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Abstract  

Food insecurity remains a major challenge in many parts of sub-Saharan Africa, despite the 

increased access to improved agricultural technologies and markets in the past few decades.  

Several attempts have been made to understand the factors accounting for the low uptake of 

improved agricultural technologies and smallholder market engagement, and their implications on 

household income, food security and nutrition in the sub-region. Social networks have been 

recognized as playing important roles in influencing household production decisions in many 

developing countries. However, not much has been done, in the empirical literature, on how 

heterogeneities in social learning about both benefits and production techniques of improved 

technologies, social networks structures and smallholder market orientation affect smallholder 

production decisions and welfare.  This study, therefore, contributes to these strands of literature 

by examining the role of social networks on smallholder adoption of improved soybean varieties, 

and the impacts of smallholder adoption and market orientation on household welfare in Northern 

Ghana. Specifically, the study first examines the impacts of peer adoption of two improved and 

competing soybean varieties on smallholders’ adoption decisions of these varieties using spatial 

autoregressive multinomial probit model to account for interdependence across varieties. Second, 

random-effects complementary log-log hazard model was used to investigate the role of social 

learning, network transitivity, centrality and modularity on the diffusion of these improved 

varieties. Third, the study examines the effects of own and peer adoption of the improved varieties 

on household soybean yield, food security and nutrition using the marginal treatment effects. It 

also explores the effects of policies that either increase affordability or access to improved seeds 

on adoption and the outcomes using the policy relevant treatment effects. Finally, the study 

employed an ordered probit selection model to examine the impacts of smallholder market-
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orientation on household food security and nutrition. The results show that a farmer’s adoption 

decision of a given improved variety is positively influenced by the adopting peers of this variety, 

but negatively by the adopting peers of the competing improved variety. Furthermore, when the 

relative share of adopting peers are equal, farmers are more likely to wait and not to switch from 

the old variety. In addition, the results show that both learning about benefits and production 

process are important in accelerating adoption, although the effects of learning about production 

process are higher when sufficient peers adopt the improved varieties. Also, the role of transitivity 

in the learning and diffusion processes is stronger, compared to centrality, although modularity 

tends to slow down the diffusion process, and also constrains the effects of both transitivity and 

centrality. The results further show that own and peer adoption of the improved varieties 

significantly increase smallholder yield and food consumption, and that adoption tend to make less 

endowed households to catchup with more endowed households.  Similarly, policies that increase 

either affordability or accessibility significantly increase adoption, yield and consumption, but 

increasing accessibility appears to deliver somewhat higher food consumption than the 

affordability-oriented policies. The estimates also reveal substantial heterogeneity in consumption 

gains across market orientations and suggest the need for transition targeted and sensitive policies 

in promoting smallholder food security and nutrition through crop commercialization.  Similarly, 

the findings on adoption suggest the need for policymakers to focus promotion efforts on 

demonstrating the relative benefits and production process of improved varieties to farmers. Also, 

interventions, such as self-help groups, farmer field-days and training workshops aimed at 

promoting smallholder interactions, and enhancing exchange can increase the effectiveness of 

social networks in promoting adoption and household welfare.  
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Zusammenfassung 

Trotz des vermehrten Zugangs zu verbesserten Agrartechnologien und Märkten in den letzten 

Jahrzenten, stellt Ernährungssicherung nach wie vor eine große Herausforderung in vielen Teilen 

Sub-Sahara Afrikas dar. Viele Versuche wurden unternommen, die Hintergründe der geringen 

Aufnahme verbesserter Agrartechnologien und Marktteilnahme von Kleinbauern zu verstehen und 

die Implikationen für Haushaltseinkommen, Ernährungssicherung und Ernährungsweise in der 

Subregion zu determinieren. Obwohl die Bedeutung Sozialer Netzwerke für die 

Haushaltsproduktionsentscheidung in Entwicklungsländern bekannt ist, wurde der Einfluss von 

Heterogenität in Sozialem Lernen in Bezug auf Nutzen, Produktionsmethoden verbesserter 

Technologien, Sozialer Netzwerkstrukturen und Marktorientierung, auf Produktionsentscheidung 

und Wohlfahrt der Kleinbauern in der empirischen Literatur bisher weitestgehend vernachlässigt. 

Um diese Lücke schließen, wird in dieser Studie der Einfluss Sozialer Netzwerken auf die 

Adoption verbesserter Sojabohnensorten untersucht und die Auswirkungen von Adoption und 

Marktorientierung auf die Wohlfahrt kleinbäuerlicher Haushalte in Nord-Ghana analysiert. Am 

Beispiel von zwei verbesserten und miteinander konkurrierenden Sojabohnensorten wird zunächst 

untersucht, wie sich die Adoptionsentscheidung der Peer-Gruppe auf die eigene Entscheidung 

auswirkt. Um Interdependenzen zwischen den Sorten zu berücksichtigen wird hierfür ein 

räumlich-autoregressiven Multinomial-Probit Modell verwendet. Anschließend wird anhand eines 

Random-Effects Complementary Log-Log Hazard Modells der Einfluss Sozialen Lernens und der 

Netzwerkcharkteristika Transitivität, Zentralität und Modularität auf die Verbreitung verbesserter 

Sorten untersucht. Schließlich werden anhand marginaler Behandlungseffekte die Auswirkung der 

Adoption verbesserter Sojasorten auf Ertrag, Ernährungssicherung und Ernährungweise der 

Haushalte untersucht. Darüber hinaus werden mittels politikrelevanter Behandlungseffekte die 
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Auswirkungen von Politikmaßnahmen auf Adoption und deren Folgen untersucht, die entweder 

die Erschwinglichkeit oder den Zugang zu verbessertem Saatgut erhöhen. Schließlich werden 

anhand eines Ordered-Probit Selection Modells die Auswirkungen der Marktorientierung von 

Kleinbauern auf deren Ernährungssicherheit und Ernährungsweise untersucht. Die Ergebnisse 

zeigen, dass die Entscheidung der Adoption einer bestimmte verbesserte Sorte durch die Adoption 

ebenjener Sorte durch die Peer Gruppe positiv beeinflusst wird, wohingegen die Aufnahme der 

konkurrierenden Sorte einen negativen Effekt hat. Sind die relativen Gruppengrößen der Peers 

gleich, so warten die Bauern eher ab und werden die ursprünglich angebaute Sorte nicht wechseln. 

Sowohl Lerneffekte bezüglich Gewinn als auch in Bezug auf Produktionsprozesse beschleunigen 

die Adoption, obgleich letztere höher ausfallen, wenn genügend Peers die verbesserten Sorten 

übernommen haben. Die Rolle von Transitivität in den Lern- und Diffusionsprozessen ist stärker 

im Vergleich zu Zentralität, wobei Modularität den Diffusionsprozess abschwächen und die 

Effekte von Transitivität und Zentralität mindern kann. Darüber hinaus kann die eigene wie die 

Adoption durch Peers den Ertrag und Nahrungsmittelverbrauch der Kleinbauern signifikant 

erhöhen und dazu führen, dass weniger gut ausgestattete Haushalte zu besser ausgestatteten 

Haushalten aufschließen können. Gleichermaßen führen Politiken, die entweder die 

Erschwinglichkeit oder den Zugang fördern, zu einem signifikanten Anstieg von Adoption, Ertrag 

und Konsum führen, wobei verbesserter Zugang einen scheinbar höheren Nahrungsmittelkonsum 

begünstig als kostenreduzierende Politiken. Die Schätzungen zeigen eine beträchtliche 

Heterogenität in dem Konsumzuwachs über die Marktausrichtung hinweg und verdeutlichen die 

Notwendigkeit von auf Transition abgezielten, sensiblen Politiken, die durch die 

Kommerzialisierung der Anbauprodukte Ernährungssicherheit und Ernährungsweise fördern. In 

ähnlicher Weise legen die Ergebnisse der Adoption nahe, dass die politischen Entscheidungsträger 
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ihre Werbemaßnahmen darauf konzentrieren müssen, den Landwirten den relativen Nutzen und 

den Produktionsprozess verbesserter Sorten aufzuzeigen. Interventionen, wie Selbsthilfegruppen, 

Landwirtschaftstage und Workshops, die Interaktion und Austausch der Kleinbauern fördern, 

können die adoptions- und wohlfahrtsfördernden Effekte Sozialer Netzwerke zusätzlich 

verbessern. 
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Chapter One 

General Introduction 

1.1 Background  

The role of agriculture in the economic development of countries in sub-Saharan Africa (SSA) has 

been widely proclaimed. The sector has been estimated to account for about 61% of aggregate 

employment, 25% of the gross domestic products (GDP), and 9.2% and 13.4% of total exports and 

imports respectively, between 2001 and 2016 (Tralac, 2017). These suggest that agricultural 

transformation and development would constitute a bedrock for the growth and development of 

developing countries particularly in SSA. For instance, it has been argued that the realization of 

the United Nations’ Sustainable Development goal of eradicating extreme poverty, hunger and all 

forms of malnutrition depends on raising the productivity of agriculture, particularly in developing 

countries (United Nation, 2016).  

 

Despite the important role of agriculture in developing countries, agriculture in sub-Saharan Africa 

is faced with several challenges. The most prominent among these is the lack of access to, and 

efficient use of improved technologies and inputs by farmers due to infrastructure limitations and 

decline in state-funding of agriculture following the implementation of structural adjustment 

programs (Markelova et al., 2009). Agriculture in SSA has been characterized by low and 

inefficient use of improved technologies despite the increasing availability and access to improved 

agricultural technologies in Africa (Suri, 2011). In fact, whereas there has been an expansion in 

the use of improved agricultural inputs and technologies in Asian and Latin America, which has 

resulted in increased agricultural productivity and reduced poverty, SSA has lagged behind in the 

use of improved and modern technologies and has, therefore, not been able to reap the productivity 

and welfare benefits of the so-called Green Revolution (Sheahan & Barrett, 2017).   
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The lack of innovation in Africa has been intensified by high cost of dissemination and inadequate 

effective demand for improved technologies (Wiggins & Leturque, 2010). Several propositions, 

including promotion of farmer market engagement and commercialization, and the use of social 

and collective actions have been made in order to enhance smallholder incomes; effective demand 

for and dissemination of information about improved technologies in Africa (Conley & Udry, 

2010; Ecker, 2018). Agriculture marketing and commercialization have been recognized by 

development practitioners and researchers as important mechanisms of addressing smallholder 

production and consumption challenges because of its potential in promoting greater 

specialization, economies of scope, higher productivity and increased income (Bernard et al., 

2008).  

  

The literature has generally categorized agricultural commercialization into output sales and input 

purchases (Wiggins et al., 2011). In terms of output sales, commercialization of farm output can 

lead to increase smallholder income, which may lead to increased smallholder spending on 

consumer goods and production inputs (Ecker, 2018). At the input side, commercialization leads 

to increased access to purchased inputs and use of improved inputs by smallholders (Govereh & 

Jayne, 2003; Ecker, 2018). In spite of the importance of commercialization and agricultural 

marketing, smallholders in Africa face high costs of marketing (i.e., either in buying farm inputs 

or selling of output) due to poor infrastructure, high maintenance costs as well as government and 

markets failures (Govereh & Jayne, 2003; Wiggins et al., 2011).  

 

These challenges and following the recent increase in food insecurity and malnutrition in the sub-

Saharan countries, where agriculture is the mainstay of most economies, motivated key policy 

priorities such as the Comprehensive Africa Agricultural Development Programmme (CAADP) 
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and the Africa Regional Nutrition Strategy (ARNS) to call for a rethinking and multidimensional 

approach to agriculture development in Africa (Sheahan & Barrett, 2017; FAO, ECA & AUC, 

2020). Several propositions for promoting the use of improved technologies and agricultural 

marketing have been advanced to include trade and macroeconomic policy reforms, development 

and liberalization of rural financial and capital markets, investment in and development of 

infrastructure and market as well as development of support services (Ariga & Jayne, 2009). In 

addition to conventional view of transformation and marketization of agriculture, contemporary 

thinking also emphasizes the role smallholder social capital, collective action and cooperation for 

agricultural innovations and marketing (Bernard et al., 2008). This thinking is premised on the 

assertion that social capital and networks create and strengthen relationships, which drive actors 

and actions to be interdependent and enhance exchange of information and resources (Smith & 

Christakis, 2008). 

 

Studies have underscored the relevance of social networks in innovation, product and technology 

diffusion (Munshi, 2004; Conley & Udry, 2010), insurance, labor and risk sharing (Fafchamps, 

2011) as well as in marketing of crops (Bernard et al., 2008). This study attempts to provide a 

comprehensive insight into the role of social networks in smallholders’ adoption and diffusion of 

improved technologies, and the implications of adoption of improved technologies and 

smallholder market-orientation on household welfare in northern Ghana.  

 

1.2 Problem setting and motivation 

In developing countries, where the reliance on agriculture is high, enhancement of agricultural 

productivity and income growth through adoption of new and improved innovations, and 

transformation of the sector from subsistence to more productive commercialize sector remains a 
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major developmental concern (Diao et al., 2010). While studies have shown that improved crop 

varieties are responsible for about 50 to 90% of increase in global crop yield (Muange, 2014), 

smallholders in SSA appear constrained in the availability and access to new technologies due to 

lack of physical infrastructure, failure of markets, high cost of dissemination and lack of effective 

demand (Sheahan & Barrett, 2017). In addition, whereas the contribution of agricultural marketing 

to smallholder productivity, incomes, and poverty reduction, has been recognized and documented 

by policies and researchers (Bernard et al., 2008; FAO, ECA & AUC, 2020), its impacts on food 

and nutrition security appear to be inconclusive, especially in SSA (Ogutu et al., 2019). 

 

Several attempts have been made to understand how social networks and groups can be leveraged 

as mechanisms by which smallholder adoption of new technologies can be promoted in order to 

circumvent some of the challenges imposed by information asymmetries and the high cost of 

technology dissemination in developing countries (Bandiera & Rasul, 2006; Conley & Udry, 

2010). Many studies have shown that social networks can promote technology diffusion by 

allowing farmers either to imitate the adoption choices of their network members or to consciously 

learn about the production techniques and the expected benefits of the new technologies from their 

social network members (Bandiera & Rasul, 2006; Conley & Udry, 2010).  

 

However, there is lack of empirical evidence on the role of adoption of competing technologies by 

smallholders’ social network members on their adoption decisions, and the relative dominance of 

these technologies in terms of adoption in smallholders’ social networks.  Previous studies have 

mainly been theoretical, focusing on the use of economic theory to derive normative results and 

predictions of adoption (Arthur, 1989; Kornish, 2006). Yet, smallholders are often faced with the 

adoption decision of several competing technologies, where the decision to adopt a given 
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technology depends not only on the adoption rates of that particular technology by the network 

members but also on the past and future adoption-rates of each of the competing technologies (e.g., 

Katz & Shapiro, 1986; Kornish, 2006). There is therefore the need to empirically examine the 

impacts of social networks on smallholder adoption of multiple and competing improved 

technologies.   

 

The literature also provides a number of explanations on how cropping conditions and benefits 

influence social learning in technology adoption, although the results have been mixed, with some 

authors finding positive impacts of social learning on adoption (Munshi, 2004; Magnan et al., 

2015), while a few find no effects (e.g., Duflo et a., 2011). One possibility of enhancing the 

understanding of adoption in social interaction settings and, perhaps, resolving these seemingly 

contrasting results is to move beyond the implicit assumption that farmers observe the field trials 

of their social network contacts with little friction in the flow of information (BenYishay & 

Mobarak, 2018) to examine the roles of heterogeneities of network structures in social learning 

since these shape the learning process (Jackson et al., 2017).  

 

Social network structures play important roles in shaping the nature of interaction within networks, 

and have been shown to exert overarching effects on many behavioral patterns and other economic 

outcomes (Jackson et al., 2017). Many studies have argued that network structures, such as 

transitivity1 and modularity2, play important roles in social interactions and influence patterns of 

                                                           
1 Transitivity or local cohesiveness/clustering coefficient measures how close the neighborhood of a farmer is to being a complete 

network.  

2 Modularity measures the proportion of links that lie within communities (i.e., components or segments) of a network minus the 

expected value of the same quantity in a network where links were randomly generated. It shows the extent of partition of the entire 

social network into latent groups and such partitioning can condition the flow of information within and across groups (Jackson et 

al., 2017). 
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behavior (Karlan et al., 2009). For instance, higher transitivity of a farmer’s neighborhood3, and 

low modularity of a network will mean more opportunities for the farmer to learn from peers and 

from different neighborhoods in the network. Such opportunities can lead to reduced cost of 

learning and increase the possibility of diffusion across the network (Jackson et al., 2017). 

However, less is known about the role of these network structures in the social learning process 

and technology adoption. It is therefore significant to understand whether learning about both 

production techniques and benefits, and these network structures influence smallholders timing of 

adoption of improved technologies.     

 

Several studies have evaluated the impact of improved technologies on household welfare 

(Shiferaw et al., 2014; Verkaart et al., 2017). However, not much consideration has been given to 

the impact of improved crop varietal adoption by households and their peers on household food 

and nutrients consumption. In particular, studies that examined the impact of technology adoption 

on performance outcomes tend to focus on crop yield and income related measures (e.g., Verkaart 

et al., 2017; Wossen et al., 2019). Even though a better understanding of the link between adoption 

of improved technology and consumption of food and nutrients is key in helping policy-makers 

design policies to promote food and nutrition security, this has received less attention in the 

literature.  

 

Moreover, the large literature on social interactions has virtually not provided evidence on the 

potential benefits of peer adoption of agricultural technologies on household food and nutrients 

consumption. For instance, in addition to the social learning effects on own productivity, income 

and consumption, peer adoption that leads to increased peer productivity, income and changes in 

                                                           
3 A farmers neighborhood is defined as the individuals the farmer has contacts with in a social network. 
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peer consumption, can also affect household consumption either due to endogenous peer effect, or 

through private cash transfers (De Giorgi et al., 2019). With the exception of a few such as De 

Giorgi et al. (2019) who examined endogenous consumption peer effects, and Charles et al. (2009) 

who analyzed the effects of race on consumption, this has not been done on peer adoption effects. 

Thus, we examine the impact of smallholders’ own and peer adoption of improved technologies 

on yield, food security and nutrition.   

 

Furthermore, in spite of the widespread agreement on the role of commercialization in improving 

food security and nutrition, the empirical evidence on this issue remain scanty, with mixed findings 

(Ogutu et al., 2019; Ochieng et al., 2019). Whereas some argue that income from 

commercialization that leads to substitution of purchased food for own produced food can result 

in increased food consumption, but not nutrients intake (Ogutu et al., 2019), others argue that these 

income gains may lead to preference for higher quality and cost foods and no change in food intake 

(Skoufias et al., 2011).  

 

Moreover, most of these studies have often failed to consider the possible market-orientation of 

smallholders’ crop sales, which may mask the extent and pattern of gains from crop sales, given 

that smallholders’ crop sales are driven by profit and non-profit motives (Pingali & Rosegrant, 

1995; Jacoby & Minten, 2009). In particular, production and marketing decisions of smallholders 

in Africa are often fragmented and characterized by a blend of subsistence, surplus, commercial 

and distress motives, which may have varying implications on the gains from commercialization 

across farmers (Pingali & Rosegrant, 1995). Hence, it is therefore important to evaluate the impact 

of smallholder market-orientation on household food and nutrients consumption.  
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This dissertation attempts to contribute to the literature by filling these research gaps using recent 

data from a survey of 500 farm households in Northern Ghana. The choice of Northern Ghana was 

because agriculture is the main economic activity in the area with about 88% of households relying 

on agriculture in this area (GSS, 2014). In addition, whereas social networks have been identified 

to facilitate exchange of information, credit, labor and land in Ghana (Udry & Conley, 2004) and 

could facilitate technology diffusion and agricultural productivity, the northern regions appear to 

have the highest incidences of poverty, food insecurity and malnutrition. These make the choice 

of the region appropriate in examining the role of social networks, technology adoption and crop 

marketing on household welfare.     

 

1.3 Objectives of the study 

The main objective of this study is to examine the impacts of social networks, improved technology 

adoption and crop commercialization on household welfare of smallholders in the Northern region 

of Ghana. The specific objectives are: 

1. To analyze the impacts of social networks on smallholder adoption of competing improved 

technologies; 

2. To examine the role of social learning and social network structures in the diffusion of 

improved technology among smallholders; 

3. To evaluate the impacts of smallholders’ own and peer adoption of improved technologies 

on household welfare;  

4. To conduct a review of food security and nutrition strategies in sub-Saharan African 

countries, and an empirical analysis of the impact of smallholder market participation on 

household welfare. 
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1.4 Significance of the study 

First, examining the role of social networks in the adoption and diffusion process could provide 

an efficient means of dealing with information asymmetry about the availability, access and 

uncertainties of improved technologies. Such information asymmetry has often limited farmers 

response to improved technologies and contributed to significant heterogeneities in the cost of 

adopting improved technologies in many sub-Saharan countries (Wiggins & Leturque, 2010; Suri, 

2011). Also, information about the influence of social networks in adoption decisions in the 

context of competing technologies will inform policymakers when to promote single or multiple 

improved technologies in a given social setting. This will show the relative adoption of these 

improved varieties in networks (i.e., villages), and whether a full-scale introduction and promotion 

of all improved varieties, as often done by policymakers and stakeholders in Africa, is meritorious.  

 

Second, examining the influence of social networks structures in the adoption and diffusion 

process will inform policymakers about when to leverage social networks in promoting diffusion. 

Information about the role of the density of farmers’ neighborhoods in a network and the overall 

structure of the network will inform policymakers when, and when not, to rely on the use of central 

nodes and extension agents in the diffusion process. For instance, information about the extent of 

partition of farmers’ networks will show whether targeting an influential farmer (as suggested by 

many studies) or promoting extension contacts with few farmers will be effective in facilitating 

diffusion since the extent of information flow will depend on the how dense and segregate the 

social network is (i.e., the village).  

 

This study extends the current frontiers of the analyses of impacts of technology adoption on 

household welfare by considering the impacts of exogenous social interactions on household 



10 
 

welfare. Give the sustainability challenges and problems of lack of exit mechanisms of public 

transfer schemes (Holden et al., 2006), understanding the effects of peer adoption on own 

consumption will provide an alternative to policy and other stakeholders in their attempt to 

promote food and nutrition security through food or cash transfer schemes. The study also provides 

insights into the impacts of commercialization by examining such impacts along the lines of farmer 

motivation for commercialization in order to disentangle impacts due to commercialization from 

those due to other sales such as “distress” (Jacoby & Minten, 2009). This will inform policymakers 

on the type of commercialization that matters, in order to develop more informed policies in 

promoting food security, nutrition and agriculture transformation in Africa (Pingali & Rosegrant, 

1995).   

 

1.5 Agriculture in Ghana 

The agriculture sector remains the major source of living for majority of Ghanaians and accounted 

for about 22.2% of Ghana’s GDP in 2017 (GSS, 2018). The sector provides employment for over 

50% of employed people and for about 82.5% of rural households (GSS, 2014) in Ghana. 

Agriculture is predominantly on smallholder basis with about 90% of land holdings being less than 

2 hectares (ha) and accounting for about 80% of the total agricultural output in Ghana (MoFA, 

2017). Also, almost all economic activities and livelihoods of smallholder farmers depend on 

agriculture and related businesses. For instance, over 65% of non-oil manufacturing uses raw 

materials from agriculture in the country, and the sector also accounts for more than 25% of the 

country’s total foreign exchange earnings (World Bank, 2017).  

 

In Ghana, the food crops subsector, which include rice, maize, yams, groundnuts, soybean, cassava 

and plantains, tend to dominate, and accounts for about 70% of the agriculture GDP (MoFA, 2017). 
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Despite the importance of the sector and reported increment in area under farming, the contribution 

of the sector to national GDP has consistently decline to 22.2 in 2017, down from 31.2% in 2005. 

At the same time, the incidence of poverty increased from 39.2% in 2012/13 to 42.7% in 2016/17 

among households engaged in the agricultural sector (GSS, 2018). Low yields of both staple and 

cash crops has partly contributed to the declining performance of agriculture in the country. 

Existing evidence show that Ghana’s yields of cereals are estimated at 1.7 metric tons (MT)/ha, 

which is lower than the regional average of 2.0MT/ha and far less than the national potential yields 

of more than 5.0MT/ha (World Bank, 2017). Also, postharvest losses due to market failures and 

challenges have been estimated at 20 to 30% for cereals and legumes (MoFA, 2007). 

 

Several factors including climate change, market constraints, poor soils, pests and diseases and 

lack of access to, and application of improved inputs have contributed to the low agricultural 

productivity in Ghana (MoFA, 2017). For instance, Ghana has been reported as one of the lowest 

countries in terms of the appropriateness and precision of inputs and fertilizer (e.g., 12kg/ha) 

application, particularly in all of SSA (World Bank, 2017). Furthermore, the low yields and 

declining contribution of the sector to GDP have also been attributed to lack of extension services, 

lack of availability and access to markets and the limited use of information and communication 

technology (ICT) in the sector (MoFA, 2017).  

