do not match. Third, and related, the key length of 448 is not suitable for
the algorithm AES that expects a size of 128, 192, or 256. Fourth, depending on the

6https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html.

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
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crypto provider, AES is used with electronic codebook (ECB) mode. Using ECB
results in low entropy within the bytes of encText. The first three API misuses
throw exceptions at runtime that, using static analysis, could already be detected at
compile time. Using ECB, however, does not throw an exception and silently leads
to insecure code.

Such API misuses are found in real-world software artifacts. To cope with the
detection of such misuses, in [20], we present a domain-specific language (DSL),
called CrySL, for the specification of API usage rules. We designed a static analysis
compiler that, based on a set of CrySL rules, automatically generates a static
analysis. The analysis uses BOOMERANG and IDEal and hereby is able to detect
misuses even across data-flow constructs such as fields and callings contexts of
distinct objects.

3 Synchronized Pushdown Systems

Pushdown systems solve context-free language reachability and have been studied
intensively [3, 9, 21, 23, 34]. Synchronized Pushdown Systems (SPDS) [39] are one
of the core contributions of the dissertation.

SPDS combines two pushdown systems, the pushdown system of calls and
the fields-pushdown system. For each pushdown system, SPDS builds on existing
efficient algorithms. When both pushdown systems are synchronized, the results
yield a highly precise context- and field-sensitive data-flow analysis.

3.1 Calls-Pushdown System

The calls-pushdown system models the data-flow along the use-def chains of
variables and also models the data-flow of variables along call and return methods.

Definition 1 A pushdown system is a triple P = (P, Γ,Δ), where P and Γ

are finite sets called the control locations and the stack alphabet, respectively. A
configuration is a pair ⟪p,w⟫, where p ∈ P and w ∈ Γ ∗, i.e., a control location
with a sequence of stack elements. The finite set Δ is composed of rules. A rule has
the form ⟪p, γ⟫ → ⟪p′, w⟫, where p,p′ ∈ P , γ ∈ Γ , and w ∈ Γ ∗. The length
of w determines the type of the rule. A rule with |w| = 1 is called a normal rule,
one with length 2 a push rule, and a rule of length 0 a pop rule. If the length of w is
larger than 2, the rule can be decomposed into multiple push rules of length 2.

The rules of a pushdown system P define a relation ⇒: If there exists a rule
⟪p, γ⟫ → ⟪p′, w⟫, then ⟪p, γw′⟫ ⇒ ⟪p′, ww′⟫ for all w′ ∈ Γ ∗. Based on an
initial start configuration c, the transitive closure of the relation (⇒∗) defines a set
of reachable configuration post∗(c) = {c′ | c ⇒∗ c′}. The set post∗(c) is infinite
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101 main(){
102 A u = new A();
103 A v = u;
104 A w = foo(v);
105 }

Normal rule of S Transitive Data-Flow

u v w

106 foo(A a){
107 if(...){
108 return a;
109 }
110 b = foo(a);
111 return b;
112 }

a b

Fig. 6 Example of the data-flow within a recursive program
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Fig. 7 The automat AS after saturation based on PS

but has a finite representation in the form of an automaton. The algorithm post∗
constructs this automaton based on a given pushdown system.

Example 1 Figure 6 shows a program that instantiates an object (o102). The object
is stored and loaded to and from the local variables u and v. The variable v is used
as argument to the call in 104. Next to the program, a directed graph represents the
rules of the pushdown system of calls (hereafter PS). Each edge represents a normal
rule of PS. Additionally, the pushdown system contains the push rule ⟪v, 103⟫→
⟪a, 106 · 104⟫ and the pop rule ⟪b, 111⟫→ ⟪w, ε⟫.

Based on the pushdown system PS and given an initial automaton accepting u at
102, the post∗ algorithms construct an automaton that encodes the reachability of the
object o102. Figure 7 depicts the saturated automaton that encodes the reachability
of the object o102.

The automaton also encodes the calling context under which each variable
reaches (or points-to) the initial object. For instance, variable a in line 110 points
to o102 under call stack 104. The program is recursive and there are potentially
infinitely many calls on the call stack. Accordingly, the automaton contains a loop
labeled by 110.



32 J. Späth

3.2 Field-Pushdown System

The call-pushdown system models the calling contexts and its context-sensitivity;
however, it is designed field-insensitively and over-approximates access to fields.

Field store and load statements can also be modelled precisely as a pushdown
system. Hereby, a field store statement matches a push rule, and a load statement
resembles a pop rule. The fields-pushdown system overcomes the imprecision of
k-limiting and renders the analysis more efficient.

k-limited analyses with low values of k, e.g., k = 1, 2, 3, are efficient to compute
but quickly introduce imprecision into the results; higher values of k make the
analysis precise but also affect the analysis time exponentially. In our practical
evaluation, we compare our abstraction to k-limiting and show that pushdown
systems are as efficient as k = 1 while being as precise as k = ∞ [37].

Definition 2 The field-PDS is the pushdown system PF = (V × S,F ∪ {ε},ΔF).
A control location of this system is a pair of a variable and a statement. We use
x@s for an element (x, s) ∈ V × S. The notation emphasizes that fact x holds at
statement s. The pushdown system pushes and pops elements of F to and from the
stack. An empty stack is represented by the ε field.

We write a configuration of PF as ⟪x@s, f0 ·f1 · . . . fn⟫. The configuration reads
as follows: The data-flow at statement s is accessible via the access path x.f0 · f1 ·
. . . fn.

PS and PF have similar set of rules. The major differences are at field store and
load statements. A field store generates a push rule, a field load statement a pop rule.

113 foo(u, v, w){
114 v.f = u;
115 x = w.f;
116 if(...){
117 w.g = v;
118 } else {
119 w.h = v;
120 }
121 }

Automat F

ou@113

v@114f
u@113
u@114
u@115
u@116
u@117
u@118
u@119
u@120

w@119h
w@117g
v@114
v@115
v@116
v@117
v@118
v@119
v@120

w@119

w@118

w@120
εf

h

g

h

g

Fig. 8 Example code and AF automaton. The automaton AF is constructed based on the initial
configuration ⟪u@114, ε⟫ and saturated based on the rules provided in Table 1

Example 2 Figure 8 depicts a program code containing three field stores and one
field load statement. Table 1 lists the push and pop rules of PF. Given the initial
configuration ⟪u@114, ε⟫, algorithm post∗ computes the automaton given in Fig. 8.
This automaton contains field- and flow-sensitive data-flow results. For instance, the
automaton encodes that the object initially contained in variable u is also reachable
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Table 1 Push and pop rules contained in ΔF of PF for the program
code in Fig. 8. The wildcard (∗) of the push rules represents a rule for
any g ∈ F

Push Rules

⟪u@113, ∗⟫→ ⟪v@114,f · ∗⟫
⟪v@116, ∗⟫→ ⟪w@117,g · ∗⟫
⟪v@118, ∗⟫→ ⟪w@119,h · ∗⟫

Pop Rules

⟪w@114,f⟫→ ⟪w@115, ε⟫

via w.g.f and w.h.f. The automaton does not contain a node that references x,
which means variable x of the program does not point to the same object as u.

3.3 Synchronization of Call-PDS and Field-PDS

While the call-pushdown system is field-insensitive, the field-pushdown system is
context-insensitive. Synchronized pushdown systems overcome the weaknesses of
each system and yield context- and field-sensitive data-flow results. The key idea
is to synchronize the results of the saturated post∗ automaton of both pushdown
systems. Note, the synchronization is not an automaton intersection. Both automata
use different stack alphabets and encode different languages.

Definition 3 For the call-PDS PS = (V,S,ΔS) and the field-PDS PF = (V ×
S,F ∪ {ε},ΔF), the synchronized pushdown systems are the quintuple SPDS =
(V,S,F∪{ε},ΔF,ΔS). A configuration of SPDS extends from the configuration of
each system: A synchronized configuration is a triple (v, s, f ) ∈ V×S

+×F
∗, which

we denote as ⟪v.f1 · . . . ·fm@s
s1·...sn
0 ⟫ where s = s0 · s1 · . . . · sn and f = f1 · . . . fm.

For synchronized pushdown systems, we define the set of all reachable synchronized
configurations from a start configuration c = ⟪v.f1 · . . . · fm@s

s1·...sn
0 ⟫ to be

postSF(c) = {⟪w.g@t
t1·...tn
0 ⟫ |⟪w@t0, g⟫ ∈ post∗

F
(⟪v@s0, f ⟫)

∧ ⟪w, t⟫ ∈ post∗
S
(⟪v, s⟫)}. (1)

Hence, a synchronized configuration c is accepted if ⟪v, s0 · . . . · sn⟫ ∈ AS and
⟪v@s0, f1 · . . . ·fm⟫ ∈ AF, and postSF(c) can be represented by the automaton pair
(AS,AF), which we refer to as AF

S
.

Intuitively, a configuration SPDS is accepted, only if the field automaton and the
call automaton accept the configuration.

Example 3 Figure 9 shows an example of a program with a data-flow path of
interwined calling context and field accesses. A directed graph below the code
visualizes the data-flow. Vertical edges correspond to calling context (push rules
=̂ opening parentheses / pop rule =̂ closing parentheses), while horizontal edges
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Fig. 9 A code example for
and a representation of the
code as directed graph

122 bar(u, v){
123 v.h = u;
124 w = foo(v);
125 x = w.g;
126 y = x.f;
127 }

128 foo(p){
129 q.g = p;
130 return q;
131 }

bar u v w x y

foo p q

h

124

g

124

g f

correspond to field store and loads. A field label with a line on top, e.g., f , means the
field f is loaded. SPDS computes reachability within this graph.7 For the program,
SPDS computes variable y not to point to u@122. The word along the path from y

to u is h · (124·g·)124 · g · f .
The parentheses (124 and )124 are properly matched in the context-free language,

and the path is context-sensitively feasible. However, the path is not feasible in a
field-sensitive manner. The field store access g matches the field load access g,
however, the field store of h does not match the field load f .

Any context- and field-sensitive data-flow analysis is undecidable [32]. There-
fore, also SPDS must over-approximate. Indeed, it is possible to construct cases
in which the analysis returns imprecise results [37]. In the evaluation however, we
were not able to find such cases in practice.

4 Boomerang

A points-to set is a set of abstract objects (e.g., allocation statements) that a variable
may point-to at runtime. SPDS does not compute full points-to set, but only a subset
of the points-to set of a variable. Points-to analysis is a non-distributive problem [33,
40], SPDS, however, propagates distributive information and (intentionally) under-
approximates the points-to set of a variable. Field accesses allow indirect data-flows
that are non-distributive. BOOMERANG is a pointer analysis that builds on top of
SPDS and computes points-to and all alias sets. All parts that can be computed in a
distributive fashion using SPDS, non-distributive parts are handled as an additional
fixed point computation. BOOMERANG is demand driven and answers queries. A
query is a variable at a statement that BOOMERANG computes the points-to set for.
For each query, BOOMERANG carefully combines forward- and backward-directed

7SPDS computes the reachability within the two automata AS and AF. To keep the visualization
simple, the automata are omitted.
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132 foo(){
133 u = new;
134 v = u;
135 x = new;
136 u.f = x;
137 y = v.f;
138 }

Normal rule

Indirect Flow

Heap StoreS
Injection of Aliases

o133

vu

o135

u.fx v.f y

S

Fig. 10 Non-distributivity of pointer relations

data-flow analyses and focuses on the minimal program slice necessary to answer
each query.

Example 4 Figure 10 is a minimal example showing that pointer relations are non-
distributive. The program instantiates two objects o133 and o135 in lines 133 and
135. During runtime x and y both variable point to the object o135. The object is
stored to access path u.f in line 135, which at runtime, also changes the content of
access path v.f as u and v alias. Using only a single SPDS, the static analysis only
propagates the data-flow in line 135 from x to u.f but not to v.f. Therefore, a SPDS
does not deliver sound points-to information. BOOMERANG, however, instantiates
one SPDS per object allocation and uses an additional fixed-point iteration to
connect indirect data-flows across multiple SPDS. Figure 10 indicates such indirect
data-flow in form of the blue dashed arrow.

A single program frequently allocates several thousand of objects, and computing
data-flow for each of those object does not scale if the analysis is field- and context-
sensitive. Instead of starting at every allocation site, BOOMERANG uses a demand-
driven design. A backward analysis decides which object allocation is relevant for a
single forward query [40].

5 Typestate Analyses Based on IDEal

With IDEal the dissertation further extends SPDS and BOOMERANG. IDEal is a
general framework for data-flow analysis and can be used for typestate analysis or
API usage mining. IDEal lifts PS and associated a weight to each rule. The new idea
of IDEal is to use weights to carry additional information along each data-flow path,
for instance, to encode typestate information as motivated in Sect. 2.3.

For a typestate analysis, the weights carry the actual state the object resides in
at every program point. Previous research on typestate analysis [11, 12] encoded
the state of the object as additional information within the data-flow domain, which
unnecessarily increases the state space of the analysis and leads to state explosion.
With weights, IDEal separates alias information from typestate information and
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reduces the state space of the analysis domain, enabling additional performance
benefits.

As motivated in Sect. 2.3, in the case of typestate, also aliasing of variables plays
an important role and IDEal resorts to BOOMERANG to trigger on-demand queries
to perform strong updates of the states [38].

In several experiments presented within publications [38, 39] as well as in the
dissertation [37], we compare an IDEal-based typestate analysis to a state-of-the-art
typestate analysis, we show that the new concept of separating alias information and
weights for typestate yields additional performance benefits.

6 CogniCrypt

BOOMERANG, IDEal , and SPDS also form the base technology behind the static
analysis component of the tool CogniCrypt.8 CogniCrypt is an Eclipse plugin
and is part of CROSSING, an interdisciplinary collaborative research center at
the Technical University of Darmstadt. CogniCrypt supports software developers
in correctly using cryptographic APIs within their software implementations.
CogniCrypt accepts rules as input and automatically compiles them into an IDEal-
and BOOMERANG-based static analysis. The rules are written in a new domain-
specific language, called CrySL.

6.1 The CrySL Language

To detect such API misuses, Krüger et al. [20] designed CrySL, a domain-specific
language that allows the specification of crypto API uses. CrySL defines a whitelist
approach that specifies correct uses of an API. CryptoAnalysis is the component
that compiles a set of rules to a static analysis. Executing the static analysis on
program code reports parts of the code that deviate from the specification. We briefly
introduce the main semantics of the language in this section and discuss the basic
design of CryptoAnalysis. The language definition and CrySL rule specifications9

are not part of the dissertation.
With the CrySL specifications for the JCA, CryptoAnalysis is able to detect

all four crypto-related issues showcased in Fig. 5. We discuss the important syntax
elements of CrySL based on a minimal10 CrySL specification covering the misuses
in Fig. 5. We refer to the original work [20] for the definition of all syntax elements
of CrySL.

8https://www.eclipse.org/cognicrypt/.
9https://github.com/CROSSINGTUD/Crypto-API-Rules.
10The complete specification is found at https://github.com/CROSSINGTUD/Crypto-API-Rules.

https://www.eclipse.org/cognicrypt/
https://github.com/CROSSINGTUD/Crypto-API-Rules
https://github.com/CROSSINGTUD/Crypto-API-Rules
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141 SPEC javax.crypto.KeyGenerator
142 OBJECTS
143 int keySize;
144 javax.crypto.SecretKey key;
145 java.lang.String algorithm;
146 EVENTS
147 Get: getInstance(algorithm);
148 Inits: init(keySize);
149 GenerateKey: key = generateKey();
150 ORDER
151 Gets, Inits, GenerateKey
152 CONSTRAINTS
153 algorithm in {"AES", "Blowfish", ...};
154 keySize in {128, 192, 256};
155 ENSURES
156 generatedKey[key, algorithm];

(a)

157 SPEC javax.crypto.Cipher
158 OBJECTS
159 java.lang.String trans;
160 byte[] plainText;
161 java.security.Key key;
162 byte[] cipherText;
163 EVENTS
164 Get: getInstance(trans);
165 Init: init(_, key);
166 doFinal: cipherText = doFinal(plainText);
167 ORDER
168 Get, Init, (doFinal)+
169 CONSTRAINTS
170 part(0, "/", trans) in {"AES", "Blowfish", "DESede", ..., "RSA"};
171 part(0, "/", trans) in {"AES"} => part(1, "/", trans) in {"CBC"};
172 REQUIRES
173 generatedKey[key, part(0, "/", trans)];
174 ENSURES
175 encrypted[cipherText, plainText];

(b)

Fig. 11 Two simplified CrySL rules for the JCA. (a) CrySL rule for
javax.crypto.KeyGenerator . (b) CrySL rule for javax.crypto.Cipher
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A CrySL specification is comprised of multiple CrySL rules. Each CrySL rule
starts with SPEC clause specifying the type of the class that the CrySL rule is defined
for. Figure 11 depicts two CrySL rules for the classes javax.crypto.Cipher

and javax.crypto.KeyGenerator. The SPEC clause is followed by an OBJECTS

block that defines a set of rule members. The values of the rule members are
then constrained on within the CONSTRAINTS block. For instance, the CONSTRAINTS

for the rule to KeyGenerator restricts the rule member keySize in line 154 to
the values 128, 192, or 256. When using a KeyGenerator, the integer value for
keySize must be one of the listed values.

The EVENTS block defines labels (e.g., Get in line 147 and Inits in line 148),
each label is a set of events. An event is an invocation of a method and is defined
via the method signature. For example, label Inits is defined as the event of calling
the method with signature init(int keySize) (line 148). The parameter name
(keySize) matches the name of a rule member, and when the program calls the
event’s method, the value of the parameter of the call is bound to the rule member
keySize, which means that the parameter must satisfy the given constraint.

The labels defined within the EVENTS block are used in the ORDER block. The
ORDER clause lists a regular expression (inducing a finite state machine) over the
labels and defines the usage pattern (i.e., typestate property) of the specified type.
Each object of the specification is required to follow the defined usage pattern. For
instance, the specification for KeyGenerator expects each object of its type to call
any method of the label GetInstance prior to any of the Inits call followed by
a GenerateKey call. The ORDER specification for Cipher uses a + for the label
doFinal, indicating that the method doFinal() must be called at least once and
arbitrary additional calls of the method can follow.

The remaining two blocks are the REQUIRES and ENSURES block of a rule.
Each line of these blocks lists a predicate. A predicate is defined by a name
followed by a list of parameters. CrySL predicates cover the specification of the
interaction of multiple objects of different types. The KeyGenerator rule lists a
predicate generatedKey with two parameters key and algorithm in the ENSURES

block in line 156. When an object of type KeyGenerator is used according to the
specification in the CONSTRAINTS, ORDER, and REQUIRES block, the predicate listed
in the ENSURES block is generated for the object. Other CrySL rules that interact with
KeyGenerator objects can list the predicate in their REQUIRES block. For instance,
the CrySL rule Cipher lists the predicate generatedKey as a required predicate in
line 173.

6.2 Compiling CrySL to a Static Analysis

CryptoAnalysis is a static analysis compiler that transforms CrySL rules into
a static analysis. Internally, CryptoAnalysis is composed of three static sub-
analyses: (1) an IDEal-based typestate analysis, (2) a BOOMERANG instance with
extensions to extract String and int parameters on-the-fly and (3) an IDEal-based
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taint analysis (i.e., all weights are identity). The three static analyses deliver input
to a constraint solver that warns if any part of the CrySL specification is violated.

Example 5 We discuss a walk-through of CryptoAnalysis based on the
CrySL specification defined in Fig. 11, and the code snippet provided in
Fig. 5. CryptoAnalysis first constructs a call graph and computes call-graph
reachable allocation sites for in CrySL-specified types. Factory methods can also
serve as allocation sites. For example, the factory methods getInstance() of
Cipher and KeyGenerator internally create objects of the respective type, and
CryptoAnalysis considers these calls as allocations sites. In the code example in
Fig. 5 the allocation sites are the objects o89 and o95.

Starting at the allocation sites, CryptoAnalysis uses IDEal to check if the object
satisfies the ORDER clause of the rule. The call sequence on the KeyGenerator object
o89 satisfies the required typestate automaton defined as regular expression in the
ORDER block. Opposed to that, the Cipher object o95 does not satisfy the ORDER

clause, because the developer commented out line 96. CryptoAnalysis warns the
developer about the violation of this clause (line 168).

CryptoAnalysis also extracts String and int parameters of events (statements
that change the typestate) to bind the actual values to the rule members of a CrySL
rule. For instance, the getInstance("Blowfish") call in line 89 binds the value
"Blowfish" to the rule member algorithm of the CrySL rule for KeyGenerator.
In this example, the String value is easy to extract statically, but it might also
be defined elsewhere in the program. For example, the value binding for the rule
member keySize is the actual int value flowing to the init call in line 90 as a
parameter. The actual value is loaded from the heap, because it is the value of the
instance field keyLength of the Encrypter object. Therefore, CryptoAnalysis

triggers a BOOMERANG query for 90 to find the actual int value of the field.
To conclude, CryptoAnalysis infers that object o89 generates a SecretKey

for the algorithm "Blowfish" with a key length of 448 in line 91. The
KeyGenerator rule disallows the chosen key length (CONSTRAINTS in line 154),
and CryptoAnalysis warns the developer to choose an appropriate keySize.

Assume the developer to change the code to use an appropriate value for
keySize, and the KeyGenerator is used in compliance to its CrySL specification,
then CryptoAnalysis generates the predicate generatedKey for the SecretKey

object stored to field key of the Encrypter instance as expected.
If, additionally, the developer includes the init call on the cipher object in

line 96, (1) the ORDER clause of the CrySL rule for Cipher is satisfied and (2) the
generatedKey predicate flows via the field this.key to the Cipher object o95. As
the Cipher rule REQUIRES the predicate (line 173), the ORDER and REQUIRES blocks
for the object o95 are satisfied.

However, the CONSTRAINTS for object o95 are still not satisfied. Therefore,
CryptoAnalysis reports that (1) the key is generated for algorithm "Blowfish",
and this selection does not fit the algorithm chosen for Cipher ("AES") and (2)
when using algorithm "AES", one should use it in "CBC" mode (CONSTRAINTS in
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line 171). When the developer fixes these two mistakes, CryptoAnalysis reports
the code to correctly use the JCA with respect to the CrySL rule.

6.3 Evaluation on Maven Central

Maven Central is the most popular software repository to which developers can
publish their software artifacts. Publishing allows other developers to easily access
and include the software into their own projects. At the time the experiment was
conducted, over 2.7 million software artifacts were published at Maven Central.

The repository contains artifacts in different versions. For one experiment of the
thesis, we run CryptoAnalysis on all artifacts in their latest versions of Maven
Central, a total of 152.996 artifacts. For over 85.7% of all crypto-using Maven
artifacts, the analysis terminates in under 10 min, and on average each analysis
takes 88 s. Given that CryptoAnalysis performs a highly precise and sophisticated
static analysis, these results are promising. Unfortunately, we also discovered that
many artifacts use the JCA insecurely, and 68.7% of all crypto-using Maven artifacts
contain at least one misuse.

Example 6 We want to elaborate on one finding more closely, because it shows the
capability of the analysis. Listing 2 shows a code excerpt of an artifact that uses a
KeyStore object. A KeyStore stores certificates and is protected with a password.
A KeyStore object has a method load() whose second parameter is a password.
The API expects the password to be handed over as a char[] array. The KeyStore

API explicitly uses the primitive type instead of a String, because Strings are
immutable and cannot be cleared.11 However, many implementations convert the
password from a String and hereby introduce a security vulnerability; when not
yet garbage collected, the actual password can be extracted from memory, e.g., via
a memory dump.

CryptoAnalysis detects the two security vulnerabilities code presented in
Listing 2. First, the password is converted from a String object via a call to
toCharArray() to the actual array (line 199), i.e., during the execution of the code
the password is maintained in memory as String. Second, under some conditions
(lines 178, 182, and 189 must evaluate to true), the password is hard-coded.

CryptoAnalysis reports a CONSTRAINTS error on this example, because the
String pass (highlighted by the green box) in line 199 may contain the String

"changeit" as it is defined in line 179 (also highlighted). The data-flow corre-
sponding to the finding is non-trivial to detect manually; however, CryptoAnalysis

is able to do so by the support of BOOMERANG. CryptoAnalysis triggers a
BOOMERANG query for the second parameter of the load() call in line 199 and
finds the toCharArray() call. From that call, the analysis traces the variable pass

11https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#
PBEEx.

https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#PBEEx
https://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#PBEEx
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23 protected String getKeystorePassword(){
24 String keyPass = (String)this.attributes.get("keypass");
25 if (keyPass == null) {

26 keyPass = "changeit";

27 }
28 String keystorePass = (String)this.attributes.get("

keystorePass");
29 if (keystorePass == null) {
30 keystorePass = keyPass;
31 }
32 return keystorePass;
33 }
34 protected KeyStore getTrustStore(){
35 String truststorePassword = getKeystorePassword();
36 if (truststorePassword != null) {
37 ts = getStore(..., ..., truststorePassword);
38 }
39 return ts;
40 }
41 private KeyStore getStore(String type, String path, String

pass){
42 KeyStore ks = KeyStore.getInstance(type);
43 if ((!"PKCS11".equalsIgnoreCase(type)) && ...){
44 ...
45 }
46 ks.load(istream, pass .toCharArray());

47 return ks;
48 }

Listing 2 Simplified real-world code example with a hard-coded password

in method getStore() and finds it to be a parameter of getStore(), and the data-
flow propagation continues at invocations of the method. The method getStore()

is called in line 190, where BOOMERANG data-flow propagation follows the variable
truststorePassword. This variable is assigned the return value of the call site in
line 188. The backward data-flow analysis continues in line 185 and eventually finds
the allocation site "changeit" in the highlighted line with the line number 179.
Eventually, CryptoAnalysis reports that variable pass is of type String and that
it may contain the hard-coded password "changeit".
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7 Conclusion

Finding an acceptable balance between precision, recall, and performance of a static
analysis is a tedious task when designing and implementing a static analysis. With
SPDS, BOOMERANG, and IDEal , the dissertation presents new approaches to static
data-flow analysis that is demand-driven context-, field-, and flow-sensitive, or in
short precise and efficient.

In this chapter, we first motivate (Sect. 2) various applications ranging from null
pointer analysis to typestate analysis and next detail on the contributions SPDS,
BOOMERANG, and IDEal .

With SPDS (Sect. 3), we present a precise and efficient solution to a known to be
undecidable problem [32]. SPDS synchronizes the results of two pushdown systems,
one that models field-sensitivity, and a second that models context-sensitivity. SPDS
presents a theoretical as well a practical new model to data-flow analysis. The new
formal approach to data-flow analysis also enables a direction for future work, for
instance, to additionally summarize the pushdown systems [22].

The demand-driven pointer analysis BOOMERANG, presented in Sect. 4,
addresses pointer analysis, which is known to be hard to scale. BOOMERANG gains
efficiency as it separates the distributive parts of a non-distributive propagation into
efficiently SPDS-solvable sub-problems.

IDEal (Sect. 5) extends the ideas of the distributive propagations of
BOOMERANG and additionally propagates weights along the data-flow path. The
weights allow data-flow analyses to model typestate analyses. In an experiment
presented within the dissertation, we compare an IDEal-based typestate analysis to
a state-of-the-art typestate analysis and show the efficiency benefit of distributive
propagation.

Lastly, we showcase the application of SPDS, BOOMERANG, and IDEal within
the tool CogniCrypt. By the use of the domain-specific language CrySL, CogniCrypt
is able to statically detect cryptographic misuses.
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Software Developers’ Work Habits
and Expertise: Empirical Studies
on Sketching, Code Plagiarism,
and Expertise Development

Sebastian Baltes

Abstract Analyzing and understanding software developers’ work habits and
resulting needs is an essential prerequisite to improve software development
practice. In our research, we utilize different qualitative and quantitative research
methods to empirically investigate three underexplored aspects of software devel-
opment: First, we analyze how software developers use sketches and diagrams
in their daily work and derive requirements for better tool support. Then, we
explore to what degree developers copy code from the popular online platform
Stack Overflow without adhering to license requirements and motivate why this
behavior may lead to legal issues for affected open source software projects. Finally,
we describe a novel theory of software development expertise and identify factors
fostering or hindering the formation of such expertise. Besides, we report on
methodological implications of our research and present the open dataset SOTorrent,
which supports researchers in analyzing the origin, evolution, and usage of content
on Stack Overflow. The common goal for all studies we conducted was to better
understand software developers’ work practices. Our findings support researchers
and practitioners in making data-informed decisions when developing new tools or
improving processes related to either the specific work habits we studied or expertise
development in general.

1 Introduction

A work habit, which is a “settled tendency or usual manner of behavior,” can
positively or negatively influence software developers’ daily work. Knowing and
understanding such work habits and resulting needs is an essential prerequisite
to improve the existing software development processes and tools. However, the
software engineering research community is often criticized for not addressing the
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problems that practitioners actually face during their work [1]. At the same time,
software developers’ beliefs are rather based on their personal experience than on
empirical findings [2]. To fill this gap between academia and practice, we conducted
several empirical studies investigating different aspects of software developers’
work habits and expertise.

While the goal guiding all empirical studies we conducted was to gain a better
understanding of software developers’ work practices, we drew different conclu-
sions for each of the studied phenomena: Based on our results, we developed novel
tool prototypes to better support software developers’ sketching and diagramming
workflows, we reached out to developers to make them aware of possible licensing
issues in their software projects due to code copied from Stack Overflow, and we
provide recommendations for researchers, developers, and employers how to utilize
our findings on software development expertise and its formation.

For the first part of this research project (see Sect. 2), we studied how software
developers use sketches and diagrams in their daily work. At the time we started
our research, an overall picture of developers’ work habits related to the creation
and usage of sketches and diagrams was missing. To fill this gap, we conducted
an exploratory field study in different software companies, an online survey with
software practitioners, and an observational study with software developers. We
found that developers frequently create and use sketches and diagrams and that
they consider many of those visual artifacts to be helpful in understanding related
source code. However, we also identified a lack of tool support to archive and
retrieve sketches and diagrams documenting different aspects of software systems.
Thus, based on our findings, we derived requirements to better support developers’
sketching and diagramming workflows and implemented those requirements in two
tool prototypes, named SketchLink and LivelySketches, which we then evaluated in
formative user studies.

The second part (see Sect. 3) presents an extensive empirical study on a rather
negative work habit: We investigated to what degree developers adhere to Stack
Overflow’s license requirements when copying code snippets published on that
platform—or, in other words, to what extent they commit code plagiarism. Since
many developers use the online question-and-answer platform Stack Overflow on
a daily basis [3], it is an essential part of their daily work life. If developers copy
code snippets from that platform into their open source software projects without
adhering to the corresponding license requirements, legal issues may arise. After
describing the legal situation around Stack Overflow code snippets, we give a
first estimate of how frequently developers copy such snippets into public GitHub
projects without the required attribution, provide an analysis of licensing conflicts,
and present results from an online survey, which suggest that many developers are
not aware of the licensing situation and its implications. Besides publishing our
empirical results, we reached out to owners of open source GitHub projects to make
them aware of possible licensing conflicts in their projects.

In the third part of this research project (see Sect. 4), we present a first conceptual
theory of software development expertise that is grounded in the related literature
and three online surveys with software developers. The connection to work habits
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is that, by learning from past experience, developers may adapt their work habits
over time. Moreover, the existing habits related to self-improvement and learning
may shape the path of an individual from being a novice toward being an expert in
software development. Previously, the software engineering research community
was lacking a comprehensive theory on what constitutes software development
expertise and how such expertise is formed. Our theory describes important
properties of software development expertise and factors fostering or hindering its
formation, including how developers’ performance may decline over time. Based
on that theory, we provide recommendations for researchers who want to study
expertise formation, developers who want to improve their software development
skills, and employers who want to build a work environment supporting expertise
development of their staff.

While the first three sections describe the main contributions of this research
project, in Sect. 5, we reflect on methodological and ethical issues we faced when
sampling software developers for the online surveys we conducted. The goal of
that chapter is to inform the research community which strategies worked best for
us, but we also want to start a discussion about the ethics of different sampling
strategies that researchers currently use. To conclude this article, and to corroborate
our open data efforts, we present the open dataset SOTorrent, which we created in
the context of our research on Stack Overflow code snippets, described in Sect. 3.
Besides explaining how we built the dataset, we use it to conduct a first analysis of
the evolution of content on Stack Overflow and to investigate code snippets copied
from external sources into Stack Overflow and duplicates of code snippets within
Stack Overflow. We continue to maintain the dataset to support further research on
the origin, evolution, and usage of content on Stack Overflow.

2 Sketching: Developers’ Usage of Sketches and Diagrams
in Practice

Fig. 1 The 11 dimensions of a sketch or diagram in software development that we used to structure
and guide our research
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Communication is omnipresent in software development. Requirements are
communicated from prospective users to the developers implementing the software,
the general architecture is communicated within the development team, developers
communicate with each other during pair programming, and after deployment,
issues are reported back to developers. Such information flows involve diverse
channels [4], including face-to-face communication [5, 6], email [7], videoconfer-
encing [5, 6], and team collaboration tools [8]. Especially in collocated settings,
developers use informal sketches and diagrams for communication [9]. Those visual
artifacts, spanning different types of media [10], support developers in designing
new and understanding existing software systems [11]. Nevertheless, when we
started our research on sketches and diagrams in software development practice, an
overall picture of how developers use those visual artifacts was missing. Therefore,
in the corresponding chapter of the dissertation, we first motivate our notion of
sketch dimensions to capture the most important characteristics of visual artifacts
used in software development (see Fig. 1) and then present the design and results
of a mixed-methods study we conducted to investigate how software practitioners
use such artifacts. Our research included an exploratory field study in three different
software companies, an online survey with 394 participants, and an observational
study with six pair programming teams. After describing the state of practice and
resulting needs of software practitioners working with sketches and diagrams, we
present two tool prototypes that we developed in response to the results of our
empirical investigation. The content of this chapter is based on four peer-reviewed
publications [10, 12, 13, 14].

Contributions
• A characterization of sketches and diagrams in software development practice,

which is grounded in related work and in a field study we conducted in three
different software companies.

• An assessment of 11 different dimensions of sketches and diagrams in software
development using an online survey with 394 software practitioners.

• An analysis how developers communicate in a pair-programming setting when
locating performance bugs, including an investigation of the role of sketches
in this scenario.

• A presentation of two tool prototypes supporting software developers’ sketching
and diagramming workflows.

Overall, we found that software practitioners frequently create and use such
visual artifacts. Our online survey revealed that sketches and diagrams are often
informal but are considered to be a valuable resource, documenting many aspects
of the software development workflow. We showed how sketches are related to
source code artifacts on different levels of abstraction and that roughly half of
them were rated as helpful to understand the source code. As documentation is
frequently poorly written and out of date, sketches could fill in this gap and serve
as a supplement to conventional documentation such as source code comments
or other textual resources. The majority of sketches and diagrams were created
on analog media such as paper or whiteboard. Many of them were archived, but
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our survey participants also named technical issues, for example, that there is no
good technique to keep (digital versions of) sketches together with source code. In
response to this observation, we developed the tool prototype SketchLink, which
assists developers in archiving and retrieving sketches related to certain source
code artifacts. Regarding the evolution of sketches, our qualitative results indicated
that it is a common use case for sketches to be initially created on analog media
like paper or whiteboards and then, potentially after some revisions, they end up
as an archived digital sketch. To support such workflows, we developed a second
tool prototype named LivelySketches, which supports transitions from analog to
digital media and back. One direction for future work is to merge the features of
both prototypes and evaluate the resulting tool in larger context. Moreover, with
techniques such as graphic facilitation and sketchnoting becoming more and more
popular, analyzing potential use cases for those techniques in software development
projects emerged as another direction for future work. We already interviewed
graphic facilitators who worked in software development projects, but also software
developers and architects with sketching experience. Based on those interviews,
we will derive recommendations for applying visualization techniques in different
phases of software development projects.

3 Code Plagiarism: Stack Overflow Code Snippets in GitHub
Projects

Stack Overflow is the most popular question-and-answer website for software
developers, providing a large amount of copyable code snippets. Using those
snippets raises maintenance and legal issues. Stack Overflow’s license (CC BY-
SA) requires attribution, that is referencing the original question or answer, and
requires derived work to adopt a compatible license. While there is a heated debate
on Stack Overflow’s license model for code snippets and the required attribution,
little is known about the extent to which snippets are copied from Stack Overflow
without proper attribution. To fill this gap, we conducted a large-scale empirical
study analyzing software developers’ usage and attribution of non-trivial Java code
snippets from Stack Overflow answers in public GitHub projects. We followed
three different approaches to triangulate an estimate for the ratio of unattributed
usages and conducted two online surveys with software developers to complement
our results. For the different sets of GitHub projects that we analyzed, the ratio
of projects containing files with a reference to Stack Overflow varied between 3.3
and 11.9%. We found that at most 1.8% of all analyzed repositories containing code
from Stack Overflow used the code in a way compatible with CC BY-SA. Moreover,
we estimate that at most a quarter of the copied code snippets from Stack Overflow
are attributed as required. Of the surveyed developers, almost one half admitted
copying code from Stack Overflow without attribution and about two-thirds were
not aware of the license of Stack Overflow code snippets and its implications.
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The content of this chapter is based on a peer-reviewed journal publication [15].
Moreover, some results have also been published in an extended abstract before [16].

Contributions
• A thorough description of the legal situation around Stack Overflow code

snippets.
• A triangulated estimation of the attribution ratio of Stack Overflow code

snippets in public GitHub projects.
• An analysis of possible licensing conflicts for the GitHub projects containing

code from Stack Overflow.
• A qualitative analysis of how developers refer to Stack Overflow content.
• An online survey suggesting that many developers are not aware of the

licensing of Stack Overflow code snippets and its implications.

Our research revealed that at most one quarter of the code snippets copied
from Stack Overflow into public GitHub Java projects are attributed as required
by Stack Overflow’s license (CC BY-SA). Moreover, we found that between 3.3
and 11.9% of the analyzed GitHub repositories contained a file with a reference to
Stack Overflow (see Table 1). We identified only 1.8% of the GitHub projects with
copies of Stack Overflow code snippets to attribute the copy and to use a license
that is share-alike compatible with Stack Overflow’s license. For the other 98.2%
of the projects, especially the share-alike requirement of CC BY-SA may lead to
licensing conflicts. Two online surveys have shown that many developers admit
copying code from Stack Overflow without attribution. We also found that many
of them are not aware of the licensing situation and its implications. In the course
of our research on Stack Overflow code snippets, we built the SOTorrent dataset
(see Sect. 6), which we continue to maintain. Beside closely following how other
researchers use the dataset to study different questions related to code on Stack
Overflow, we will continue to investigate how such code snippets are maintained
and how their evolution can be better supported. Another direction for future work,
which is not limited to Stack Overflow, is to build better tool support for developers
dealing with online code snippets. On the one hand, continuous integration tools
could check whether commits add non-trivial code snippets from online resources
to a project; on the other hand, tools could support developers in understanding
license compatibility not only for whole software libraries, but also on the level
of individual code snippets copied from online resources. Those efforts can help
mitigating legal threats for open source projects that intentionally or unintentionally
use code from diverse sources.
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Table 1 Summary of results regarding attribution of snippets copied from Stack Overflow (SO):
distinct references to answers (A) or questions (Q) on SO in the Java files from GitHub analyzed
in each phase of our research; number of analyzed files and repositories, files/repos containing a
reference to SO, files/repos containing a copy of a SO snippet, attributed copies of SO snippets

References Files Repositories

Ph. A Q Count Ref Copy Attr Count Ref Copy

1 5014 16,298 13.3m 18,605 4198 402 336k 11,086 3291

23.5% 76.5% 0.09% 0.03% 9.6% 3.3% 1.0%

2 209 463 445k 634 297 70 2313 274 199

31.1% 68.9% 0.14% 0.07% 23.6% 11.9% 8.6%

3 1551 4843 1.7m 5354 1369 104 64,281 3536 1332

24.3% 75.7% 0.31% 0.08% 7.6% 5.5% 2.1%

4 Expertise Development: Toward a Theory of Software
Development Expertise

Software development includes diverse tasks such as implementing new features,
analyzing requirements, and fixing bugs. Being an expert in those tasks requires
a certain set of skills, knowledge, and experience. Several studies investigated
individual aspects of software development expertise, but what is missing is a com-
prehensive theory. In this chapter, we present a first conceptual theory of software
development expertise that is grounded in data from a mixed-methods survey with
335 software developers (see gray boxes in Fig. 2) and in the literature on expertise
and expert performance. Our theory currently focuses on programming but already
provides valuable insights for researchers, developers, and employers. The theory
describes important properties of software development expertise and which factors
foster or hinder its formation, including how developers’ performance may decline
over time. Moreover, our quantitative results show that developers’ expertise self-
assessments are context-dependent and that experience is not necessarily related to
expertise. The content of this chapter is based on a peer-reviewed publication [17].

Contributions
• A first conceptual theory of software development expertise grounded in a

survey with 335 software developers and in the literature on expertise and expert
performance.

• Quantitative results that point to the context-dependence of software develop-
ers’ expertise self-assessments.

• A theory-building approach involving inductive and deductive steps that other
(software engineering) researchers can apply or adapt (see Fig. 2).

With our research, we identified different characteristics of software develop-
ment experts, but also factors fostering or hindering the formation of software
development expertise. Besides building a first conceptual theory, we found that
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expertise self-assessments are context-dependent and do not always correspond to
experience measured in years. Researchers can use our findings when designing
studies involving expertise self-assessments. We recommend to explicitly describe
what distinguishes novices from experts in the specific setting under study when
asking participants for expertise self-assessments. Our theory enables researchers to
design new experiments, but also to re-evaluate results from previous experiments.
Software developers can use our results to learn which properties are distinctive
for experts in their field, and which behaviors may lead to becoming a better
software developer. For example, the concept of deliberate practice, and in particular
having challenging goals, a supportive work environment, and getting feedback
from peers are important factors. For “senior” developers, our results provide
suggestions for being a good mentor. Mentors should know that they are considered
to be an important source for feedback and motivation, and that being patient and
being open-minded are desired characteristics. We also provide first results on the
consequences of age-related performance decline, which is an important direction
for future work. Employers can learn what typical reasons for demotivation among
their employees are, and how they can build a work environment supporting the
self-improvement of their staff. Besides obvious strategies such as offering training
sessions or paying for conference visits, our results suggest that employers should
think carefully about how information is shared between their developers and
also between development teams and other departments of the company. Finally,
employers should make sure to have a good mix of continuity and change in their
software development process because non-challenging work, often caused by tasks
becoming routine, is an important demotivating factor for software developers. One
important direction for future work, which emerged in the course of our research,
is the role of older software developers. Especially in industrialized countries, the
demographic change leads to an older work force, since people are expected to
retire later. Still, the challenges that older developers face in a competitive field
like software development are largely unknown. Our study participants already
mentioned different age-related challenges. We plan to study those challenges to
be able to mitigate them where possible, preventing those experienced developers
from dropping out of software development.