 

Given these challenges of the agricultural sector, successive governments have sought to promote 

the sector in many ways in order to circumvent the declining productivity and to make the sector 

an engine of growth through increased farm incomes and job creation in the country (World Bank, 

2017). The Food and Agriculture Sector Plans (FASDEP I and II) focused on promoting the 

efficiency of the sector through commodity markets and value chains, application of appropriate 
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technologies and improved environmental sustainability (MoFA 2007). This was followed by the 

Medium-Term Agriculture Sector Investment Plan (METASIP 2011-2015) which aimed at 

increasing the role of agriculture in the transformation of the Ghanaian economy. This emphasized 

the need to increase agricultural productivity and food security, creation of decent job and increase 

agricultural competitiveness through mechanization, innovation and technology application; 

promotion of seed and planting material development and promotion of domestic and international 

marketing of commodities (MoFA, 2017).  

 

More recently, the Government of Ghana launched a new program for the agriculture sector under 

the name Planting for Food and Jobs (PFJ) with focuses of the promotion of maize, rice, sorghum, 

soybean and vegetables (MoFA, 2017). The PFJ also seeks to engender structural transformation 

of the country through agriculture by increasing availability of food crops, job creation and 

agricultural productivity. Among the major interventions earmarked to achieve this goal are 

increased access to, and adoption of improved inputs and promotion of marketing of both crop 

inputs and outputs through farmer-based organizations and private sector led networks (MoFA, 

2017). The above discussion shows the relevance of improved input adoption and agricultural 

marketing to the sector in Ghana, and the keen consideration given to these two issues by 

successive governments. These, therefore, justifies the need to examine how adoption of improved 

technologies and agricultural marketing can be promoted in order to stimulate national agricultural 

productivity and to enhance household welfare.     

 

1.6 Agricultural commercialization defined 

Most definitions consider commercialization as the production of goods and services for sale as 

opposed to subsistence farming. Strasberg et al. (1999) defined commercialization as the ratio of 
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gross value of all crop sales to gross value of all crop produced multiplied by 100. An obvious 

limitation of this definition is that it narrows commercialization to output market participation (see 

Wiggins et al., 2011). With this definition, there is also the likelihood of treating “distress” sales 

(i.e., sale of crops immediately after harvest due to immediate cash needs) of a farmer as 

commercialization (Leavy & Poulton, 2007). Other authors have indicated that mainly focusing 

on the crop output market may not be an appropriate indicator of commercialization, and therefore 

advocated for the consideration of input market participation (Leavy & Poulton, 2007; Wiggins et 

al., 2011). For instance, Leavy and Poulton (2007) defined input commercialization index as the 

value of inputs acquired from markets divided by agricultural production value. A broader 

definition is the Integration into the Cash Economy (ICE), which measures the ratio of value of 

goods and services acquired through cash transaction and total income (von Braun & Kennedy, 

1994).  

 

However, the concept of agricultural commercialization mean more than just involvement in 

market transactions but also takes into consideration the motive of the farmer (Leavy & Poulton, 

2007). Pingale and Rosegrant (1995) categorized farmer commercialization into three namely: 

subsistence motive which is characterized by the use of own inputs and produces principally with 

the objective of food self-sufficiency; semi-commercial motive which is also characterized by the 

use of own and purchased inputs and produces with an objective of selling some surplus. The final 

category is the commercial motive, which is characterized by the use of mainly purchased inputs 

and with the objective of producing for profit. Finally, FAO (1989) defines agricultural 

commercialization by also categorizing farmers into subsistence-oriented if the farmer sells less 

than 25% of the harvest; surplus-oriented if the farmer sells between 25 and 50% of the harvest, 

and commercial-oriented if the farmer sells at least 50% of the harvest. Given the lack of unified 
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definition, Wiggins et al. (2011) suggest that the choice of definition should depend on the 

objective of the study.  

 

1.7 Agricultural commercialization in Ghana 

Commercialization of agriculture is considered as an important strategy in Ghana’s current 

agricultural policy frameworks and national development plans as these emphasize the relevance 

of moving from a subsistence-based small-holder system to a market-oriented production (MoFA, 

2015; MoFA, 2017). Despite the importance of agricultural commercialization, the average 

marketed surplus of crops is considered low in Ghana. For instance, IFAD-IFPRI (2011) estimated 

the average marketed surplus ratio as 33% in Ghana. However, the extent of agricultural 

commercialization varies depending on the crop or livestock type and agroecological zone. GSS 

(2014) reported that cocoa was the crop with highest value sold in the forest and coastal zones 

accounting for 45% and 24% respectively, whereas yam and maize, representing 59% of sales, 

were the most important in terms of value of crop sales in the savannah zone. The low national 

average marketed surplus and the variations across crops has also been attributed to low crop 

productivity and poor market conditions (IFAD-IFPRI, 2011).  

 

These have led to the pursuit of specific programs and interventions by government with the aim 

of increasing farmers’ market engagements. The Commercial Development for Farmer-Based 

Organization (CDFO) aspect of the Millennium Challenge Account (MCA), and the Ghana 

Commercial Agriculture Project (GCAP) are specific cases in point, which encouraged 

smallholder market-orientation and also trained and provided them with credit to enhance their 

production and sales of farm produce. In particular, the Ghana Commercial Agriculture Project 

(GCAP) was initiated by the Government of Ghana to promote integrated commercialization along 
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selected value chains of rice, maize, fruits and vegetables, and soybean (MoFA, 2015). Following 

this and other recent policy interventions such as the PFJ, soybean has become an integral crop in 

northern Ghana being promoted by most governmental and non-governmental parties [such as the 

USAID Feed the Future program, Alliance for Green Revolution in Africa (AGRA), the 

Agricultural Development and Value Chain Enhancement project (Advance I and II) and Ghana 

Greenfield Investment Program among others] (Gage et al., 2012). 

 

1.8 Soybean in Ghana  

Soybean (Glycine max, L) is a commercial crop that has the potential of primarily increasing farm 

incomes and also improving nutritional status of farmers and other consumers in Ghana. The crop 

also provides feed to support livestock rearing and fish, and raw materials for agribusinesses in the 

country (CSIR-SARI, 2013). Production and promotion of soybean in Ghana witnessed significant 

increase in the past two decades. Figure 1.1 show that annual domestic production of soybean 

increased over four folds from 39,000MT in 2005 to a peak of 170,000MT in 2017, an increase 

that is mainly due to increased intervention in the subsector by the government of Ghana and other 

development partners (such as USAID ADVANCE4) and expansion in the amount of area 

cultivated.  

 

For instance, the area of land cultivated to the crop witnessed a sustained increase from as low as 

45,000 hectares (ha) in 2005 to about 101,000ha in 2017. In addition, the soybean market in Ghana 

is rapidly growing with an estimated annual demand of about 150,000 MT, which is mainly driven 

by the local poultry industry. The increasing demand has led to an increase in national annual 

                                                           
4 ADVANCE refers to the Feed the Future Ghana Agricultural Development and Value Chain Enhancement Project funded by 

the United States Agency for International Development (USAID). 
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wholesale price of soybean from about 0.36 USD/Kg in 2008 to over 0.6 USD/Kg in 2015 (MoFA-

SRID, 2015).   

 

 
          Figure 1.1 Area cultivated and domestic production of soybean 

           

          Source: FAOSTAT, 2019. 

 

 

In relation to other legumes (i.e., groundnut and cowpea), soybean appear to have lower 

susceptibility to pests and diseases, better shelf life and larger leaf biomass that is important for 

soil fertility (CSIR-SARI, 2013). Climatic conditions in Ghana and in particular, northern Ghana, 

are considered suitable for its cultivation because of the mean temperature requirement of 20oC to 

30oC by the crop for successful cultivation (CSIR-SARI ,2013). Despite the advantages of soybean 

over the other grain legumes, the crop still lags behind these other legumes in terms of area 

cultivated and domestic production nationally. Whereas the area cultivated to groundnut and 

cowpea were estimated at 394,000ha and 159,000ha, respectively, the area cultivated to soybean 
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was estimated at 90,000ha in 2018. Similarly, the national production of groundnut and cowpea 

were estimated at 521,000Mt and 215,000Mt, while the production of soybean was estimated at 

152,000Mt in 2018 (FOASTAT, 2019).   

 

Also, soybean output in Ghana has been argued as being low with about 46.7% of its attainable 

output produced annually. In addition, the average yield of soybean yield has been estimated at 

1.68MT/ha which is far less than the potential yields of 3.10MT/ha (MoFA-SRID, 2015). This has 

been attributed to a number of production constraints, including lack of extension and training to 

ensure good handling, care and storage of soybean seeds; inadequate breeder and foundation seed 

supply; reliance on rain-fed, manual and rudimentary production systems and lack of awareness 

and use of improved seed varieties (CSIR-SARI, 2013). For instance, access to improved seeds 

and other inputs has been estimated at 23% and 9% respectively (SIL, 2015). 

 

Given this low access and use of improved varieties, the Council for Scientific and Industrial 

Research (CSIR) and Savannah Agricultural Research Institute (SARI) have over the years 

developed and introduced a number of improved seed varieties and other innovations such as 

inoculant to promote the cultivation and output of the crop. Initially, two varieties, Anidaso and 

Bengbie were released in 1992, but were not well received by farmers. Consequently, seven other 

varieties were introduced from 2003 and only two of these (namely Jenguma and Afayak) are still 

in cultivation today, in addition to the traditional variety (Salintuya). These improved varieties 

have been reported to have higher yield potential of over 2.0 MT/ha, resistant to pod-shattering, 

mature in about 35 days earlier compared to the traditional variety and resistant to other 

agricultural stress such as pests, diseases, low phosphorous soil and climatic variabilities (CSIR-

SARI, 2013).  
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However, the use of these improved varieties and other technologies are still described as being 

far from desired. For instance, studies on the rate of soybean adoption in Ghana have shown that, 

despite the high penetration of soybean production, the use of improved seeds has been low and 

estimated as ranging between 16% and 33% of soybean farmers (SIL, 2015). Moreover, available 

evidence shows that 35% of soybean producers use inoculum, 32% apply phosphorous and 4% 

use mechanical planters (SIL, 2015). The low adoption of improved technologies in the midst of 

increased availability of improved soybean planting technologies, and the high yield and market 

potential of the crop present an interesting and suitable context to investigate the drivers and 

impacts of adoption of improved soybean technologies on household welfare in the area.   

 

1.9 Farmer social networks in Ghana 

Farmer-based associations and social networks have been integral parts of socio-economic 

arrangements and policies to promote smallholder technology adoption and agricultural marketing 

in developing countries (Conley & Udry, 2010). This is because social capital has been shown to 

have several effects on production, investment and marketing decisions (Udry & Conley, 2004; 

Karlan et al., 2009). In Ghana, Udry and Conley (2004) identified four main types of social 

networks, namely information, credit, labor and land networks, that tend to influence smallholder 

production decisions. Information networks present opportunity for smallholders to learn about 

new innovations and technologies from peers. Credit networks involve the exchange of financial 

resources between peers, and enable smallholders mitigate or overcome the constraints of credit 

in the production process. The third network effect is labor transactions networks where 

smallholder in a network tend to exchanged labor during farm operations and finally, land 

transaction network which presents an opportunity to redistribute and increase access to land by 
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land constraint farmers. These aspects were taken into consideration in this study in defining social 

network links given their influence on learning opportunities and on various productive resources.   

 

1.10 Study area and data collection 

Soybean is mainly produced in Northern, Upper West, Volta and Upper East regions of Ghana 

with the Northern region, which is the study area, accounting for more than half of the total area 

cultivated to the crop (65.72%) and the national output (72%) of the crop (Gage et al., 2012). The 

Northern region is the largest region in terms of land mass in Ghana and occupies about 70,384 

square kilometers of land. Geographically, it is bounded by Upper West and Upper East regions 

to the north, Brong Ahafo and Volta regions to the south (see Figure 1.2), Togo to the east and 

Côte d’Ivoire to the west. The region has a total population of 2,479,461 with 69.7% being rural. 

The total number of households in the region is 318,119 and the average household size in the 

region of 7.7 persons is higher than the national average of 4.4 persons. The literacy level in the 

region is very low with only 37.5% of persons who are 11 years and older can read and write a 

simple statement with understanding in at least English or a Ghanaian language (GSS, 2013). 

Administratively, the region has 26 districts.  

 

Agriculture is the mainstay of the region, engaging about 74% of employed persons and 93% of 

rural households in the area (GSS, 2013; GSS, 2018). The main crops cultivated include yam, 

maize, millet, guinea corn, rice, groundnuts, beans, soybean and cowpea (GSS, 2013). 

Unfortunately, the incidence of poverty and extreme poverty are not only high in the region but 

have increase from 50.4% and 22.8% to 61.1% and 30.7%, respectively, between 2012/13 and 

2016/17 (GSS, 2018). 
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  Figure 1.2 Map of study area 

  Source: Regional and district map of Ghana, 2017. 

 

Food insecurity and malnutrition have also been the highest in the area compared to the rest of the 

country, with an average of 18% of households being severely food insecure. The prominent 

causes of food insecurity and malnutrition in this area include inadequate rains, poor soils, 

structural constraints and lack of improved inputs, which have often led to low agricultural outputs, 

fluctuation in food prices and seasonal constraints in accessing food (WFP & GSS, 2012). 

 

In order to investigate smallholder adoption of improved soybean variety and crop 

commercialization as well as their impact of household welfare, cross-sectional household survey 

was conducted in five districts in the Northern region between June and September 2017. A 

random sample of 500 farm households was drawn in three stages. In the first step, five (5) soybean 



21 
 

producing districts was purposively selected based on their intensity of soybean production. Next, 

a list of soybean producing villages in each district was obtained from MoFA district offices, and 

used to randomly sample 8 villages in Savelugu-Nanton, 6 in Gushegu, 5 in Tolon, 4 in Karaga 

and 2 in Kumbungu districts, in proportion to the number of households engaged in agriculture in 

each district (GSS, 2014).  In the third stage, listing of households in each village was conducted 

and a randomly sample of 20 households was selected for interview in each village using a 

structured questionnaire. In order to obtain village level information, focus group discussion with 

4 to 6 village and farmer group leaders was conducted in each village. (see Appendix for the 

questionnaire and the discussion guide).  

 

1.11 Structure of thesis  

The dissertation is organized into six chapters including chapter one as the general introduction. 

Chapters two to five consist of journal articles. Specifically, chapter two examines the impacts of 

social network members’ adoption of competing improved soybean varieties on smallholder 

adoption decisions of these varieties and the relative dominance of these varieties in the social 

networks. Chapter three explores the influence of social learning about production techniques and 

benefits of new technologies, as well as the effects of social network structures: transitivity and 

modularity on diffusion of the improved soybean varieties. Chapter four evaluates the impact of 

smallholders’ own and peer adoption of the improved varieties on soybean yields, food security 

and nutrition. An analysis of the impact of smallholder market-orientation is presented in Chapter 

five. Chapter six presents summary, conclusions and policy implications of the study. 
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Abstract 

In this study, we use a unique and detailed dataset to examine the impact of social networks, 

conditional on contextual and individual confounders, on farmers’ adoption of competing 

improved soybean varieties in Ghana. Based on the contagion conceptual framework, we employ 

a spatial autoregressive multinomial probit model to examine how neighbors’ varietal and cross 

varietal adoption of improved varieties, affect a farmer’s adoption decision in the social network. 

Our results show that adoption decisions in a network tend to converge on one variety, such that 

beyond a threshold of adopting neighbors of that improved variety, the cross-varietal effects tend 

to lose significance in the network. We also find evidence that farmers are not more likely to adopt 

either of the improved variety compared to farmers with no neighbors who have adopted the 

improved varieties, if the shares of adopting neighbors of the improved varieties are equal. The 

findings demonstrate the significance of neighborhood effects in the adoption of competing 

technologies. 

Keywords: Social network; Technology adoption; Cross-varietal effect; Threshold; Spatial model 
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2.1 Introduction 

In developing countries where the reliance on agriculture is high, enhancement of agricultural 

productivity and income growth through the adoption of new and improved innovations are widely 

accepted as quite significant. Studies have shown that improved crop varieties are responsible for 

about 50% to 90% of increase in world crop yield per ha (Muange, 2014). Unfortunately, adoption 

of improved varieties and other forms of new technologies remain quite low, especially among 

smallholders in sub-Saharan Africa (Muange, 2014). Walker et al. (2014) argue that out of 20 main 

crops grown by farmers in Africa, improved varieties account for only about 35% of the area 

cultivated to these crops, which underscores the significance of understanding the determinants of 

technology adoption for research and policy.  

 

Modern technologies have often been introduced with the normative anticipation that such 

technologies will do well, as they allow peers to learn from each other, thereby displaying 

increasing returns as more people adopt (Arthur, 1989). Beyond this, many empirical studies have 

shown the importance of social networks in the adoption and diffusion of new agricultural 

technologies (e.g., Foster and Rosenzweig, 2010; Bandiera and Rasul, 2006; Conley and Udry, 

2010; Beaman and Dillon, 2018; BenYishay and Mobarak, 2018). Unfortunately, there is lack of 

empirical evidence on the role of adoption of competing technologies by agents’ neighbors on their 

adoption decisions, and the relative dominance of these technologies in terms of adoption in 

agents’ social networks.  Previous studies on this front have mainly been theoretical, focusing on 

the use of economic theory to derive normative results, predicting adoption and characterizing 

equilibrium conditions of adoption (Arthur, 1989; Kornish, 2006; Acemoglu et al., 2011). 
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In this article, we investigate the case where farmers are faced with the adoption decision of three 

technologies. The farmer’s adoption of a given technology depends not only on the adoption-rate 

of this particular technology, but also on the adoption-rate of competing technologies available in 

the farmer’s network (see, e.g., Katz and Shapiro, 1986). This study, to the best of our knowledge, 

provides the first empirical assessment of farmers’ adoption decisions in a multiple competing 

technology setting, where a farmer’s adoption behavior is influenced by that of adopting neighbors 

of all available improved technologies. This type of investigation is important for the following 

reasons: First, this analysis reflects the situation farmers face in contemporary economic, socio-

political and technological environment, where similar and/or different technologies for the same 

purpose are developed (Dorfman, 1996). Second, and perhaps more important in the context of 

social network externalities, is that a farmers’ decision about a given technology depends on the 

past and future adoption-rates of each of the competing technologies (e.g., Katz and Shapiro, 1986; 

Kornish, 2006). The higher the adoption-rate of a particular technology, the higher are the 

complementary network externalities for this technology. For instance, a technology incompatible 

with other available technologies may become dominant, i.e., in the sense of a standard, so that 

previous investments in any other technology may become completely obsolete and their future 

net benefits tend to zero. 

  

To guide our empirical analysis, we develop a simple contagion model to show that farmers’ 

adoption decisions of a given variety depend on the adoption decisions of network neighbors who 

are adopters of that variety and neighbors who are adopters of the other varieties.  Our model setup 

is related to other works on technology adoption and consumer market shares (Arthur, 1989; 

Kornish, 2006; Acemoglu et al., 2011). However, as an extension of these previous frameworks, 

we allow the status quo technology to affect farmers’ adoption decisions rather than assuming it is 
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an obsolete option with its value normalized to zero. This makes the adoption of the traditional 

variety in a farmer’s neighborhood an argument in the value function of farmers’ adoption 

decisions in our framework.  We then employ spatial econometric techniques similar to Lee (2007), 

Lin (2010) and Bramoullé et al. (2009) to examine the impacts of social networks on farmers’ 

adoption decisions of two improved soybean varieties in Ghana, using unique and detailed 

observational data. 

 

Our results show that a farmer’s likelihood of adopting an improved variety is lower than the 

proportion of adopting neighbors of that variety when the proportion is below a given threshold. 

However, the likelihood of adoption becomes higher than the proportion of adopting neighbors 

when the share of neighbors adopting that variety is above this threshold. We also find that a 

farmer’s adoption decision of a given improved variety is positively influenced by the adopting 

neighbors of this variety, but negatively by the adopting neighbors of the competing improved 

variety. This is consistent with contagion effects, where the behaviors of one’s peers change the 

likelihood that one engages in those behaviors. We also observe that when the relative share of 

adopting neighbors are equal, farmers are not more likely to adopt any of the improved varieties 

compared to farmers without adopting neighbors of the improved varieties. This finding offers 

additional explanation of the differences in adoption rates of competing technologies and why 

some technologies may become dominant, while others end up as subordinates, or even 

nonexistent in some circumstances. 

 

Our analysis is novel in the following respects. First, by incorporating endogenous effects, 

contextual effects and unobserved correlated fixed effects, we are able to delineate the effects due 

to behavioral decisions, average neighbors’ characteristics and those due to unobserved common 
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characteristics. The consideration of all three effects is highly important, as their unbundling helps 

in teasing out the effects of behavioral decisions, which is the most important aspect of these 

network effects in designing and targeting innovation policies more effectively (Manski, 1993 

p.533). Second, we examine cross-variety dependence in the mean part of the model to show how 

farmers’ adoption of the improved varieties are related to their neighbors’ adoption decisions. With 

this, we are able to circumvent the interpretation problem of the estimated parameters that is 

usually associated with the approach of capturing interdependence among alternatives in the 

variance-covariance structure5 (Autant-Bernard et al., 2008; LeSage and Pace, 2009; Wang et al., 

2014).  

 

The rest of the paper is structured as follows. The next section describes the context and data. In 

Section 2.3, we present the theoretical framework that we use to guide the empirical analysis. We 

present the empirical framework and estimation in Section 2.4. In Section 2.5, we report and 

discuss the results, and then conclude in Section 2.6. 

 

2.2 Context and data 

2.2.1 Context 

Soybean is a crop that is mainly cultivated in the northern part of Ghana (Northern, Upper East 

and Upper West regions), with the Northern region accounting for 65.72% of the total area 

cultivated to the crop in Ghana. It is a commercial crop that has the potential to raise farmers’ 

incomes and improve their nutritional status. It is also a versatile crop that supports livestock 

                                                           
5 Typically, in order to identify the multinomial probit model, the first diagonal element of the covariance matrix is 

set to unity, which makes the interpretation of the dependence among alternatives problematic when captured in the 

variance-covariance structure (Autant-Bernard et al., 2008; Chakir and Parent, 2009). 
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rearing, fisheries and provides raw materials for local industries. However, it has not yet been fully 

accepted by farmers, because of the perceived cropping and handling difficulties (Plahar, 2006). 

Also, available evidence suggests that average yields are as low as 0.8MT/ha, even though there 

is the potential to achieve yields as high as 2.5MT/ha, with improved varieties of seeds and proper 

agronomic practices (Gage et al., 2012).   

 

In lieu of this, the Council for Scientific and Industrial Research (CSIR) and Savannah Agricultural 

Research Institute (SARI) have over the years developed and introduced a number of innovations 

including improved seed varieties and inoculant to promote the cultivation and output of the crop. 

Two of the improved varieties (namely Jenguma and Afayak) are currently in cultivation, in 

addition to the traditional variety (Salintuya). These improved varieties were first introduced to 

farmers at demonstration sites in the various districts by SARI, and following adoption of some 

farmers, seeds were subsequently made available to these farmers and to extension offices of the 

Ministry of Food and Agriculture (MoFA) to promote farmers’ access to the seeds and information 

about planting (CSIR-SARI, 2013). These avenues remain the main sources of information about 

the cultivation and yield potentials of these varieties. 

 

The improved varieties have higher yield potential of over 2.0 MT/ha, resistant to pod-shattering, 

earliness in maturity (i.e., about 35 days less compared to the traditional variety) and resistant to 

other agricultural stress such as pests, diseases, low phosphorous soil and climatic variabilities 

(CSIR-SARI, 2013). In addition, planting the improved varieties does not require any special 

complementary inputs that are different from the inputs required by the traditional variety. These 

notwithstanding, studies show that the use of improved soy seed is quite low, with estimates 

ranging between 16% and 33% (SIL, 2015) of soybean farmers. The indigenous, late maturing and 
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shattering variety is still in wide use, and CGIAR (2009) reported that this variety constituted more 

than 50% of all soybean varieties under cultivation in Ghana. 

 

Table 2.1 provides information on farmers’ awareness and subjective perception of the costs and 

expected benefits of adopting the improved varieties. Panel A shows that whereas about 64% and 

60% of farmers know about Jenguma and Afayak respectively, the proportion of adopters are 42% 

and 26%, respectively. The potential setbacks to adoption identified in the literature are lack of 

information about the production techniques and benefits of new technologies, credit constraints 

and market6 constraints (Zeller et al., 1998; Croppenstedt et al., 2003; Beaman et al., 2020). Panel 

A of Table 2.1 further reports the reasons why farmers adopted the improved varieties. The most 

frequent reason given in each case is agronomic and climate resistance of Jenguma and high 

yielding advantage of Afayak. The second most frequent reason indicated is the perceived high 

yielding potential of Jenguma and agronomic and climatic resistance of Afayak. For non-adopters, 

the top reasons for not adopting the improved varieties are due to inadequate information about 

the production and agronomic requirements of the improved varieties, and that these improved 

varieties are not high yielding compared to the traditional varieties7.  