Fig. 2 Structure of our iterative theory-building approach
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5 Methodological Insights: Issues in Sampling Software
Developers

Online surveys like the ones we conducted for this research project are considered to
be a feasible means for investigating the state of practice [18]. In particular, surveys
are an important empirical method used in software engineering (SE) research
that can be employed to explore and describe various characteristics of a broad
population [19]. However, reaching professional software developers with surveys is
a difficult task. Except for single companies or institutions that allow researchers to
use a list of their employees, random sampling of software developers is impossible
most of the time. Researchers therefore often rely on the available subjects, which
is known as convenience sampling. Applying non-random sampling techniques like
convenience sampling may lead to biased samples with limited external validity.
To mitigate the threats to external validity, researchers need detailed knowledge
about the population of software developers they want to target, but this information
is often not available. Further, some of the sampling techniques that researchers
employ raise ethical concerns, such as contacting developers on GitHub using email
addresses users did not provide for this purpose. In this chapter, we summarize what
we learned while conducting online surveys with software developers. The content
of this chapter is based on a peer-reviewed publication [20].

Contributions
• Experience reports for different survey sampling strategies.
• Presentation of the idea of a systematic database with software developer

demographics to assess the external validity of surveys conducted using non-
random sampling techniques.

• Building awareness about ethical issues that may arise with sampling approaches
that researchers currently utilize.

We found that the most efficient and effective sampling strategies were to use
public media and “testimonials” that advertise the survey. We also highlighted
the importance of gatekeepers who provide access to companies or communities.
Another finding is that, to be able to assess the external validity of studies involving
non-random samples, researchers need a collection of typical software developer
demographics, which currently does not exist. Using a systematic literature review,
one could collect published demographics about developers. Further, authors of
studies with software developers could be contacted and asked to provide basic
demographic information about their participants, if available. This information,
together with the data from the Stack Overflow developer surveys, would be a solid
basis to assess the external validity of future studies. Conferences and journals may
recommend authors to describe certain key demographics for published studies, and
reviewers could motivate authors to explicitly address their sampling approach and
effects on the generalizability of their results. We also pointed at ethical issues with
some of the sampling techniques researchers currently employ, in particular using
email addresses collected from GitHub to contact developers.
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6 Open Data: Building and Maintaining the SOTorrent
Dataset

For all studies conducted in the context of this research project, we provide
supplementary material packages that enable other researchers to reproduce our
results. Besides publishing (anonymized) data on the preserved archive Zenodo,
we also published the software and scripts used to retrieve and analyze that data.
Moreover, pre- or postprints of all papers are available online. Beside these general
open science efforts, in this chapter, we want to particularly highlight the open
dataset SOTorrent1 that we created to support future research about code snippets
on Stack Overflow. The dataset allows researchers to investigate and understand the
evolution of Stack Overflow content on the level of individual text and code blocks,
which is not possible with the official data dump that Stack Overflow provides.
Beside supporting our own research, we published and promoted the dataset to be
used by other researchers. Those efforts resulted in the dataset being selected as the
official mining challenge of the 16th International Conference on Mining Software
Repositories (MSR 2019) [21].

The content of this chapter is based on two peer-reviewed publications: One full
paper describing the creation of SOTorrent and first analyses using the dataset [20]
as well as our accepted mining challenge proposal [21]. Moreover, we present
additional analyses that we conducted for an upcoming journal extension of our
initial SOTorrent paper (see research questions three and four).

Contributions
• An open dataset that allows researchers to investigate and understand the

evolution of Stack Overflow posts and their relation to other platforms such as
GitHub.

• A thorough evaluation of 134 string similarity metrics regarding their appli-
cability for reconstructing the version history of Stack Overflow text and code
blocks.

• A first analysis of the evolution of content on Stack Overflow, including the
description of a close relationship between post edits and comments.

• An analysis of code clones on Stack Overflow together with an investigation of
possible licensing risks.

The SOTorrent dataset has allowed us to study the phenomenon of post editing
on SO in detail. We found that a total of 13.9 million SO posts (36.1% of all posts)
have been edited at least once. Many of these edits (44.1%) modify only a single
line of text or code, and while posts grow over time in terms of the number of
text and code blocks they contain, the size of these individual blocks is relatively
stable. Interestingly, only in 6.1% of all cases are code blocks changed without
corresponding changes in text blocks of the same post, suggesting that SO users

1http://sotorrent.org.

http://sotorrent.org
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typically update the textual description accompanying code snippets when they are
edited. We also found that edits are mostly made shortly after the creation of a post
(78.2% of all edits are made on the same day when the post was created), and the
vast majority of edits are made by post authors (87.4%)—although the remaining
12.6% will be of particular interest for our future work. The number of comments on
posts without edits is significantly smaller than the number of comments on posts
with edits, suggesting an interplay of these two features. We find evidence which
suggests that commenting on a post on SO helps to bring attention to it. Of the
comments that were made on the same day as an edit, 47.9% were made before an
edit and 52.1% afterwards, typically (median value) only 18 min before or after the
edit. Motivated by this quantitative analysis of the temporal relationship between
edits and comments, we conducted a qualitative study and developed a visual
analysis tool to explore the communication structure of SO threads. Our analysis
using this tool revealed several communication and edit patterns that provide further
evidence for the connection between post edits and comments. We found comments
which explain, trigger, and announce edits as well as content overlap between edits
and comments. The fact that SO users rely on the commenting feature to make others
aware of post edits—and in some cases even duplicate content between comments
and posts—suggests that users are worried that content evolution will be missed if
it is buried in a comment or has been added to a post later via an edit. At the same
time, we found evidence that edits can play a vital role in attracting answers to a
question. In our future work, we will explore how changes to Stack Overflow’s user
interface could make the evolution of content more explicit and remove the need for
users to repurpose the commenting feature as an awareness mechanism. Besides, we
investigated code clones on SO, revealing that, just like in regular software projects,
code clones on SO can affect the maintainability of posts and lead to licensing
issues. Depending on the outcome of the discussion we started on Stack Overflow
Meta, we plan to implement means to add the missing attribution to posts and mark
threads as related based on the similarity of the code blocks they contain.

7 Summary and Future Work

In this research project, we utilized diverse research designs to empirically investi-
gate yet underexplored aspects of software developers’ work habits and expertise.
We started by analyzing how developers use sketches and diagrams in their daily
work, then derived requirements for tool support, and finally implemented and
evaluated two tool prototypes. In a second research project, we investigated how
common it is for developers to copy non-trivial code snippets from the popular
question-and-answer platform Stack Overflow into open source software projects
hosted on GitHub, without adhering to the terms of Stack Overflow’s license. In
that project, we also assessed developers’ awareness of the licensing situation and its
implications. While those first two research projects can be regarded as analyses of a
rather positive and a rather negative work habit, the third project aimed at analyzing
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behaviors that may lead to developers becoming experts in certain software develop-
ment tasks. However, we not only identified factors influencing expertise formation
over time but also developed a first conceptual theory structuring the broad concept
of software development expertise.

In the complete version of the dissertation that this article is based on, we not only
present the designs and results of the different empirical studies we conducted, but
also highlighted how we use those results to guide further actions. We already used
our empirical results to: (1) motivate and implement novel tools to support software
developers’ sketching workflows, (2) inform developers about possible licensing
issues in their open source software projects, (3) build a first conceptual theory of
software development expertise that researchers as well as practitioners can use,
(4) point to the underexplored phenomenon of age-related performance decline, (5)
grow awareness in the research community about ethical implications of certain
sampling strategies, motivated by participants’ feedback, and (6) create an open
dataset that the research community can use for future research projects on Stack
Overflow content. Our work supports researchers and practitioners in making data-
informed decisions when developing new tools or improving processes related to
either the specific work habits we studied or expertise development in general.
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Applied Artifact-Based Analysis for
Architecture Consistency Checking

Timo Greifenberg, Steffen Hillemacher, and Katrin Hölldobler

Abstract The usage of models within model-driven software development aims
at facilitating complexity management of the system under development and
closing the gap between the problem and the solution domain. Utilizing model-
driven software development (MDD) tools for agile development can also increase
the complexity within a project. The huge number of different artifacts and
relations, their different kinds, and the high degree of automation hinder the
understanding, maintenance, and evolution within MDD projects. A systematic
approach to understand and manage MDD projects with a focus on its artifacts and
corresponding relations is necessary to handle the complexity. The artifact-based
analysis presented in this paper is such an approach. This paper gives an overview of
different contributions of the artifact-based analysis but focuses on a specific kind of
analysis: architecture consistency checking of model-driven development projects.
By applying this kind of analyses, differences between the desired architecture and
the actual architecture of the project at a specific point in time can be revealed.

1 Introduction

The complexity of developing modern software systems or software-intensive
systems continues to rise. Software is already considered the most important factor
of the competition within the automotive industry, which leads to an increasing
complexity especially in automotive software [EF17]. Further examples of complex
systems with a high amount of software are cloud-based systems [KRR14],
cyberphysical systems (CPS) [Lee08], or Internet of Things (IoT) [AIM10]. When
developing complex software systems, there is a wide conceptual gap between the
problem and the implementation domains [FR07]. Bridging this gap by extensive
handcrafting of implementations can lead to accidental complexities that make

T. Greifenberg (�) · S. Hillemacher · K. Hölldobler
Software Engineering, RWTH Aachen University, Aachen, Germany
e-mail: greifenberg@se-rwth.de; hillemacher@se-rwth.de; hoelldobler@se-rwth.de

© The Author(s) 2020
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2019,
https://doi.org/10.1007/978-3-030-58617-1_5

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58617-1_5&domain=pdf
mailto:greifenberg@se-rwth.de
mailto:hillemacher@se-rwth.de
mailto:hoelldobler@se-rwth.de
https://doi.org/10.1007/978-3-030-58617-1_5


62 T. Greifenberg et al.

the development of complex software difficult and costly [FR07]. Additionally,
some development processes demand tracing of development artifacts [MHDZ16].
Creating and maintaining such relationships consequently lead to additional effort
during the development.

In order to be able to control the complexity of the software as well as to
close the conceptual gap between problem and solution domain, approaches of
the field of model-driven software development (MDD) arose. MDD technologies
have been successfully applied in industrial software development processes, which
lead to improved quality and productivity [WHR14]. Platform-independent models
[OMG14] provide a means to abstract from technical aspects of the solution domain,
making the complexity easier to control. Such models of the problem domain
can often be developed directly by domain experts. The usage of domain-specific
languages (DSL) for modeling different aspects of the system helps to focus on
single aspects of the system in more detail [CCF+15]. The resulting domain-
specific models can then be used as primary input for an MDD tool chain. These
tool chains can guarantee the conformity of models (both, of single models and
between several models), analyze their contents, and automatically create parts
of the software product to be developed. Such an automated MDD build process
removes the necessity of manual synchronization between models and source code.
After adapting the models, the corresponding source code can be automatically
recreated without any additional effort. Hence, the use of MDD approaches aims for
a more efficient and effective software development process [BCW12], ultimately,
reducing manual effort, improving software quality through systematic translation
of domain-specific models into the source code, and lowering the development
costs.

In MDD projects, not only a large number of different artifacts caused by
the complexity of the software exist, but also a multitude of different artifact
types. Examples are models, templates, and grammar files, which are required by
special technologies to create MDD tools. Between these specific types of artifacts,
heterogeneous and complex relationships exist, thus understanding them is vital for
MDD tool developers. Examples for such relationships are imports between model
artifacts, artifacts that are used as input to automatically generate a set of target
artifacts, or artifacts containing each other.

The high amount and complexity of these dependencies create a number of
new challenges for MDD projects [GHR17]: (1) poor maintainability in case of
necessary changes due to unnecessary or unforeseen artifact relationships, (2)
inefficient build processes that perform unnecessary process steps or cannot be
executed incrementally, (3) long development times because poorly organized
artifact dependencies cause errors, and (4) prevention of reuse of individual tool
components or parts of the generated product caused by unnecessary artifact
relations. Due to the large number of different artifacts and relationships, the
multitude of artifact and relationship types, the use of special MDD tools and
the high degree of automation, a systematic approach is necessary to handle the
complexity in MDD projects. For the existing projects where no such approach
was used, reverse engineering techniques can help to reconstruct how artifacts are
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structured. Furthermore, relations between artifacts can be reconstructed, which
makes it easier to understand the dependencies as well as provide a way to analyze
the potential of process optimization. Such analyses of artifacts and their relations
are presented as artifact-based analyses [Gre19].

This paper gives an overview on the artifact-based analysis [Gre19] and, thus,
presents content that is already published. It cannot cover all the contributions
in all detail, which leads to presenting some of the topics in a simplified way
or omitting some details in discussions. Moreover, this work focusses just on a
single kind of artifact-based analysis: architecture consistency checking of MDD
projects. Compared to the original thesis [Gre19], an additional case of application
succeeding the former work is described in this paper in Sect. 4.2.

The main contribution of the original thesis are the methods and concepts for the
artifact-based analysis of model-driven software development projects [Gre19]. The
contribution consists of:

• A modeling technique for modeling artifact relationships and for the specification
of associated analyses.

• A concrete model, which describes artifact relationships in MontiCore-based
development projects.

• A methodology for using the modeling technique.
• A tool chain that supports artifact-based analyses.

2 Foundations

In this section, the modeling languages and model-processing tools used in this
approach are presented. Using these to describe artifacts and artifact relationships is
explained in Sect. 3.

2.1 UML/P

The UML/P language family [Rum16, Rum17] is a language profile of the Unified
Modeling Language (UML) [OMG15], which is a modeling standard developed
by the OMG [OMG17]. Due to the large number of languages, their fields of
application, and the lack of formalization, the UML is not directly suitable for
model-driven software development. However, this could be achieved by restricting
the modeling languages and language constructs allowed as done in the UML/P
language family. A textual version of the UML/P, which can be used in MDD
projects, was developed [Sch12]. The approach for the artifact-based analysis of
MDD projects uses the languages Class Diagram (CD), Object Diagram (OD), and
the Object Constraint Language (OCL).
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2.1.1 Class Diagrams

Class diagrams serve to represent the structure of software systems. They form the
central element for modeling software systems with the UML and are therefore
the most important notation. Using class diagrams primarily, classes and their
relationships are modeled. In addition, enums and interfaces, associated properties
such as attributes, modifiers, and method signatures as well as various types of
relationships and their cardinalities can be modeled.

In addition to being used to represent the technical, structural view of a software
system, i.e., as the description of source code structures, class diagrams can be
used in analysis to structure concepts in the real world [Rum16]. Especially for
this use case, an even more restrictive variant of the UML/P Class Diagrams was
developed: the language Class Diagram for Analysis (CD4A) [Rot17]. As a part
of this approach, CD4A is used to model structures in model-based development
projects.

2.1.2 Object Diagrams

Object diagrams are suitable for the specification of exemplary data of a software
system. They describe a state of the system at a concrete point in time. ODs can
conform to the structure of an associated class diagram. A check, whether an object
diagram corresponds to the predefined structure of a class diagram is in general
not trivial. For this reason, an approach for an Alloy [Jac11]-based verification
technique was developed [MRR11].

In object diagrams, objects and the links between objects are modeled. The
modeling of the object state is done by specifying attributes and assigned values.
Depending on the intended use, object diagrams can describe a required, represent
prohibited or existing situation of the software system. In addition to the concepts
described in the original thesis [Sch12], the current version of the UML/P OD lan-
guage allows the definition of hierarchically nested objects. This has the advantage
that hierarchical relationships can also be displayed as such in the object diagrams.
Listing 1 shows an example of a hierarchical OD with two nested objects. In this
work, CDs are not used to describe the classes of an implementation, but used
for descriptions on a conceptual level, objects of associated object diagrams also
represent concepts of the problem domain instead of objects of a software system.
In this approach, object diagrams are used to describe analysis data, i.e., they reflect
the current state of the project at the conceptual level.
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1 objectdiagram Students {
2
3 Max:Person {
4 id = 1;
5 firstName = "Max";
6 name = "Mustermann";
7 address = address1:Address {
8 street = "Ahornstraße";
9 city = "Aachen";

10 houseNumber = 55;
11 country = "Germany";
12 };
13 };
14 }

Listing 1 Example OD with two hierarchically nested objects

2.1.3 Object Constraint Language

The OCL is a specification language of the UML, which allows to model additional
conditions of other UML languages. For example, the OCL can be used to specify
invariants of class diagrams, conditions in sequence diagrams and to specify pre- or
post-conditions of methods. The OCL variant of UML/P (OCL/P) is a Java-based
variant of OCL. This approach uses the OCL/P variant only. OCL is only used in
conjunction with class diagrams throughout this approach. OCL expressions are
modeled within class diagram artifacts.

2.2 MontiCore

MontiCore [GKR+06, KRV08, GKR+08, KRV10, Kra10, Völ11, HR17] is a Lan-
guage Workbench for the efficient development of compositional modeling lan-
guages. Figure 1 gives an overview of the structure and workflow of MontiCore-
based generators.

Fig. 1 Structure and execution of MontiCore-based generators
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MontiCore languages are primarily specified using context-free grammars. Mon-
tiCore uses a grammar file as input to generate a parser, a data structure for abstract
syntax trees (AST), and an implementation of the visitor design pattern [GHJV95]
for the AST data structure. The AST data structure can be extended by a symbol
table data structure that can be partially generated. Symbol tables act as a model
interface and offer a way to dynamically load other model artifacts. Thus, symbol
tables provide an integrated processing of multiple models of different modeling
languages. By creating well-formedness rules, the so-called context conditions
(CoCo), additional conditions can be added to the rules given by the grammar. These
conditions are checked on the coherent data structure consisting of AST and symbol
table.

Prior to the generation, model-to-model (M2M) transformation can be used to
prepare AST and symbol table. These can either be implemented in the form of
Java code or defined using special transformation languages [Wei12, Höl18]. A
methodology for creating new transformation languages is also available [HRW15].

Next, the source code of the system in development can be generated by
template-based code generation. As a by-product, additional reports are generated,
which include relevant events of the last generation run or summarize the generation
process.

MontiCore, thus, generates an infrastructure for processing models, checking
them according to their well-formedness rules, transforming them using M2M
transformations, as well as for generating source code artifacts. Moreover, Mon-
tiCore offers a runtime environment (RTE) providing functions and data structures
which can be used by both the generated and handwritten parts of MontiCore-based
tools. MontiCore has already been used to create languages and related tools in
various domains including Automotive [RSW+15], robotics [AHRW17], and cloud
applications [NPR13].

2.3 Architecture Consistency Checking

Architectural reconstruction and architectural consistency checking (ACC) are
techniques that are used in the area of software architecture. Their goal is to compare
the current state of a software architecture (the actual architecture or descriptive
architecture) with the planned architecture (also called target architecture or pre-
scriptive architecture). The following definitions of basic terms are taken from
[TMD09]. The term architecture degradation is defined as

The resulting discrepancy between a system’s prescriptive and descriptive architecture.
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Further, the architectural drift is defined as

The introduction of principal design decisions into a system’s descriptive architecture that
(a) are not included in, encompassed by, or implied by the prescriptive architecture, but
which do not violate any of the prescriptive architecture’s design decisions.

Another term is the architectural erosion defined as

The introduction of architectural design decisions into a system’s descriptive architecture
that violate its prescriptive architecture.

In this work, the result of the calculation of architectural degradation is called
difference architecture. Such a difference architecture, thus, contains all differences
between the target and the actual architecture. Furthermore, it combines the parts
of the architectural drift with those of architectural erosion. Both, the absence of
expected relationships considered as architectural drift and unindended relationships
considered as architectural erosion, are examined as part of this work.

In order to retrieve the difference architecture, the actual architecture must be
compared to the target architecture. For this comparison, the target architecture
must be specified manually, while the actual architecture is reconstructed (semi-)
automatically from the source code. This process is called architectural reconstruc-
tion.

The process of architectural reconstruction distinguishes between top-down and
bottom-up approaches. Bottom-up approaches are also referred to as architecture
recovery [DP09]. They work fully automatically and can therefore be used even if
no target architecture is available. However, they suffer from a lack of accuracy
[GIM13]. By combining two different bottom-up approaches, the quality of the
actual architecture during architecture recovery could be increased, which also
increased the quality of the reconstructed architecture [vDB11, PvDB12]. In
contrast to bottom-up approaches, top-down approaches rely on the existence of
a modeled target architecture. Top-down approaches are also known as architecture
discovery [DP09].

The calculation of the difference architecture based on a target architecture and
the source code is also known as architecture consistency checking [PKB13]. In
a study [ABO+17], different ACC approaches from research were compared. The
study classified the approaches according to the following characteristics:

• The type of the underlying extraction method (static, dynamic). All approaches of
architectural reconstruction use extraction techniques to reveal the relationships
between the atomic architectural units (e.g., types, files). Moreover, there is
an approach that combines both extraction methods [SSC96]. This approach
utilizes information of a dynamic extraction to determine the frequency and, thus,
relevance of architecture violations, which are detected based on static extraction.

• The technique for the evaluation of the architectural consistency. Particularly,
interesting techniques in this area are:

– Reflection Modeling (RM) [MNS01], a technique in which source code
artifacts are assigned to architectural units of the target architecture. The
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relationships between modules (actual architecture) are then reconstructed by
investigating the relationships of the source code.

– DSL-based approaches [HZ12, GMR15] allow a comfortable definition of
the target architecture. In addition to the specification of architectural units
and expected relationships, information such as complex conditions for
architectural violations or the severity of architectural violations in the event
of an occurrence can be defined. DSL-based approaches can be combined with
RM-based approaches.

These approaches can also be used for architectures outside the target product.
For this purpose, the scope of the relationships under consideration must be
extended. In MDD projects, the architecture of the target product as well as the
architecture of individual MDD tools, the interaction between tools and artifacts,
and the composition of tools into tool chains are of interest for such analyses. In
this work, a flexible, RM-based approach for checking architecture consistency for
MDD projects is presented. Depending on the application area, static, dynamic, or
static and dynamic (in combination) extracted relationship types are considered.

3 Artifact-Based Analysis

This section gives an overview over the developed solution concept to perform
artifact-based analyses. Before presenting details, the basic definition of an artifact
is given.

Definition 1 An artifact is an individually storable unit with a unique name that
serves a specific purpose in the context of the software engineering process.

In this definition, the focus is on the physical manifestation of the artifact rather
than on the role in the development process. This requires that an artifact can
be stored as an individual unit and then be referenced. Nevertheless, an artifact
should serve a defined purpose during the development process because the creation
and maintenance of the artifact would otherwise be unnecessary. However, no
restrictions are made about how the artifact is integrated into the development
process, i.e., an artifact does not necessarily have to describe the target system,
for example, in the form of a model, but can also be part of the MDD tool
chain instead. The logical content of artifacts thus remains largely unnoticed. This
level of abstraction was chosen to effectively analyze the artifact structure, while
considering the existing heterogeneous relationships and thus meeting the focus of
this work.

An important part of the overall approach is to identify the artifacts, tools,
systems, etc., and their relationships present in the system under development. Here,
modeling techniques are used, which allow to make these concepts explicit and,
thus, enable model-based analyses. Figure 2 gives an overview of the model-based
solution concept.
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First, it is explicitly defined which types of artifacts, tools, other elements, and
relationships in the MDD project under development are of interest. This task will
be covered by the architect of the entire MDD project through modeling an artifact
model (AM). Such a model structures the corresponding MDD project. As the AM
defines the types of elements and relationships and not the concrete instances, this
model can stay unchanged over the lifecycle of the entire project unless new artifact
or relationship types are added or omitted.

Definition 2 The artifact model defines the relevant artifact types as well as
associated relationship types of the MDD project to be examined.

Artifact data reflect the current project state. They can ideally be automatically
extracted and stored in one or more artifacts.

Definition 3 Artifact data contain information about the relevant artifacts and their
relationships, which are present at a certain point in time in the MDD project. They
are defined in conformance to an artifact model.

Fig. 2 Solution concept for artifact-based analyses

Artifact data are in an ontological instance relationship [AK03] to the AM,
whereby each element and each relationship from the artifact data confirm to an
element or relationship type of the AM. Thus, the AM determines the structure of
the artifact data. Figure 3 shows how this is reflected in the used modeling technique.

Artifact data represent the project state at a certain point in time. Analysts or
special analysis tools can use the extracted artifact data to get an overview of
the project state, to check certain relations, create reports, and reveal optimization
potential in the project. The overall goal is to make the model-driven development
process as efficient as possible.
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Fig. 3 Overview about the languages and models used for artifact modeling

Beside other kinds of analyses [Gre19], this approach is suited to define and
execute architecture consistency checking of model-driven software development
projects taking into account input models, MDD tools, which themselves consist
of artifacts, and handwritten or generated artifacts that belong to the target product
of the development process. A corresponding AM depends on the languages, tools,
and technologies used in the project under development. Thus, it must usually be
tailored specifically for a given project. However, such a model can be reused as a
whole or partially for similar projects.

Fig. 4 Required steps to perform an artifact-based analysis

As shown in Fig. 4, the first step before the execution of artifact-based analysis
is to create a project-specific AM. Subsequently, artifact data analyses are specified
based on this AM. Based on these two preceding steps, the artifact-based analysis
can finally be executed.

3.1 Create Artifact Model

The first step of the methodology is to model an AM. The AM determines the scope
for project-specific analyses, explicitly defines the relations between the artifacts,
and specifies pre-conditions for the analyses. Furthermore, by using the languages
CD and OCL (see Sect. 2.1), it is possible to reuse the existing MDD tools to
perform the analyses. An AM core as well as an extensive AM for MontiCore-
based MDD projects has already been presented [Gre19]. If a new AM needs to be
created or an existing AM needs to be adapted, the AM core and possibly parts of
the existing project-specific AMs should be reused. A methodology for this already
exists [Gre19].

The central elements of any AM are the artifacts. All project-specific files and
folders are considered artifacts. Artifacts can contain each other. Typical examples
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of artifacts that contain other artifacts are archives or folders of the file system, but
database files are also possible. In this paper, we focus on those parts of the AM that
are used to perform ACC. Figure 5 shows the relevant part of the AM core.

Since the composite pattern [GHJV95] is used for this part of the AM core,
the archives and folders contain each other in any order. Each artifact contained
in one artifact container at most. If all available artifacts are modeled, there is
exactly one artifact that is not contained in a container: the root directory of
the file system. Furthermore, artifacts can contribute to the creation of other
artifacts (produces relationship), and they can statically reference other artifacts
(refersTo relationship). These artifact relations are defined as follows:

Definition 4 If an artifact needs information from another artifact to fulfill its
purpose, then it refers to the other artifact.

Definition 5 An existing artifact contributes to the creation of the new artifact (to
its production) if its existence and/or its contents have an influence on the resulting
artifact.

Fig. 5 Part of the AM core relevant for architecture consistency checking

Both relations are defined as derived association in the AM. Thus, these relations
must be further specified in project-specific AMs (see Sect. 4), while the definition
of artifact data analyses can already be done based on the derived associations
(see Sect. 3.4). The specialization of associations is defined using OCL constraints
[Gre19], because the CD language does not offer a first class concept here.

Modules represent architectural units based on artifacts and their relationships.
The artifacts relation between modules and artifacts must be explicitly defined
by the architect. A top-down approach (see Sect. 2.3) is used for the architecture
reconstruction part of the analysis.
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3.2 Specify Artifact Data Analyses

The second step of the methodology is the specification of project-specific analyses
based on the previously created AM. Artifact-based analyses should be repeatable
and automated. For this reason, an implementation of the analyses is necessary.
This implementation can be either direct in which case the person performing the
analysis would have both roles, analyst and analysis tool developer, or the analyst
specifies the analyses as requirements for the analysis tool developer, who can then
implement a corresponding analysis tool. In this work, analyses are specified using
OCL. The reasons for this are:

1. The use of the CD language in the specification of the AM makes it possible
to specify analyses using OCL, since the two languages can be used well in
combination.

2. The OCL is already used to define project-specific AMs. The reuse of familiar
languages reduces the learning curve for analysts, makes analysis specifications
readable for architects, and enables reuse in tool development.

3. The OCL has mathematically sound semantics, allowing analyses to be described
precisely. OCL expressions are suitable as input for a generator that can
automatically convert them into MDD tools. Thus, this tool implementation step
can be automated, reducing the effort for the analysis tool developer.

As this paper focuses on ACC, Sect. 2.3 defines architecture consistency
checking as artifact data analysis in detail. Other kinds of artifact-based analyses
are presented in the original thesis [Gre19].

3.3 Artifact-Based Analyses

As third step of Fig. 4, the artifact-based analysis is executed. This step is divided
into five sub-steps, which are supported by automated and reusable tooling. Figure 6
shows these steps and their corresponding tools.

When performing artifact-based analyses, the first step is the extraction of
relevant project data. If the data are stored in different files, a merge of the data
takes place. The entire data set is then checked for conformity to the AM. In
the next step, the data are accumulated based on the specification of the AM, so
that the derived properties are present when performing the last step, the artifact
data analysis. To support the steps of performing analyses, the MontiCore Artifact
Toolchain (MontiArT) was developed [Gre19]. MontiArT is a tool chain that can be
used to collect, merge, validate, accumulate, and finally analyze artifact data. Thus,
all sub-steps of the artifact-based analysis are supported. The individual steps are
each performed by one or more small tools, which can be combined in a tool chain,
for example, by using a script. The tools shown in Fig. 6 are arranged according
to the tool chain’s execution order. The architecture as tool chain is modular and
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Fig. 6 Sub-step of the artifact-based analysis

adaptable. New tools can be added without the need to adapt other tools. Existing
tools can be adapted or removed from the tool chain without having to adapt other
tools. This is advantageous, since this work is based on the assumption that there is
no universal AM for all MDD projects [Gre19]. For this reason, when using the tool
chain in a new project, it is usually necessary to make project-specific adjustments.
The selected architecture supports the reuse and adjustments of individual tools.

3.4 Artifact-Based Analysis for Architecture Consistency
Checking

In architecture reconstruction (see Sect. 2.3), the relationships between the architec-
tural units of the system are reconstructed, which are represented here by modules
(see Sect. 3.3). Modules can be defined for the models and tools used in the project
as well as for the product to be developed. By explicitly modeling modules and
assigning artifacts of the project to modules, an abstract project view can be created
that gives stakeholders (architects, developers, or tool developers) a good overview
of the MDD project. Modules can often be identified by the existing packages or
folders. However, due to architectural erosion (see Sect. 2.3), this alignment can
be lost. It is also possible to define different architectures for a single project,
each with a different focus [Lil16]. Furthermore, different types of modules can
generally be defined for predefined elements of a software architecture, such as
components, layers, or interfaces. In general, it is recommended that the specified
modules are reflected as well as possible by an appropriate structure in the project.
The relationships between modules can be derived based on the assigned artifacts
as shown in Listing 2.
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1 association /containedArtifact
2 [*] Module -> Artifact [*];
3
4 context Module m, ArtfiactContainer c inv:
5 m.containedArtifact.containsAll(m.artifact) &&
6 m.artifact.contains(c) implies m.artifact.containsAll(c.

contains**);
7
8 association /externalReferredArtifact
9 [*] Module -> Artifact [*];

10 association /externalProducedArtifact
11 [*] Module -> Artifact [*];
12
13 context Module inv: (*@ \label{lst:applications_module:

reliesonartifacts} @*)
14 externalReferredArtifact ==
15 containedArtifact.refersTo.removeAll(containedArtifact);
16
17 context Module inv: (*@ \label{lst:applications_module:

producedartifact} @*)
18 externalProducedArtifact ==
19 containedArtifact.produces.removeAll(containedArtifact);
20
21 association /reliesOnModule [*] Module -> Module [*];
22 association /contributionModule [*] Module -> Module [*];
23
24 context Module inv: (*@ \label{lst:applications_module:

reliesonmodules} @*)
25 reliesOnModule == externalReferredArtifact.module;
26
27 context Module inv: (*@ \label{lst:applications_module:

contributionmodule} @*)
28 contributionModule == externalProducedArtifact.module;

Listing 2 Specification of the artifact data analysis for architecture consistency checking: actual
architecture

A distinction is made between two different types of module relationships,
which can be calculated based on the assigned artifacts and their relationships. The
reliesOnModule relationship indicates that a module refers to another module,
while the contributionModule relationship indicates the participation of a
module in the creation of another module similar to the corresponding relations
for artifacts defined in Sect. 3.1. To calculate the relationships, further derived
auxiliary associations were defined. Each module can contain a set of artifacts,
which is defined as the set of artifacts directly assigned to the module together
with all artifacts transitively contained by assigned artifacts. Thus, when assigning
a folder to a module, contained artifacts are also regarded to be part of that module.
Furthermore, for each module, the external artifacts can be calculated, which are
those artifacts that are related to artifacts of the module, but are not assigned to
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the module themselves. Depending on the type of the underlying artifact relation-
ship, the relationship is represented by the externalReferredArtifact or
the externalProducedArtifact relationship in the shown AM extension.
With the help of these associations, the calculations of reliesOnModule and
contributionModule are specified, which results in the actual architecture of
the system under development.

Based on the actual architecture, the difference architecture between the target
and the actual architecture can also be calculated with the help of an AM extension.
The first required extension part for this analysis is shown in Listing 3. It allows the
specification of the target architecture.

29 association intendedReference [*] Module -> Module [*];
30 association intendedContribution
31 [*] Module -> Module [*];

Listing 3 Specification of the artifact data analysis for architecture consistency checking: target
architecture

With the help of the two associations intendedReference and intended-
Contribution, the intended relationships between modules can be specified.
These can then be used to calculate the differences between the target and actual
architecture. The second extension part for this analysis is shown in Listing 4. It
allows the representation of the difference architecture and specifies its calculation.

32 association /unintendedReference
33 [*] Module -> Module [*];
34 association /unintendedContribution
35 [*] Module -> Module [*];
36
37 association /missingReference [*] Module -> Module [*];
38 association /missingContribution [*] Module -> Module [*];
39
40 context Module inv:
41 unintendedReference ==
42 reliesOnModule.removeAll(intendedReference);
43
44 context Module inv:
45 unintendedContribution ==
46 contributionModule.removeAll(intendedContribution);
47
48 context Module inv:
49 missingReference ==
50 intendedReference.removeAll(reliesOnModule);
51
52 context Module inv:
53 missingContribution ==
54 intendedContribution.removeAll(contributionModule);

Listing 4 Specification of the artifact data analysis for architecture consistency checking:
difference architecture
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To be able to capture the results of the calculations, four derived associations
were introduced. For each type of relationship to be compared, two associations
are specified here. One represents the unexpected, additional relationships of the
actual architecture in comparison to the target architecture, and the other contains
the missing, but intended relationships. The unintended, additional relationships
can be calculated by removing the intended relationships from the set of existing
relationships. In contrast to this, missing, intended relationships can be calculated
by removing the existing relationships from the set of intended relationships.

4 Applied Analyses

This section describes two different applied artifact-based analyses for architecture
consistency checking. For both analyses, only step one (Create Artifact Model)
and step three (Artifact-based Analysis) are described. Step two (Specify Artifact
Data Analyses) was already presented in Sect. 3.4. As the defined analysis works
completely on the concepts of the presented AM core, there is no need to define
different analyses for the two different applications.

4.1 DEx Generator

The MontiCore Data Explorer (DEx) [Rot17] is a generator based on MontiCore that
transforms an input CD into an executable system for data exploration. In addition
to the generation of data classes, a graphical user interface and a persistence layer
to connect the application to a database can be generated.

DEx offers a mechanism for the integration of handwritten code and a mechanism
for the exchange and addition of templates by the generator user making the
generator very flexible and the generation process highly configurable. Furthermore,
internal M2M transformations take place when the generator is executed. The
configuration functionality and the execution of internal model transformations lead
to the fact that generation processes in different DEx-based development projects
can differ greatly. For this reason, an analysis of DEx-based projects is particularly
interesting.

DEx is delivered together with an exemplary CD model for generating an
application for a social network. A target architecture was created together with
the architect of DEx using the exemplary CD model as input for the generator. The
architecture consists of eleven modules, which can be part of the generator, the
generated product, or the runtime environment. As preparation for the analysis, the
project-specific AM shown in Figs. 7 and 8 was modeled.

Figure 7 presents the project-specific refersTo relations of the DEx generator.
The reflexive reliesOnJavaArtifact association indicates that two Java
artifacts are dependent on each other. One Java source code file is dependent on
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Fig. 7 Specific refersTo relationships between template and Java artifacts in the DEx project

another Java artifact iff the other artifact must be loaded when compiling the source
code file. A .class file depends on another artifact iff something (type, method,
constant, . . . ) from the other file is used when executing the part of the program
defined by the .class file.

Templates can call each other during their execution [Sch12], which means
that templates are dependent on other templates. This relationship is modeled by
the reliesOnTemplate relationship of the AM. Furthermore, it is possible to
create Java objects from templates and to store them temporarily, provide them
as parameters to other templates, and call their methods. Hence, templates can
depend on the existence of the corresponding Java artifacts. This relationship is
represented by the reliesOnJavaArtifact relationship. Java artifacts can
rely on the existence of templates when replacing standard templates with project-
specific templates [Rot17].

Fig. 8 Template and Java artifacts contribute to the creation of artifacts

The relationships contributionFT and contributionJava are special-
izations of the produces relation. Whenever a Java or template artifact of the
generator contributes to the generation of a target file, such a relation is recorded
in the artifact data.
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To extract the data of the shown AM, several reusable as well as project-specific
extractors were used. In the following step, the artifact data of each extractor
are merged into a single artifact data file, which acts as the first input for the
calculation of the actual architecture. The second input for the calculation of the
actual architecture is the module definition, i.e., the assignment of artifacts to the
modules of the target architecture defined by the project’s architect. Based on the
calculated actual architecture and the modeled target architecture, the difference
architecture of the DEx project was determined, which is shown in Fig. 9.

Fig. 9 Result of the artifact-based analysis: The difference architecture of the DEx project

The number of relationships present in the difference architecture reveals that
a major architectural degradation has occurred. An architectural degradation leads
to the fact that per time unit less and less functionality can be implemented and
bugs can be fixed, which ultimately leads to frustrated and demotivated developers
[Lil16]. Based on the analysis performed, the revealed architecture degradation
can be eliminated, thus counteracting these problems. For this purpose, it must
be decided individually for each relationship whether it is a violation of the target
architecture or whether the target architecture is outdated at this point. The cause for
unwanted relationships of the difference architecture can be traced using reporting
files created as by-product by the tooling. To update an outdated target architecture,
missing required relationships must be added and required relationships that have
become obsolete must be removed. In the case that the target architecture is still
valid, the corresponding relationship indicates a problem in the source code of
the project. When remedying such a problem, missing and additional, unintended
relationships of the actual architecture must be treated differently. Unintended
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Table 1 Examined artifacts of the DEx project

Module JavaSourceFile FreeMarkerTemplate
∑

gtr-gui 19 96 115

gtr-data 27 92 119

gtr-persistence 14 93 107

gtr-commons 17 5 22

gen-gui 121 0 121

gen-data 44 0 44

gen-persistence 121 0 121

rte-gui 119 0 119

rte-data 10 0 10

rte-persistence 17 0 17

rte-util 8 0 8

Nicht zugewiesen 38 15 53
∑

555 301 856

Table 2 Examined relations
between artifacts of the DEx
project

Relation Source artifact Amount

contains Directory 940

imports JavaSourceFile 1815

reliesOnJava JavaSourceFile 3807

reliesOnTemplate JavaSourceFile 324

reliesOnJava FreeMarkerTemplate 88

reliesOnTemplate FreeMarkerTemplate 59

contributionJava JavaSourceFile 270

contributionFT FreeMarkerTemplate 2760
∑

10,063

relationships must be eliminated by refactoring the source code in any case, while
a missing relationships can be either also fixed by a refactoring or it indicates
that the desired, corresponding functionality was not implemented at all or in a
fundamentally different way.

Finally, Tables 1 and 2 summarize some numbers to give an impression of the
scope of the project and the regarded artifact and relationship types.

4.2 MontiCar Repositories

While the artifact-based analysis of DEx focuses on a single development project,
we also applied our methodology to multiple projects located in different repos-
itories. Although these projects reside in different locations, i.e., version control
repositories, they are still related to each other. More specifically, our goal was
to perform architectural compliance checking for the MontiCar family, a family
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of projects developed in the context of autonomous driving and other automotive
related topics [KRRvW17, KRSvW18, KNP+19].

In case of multiple projects, we change our approach in such a way that we
define modules for the architectural compliance check based on the projects rather
than single parts of each project. For example, the project containing common
functionality for all other projects forms a single module or all functionality used for
visualization purposes is comprised in a single module. Next, the target architecture
for the set of projects is defined. Listing 5 shows an excerpt of this definition.

The EmbeddedMontiArc module has an intended relation to the commons and
visualization modules as well as to the EmbeddedMontiArcView module. For the
analyses of the MontiCar family, in general, we used the same specifications as
defined for DEx in Listings 2, 3, and 4. Furthermore, we assigned the src folder
of each project to the respective module since each project is a Maven project. The
transitive closure of the src folder defined the set of artifacts considered for the ACC
as described in Listing 2, ll. 3-5.

For the analysis of MontiCar, we only considered intended references between
the modules, since contribute relations only exist within each project. The primary
goals were to first check if all intended relations between modules actually exist
and second to get an overview of all unintended relations within the family. With
the help of the respective results, we then improved the current architecture of the
family to adhere to the target architecture.

1 objectdiagram ModuleRelations {
2
3 EmbeddedMontiArc:Module{};
4 EmbeddedMontiView:Module{};
5 languagescommon:Module{};
6 visualisation:Module{};
7
8
9 link intendedReference EmbeddedMontiArc -> EmbeddedMontiView;

10 link intendedReference EmbeddedMontiArc -> languagescommon;
11 link intendedReference EmbeddedMontiArc -> visualisation;
12 }

Listing 5 Excerpt of the module definition for the MontiCar project family

Table 3 shows the results of the ACC for the MontiCar family. The first column
displays the defined modules, and the following columns contain the total number of
artifacts analyzed, the number of intended references for each module defined in the
target architecture, and the found numbers of unintended and missing references
as part of the difference architecture. Looking at the results, it is interesting to
see that for most of the modules either a unintended or missing reference was
discovered. Moreover, the analysis found unintended references for more than half
of the modules. Unintended references are references not contained in the target
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Table 3 Results of analysis containing the number of artifacts of each module, the number of
intended references of the target architecture, the number of unintended references, and the number
of missing references

Module # Artifacts # Intended # Unintended # Missing

EmbeddedMontiArc 151 6 0 1

Enum 110 0 3 0

languagescommon 136 0 3 0

EmbeddedMontiArcMath 261 4 2 0

MontiMath 119 5 1 1

TaggingExamples 31 2 2 0

Struct 51 4 0 0

EmbeddedMontiView 120 4 2 2

EMAM2Cpp 357 9 1 0

ViewVerification 181 5 2 0

reporting 510 4 1 1

Tagging 121 1 0 0

NumberUnit 26 1 0 0

visualisation 188 6 3 3
∑

2362 51 20 8

architecture, however, present in the actual architecture. In general, these deviations
illustrate the architectural erosion within the MontiCar family. Depending on the
module, one deviation is considered more critical than others. For example, for
the languagescommon project, the number of intended references is zero, since it
contains common functionality, which must not relate to any other project. However,
three unintended references to other projects of the family were found. The impact
of other occurrences in the difference architecture is less critical, since these were
classified as architectural drift. Especially, missing references between modules fall
into this category for the MontiCar project. As a consequence, the target architecture
was adjusted in these cases accordingly.