 

In order to assess the extent to which non-adopters are informed about the yields of the improved 

varieties, panel B shows the estimated change in yields between each of the improved varieties 

                                                           
6 The high and excess demand for soybean over its supply, especially by the poultry sector, in Ghana (Plahar, 2006), and the high 

integration of the soybean market into the international market (Goldsmith, 2017), suggest that the degree of marketability of 

soybean may not be the main barrier to adoption given that all three varieties face similar market conditions. In addition, Table 

2.A1 in the appendix shows no systematic difference in market access across farmers’ adoption status.  

7 Discussions with MoFA officials and village level key informants revealed that some farmers hold the perception that the 

traditional variety grows well and will provide good yield with good management and timely harvest (see also SIL, 2015).  
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and the traditional variety based on computation from the sample and estimates of non-adopting 

farmers. 

 

     Table 2.1 Awareness and main reasons for adoption or non-adoption of the 

improved varieties 

 % 

Panel A  

Know about Jenguma 64.4 

Know about Afayak 59.8 

  

Why adopted Jenguma  

Agronomic and climatic advantages 74.6 

High yielding 66.8 

High marketability  42.1 

Less labor demanding 38.6 

Easy to cultivate   8.4 

  

Why adopted Afayak  

High yielding 67.2 

Agronomic and climatic advantages 62.4 

High marketability  44.0 

Less labor demanding 36.8 

Easy to cultivate 11.2 

  

Why non-adopters did not adopt  

Do not know the production and agronomic requirements  76.0 

I feel it is not high yielding 34.0 

Credit constraints 21.0 

Poor prices and market 21.0 

Need for other food crops   4.0 

  

Panel B  

Estimated yield difference between:  

Jenguma and Salintuya from average yields of the sample$ 67.1 

Afayak and Salintuya from average yields of the sample 58.8 

Jenguma and Salintuya estimated by non-adopters   4.9 

Afayak and Salintuya estimated by non-adopters   4.2 

Notes: The table consist of two panels. Panel A presents descriptive statistics of farmers’ awareness and farmers’ reasons 

for adoption and non-adoption. Panel B presents descriptive statistics of estimated yield difference between each of the 

improved varieties and the traditional variety by official sources, computation using average yield of the sampled farmers 

and by non-adopters. The official estimates suggest much higher yield potentials of Jenguma and Afayak of 2.8Mt/ha and 

2.4Mt/ha, respectively, compared to the yield potential of the traditional variety is 1.0Mt/ha (CSIR-SARI, 2013). 
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There are substantial differences between the change in yields (on average) obtained by adopters 

and the estimates (5%) reported by non-adopters. The reported differences suggest that despite the 

existence of the improved varieties for some time, and the promotion of the improved variety by 

SARI and MoFA through the existing extension system, non-adopters seem to have different 

information and perceptions about the production processes and expected benefits of the improved 

varieties compared to adopters. This differential access to information among adopters and non-

adopters, and failure of several improved varieties to be accepted by farmers suggest the need to 

understand what could possibly explain farmers’ adoption of a particular variety in a context of 

multiple improved varieties. This will be useful in the formulation of hypotheses that explain the 

underlying drivers of varieties emerging as dominant or marginal in the farmers’ villages (social 

networks).    

 

2.2.2 Data  

Social networks 

The data used in this study were collected from 483 farm households across 5 districts in 25 

villages in the Northern region of Ghana, between July and September 2017. The survey design 

employed a multistage random sampling technique to first purposively select soybean growing 

districts, based on intensity of soybean production8 and then randomly selecting villages and 

households, proportionate to the number of households in each district. Finally, random matching 

within sample was used, whereby in each village (i.e., a village represents a social network or 

group), 20 farm households were randomly selected and each household was matched with 5 other 

farm households also randomly drawn from the village sample. For each match, conditioned on 

                                                           
8 This was done in consultation with the Ministry of Food and Agriculture (MoFA) Regional and Districts Offices and 

Resilience in Northern Ghana (RING)   
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knowing the matched household, detailed information about the relationship between them were 

elicited. For determining existing links in the network, we used both social and locational 

indicators in the definition of a farmer’s neighbors (Banerjee et al., 2013). Table 2.2 presents these 

social and locational dimensions of social network contacts. The farmer knows on average 3.13 of 

the 5 farmers randomly matched to him9. Also, the average farmer has 1.77 agricultural 

information contacts, 2.17 relatives, 1.18 friends, and exchanged labor with 1.73 of the known 

matched farmers. The farmer, on average, has ever visited 2.18 of the contacts, and has 0.87 or 

0.67 of the contacts as farm or residential neighbors, respectively.   

Table 2.2 Social network information  

Network connections and information Mean S.D. Min Max 

Number of random matched known 3.13 1.15 0 5 

Conditional on knowing the matched:     

Social dimension of contact     

     Number of agricultural information contacts 1.77 1.79 0 5 

     Number of neighbors who are relatives 2.17 1.67 0 5 

     Number of neighbors who are friends 1.18 1.56 0 5 

     Number of neighbors with same religion 0.64 1.07 0 5 

     Number of neighbors ever exchanged labour  1.73 1.86 0 5 

     Number of neighbors ever exchanged credit 0.69 1.35 0 5 

     Number of neighbors ever exchanged land 0.33 0.95 0 5 

Locational dimension of contact     

     Number ever visited 2.18 1.64 0 5 

     Number of farm neighbors  0.87 1.20 0 5 

     Number of residential neighbors 0.67 0.96 0 5 

Social links (Social ties)     

     Number of social contacts 3.12 1.25 0 5 

     Degree* 3.73 1.51 1 8 

     Network transitivity 0.46 0.09 0.18 0.60 

     Proportion of Jenguma adopters in neighborhood (unconditional)** 0.42 0.36 0 1 

     Proportion of Afayak adopters in neighborhood (unconditional)** 0.29 0.31 0 1 

Notes: SD denotes standard deviation and Min and Max are minimum and maximum values respectively.  

*The farmer i’s average degree is higher than the number of his/her social ties due to the fact that the number of social ties took 

into consideration only directed contacts (from farmer i to farmer j) based on the social and locational dimensions of contacts. The 

degree on the other hand is based on undirected relationships where the existence of a link between farmer i and farmer j was 

defined as either by i, or by j, or both mentioned having any of these contacts with the other farmer.  

** The unconditional implies that the proportion of adopting neighbors (j’s) of each variety does not condition on the 

variety adopted by the farmer (i).   

                                                           
9 We use the masculine gender because majority (60%) of the farmers in the sample are males. 
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We define the farmer’s neighbors as those among the 5 farmers randomly assigned to him/her, that 

he/she shares any of these social and locational contacts with (i.e. the union of these contacts). 

When we take the union of these social and locational contact dimensions, an average farmer has 

3.12 social ties (Table 2.2). We use the social and locational contacts to construct our social 

network matrix with entries, 𝑤𝑖𝑗, being equal to one if the respondent 𝑖 had any of these 

relationships with a matched farmer 𝑗 (i.e., 𝑖 and 𝑗 are neighbors), and zero otherwise (i.e., 𝑖 and 𝑗 

are not neighbors). The resulting social network matrix, 𝑊, is a 483 x 483 block-diagonal matrix, 

along villages networks. Based on the matrix, 𝑊, the average farmer has 3.73 neighbors in the 

social network and a maximum of 8 neighbors as indicative by the term degree in Table 2.2 (see 

Figure A.1 for networks). The table also shows that an average farmer has 42% and 29% adopting 

network members of Jenguma and Afayak varieties, respectively. 

 

Descriptive statistics  

We also elicited detailed information on the household and farm level characteristics. Table 2.3 

shows definition, measurement and descriptive statistics of variables for the surveyed households 

and of their neighbors. Majority of farmers in the sample are males. The average education attained 

by the surveyed farmers is low, about 1.11 years, but with an average experience of about 12.7 

years of farming. In addition, the majority (55%) of the farmers and (56%) of their neighbors ever 

had contact with extension agents, while only 28% of farmers and 30% of their neighbors ever had 

contact with research and non-governmental organization. 

 

Table 2.3, further shows that majority of the farmers and their neighbors, 55%, are credit-

constrained. The proportion of credit constrained farmers are significantly lower for Jenguma 

producers (Table 2.A1, panel B), and as noted in Section 2.2.1, suggest that access to credit could 
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affect farmers decisions to adopt this variety. In our analysis such differences in access to credit 

are controlled for by using household credit constraints (Table 2.3). Households were classified as 

credit-constrained, if they obtained credit, but expressed interest in borrowing more at pertaining 

interest rates, and if there was no credit available to them through formal and informal lenders.  

 

Furthermore, about 42% and 26% of the households were adopters of Jenguma and Afayak, 

respectively, whereas 32% cultivated Salintuya. Table 2.3 also shows a strong association between 

a farmer’s adoption of an improved variety and the proportion of farmers’ neighbors who adopted 

that variety. In particular, farmers who adopted Jenguma have up to 88% of their neighbors also 

adopting Jenguma. At the same time, about 82% of neighbors of Afayak adopters are themselves 

adopters of Afayak, while farmers who are cultivating the traditional variety have about 85% of 

their neighbors also producing the traditional variety. This indicates the possibility of farmers 

exchanging information about soybean, and/or imitation by copying their neighbors’ cultivation 

choices.  

 

2.3 Theoretical framework 

In order to motivate our discussion on how local correlations in social networks affect adoption 

decisions in our context of multiple and competing technologies, we present a theory of contagion, 

which is based on the linear threshold model (Granovetter, 1978; Morris, 2000; Acemoglu et al., 

2011)10. In our study, the technology under consideration is soybean varieties, where two (i.e., 

Jenguma and Afayak) of these are improved and Salintuya is the traditional variety. Thus, we 

model adoption as the outcome of optimizing behavior of agents, based on the frameworks 

presented in Arthur (1989) and Kornish (2006).

                                                           
10 The reader is referred to Beaman et al. (2020) for a discussion on the merits of the linear threshold model. 
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Table 2.3 Variable description, measurement and descriptive statistics 

Variable Definition Own (X) 

Characteristics  

 Neighbors (WX) 

Characteristics 

  Mean SD  Mean SD 

Independent variables      

Age Age of farmer (years) 44.002 12.007  43.929 7.151 

Gender 1 if male; 0 otherwise   0.596  0.491    0.581 0.333 

Education No. of years in school   1.112  3.077    1.105 1.810 

Experience No. of years in farming 12.677  2.718  12.708 2.006 

Household Household size (No. of members)   5.725  2.090    5.722 1.477 

Landholding Total land size of household (in hectares)   2.597  1.556    2.626 1.120 

Credit 1 if farmer indicated did not obtain sufficient credit or not successful in 

applying for credit; 0 otherwise 

  0.554  0.497    0.554 0.344 

Risk Risk of food insecurity (No. of months household was food inadequate)   0.948  1.387    0.925 0.942 

Extension 1 if ever had extension contact; 0 otherwise   0.546  0.924    0.563 0.687 

NGO/Res. 1 if ever had contact with non-governmental/research organization; 0 otherwise   0.284  0.451    0.295 0.332 

Association No. of village-based associations a farmer is a member   1.091  1.285    1.081 0.898 

Electronic 1 if own phone, radio and/or television; 0 otherwise   0.817  0.386    0.821 0.264 

Soil quality 4=fertile; 3=moderately fertile; 2=less fertile; and 1=infertile   2.962  0.972    2.965 0.688 

Price Soybean price in GHS/kg   1.055  0.188    1.062 0.135 

       

Dependent variable      

Jenguma Adopters of Jenguma variety (1 if adopted Jenguma; 0 otherwise)   0.418  0.494    0.878+ 0.214 

Afayak Adopters of Afayak variety (1 if adopted Afayak; 0 otherwise)   0.258  0.438    0.815+ 0.238 

Salintuya Adopters of Salintuya variety (1 if adopted Salintuya; 0 otherwise)   0.322  0.468    0.849+ 0.263 

 

Instruments       

Village born 1 if farmer was born in village   0.696  0.461    

Authority 1 if any parent of the farmer had an authority in village   0.130  0.337    

ExtDistance Distance to the extension office (in kilometers)   9.890  9.140    

RNDistance  Distance to the nearest agric. research or non-governmental organization (in 

Kilometers) 

14.561 11.797    

FinDistance Distance to the nearest financial institution (in kilometers)   9.256  6.884    

Notes: SD denotes standard deviation. “+” implies that the proportion of adopting neighbors (j’s) of each variety is conditional on the farmer (i) adopting that 

variety. That is why the proportion of adopting neighbors of each variety in this table is higher than the unconditional proportions in Table 2.2.    
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The main insights in these frameworks are that agents are confronted with the situation of having 

to choose among competing technologies, of which one is a status quo (default) technology. Also, 

adoption decisions are based on the relative and absolute number of adopting and non-adopting 

neighbors and the expected net benefits from adopting these technologies. We define a set of 

farmers  1, ,m M   in a network represented by an undirected graph  ,g m E , where E  is a 

set of edges ( , )i j that represent the connectivity between farmers i  and j . We also define the 

neighborhood of a farmer i m  as    [ | , ]iN g i i j E  . That is,  iN g  consists of the set of the 

neighbors of farmer i  and   i id N g  denotes the number of farmers that form part of the 

neighborhood.  

 

Farmer i  sets out using a traditional variety, 0, and has the choice of adopting any of the two new 

improved varieties, denoted as 1 and 2 , from the set  1,2V   or retaining the traditional variety. 

These new varieties compete for adoption and are assumed not to be sponsored or strategically 

manipulated (Arthur, 1989). We further assume that farmer i  faces one-time cost of adopting 

variety 1  or 2 , denoted by 1 0iC   and 2 0iC  , respectively. The farmer’s infinite horizon net 

benefit function is given by  1 2, , 0i i id d d  , where 1 2

i i id d d   indicates the number of 

neighbors that have adopted none of the improved varieties, with 1

id  representing the number of 

neighbors that have adopted variety 1 and 2

id  the number of neighbors that have adopted variety 

2. The farmer’s decision problem is to maximize the expected net benefit from adoption, by 

selecting the strategy that offers the highest payoffs. The alternative strategies are characterized 

by payoff from (i) adopting variety 1, (ii) adopting 2  and (iii) from maintaining the traditional 

variety 0. Let us denote the one-period discount factor by  .  
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We define the probability that the next potential adopter has preference for variety 1 as  1  i ih d d  

and for variety 2  as  2

i ih d d .  Both of these functions are increasing with the shares, 1 /i id d  and 

2 /i id d , of 1 and 2  adopting neighbors, respectively. Moreover, the conditional probability  1

ip d  

that a farmer adopts variety 1, given that he/she has preference for variety 1, is an increasing 

function of the number of adopting neighbors of variety 1  1

id .  The complement of  1

ip d , given 

by   11 ip d , indicates the probability that the farmer does not adopt variety 1. Similarly, the 

conditional probability of adopting variety 2  for a potential user is  2

ip d , given that he/she has 

preference for variety 2 . Thus, as an example, the term    1 1 i i ip d h d d  indicates the conditional 

probability of adopting variety 1, given the preference for variety 1 multiplied by the probability 

of having these preferences for variety 1. Likewise, one can formulate the probabilities for 

adopting variety 2 and for non-adopting variety 1 or 2. Based on these formulations, the farmer’s 

decision problem can be formulated as  

 

(1)  
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Following equation (1 ), we express the expected net benefits from adopting variety 1, when there 

are 1

id  adopters of variety 1 and 2

id  adopters of variety 2 as 
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(2)              
1 1

1 1 2 1 1 1 2 1 1 2, , 1 1 1 , ,i i
i i i i i i i i i

i i

d d
d d d q d h p d h p d d d d

d d
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where  1 1

iq d  is the periodic benefit of adopting 1, which is a function of the neighbors that have 

already adopted variety 1. The term  1 1 2, ,i i id d d  accounts for the immediate and discounted 

future stream of payoffs, if the farmer does not adopt, and of the discounted stream of future 

payoffs, if the farmer adopts variety 1 or variety 2. Similarly, we express the expected net benefit 

from adopting variety 2, when there are 1

id  adopters of variety 1 and 2

id  adopters of variety 2 as, 

(3)              
1 1

1 2 1 2 22 2 12 2, , 1 1 1 , ,i i
i i i i i i i i i

i i

d d
d d d q d h p d h p d d d d

d d
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i i i i i i i i
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d d
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d d
 

     
            

      

 

The functions 1(.)q , 2(.)q  may contain network-dependent and network-independent elements. In 

order to express network dependence, it can be seen that the agent’s expected net benefits from 

adopting a particular variety are increasing with the number of adopting neighbors of that variety. 

 

Based on observational data, we next explore the nature of  .p   .h  for both varieties, which are 

shown in Figures 2.1A and 2.1B. We observe that both the proportions of adopting neighbors of 

each improved variety relative to the neighborhood (i.e., 1 2,i i i id d d d , indicated by the dashed 

line), and the difference in the share of adopting neighbors of the two improved varieties (i.e., 

1 2( )i i id d d , indicated by the solid line), are important for influencing a farmer’s adoption 

decision (Figure 2.1). This distinction is important because the first measure takes into account the 
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number of non-adopting farmers of the two improved varieties, while the second measure focuses 

exclusively on the difference in adoption of the two improved varieties. In respect of the 

proportions of adopters of the improved varieties in the neighborhood, the curve exhibits an S-

shaped function for the conditional probability of adoption  .p , given the probability of the 

preference  .h  for a variety, as a function of the share of neighbors that have adopted this variety. 

Thus, when the proportion of adopting neighbors of an improved variety is low, the probability of 

a farmer adopting this variety is lower than the proportion of the neighbors who have already 

adopted it. However, the likelihood of adopting an improved variety is higher than the proportion 

of adopting neighbors of this variety, when the proportion of adopting neighbors of this variety is 

high. 

 

Moreover, the solid line, which is based on the difference in the share of adopters of the two 

improved varieties, shows stronger effect on adoption than the share of adopters of these varieties 

in relation to the whole neighborhood (dashed line). It lies above the dashed line for most part, and 

is consistently higher than the 45-degree line in both figures. This suggests that farmers give 

significant consideration to the difference in the share of adopting neighbors of the improved 

varieties when making adoption decisions. The S-shaped function and the importance of the 

difference in relative adoption of the improved varieties by farmer’s neighbors implies that the 

adoption process will result in one of the varieties becoming “dominant”, while the other varieties 

become “subordinates” in the network. Thus, the neighborhood becomes increasingly ‘locked-in’ 

on the dominant variety, where a farmer’s likelihood of adopting that variety is higher, if adoption 

pushes that variety ahead of the other improved variety in relative and absolute numbers and in 

expected net benefits. Thus, we deduce the following hypotheses;  
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  A. Adoption of Jenguma (v=1)                              B. Adoption of Afayak (v=2)  

Figure 2.1 Association between own and neighbors’ adoption of Jenguma and Afayak 
 

Notes: The dashed line represents the probability of adoption given the probability of the preference for Jenguma or Afayak (in Fig. 

2.1A or 2.1B respectively). In Figures 2.1A and 2.1B, it represents the mapping of the proportion of adopting neighbors of Jenguma 

and Afayak (i.e., the horizontal axis) to the probability of adopting Jenguma and Afayak, respectively (i.e., the vertical axis). The 

point of intersection of this line and the identity function (i.e., the 45-degree line) shows the threshold. The solid line, on the other 

hand, focuses exclusively on the difference in share of adopting neighbors of the two improved varieties. In Figure 2.1A, it 

represents the mapping of the difference in the share of adopting neighbors of Jenguma and Afayak [i.e., (Jenguma minus Afayak) 

/ all neighbors] to the probability of adopting Jenguma. In Figure 2.1B, it shows the mapping of the difference in the share of 

adopting neighbors of Afayak and Jenguma [i.e., (Afayak minus Jenguma) / all neighbors] to the probability of adopting. The short 

vertical lines on the two curves denote 95 percent confidence intervals.  

 

Hypothesis 1. For a given neighborhood  iN g  of farmer i , adoption will not occur as long as 

the number of adopters 1

id  or 2

id  relative to all neighbors   iN g  remains below an absolute 

threshold denoted by  1,2  i id N g . 

Hypothesis 2. For a given neighborhood  iN g  of farmer i , there exist a relative threshold 

 1,2ˆ  i id N g  where the probability of adoption of variety 1 or 2 is equal to the share of adopters 
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 1,2  .i id N g If this share of adopters is below the relative threshold, the farmer is less likely to 

adopt, and if it is above the threshold the farmer is more likely to adopt.    

Hypothesis 3. Adoption in a given neighborhood  iN g  of farmer i  will converge towards a 

single dominant variety (1 or 2) if the proportion of adopters of this particular variety leads to a 

higher adoption probability than the proportion of the non-adopting neighbors of the variety. If 

the relative shares of adopters of the improved varieties are equal, the farmers are not more likely 

to adopt either the improved variety.  

2.4. Empirical framework  

In 2.4.1, we first present the base model and then discuss the identification concerns and strategies 

we use in the empirical analysis. We next discuss the empirical estimation in 2.4.2, and then the 

computation of marginal effects for the control variables in 2.4.3. 

 

2.4.1 The model and identification 

The studies of social interaction models have generally focused on the delineation of the effects of 

individual or group interactions on individual or group behavior and socio-economic outcomes 

(Blume et al., 2010; Lee et al., 2010). Three types of behavioral effects have been identified in the 

literature that can arise from social interactions. These are the endogenous effects, 

exogenous/contextual effects and correlated effects (Manski, 1993; Moffitt, 2001). To motivate 

our discussion on these effects, consider the following linear regression   

 (4)    0 1 2| ,|
i iig d ig d igY E Y g X E X g        

 

where 
igY  is the outcome of individual i  in group g ,   igX  is a vector of characteristics of i  from 

group g , with 1  as the associated parameter estimates,  and 
ig  are innovations. The 
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neighborhood mean outcome and characteristics are captured by the terms  |
idE Y g  and  |

idE X g

, respectively. The parameter 0   denotes the endogenous network effect, whereas 
2  defines the 

contextual effects. Manski (1993) showed that specification (4), called the linear-in-means model, 

suffers from the “reflection problem”, which is the difficulty in differentiating between 

endogenous (behavioral) and exogenous (contextual) factors, since expressing the endogenous 

effects  |
idE Y g  as the average behavior or outcome of the group makes it a linear function of the 

mean characteristic of the group    |
idE X g  in model (4). This shrouds what each of the two effects 

are, and the inherent implications associated with each becomes misleading, as they have been 

identified to have effects different in nature and in policy conclusions (Manski, 1993; Lin, 2010).   

 

Another important confounder of the behavioural effects is the argument by Moffitt (2001) that 

unobserved factors in 
ig , noted earlier as correlated effects, may also be a source of correlation 

among individuals in a given group (see also Manski, 1993; Calvo-Armengol et al., 2009; Lee et 

al., 2010). Moffitt (2001) distinguished between correlations due to similarities or preferences that 

drive a group of individuals to group together, and those that are attributable to similar 

environmental characteristics, suggesting that any social impact could be a reflection of omitted 

variables, or spurious effect. Accordingly, we use a spatial autoregressive (SAR) model, where the 

disturbance in equation (4) is decomposed into network-fixed effects, 
g , (which defines 

unobserved characteristics that are similar for all network members) and innovations, 
ig , to 

account for endogenous, contextual and group fixed effects in the group interaction setting as 

follows 

 (5) 
0 1 2 0 ,kg kg kg kg kg kg mg g kgY W Y X W X l          
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where  1, ,g G   and G  is the number of groups (villages) in the sample, 
gm  is the number of 

members in the g th group and 
1

G

gg
k m


  is the total number of observations. The term   kgY  is a 

vector of adoption decisions, 
kgX  is a matrix of characteristics for the 

gm  individuals in group g

, 
kgW  is a non-stochastic k k  network weights matrix with zero diagonal elements, which also 

captures the group network structure, 
gml is an 

gm  vector of ones, with the coefficients 
0g  

capturing group fixed effects and 
kg ’s are assumed to be i.i.d, with Var(

kg ) 2

0 gmI .  

 

Studies by Bramoullé et al., (2009), Calvo-Armengol et al., (2009) and Lee et al., (2010) 

demonstrate that the SAR model in our setting is identified by accounting for group fixed-effects, 

because 
kgW  could have any arbitrary structure, thereby making the interaction patterns 

sufficiently different across networks, due to the different structure of each network’s weight 

matrix. Given that we define networks at the village level, we account for group fixed-effects by 

controlling for village dummies of all the 25 sampled villages. The intuition is that farmers in the 

same village face similar environmental and institutional conditions and thus, the inclusion of these 

village fixed-effects is expected to account for any unobserved conditions that may affect the 

behavior and outcomes of farmers in the same village/network (Lee, 2007).  

 

Whereas the network fixed-effects can account for correlated unobservables at the group level, 

these do not account for the issue of endogenous network formation or correlated unobservables 

between individuals in the same group, which may result in endogeneity problems (Moffitt, 2001). 