Using the results of the artifact-based analysis, we were able to look at each of the
references found in the current state of the MontiCar family in more detail. Besides
currently existing references between modules, the analysis also provided a detailed
list of the artifacts and their relations that cause a reference between modules. For
each of the unintended module references not contained in the target architecture,
we had the options to reduce the architectural drift:

• Declare the reference to be unintended and as a consequence refactor the artifacts
causing the reference.

• Declare the reference to be intended and add it to the target architecture.

Finally, we were able to reduce the architectural drift within the family of projects
using the artifact-based architectural consistency checking and continue to perform
it regularly to keep the architectural drift as small as possible at all times.
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5 Conclusion

MDD helps to master the complexity of software development and to reduce the
conceptual gap between the problem and the solution domain. By using models and
MDD tools, the software development process can be at least partially automated.
Especially when MDD techniques are used in large development projects, it can
be difficult to manage the huge number of different artifacts, different artifact kinds,
and MDD tools. This can lead to poor maintainability or an inefficient build process.
The goal of the presented approach is the development of concepts, methods, and
tools for artifact-based analysis of model-driven software development projects. The
term artifact-based analysis is used to describe a reverse engineering methodology,
which enables repeatable and automated analyses of artifact structures. To describe
artifacts and their relationships, artifact and relationship types, and for the specifica-
tion of analyses, a UML/P-based modeling technique was developed. This enables
the specification of project-specific artifact models via CD and OCL parts. As part
of the modeling technique, a reusable AM core is defined. In addition, analysis
specifications can also be defined by CDs and OCL, while artifact data that represent
the current project situation are defined by ODs. The choice of modeling technique
allows you to check the consistency between an AM and artifact data. The models
are specified in a human readable form but can also be automatically processed by
MDD tools. The artifact-based analysis consists of five sub-steps, which, starting
from an MDD project and an associated AM, allows the execution of specified
analyses.

While this paper gave an overview of the contributions of the original thesis
[Gre19], not all contributions could be covered in detail. Especially, this paper
focused on only a single kind of artifact-based analysis, architecture consistency
checking, whereas the original thesis presents several different analysis kinds.
Moreover, Sect. 4.2 of this work described an additional case of application
succeeding the former work.

Due to the results obtained, this work contributes to handling the increasing
complexity of large MDD projects by explicit modeling artifact and relationship
types, which can be used for manual and automated analysis of MDD projects.
Hidden relationships can be revealed and checked immediately, which opens up the
possibility for corrections and optimizations in a given project.
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Same but Different: Consistently
Developing and Evolving Software
Architecture Models and Their
Implementation

Marco Konersmann and Michael Goedicke

Abstract As software architecture is a main driver for the software quality,
source code is often accompanied by software architecture specifications. When the
implementation is changed, the architecture specification is often not updated along
with the code, which introduces inconsistencies between these artifacts. Such incon-
sistencies imply a risk of misunderstandings and errors during the development,
maintenance, and evolution, causing serious degradation over the lifetime of the
system. In this chapter we present the Explicitly Integrated Architecture approach
and its tool Codeling, which remove the necessity for a separate representation
of software architecture by integrating software architecture information with the
program code. By using our approach, the specification can be extracted from
the source code and changes in the specification can be propagated to the code.
The integration of architecture information with the code leaves no room for
inconsistencies between the artifacts and creates links between artifacts. We evaluate
the approach and tool in a use case with real software in development and with a
benchmark software, accompanied by a performance evaluation.

1 Introduction

In the development of software systems, the software architecture [32] describes
the software’s general building blocks, including structural and behavioral aspects.
Software architecture is one of the main drivers for software quality. Due to its
importance, software architecture is often modeled in some way, for communicating
and analyzing the architecture. This includes a brief sketch on a sheet of paper and
goes up to extensive specifications in formal languages.
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While the software architecture can be modeled, it certainly will be implemented
using programming languages to build an executable system. The current major
programming languages, such as Java, C, Python, and so on [1], do not provide
abstractions for components and connectors. A translation between the concepts of
architecture specification languages and programming languages is required for a
project, to understand how these concepts are implemented. Developers either create
project-specific conventions to implement architectural features or use one of many
component implementation frameworks. Components are then, e.g., implemented
by a class definition with a name ending with Component within a package.
The component provides interfaces by implementing a corresponding interface,
that is defined in the same package. Conventions like these can be found in many
software systems, often not even documented. Implementation frameworks specify
recurring patterns for implementing architecture information such as component-
based structures. For example, in Enterprise Java Beans (EJB) [23] Java classes
with specific annotations can be used as components.

Both, conventions and frameworks, can be seen as architecture implementation
languages. They consider program code to describe architectural information. But
a program is not complete with an architecture alone. Further program code is
necessary to implement the detailed behavior or fine-grained structures, which is
required to build an executable and functional system. Architecture implementation
languages also need to provide room for such program code.

Languages for specifying and for implementing software architectures share
a common core: components and their interconnection [22]. As they describe
overlapping information, they should be consistent. Undetected inconsistencies may
be the source for misunderstandings and errors in the implementation. Automated
consistency checks can identify whether an architecture specification and its
implementation are in a consistent state. Existing approaches for consistency of
architecture models and implementations usually focus on a pair of specification
and implementation languages (see related work in Sect. 5). New approaches need
to be developed for emerging or evolving languages, which take the specific features
of the languages into account and respect existing, non-architectural program code.

A variety of software architecture specification languages exist, such as dedi-
cated architecture description languages (ADLs) [18] or general-purpose modeling
languages, that are feasible to describe software architectures, such as the Unified
Modeling Language (UML). The different languages provide different features,
including component hierarchies, different types of connectors, or different concepts
of abstract behavior. The implementation of software architecture is similarly
diverse. This diversity is a challenge for maintaining the consistency of architecture
implementations and specifications.

This chapter presents the following main contributions:

1. The Explicitly Integrated Architecture (EIA) approach automatically maintains
the consistency of implemented and specified architectures. It translates between
program code and architecture models, by extracting architecture models from
code and propagating model changes back to the code. It takes the difference of
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architecture languages into account and reduces the effort for integrating new or
evolved languages into the architecture model/code translation.

2. The Model Integration Concept is an approach for translating between program
code and software design models using translation patterns.

3. The Intermediate Architecture Description Language is an intermediate language
to translate between different software architecture languages.

4. Architecture Model Transformations based on the Intermediate Architecture
Description Language translate between software architecture languages.

5. The tool Codeling1 implements the EIA approach and has been used for
evaluation in synthetic and real environments.

6. A code generation tool generates concrete model/code translations from transla-
tion patterns.

We will present our approach as follows: In Sect. 2 we present our approach.
Codeling is presented in Sect. 3. We describe the evaluation and discuss its results
in Sect. 4. Related work is presented in Sect. 5, before we conclude in Sect. 6 and
present the future work.

2 The Explicitly Integrated Architecture Approach

The Explicitly Integrated Architecture (EIA) approach extracts architecture models
from code and propagates model changes back to the code. Using the proposed
approach, architecture model information is integrated with program code. The code
will be structured in a way that architecture meta model and model elements and
their properties can reliably be extracted and changed. Non-architectural code is not
overwritten when model changes are propagated.

Figure 1 sketches an overview of the approach. Artifacts of the approach are
represented with rounded boxes and translations between these artifacts with arrows.
The parts of the approach are used to bidirectionally translate between program code
and a specification model expressed in an architecture specification language. They
are underlined in Fig. 1.

1. Program Code: the implementation of a software following the standards of an
architecture implementation language

2. Implementation Model: an abstract model view upon the program code, which
complies to an architecture implementation language

3. Translation Model: an intermediate model view for translating between an
implementation model and a specification model

4. Specification Model: a specification of architectural concerns using an architec-
ture specification language

1The tool Codeling and its accompanying code generator are available at https://codeling.de as
open source, licensed EPL 1.0.

https://codeling.de
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Fig. 1 The view types of the EIA approach and the means to translate between them (underlined)

The EIA is comprised of four parts:

1. The Model Integration Concept integrates models and meta models with
program code. It is used to create well-defined translations between program
code structures, model elements, and meta model elements. It extracts arbitrary
design models from code and propagates changes in the models to the code again.

2. The translation model reduces the number of translation definitions required
between architecture implementation and specification model languages. We
define the Intermediate Architecture Description Language (IAL) to express
translation models.

3. Architecture Model Transformations are used for the translation between
models of different languages and for transformations within models of the IAL.

4. The Explicitly Integrated Architecture Process describes how these areas are
used to achieve the overall objective.

While the Model Integration Concept would suffice for extracting architecture
models from code, it does not provide the necessary flexibility to handle new and
evolving languages with different features. The IAL and the transformations are
required to fulfill these objectives.

2.1 Explicitly Integrated Architecture Process

The Explicitly Integrated Architecture Process [11] is visualized in Fig. 2. It starts
from program code that complies to an implementation model, including code that
has not been developed using the process yet. An empty code base can also be a start
for green field development. The process defines three main steps for each direction.
For extracting a specification model, the following steps are executed:
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Fig. 2 Overview of the Explicitly Integrated Architecture Process

Step 1 extraction of a translation model from the program code via an implemen-
tation model;

Step 2 preparation of the translation model according to the features of the
involved languages;

Step 3 translation of the translation model into a specification model.

For propagating the model changes to the code, reverse steps are executed:

Step 4 translation of the specification model into a translation model;
Step 5 preparation of the translation model according to the features of the

involved languages;
Step 6 integration of the translation models with program code via an implemen-

tation model.

Fig. 3 Details of the steps 1 and 6 of the Explicitly Integrated Architecture Process

The steps 1 and 6 for model/code transformations are detailed in Fig. 3. Step 1
creates a translation model based on the program code. First, step 1.1 translates
the code into an implementation model using the Model Integration Concept.
Then, step 1.2 creates a translation model from the implementation model using
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architecture model transformations. Step 1.3 adds architecture information in the
program code that cannot be expressed with the implementation model language to
the translation model using the Model Integration Concept. To propagate changes in
the translation model to the code, step 6.1 first translates the transformation model
into an implementation model, before step 6.2 changes the code according to the
changed implementation model. Step 6.3 then changes the code according to the
translation model, with the architecture information that the implementation model
language cannot express.

During the following steps, trace links [35] are created or used: Trace links
between code and model elements are created in steps 1.1 and 1.3, and between
model elements of different modeling languages in the steps 1.2 and 3. That is,
in all steps from the code to the architecture specification model, trace links are
created. Step 4 propagates the changes in the specification model to the translation
model. The transformations require the trace links of step 3 to identify which
model elements were created in step 3 and to identify changes. Step 6.1 uses the
trace links of step 1.2 to propagate model changes in the translation model to the
implementation model. The steps 6.2 and 6.3 use the model/code trace links of the
steps 1.1 and 1.3, respectively, to identify the affected code elements. That is, during
each stop during the change propagation, the corresponding traces from the model
extraction are used.

2.2 Model Integration Concept

The Model Integration Concept (MIC)2 describes how model information is inte-
grated with program code. Models in the term of this approach are always based on
meta models. Other models, such as mathematical functions, are not meant here. In
Fig. 1 the concept provides vertical integration. It is used to integrate and extract
architecture model information from an implementation model and the translation
model with/from program code. For doing so, the MIC defines bidirectional formal
mappings between program code structures and an implementation model expressed
in a meta model of an architecture implementation language. As an example, a Java
class that implements a specific marker interface might represent a component, and
static final fields within this class definition represent attributes of this component.
With the MIC, the code is statically analyzed for program code structures that
identify implementation model elements. Changes in the model are propagated to
the code, following the mapping definitions.

Figures 4 and 5 show example mappings. Figure 4 shows a meta model/code
mapping for the class Component with the attribute name of the type String. Meta
model elements are shown on the left side. The right side shows Java program code,
which represents this meta model element. The meta model class is represented

2Some of the ideas behind the Model Integration Concept were first described in [14].
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with the declaration of an annotation with the name Component. The attribute
name is not declared in the meta model/code translation. This attribute is subject
to the model/code translation in Fig. 5. The declaration of the annotation has a
meta annotation Retention, declared RUNTIME, which means that the declared
annotation will be part of the compiled byte code and is processable in the running
system.

Fig. 4 An example of a meta model/code mapping

Figure 5 shows a model/code mapping for a model that instantiates the given
meta model. The left side shows an instance of that meta model, a single object
of the Component class, with the name BarcodeScanner. The right side
shows their Java program code representation. The program code declares a type
BarcodeScanner. The annotation Component is attached to the type. The
type’s body is a so-called entry point. That is, arbitrary code, such as attributes
and operations, can be added here without breaking the model/code relationship.

Fig. 5 An example of a model/code mapping

Such (meta) model/code mappings in the MIC are the basis for generating three
types of artifacts:

1. Bidirectional transformations between model elements and program code build
a model representation based on a given program code, so that developers can
extract an integrated model from program code. They also have to propagate
model changes to the code, i.e., create, delete, and change program code based
on model changes. It has to be ensured that these translations are unambiguous.
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2. Meta model/code translation libraries are program code structures, which
represent meta model elements. In the example, this is the annotation declaration.
This program code can be generated once. The results can be used as libraries,
as long as the meta model does not change.

3. Execution runtimes can be generated for model elements. These runtimes manage
the operational semantics of integrated models.

2.2.1 Integration Mechanisms

Integration mechanisms are templates for model/code mappings. They describe
a mapping between program code structures and symbolic meta model elements
or symbolic model elements. Each comprises a meta model/code mapping for
translating a meta model element type and a corresponding model/code mapping
for translating instances of that element. Integration mechanisms can be instantiated
by applying them to a specific meta model or model, i.e., by replacing the symbolic
elements with specific elements.

We identified 20 integration mechanisms by building upon existing Java-based
architecture implementation languages such as JEE [23] or OSGi [33]. Some are
based on the work of Moritz Balz [4]. Figures 4 and 5 show mappings for the
integration mechanism Annotation Type for translating objects in the model using
the Component as an example. Further mechanisms exist for objects (e.g., marker
interfaces), attributes (e.g., constant static attributes), and references (e.g., annotated
references to other objects). Konersmann’s PhD thesis [12] formally describes the
current set of integration mechanisms for Java with formal definitions, examples,
and a discussion of the effects and limitations of each mechanism.

The integration mechanisms are an important part of the MIC to reduce the effort
for developing bidirectional model/code transformations and execution engines. For
integration mechanisms, reusable generic code generators for transformations, meta
model code libraries, and execution engines have been developed. When they are
instantiated with meta model elements, the respective code can be generated (see
the tool support described in Sect. 3) for the concrete mappings.

2.2.2 Operational Semantics

Two types of operational semantics exist for model elements in the context of the
MIC [13]:

1. Language semantics can be implemented in the runtime. Here each instance of a
model element has equal semantics, e.g., when a component is instantiated, it is
registered at a registry. These semantics apply to each component instance.

2. Model semantics can be implemented within the individual model/code struc-
tures. Here each instance of a model element has individual semantics, e.g., when
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a component is instantiated, individual initialization code should be called, which
can be defined by a developer.

In the latter, for executing such implementation details, translations within the MIC
may declare entry points. Entry points may contain arbitrary code, which is not
considered a part of the bidirectional model/code translation. The initialization code
stated above can be implemented within operations provided by the model/code
structures. An execution runtime will then execute these operations.

2.3 Intermediate Architecture Description Language

The Intermediate Architecture Description Language (IAL) mediates between
architecture implementation models and architecture specification models. It has the
role to increase the interoperability of the approach with different specification and
implementation languages. The IAL has a small core with the common elements
of architecture languages [21]. The core is extended with a variety of stereotypes
to represent, e.g., different kinds of interfaces, component hierarchies, or quality
attributes. Models expressed in the IAL are called translation models.

The core comprises the following elements: The Architecture is the root node
that represents a software architecture comprising interconnected components. The
class ComponentType represents a named component type. Interfaces can be used
as an abstract definition of named interfaces for component types. Component types
can provide and require interfaces. Component Instances represent the runtime view
on components’ types. The provision and requirement of interfaces is instantiated,
respectively.

Profiles add further concerns to the architecture language. Such concerns include,
e.g., different types of connectors, component hierarchies, types of interfaces, or
quality aspects. Profiles can be categorized regarding their abstract concern, e.g.,
the profiles Flat Component Hierarchy and Scoped Component Hierarchy both
handle the abstract concern of the component hierarchy, or Time Resource Demand
and Security Levels both handle software quality concerns. Some categories are
mandatory, meaning that at least one profile has to be used when an architecture is
described. One kind of component-type hierarchy must be chosen. Some categories
contain only optional profiles, e.g., no software quality profile is necessary to be
used.

Figure 6 shows the profiles of the IAL and their interrelationships regarding
their interpretation. The rectangles are categories of profiles, which share an
abstract concern. The rectangles with rounded corners represent profiles. Mandatory
categories (which have a solid border in Fig. 6) require at least one profile to be
used. The profiles and their application are described in detail in Konersmann’s PhD
thesis [12]. Considering the objective of the language, in the future more profiles and
categories can be added.
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Fig. 6 An overview of profiles of the Intermediate Architecture Description Language and their
interrelationships

2.4 Architecture Model Transformations

Two types of architecture model transformations are part of the EIA approach. First,
transformations between architecture specification languages and the IAL as well
as transformations between architecture implementation languages and the IAL are
used to create a mapping between architecture specifications and implementations
on a model level. Second, transformations within the IAL allow for translating
between different related profiles of the IAL. In Fig. 1 the architecture model
transformations provide the horizontal integration.

2.4.1 Transformations Between Architecture Languages

Transformations between architecture languages and the IAL can be defined in
any model transformation technique that allows for exogenous transformations, i.e.,
transformations from one language to another [19].



Same but Different: Architecture Models and Their Implementation 97

In the implementation of the tool Codeling, we use triple graph grammars
(TGGs) [26] based on attributed, typed graphs [6]. In these typed graphs, the graphs
are considered models and the type graphs are meta models. A TGG describes triple
rules, which declare how two graphs can be produced in alignment. They comprise
a source graph, a target graph, and a correspondence graph. In our approach, one
of these graphs is always a model expressed in the IAL. The triple rules are used
to derive production rules and propagation rules in the context of our approach.
Production rules describe how to construct a target graph from a given source graph.
Propagation rules describe how to propagate changes in a target model back to the
source model.

In our approach, TGGs are used:

1. to produce a translation model from an implementation model,
2. to produce an architecture specification model from the translation model,
3. to propagate changes in the specification model to the translation model, and
4. to propagate changes in the translation model to the implementation model.

We developed TGG rules for the Palladio Component Model (PCM) [5], a subset
of the UML, JEE [23], and a project-specific architecture implementation language.
Details on the specific rules are given in Konersmann’s PhD thesis [12].

2.4.2 Transformations Within the IAL

The IAL comprises several profiles that are mutually exclusive (see Sect. 2.3). As
an example, when an architecture is modeled with hierarchical component types
and, at the same time, as flat component-type hierarchy, this information would
be inconsistent. Nevertheless, an architecture can be expressed in an architecture
implementation language that defines component-type hierarchies and should be
viewed in an architecture language that can only model flat hierarchies. To respect
these situations, the approach defines transformations between mutually exclusive
IAL profiles, which are called inter-profile transformations. In the EIA process,
both profiles are used in the IAL at the same time, leaving inconsistent information
in the translation model. The architecture model transformations toward the target
specification language only use the information they can handle, leaving trace links
in the process. When changes in the specification model are translated into the
translation model, the missing information is restored by exploiting the trace links.
Details on the inter-profile transformations are given in Konersmann’s PhD thesis
[12].

3 Tool Support

We developed the following tools for the approach. Figure 7 gives an overview of
the tools and their input and output. Codeling is the tool for executing the Explicitly
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Integrated Architecture Process. It creates architecture specification model views
upon program code, propagates changes in the model to the code representation,
and can migrate program code from one architecture implementation language to
another. Libraries in the context of Codeling support the development and execution
of model/code transformations and architecture model transformations, including an
automated selection and execution of inter-profile transformations.

The code generation tool exploits the definition of integration mechanisms for
the Model Integration Concept. The tool’s user maps integration mechanisms to
elements of meta model elements. We developed a library of abstract transforma-
tions and execution runtimes for integration mechanisms, to decrease the effort
for creating specific transformations and execution runtimes, where integration
mechanisms can be applied. Based on the library of these abstract transformations
and execution runtimes, the code generation tool then generates a meta model code
library, model/code transformations, and execution runtime stubs.

Fig. 7 An overview of the tools and the artifacts they use as input and output

3.1 Codeling

Codeling is a development and execution platform for extracting architecture
models from code and for propagating changes in the models back to the code.
It implements the process presented in Sect. 2.1 and provides a set of libraries to
support the development of concrete transformations between program code and
models.
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Codeling is implemented with a modular architecture, which allows integrating
further architecture implementation or specification languages, using different types
of model/code or model-to-model transformation technologies.

Three types of use cases can be executed with, or are supported by Codeling:

1. For a code base, architecture specification models of different languages can be
extracted, and changes in these models can be propagated to the code.

2. When a set of rules or a normative architecture exists, Codeling can extract the
actual architecture from the code to check the architectural compliance of the
source code.

3. By translating program code into the IAL and back to another architecture
implementation language, Codeling can be a part of software migration. Only
architecturally relevant code can be migrated. Further program code needs to be
migrated by other means.