To account for this, we use the control function approach suggested by Brock and Durlauf (2001) 

to control for the potential endogeneity of neighbors’ adoption, using farmers’ birth status (i.e., 

whether the farmer was born in the village) and the authority of farmers’ parents (i.e., whether any 
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of the farmer’s parents ever had an authority in the traditional chieftaincy structure in the village) 

as instruments (see Table 2.2). 

 

The reasoning behind the use of farmers’ birth status as an instrument is that farmers who are born 

in the village are expected to have deeply rooted and well-connected social ties with other members 

of the village because of the social bond that have evolved overtime. Also, the remote nature of 

these villages tends to reduce the incentive of non-natives to move and settle in these village, 

making the issue of out-migration more likely than in-migration in these settings. Thus, farmers 

who were born in the village are expected to have more social connections and links with other 

village members than those who were not born in the village. However, we do not expect a farmers’ 

birth status in the village to directly affect his decision to adopt any of the improved varieties 

except through his interactions with the farmers that he has social ties with, suggesting the 

instrument is fairly exogenous to the farmers adoption decisions.  

 

The second instrument is the authority of farmers’ parents in the traditional chieftaincy structure 

in the village. We believe this is a relevant instrument because the traditional authority of the 

parents affects the farmer by increasing the farmer’s contact with people who contact the parents 

through him, and may increase the popularity of the farmer in the village. These are expected to 

increase the social connections of the farmer compared to a farmer without such royal privileges. 

However, the traditional authority of the parents does not directly affect the farmers adoption, 

since this is not directly related to adoption decisions, and that authorities in the traditional system 

are mostly predetermined by lineage in these areas. One issue that might threaten the use of this 

as an instrument is when privileges due to parents’ authority lead to increase access to production 

opportunities and resources which affect adoption through access to land, other resources and 
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information. For this reason, we control for household landholding, credit, and other information 

sources on farming in all specifications. 

  

We then use these instruments together with a set of other control variables to estimate a first-stage 

conditional edge independence model of network formation (Fafchmaps and Gubert, 2007), 

retrieve the predicted residuals and insert them into our adoption equations (5) as control functions 

to account for endogeneity of neighbors’ adoption. The inclusion of the residuals controls for the 

endogeneity of peer adoption by accounting for the correlation between the endogenous peer 

effects and the unobservables that affect farmers’ adoption decisions (Wooldridge 2015). The first-

stage network formation model and the estimates are shown in Appendix B.      

 

2.4.2 Empirical Estimation: Spatial Autoregressive Multinomial Probit 

Our theoretical framework shows how a farmer’s decision to adopt a given variety is based on the 

expected net benefit from adopting that variety, the proportion of adopters of each of the varieties 

in the neighborhood, as well as the expected benefits from adopting other varieties in equations 

(2) and (3). Based on equations (2) and (3), and the motivation for identification of network effects 

in subsection 2.4.1, as well as the fact that the empirical analysis aims at examining the adoption 

of two improved soybean varieties (Jenguma and Afayak) in relation to a conventional variety 

(Salintuya), we specify farmers’ adoption decisions in a spatial autoregressive multinomial probit 

model.   

 

The spatial autoregressive multinomial probit (SAR MNP) model is based on the random utility 

framework, which is expressed as a system of seemingly unrelated regression models, with each 

latent choice considered as an equation (LeSage and Pace, 2009; Wang et al., 2014). Thus, we 

denote the model as 1kV   vector of outcomes  
'

* * *

,1 ,, ,   i i VY Y Y  , where each of the 
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 *' *' *' *'

1 2,  , ,i nY Y Y Y   elements is expressed as a continuous SAR model. Given this formulation 

and following equations (2) and (3), we express our estimation model as: 

 (6) * * *

, 1 ,1 2 ,2 1, 2, 0, ,gkg V kg kg kg kg kg V kg kg V m g V kg VY W Y W Y X W X l           , 

 

where  1,2V   represents the varieties, 1  and 
2  are the endogenous effects of variety 1 and 2, 

respectively, on the adoption of all varieties. For example, in the equation of variety 2, 1  is the 

cross effect of variety 1 and 
2  is the own effect of variety 2. The vector X , like the 1kV   matrix, 

is stacked based on the respective observed choices V , where X  represents a 1 r  vector of 

explanatory variables associated with each choice.  

 

The observed response values of Y  are such that iY V , if 
*

,i VY   * *

,1 , max , ,  0i i VY Y   , and 0 if 

*

, 0i VY  , 1,2V  . The stacked  V  observations also require the network weight matrix to be re-

casted in order to generate the interaction lags of 
*

,i VY  and to ensure conformability. This involves 

repeating each row of the k k  weight matrix V  times to yield a matrix expressed as;  VI W W 

, where VI  is a V V  identity matrix. Typically, the error terms  
'

1 ,  ,i Vi     and 휀𝑖
′ =

(휀1
′ , 휀2

′ , … , 휀𝑛
′ ) has a covariance matrix as kI  , with 2

1    , 12 21   , 2

2   . This is the cross-

variety covariance which is assumed to be identical and independent across individuals, but not 

varieties. However, modeling the cross-variety dependence in the mean part of the model implies 

restricting  VI  , as suggested by LeSage and Pace (2009).  

 

The challenges to the estimation of equation (6) are the issues of the multidimensional integrals, 

correlations in the error terms and the complexity of the spatial dependence (Kelejian and Prucha, 

1999; Fleming, 2004). We use the Markov Chain Monte Carlo (MCMC) sampling, as it is mostly 
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applied in such settings, where the higher dimensional integrals are re-specified into sequence of 

draws with sometimes known conditional distribution (Wang et al., 2014). If 
*

,i VY  were observable, 

the likelihood function of the model could be expressed as 

   
'1/2

* * *

,

1
( | ,  , Σ) exp

2
k Vp Y I W HY X HY X    

 
       

 
, with the posterior 

distribution given as          * *,  , Σ | | ,  , Σ Σp Y p Y            , where 

,( )k VH I W   . However, since 
*

,i VY  is not observable, we apply Bayesian estimation approach 

to elicit the conditional posterior distributions  *| ,  , Σp Y   and *(  | ,   , Σ)p Y R . The entire 

Bayesian estimation approach is presented in the Appendix C. 

 

2.4.3 Marginal effects 

Given the estimates of the SAR equation (6), the marginal effect of a variable x  on a given variety 

v  can be calculated as a series of   1V X   k k  matrices, where 1V   is the total number of 

varieties, which is 3 in our case; X  is the total number of variables and k  is the sample size (483). 

The direct effects, representing the effect of a given covariate x  on the probability of farmer i  

adopting this variety, is evaluated as the mean of the diagonal elements of the sociomatrix. The 

total effect is computed as the mean of this entire matrix and then the direct effect subtracted to 

obtain the indirect effect of this covariate. The indirect effects show the spillover effects and 

represent the effect(s) of an individual’s ( i ’s) covariate x  on the probability of i ’s neighbors 

adopting a given variety (see Wang et al., 2014). The difference in the probability of adoption 

among varieties is the change from the original probabilities at the initial value of the covariates 

to the new probabilities, given a standard deviation change in the variables.  
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2.5 Empirical results 

We present the empirical results in this section, where subsection 5.1 shows the aggregate effects 

of adopting neighbors of each improved variety on adoption. In 5.2, we discuss the distribution 

effect of adopting neighbors of each improved variety, whereas in 5.3, we consider network effects 

in terms of the difference in the shares of adopting neighbors of each improved variety. Finally, 

we discuss the effects of other controls and robustness in subsections 5.4 and 5.5, respectively. 

 

2.5.1 Effects of absolute number of adopting neighbors 

The Bayesian estimates of the parameters and diagnostics of the spatial autoregressive multinomial 

probit model for adoption of improved soybean varieties are reported in Tables 2.4 to 2.7.  As 

shown by the Geweke diagnostics in Table 2.4, all the variables have test statistics lower than the 

critical value of 2.71. This suggests that these parameters meet the convergence test criterion and 

the Markov chain of the Gibbs sampler draws attained an equilibrium state. Comparing estimates 

in Table 2.5 with those in columns (1) and (2) of Table 2.A2 in the Appendix, obtained without 

accounting for group fixed effects, show marked differences. The higher deviance information 

criteria (DIC11) and the lower Log-likelihoods for the model without group fixed effects (DIC of 

1,212 and -1,009 in Table 2.A2) suggest the models with group fixed effects are best fit, and thus 

we account for group fixed effects in all specifications. The estimates of the residuals of the 

network formation model are generally not statistically significant in all specifications (see e.g., 

Tables 2.4 and 2.5), suggesting that the results are not driven by endogenous network formation 

or other correlated unobservables between individuals in the same group.   

 

                                                           
11 The DIC is a goodness-of-fit measure proposed by Spiegelhalter et al. (2002) for Bayesian models comparison and 

is given as the sum of the effective number of parameters and the expectation of the deviance. Models with smaller 

DIC are preferred to models with larger DIC. 



53 
 

Table 2.4 SAR MNP estimates based on the absolute number of adopters (influence 

of non-adopting neighbors is not taken into account) 

Variables  Jenguma Afayak 

Estimates SD Estimates SD 

Endogenous effects     

    No. Neighbadopt_Jenguma       0.095 [0.095]*** 0.013    -0.028 [0.028]*** 0.010 

    No. Neighbadopt_Afayak     -0.019 [0.019]** 0.009     0.147 [0.146]*** 

 

0.007 

Own characteristics:    

    Age      3.40E-04 [0.345] 0.001     0.001 [0.399] 0.001 

    Gender     -0.028 [0.001] 0.024     0.023 [0.001] 0.027 

    Education      0.004 [0.028]* 0.002     0.014 [0.023]*** 0.005 

    Experience     -0.011 [0.004]*** 0.004    -0.015 [0.014]*** 0.003 

    Household      0.003 [0.011] 0.005    -0.011 [0.015]** 0.005 

    Landholding      0.066 [0.004]*** 0.006     0.022 [0.011]*** 0.008 

    Credit     -0.190 [0.066]** 0.089     0.017 [0.022] 0.032 

    Risk      0.004 [0.191] 0.008    -0.003 [0.017] 0.008 

    Extension      0.061 [0.004]** 0.024     0.114 [0.003]*** 0.021 

    NGO/Res      0.002 [0.061] 0.067     0.061 [0.114]** 0.033 

    Association     -0.050 [0.002]*** 0.011     0.020 [0.062]** 0.010 

    Electronic      0.013 [0.051] 0.025    -0.028 [0.020] 0.027 

    Soil quality      0.068 [0.014]*** 0.012    -0.010 [0.029]  0.011 

    Price     -0.163 [0.068]** 0.081    -0.103 [0.010] 0.084 

Contextual effects:    

    Age      0.061 [0.167] 0.064     0.088 [0.102]* 0.063 

    Gender      3.40E-04 [0.063] 0.001     0.001 [0.089]** 0.001 

    Education      0.011 [0.001] 0.011     0.002 [0.001] 0.014 

    Experience     -0.002 [0.011] 0.002    -0.006 [0.002]** 0.003 

    Household     -0.002 [0.002] 0.002    -0.001 [0.006] 0.002 

    Landholding      0.001 [0.002] 0.002     0.007 [0.001]** 0.003 

    Credit     -0.013 [0.001]*** 0.003     0.003 [0.008] 0.004 

    Risk      0.066 [0.013]*** 0.017     0.029 [0.003]* 0.017 

    Extension      0.001 [0.067] 0.004     0.001 [0.029] 0.004 

    NGO/Res      0.005 [0.002] 0.009     0.011 [0.001] 0.009 

    Association     -0.049 [0.005]*** 0.014    -0.037 [0.011]** 0.019 

    Electronic     -0.010 [0.049]** 0.005     0.003 [0.037] 0.005 

    Soil quality      0.026 [0.011]* 0.016    -0.019 [0.003] 0.015 

    Price     -0.007 [0.026] 0.006    -0.001 [0.019] 0.005 

Residliquid     -0.069 [0.007]* 0.040    -0.055 [0.001] 0.046 

Residextens      0.044 [0.070] 0.054     0.017 [0.055] 0.017 

ResidNGO      0.003 [0.045] 0.016    -0.009 [0.017] 0.015 

Link formation residual      0.019 [0.003] 0.042    -0.015 [0.009] 0.021 

Constant      0.341 [0.038]** 0.182     0.399 [0.048]*** 0.136 

Network Fes         Yes        Yes  

Notes: Pseudo-R2 = 0.8207; DIC = 2,794.90; Mean Log-likelihood = -2,329.10; n = 483; # of draws = 5000 and burnin = 2000. 

Figures in square brackets are Geweke diagnostics test of convergence and it is a Z-test of the null of equality between means of 

the first 20% and last 50% of the sample draws. The chi-squared statistics are reported and large values of the statistic imply 

rejection of the null of convergence (i.e., equal means). SD denotes standard deviation. In this case, the endogenous and cross 

variety effects indicate the effects of an increase in the number of adopters of each variety on the probability of adoption. The 

asterisks ***, ** and * denote significance at the 1%, 5% and 10% levels, respectively. 
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Tables 2.4 and 2.5 present estimates of endogenous own and cross varietal effects on adoption of 

Jenguma and Afayak, using the absolute numbers of adopting neighbors and the proportion of 

adopting neighbors as measures of endogenous effects, respectively as in equations (2) and (3) in 

the theoretical framework, and equation (6) in the empirical framework. The endogenous own 

varietal effects examine the effects of having Jenguma or Afayak adopting neighbors on adoption 

of Jenguma or Afayak, respectively, while the endogenous cross varietal effects consider the 

effects of having Afayak or Jenguma adopting neighbors on the adoption of Jenguma or Afayak, 

respectively. In terms of absolute numbers in own effects, respondents with adopting neighbors of 

Jenguma or Afayak are 9.5 or 14.7 percentage points more likely to adopt Jenguma or Afayak, 

respectively, compared to farmers with no adopting neighbors of the improved varieties. Also, 

having neighbors adopting cross variety (i.e., Afayak or Jenguma) are 1.9 or 2.8 percentage points 

less likely to adopt Jenguma or Afayak, respectively, compared to farmers without adopting 

neighbors of any of the improved varieties. These effects are all statistically significant at least at 

the 5% level. 

 

Given that farmers could be more concerned with the proportion and not the absolute number of 

adopters in their network, as it gives an indication of the skewness of the neighborhood in terms 

of adoption, we present in Table 2.5 the estimates of these endogenous effects in terms of 

proportion of neighbors adopting a particular variety in the farmer’s neighborhood. The effects are 

similar to the effects in Table 2.4 in terms of direction and significance levels of these effects, but 

differ in the magnitude of the coefficient. In particular, a farmer with higher proportion of his 

neighbors in the network adopting Jenguma or Afayak is 23.1 or 34 percentage points more likely 

to adopt Jenguma or Afayak than those with no adopting neighbors of Jenguma or Afayak, 

respectively.   
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Table 2.5 SAR MNP estimates based on the proportion of adopters in farmer’s 

neighborhood (influence of non-adopting neighbors is taken into account)  

Variables  Jenguma Afayak 

Estimates SD Estimates SD 

Endogenous effects     

    Prop. Neighbadopt_Jenguma    0.231*** 0.024  -0.053*** 0.017 

    Prop. Neighbadopt_Afayak  -0.052*** 0.018   0.340*** 0.016 

Own characteristics:    

    Age   7.6E-5 0.001   0.001 0.001 

    Gender  -0.029 0.022   0.016 0.024 

    Education   0.002 0.002   0.014*** 0.004 

    Experience  -0.011*** 0.004  -0.013*** 0.003 

    Household   0.003 0.004  -0.009** 0.005 

    Landholding   0.057*** 0.006   0.022*** 0.007 

    Credit  -0.142* 0.084   0.013 0.028 

    Risk   0.001 0.008  -0.003 0.007 

    Extension   0.050** 0.022   0.100*** 0.019 

    NGO/Res   0.039 0.063   0.057** 0.031 

    Association  -0.043*** 0.011   0.017** 0.010 

    Electronic   0.015 0.023  -0.019 0.025 

    Soil quality   0.062*** 0.011  -0.011 0.010 

    Price  -0.155** 0.075  -0.083 0.075 

Contextual effects:    

    Age   0.138 0.118   0.118 0.110 

    Gender   0.001 0.001   0.002** 0.001 

    Education   0.017 0.021   0.004 0.027 

    Experience  -0.001 0.003  -0.012** 0.005 

    Household  -0.002 0.003   2.0E-4 0.003 

    Landholding   0.001 0.005   0.013** 0.005 

    Credit  -0.020*** 0.006   0.001 0.007 

    Risk   0.138*** 0.031   0.040* 0.030 

    Extension   0.005 0.008   0.003 0.008 

    NGO/Res   0.014 0.016   0.024* 0.018 

    Association  -0.077*** 0.027  -0.069** 0.032 

    Electronic  -0.018** 0.009   0.012 0.010 

    Soil quality   0.063** 0.026  -0.012 0.026 

    Price  -0.019** 0.011  -0.001 0.010 

Residliquid   0.021 0.051   0.021* 0.016 

Residextens    0.006 0.014  -0.010 0.013 

ResidNGO   0.001 0.039  -0.020 0.018 

Constant   0.356** 0.171   0.319** 0.127 

Link formation residual   0.029 0.052  -0.051 0.059 

Network Fes    Yes     Yes  

Notes: Pseudo-R2 = 0.8390; DIC = 1,171.30; Mean Log-likelihood = -976.07; n = 483; # of draws = 5000 and burnin = 2000. SD 

denotes standard deviation. The estimates were obtained from the standardized social weight matrix. Thus, the endogenous and 

cross variety effects indicate the effects of an increase in the proportion of adopters of each variety on the probability of adoption. 

The Prop. Neighbadopt_Jenguma is the own effect of Jenguma under the Jenguma equation but shows the cross-variety effect of 

Jenguma in the Afayak equation. Likewise, the Prop. Neighbadopt_Afayak, is the own effect of Afayak under the Afayak equation 

but also shows the cross-variety effect of Afayak in the Jenguma equation. The asterisks ***, ** and * denote significance at the 

1%, 5% and 10% levels, respectively. 
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The cross-varietal effects are also negative, suggesting that the likelihood of adopting a given 

variety, say Jenguma, by a farmer declines by 5.2 percentage points when a proportion of his 

neighbors adopts the other variety, i.e., Afayak, in the neighborhood, compared to a farmer without 

adopting neighbors of the improved variety. These findings generally suggest contagion effects, 

where farmers adopt the behavior of their neighbors in the network. The endogenous own and 

cross variety effects taken together imply substitutability between the new varieties. This 

corroborates the argument by Niehaus (2011) that an agent’s marginal valuation of the knowledge 

obtained from different neighbors is evaluated in relative terms if different kinds of knowledge is 

substitutable in the social learning process.  

 

2.5.2 Effects of the relative number of adopting neighbors 

In our theoretical model, the choice of agents between these new varieties depends on meeting a 

lower limit id  and a threshold in terms of adopting neighbors of each variety ˆ
id , as formulated in 

hypothesis (1) and (2). However, the number of adopters that needs to be attained before a 

significant relationship between the share of adopters of one variety versus the other and the 

likelihood of adoption is not quite obvious. To shed some light on this, we consider three ranges 

of adopting neighbors of each variety. The results are presented in Table 2.6, where we report 

estimates of specifications that include quartiles of Jenguma adopting neighbors only in columns 

(1-3), Afayak adopting neighbors only in columns (4-6) and both Jenguma and Afayak adopting 

neighbors in columns (7-9).    

 

When we compare the estimates in columns (1-6) to those in columns (7-9), we see the estimates 

are relatively similar in direction and even in magnitudes in most of the cases. The results show 

that the likelihood of switching from the traditional variety (Salintuya) is higher when a proportion 
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of a farmer’s neighbors adopt any of the new varieties. Specifically, a farmer is more likely to 

switch from Salintuya by at least about 12 or 5 percentage points to Jenguma or Afayak when at 

most a quarter of the neighbors adopts either Jenguma or Afayak, respectively, compared to those 

with no neighbor adopting either of these new varieties (i.e., the reference case), albeit not 

statistically significant for Afayak adopting neighbors (col. 7). Also, the likelihood is even higher 

when the share of adopters of Jenguma (Afayak) consists of the second and third quartiles of 

adopters in the farmer’s neighborhood, with probabilities of switching from Salintuya being at 

least 24.1(7.7) and 34.1(19.9) percentage points more than those with no adopting neighbors of 

these varieties, respectively. This inclination of switching from Salintuya, is expected in cases 

where the traditional variety is relatively inferior, given the growing and environmental 

conditions12.  

 

We now turn to the adoption of Jenguma and Afayak (Table 2.6). The likelihood of adopting 

Jenguma or Afayak when only a quarter of a farmer’s neighbors adopt Jenguma or Afayak, 

respectively, declines with the coefficient of Afayak being statistically significant at 5 percent 

significance level. Thus, having at most a quarter of neighbors adopting Jenguma or Afayak is not 

sufficient to persuade the farmer to adopt that variety, and in fact this significantly reduces the 

likelihood of adopting Afayak by 11 percentage points (cols. 6 and 9). However, in terms of cross 

varietal effects, a farmer with only a quarter of the neighbors adopting Afayak (in cols. 5 and 8) is 

about 10-13 percentage points more likely than those with no adopting neighbors of Afayak to 

adopt Jenguma.  

 

                                                           
12 This is also the case in our study setting because of the high susceptibility of the traditional variety to environmental 

stress, which is quite unfavorable for this variety.  
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Table 2.6 SAR MNP estimates of distribution in proportion of adopter in farmer’s neighborhood 
Prop. of adopting 

neighbors 

(1) 

Salintuya 

(2) 

Jenguma 

(3) 

Afayak 

 (4) 

Salintuya 

(5) 

Jenguma 

(6) 

Afayak 

 (7) 

Salintuya 

(8) 

Jenguma 

(9) 

Afayak 

Estimates Estimates Estimates Estimates Estimates Estimates Estimates Estimates Estimates 

    3rd Quartile_Jenguma -0.341*** 

(0.016) 

 0.314 *** 

(0.059) 

-0.062** 

(0.029) 

     -0.527*** 

(0.056) 

 0.321 *** 

(0.063) 

-0.002 

(0.028) 

    2nd Quartile_Jenguma  -0.241*** 

(0.042) 

 0.153*** 

(0.041) 

-0.045* 

(0.031) 

     -0.290*** 

(0.043) 

 0.144*** 

(0.045) 

 0.012 

(0.032) 

    1st Quartile_Jenguma -0.134*** 

(0.037) 

-0.032 

(0.036) 

0.107** 

(0.039) 

     -0.119*** 

(0.042) 

-0.032 

(0.038) 

 0.139*** 

(0.038) 

    3rd Quartile Afayak     -0.199*** 

(0.043) 

-0.066** 

(0.031) 

 0.533*** 

(0.062) 

 -0.521*** 

(0.056) 

-0.048*  

(0.031) 

 0.536*** 

(0.061) 

    2nd Quartile Afayak     -0.077** 

(0.037) 

-0.037 

(0.031) 

 0.252*** 

(0.044) 

 -0.235*** 

(0.045) 

-0.013 

(0.032) 

 0.231*** 

(0.047) 

    1st Quartile Afayak      0.021 

(0.047) 

 0.100** 

(0.042) 

-0.110** 

(0.043) 

 -0.050 

(0.046) 

 0.126*** 

(0.039) 

-0.114** 

(0.043) 

            

Own characteristics   Yes   Yes   Yes    Yes   Yes   Yes    Yes   Yes   Yes 

Contextual effects   Yes   Yes   Yes    Yes   Yes   Yes    Yes   Yes   Yes 

Network Fes   Yes   Yes   Yes    Yes   Yes   Yes    Yes   Yes   Yes 

Link formation residual   Yes   Yes   Yes    Yes   Yes   Yes    Yes   Yes   Yes 

Constant  0.307*** 

(0.131) 

 0.318** 

(0.157) 

 0.387*** 

(0.118) 

  0.249** 

(0.132) 

 0.442*** 

(0.159) 

 0.218** 

(0.111) 

  0.452*** 

(0.131) 

 0.258*** 

(0.167) 

 0.294*** 

(0.114) 

Pseudo R2  0.8660     0.8363      0.8712   

DIC  1,269.3      999.3     1,125.8   

Mean Log-likelihood -1,057.7     -832.7     -938.2   

Notes: n = 483; # of draws = 5000 and burnin = 2000. SD denotes standard deviation. The estimates in this table were also obtained from the standardized social weight matrix. The 

quartiles denote the distribution of adopting neighbors of each improved variety. Columns (1-3) present estimates of specification where we include only the quartiles of adopting 

neighbors of Jenguma in the model, while columns (4-6) present estimates where we include only the quartiles of adopting neighbors of Afayak. Columns (7-9) report estimates of 

specification that include both quartiles of Jenguma and Afayak adopting neighbors. The 1st, 2nd and 3rd quartiles were defined as having a proportion of adopting neighbors of an 

improved variety falling in 0.0 to 0.25, 0.26 to 0.75 and 0.76 to 1.0, respectively. The estimates show that having adopting neighbors of an improved variety (e.g., Jenguma) in the 

1st quartile reduces the likelihood of adopting the traditional (Salintuya) and that improved variety (i.e., Jenguma), but increases the likelihood of adopting the other improved variety 

(i.e., Afayak). However, having adopting neighbors of Jenguma in the 2nd and 3rd quartiles increases the likelihood of adopting Jenguma but reduces the likelihood of adopting the 

other improved (i.e., Afayak) and the traditional varieties. The values in the parenthesis are standard deviations. The asterisks ***, ** and * denote significance at the 1%, 5% and 

10% levels, respectively.  
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Similarly, a farmer with only a quarter of the neighbors adopting Jenguma (in cols. 3 and 9) is 

about 11-14 percentage points more likely than those with no adopting neighbors of Jenguma 

to adopt Afayak. These effects are statistically significant, but the difference in their magnitudes 

across varieties is not significantly different from zero (p>0.3). We also observe that the 

probability of adopting a variety increases as the share of adopting neighbors increases and 

enters the 2nd and 3rd quartiles. Still in Table 2.6, a farmer is about 15 and 31 percentage points 

more likely to adopt Jenguma, when the proportion of his neighbors adopting Jenguma is 

within the 2nd and 3rd quartiles, respectively, compared to a farmer without Jenguma adopting 

neighbor (cols. 2 and 8).   

 

For Afayak, a farmer with 2nd or 3rd quartile of Afayak adopting neighbors is at least 23 and 53 

percentage points more likely than a farmer without Afayak adopting neighbors, to adopt 

Afayak (cols. 6 and 9). These effects are statistically significantly different from zero (p<0.01). 

Also, the effects of the 3rd quartile are significantly higher than the 2nd quartile effects for each 

of the two varieties (p<0.01).  Finally, we also find that the cross-variety effects lose their 

significance or become negative as more neighbors adopt a particular improved variety. For 

instance, in the case of Jenguma or Afayak, the cross-variety effects are generally negative for 

the 2nd and 3rd quartiles of adopting neighbors of Afayak or Jenguma, respectively, (cols. 8 and 

9).   

 

These estimates suggest self-reinforcement in the adoption process, as shown in the theoretical 

model and in Figures 2.1A and 2.1B, where a farmer is less likely to adopt a given variety when 

the proportion of adopting neighbors of that variety is low (i.e., less than an absolute threshold) 

and more likely, as the proportion of adopting neighbors increases (see also Kornish 2006). 

The figures further reveal that for a low share of adopting neighbors, the mapping of the share 

of adopters into probability is below the identity function, but above the threshold, the 
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probability lies above the identity function. The observation in the first quartile of the share of 

adopters in a farmer’s neighborhood is consistent with our first hypothesis of the need to exceed 

an absolute threshold and to meet the relative threshold in terms of adoption shares of the 

improved varieties. This is clearly seen in Figures 2.1A and 2.1B, where this relative threshold 

is marked by the points of intersection between the dashed line and the 45-degree line, and thus 

confirming our second hypothesis formulated previously. 

 

Finally, this also confirms the third hypothesis that adoption behavior in respect of the two 

improved varieties, converges towards the variety that leads in meeting the lower limit and 

persists in its lead, if the proportion of adopting neighbors of this variety translates to a higher 

adoption probability than the proportion of the adopting neighbors of the competing variety13.  

Such skewed conditions could lead to a “lock-in” on the lead variety in the neighborhood and 

in the network. This result is consistent with the argument of Arthur (1989) that customers’ 

choice of technologies among competing technologies, in a market, will lock-in on the 

technology that by chance and historical events leads in terms of adoption by neighbors, and 

that this could continue to the extent that reversal of such pattern of adoption will be impossible 

even with policy intervention. 

    

2.5.3 Relative share of adopting neighbors of varieties 

Our theoretical model suggests that the expected net benefits (reduction in costs and increase 

in potential gains) from adopting the improved variety with more adopting neighbors will be 

higher than the improved variety with lower adopting neighbors, because of the reduced risk 

and uncertainty that comes with higher rates of adoption among neighbors. In this section, we 

estimate the effects of the difference in the share of neighbors adopting Jenguma and Afayak 

                                                           
13 Our interpretation of the convergence process need to be taken with caution as this is a snap shot of adoption 

behavior in these social networks (villages) and not overtime. This is a potential area of future empirical research 

to examine dynamics and the equilibria state of adoption in these networks overtime.  
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on the likelihood of adopting these two varieties, and present the results in Table 2.7. This 

analysis is also significant because it allows us to show the likelihood of adoption when a 

farmer has equal proportion of adopting neighbors of each improved variety in the 

neighborhood.   

 

Table 2.7 SAR MNP estimates of differences in proportion of adopters of 

improved varieties in farmer’s neighborhood 
Difference in adopting 

Neighbors  

(1) 

Salintuya 

(2) 

Jenguma 

(3) 

Afayak 

 (4) 

Salintuya 

(5) 

Jenguma 

(6) 

Afayak 

Estimates Estimates Estimates Estimates Estimates Estimates 

  Very High Jenguma  -0.275*** 

(0.035) 

0.271 *** 

(0.043) 

-0.058** 

(0.025) 

 -0.258*** 

(0.038) 

0.265*** 

(0.046) 

-0.061** 

(0.027) 

  Moderately High Jenguma  -0.005 

(0.036) 

0.047* 

(0.033) 

-0.057** 

(0.032) 

 -0.006 

(0.035) 

0.048* 

(0.033) 

-0.058** 

(0.031) 

  Very High Afayak -0.293*** 

(0.039) 

-0.055** 

(0.028) 

0.451*** 

(0.044) 

 -0.278*** 

(0.040) 

-0.056** 

(0.029) 

0.450*** 

(0.047) 

  Moderately High Afayak  -0.085** 

(0.041) 

-0.021 

(0.035) 

0.142*** 

(0.039) 

 -0.085** 

(0.040) 

-0.015** 

(0.035) 

0.141*** 

(0.039) 

  Equal  0.063 

(0.064) 

-0.019 

(0.056) 

-0.041 

(0.057) 

  

 

  

  Both > 0.25      0.047 

(0.044) 

-0.024 

(0.039) 

-0.003 

(0.041) 

  Both < 0.25      0.057 

(0.050) 

 0.023 

(0.045) 

-0.042 

(0.047) 

        

Own characteristics   Yes   Yes   Yes    Yes   Yes   Yes 

Contextual effects   Yes   Yes   Yes    Yes   Yes   Yes 

Network Fes   Yes   Yes   Yes    Yes   Yes   Yes 

Link formation residual   Yes   Yes   Yes    Yes   Yes   Yes 

Constant  0.412*** 

(0.128) 

 0247* 

(0.160) 

0.188** 

(0.111) 

  0.391*** 

(0.128) 

 0.239* 

(0.164) 

 0.191* 

(0.109) 

Pseudo R2  0.8647     0.8648   

DIC  1,048.1     1,035.0   

Mean Log-likelihood -873.45    -862.47   

Notes: n = 483; # of draws = 5000 and burnin = 2000. SD denotes standard deviation. The estimates in this table were also 

obtained from the standardized social weight matrix. The very high Jenguma or Afayak denotes when the difference 

between the proportions of Jenguma and Afayak adopters is greater than 0.5 for Jenguma or Afayak, respectively. Also, 

the moderately high Jenguma or Afayak denotes when the difference between the proportions of Jenguma and Afayak 

adopting neighbors is greater than 0 but less than or equal to 0.5 for Jenguma or Afayak, respectively. Equal means the 

proportion of adopting neighbors of Jenguma and Afayak are equal. Both > 0.25 and both < 0.25 denote both the proportion 

of Jenguma and Afayak adopting neighbors are greater and less than 0.25, respectively. The base category is those without 

any adopting neighbors of the improved varieties and consist of 18.6% of the sample. The values in the parenthesis are 

standard deviations. The asterisks ***, ** and * denote significance at the 1%, 5% and 10% levels, respectively. 

 

We find that the likelihood of adopting improved variety 1 (Jenguma) is higher when the 

difference in the share of adopting neighbors between the two improved varieties, 1 and 2 

(Afayak), is higher for variety 1 than variety 2. This becomes negative for variety 1 when the 
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difference in the share of adopting neighbors is lower for variety 1 than variety 2. Specifically, 

relative to farmers with no adopting neighbors of any of the improved varieties, a farmer’s 

adoption of Jenguma is 5 percentage points more likely, if the share of neighbors adopting 

Jenguma is moderately higher (i.e., 0< difference   0.5) than the share of neighbors adopting 

the other (i.e., Afayak), in the neighborhood (cols. 2 and 5).  

 

Similarly, a farmer’s adoption of Afayak is 14 percentage points more likely, if the share of 

neighbors adopting Afayak is moderately higher than the share of neighbors adopting Jenguma, 

compared to a farmer without adopting neighbors of the improved varieties in the neighborhood 

(cols. 3 and 6). The difference in magnitudes of the coefficients across varieties are statistically 

(weakly) different from zero (p=0.07). We observe similar pattern, and even stronger effects 

in adoption, when the difference in the share of adopters of each variety is very high (i.e., 

difference > 0.5). In particular, a farmer with a very high relative share of neighbors adopting 

Jenguma (Afayak) is 27 (45) percentage points more likely to adopt Jenguma (Afayak) than 

farmers with no adopting neighbors of these new varieties. The effect of Afayak is significantly 

higher than that of Jenguma (p=0.005). 

 

Table 2.7 also shows that, adoption of either of the two improved variety is less likely when 

the share of adopting neighbors of these varieties are equal, although the effects are not 

statistically significant (cols. 1-3). In order to shed more light on what happens when the share 

of adopters of the improved varieties in a farmer’s neighborhood are equal, we examined the 

effects of having both shares of adopting neighbors of the improved varieties being higher than 

0.25 and the effects of having both shares being lower than 0.25. Interestingly, the results (cols. 

4-6) further show a farmer is less likely to adopt any of the improved varieties (and Jenguma), 

if both the shares of adopting neighbors of the improved varieties are higher than 0.25 (lower 
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than 0.25), relative to a farmer without adopting neighbors of the improved varieties, albeit not 

statistically significant in all cases.  

 

Conversely, a farmer is more likely to continue planting the traditional variety (Salintuya) if 

the share of adopters of both improved varieties are higher or lower than 0.25, relative to a 

farmer with no adopting neighbors of any of the improved varieties, although the effects are 

also not statistically significant. These further confirm our hypothesis 3 that farmers are not 

more likely to adopt any of the improved varieties compared to farmers without adopting 

neighbors, if the share of adopters of these improved varieties are equal. However, the 

likelihood of using the traditional variety (Salintya) declines when the difference in share of 

adopting neighbors between the improved varieties becomes higher in favor of any of the 

improved varieties. We also see that the magnitudes of the effects of Afayak adopting neighbors 

is mostly higher than the effects of Jenguma adopting neighbors, although these differences 

are not statistically different (p > 0.1) in all cases.  

 

2.5.4 Effects of other controls 

Following the above discussion on differential impact of social network effects and in the 

interest of brevity, we discuss the effects of covariates by focusing on the comparison of the 

significant variables across the two varieties. Table 2.8 documents the marginal effects of these 

controls for all the three varieties. For each variety, the table presents the direct and indirect 

(spillover) effects of each variable. We find that a standard deviation (SD) increase in education 

covariate of all soybean adopters is estimated to increase Jenguma and Afayak adoption 

probabilities by 0.2 and 1.7 percentage points, while decreasing the probability of using 

Salintuya by 1.2 percentage points. The spillover effects of education of a farmer is estimated 

to increase the probabilities of his neighbors adopting Jenguma and Afayak by 0.1 and 0.4 

percentage points, respectively. The effect of education is higher on the adoption of Afayak 
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compared to Jenguma, and generally emphasizes the importance of human capital in learning 

about new technologies (Foster and Rosenzweig, 2010). 

 

Table 2.8 SAR MNP Marginal effects  

Variables Salintuya Jenguma Afayak 

Direct Indirect Direct Indirect Direct Indirect 

Own characteristics: 

    Age -0.001 -1.60E-04  8.1E-05  1.70E-05  0.001  1.8E-04 

    Gender -0.029 -0.006 -0.031 -0.006  0.019  0.004 

    Education -0.012 -0.003  0.002  0.001  0.017  0.004 

    Experience  0.032  0.007 -0.012 -0.003 -0.017 -0.004 

    Household   0.005  0.001  0.003  0.001 -0.011 -0.002 

    Landholding -0.019 -0.004  0.061  0.013  0.027  0.006 

    Credit  0.024  0.005 -0.152 -0.032  0.017  0.004 

    Risk -0.003 -0.001  0.001  2.60E-04 -0.004 -0.001 

    Extension -0.085 -0.019  0.054  0.011  0.123  0.029 

    NGO/Res -0.090 -0.020  0.041  0.009  0.070  0.016 

    Association  0.049  0.011 -0.046 -0.009  0.021  0.005 

    Electronic -0.017 -0.004  0.017  0.003 -0.024 -0.005 

    Soil quality -0.067 -0.015  0.067  0.014 -0.014 -0.003 

    Price  0.280  0.063 -0.166 -0.035 -0.102 -0.024 

Contextual effects       

    Age -0.658 -0.149  0.147  0.031  0.144  0.034 

    Gender  0.001  1.60E-04  4.70E-04  1.00E-04  0.003  0.001 

    Education -0.035 -0.007  0.018  0.003  0.005  0.001 

    Experience  0.011  0.003 -0.002 -4.40E-04 -0.015 -0.004 

    Household  0.008  0.002 -0.003 -0.001  2.40E-04  5.90E-05 

    Landholding -0.010 -0.002  0.002  4.40E-04  0.016  0.004 

    Credit  0.021  0.004 -0.022 -0.005  0.001  1.20E-04 

    Risk -0.168 -0.038  0.148  0.031  0.049  0.011 

    Extension -0.002 -0.001  0.006  0.001  0.004  0.001 

    NGO/Res -0.071 -0.016  0.015  0.003  0.030  0.007 

    Association  0.072  0.016 -0.083 -0.017 -0.084 -0.020 

    Electronic  0.027  0.006 -0.019 -0.004  0.015  0.003 

    Soil quality  0.053  0.012  0.067  0.014 -0.015 -0.003 

    Price  0.001 3.90E-04 -0.021 -0.004 -0.002 -3.90E-04 

Notes: Values in bold denote variables that are significant. These are the marginal effects of the other covariates and 

the direct effects of own characteristics indicate the effect of the farmer’s characteristics on his adoption decision 

whereas indirect effects show the effects of the farmer’s characteristics on the neighbors. Likewise, the direct 

contextual effects show the effects of the neighbors on the farmer’s adoption decision and the indirect contextual 

effects are the effects of the neighbors’ covariates on their own adoption decisions.    

 

 

The results further show that the magnitudes of own effects of extension, NGO and research 

agents, and association are significantly different from zero across these varieties and are 

generally in favor of Afayak adoption. Specifically, a SD increase in extension contact increases 
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the direct [spillover] effects of adopting Jenguma and Afayak by a likelihood of 5.4[1.1] and 

12.3[2.9] percentage points, respectively, and decreases the use of Salintuya by 8.5[1.9] 

percentage points. These results are qualitatively similar to the effects of NGO/Research agents 

on adopting Afayak and could be due to the recent field demonstrations and farmer field-days 

carried out by the Ministry of Food and Agriculture, Council for Scientific and Industrial 

Research, and Savannah Agricultural Research Institute. 

 

These results suggest that exposure to external and other sources of information (see also 

Beaman et al. 2020), and also to public learning are very important in the adoption of new 

technologies, particularly in cases where there is the need to induce adoption beyond a 

threshold required to trigger adoption in the neighborhood. In addition, access to credit and 

soybean seed price appear to significantly reduce the likelihood of adopting Jenguma. For 

instance, a credit constrained farmer is significantly less likely to adopt Jenguma by 15.2[3.2] 

percentage points. At the same time, a cedi increase in soybean seed price reduces a farmer’s 

likelihood of adopting Jenguma by 16.6[3.5] percentage points, but does not significantly affect 

Afayak adoption. Similar effects are observed in the contextual effects where a farmer’s 

probability of adopting Jenguma decreases with increased proportion of credit constrained 

neighbors or in average soybean seed price reported by neighbors.  

 

These suggest that whereas credit constrained and cost of production play important roles in 

affecting adoption of Jenguma these are not significant in the case of influencing the adoption 

of Afayak. This can possibly be due to differences in locational advantages between Afayak and 

Jenguma adopters since Afayak adopters are relatively closer to the district capitals, where most 

financial and credit institutions are located, and also obtain higher selling price from soybean 

sales (Table 2.A1). The other variables of significant difference in the magnitudes of adoption 



66 
 

are landholding and soil quality, where the effects on Jenguma adoption are higher than that 

on Afayak.  

 

5.5.5 Robustness  

Given the importance of contextual effects and correlated fixed effects in confounding the 

network effects and the fact that we captured the cross-variety effects in the mean and not in 

the variance-covariance of the equations, we perform robustness to ascertain the sensitivity of 

our estimates to different specifications of our empirical model. We first check to see whether 

it is important to account for contextual effects in order to obtain best model fit and estimates, 

and columns (3-4) in Table 2.A2 in the appendix present estimates of our model without these 

effects. The DIC and the loglikelihood are 1,224 and -1,020. These values are, respectively, 

higher and lower than the DIC and loglikelihhood values obtained for the model which account 

for contextual effects in Table 2.5. We next present estimates where we control for proxies of 

farmer access to markets. This is to assess whether differential market conditions and 

constraints (as shown in panel A of Table 2.A1) faced by farmers could be driving the 

differences in adoption of the improved varieties, which may then confound the observed peer 

adoption effects. The results of this specification are reported in columns (5-6) in Table 2.A2. 

Interestingly, none of these are statistically significant and the peer adoption effects are much 

closer to those observed in Table 2.5. 

 

We further present estimates in columns (7-8) of Table 2.A2, where the cross-varietal effects 

are captured by the variance-covariance structure, instead of the mean part of the model 

(LeSage and Pace 2009). The cross-variety correlations are also negative and statistically 

significant, suggesting that the likelihood of adopting Jenguma (Afayak) is negatively 

correlated with the share of adopting neighbors of Afayak (Jenguma). However, these 

correlations are difficult to interpret because of the identification restriction imposed on the 
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first element of the variance-covariance matrix (Chakir and Parent 2009). The diagnostics (i.e., 

higher DIC of 2,868 and lower log-likelihood of -2,390) also tend to favor the specification 

that captures the cross-varietal effects in the mean part of the equations as in Tables 2.4 to 2.7. 

In addition, all the endogenous estimates have similar patterns as in Tables 2.4 and 2.5 

suggesting that our results are robust to these alternative specifications.   

 

Finally, we present estimates of alternative specification of the network weight matrix in 

columns (9-10) in Table 2.A2 as additional robustness check. This is meant to check whether 

the random matching within sample of the 5 households to each farm household, which 

truncates the number of links, could severely impact the estimates. As such, farmers who knew 

all 5 matched farmers, and/or were neighbors to all 5, who were randomly matched to them 

were dropped in this estimation. The estimates still show evidence of social network effects, 

and without substantial qualitative differences in most of the estimated endogenous effects 

compared with Table 2.5, albeit with attenuation bias in the magnitudes. This suggests that the 

social network effects are quite robust to the altered sociomatrix. This is not surprising, because 

the truncation at 5 matches is not binding in our sample, since only 4.5% of farmers in the 

sample mentioned they knew and/or were neighbors to all randomly matched 5 households (see 

also Liu et al. 2017).  

 

2.6 Conclusions 

We examine the impacts of social networks on the adoption of two improved soybean varieties 

in northern Ghana, using observational data, and find that a farmer’s adoption decision of a 

given improved variety depends on the status of neighbor’s adoption of all varieties in the 

social network. In aggregate terms, a farmer’s adoption decision of a given improved variety 

is positively influenced by the decisions of adopting neighbors of the same variety, but 

negatively by the adopting neighbors of the competing variety. However, the interesting 
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aspects of our findings are: For a given new variety, say Jenguma, the effect of the neighbors’ 

adoption of that variety (i.e., Jenguma) is negative and only becomes positive after at least a 

quarter of the neighbors have adopted this variety. When this limit is passed, the effects of 

cross varietal adoption by neighbors loses its importance, irrespective of the level of adopting 

neighbors of the cross variety in the network. This is suggestive of the existence of thresholds 

for each, even in the adoption of multiple and competing improved technologies, such that 

when a particular variety leads in meeting the threshold in terms of adopting neighbors, there 

is a higher chance that the variety will dominate in the neighborhood or network (i.e., village).  

 

The second aspect is that, when the relative proportion of adopting neighbors of each of the 

new varieties are equal, the farmer is not more likely to adopt either of the improved variety 

compared to farmers without adopting neighbors of the improved varieties. This could be due 

to the fact that, at this stage, farmers are most likely not certain about the expected benefits of 

these new varieties and will therefore less likely to switch. This observation is significant 

because it gives an insight into why traditional varieties still dominate in some villages, as well 

as the persistent use of these traditional varieties, as shown in the literature (CGIAR 2009), 

even though the new varieties are significantly superior in terms of yields and resistance to 

agro-climatic stress. These findings also suggest the importance of social effects, even under 

conditions of multiple and competing improved technology setting. This is further reinforced 

by the effects of education, contact with extension and NGO/Research agents, as well as 

associations, which normally facilitate individual and public learning in adoption of new 

technologies. 

 

Our findings have some implications for policy. First, the result can help explain the differential 

adoption rates of competing technologies and why some technologies become dominant in a 

particular village, while others end up as subordinate or cease to exist in some circumstances. 
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The findings also suggest the need to do a stepwise introduction of improved varieties before 

a full-scale promotion in the villages. This will require first exposing some farmers in the 

network to the improved varieties, observing the extent of adoption and then following-up with 

a wide-scale introduction and promotion of the variety that leads in adoption in the network. 

This will reduce cost associated with the multiple introduction and promotion of competing 

technologies, where only one or some will gain acceptance by farmers, despite promotion 

efforts and expenditure. Moreover, there is the need for policymakers to focus promotion 

efforts on demonstrating the relative benefits of improved varieties introduced to farmers, since 

this would be a motivation for farmers to adopt. Finally, the findings suggest that interventions 

to promote soybean farming should also consider measures that improve access to financial 

resources and enhance the human capital of farmers to reduce challenges of adoption.   

  



70 
 

References 

Acemoglu, D., Ozdaglar, A. and Yildiz, E. (2011). “Diffusion of innovations in Social 

Networks.” IEEE Conference on Decision and Control (CDC). 

Arthur, W.B. (1989). “Competing technologies, increasing returns, and lock-in by historical 

events.” Economic Journal, 99(394): 11-131.  

Autant-Bernard, C., LeSage, J. P. and Parent, O. (2008). “Firm Innovation Strategies: a spatial 

cohort multinomial probit approach.” Annals of Economics and Statistics GENES, 87-

88: 63-80. 

Bandiera, O. and Rasul, I. (2006). “Social networks and technology adoption in northern 

Mozambique.” The Economic Journal 116(514): 869-902.  

Banerjee, A., Chandrasekhar, A.G., Duflo, E. and Jackson, M.O. (2013). “The Diffusion of 

Microfinance.” Science 341 1236498. 

Beaman, L., BenYishay, A., Magruder, J. and Mobarak, A.M. (2020). “Can Network Theory-

based Targeting Increase Technology Adoption?” Yale University Economic Growth 

Center Discussion Paper No. 1062 

Beaman, L. and Dillon, A. (2018). “Diffusion of agricultural information within social 

networks: Evidence on gender inequalities from Mali.” Journal of Development 

Economics, 133(26):147-61. 

BenYishay, A. and Mobarak, A.M. (2018). “Social Learning and Incentives for 

Experimentation and Communication.” Review of Economic Studies, 0: 1-34. 

Blume, L.E., Brock, W.A., Durlauf, S.N. and Ioannide, Y.M. (2010). “Identification of Social 

Interactions.” In Handbook of Social Economics SET: 1A, 1B Volume 1, ed. Jess 

Benhabib, A. Bisin, and M.O. Jackson, 859-964: Elsevier, North-Holland. 

Bramoullé, Y., Djebbari, H. and Fortin, B. (2009). Identification of peer effects through social 

networks.” Journal of Econometrics 150(1): 41 – 55. 

Calvo-Armengol, A., Patacchini, E. and Zenou, Y. (2009). “Peer Effects and Social Networks 

in Education.” Review of Economic Studies 76(1):1239-1267. 

Chakir, R. and Parent, O. (2009). “Determinants of land use changes: A spatial multinomial 

probit approach.” Papers in Regional Science 88(2):327-44.  

Consultative Group on International Agricultural Research (CGIAR). (2009). “Ghana Soybean 

Adoption. A consolidated database of crop varietal releases, adoption and research 

capacity in Africa south of the Sahara”. Available at: 

www.asti.cgiar.org/diiva/ghana/soybeans. 

http://www.asti.cgiar.org/diiva/ghana/soybeans


71 
 

Conley, T.G. and Udry, C.R. (2010). “Learning about a new technology: Pineapple in Ghana.” 