3.1.1 Model/Code Transformations

Libraries for the steps 1.1 (Code to Implementation Model), 1.3 (Code to Translation
Model), 6.2 (Implementation Model to Code), and 6.3 (Translation Model to Code)
of the process comprise a hierarchy of abstract classes to assist the development of
concrete model/code transformations. The class hierarchy supports the transforma-
tion of Java code into Ecore [30, Chapter 5] based models and to propagate changes
in the Ecore models to the Java code using the Eclipse Java Development Tools.3

A transformation of code into a model representation is executed in a tree
structure, following containment references in the meta model: A root transfor-
mation object first translates the root code element—usually the projects at the
given paths—into a model representation, the root node of the targeted model. The
transformation objects store references to the code and the corresponding model
element, effectively creating a trace link between the code and the model.

After the translation, the transformation object is added to a transformation
object registry. This registry can be used later to retrieve model elements, which
represent specific code elements or vice versa. At last, the transformation creates
child transformation objects for its attributes and containment references and adds
them to a pool of tasks.

Transformations for classes have transformations for their attributes and con-
tainment references as child transformations. Transformations for attributes have no
child transformations. Reference transformations, including containment reference
transformations, have transformations for their target objects as child references. If
a containment reference is translated from a code to a model representation, the
targets of the reference do not exist, because they have not been translated yet.

3Eclipse JDT—https://www.eclipse.org/jdt/.

https://www.eclipse.org/jdt/
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Transformations for non-containment references first wait for the transformation
of the target objects.

3.1.2 Model-to-Model Transformations

To execute model-to-model transformations between an architecture implemen-
tation or specification language and the IAL (the exogenous transformations in
steps 1.2, 3, 5, and 6.1), Codeling provides helper classes to execute HenshinTGG
[15] rules to create the target model or to propagate changes from a changed
target model to a source model. Other technologies for defining exogenous model-
transformations can also be applied, as long as change propagation is possible.

Codeling uses Henshin [6] rules for inter-profile transformations in step 2 and
step 4. It derives the information about which inter-profile transformations have
to be executed during the process execution. The information is based on the IAL
profiles that are used in the HenshinTGG rule definitions between the IAL and the
architecture implementation and specification languages.

3.1.3 Process Execution

Figure 8 shows a simple example of the Explicitly Integrated Architecture Process in
action. In this example an EJB Session Bean CashDesk is added to an existing
bean BarcodeScanner. The CashDesk is declared to be the parent of the
BarcodeScanner.

(1) shows the program code for the bean BarcodeScanner.
(2) The implementation model is built by scanning the program code for

mapped structures based on the Model Integration Concept. In this example a type
declaration with an attached annotation Stateless is identified. The name of the
declared type is identified as the name of the bean.

(3) The implementation model is translated into a translation model, an instance
of the IAL.

(4) The translation model is translated into a specification model. The specifica-
tion model in the example is represented using a UML component diagram. In an
evolutionary step, a parent component named CashDesk is added.

The changes are propagated to the code as follows:
At (5) the architecture specification model is translated into the translation model.

A new ComponentType with the name CashDesk is created, with a stereotype that
allows to add children to a component type.

(6) The translation model is translated into an implementation model. In this
model the hierarchy cannot be represented, because the EJB specification does not
define component hierarchies.

At (7) the program code is adapted corresponding to the changes in the
implementation model. That is, the type CashDesk is created.
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Fig. 8 An example of the Explicitly Integrated Architecture Process

(8) The architecture information that has no representation in the implemen-
tation model is translated into the code using the Model Integration Concept. In
this example, the hierarchy is translated as a field in the Java-type declaration
BarcodeScanner with the annotation EJB. This is an annotation of the EJB
framework, which specifies that an instance of the bean BarcodeScanner has to
be injected. Additionally, this field has the annotation ChildTypes, which marks
the reference an instance of the childTypes reference. To remove the hierarchy, the
code could be translated into a model using the process. As an alternative, the
respective code element could be removed.

It should be noted that the hierarchy could also have been created in the terms of
the approach by simply adapting the code accordingly, because the models can be
derived automatically.
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3.2 Code Generation Tool

Codeling provides libraries and components for defining and executing transla-
tions as defined by the Explicitly Integrated Architecture approach. This includes
the definition of bidirectional model/code transformations and meta model code
libraries, which, e.g., include annotations or interface definitions used by the
transformations. Developing such transformations and meta model code libraries
can be cumbersome and error-prone. The integration mechanisms can be used as
templates for generating model/code transformations and program code libraries
for meta model code. The Code Generation Tool generates the following artifacts
(see Fig. 7):

1. A meta model code library with code that represents architectural meta model
elements.

2. A set of model/code transformations for extracting a model from code and
propagating changes from the model to the code, which follow the integration
mechanisms.

3. Execution runtime stubs for the program code that is generated by the aforemen-
tioned transformations.

To generate these artifacts, the generator requires two items as input:

1. A language meta model, which describes the architecture implementation lan-
guage concepts in Ecore.

2. A mapping between meta model elements and integration mechanisms, which
describes which integration mechanism is to be instantiated for each meta model
element.

As the generated transformations follow the integration mechanisms, they reli-
ably extract model elements from the code and propagate changes from the model
back to the code. A hierarchy of abstract classes have been prepared to add new
translations for further mechanisms. However, especially for existing component
frameworks, model/code mappings might not follow the existing integration mech-
anisms or require slight deviations from existing mechanisms. For these mappings,
translations have to be programmed manually, using the aforementioned hierarchy
of abstract classes. If a mapping only deviates slightly from an existing mechanism,
the generated translation can be manually adapted. In each of the use cases shown in
Sect. 4, an adaptation of generated mechanisms was necessary. For both use cases,
some translations had to be defined manually.

3.3 Execution Runtimes

Within Codeling we developed a framework for implementing execution runtimes
for models that are integrated with program code [13]. These runtimes are based
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on Java’s reflection mechanism to analyze the code, inject instances, and invoke
operations at run-time. The framework comprises a set of abstract classes, which
have to be extended for implementing specific runtime classes. For each imple-
mented integration mechanism, an abstract runtime class exists. For implementing
an execution runtime for a meta model, we map integration mechanisms to each
class, reference, and attribute declared in the meta model. The code generation tool
then generates an execution runtime class for each of these pairs. This creates a tree
of execution runtimes, one for each meta model element. These generated execution
runtime classes contain functionality to instantiate objects, set reference targets, and
attribute values based on the underlying integration mechanism. The operational
semantics of the modeling language can be implemented in these classes. The
runtimes can effectively be seen as interpreters for the integrated models. They
can also trigger operations to invoke code, which is declared in an entry point, and
therefore trigger the execution of model semantics, which are expressed in program
code (see Sect. 2.2.2).

4 Evaluation

For evaluation purposes, the approach has been applied in four use cases: The first
use case translates the JEE program code of an e-assessment tool into a UML model
with components, interfaces, operations, and their interconnection and propagates
changes in the model back to the code. The second use case translates the program
code of the Common Component Modeling Example (CoCoME) [10] into a subset
of the Palladio Component Model (PCM) [5]. The third use case translates the
CoCoME system into the UML as another architecture specification language. The
fourth use case translates the CoCoME system into JEE as another architecture
implementation language. In the following sections we will elaborate on the first
and second use cases. All use cases are described in detail in Konersmann’s PhD
thesis [12].

4.1 Use Case JACK 3

In the first use case, the development of the e-assessment tool JACK 3 is supported
by generating an architectural view in the UML specification language. JACK 3 is
the designated successor of the e-assessment tool JACK 2 [31], developed at the
working group “Specification of Software Systems” (S3) of the institute paluno of
the University of Duisburg-Essen, Germany. Its predecessor is used in the teaching
and assessment of various disciplines, including programming, mathematics, and
micro-economics. JACK 3 comprises two parts: a back end written in Java using
the Eclipse platform as architecture implementation language, and a front end
written in Java, based on the Java Enterprise Edition 7. The front end defines a
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user interface, data definitions, and business logic for e-assessments. The back end
evaluates solutions against the defined standard solutions. It is not changed during
the development of JACK 3. Therefore, this use case focuses on the front end for
supporting the development of JACK 3.

This use case translates a subset of JEE technologies (EJB 3.2, CDI 1.2,
and JSF 2.2) into a UML component diagram and back. JEE is a standardized
set of frameworks and APIs for enterprise systems. Application servers act as
execution runtimes, which analyze the code before execution, e.g., to instantiate
and interconnect JEE components (beans) or to provide web-based interfaces
(e.g., REST interfaces or web services). The use case also adds time resource
demand information to operations in the specification model. JEE as architecture
implementation language cannot express this information. This use case shows that
such differences are taken into account by the approach.

For this use case, we generated and adapted model/code transformations for JEE
code. The architecture implementation language JEE defines source code structures
that represent architectural concepts, and platforms that execute the code. As no
Ecore meta model for JEE was publicly available, we created a meta model of
JEE with 11 classes, 16 references, and 22 attributes, which represent structural
elements, i.e., interrelated beans and data entities in namespaces and archives, and
their operations and attributes, as part of the use case.

We assigned integration mechanisms to 6 classes, 11 references, and 12
attributes. Some mechanisms had to be adapted to match the requirements of JEE-
compliant code. For the other elements, we developed individual transformations
based on the abstract transformations in Codeling. The project has 12307 lines of
Java code (NCLOC). The resulting model has 2446 objects with 45,354 reference
instances. On a computer with an Intel i5-8250U CPU and 16 GB memory on
Ubuntu Linux 18.04.2 and OpenJDK version “11.0.4” 2019-07-16, the median
model extraction time is about 5 s.

Furthermore, model-to-model transformations between JEE and the IAL were
defined using HenshinTGG. Our TGG for JEE and the IAL comprises 35 rules.
Another TGG was developed to translate between the IAL and a subset of the UML.
That TGG comprises nine rules.

The extracted architecture of JACK comprises 36 UML components that are
interconnected via 33 interfaces in a correctly layered architecture. It helped the
developers to understand that they implemented their architecture correctly and to
see how the components in the layers are interconnected. The resulting UML model
is changed in the use case by adding, changing, and deleting elements. Codeling
automatically changes the code according to the changes in the UML model.

Propagating a single renaming of a component, which is translated with the Type
Annotation mechanism, from the UML model to the code takes about 5 s on the
computer described above. The tool uses code refactoring operations to propagate
this code change. For the model extraction, the main drivers for execution time
are the size of the code to be analyzed and the size of the resulting model. For
propagating model changes, the main drivers are the size of the model and the
number of changes.
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4.2 Use Case CoCoME in PCM

In the second use case, the program code of the Common Component Modeling
Example (CoCoME) [10] is translated into a subset of the Palladio Component
Model (PCM) [5]. CoCoME has been developed as a benchmark for comparing
software architecture languages. The original CoCoME benchmark artifacts provide
the context, the requirements, the design, and the implementation of a system. The
system drives the business for an enterprise that runs multiple stores. Each store
contains multiple cash desks in a cash desk line [10].

CoCoME does not follow a standardized implementation framework like JEE
but comes with a custom style of implementing components and their interaction.
This use case shows how Codeling can be applied to software that does not follow
the coding conventions of industry standard platforms but follow project-specific
coding conventions. In CoCoME components are implemented using Java classes
with coding conventions and a set of methods to implement, alongside with a set of
adjacent classes to refine the component. The code structures are not systematically
implemented, so that minor changes had to be made to the code base, to define
working mappings.

A meta model for the implementation structure had to be created first, before
mappings could be implemented. Our meta model of CoCoME’s structure contains
12 classes, 13 references, and 1 attribute. 4 classes and 4 references could be trans-
lated using integration mechanisms or variations thereof. For the other elements, we
developed individual mappings based on the abstract transformations in Codeling.
The project has 9425 lines of Java code (NCLOC). The resulting model has 121
objects with 1357 reference instances. On the computer described above, the median
model extraction time is about 0.6 s. The first extraction takes longer (about 3 s),
because the Ecore environment and the meta model need to be loaded.

4.3 Further Use Cases

The third use case translates the CoCoME code into a UML model as another
architecture specification language. For this use case, we reused transformation
rules between the IAL and the UML. A UML architecture description is part of
the CoCoME artifacts. We extracted the UML architecture from CoCoME using
our approach and compared it to the UML architecture model in the CoCoME
artifacts. As the code conventions in CoCOME are not systematically implemented,
the extracted architecture initially did not match with the normative architecture.
Minor changes had to be made to the code base, to extract a matching architecture.
This use case shows not only that architecture specifications in different languages
can be extracted from the code, it also shows that, with a normative architecture
specification at hand, Codeling can be used to validate the implemented architecture
against an architecture specification.
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The fourth use case translates the CoCoME system into JEE as another archi-
tecture implementation language. The use case shows how Codeling can be used
as a part of software migrations between different architecture implementation
languages. In this use case, only the steps 1 (Program Code to Translation Model),
2 (Inter-Profile Transformations), and 6 (Translation Model to Program Code) are
executed. Step 1 of this use case is equal to step 1 of the CoCoME use case. In
step 2 instead of targeting the UML for translation, the architecture implementation
language JEE is chosen. JEE provides only a flat component hierarchy, while
the CoCoME architecture implementation language uses a scoped component
hierarchy. Therefore, other inter-profile transformations are executed. Steps 3 to
5 are omitted in this use case, because no architecture specification language is
involved. In step 6 a TGG is applied that is close to the one that has been used
in the JACK 3 use case. The JACK 3 team had special conventions how to handle
Java EE code, which did not apply in the CoCoME use case. Furthermore, the same
architecture implementation language meta model and model/code transformations
were used as in the JACK 3 use case.

The translation results in a new project within the Eclipse IDE, with an
architecture skeleton of CoCoME in JEE 7. The parent–child relationship between
components in the CoCoME architecture cannot be implemented in JEE, because
JEE uses flat component hierarchies. In step 6, therefore a new model/code
transformation has been added, to integrate the parent–child relationship between
components. A Java annotation @Child now indicates whether a referenced bean
is the child of another bean.

4.4 Discussion

The execution of the case studies suggested that the transformations can require
considerable execution times. Translating from the code to a UML representation
in the JACK use case required about 225 s on the computer stated above. The
backwards translation of the changed model to changes in the code required about
330 s. No information about operation parameters was included in the code-to-
model translations, because the translation required multiple hours when parameters
were also translated. The CoCoME case studies required 170 s for the translation to
the PCM, and 140 s to the UML. The migration of CoCoME to JEE required about
210 s on the same machine. Table 1 gives an overview of the use case sizes and their
performance. The number of objects and references show the IAL model size for
comparison. This does not include attribute values.

The tool Codeling uses a series of code-to-model, model-to-code, and model
transformations, including triple graph grammars (TGGs), to achieve its goals.
TGGs can be performance intensive. Forward and backward translation rules from
TGGs have a polynomial space and time complexity O(m × nk), where m is the
number of rules, n is the size of the input graph, and k is the maximum number of
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Table 1 An overview of the size and performance of evaluation use cases

No. of No. of Refe- Runtime Code Runtime Model Runtime Code

Use Case (Objects IAL) rences (IAL) to Model [s] to Code [s] to Code [s]

JACK 3 to UML 1644 2141 225 330 555

CoCoME to PCM 361 507 170 – –

CoCoME to UML 361 507 140 – –

CoCoME to JEE 361 507 – – 210

nodes in a rule [27]. Therefore, it is expected that an increasing model size implies
a higher resource demand.

A resource demand test was executed during the development of Codeling, to find
the limitations of the implementation. The detailed results of the resource demand
test can be found in Konersmann’s PhD thesis [12]. The translation between code
and specification models can be separated into the process steps for performance
analysis. The main driver for time-resource demand are the TGG rules, which took
about 87% of the translation time during the extraction of a synthetic model with
300 model objects. A major observation was that the TGG rules were executed
on a single core. We see a high potential for reducing this time by using other
model transformation techniques, especially those using parallel execution (e.g.,
ATL [34]).

The definition of model/code transformations for Codeling requires program-
ming in Java or Xtend with JDT and Ecore. The code generator supports the
development of model/code transformations by automatically creating transforma-
tions for meta model elements that can be translated with integration mechanisms.
In our use cases some transformations have to be developed manually. Although
we implemented a supporting framework (see Sect. 3), the development of trans-
formations is not trivial. To tackle this problem, for future work we develop a
language for describing mappings between model elements and source code for
the Model Integration Concept, especially considering integration mechanisms. The
objective is to make the development of new integration mechanisms and individual
model/code transformations easier.

5 Related Work

An extensive study of literature is part of the PhD thesis. In this section we give
an excerpt of the related work presented there, enriched with some more recent
findings. The approach at hand is a method for extracting architecture models from
code and to propagate changes in the model to the code. Pham et al. [24] describe
an approach to synchronize architecture models and code. They focus on UML
components and state machines as behavior models. ReflexML of Adersberger and
Philippsen [2] is a mapping of UML component diagrams to program code artifacts,
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enriched with a set of consistency checks between the model and the code. Already
in 1995 Murphy et al. [20] presented an approach that creates links between higher-
level model elements and program code files. The general ideas behind this approach
are close to the Explicitly Integrated Architecture approach. In both approaches a
semantic gap between program code elements and higher-level models has been
identified and should be bridged with a mapping. Codeling maps the elements
on a much more fine-grained level. While these approaches allow for mapping
architectural models to code elements, they are limited to a pair of languages.

The goal of model extraction methods is to create a model of a software design
based on code or execution traces. In general, models can be extracted statically
from source code and/or dynamically from execution traces [25], e.g., sequence
diagrams [29], state machines [28], or software architecture from code [8]. Model
extraction approaches do not aim to propagate changes to the code, but they are used
for model-based analysis and communication. The MIC can be seen as a model
extraction approach, extended with delta-based code generation and adaptation
means.

MoDisco [7] is a tool for model-driven reverse engineering. It allows for
extracting domain-specific models from code and transforming them to other code.
It also comprises a Java meta model as a basis for model transformations and model-
to-code transformations. MoDisco does not target architecture descriptions directly
and therefore has no mechanisms for handling the differences between languages.
MoDisco could be used as a basis for bidirectional model/code transformations
in Codeling, but it would be necessary to add concepts for handling integration
mechanisms.

Co-evolving models and code means to propagate deltas between models and
code in both directions. Existing approaches use, e.g., guidelines for manual
implementations [9]. Langhammer and Krogmann [17] describe an approach for
the co-evolution of models of the Palladio Component Model (PCM) and Java
program code, including architectural structure and abstract behavior. Langhammer
[16] describes rules for correspondence relationships between the architecture
model and the program code during changes on either side. Arbitrary code within
methods is preserved during model-to-code change propagation. The approach is
semi-automated, meaning that in cases where full automation is not possible, a
developer is asked to describe how consistency can be preserved. This approach
creates a specific mapping between a subset of the PCM and Java code. The MIC
can conceptually be used for arbitrary meta models and programming languages,
although the tools (see Sect. 3) currently support Java only.

A special case of model/code co-evolution is roundtrip engineering (RTE) [3],
a method where two representations of program code are maintained together: in a
textual syntax and in a—usually graphical—model syntax. RTE offers a bijective
projection between the textual and the model syntax. The models used in roundtrip
engineering are close to the code structures, e.g., UML class diagrams or data
models. While the MIC can handle such models and their code representation, the
MIC is designed to handle design models of higher abstraction levels. The MIC does
not propagate code deltas to the model and is therefore not a co-evolution approach.
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It is a hybrid approach of model extraction and model-code co-evolution, which
extracts models and propagates model changes to code.

Balz [4] describes an approach for representing models with well-defined code
structures. He defines embedded models as a mapping between formal models
and program code patterns in a general-purpose programming language. A major
contribution of Balz’ work is the formal mapping between state machines and
process models, and program code. It provides explicit interfaces for implanted
code. The MIC is conceptually based on the essential ideas of the embedded
models approach. Balz defines these two specific types of models for which
embedded models can be used. The MIC generalizes this approach, to be usable
with arbitrary meta models. With the definition of meta models as a basis, the MIC
can declare integration mechanisms as templates for program code structures for
reusing mappings and generate model/code transformations and execution runtime
stubs.

6 Conclusions and Future Work

In this chapter we describe the Explicitly Integrated Architecture approach and its
tool support. The approach extracts software architecture specifications, e.g., UML
models, from source code, and propagates changes in the model to the code. It
therefore creates a volatile architectural view upon the code, reducing the need to
maintain two representations of the software architecture. The approach comprises
four parts: (1) The Model Integration Concept is a method to extract design models
from source code and propagate model changes to the code. (2) The Intermediate
Architecture Description Language (IAL) is an intermediate language for translating
between architecture implementations and specifications. These different views
upon software architecture usually have different features for software architectures.
The IAL is prepared to handle these features by using a small core and feature
modules. (3) The approach translates between languages using a set of architecture
model transformations, including translations between different language features,
such as hierarchical and non-hierarchical architectures. (4) The Explicitly Integrated
Architecture process uses the aforementioned parts to translate between source code
and architecture models.

We evaluated the approach by implementing the tool Codeling accompanied by
a code generator and used it in a real software project and on a benchmark software
for component modeling. The evaluation has shown that the approach is usable to
extract architecture specifications in different languages from a code base and to
migrate an architecture implementation to another implementation language.

For future work we will develop a language to make the development of
model/code transformations easier, and we evaluate other model-transformation
technologies to enhance the overall performance. We are planning to evaluate
the approach further on real software systems, including software with different
programming languages and of different domains.
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Actionable Program Analyses
for Improving Software Performance

Marija Selakovic

Abstract Nowadays, we have greater expectations of software than ever before.
This is followed by the constant pressure to run the same program on smaller and
cheaper machines. To meet this demand, the application’s performance has become
an essential concern in software development. Unfortunately, many applications still
suffer from performance issues: coding or design errors that lead to performance
degradation. However, finding performance issues is a challenging task: there is
limited knowledge on how performance issues are discovered and fixed in practice,
and current profilers report only where resources are spent, but not where resources
are wasted. In this chapter, we investigate actionable performance analyses that help
developers optimize their software by applying relatively simple code changes. We
focus on optimizations that are effective, exploitable, recurring, and out-of-reach for
compilers. These properties suggest that proposed optimizations lead to significant
performance improvement, that they are easy to understand and apply, applica-
ble across multiple projects, and that the compilers cannot guarantee that these
optimizations always preserve the original program semantics. We implement our
actionable analyses in practical tools and demonstrate their potential in improving
software performance by applying relatively simple code optimizations.