American Economic Review 100(1): 35–69. 

Council for Scientific and Industrial Research and Savanna Agricultural Research Institute 

(CSIR-SARI). (2013). “Effective farming systems research approach for accessing and 

developing technologies for farmers”. Annual Report, SARI: CSIR-INSTI.  

Croppenstedt, A., Demeke, M. and Meschi, M.M. (2003). “Technology Adoption in the 

Presence of Constraints: the Case of Fertilizer Demand in Ethiopia.” Review of 

Development Economics 7(1): 58-70. 

Dorfman, J.F. (1996). “Modeling Multiple Adoption Decisions in a Joint Framework.” 

American Journal of Agricultural Economics, 78(3): 547-557. 

Fafchamps, M., and F. Gubert. 2007. “The formation of risk sharing networks.” Journal of 

Development Economics 83(2) 326–350. 

Fleming, M.M. (2004). “Testing for Estimating Spatially Dependent Discrete Choice Models.” 

In Advances in Spatial Econometrics, ed. Luc Anselin, Raymond J. G. M. Florex and 

Sergio J. Rey, 145-168 Springer, Berlin, Heidelberg    

Foster, A.D. and Rosenzweig, M.R. (2010). “Microeconomics of Technology Adoption.” 

Annual Review of Economics 2:395-424. 

Gage, D., Bangnikon, J., Abeka-Afari, H., Hanif, C., Addaquay, J. and Victor, A., and Hale, 

A. (2012). ‘The Market for Maize, Rice, Soy and Warehousing in Northern Ghana’. 

Publication produced by USAID’s Enabling Agricultural Trade (EAT) Project, 

implemented by Fintrac Inc. 

Geweke, J. (1991). “Efficient simulation from the multivariate normal and Student-t 

distribution subject to linear constraints and the evaluation of constraint probabilities.” 

In Proceedings of 23rd Symposium on the Interface between Computing Science and 

Statistics, ed. E. Kermanidas, 571-78. 

Goldsmith, P. (2017). “The Faustian Bargain in Tropical Soybean Production.” Commercial 

Agriculture in Tropical Environments: Special Issue, 10(1-4). 

Granovetter, M. (1978). “Threshold models of collective behavior.” The American Journal of 

Sociology, 83(6):1420-1443. 

Holloway, G., Shankar, B. and Rahman, S. (2002). “Bayesian spatial probit estimation: A 

primer and an application to HYV rice adoption.” Agricultural Economics 27(3): 383-

402.  

Katz, M.L. and Shapiro, C. (1986). “Technology Adoption in the Presence of Network 

Externalities.” Journal of Political Economy, 94(4): 822-841. 



72 
 

Kelejian, H.H. and Prucha, I.R. (1999). “A Generalized Moments Estimator for the 

Autoregressive Parameter in a Spatial Model.” International Economic Review 40(2): 

509-533. 

Kornish, L.J. (2006). “Technology choice and timing with positive network effects.” European 

Journal of Operational Research, 173(1): 268-282. 

Lee, L. F. (2007). “Identification and estimation of econometric models with group 

interactions, contextual factors and fixed effects.” Journal of Econometrics 140(2): 

333-74. 

Lee, L. F., Liu, X. and Lin, X. (2010). “Specification and estimation of social interaction 

models with network structures.” The Econometrics Journal 13(2): 145-76. 

LeSage, J. and Pace, R. (2009). Introduction to Spatial Econometrics. Boca Raton, FL: CRC 

Press. 

Lin, X. (2010). “Identifying Peer Effects in Student Academic Achievement by Spatial 

Autoregressive Model with Group Unobservables.” Journal of Labor Economics 28(4): 

825-60. 

Liu, X., Patacchini, E. and Rainone, E. (2017). “Peer effects in bedtime decisions among 

adolescents: a social network model with sampled data.” The Econometrics Journal 

20(3): 103-125.  

Manski, C.F. (1993). “Identification of endogenous social effects: The reflection problem.” 

Review of Economic Studies 60(3): 531–542. 

Millennium Development Authority (MiDA) (2010). “Investment opportunity in Ghana: 

maize, rice, and soybean”. Accra: MiDA. 

Ministry of Food and Agriculture (MoFA) (2010). “Medium Term Agriculture Sector 

Investment Plan (Metasip) 2011 – 2015.” Ministry of Food and Agriculture. Accra, 

Ghana. 

Moffitt, R. (2001). “Policy Interventions, Low-Level Equilibria, and Social Interactions.” In 

Social Dynamics, ed. S. Durlauf and H.P. Young, 45-82. Cambridge: MIT Press. 

Morris, S. (2000). “Contagion.” Review of Economic Studies 67(1): 57-78. 

Muange, E. N. (2014). “Social Networks, Technology Adoption and Technical Efficiency in 

Smallholder Agriculture: The Case of Cereal Growers in Central Tanzania.” 

Unpublished PhD. Dissertation in the International Ph. D. Program for Agricultural 

Sciences Goettingen (IPAG), Georg-August-University Göttingen, Germany. 

Munshi, K. (2004). “Social learning in a heterogeneous population: technology diffusion in the 

Indian Green Revolution.” Journal of Development Economics 73(1): 185-213. 

http://econpapers.repec.org/article/eeedeveco/


73 
 

Niehaus, P. (2011). “Filtered Social Learning.” Journal of Political Economy, 119(4): 686-720.  

Plahar, W. A., (2006). Overview of the Soya Bean Industry in Ghana.  

www.wishh.org/workshops/intl/ghana/ghana06/plahar-06.pdf. 

Soybean Innovation Lab (SIL). (2015). “Soybean Innovation Lab Newsletter.” Tropical 

Soybean Information Portal (TSIP). www.tropicalsoybean.com.  

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van der Linde, A. (2002). "Bayesian 

Measures of Model Complexity and Fit (with Discussion)." Journal of the Royal 

Statistical Society, 64(4):583-616. 

Walker, T., Alene, A., Ndjeunga, J., Labarta, R., Yigezu, Y., Diagne, A., Andrade, R., Muthoni 

Andriatsitohaina, R., De Groote, H., Mausch, K., Yirga, C., Simtowe, F., Katungi, E., 

Jogo, W., Jaleta, M. and Pandey, S. (2014). “Measuring the effectiveness of crop 

improvement research in Sub-Saharan Africa from the perspectives of varietal output, 

adoption, and change: 20 crops, 30 countries, and 1150 cultivars in farmers’ fields.” 

Report of the Standing Panel on Impact Assessment (SPIA), Rome, Italy, CGIAR 

Independent Science and Partnership Council (ISPC) Secretariat. Rome, Italy. 

Wang, Y., Kochelman, K.M. and Damien, P. (2014). “A spatial autoregressive multinomial 

probit model for anticipating land-use changes in Austin, Texas”. Annals of Regional 

Science 52(1): 251-78. 

Wooldridge J. M. (2015). “Control Function Methods in Applied Econometrics.” The Journal 

of Human Resources 50(2): 420-445. 

Zeller, M., Diagna, A. and Mataya, C. (1998). “Market Access by Smallholder farmers in 

Malawi: Implications for technology adoption, agricultural Productivity, and crop 

income.” Agricultural Economics 19(2): 219-229. 

  

http://www.wishh.org/workshops/intl/ghana/ghana06/plahar-06.pdf
http://www.tropicalsoybean.com/


74 
 

Appendix 

Appendix A 

 

  

Fig. 2.A1 Network with minimum transitivity of 

0.182 

Fig. 2.A2 Network with the mean transitivity of 

0.470 

  

Fig. 2.A3 Network with the 75th transitivity of 0.534 Fig. 2.A4 Network with the highest transitivity of 

0.603 

Figure 2.A Networks by distribution of transitivity 
 

Notes: Figures 2.A1 - 2.A2 show representations of graphs by the distribution of the transitivity values in the sample 

networks. Fig. 2.A1 shows the network with the lowest transitivity value, Fig. 2.A2 shows a network with the average 

transitivity of all the networks while Figs. 2.A3 – 2.A4 present the networks with the 75th percentile and with the highest 

transitivity, respectively.  
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Table 2.A1 Mean differences in market access and production cost of adopters of 

respective varieties 
 Salintuya Jenguma Mean 

difference 

 Afayak Mean 

difference 

 Mean 

difference 

 (1) (2) (3) = (2-1) (4) (5) = (4-1) (6) = (4-2) 

Panel A: Marketing       

Sold in market in the 

village (0,1) 

 36.5 

 (3.8) 

 33.7 

 (3.3) 

 -2.8 

 (5.1) 

  29.6 

 (4.1) 

 -6.9 

 (5.7) 

  -4.1 

 (5.3) 

Sold in market outside 

village (0,1) 

 53.2 

 (4.0) 

 62.4 

 (3.4) 

  9.2* 

 (5.2) 

  65.6 

 (4.3) 

 12.4** 

 (5.9) 

  -3.2 

 (5.4) 

Sold to market traders 

(0,1) 

 80.1 

 (3.2) 

 79.7 

 (2.8) 

 -0.4 

 (4.3) 

  81.6 

 (3.4) 

  1.5 

 (4.7) 

  1.9 

 (4.5) 

Sold to buying 

organization (0,1) 

 12.8 

 (2.6) 

 15.8 

 (2.5) 

  3.0 

 (3.7) 

  14.4 

 (3.2) 

  1.6 

 (4.1) 

  -1.4 

 (4.1) 

Selling price in GHS/kg  1.27 

(0.03) 

 1.25 

(0.02) 

-0.02 

(0.04) 

  1.37 

(0.04) 

 0.10** 

(0.05) 

  0.12** 

(0.04) 

Distance to district centre 

in kilometres 

 18.4 

 (1.1) 

 15.1 

 (0.8) 

 -3.3** 

 (1.4) 

  12.9 

 (0.7) 

 -5.4*** 

 (1.4) 

  -2.2* 

 (1.2) 

         

Panel B: Seed price and other production cost       

Price in GHS/kg  1.06 

(0.01) 

 1.07 

(0.01) 

 0.01 

(0.02) 

  1.04 

(0.01) 

-0.02 

(0.02) 

 -0.03 

(0.02) 

Farm size in acres  1.82 

(0.08) 

 2.01 

(0.08) 

 0.19 

(0.12) 

  1.85 

(0.08) 

 0.03 

(0.11) 

 -0.16 

(0.12) 

Expenditure on seeds in 

GHS per acre 

 7.11 

(0.43) 

 6.57 

(0.33) 

-0.54 

(0.53) 

  6.95 

(0.48) 

-0.15 

(0.64) 

  0.39 

(0.56) 

Exp. on fertilizer in GHS 

per acre 

 0.99 

(0.65) 

 3.85 

(1.13) 

 2.86** 

(1.40) 

  2.18 

(0.82) 

 1.19 

(1.03) 

 -1.68 

(1.57) 

Exp. on pesticide in GHS 

per acre 

 0.90 

(0.29) 

 1.48 

(0.38) 

 0.58 

(0.51) 

  1.33 

(0.33) 

 0.42 

(0.45) 

 -0.16 

(0.55) 

Exp. on weedicides in 

GHS per acre 

 15.0 

 (0.7) 

 22.5 

 (2.1) 

  7.5*** 

 (2.5) 

  23.7 

 (3.4) 

  8.7** 

 (3.2) 

   1.2 

 (3.8) 

Labor use in man-days 

per acre 

 14.5 

 (0.8) 

 15.0 

 (0.8) 

  0.6 

 (1.1) 

  15.4 

 (0.9) 

  0.9 

 (1.2) 

   0.4 

 (1.2) 

Soil quality  2.73 

(0.08) 

 3.47 

(0.04) 

  0.74*** 

 (0.09) 

  2.87 

(0.09) 

 0.14 

(0.12) 

 -0.60*** 

(0.09) 

Credit constraint (0,1) 0.69 

(0.04) 

0.42 

(0.03) 

 -0.27*** 

 (0.05) 

 0.68 

(0.04) 

-0.01 

(0.06) 

  0.26*** 

(0.06) 

Extension  0.21 

(0.03) 

 0.37 

(0.03) 

  0.14*** 

 (0.04) 

  0.24 

(0.04) 

  0.03 

(0.05) 

 -0.12** 

(0.05) 

Risk  1.04 

(0.11) 

 1.02 

(0.10) 

 -0.02 

 (0.15) 

  1.04 

(0.13) 

 0.00 

(0.17) 

  0.02 

(0.16) 

Notes: the table reports comparison of the mean differences in proxies of market access in panel A, and production cost 

components across the three varieties. Exp. denotes expenditure. The values in the parenthesis are standard errors. The asterisks 

***, ** and * denote significance at the 1%, 5% and 10% levels, respectively.   
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Table 2.A2 Sensitivity of estimates to alternative specifications, network links truncation and additional market factors 
 No Network FEs  No contextual effects  With additional market 

access controls 

 Cross-choice influence in 

variance-covariance 

 Excludes those who were 

neighbors to all 5 matches 

 (1) 

Jenguma 

(2) 

Afayak 

(3) 

Jenguma 

(4) 

Afayak 

(5) 

Jenguma 

(6) 

Afayak 

(7) 

Jenguma 

(8) 

Afayak 

(9) 

Jenguma 

(10) 

Afayak 

 Estimates Estimates Estimates Estimates Estimates Estimates Estimates Estimates Estimates Estimates 

Prop. Neighbadopt_ Jenguma   0.315*** 

(0.017) 

-0.039*** 

(0.014) 

  0.283*** 

(0.016) 

-0.058*** 

(0.015) 

  0.228*** 

(0.025) 

-0.054*** 

(0.017) 

  0.140*** 

(0.008) 

   0.133*** 

(0.011) 

-0.027** 

(0.010) 

Prop. Neighbadopt_Afayak -0.040** 

(0.015) 

 0.361*** 

(0.014) 

 -0.076*** 

(0.016) 

 0.355*** 

(0.013) 

 -0.053*** 

(0.018) 

 0.336*** 

(0.016) 

   0.158*** 

(0.005) 

 -0.007 

(0.010) 

 0.153*** 

(0.007) 

               

Cov [ 12σ ] of Jenguma and Afayak              -1.472** 

(0.634) 

 

    

Cov [ 21σ ] of Afayak and Jenguma           -1.472** 

(0.634) 

   

     Market in village        0.045 

(0.052) 

-0.047 

(0.057) 

      

     Market outside village        0.021 

(0.047) 

 0.032 

(0.052) 

      

     Traders       -0.007 

(0.043) 

-0.036 

(0.046) 

      

     Organization        0.016 

(0.052) 

-0.055 

(0.055) 

      

     Distance to town       -0.003 

(0.025) 

 0.001 

(0.002) 

      

     Selling price       -0.026 

(0.025) 

 0.019 

(0.028) 

      

Own characteristics    Yes   Yes     Yes  Yes     Yes    Yes     Yes    Yes     Yes    Yes 

Contextual effects    Yes   Yes      No   No     Yes    Yes     Yes    Yes     Yes    Yes 

Network Fes     No    No     Yes  Yes     Yes    Yes     Yes    Yes     Yes    Yes 

Link formation residual    Yes   Yes     Yes  Yes     Yes    Yes     Yes    Yes     Yes    Yes 

Constant  0.189 

(0.156) 

 0.276** 

(0.116) 

  0.221* 

(0.169) 

 0.326*** 

(0.118) 

  0.412** 

(0.184) 

 0.349** 

(0.149) 

     

 

  0.615*** 

(0.132) 

 0.394*** 

(0.130) 

Pseudo R2 0.718  0.793  0.841  0.639  0.671 

DIC 1,211.70   1,224.10  1,279.90   2,868.00   2,340.00 

Mean Log-likelihood            -1,009.80  -1,020.10              -1,066.60  -2,390.10               -1,950.40 

Notes: n = 483; # of draws = 5000 and burnin = 2000. The Cov [ 12σ ] and Cov [ 21σ ] denote the covariance of the two improved variety equations and show the cross variety effects.  The estimates in this table were also 

obtained from the standardized social weight matrix and thus these estimates represent the effects of these covariates on adoption in terms of proportions. The values in the parenthesis are standard deviations. The asterisks 
***, ** and * denote significance at the 1%, 5% and 10% levels, respectively.
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Table 2.A3 Estimates of Group Fixed-Effects (Table 2.4 continued) 

 Jenguma Afayak 

 Estimates SD Estimates SD 

Village 2  0.014 0.057 -0.047 0.066 

Village 3 -0.073 0.065 -0.139** 0.069 

Village 4 -0.064 0.065  0.008 0.069 

Village 5 -0.022 0.070 -0.109* 0.071 

Village 6 -0.045 0.066  0.013 0.072 

Village 7  0.064 0.065 -0.034 0.069 

Village 8 -0.053 0.071 -0.044 0.071 

Village 9 -0.115** 0.062 -0.131** 0.072 

Village 10  0.082 0.073 -0.129* 0.081 

Village 11  0.058 0.066 -0.040 0.070 

Village 12  0.024 0.072  0.045 0.082 

Village 13  0.181** 0.066 -0.071 0.073 

Village 14  0.232*** 0.067 -0.020 0.080 

Village 15  0.262*** 0.062 -0.135** 0.072 

Village 16  0.283*** 0.065 -0.012 0.080 

Village 17 -0.150** 0.068  0.010 0.074 

Village 18 -0.045 0.064  0.018 0.071 

Village 19 -0.025 0.064 -0.031 0.065 

Village 20 -0.086 0.070 -0.083 0.072 

Village 21 -0.136** 0.064 -0.154** 0.069 

Village 22 -0.091* 0.065 -0.148** 0.073 

Village 23  0.014 0.061 -0.084 0.070 

Village 24  0.059 0.064  0.051 0.070 

Village 25  0.017 0.070  0.043 0.071 

Notes: the table is a continuation of the estimates reported in table 2.4 and shows the group/network fixed-effects estimates. 

The base category is village 1. SD denotes standard deviation. The asterisks ***, ** and * denote significance at the 1%, 5% 

and 10% levels, respectively. 
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Appendix B: Network formation and endogeneity 

 

2.B1. Network formation and endogeneity of neighbors’ adoption  

The section describes the network formation model estimated and discussed under subsection 

2.4.1. We estimated a conditional edge independence model, which assumes links form 

independently, conditional on node- and link- level covariates (Fafchamps and Gubert 2007) as 

follows;  

 𝐿𝑖𝑗,𝑔 = 𝛿0 + 𝛿1|𝑐𝑖𝑔 − 𝑐𝑗𝑔| + 𝛿2(𝑐𝑖𝑔 + 𝑐𝑗𝑔) + 𝛿3|ℒ𝑖𝑗𝑔| + 𝜖𝑖𝑗𝑔  

where 𝐿𝑖𝑗𝑔 is an 𝑚𝑔 × (𝑚𝑔 − 1) matrix indicating whether there is a link between individuals 

𝑖 and 𝑗 in group/village 𝑔 (𝑔 =1,…, 𝐺, and 𝐺 is the number of groups/villages in the sample), 

𝑐𝑖𝑔 and 𝑐𝑗𝑔 are characteristics of individual 𝑖 and 𝑗 in group 𝑔. 𝛿1 measures the influence of 

differences in their attributes, and 𝛿2 measures the effect of combined level of their attributes. 

ℒ𝑖𝑗𝑔 captures attributes of the link between 𝑖 and 𝑗 such as geographical or social distance 

between them, and 𝛿3 is the associated parameter estimate. The estimates of this model are 

reported in Table 2.B1. We next use the average of the predicted residuals of this link formation 

model as control functions in our adoption equation to account for the endogeneity of peer 

effects due to unobserved factors that determine link formation. 
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Table 2.B1 First-stage dyadic regression of network formation by village   
       Vill._1    Vill. 2    Vill. 3    Vill. 4    Vill. 5    Vill. 6    Vill. 7    Vill. 8 Vill. 9 

 Distance between peers in kilometres -0.066 -0.000 0.114** -0.007 0.031 -0.009 0.056 -0.035 -0.012 

   (0.065) (0.046) (0.051) (0.043) (0.055) (0.046) (0.045) (0.044) (0.047) 

 Difference in distance to road between peers in kilometres 0.024 0.191* -0.070 0.097 0.048** 0.085* 0.054* -0.124** 0.051* 

   (0.033) (0.103) (0.056) (0.063) (0.022) (0.047) (0.030) (0.058) (0.030) 

 Relatives = 1 0.261 -0.026 0.144 -0.190 -0.383 0.382 0.479 -0.509 -0.741** 

   (0.382) (0.362) (0.606) (0.522) (0.286) (0.657) (0.368) (0.330) (0.351) 

 Same religion = 1 n.a. n.a. -0.175 -0.437 -0.363 -0.017 0.501 -0.418 -0.346 

   n.a. n.a. (0.224) (0.328) (0.303) (0.483) (0.516) (0.484) (0.328) 

 Difference: Sex (= 1 if male) 1.135*** 0.808*** 7.435*** -0.318 0.425 0.045 0.782** 0.607* 0.260 

   (0.354) (0.241) (0.387) (0.255) (0.329) (0.255) (0.367) (0.345) (0.531) 

 Difference: Age -0.003 -0.026* 0.035** -0.015 -0.050*** -0.041*** 0.036*** 0.132*** 0.040*** 

   (0.009) (0.015) (0.014) (0.012) (0.018) (0.012) (0.011) (0.036) (0.013) 

 Difference: Years of schooling 0.090* -0.006 0.056 0.061 3.078*** -0.148*** -0.054* 2.854*** 0.030 

   (0.047) (0.039) (0.054) (0.064) (0.189) (0.046) (0.028) (0.498) (0.070) 

 Difference: Household size -0.214** -0.103 -0.070 0.096 -0.224** 0.156** -0.138 0.021 0.099 

   (0.102) (0.093) (0.090) (0.083) (0.091) (0.077) (0.103) (0.075) (0.068) 

 Difference: Household landholding in hectares -0.202 -0.164 0.060 0.460*** 0.158 0.439** -0.159 0.005 -0.097 

   (0.238) (0.103) (0.172) (0.111) (0.169) (0.219) (0.110) (0.112) (0.135) 

 Difference: Village born = 1 if farmer was born in village 1.109** 0.163 -0.607** 0.824*** -0.258 -0.054 -0.885*** 6.091*** -0.691** 

   (0.509) (0.347) (0.307) (0.277) (0.237) (0.340) (0.262) (0.437) (0.297) 

 Difference: Household wealth (predicted) in GHS 1.359 -0.953 0.346 -0.075 0.933 -0.553 -1.959*** 1.209 0.148 

   (1.142) (0.641) (1.046) (0.889) (1.284) (0.879) (0.721) (1.197) (0.927) 

 Difference:  Authority = 1 if any parent of the farmer had an authority in village 6.788*** 0.636* 0.924*** -0.145 -13.271*** 7.636*** -0.017 0.498 7.011*** 

   (0.420) (0.370) (0.327) (0.309) (1.385) (0.821) (0.310) (0.472) (0.405) 

 Sum: Sex (= 1 if male) -0.407 0.630*** 7.241*** 0.054 0.959*** 0.387* 0.478* 0.464 0.256 

   (0.279) (0.213) (0.362) (0.235) (0.302) (0.232) (0.249) (0.291) (0.341) 

 Sum: Age 0.003 0.010 -0.019 -0.021*** 0.011 0.003 -0.041*** -0.072*** -0.013 

   (0.007) (0.010) (0.013) (0.008) (0.014) (0.009) (0.008) (0.027) (0.011) 

 Sum: Years of schooling -0.045 0.041** 0.012 -0.085 -3.041*** 0.101*** -0.026 -3.946*** -0.055 

   (0.041) (0.020) (0.036) (0.059) (0.175) (0.035) (0.032) (0.564) (0.065) 

 Sum: Household size -0.076 0.122** 0.145** -0.044 0.069 -0.043 0.018 -0.086 0.106** 

   (0.049) (0.056) (0.071) (0.053) (0.047) (0.035) (0.059) (0.062) (0.052) 

 Sum: Household landholding in hectares -0.120 0.028 -0.051 -0.076 -0.282** -0.334** 0.252** 0.154** 0.142 

   (0.120) (0.060) (0.160) (0.108) (0.132) (0.166) (0.115) (0.072) (0.121) 

 Sum: Village born = 1 if farmer was born in village 1.118*** 0.049 0.186 0.338 -0.027 0.237 0.035 7.209*** -0.874*** 

  (0.337) (0.328) (0.348) (0.217) (0.256) (0.254) (0.213) (0.394) (0.223) 

 Sum: Authority = 1 if any parent of the farmer had an authority in village -7.669*** 0.292 -0.822** 1.182*** 12.932*** -7.503*** 0.508*** 1.451*** -6.989*** 

   (0.381) (0.394) (0.379) (0.354) (1.255) (0.910) (0.162) (0.518) (0.450) 
 Constant  -3.496* -4.083** -16.801*** -0.384 -3.759** -0.987 1.351 -12.817*** -1.143 

   (1.803) (1.634) (2.016) (1.505) (1.619) (2.075) (1.395) (2.078) (1.752) 

 Observation 400 400 400 400 400 400 400 400 400 
 Pseudo R2  0.133 0.090 0.108 0.099 0.097 0.087 0.120 0.169 0.093 

Notes: Standard errors in parenthesis. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 



80 
 

Table 2.B1 (continued)   
       Vill._10    Vill._11 Vill. 12    Vill. 13    Vill. 14 Vill. 15    Vill. 16    Vill. 17    Vill. 18 

 Distance between peers in kilometres -0.021 -0.085 -0.048 -0.008 -0.017 -0.073 -0.030 0.002 -0.012 

   (0.059) (0.064) (0.037) (0.044) (0.080) (0.062) (0.047) (0.047) (0.030) 

 Difference in distance to road between peers in kilometres 0.070 8.799*** -0.044 -0.018 -0.027 -0.170*** 0.018 0.025 0.075 

   (0.069) (2.821) (0.050) (0.025) (0.030) (0.029) (0.017) (0.019) (0.047) 

 Relatives = 1 -0.024 -0.062 0.241 0.115 0.293 0.413 -0.079 0.884 0.115 

   (0.552) (0.390) (0.354) (0.242) (0.387) (0.302) (0.496) (0.659) (0.497) 

 Same religion = 1 0.105 0.062 0.372 0.267 -0.661* -0.622* 0.006 -0.137 -0.217 

   (0.321) (0.350) (0.313) (0.390) (0.385) (0.327) (0.400) (0.420) (0.301) 

 Difference: Sex (= 1 if male) -0.122 0.310 0.546 -0.404 0.442 0.337 0.970*** 0.369 0.965*** 

   (0.343) (0.316) (0.462) (0.273) (0.332) (0.329) (0.296) (0.359) (0.306) 

 Difference: Age 0.022** -0.032** 0.009 0.011 -0.011 -0.044 -0.004 0.019 0.002 

   (0.011) (0.015) (0.012) (0.011) (0.016) (0.031) (0.018) (0.022) (0.022) 

 Difference: Years of schooling 1.440*** -0.058 0.083 1.308*** -0.043 -0.181*** 6.607*** 0.862*** -0.158*** 

   (0.103) (0.051) (0.053) (0.075) (0.046) (0.043) (0.609) (0.061) (0.048) 

 Difference: Household size 0.150 0.119* -0.029 -0.178** 0.046 0.042 -0.183*** -0.003 -0.024 

   (0.126) (0.070) (0.114) (0.076) (0.096) (0.098) (0.055) (0.094) (0.135) 

 Difference: Household landholding in hectares 0.585*** -0.052 -0.067 0.075 -0.197 0.371*** 0.022 0.321*** -0.157 

   (0.150) (0.084) (0.137) (0.166) (0.211) (0.130) (0.086) (0.088) (0.155) 

 Difference: Village born = 1 if farmer was born in village -0.598* -0.492 1.038** 0.289 0.406 0.576** 0.205 -1.484*** -0.011 

   (0.354) (0.357) (0.454) (0.281) (0.361) (0.257) (0.456) (0.424) (0.249) 

 Difference: Household wealth (predicted) in GHS -0.101 -1.171 0.993 0.038 -0.088 -0.633 -1.175 -2.981*** -1.232* 

   (0.772) (1.159) (0.933) (1.032) (1.148) (0.649) (1.815) (0.908) (0.726) 

 Difference:  Authority = 1 if any parent of the farmer had an authority in village 7.301*** 0.422 -0.398 8.514*** 7.684*** 5.605*** -0.331 6.989*** 0.346 

   (0.381) (0.631) (0.363) (0.450) (0.392) (0.641) (0.331) (0.572) (0.399) 

 Sum: Sex (= 1 if male) 0.928*** -0.492* 0.687** 0.208 0.193 -1.030*** 0.649* -0.040 -0.096 

   (0.244) (0.279) (0.307) (0.229) (0.347) (0.232) (0.334) (0.356) (0.240) 

 Sum: Age -0.013 -0.002 -0.000 0.004 -0.008 -0.004 0.017* 0.029 -0.017* 

   (0.009) (0.010) (0.009) (0.009) (0.013) (0.017) (0.009) (0.021) (0.010) 

 Sum: Years of schooling -1.530*** -0.075** 0.001 -1.198*** 0.006 0.020 -5.548*** -0.774*** 0.041 

   (0.081) (0.033) (0.046) (0.085) (0.040) (0.037) (0.658) (0.055) (0.025) 

 Sum: Household size -0.162* 0.252*** 0.142** 0.020 0.086 0.147*** 0.141** 0.205*** 0.095 

   (0.092) (0.054) (0.070) (0.078) (0.055) (0.045) (0.057) (0.058) (0.077) 

 Sum: Household landholding in hectares -0.547*** 0.238*** -0.108 -0.082 0.178 0.129 0.079 -0.073 0.104 

   (0.144) (0.081) (0.110) (0.140) (0.131) (0.099) (0.081) (0.080) (0.093) 

 Sum: Village born = 1 if farmer was born in village 0.423 1.021*** 0.697* 0.508* 0.903*** 0.756*** 0.976** 0.343 0.160 

  (0.331) (0.323) (0.390) (0.274) (0.347) (0.273) (0.393) (0.396) (0.198) 

 Sum: Authority = 1 if any parent of the farmer had an authority in village -7.146*** 0.984* -0.327 -7.003*** -7.211*** -5.772*** 0.870** -7.568*** 1.121*** 

   (0.418) (0.581) (0.261) (0.463) (0.445) (0.721) (0.340) (0.883) (0.289) 

 Constant  0.921 -3.133 -6.525*** -2.981*** -3.922** -3.085 -4.933 -2.307 0.173 
   (1.952) (2.655) (2.180) (1.109) (1.943) (1.941) (4.367) (2.875) (2.125) 

 Observation 400 400 400 400 400 400 400 400 400 
 Pseudo R2  0.131 0.075 0.059 0.098 0.088 0.146 0.089 0.162 0.114 

Notes: Standard errors in parenthesis. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 
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Table 2.B1 (continued)   
      Vill._19    Vill._20   Vill._21    Vill._22    Vill._23    Vill._24    Vill._25 

 Distance between peers in kilometres -0.006 0.018 -0.009 0.060 0.014 -0.047 0.044 

   (0.061) (0.030) (0.039) (0.067) (0.046) (0.048) (0.050) 

 Difference in distance to road between peers in kilometres 0.012 1.274 0.686 0.059** 0.686 -1.425 0.024 

   (0.008) (2.839) (0.659) (0.024) (3.460) (3.339) (0.016) 

 Relatives = 1 -0.471* 0.358 0.090 1.345 -0.492 0.262 -0.523 

   (0.268) (0.223) (0.272) (1.195) (0.459) (0.320) (0.538) 

 Same religion = 1 -0.304 n.a. 0.180 0.107 0.714 n.a. 0.152 

   (0.383) n.a. (0.479) (0.578) (0.517) n.a. (0.423) 

 Difference: Sex (= 1 if male) -0.385 0.862* -0.352 8.166*** -0.932*** -0.539* 0.744* 

   (0.275) (0.478) (0.423) (0.404) (0.205) (0.285) (0.392) 

 Difference: Age 0.003 -0.007 -0.040** -0.000 0.011 0.016 0.029 

   (0.019) (0.020) (0.020) (0.014) (0.009) (0.013) (0.025) 

 Difference: Years of schooling 0.009 -0.052 0.043 n.a. 0.119 0.373*** 0.142*** 

   (0.045) (0.033) (0.065) n.a. (0.079) (0.062) (0.050) 

 Difference: Household size 0.049 0.145* 0.086 0.076 -0.032 0.254*** 0.229*** 

   (0.063) (0.088) (0.088) (0.097) (0.089) (0.092) (0.081) 

 Difference: Household landholding in hectares -0.066 -0.085 -0.077 0.126 0.359** 0.600** -0.263 

   (0.088) (0.103) (0.100) (0.163) (0.168) (0.233) (0.218) 

 Difference: Village born = 1 if farmer was born in village 6.526*** -0.247 8.173*** 0.638 -0.122 0.216 -0.235 

   (0.422) (0.325) (0.403) (0.490) (0.309) (0.323) (0.412) 

 Difference: Household wealth (predicted) in GHS 1.450 -1.346 -0.100 2.782*** 2.355*** -1.985** -0.522 

   (1.150) (0.987) (0.639) (0.976) (0.868) (0.851) (1.269) 

 Difference:  Authority = 1 if any parent of the farmer had an authority in village n.a. -1.108*** n.a. n.a. -0.205 -0.898*** n.a. 

   n.a. (0.291) n.a. n.a. (0.290) (0.289) n.a. 

 Sum: Sex (= 1 if male) 0.504* 0.850* -0.293 8.878*** 0.734*** 0.112 0.161 

   (0.284) (0.436) (0.245) (0.510) (0.215) (0.187) (0.278) 

 Sum: Age -0.012 -0.006 0.010 0.017 0.005 0.036** -0.002 

   (0.011) (0.019) (0.011) (0.015) (0.009) (0.014) (0.021) 

 Sum: Years of schooling 0.033 0.075*** 0.210*** n.a. 0.097 -0.427*** 0.019 

   (0.024) (0.021) (0.037) n.a. (0.067) (0.048) (0.059) 

 Sum: Household size -0.000 -0.054 -0.072 0.028 0.160*** 0.056 -0.284*** 

   (0.048) (0.061) (0.062) (0.062) (0.056) (0.090) (0.056) 

 Sum: Household landholding in hectares 0.123 -0.081 0.270*** -0.382* -0.344*** -0.237 0.248 

   (0.092) (0.084) (0.082) (0.198) (0.126) (0.217) (0.169) 

 Sum: Village born = 1 if farmer was born in village 6.413*** -0.400* 7.525*** 1.116** 0.078 0.658*** -0.821*** 

  (0.380) (0.239) (0.431) (0.435) (0.193) (0.244) (0.278) 
 Sum: Authority = 1 if any parent of the farmer had an authority in village n.a. 0.828** n.a. n.a. -0.822*** -0.404 n.a. 

   n.a. (0.331) n.a. n.a. (0.268) (0.336) n.a. 

 Constant  -17.238*** 0.065 -18.598*** -26.287*** -5.388*** -3.241* 0.730 
   (2.569) (2.076) (1.453) (2.379) (1.821) (1.969) (2.514) 

 Observation 400 400 400 400 400 400 400 

 Pseudo R2  0.075 0.093 0.160 0.155 0.094 0.098 0.201 

            Notes: Standard errors in parenthesis. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 
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Table 2.B2 Instrumenting regression for Wealth in Dyadic model 
 Difference of wealth  Sum of wealth 

 Coefficient Robust 

S. E. 

Dyadic 

S. E. 

 Coefficient Robust 

S. E. 

Dyadic 

S. E. 

 All regressors as difference  All regressors as sums 

    

Sex = 1 if male      0.080 0.036 0.086   -0.237* 0.034 0.154 

Years of education of farmer  -0.026** 0.004 0.010   -0.040** 0.004 0.017 

Born = 1 if born in village  -0.106* 0.036 0.069       0.200* 0.034 0.144 

Value of inherited land in GHS      0.277*** 0.040 0.089       0.925*** 0.048 0.142 

        

District dummies        

     1 if farmer resides in district 1  -0.322 0.052 0.262   -0.552* 0.066 0.397 

     1 if farmer resides in district 2  -0.493** 0.051 0.257   -0.757** 0.066 0.405 

     1 if farmer resides in district 3      0.298 0.068 0.327       0.429 0.090 0.539 

     1 if farmer resides in district 4  -0.150 0.082 0.426   -0.369 0.097 0.560 

             

Intercept      1.488*** 0.056 0.214       2.614*** 0.088 0.429 

Observations      9500         9500   

Notes: the table presents first-stage estimates for instrumenting wealth in the dyadic link formation model. Columns 1, 2 and 

3 present results for the difference of wealth between neighbors. Columns 4, 5 and 6 show results of the sum of wealth 

estimates. The table also show both the conventional robust standard errors (in columns 2 and 5) and the Fafchamps and Gubert 

(2007) group dyadic standard errors (columns 3 and 6). The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, 

respectively. 
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2.B2. Endogeneity of other covariates  

The variables credit-constrained, extension contact and non-governmental/research 

organization (NGO/Res) are potentially endogenous in the specification. In particular, credit-

constrained could be endogenous because adopters of the improved varieties could be farmers 

with higher yields and incomes, which provide them an urge in acquiring collaterals and in 

meeting minimum savings requirements for accessing credit. Endogeneity of extension and 

NGO/Res contacts could result from the fact that extension and NGO/Res officers visit farmers 

because they adopted the improved varieties. These potential endogeneity concerns were 

addressed through a two-stage generalized residual inclusion estimation procedure suggested 

by Wooldridge (2015). We first estimate a probit model for each of the endogenous variables 

with a set of explanatory variables and at least an instrument that highly explains these 

endogenous variables, but indirectly affects adoption.  

 

The generalized residuals for the first-stage probit estimates are then plugged into the second-

stage adoption equation to account for potential endogeneity of these variables. This approach 

provides an optimal test of the null hypothesis that the potential endogenous variable is 

exogenous and also makes it possible to consistently estimate the average structural model by 

averaging out the generalized errors (Wooldridge, 2015). The first-stage estimates are reported 

in Table 2.B3. In the credit constraint equation, distance to the nearest financial institution was 

used as an instrument, which affects access to credit, but not the decision to adopt the 

technology. With regard to the extension and NGO/Research contacts equations, we employed 

distance to the nearest extension office and distance to the nearest NGO/Research station, 

respectively, as instruments, which affect extension and NGO/Research contacts but not 

adoption of the technology directly. These instruments were excluded from the second-stage 

estimation to ensure identification in the estimation of the adoption (structural) equation.   
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Table 2.B3 First-stage probit estimates for liquidity constraint, extension and 

NGO/Research equations 
Variable Model (1)  Model (2)  Model (3) 

Credit constraint  Extension contact  NGO/Res contact 

Coefficient Std 

Error 

 Coefficient Std 

Error 

 Coefficient Std 

Error 

Constant      4.752*** 1.015   -4.132*** 1.147   -3.759*** 1.218 

Own characteristics         

    Age  -0.001 0.006       0.014** 0.006       0.005 0.007 

    Gender  -0.363** 0.157    0.165 0.185    0.040 0.196 

    Education  -0.061 0.044       0.042 0.031       0.046 0.035 

    Experience  -0.084*** 0.030       0.005 0.026       0.098*** 0.029 

    Household       0.046 0.036   -0.023 0.042   -0.066 0.047 

    Landholding  -0.045 0.062       0.037 0.064       0.117 0.075 

    Risk      0.117** 0.055   -0.023 0.064   -0.032 0.071 

    Association  -0.238*** 0.067   -0.005 0.078   -0.277*** 0.094 

    Electronic      0.001 0.209   -0.049 0.217       0.006 0.263 

    Soil quality  -0.178** 0.084   -0.031 0.094       0.068 0.101 

    Price  -1.199* 0.634       1.865*** 0.636       0.132 0.672 

    Credit - -   -0.699*** 0.192       0.027 0.226 

    Extension  -0.382 0.409  - -       0.364** 0.152 

    NGO/Res  -0.055 0.214       0.546*** 0.197  - - 

Contextual effects         

    Age    -0.003 0.003       0.004* 0.002       0.003 0.003 

    Gender  -0.048 0.069       0.024 0.074    0.124 0.092 

    Education  -0.006 0.016       0.010 0.013       0.012 0.017 

    Experience  -0.001 0.013   -0.002 0.015    0.011 0.015 

    Household       0.019 0.017       0.013 0.022   -0.044* 0.023 

    Landholding  -0.019 0.026    0.018 0.028       0.085*** 0.028 

    Risk      0.011 0.028   -0.035 0.036   -0.184*** 0.046 

    Association  -0.005 0.028   -0.010 0.028   -0.035 0.033 

    Electronic  -0.096 0.111   -0.025 0.151       0.056 0.128 

    Soil quality  -0.074** 0.035   -0.022 0.042    0.022 0.043 

    Price  -0.831 0.802       0.621 0.782       2.014** 0.893 

    Credit - -   -0.255*** 0.082    0.043 0.097 

    Extension  -0.318 0.494  - -    0.132** 0.059 

    NGO/Res      0.046 0.086   -0.025 0.089  - - 

Instruments          

    FinDistance  -0.037*** 0.012  - -  - - 

    ExtDistance - -   -0.032*** 0.011  - - 

    RNDistance  - -  - -   -0.090*** 0.013 

Pseudo 
2

R       0.378        0.391        0.425  

Loglikelihood  -205.0    -170.2    -145.3  

LR 
2

X       249.1        218.2        215.3  

Prob 
2

X       0.000        0.000        0.000  

Notes: table reports first-stage instrumenting probit estimates of household credit constraints in model (1), extension contact 

in model (2) and NGO/Research agent contact in model (3). The predicted generalized residuals of these models were used to 

account for the potential endogeneity of household credit constrains (Residliquid), extension contact (Residextens) and 

NGO/Research agent contact (ResidNGO).  Std Error denotes standard error. The asterisks ***, ** and * denote significance 

at the 1%, 5% and 10% levels, respectively.  
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Appendix C 

 

Bayesian Estimation Procedure 

 

Conditional distribution of   and    

Let’s assume an independent normal-Wishart prior for the   and Σ  parameters, a uniform 

prior for   and consequently given that the conditional and prior distributions of   come from 

the same distribution type with updated parameters (Wang et al. 2014), the normal prior of   

can be set as  ~ , MVN b B . This allows the conditional posterior distribution of   to be 

expressed as: 

 

     * *(  | ,   ,  Σ)   | ,  , ΣYp Y p       

(C1)     1 1    , ( ) , TMVN H X H H MVN b B     
 

        , ΣMVN  
 

  

where 1 ' *Σˆ B b X H Y     
;  kVH I W   ; 1 1Σ  X X B

   
  and X  is a vector 

representing all other controls in equation (6). 

Uninformative prior mean distribution  0b   and a diffuse prior variance  1 12B e   for 

  were used to avoid biasing estimates and inferences by assuming high prior information. 

LeSage and Pace (2009) also show that assuming non-informative and diffuse priors in 

sufficiently large samples produce estimates comparable to those obtained from maximum 

likelihood.  The sampling of the posterior conditional distribution of   can be done either by 

Metropolis-Hasting (M-H) or by integration and draw by inversion approach (see LeSage and 

Pace 2009, chapter 5). The use of these procedures are necessitated by the fact that conditional 

posterior distribution of   doesn’t lend itself to a known standard distribution like   and Σ  
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(Autant-Bernard et al., 2008). Given that the posterior distribution of 
ij  relies on its Beta prior 

function of  p  , the posterior distribution of   is expressed as;  

(C2)  
1

'
* * ' *2

1
( | ,  , Σ, ) 

2
ij ijp Y H exp HY X H H HY X p     

 
          

 
,  

 

 

where 
ij

 is a matrix   except the ij th element. For the M-H sampling, we require a proposal 

distribution from which a potential value for the parameter   is to be obtained. This potential 

parameter is labeled as * . An acceptable probability for drawing   based on a random walk 

from a standard normal distribution is computed in equation (C2) using the * , a current value 

of   defined as P  and a tuning parameter T  suggested by Holloway et al (2002). The 

proposal distribution is expressed as; 

(C3)  * ~ 0,1P T N   . 

 

The tuning of the proposal distribution from the normal distribution is to enable the M-H 

sampling process goes through the whole conditional distribution in order for the proposal 

distribution to yield draws that are within the dense part of the distribution (LeSage and Pace, 

2009). This process is done on each pass of the MCMC sampling steps. Following, Autant-

Bernard et al. (2008), the log-determinant of H  was computed with the lattice of values for 

, in the feasible range of – 1 and 1, and with the direct sparse matrix LU decomposition 

procedure.     

 

Conditional distribution of   and *Y  

In this study, Σ  is restricted to equal VI  following LeSage and Pace (2009) because the cross-

choice dependence is being captured in the mean part instead of in the covariance structure of 

the model reducing the number of parameters to be estimated. Hence, the variance-covariance 



 

87 
 

matrix also becomes  
1

'Ω H H


  which is used in the n-steps of the Gibbs sampling 

procedure. The latent *Y is the terminal draw to be done and each *Y  can be drawn distinctly 

given that the observations are considered independent (Autant-Bernard et al. 2008; Wang et 

al., 2014). The *Y  variable has a conditional distribution which is multivariate normal 

truncated14 (Geweke 1991). This takes the form as follows with a mean of   and variance-

covariance matrix of  .  as; 

 (A4)  
1

* 1 '~ ,  TMVN H X H HY 


 
  

,  

   * ~ , TMVY N    

subject to the constraint *a dY b   where  d is the diagonal of an kJ kJ  block diagonal 

matrix limiting 
jiY  to assume the largest value of *Y  if 

jiY j  or assumes negative if max(

) 0jiY  , 1H X  ,   
1

'H H


 and a  and b  are the truncation bounds which depends on 

the observed 0,1 values of  y . Autant-Bernard et al. (2008) and LeSage and Pace (2009) 

modified the Geweke (1991)15 n-step Gibbs sampler for a multinomial setting to generate draws 

of kJ  variate truncated normal distribution. The procedure uses a precision matrix 

' 1Td H Hd    with dimensions kJ kJ  to sequentially generate draws from the transformed 

normal distribution  ~ 0, u N   subject to the constraint *b z b  , where 

; b a d b b d      and the *z  samples are used to produce * 1 *d zY    . Following 

                                                           
14 Note the observed response values are such that 

iY j  if 
*

,i VY   * *

,1 , max , ,  0i i VY Y    and 0 if 
*

,0 0iY  .  

15 Geweke (1991) shows that drawing from  * ~ , Y TMVN    subject to 
*a Y b   is equivalent to 

generating draws from n-variate normal distribution   *  ~  , z N    subject to the linear restriction 

*b z b  . 
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Wang et al. (2014), *

iz  is expressed as a weighted average of the other elements ( *

iz ) plus a 

noise tem as; 

 (A5) * *
kV

i i i i i

i

z z V u  



  , 

subject to the constraint * */ ) /
nV nV

i i i i i i i i i

i i

b z V u b z V    

 

 
      

 
  , where 1

i i i     , 

and  
12

i iV 


 . Each pass of the entire n passes samples one element of *  iz which is 

conditional on the rest of the *

iz ’s and this continues until all the kV  *

iz ’s are sampled with 

the last pass of *

iz  used to impute the *Y  using the * 1 *d zY     equality. A value of n = 10 

was used because Geweke (1991) indicated that even relatively small values of n can produce 

fairly desirable estimate. 
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Abstract 

The complexity of agricultural innovations and heterogeneity of circumstances of technology 

application, outcomes and social network structures have often led to obstacles in social 

learning and sub-optimal adoption. This paper examines technology diffusion in the context of 

heterogeneous peer benefits, know-how and network structures, using survey data of 500 farm 

households in Northern Ghana and random matching within sampling to generate social 

network contacts. We identify network effects and the impact of social learning on adoption, 

using a selectivity control function in a discrete survival model. Our results reveal that social 

learning favors adoption, if past adopters with increased yields, or even more with profound 

knowledge of the cultivation techniques form part of the social network. We also find that 

social learning and the likelihood of adoption is higher when peers are central nodes, and 

particularly, when they belong to cohesive subgroups, but lower in highly segregated networks. 

The results shed a new light on the role of central agents, since highly cohesive neighborhoods 

seem to promote diffusion more in high modularity networks than central nodes. 

 

JEL codes: C31, C35, C41, D83, O13, O33 

 

Keywords: Benefits, Know-how, Social learning, Social network structures, Technology 

diffusion  
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3.1 Introduction 

Adoption of agricultural technologies is comparatively low in developing countries, with sub-

optimal adoption of these technologies by farmers, despite their potential benefits in improving 

productivity and agricultural performance (Magnan et al. 2015). Available evidence shows that 

improved crop varieties and other inputs have contributed between 40% to 100% increase in 

farm yields and profits, food security and poverty gains in sub-Saharan Africa. In spite of these 

noteworthy benefits, adoption levels of improved crop varieties in this region are comparatively 

low compared to the rest of the world (Suri 2011; Walker et al. 2011). Walker et al. (2014) 

estimate the mean level of adoption across 20 improved crop varieties at 35%, with two-thirds 

of these crops falling below this mean level. Understanding the way and rationale behind 

farmers’ adoption of these technologies is, therefore, important for economic policies meant to 

promote agricultural productivity and household welfare through improved technologies.      

 

Numerous studies have shown the significance of social interaction and learning in the 

agricultural technology adoption literature, although the results have been mixed, with some 

authors finding positive impacts of social learning on adoption (Foster and Rosenzweig 1995; 

Munshi 2004; Bandiera and Rasul 2006; Conley and Udry 2010; Beaman et al. 2018), while a 

few find no effects (e.g., Duflo, Kremer and Robinson 2011). One possibility of enhancing the 

understanding of adoption in social interaction settings and, perhaps, resolving these 

contrasting results is to move beyond the implicit assumption that farmers observe the field 

trials of their neighbors with little friction in the flow of information (BenYishay and Mobarak 

2018) to examine the roles of both benefits and know-how as well as network structures in 

social learning, as these shape the learning process (Jackson et al. 2017; Nourani 2019).  