1 Introduction

Regardless of the domain, software performance is one of the most important
aspects of software quality: it is important to ensure an application’s responsiveness,
high throughput, efficient loading, scaling, and user satisfaction. Poorly performing
software wastes computational resources, affects perceived quality, and increases
maintenance cost. Furthermore, a web application that is perceived slow can result in
an unsatisfied customer who may opt for a competitor’s better performing product,
resulting in loss of revenue.
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To improve software performance, three kinds of approaches have been pro-
posed:

• Performance profiling. Developers conduct performance testing in the form
of CPU [16] and memory profiling [20] to identify code locations that use
the most resources. However, traditional profiling techniques have at least two
limitations: they show where the resources are spent, but not how to optimize the
program. Furthermore, they often introduce large overheads, which may affect
the software’s behavior and reduce the accuracy of the collected information.

• Compiler optimizations. Compiler optimizations [2] automatically transform a
program into a semantically equivalent, yet more efficient program. However,
many powerful optimization opportunities are beyond the capabilities of a typical
compiler. The main reason for this is that the compiler cannot ensure that a
program transformation preserves the semantics, a problem that is especially
relevant for hard-to-analyze languages, such as JavaScript.

• Manual tuning. Finally, developers often rely on manual performance tuning [19]
(e.g., manually optimizing code fragments or modifying software and hardware
configurations), which can be effective but it is time consuming and often
requires expert knowledge.

Limitations of existing performance analyses pose several research challenges and
motivate the need for techniques that provide advice on how to improve software
performance. This chapter addresses some of those limitations and proposes new
approaches to help developers optimize their code with little effort.

1.1 Terminology

In this work, we use the term actionable analysis to denote an analysis that
demonstrates the impact of implementing suggested optimization opportunities. In
particular, an actionable analysis provides evidence of performance improvement
(e.g., speedup in execution time or reduced memory consumption) or shows
additional compiler optimizations triggered by applying a suggested optimization.
Furthermore, the term optimization refers to a source code change that a developer
applies to improve the performance of a program, and compiler optimization refers
to an automatically applied transformation by a compiler.

1.2 Challenges and Motivation

To illustrate the potential of simple code transformations on software performance,
Fig. 1 illustrates a performance issue and an associated optimization reported in
Underscore, one of the most popular JavaScript utility libraries.
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Fig. 1 Performance issue from Underscore library (pull request 1708). (a) Performance issue. (b)
Optimized code

Figure 1 shows the initial implementation of the map method, which produces a
new array of values by mapping the value of each property in an object through
a transformation function iterator. To iterate over object properties, the method
uses an internal _.each function. However, a more efficient way is to first compute
the object properties using the keys function and then iterate through them with a
traditional for loop. The optimized version of the map method is shown in Fig. 1.
This optimization improves performance because JavaScript engines are able to
specialize the code in the for loop and execute it faster.

The optimization in Fig. 1 has four interesting properties. First, the optimization
is effective, that is, the optimized method is on average 20% faster than the original
one. Second, the optimization is exploitable, that is, the code transformation affects
few lines of code and is easy to apply. Third, the optimization is recurring, that
is, developers of real-world applications can apply the optimization across multiple
projects. Fourth, the optimization is out-of-reach for compilers, that is, due to the
dynamism of the JavaScript language, a compiler cannot guarantee that the code
transformation is always semantics-preserving.

Detecting such optimization opportunities in a fully automatic way poses at least
three challenges:

• Understanding performance problems and how developers address them. Despite
the overall success of optimizing compilers, developers still apply manual
optimizations to address performance issues in their code. The first step in
building actionable performance analyses is to understand the common root
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causes of performance issues and code patterns that developers use to optimize
their code.

• Analysis of program behavior to detect instances of performance issues. Based
on patterns of common performance issues, the next step is to develop techniques
to find code locations suffering from those issues and to suggest beneficial
optimizations.

• Exercising code transformations with enough input. Once the actionable anal-
ysis suggests an optimization opportunity, the next step is to ensure the per-
formance benefit of a code transformation by exercising the program with a
wide range of inputs. One approach is to use manually written tests to check
whether a code change brings a statistically significant improvement. However,
manual tests may miss some of the important cases, which can lead to invalid
conclusions. An alternative approach is to use automatically generated tests.

In this chapter, we show that it is possible to create actionable program analyses
that help developers significantly improve the performance of their software by
applying effective, exploitable, recurring, and out-of-reach for compilers’ optimiza-
tion opportunities. We propose novel automated approaches to support developers in
optimizing their programs. The key idea is not only to pinpoint where and why time
is spent but also to provide actionable advice on how to improve the application’s
performance.

1.3 Outline

The remaining sections of this chapter are organized as follows: Sect. 2 presents the
first empirical study on performance issues and optimizations in JavaScript projects.
Sections 3 and 4 present two actionable performance analyses that find reordering
opportunities and method inlining optimizations. Section 5 gives an overview of the
test generation approaches for higher-order functions in dynamic languages. Finally,
Sect. 6 discusses conclusions and directions for future work.

2 Performance Issues and Optimizations in JavaScript

The first step in developing actionable performance analyses is to understand real-
world performance issues that developers face in practice and how they address
those issues. In this section, we introduce an empirical study on performance
issues and optimizations in real-world JavaScript projects. We chose JavaScript
because it has become one of the most popular programming languages, used not
only for client-side web applications but also for server-side applications, mobile
applications, and even desktop applications.
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Despite the effectiveness of highly optimizing just-in-time (JIT) compilers [13,
23, 18, 9, 1], developers still manually apply optimizations to address performance
issues in their code. Furthermore, future improvements of JavaScript engines are
unlikely to completely erase the need for manual performance optimizations.

To find optimizations amenable for actionable performance analyses, we first
need to answer the following research questions:

• RQ 1: What are the main root causes of performance issues in JavaScript?
• RQ 2: How complex are the changes that developers apply to optimize their

programs?
• RQ 3: Are there recurring optimization patterns, and can they be applied

automatically?

2.1 Methodology

This section summarizes the subject projects we use in the empirical study, our
criteria for selecting performance issues, and our methodology for evaluating the
performance impact of the optimizations applied to address these issues.

2.2 Subject Projects

We study performance issues from widely used JavaScript projects that match the
following criteria:

• Project type. We consider both node.js projects and client-side frameworks and
libraries.

• Open source. We consider only open source projects to enable us and others to
study the source code involved in the performance issues.

• Popularity. For node.js projects, we select modules that are the most depended-
on modules in the npm repository.1 For client-side projects, we select from the
most popular JavaScript projects on GitHub.

• Number of reported bugs. We focus on projects with a high number of pull
requests (≥ 100) to increase the chance to find performance-related issues.

Table 1 lists the studied projects, their target platforms, and the number of lines
of JavaScript code. Overall, we consider 16 projects with a total of 63,951 lines of
code.

1https://www.npmjs.com/browse/depended.

https://www.npmjs.com/browse/depended
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Table 1 Projects used for the study and the number of reproduced issues per project

Project Description Kind of platform LoC # issues

Angular.js MVC framework Client 7608 27

jQuery Client-side library Client 6348 9

Ember.js MVC framework Client 21, 108 11

React Library for reactive user interfaces Client 10, 552 5

Underscore Utility library Client and server 1110 12

Underscore.string String manipulation Client and server 901 3

Backbone MVC framework Client and server 1131 5

EJS Embedded templates Client and server 354 3

Moment Date manipulation library Client and server 2359 3

NodeLruCache Caching support library Client and server 221 1

Q Library for asynchronous promises Client and server 1223 1

Cheerio jQuery implementation for server-side Server 1268 9

Chalk Terminal string styling library Server 78 3

Mocha Testing framework Server 7843 2

Request HTTP request client Server 1144 2

Socket.io Real-time application framework Server 703 2

Total 63, 951 98

2.3 Selection of Performance Issues

We select performance issues from bug trackers as follows:

1. Keyword-based search or explicit labels. One of the studied projects, Angular.js,
explicitly labels performance issues, so we focus on them. For all other projects,
we search the title, description, and comments of issues for performance-
related keywords, such as “performance,” “optimization,” “responsive,” “fast,”
and “slow.”

2. Random selection or inspection of all issues. For the project with explicit
performance labels, we inspect all such issues. For all other projects, we
randomly sample at least 15 issues that match the keyword-based search, or we
inspect all issues if there are less than 15 matching issues.

3. Confirmed and accepted optimizations. We consider an optimization only if it
has been accepted by the developers of the project and if it has been integrated
into the code repository.

4. Reproducibility. We study a performance issue only if we succeed in executing a
test case that exercises the code location l reported to suffer from the performance
problem. We use of the following kinds of tests:

• A test provided in the issue report that reproduces the performance problem.
• A unit test published in the project’s repository that exercises l.
• A newly created unit test that calls an API function that triggers l.
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• A newly created microbenchmark that contains the code at l, possibly prefixed
by setup code required to exercise the location.

5. Split changes into individual optimizations. Some issues, such as complaints
about the inefficiency of a particular function, are fixed by applying multiple
independent optimizations. Because our study is about individual performance
optimizations, we consider such issues as multiple issues, one for each indepen-
dent optimization.

6. Statistically significant improvement. We apply the test that triggers the
performance-critical code location to the versions of the project before and
after applying the optimization. We measure the execution times and keep only
issues where the optimization leads to a statistically significant performance
improvement.

We create a new unit test or microbenchmark for the code location l only
if the test is not provided or published in the project’s repository. The rationale
for focusing on unit tests and microbenchmarks is twofold. First, JavaScript
developers extensively use microbenchmarks when deciding between different ways
to implement some functionality.2 Second, most projects we study are libraries
or frameworks, and any measurement of application-level performance would
be strongly influenced by our choice of the application that uses the library or
framework. Instead, focusing on unit tests and microbenchmarks allows us to assess
the performance impact of the changed code while minimizing other confounding
factors.

In total, we select and study 98 performance issues, as listed in the last column
of Table 1.

2.4 Main Findings

In this section, we discuss the main findings and provide detailed answers on the
three research questions.

Root Causes of Performance Issues To address the first question, we identify
eight root causes that are common among the 98 studied issues, and we assign each
issue into one or more root causes. The most common root cause (52% of all issues)
is that an API provides multiple functionally equivalent ways to achieve the same
goal, but the API client does not use the most efficient way to achieve its goal.
Figure 2b further classifies these issues by the API that is used inefficiently. For
example, the most commonly misused APIs are reflection APIs, followed by string
and DOM APIs.

2For example, jsperf.com is a popular microbenchmarking website.

http://jsperf.com
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Fig. 2 Root causes of performance issues. (a) Most prevalent root causes. (b) APIs that are used
inefficiently

Besides inefficient API usage, we identify seven other common causes of
performance issues as illustrated by Fig. 2. The full description of these causes can
be further found in [35], and some but not all of them have been addressed by
existing approaches for automatically finding performance problems [15, 38, 39].
However, our results suggest that there is a need for additional techniques to help
developers find and fix instances of other common performance issues.

Complexity of Changes To better understand to what degree optimizations influ-
ence the complexity of the source code of the optimized program, we measure
the number of statements in the program and the cyclomatic complexity [24]
of the program before and after each change. These metrics approximate the
understandability and maintainability of the code.

Figure 3a, b summarizes our results. The graphs show what percentage of
optimizations affect the number of statements and the cyclomatic complexity in
a particular range. We find that a large portion of all optimizations do not affect the
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Fig. 3 Effect of applying an optimization on the cyclomatic complexity. (a) Effect on the number
of statements. (b) Effect on cyclomatic complexity

number of statements and the cyclomatic complexity at all: 37.11% do not modify
the number of statements, and 47.42% do not modify the cyclomatic complexity. It is
also interesting to note that a non-negligible percentage of optimizations decreases
the number of statements (19.59%) and the cyclomatic complexity (14.43%).

These results challenge the common belief that optimizations come at the cost
of reduced code understandability and maintainability [22, 11]. We conclude from
these results that many optimizations are possible without increasing the complexity
of the optimized program.

Recurring Optimization Patterns To identify performance optimizations that
may apply in more than a single situation, we inspect all studied issues. First, we
identify optimizations that occur repeatedly within the study. Furthermore, since
some issues may not expose multiple instances of a pattern that would occur
repeatedly in a larger set, we also identify patterns that may occur repeatedly. To find
whether there are occurrences of the optimization patterns beyond the 98 studied
optimizations, we develop a simple, AST-based, static analysis for each pattern and
apply it to programs used in the study.

We find that the analyses cannot guarantee that the optimization patterns can be
applied in a fully automated way without changing the program’s semantics due to
the following features of JavaScript language:

• Dynamic types: the types of identifiers and variables can be dynamically changed.
• Dynamic changes of object prototypes: properties of object prototype can be

dynamically overridden.
• Dynamic changes of native methods: native or third-party functions can be

dynamically overridden.
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For example, in Fig. 1, the obj identifier must always have Object type, the
hasOwnProperty property of Object.prototype must not be overridden, and both
hasOwnProperty() and keys() must be built-in JavaScript functions.

To check whether a match is a valid optimization opportunity, the analyses
also rewrite the program by applying the respective optimization pattern. We then
manually inspect the rewritten program and prune changes that would modify the
program’s semantics. In total, we find 139 new instances of recurring optimization
patterns, not only across single project but also across multiple projects. These
results motivate the research and the development of techniques that help developers
apply an already performed optimizations at other code locations, possibly along the
lines of existing work [26, 27, 3].

2.5 Practical Impact

The results of the empirical study can help improve JavaScript’s performance by
providing at least three kinds of insights. First, application developers benefit by
learning from mistakes made by others. Second, developers of performance-related
program analyses and profiling tools benefit from better understanding what kinds
of problems exist in practice and how developers address them. Third, developers of
JavaScript engines benefit from learning about recurring bottlenecks that an engine
may want to address and by better understanding how performance issues evolve
over time.

3 Performance Profiling for Optimizing Orders
of Evaluation

The previous section discusses the most common performance problems and
optimizations in JavaScript projects. It shows that many optimizations are instances
of relatively simple, recurring patterns that significantly improve the performance
of a program without increasing code complexity. However, automatically detecting
and applying such optimization opportunities are challenging due to the dynamic
features of the JavaScript language.

Reordering Opportunities In this section, we focus on a recurring and easy
to exploit optimization opportunity called reordering opportunity. A reordering
opportunity optimizes the orders of conditions that are part of a decision made
by the program. As an example, Fig. 4 shows an instance of reported reordering
optimization in a popular JavaScript project. The code in Fig. 4 checks three
conditions: whether a regular expression matches a given string, whether the value
stored in match[3] is defined, and whether the value of arg is greater than or
equal to zero. This code can be optimized by swapping the first two expressions
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Fig. 4 Performance issues from Underscore.string (pull request 471). (a) Optimization opportu-
nity. (b) Optimized code

(Fig. 4) because checking the first condition is more expensive than checking the
second condition. After this change, when match[3] evaluates to false, the overall
execution time of evaluating the logical expression is reduced by the time needed to
perform the regular expression matching.

Once detected, such opportunities are easy to exploit by reordering the conditions
so that the cost of overall evaluation has the least possible cost. At the same time,
such a change often does not sacrifice readability or maintainability of the code.
Beyond the examples in Fig. 4, we found various other reordering optimizations in
real-world code,3 including several reported by us to the respective developers.4

3.1 An Analysis for Detecting Reordering Opportunities

Challenges Even though the basic idea of reordering conditions is simple, detect-
ing reordering opportunities in real-world programs turns out to be non-trivial. We
identify three challenges.

• Measuring the cost and likelihood of conditions. To identify reorderings of
conditions that reduce the overall cost of evaluations, we must assess the cost of
evaluating individual expressions and the likelihood that an expression evaluates
to true. The most realistic way to assess computational cost is to measure
the actual execution time. However, short execution times cannot be measured
accurately. To compute the optimal evaluation order, we require an effective
measure of computational cost, which should be a good predictor of actual
execution time while being measurable with reasonable overhead.

• Analyze all conditions. To reason about all possible reorderings, we must
gather cost and likelihood information for all conditions. However, dynamically
analyzing all conditions may not be necessary in a normal execution. For
example, consider that the first condition in Fig. 4 evaluates to false. In this case,

3For example, see jQuery pull request #1560.
4For example, see Underscore pull request #2496 and Moment pull request #3112.
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the overall value of the expression is determined as false, without executing the
other two conditions.

• Side effect-free evaluation of condition. Evaluating conditions may have side
effects, such as modifying a global variable or an object property. Therefore,
naively evaluating all conditions, even though they would not be evaluated in
the normal program execution, may change the program’s semantics. To address
this issue, we need a technique for evaluating individual expressions without
permanently affecting the state of the program.

DecisionProf: An Overview To address the aforementioned challenges, we pro-
pose DecisionProf , a profiling approach that automatically finds reordering oppor-
tunities at runtime and proposes them to the developer. Figure 8 gives an overview of
the approach. The input to DecisionProf is an executable program and the output is
the list of reordering opportunities. The first step of the profiler is a dynamic analysis
that identifies optimization candidates. In the second step, for each candidate, the
approach applies the optimization via source-to-source transformation. Finally, for
the modified version of the program, DecisionProf checks whether an optimization
reduces the execution time of a program. If and only if the changes lead to
statistically significant performance improvement, the approach suggests them as
reordering opportunities to the developer (Fig. 5).

3.2 Dynamic Analysis

The main component of DecisionProf is the runtime analysis that collects two
pieces of information about every dynamic occurrence of a condition: the com-
putational cost of evaluating the condition and the value, i.e., whether the Boolean
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expression evaluates to true or false. DecisionProf gathers these runtime data in
two steps. At first, it statically preprocesses the source code of the analyzed program.
More details on a preprocessing step can be found in [34]. After collecting runtime
data, the approach associates with each condition a cost-value history:

Definition 1 (Cost-Value Histories) The cost-value history h of a condition is a
sequence of tuples (c, v), where v denotes the value of the condition and c represents
the cost of evaluating the condition. The cost-value histories of all conditions are
summarized in a history map H that assigns a history to each condition.

To gather cost-value histories, the analysis reacts to particular runtime events:

• When the analysis observes a beginning of a new conditional statement, it
pushes the upcoming evaluation onto a stack evaluations of currently evaluated
statement.

• When the analysis observes new condition, it pushes the condition that is going
to be evaluated onto a stack conditions of currently evaluated conditions.
Furthermore, the analysis initializes the cost c of the upcoming evaluation to
one.

• When reaching a branching point, the analysis increments the cost counter c of
each condition in conditions. We use the number of executed branching points
as a proxy measure for wall clock execution time, avoiding the challenges of
reliably measuring short-running code.

• When the analysis observes the end of conditional evaluation, it pops the
corresponding condition from conditions. Furthermore, the analysis appends
(c, v) to h, where h is the cost-value history of the condition as stored in
the history map H of top(evaluations), c is the cost of the current condition
evaluation, and v is the Boolean outcome.

• When reaching the end of conditional statements, the analysis pops the corre-
sponding statement from evaluations.

The reason for using stacks to represent the currently evaluated conditions is
that they may be nested. For example, consider a logical expression a() || b (),
where the implementation of a contains another complex logical expression.

Our approach refines the described analysis in two ways. First, the analysis
monitors runtime exceptions that might occur during the evaluation of the Boolean
expression. If an exception is thrown, the analysis catches the error, restores the
program state, and excludes the expression from further analysis. Such exceptions
typically occur because the evaluation of one condition depends on the evaluation
of another condition. Second, the analysis considers switch statements with case
blocks that are not terminated with a break or return statement. For such case
blocks, the analysis merges conditions corresponding to the cases that are evaluated
together into a single condition.

Based on cost-value histories obtained through dynamic analysis, DecisionProf
computes an optimal order of conditions for each executed conditional statement
in the program. The computed order is optimal in the sense that it minimizes the
overall cost of the analyzed executions.
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Table 2 Cost-value histories from executions of Fig. 4

Execution

Check First Second Third

/[def]/.test(match[8]) (3, true) (3, true) (3, false)

match[3] (1, true) (1, false) (1, false)

arg (1, true) (1, true) (1, true)

To illustrate the algorithm for finding the optimal order of conditions, consider
Table 2 that shows a cost-value history gathered from three executions of the logical
expression in Fig. 4. For example, when the logical expression was executed for
the first time, the check /[def]/.test(match[8]) was evaluated to true and
obtaining this value imposed a runtime cost of 3. Based on these histories, the
algorithm computes the optimal cost of the first, innermost logical expression,
/[def]/.test(match[8]) && match[3]. The costs in the three executions with
the original order are 4, 4, and 3. In contrast, the costs when swapping the
conditions are 4, 1, and 1. That is, swapping the subexpressions reduces the
overall cost. Therefore, the optimal order for the first subexpression is math[3]

&& /[def]/.test(match[8]). Next, the algorithm moves up in the expression
tree and optimizes the order of math[3] && /[def]/.test(match[8]) and arg.
Comparing their costs shows that swapping these subexpressions is not beneficial,
so the algorithm computes the history of the subexpression, and finally it returns
math[3] && /[def]/.test(match[8]) && arg as the optimized expression.

3.3 Experimental Evaluation

We evaluate the effectiveness and efficiency of DecisionProf by applying it to 43
JavaScript projects: 9 widely used libraries and 34 benchmark programs from the
JetStream suite, which is commonly used to assess JavaScript performance. To
execute the libraries, we use their test suites, which consist mostly of unit-level tests.
We assume for the evaluation that these inputs are representative for the profiled
code base. The general problem of finding representative inputs to profile a given
program [17, 5, 10] is further discussed in Sect. 5.

Table 3 illustrates the libraries and benchmarks used in the evaluation. In total,
DecisionProf detects 52 reordering opportunities. The column “Optimizations” in
Table 3 shows how many optimizations the approach suggests in each project and
function-level performance improvements after applying these optimizations. To
the best of our knowledge, none of the optimizations detected by DecisionProf
have been previously reported. Furthermore, after manually inspecting all suggested
optimizations, we find that all of them are semantics-preserving, i.e., the approach
has no false positives in our evaluation. Further details on detected opportunities,
examples, and their performance impact can be found in [34].
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Table 3 Projects used for the evaluation of DecisionProf

Project Tests LoC Optimizations Perf. improvements (%)

Libraries

Underscore 161 1110 2 3.7–14

Underscore.string 56 905 1 3–5.8

Moment 441 2689 1 3–14.6

Minimist 50 201 1 4.2–6.5

Semver 28 863 5 3.5–10.6

Marked 51 928 1 3–4.4

EJS 72 549 2 5.6–6.7

Cheerio 567 1396 9 6.2–40

Validator 90 1657 3 3–10.9

Total 1516 10, 928 23

Benchmarks

float-m 3972 3 2.5

crypto-aes 295 3 5.2

deltablue 483 2 6.5

gbemu 9481 18 5.8

Total 14, 231 26

Reported Optimizations To validate our hypothesis that developers are interested
in optimizations related to the order of checks, we reported a small subset of all
detected reordering opportunities. Three out of seven reported optimizations got
confirmed and fixed within a very short time, confirming our hypothesis.

4 Cross-Language Optimizations in Big Data Systems

Sections 2 and 3 illustrate how relatively small code changes can significantly
improve the execution time of JavaScript applications. While this is true for
JavaScript-based web applications, frameworks, and libraries, the question is
whether similar findings hold for complex, distributed applications that run simul-
taneously on multiple machines.

In this section, we demonstrate the potential of the method inlining code
optimization in a large-scale data processing system. Method inlining is a simple
program transformation that replaces a function call with the body of the function.
We search for method inlining opportunities in programs written in SCOPE [7],
a language for big data processing queries that combines SQL-like declarative
language with C# expressions.

To demonstrate the effectiveness of method inlining, Fig. 6 illustrates two
semantically equivalent SCOPE programs that interleave relational logic with C#

expressions. Figure 6a shows the situation where the user implements the predicate
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Fig. 6 Examples of SCOPE
programs. (a) Predicate
invisible to optimizer. (b)
Predicate visible to optimizer

in the WHERE clause as a separate C# method. Unfortunately, the presence of non-
relational code blocks the powerful relational optimizations in the SCOPE compiler.
As a result, the predicate is executed in a C# virtual machine. On the other hand,
Fig. 6 shows a slight variation where the user inlines the method body in the WHERE
clause. Now, the predicate is amenable to two potential optimizations:

1. The optimizer may choose to promote one (or both) of the conjuncts to an earlier
part of the script, especially if either A or B is the column used for partitioning the
data. This can dramatically reduce the amount of data needed to be transferred
across the network.

2. The SCOPE compiler has a set of methods that it considers to be intrinsic. An
intrinsic is a .NET method for which the SCOPE runtime has a semantically
equivalent native function, i.e., implemented in C++. For instance, the method
String.isNullOrEmpty checks whether its argument is either null or else
the empty string. The corresponding native method is able to execute on the
native data encoding, which does not involve creating any .NET objects or
instantiating the .NET virtual machine.

The resulting optimizations improve the throughput of the SCOPE program by
90% percent.

4.1 Performance Issues in SCOPE Language

SCOPE [7] is a big data query language, and it combines a familiar SQL-like
declarative language with the extensibility and programmability provided by C#

types and the C# expression language. In addition to C# expressions, SCOPE allows
user-defined functions (UDFs) and user-defined operators (UDOs). Each operator,
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however, must execute either entirely in C# or in C++: mixed code is not provided
for. Thus, when possible, the C++ operator is preferred because the data layout in
stored data uses C++ data structures. But when a script contains a C# expression that
cannot be converted to a C++ function, such as in Fig. 6a, the .NET runtime must be
started and each row in the input table must be converted to a C# representation.

Data conversions to and from .NET runtime poses a significant cost in the overall
system. To alleviate some of these inefficiencies, the SCOPE runtime contains
C++ functions that are semantically equivalent to a subset of the .NET framework
methods that are frequently used; these are called intrinsics. Wherever possible,
the SCOPE compiler emits calls to the (C++) intrinsics instead of C# functions.
However, the optimization opportunity presented in Fig. 6 is outside the scope of
SCOPE compiler: user-written functions are compiled as a black box: no analysis
or optimization is performed at this level.

4.2 Static Analysis to Find Method Inlining Opportunities

SCOPE jobs run on a distributed computing platform, called Cosmos, designed for
storing and analyzing massive data sets. Cosmos runs on five clusters consisting of
thousands of commodity servers [7]. Cosmos is highly scalable and performant: it
stores exabytes of data across hundreds of thousands of physical machines. Cosmos
runs millions of big data jobs every week and almost half a million jobs every day.

Finding optimization opportunities in such a large number of diverse jobs is
a challenging problem. We can hope to find interesting conclusions only if our
analysis infrastructure is scalable. To achieve this, we analyze the following artifacts
that are produced after the execution of each SCOPE program:

• Job Algebra The job algebra is a graph representation of the job execution plan.
Each vertex in a graph contains operators that run either inside native (C++) or
.NET runtime.

• Runtime Statistics The runtime statistics provide information on the CPU time
for every job vertex and every operator inside the vertex.

• Generated Code The SCOPE compiler generates both C# and C++ codes for
every job. An artifact containing the C++ code has for every vertex a code region
containing a C++ implementation of the vertex and another code region that
provides class names for every operator that runs as C#. An artifact containing
the C# code includes implementations of non-native operators and user-written
classes and functions defined inside the script.

The first step of the analysis is to extract the names of each job vertex, which
serves as a unique identifier for the vertex. Then, for each vertex, the analysis parses
the generated C++ to find the class containing the vertex implementation. If in the
class the list of C# operators is empty, we conclude that the entire vertex runs as C++

code. Otherwise, the analysis outputs class names that contain C# operators. Then, it
parses C# code to find definition and implementation for every class name. For a non-
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native operator, there are two possible sources of C# code: generated code, which
we whitelist and skip in our analysis and the user-written code. After analyzing user
code, the final sources of C# code are .NET framework calls, user-written functions,
and user-written operators.

To find method inlining opportunities, we are particularly interested in the second
category. Among user-written functions, we find inlineable ones as per the following
definition:

Definition 2 (Inlineable Method) Method m is inlineable if it has the following
properties:

• It contains only calls to intrinsics methods
• It does not contain loops and try-catch blocks
• It does not contain any assignment statements.
• It does not contain any references to the fields of an object.
• For all calls inside the method, arguments are passed by value (i.e., no out

parameters or call-by-reference parameters).

By optimizing inlineable methods, the SCOPE compiler is now able to run the
operator contains the method completely in native runtime. In the next section, we
further discuss the empirical results of performance improvements due to method
inlining opportunities. The complete description of our analysis infrastructure can
be found in [33].

4.3 Experimental Evaluation

To understand the potential of method inlining opportunities, we analyze over
3,000,000 SCOPE jobs over a period of six days that run on five data centers at
Microsoft. To quantify the amount of CPU time that can be optimized by applying
method inlinings, we consider job vertices that have as the only source of managed
code an inlineable method. By optimizing such a method, we expect an entire vertex
to run as native code, which should significantly improve the vertex execution time.
Figure 7 shows the proportion of CPU time of optimizable vertices relative to data
center time and total time spent in .NET runtime. We observe that with the current
list of intrinsics, we can optimize a relatively small proportion of both, data center
time and non-native time. For example, in cosmos9 that runs the most expensive
jobs, we can optimize at most 0.01% of data center time. The situation is slightly
better in cosmos14 or cosmos15, where we can optimize up to 0.15% of data center
time. However, taking into account the scale of big data processing at Microsoft,
this percentage amounts to almost 40,000 h of optimizable time.

The crucial observation is that the results illustrate only the time in data centers
that can be affected by inlining method calls. To measure the actual performance
improvement, it is necessary to rerun every optimized job.



Actionable Program Analyses for Improving Software Performance 131

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Cosmos8 Cosmos9 Cosmos11 Cosmos14 Cosmos15 Total

P
ro

po
rt

io
n

Data center

% relative to non-native time
% relative to data center time

0.06

0.01

0.15

0.29 0.29

0.12

0.05

0.008

0.09

0.16
0.13

0.08

Fig. 7 Execution time affected by method inlining

Table 4 Summary of case studies. The reported changes are percentage of improvements in CPU
time and throughput

CPU time

Job name C++ translation Job cost Vertex change Job change Throughput

A Yes Medium 59.63% 23.00% 30%

B Yes Medium No change No change No change

C Yes Low 41.98% 25.00% 38%

D No – – – –

E Yes High 7.22% 4.79% 5%

F Yes Low No change No change 115%

4.3.1 Case Studies

In order to quantify the effects of optimizing the SCOPE scripts through method
inlining, we performed several case studies. We reported jobs that have optimizable
vertices, meaning that the job owner can optimize the script by inlining a method
that calls only intrinsics.

Because the input data for each job are not available, we had to contact the job
owners and ask them to rerun the job with a manually inlined version of their script.
We were able to have 6 jobs rerun by their owners, categorized by their total CPU
time: short, medium, and long.

In total, we looked at 6 rerun jobs, summarized in Table 4. For one job (D),
the optimization did not trigger C++ translation of an inlined operator because
the operator called to a non-intrinsic method that we mistakenly thought was an
intrinsic. After detecting this problem, we fix the set of intrinsics and use the new
set to obtain data presented in this section.

For jobs A and B, we were able to perform the historical study over a period of
18 days. Both jobs are medium-expensive jobs, run daily, and contain exactly one
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optimizable vertex due to user-written functions. In both cases, inlining the function
resulted in the entire vertex being executed in C++. The values are normalized by
the average of the unoptimized execution times; the optimized version of the job A
saves approximately 60% of the execution time. In similar fashion, we find that the
normalized vertex CPU time in Job B does not show any consistent improvement.
Closer analysis of the vertex shows that the operator which had been in C# accounted
for a very tiny percentage of the execution time for the vertex. This is in line with
our results for Job A, where the operator had essentially been 100% of the execution
time of the vertex.

We also optimized Job F, a very low-cost job. It only runs a few times a month,
so we were able to obtain timing information for only a few executions. The vertex
containing the optimized operator accounted for over 99% of the overall CPU time
for the entire job. We found the CPU time to be highly variable; perhaps, this is
because the job runs so quickly, so it is more sensitive to the batch environment in
which it runs. However, we found the throughput measurements to be consistent: the
optimized version provided twice the throughput for the entire job (again, compared
to the average of the unoptimized version).

Finally, for jobs C and E, we were not able to perform the same kind of
historical study: instead, we have just one execution of the optimized scripts. For
this execution, we found improvements in both vertex and job CPU times.

By presenting six case studies of big data processing tasks, we show that method
inlinig is a promising optimization strategy for triggering more generation of native
code in SCOPE programs, which yields significant performance improvements.

5 Test Generation of Higher-Order Functions in Dynamic
Languages

In Sect. 3, we present DecisionProf , a dynamic analysis for optimizing inefficient
orders of evaluations. To find reordering opportunities, DecisionProf relies on
inputs provided by test suites. Similarly, other dynamic analyses are applied with
manually written tests or by manually exploring the program. However, such inputs
are often not sufficient to cover all possible program paths or to trigger behavior that
is of interest to the dynamic analysis.

To address the problem of insufficient test inputs, a possible solution is to use test
generation in combination with dynamic analysis. Automatically generated tests can
either extend manual tests or serve as the sole driver to execute applications during
dynamic analysis. Existing test generation uses a wide range of techniques, includ-
ing feedback-directed random testing [29, 30], symbolic execution [21, 6], concolic
execution [14, 37], bounded exhaustive testing [4], evolutionary test generation [12],
UI-level test generation [25, 28, 34], and concurrency testing [31, 32].

For dynamic analysis to be precise, test generation must provide high-quality
test cases. This means that generated tests should exercise as many execution paths
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as possible and achieve good code coverage. However, despite their effectiveness
in identifying programming errors, current test generation approaches have limited
capabilities in generating structurally complex inputs [40]. In particular, they do not
consider higher-order functions that are common in functional-style programming,
e.g., the popular map or reduce APIs, and in dynamic languages, e.g., methods that
compose behavior via synchronous or asynchronous callbacks.

Testing a higher-order function requires the construction of tests that invoke the
function with values that include callback functions. To be effective, these callback
functions must interact with the tested code, e.g., by manipulating the program’s
state. Existing test generators do not address the problem of higher-order functions
at all or pass very simple callback functions that do not implement any behavior or
return random values [8].

The problem of generating higher-order functions is further compounded for
dynamically typed languages, such as JavaScript, Python, and Ruby. For these
languages, in addition to the problem of creating an effective callback function,
a test generator faces the challenge of determining where to pass a function as
an argument. Addressing this challenge is non-trivial in the absence of static type
signatures.

In this section, we give a brief overview of LambdaTester, a novel framework for
testing higher-order functions in dynamic languages. The complete details of the
framework and proposed solution can be found in [36].

5.1 Overview of the Framework

In the LambdaTester framework, test generation proceeds in two phases. The
discovery phase is concerned with discovering, for a given method under test m, at
which argument position(s) the method expects a callback function. To this end, the
framework generates tests that invoke m with callback functions that report whether
or not they are invoked. Then, the test generation phase creates tests that consist of
a sequence of calls that invoke m with randomly selected values, including function
values at argument positions where the previous phase discovered that functions
are expected. The test generation phase uses a form of feedback-directed, random
testing [29] to incrementally extend and execute tests. We augment feedback-
directed, random testing with four techniques to create callback arguments. Both
phases take as input setup code that creates a set of initial values, which are used as
receivers and arguments in subsequently generated calls.

The basic ingredient of generated tests is method calls:

Definition 3 (Method Call) A method call c is a tuple (m, varrec, vararg1 · · ·
varargn, varreturn), where m is a method name, varrec is the name of the variable used
as the receiver object of the call, vararg1, . . . , varargk are the names of variables
used as arguments, and varreturn is the name of the variable to which the call’s return
value is assigned.
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Fig. 8 Overview of LambdaTester

Finally, the overall goal of the approach is to generate tests:

Definition 4 (Test) A test test is a sequence (setup, ci , . . . , cn), where setup is the
setup code and ci, . . . , cn are generated method calls.

Figure 8 illustrates the process of test generation. For each method under test,
the approach attempts to infer the positions of callback arguments. Afterward,
the approach repeatedly generates new method calls and executes the growing
test. During each test execution, the approach collects feedback that guides the
generation of the next method call. Finally, the approach stores the generated tests,
which can then be used as an input to the dynamic analysis or for bug finding [36].

5.2 Callback Generation Approaches

The key idea of LambdaTester is a feedback-directed test generation with a novel
generation of callback inputs. Our framework currently supports four techniques for
generating callback functions, which we present below.

Empty Callbacks The most simple approach for creating callbacks is to simply
create an empty function that does not perform any computation and does not
explicitly return any value. Figure 9 gives an example of an empty callback.

Callbacks by QuickCheck QuickCheck [8] is a state-of-the-art test genera-
tor originally designed for functional languages. To test higher-order functions,
QuickCheck is capable of generating functions that return random values, but the
functions that it generates do not perform additional computations and do not
modify the program state. Figure 9 gives an example of a callback generated by
QuickCheck.

Existing Callbacks Given the huge amount of existing code written in popular
languages, another way to obtain callback functions is to extract them from already
written code. To find existing callbacks for a method m, the approach statically
analyzes method calls in a corpus of code and extracts function expressions passed
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Fig. 9 Examples of generated callbacks. (a) Empty callback (“Cb-Empty”). (b) Callback gener-
ated by QuickCheck (“Cb-QuickCheck”). (c) Callback mined from existing code (“Cb-Mined”).
(d) Callback generated based on dynamically analyzing the method under test (“Cb-Writes”)

to methods with a name equal to m. For example, to test the map function of arrays
in JavaScript, we search for callback functions given to map. The rationale for
extracting callbacks specifically for a each method m is that callbacks for a specific
API method may follow common usage patterns, which may be valuable for testing
these API methods.

Callbacks Generation Based on Dynamic Analysis The final and most sophisti-
cated technique to create callbacks uses a dynamic analysis of the method under test
to guide the construction of a suitable callback function. The technique is based on
the observation that callbacks are more likely to be effective for testing when they
interact with the tested code. To illustrate this observation, consider the following
method under test:

function testMe(callbackFn, bar) {
// code before calling the callback

// calling the callback
var ret = callbackFn();

// code after calling the callback
if (this.foo) { ... }
if (bar) { ... }
if (ret) { ... }

}

To effectively test this method, the callback function should interact with the
code executed after invoking the callback. Specifically, the callback function should
modify the values stored in this.foo, ret, and bar. The challenge is how to
determine the memory locations that the callback should modify.
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We address this challenge through a dynamic analysis of memory locations that
the method under test reads after invoking the callback. We apply the analysis
when executing tests and feed the resulting set of memory locations back to the
test generator to direct the generation of future callbacks. The basic idea behind
the dynamic analysis is to collect all memory locations that (i) are read after the
first invocation of the callback function and (ii) are reachable from the callback
body. The reachable memory locations include memory reachable from the receiver
object and the arguments of the call to the method under test, the return value of the
callback, and any globally reachable state.

For the above example, the set of dynamically detected memory locations is
{ receiver.foo, arg2, ret }.

Based on detected memory locations, LambdaTester generates a callback body
that interacts with the function under test. To this end, the approach first infers
how many arguments a callback function receives. Then, LambdaTester generates
callback functions that write to the locations read by the method under test and that
are reachable from the callback body. The approach randomly selects a subset of
the received arguments and of the detected memory locations and assigns a random
value to each element in the subset.

Figure 9 shows a callback function generated for the above example, based on the
assumption that the callback function receives two arguments. As illustrated by the
example, the feedback from the dynamic analysis allows LambdaTester to generate
callbacks that interact with the tested code by writing to memory locations that are
relevant for the method under test.

As further discussed in [36], all callback generation techniques are more effective
in finding programming errors than state-of-the-art test generation approaches that
do not consider the generation of function inputs. Moreover, among proposed
techniques, generating callbacks that modify program state in non-obvious ways
is more effective in triggering non-trivial executions than other callback generation
techniques.

6 Conclusions

In this chapter, we present actionable program analyses to improve software
performance. More concretely, we focus on an empirical study of the most common
performance issues in JavaScript programs (Sect. 2), analyses to find reordering
opportunities (Sect. 3) and method inlining opportunities (Sect. 4), and a novel test
generation technique for higher-order functions in dynamic languages (Sect. 5).
These approaches aim to reduce manual effort by suggesting only beneficial
optimization opportunities that are easy to understand and applicable across multiple
projects.
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6.1 Summary of Contributions

We show that it is possible to automatically suggest effective, exploitable, recurring,
and out-of-reach for compilers’ optimization opportunities. In particular,

• By empirically studying performance issues and optimizations in real-world
software, we show that most issues are addressed by optimizations that modify
only a few lines of code, without significantly affecting the complexity of the
source code. Furthermore, we observe that many optimizations are instances of
patterns applicable across projects. These results motivate the development of
performance-related techniques that address relevant performance problems.

• Applying these optimizations in a fully automatic way is a challenging task:
they are subject to preconditions that are hard to check or can be checked
only at runtime. We propose two program analyses that prove to be powerful
in finding optimization opportunities in complex programs. Even though our
approaches do not guarantee that code transformations are semantics-preserving,
the experimental results illustrate that suggested optimizations do not change
program behavior.

• Reliably finding optimization opportunities and measuring their performance
benefits require a program to be exercised with sufficient inputs. One possible
solution to this problem is to use automated test generation techniques. We
complement existing testing approaches by addressing the problem of test
generation for higher-order functions. Finally, we show that generating effective
tests for higher-order functions triggers behaviors that are usually not triggered
by state-of-the-art testing approaches.

6.2 Future Research Directions

Assessing Performance Impact Across Engines Reliably assessing the perfor-
mance benefits of applied optimizations is a challenging task, especially if a
program runs in multiple environments. Optimization strategies greatly differ across
different engines and also across different versions of the same engine. To make
sure that optimizations lead to positive performance improvements in all engines,
future work should focus on techniques that monitor the performance effects of
code changes across multiple execution environments.

Automatically Identifying Optimization Patterns Existing approaches that
address performance bottlenecks either look for general performance properties,
such as hot functions, or for specific patterns of performance issues. As already
shown in Sects. 3 and 4, finding and applying specific optimization opportunities
can lead to significant performance improvements. However, this requires manually
identifying optimization patterns and hard-coding them into the respective
analysis. Manually studying instances of inefficient code and finding recurring
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patterns are challenging tasks that often require significant human effort. Even
though we studied a significant number of performance problems and drew
interesting conclusions in Chap. 2, the next interesting research question is How to
automatically find optimization patterns that have significant performance benefits
and are applicable across multiple projects?

Analyses to Find Other Optimization Opportunities We propose approaches
that address two different types of optimizations: reordering opportunities and
method inlining. However, in Sect. 2, we discuss many optimization patterns that
have the same properties as those we address. Therefore, it is an important research
direction to propose novel approaches that address other kinds of performance issues
and provide actionable advices to developers.
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