 

The literature provides a number of explanations on how adoption decisions of neighbors, 

heterogeneities cropping conditions and benefits (Foster and Rosenzweig 1995; Munshi 2004; 
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Conley and Udry 2010) influence social learning in technology adoption.  More recently, 

BenYishay and Mobarak (2018) and Beaman et al. (2018) considered the performance of 

targeting strategies within networks. Specifically, BenYishay and Mobarak (2018) showed that 

performance incentives and social identity of experimenting farmers are important, whereas 

Beaman et al. (2018) found that it is the targeting strategy that matters in social learning.  Less 

is, however, known about the role of know-how (i.e., production process) of the technology16 

in the social learning process and whether both benefits and/or know-how17 could play 

important roles in the learning process, given the technological context.  

 

Our study first explores the impact of know-how (i.e., knowledge on cultivating the crop) on 

adoption of agricultural technologies, and whether given the technology and the social and 

agronomic context, both benefits and knowledge among social network members matter in 

social learning. Examining the roles of benefits and know-how are important in learning 

because farmers decisions to invest in learning about a new technology, and whether to adopt 

or not to, depend on the expected benefits, and the associated learning and investment costs of 

the technology. When the learning and investment costs are higher than the expected benefits, 

farmers may not be inclined to learn and/or adopt the new technology (Beaman et al. 2018; 

Nourani, 2019).  Thus, learning about benefits (i.e., expected profitability) and know-how are 

important in understanding the diffusion process of new technologies18.   

                                                           
16 A notable exception is Beaman and Dillon (2018) who traced how knowledge is aggregated in a network based on the 

social distance of a node to a central node, but did not examine how differences in the knowledge accumulated by network 

members influences the decision of farmers in the adoption process.   

17 Existing studies have either found learning about benefits for ease-to-use (Magnan et al. 2015) or know-how for hard-

to-use (Oster and Thornton 2012) technologies.  

18 We conceptualize learning about the expected profitability as farmers’ beliefs about the benefits of the improved variety 

which is based on the shares of past adopters among their peers. That is, farmers’ beliefs about profitability vary with the share 

of adopting peers such that more adopting peers will stimulate beliefs that the expected benefit of the improved variety is high 

and vice versa.  Know-how is about farmers’ efforts to acquire knowledge about the production process, which involves cost 

in time and commitment that decrease with increased learning opportunities from peers and own experimentation. That is, 

learning opportunities (costs) about know-how increase (decrease) with increasing peer experience.    
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Furthermore, examining both benefits and know-how has context relevance for two reasons. 

First, the technology (improved soybean variety) we consider has been introduced mainly to 

enhance farmers’ incomes (MoFA 2017), but awareness and knowledge of farmers about the 

returns are limited (AGRA-SSTP 2017). Second, many farmers are not aware of the standard 

agronomic practices19 required for this variety in order to achieve the desired yields, which has 

usually resulted in sub-optimal productivity, profitability and weak diffusion of the technology 

(Goldsmith 2017). Existing evidence shows that the use of improved soybean seed is quite low, 

and ranges between 16% and 33% of soybean farmers in Ghana (Dogbe et al. 2013). In such 

setting, it is significant to highlight the differences in benefits and know-how regarding the 

application of the innovation by network contacts and their relative roles in the diffusion of the 

technology.  

 

Our discussion so far assumes homogenous network structures and hence similar conditions of 

learning across networks. However, social network structures play important roles in shaping 

the nature of interaction within networks and neighborhoods, and have been shown to exert 

overarching effects on many behavioral patterns and other economic outcomes (Jackson et al. 

2017). Many studies have argued that network structures, such as transitivity20 and modularity, 

play important roles in social interactions and influence patterns of behavior used as social 

collateral (Karlan et al. 2009; Jackson et al. 2012), risk sharing (Ambrus et al. 2014; Alatas et 

al. 2016), and diffusion processes (Bollobas 2001; Centola 2010; Jackson et al. 2017). 

Transitivity or local cohesiveness/clustering coefficient measures how close the neighborhood 

of a farmer is to being a complete network. Modularity measures the proportion of links that 

                                                           
19 These agronomic rules and regulations were spelt out by the inspectorate division of the Ministry of Food and Agriculture 

(MoFA), Council for Scientific and Industrial Research (CSIR) and the Savannah Agricultural Research Institute (SARI). 

20 Assortativity is a related structure which refers to the level of interconnectivity between agents with similar individual 

or micro-scale network characteristics. We do not examine it in this study as it has been shown that high transitive networks 

display high assortativity and thus are quite correlated (Foster et al. 2011).  
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lie within communities (i.e., components or segments) of a network minus the expected value 

of the same quantity in a network where links were randomly generated (Jackson 2008). Higher 

transitivity of a farmer’s neighborhood, and low modularity of a network will mean more 

opportunities for the farmer to learn from peers and from different neighborhoods in the 

network. Such opportunities can lead to reduced cost of learning and increase the possibility of 

diffusion across the network. These two network characteristics are also very important for the 

understanding of, and in policy design to support learning in social networks (Girvan and 

Newman 2002).  

 

This implies that the diffusion rate of a new technology will be different across communities, 

if transitivity and modularity of the networks, which condition information externalities, vary 

across these communities. For instance, if network structures exhibit the tendency to be less 

transitive or highly modular, then there may be friction in the diffusion of information about 

benefits and know-how of the technology through the social network, thereby reinforcing 

differences in farmers’ response rates to the technology, even under uniform cultivation 

conditions and benefits. Hence, higher transitivity (lower modularity) implies the possibility of 

effective and efficient spread of information due to the increased number of alternative routes 

information can take through the network.  

 

In spite of the significance of these network structures, the empirical literature on social 

learning and technology diffusion has focused on the role of central agents, with very few 

studies providing evidence on the significance of transitivity and modularity. (Karlan et al. 

2009; Beaman et al. 2018). In particular, Karlan et al. (2009) show that multiplicity of routes 

associated with higher transitivity enhance the credibility of agents in a network, while Beaman 

et al. (2018) demonstrate that understanding of aspects of an innovation that are particularly 

difficult to learn requires several interactions among agents. 



 

94 
 

 

Our study relates to the existing literature on network characteristics, influence of central 

agents21, technology conditions and adoption (Jackson et al. 2012; Beaman and Dillon 2018; 

BenYishay and Mobarak 2018; Beaman, et al. 2018). However, the current study differs from 

these previous studies because it examines the impact of transitivity and network modularity, 

and how modularity influences the performance of other network characteristics such as 

centrality and transitivity in the diffusion process. This is particularly significant, because the 

effectiveness and efficiency of centrality in technology processes depend on the extent to which 

modularity and cohesiveness of the neighborhood (transitivity) will allow for it.  

 

Specifically, we use observational data from a recent survey of soybean farmers conducted in 

Ghana to show how learning about benefits, know-how and network structures drive adoption 

in a dynamic theoretical framework. We estimate the model with a two-step selectivity 

approach of network formation and survival analysis to account for correlated unobservables 

at the link formation level (Brock and Durlauf 2001), and to investigate the threats of 

measurement errors due to missing network data issues (Chandrasekhar and Lewis 2016). The 

estimation results suggest that both learning about benefits and know-how are important in 

accelerating adoption, although the effects of know-how are higher when sufficient peers adopt 

the improved variety in all specifications. We find the role of transitivity in the learning and 

diffusion processes to be stronger, compared to centrality, but modularity tends to slow down 

the diffusion process, and also limits the significance of both transitivity and centrality.   

 

These results have the following policy implications. First, it will inform policymakers about 

when to focus on promoting adoption, directly, through extension services, public learning 

and/or training workshops – especially when the share of adopters is low –, and when to focus 

                                                           
21 Few other studies such as Krishnan and Sciubba (2009) considered network architecture among village labor-sharing 

networks in explaining farm returns in Ethiopia, and Banerjee et al. (2013) focused on network centrality in microfinance.  
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on module bridging measure that indirectly promote adoption through increased interactions 

between adopters and non-adopters, as well as across segments of the village. Second, our 

findings on the relative importance of transitivity and centrality will help policymakers to 

identify when to leverage influential nodes (centrality) or the cohesiveness of the neighborhood 

(transitivity) in encouraging adoption under different complexities of the technology (Beaman 

et al. 2018) and in socially structured settings. Finally, an analysis of modularity will show 

whether specific biases and/or patterns exist in these villages in terms of social interactions and 

structures (Jackson 2008; Jackson et al. 2017), which will be relevant in informing policy 

intervention options. For example, the existence of such structures or biases in these villages, 

when failed to be considered in policy intervention, could result in policy impacts focusing on 

specific segments of the villages instead of the whole village.  

 

The rest of this paper is organized as follows. Section 3.2 describes the context and the data. 

Section 3.3 discusses the theoretical framework, showing the role of learning about expected 

profitability, know-how and network structures on speed of adoption. The empirical model and 

estimations are described in section 3.4. Section 3.5 presents the empirical results, whereas 

section 3.6 concludes.    

 

3.2 Context and data 

3.2.1 Context 

We now describe the context of the technology in question and the data used. Soybean is 

primarily a commercial crop mainly cultivated in the Northern, Upper East, Upper West and 

Volta regions of Ghana, by smallholder farmers and under rain-fed conditions, with Northern 

region alone producing 72% of the national output. The crop has very high local demand and 

potential of increasing farmers’ incomes in Ghana (MoFA 2017). The compounded annual 

growth in demand for the crop was recorded as 39% from 2008 to 2010, compared to 10.5% 
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and 6.3% for the other two legumes (cowpea and groundnut), respectively over the same period 

(AGRA-SSTP 2017). However, the average yield of 1.68MT/ha has been described as below 

the national achievable yields of 2.50 – 3.10MT/ha (CSIR-SARI 2013).  

 

Realizing this, the Council for Scientific and Industrial Research (CSIR) and the Savanna 

Agricultural Research Institute (SARI) developed and introduced the Jenguma variety, in 2003, 

for adoption by farmers in order to circumvent the problems associated with the existing 

traditional variety22. This improved variety has higher yield potential of over 2.0 MT/ha, 

resistant to pod-shattering, matures about 35 days earlier, and is resistant to other agricultural 

stress such as pests, diseases, low phosphorous soil and climatic variabilities (CSIR-SARI 

2013). Although the crop was introduced primarily as a commercial crop meant to increase 

smallholder farm profitability and incomes (MoFA 2017), there is lack of awareness and 

certainty among farmers about the expected yields, market outlets and returns on investments 

of this improved variety. This is due to limited investment in promotion events and lack of 

continued campaign to demonstrate returns and profitability of this variety (AGRA-SSTP 

2017).  

 

Added to this is that cultivation of the improved variety requires adherence to the rules and 

regulations of the inspectorate division of the Ministry of Food and Agriculture (MoFA) in 

order to achieve potential high yields of 2MT/ha, and to reduce labor cost by about 20% of 

total production cost. These requirements include planting depths, row-spacing, quantity of 

seeds and timing of sowing, inoculant and phosphorus application, as well as timing of 

harvesting and plant growth for effectiveness of other inputs and varietal suitability (Heatherly 

and Elmore 2004). The discussion suggests that both knowledge of benefits and of the 

                                                           
22 The traditional variety, Salintuya, has been described as low yielding (about 1.0 MT/ha), early shattering of pods and 

susceptible to disease and pests which sometimes lead to complete loss of the crop (Ampadu-Ameyaw et al. 2016). 
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production process are important, and therefore important for the analysis of their impact on 

the diffusion of the variety.  

 

3.2.2 Data 

We describe our data, before moving to a formal discussion of the theoretical and econometric 

aspects of social learning and social network structures. We conducted a survey of 500 farm 

households in Northern Ghana between July and September 2017. Five districts were 

purposively selected based on their intensity of soybean production23, and then 25 villages were 

randomly selected across these districts, with the allocation of villages done in proportion to 

the total households in each district. These villages are remote and small with less than 150 

households in each. Given this, we randomly selected 20 household heads in each village, and 

then used structured questionnaires to interview the primary decision makers in the households. 

In addition, a detailed discussion using an interview guide was administered in each village to 

a group of village leaders and/or representatives to obtain information on village 

characteristics. The study combines modules of household characteristics, social networks and 

agricultural production to construct pseudo-panel data for the analysis of timing of adoption of 

the improved soybean variety.   

 

Improved soybean adoption and household characteristics 

In order to collect data on the year of adoption of the improved soybean variety by households, 

we use a question that asked farmers to recall the year they adopted the improved variety. 

Responses to this recall question was used to construct the time to adoption variable, 𝐴𝑖𝑡, of a 

household.  Table 3.1, panel A shows the summary statistics of adoption of the improved 

variety by selected years, and depicts an increased adoption overtime since its introduction in 

2003. Only 4% of farmers had adopted the improved variety among the sampled farmers in the 

                                                           
23 This was done in consultation with the Ministry of Food and Agriculture and Resilience in Northern Ghana (RING).   
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year of its introduction. By 2007, 28% of farmers had adopted. Adoption continued to increase 

from 2007, and by 2012 and 2016, 56% and 67% of farmers had adopted the improved variety, 

respectively. Whereas the percentage of adoption in 2012 is more than double that of the rate 

in 2007, the percentage of adoption in 2016 suggests a slowdown in uptake of the improved 

variety.  

 

Table 3.1. Variable definition, measurement and descriptive statistics 

Variables Definition and measurement Mean S.D. 

Panel A   

Dependent variable   

Adopted by     

2003 1 if the farmer adopted the improved variety in 2003; 0 censored 0.04 0.19 

2007 1 if the farmer adopted the improved variety by 2007; 0 censored 0.28 0.45 

2012 1 if the farmer adopted the improved variety by 2012; 0 censored 0.56 0.49 

2016 1 if the farmer adopted the improved variety by 2016; 0 censored 0.67 0.47 

    

Panel B: Control variables   

   

Time-varying   

Age in     

2003 Age of farmer in 2003 (years) 30.03 12.04 

2007 Age of farmer in 2007 (years) 35.03 12.04 

2012 Age of farmer in 2012 (years) 40.03 12.04 

2016 Age of farmer in 2016 (years) 43.03 12.04 

    

Time-invariant     

Gender 1 if male; 0 otherwise   0.59   0.49 

Education Number of years in school   1.27   3.27 

Experience Number of years in farming 13.06   4.02 

Household Household size (No. of members)   5.64   2.14 

Landholding Total land size of household (in hectares)   2.56   1.56 

Credit 1 if farmer was credit constrained and/or not successful in applying for 

credit; 0 otherwise 

  0.55   0.49 

Risk Risk of food insecurity (No. of months household was food inadequate)   0.93   1.37 

Extension 1 if ever had extension contact; 0 otherwise   0.34   0.47 

Association No. of associations a farmer is a member   1.07   1.27 

Price Soybean price in GHS/kg   1.06   0.19 

Soil quality 4=fertile; 3=moderately fertile; 2=less fertile; and 1=infertile   2.97   0.97 

    

Panel C    

Instruments    

G2Credit Proportion of peers of peers who are credit constrained   0.55   0.28 

G2Extension Proportion of peers of peers who ever had extension contact   0.35   0.28 

    
Notes: the table depicts the definition, measurement and descriptive statistics of farmers and households. Panel A shows 

the proportion of adopting farmers across selected year. Panel B shows that of time-varying and time-invariant characteristics 

of the sampled households whereas the descriptive statistics of instruments for the first-stage liquidity constraints and 

extensions regressions are in panel C. S. D. denotes Standard deviation. G denotes the network.  
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The analysis controls for a number of individual and household level variables that may affect 

a farmer’s decision to adopt the improved variety. Panel B of table 3.1 shows the definition, 

measurement and descriptive statistics of these observable characteristics of farmers. Age is 

the only time-varying characteristic of individual farmers, the summary statistics of which has 

been presented for selected years. The average farmer is 43 years in 2016, has 1.3 years of 

schooling, 13 years of farming experience and has an average household size and landholding 

of 6 members and 2.56 hectares, respectively. Majority of these farmers are males (59%) and 

are credit constrained (55%).  

 

Social networks 

We used random matching within sample, following Conley and Udry (2010), to generate the 

potential social network contacts. For each of the 20 household heads selected in a village, we 

randomly selected and assigned to him 5 household heads from the remaining 19 sampled 

households heads, as his24 potential social network contacts. Each farm household was asked 

whether they know any of the 5 households randomly assigned to them. On average, the 

respondents knew 3.14 of the households randomly assigned to them, and with an average 

standard deviation of 1.22 (Table 3.2). Conditional on knowing the assigned households, we 

elicited detailed information on their relationships, interactions and knowledge with the known 

randomly assigned households.  

Table 3.2. Network links by years known   

Number of network links Mean (%) SD 5-Pctile Median 95-pctile N 

   Known for <1-5 years 0.10 (0.03) 0.49 0 0 1 500 

   Known for 5-10 years 0.16 (0.05) 0.60 0 0 1 500 

   Known for 10-14 years 0.42 (13.4) 0.97 0 0 3 500 

   Known for 14+ years 2.46 (78.3) 1.56 0 4 5 500 

Total  3.14 1.22 0.5 4 5 500 
Notes: The table depicts the number of links by the number of years the relationship was formed. Known for <1-5 

years represents links that were formed within 1 to 5 years (i.e., nodes indicated they know their randomly assigned 

matches for 1 to 5 years). Known for 5-10 years represents links that were formed between 5 to 10 years, known for 10-

14 is for relationship formed between 10 to 14 years and known for 14+ years represents relationships that were formed 

for at least 14 years since 2016.  

                                                           
 24 We use the masculine gender because majority (59%) of the farmers in the sample are males. 
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In order to create time variation in the social network, we asked each responding household 

“How long have you known this person?”. Table 3.2 also shows the distribution of links across 

selected number of years respondents stated to have known their randomly assigned 

households. Of the 3.14 assigned households a farm household knows, 78% have been known 

by the farm household before 2003 (i.e., 14+ years, from 2002 to 2016), 13% have been known 

for 10 to 14 years and less than 1% have been known for less than 10 years. Given that the 

improved variety was introduced in 2003, this distribution of links across years suggests that 

most of these households knew each other prior to the introduction of the improved variety.  

     

We then construct farmers’ social network as a sociomatrix of each of the 25 village samples. 

We refer to each village as a group, 𝐺. Thus, the entries of this sociomatrix 𝑔𝑖𝑗 is one, if the 

farmer 𝑖 has stated he knows farmer 𝑗, and zero if otherwise. We define links as undirected 

such that 𝑖 is said to have a link with  𝑗 and vice versa, if any of them stated knowing the other. 

This yields a symmetric sociomatrix of the group 𝐺. We then use answers to the question of 

how long 𝑖 knows 𝑗 to construct time varying social networks from 2002 to 2015/16 (i.e., yearly 

sociomatrix for 14+ years to 1 or less year-old relationships), thus, making it possible for us to 

index the sociomatrix with a time subscript.  Using the sociomatrix, vectors of yearly binary 

adoption decisions, and the other control variables, we construct peer characteristics by 

multiplying the yearly vectors of adoption and other control variables by the sociomatrix of the 

respective years to obtain time-varying peer adoption, average peer experience and other 

contextual (peer) characteristics required for the analysis.  

 

Table 3.3 shows the summary statistics by selected years of peer adoption, average peer 

experience in farming the improved variety, and other peer characteristics. With only 3% of 

peers adopting the improved variety in 2003, the proportion of adopting peers of a farm 

household increased to 28% in 2007. By 2012, the proportion of adopting peers of a farm 
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household increased to 57%, and subsequently increased to 68% by 2016. Similarly, the 

average peer experience witnessed an increasing trend over time.  

 

Table 3.3. Contextual (peer) characteristics 

Time-varying variables Characteristics by year of network 

2003 2007 2012 2016 

     

A. Learning mechanism     

Average adopting peers 

 

0.03 

(0.11) 

0.28 

(0.33) 

0.57 

(0.39) 

0.68 

(0.40) 

Average peer experience  

 

0.17 

(0.45) 

0.99 

(1.41) 

2.30 

(1.84) 

2.79 

(1.87) 

B. Other peer characteristics     

Average peer age 

 

29.86 

(7.16) 

34.86 

(7.16) 

39.86 

(7.16) 

43.86 

(7.16) 

Average peer education 

 

1.59 

(2.47) 

1.59 

(2.34) 

1.58 

(2.29) 

1.58 

(2.24) 

Average peer household size 

 

5.74 

(1.50) 

5.72 

(1.42) 

5.73 

(1.39) 

5.74 

(1.38) 

Average peer landholding 

 

2.67 

(1.10) 

2.66 

(1.04) 

2.66 

(1.02) 

2.66 

(1.01) 

Average peer risk of food insecurity 

 

0.78 

(0.85) 

0.76 

(0.79) 

0.81 

(0.91) 

0.76 

(0.78) 

Average peer group associations 

 

1.18 

(0.91) 

1.19 

(0.85) 

1.20 

(0.84) 

1.21 

(0.83) 

Average peer soil quality 

 

2.97 

(0.68) 

2.99 

(0.65) 

2.99 

(0.65) 

2.99 

(0.65) 

Proportion of male peers 

 

0.66 

(0.33) 

0.65 

(0.32) 

0.65 

(0.31) 

0.64 

(0.30) 

Proportion of liquidity constraint peers 

 

0.49 

(0.35) 

0.49 

(0.33) 

0.49 

(0.32) 

0.49 

(0.32 

Proportion of peers with extension contact 

 

0.41 

(0.35) 

0.41 

(0.32) 

0.42 

(0.32) 

0.42 

(0.32) 
Notes: the table presents descriptive statistics of time-varying household variables in panel A, and that for peer 

characteristics constructed based on the networks defined using the number of years the agent indicated to have known 

the peer, in panel B. Columns 2003 to 2016 represent characteristics of households and peers as at the years 2003, 

2007, 2012 and 2016 (for the peer characteristics, these are based on the relationships that existed prior to 2003, i.e., J 

known for 14+ years; 2007 – J known for 10-14 years; 2012 – J known for 5-10 years; and 2016 – J known for <1-5 

years. Each of the contextual (peer) characteristic value was obtained by multiplying the respective variable by the D 

to obtain the value of an agents’ peer characteristics in respect of each of these variables. Values in parenthesis are 

standard deviations.  

 

We also constructed social network statistics at the individual level (i.e., degree, transitivity 

and eigenvector centrality)25 as the effects of these statistics on time-to-adoption are important 

in this study. Panel A of table 3.4 presents the descriptive statistics of these across selected 

years. The average number of connections (degree) an individual has increases from 3, for the 

                                                           
25 See Appendix A for the calculation of these statistics. 
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14+ year length network, to about 4 persons, for the <1 to 5-year length network. Similarly, the 

average transitivity and eigenvector centrality both increase marginally, from 0.12 and 0.44, 

for the 14+ year network to 0.18 and 0.47, for the <1 to 5-year network, respectively.  

 

Table 3.4. Social network information  

 Mean SD Min Max N 

Panel A      

Degree       

  J known <1-5 years 3.708 1.868 1 12 500 

  J known 5-10 years 3.594 1.837 1 12 500 

  J known 10-14 years 3.437 1.804 1 12 500 

  J known 14+ years 3.118 1.755 1 11 500 

      

Local transitivity      

  J known <1-5 years 0.176 0.246 0 1 500 

  J known 5-10 years 0.178 0.251 0 1 500 

  J known 10-14 years 0.153 0.235 0 1 500 

  J known 14+ years 0.123 0.223 0 1 500 

      

Eigenvector centrality      

  J known <1-5 years 0.472 0.261 0 1 500 

  J known 5-10 years 0.473 0.267 0 1 500 

  J known 10-14 years 0.473 0.264 0 1 500 

  J known 14+ years 0.441 0.280 0 1 500 

      

Panel B      

Network modularity      

  J known <1-5 years 0.284 0.073 0.143 0.414 500 

  J known 5-10 years 0.293 0.079 0.173 0.424 500 

  J known 10-14 years 0.294 0.108 0 0.521 500 

  J known 14+ years 0.352 0.113 0.175 0.678 500 
Notes: the table presents descriptive statistics by the number of years a farm household (i.e., node) knows the 

respondent who was randomly matched to and known to him. Panel A presents the descriptive statistics of the 5 

respondents randomly assigned to, and known to the farm household, and the degree distribution for 4 networks which 

were constructed based on the number of years the farmer indicated to have known the contact. Specifically, J known 

<1-5 years implies i indicated knowing J for at least from 2012; J known 5-10 years implies i knows J since 2007 but 

not later than 2012; J known for 10-14 years represents i mentioned knowing J since 2003 but not late than 2007, and J 

known for 14+ years implies i mentioned knowing J since 2002 and earlier. Panel B shows the descriptive statistics of 

two node level characteristics (i.e., local transitivity and eigenvector centrality), and one network level statistic (i.e., 

network modularity) by these 4 networks.  S.D. is standard deviation. Min is minimum and Max is maximum. N is 

observation. 

 

 

Of particular interest, in this study, is modularity which enables us measure the extent to which 

village networks are segregated into latent segments or communities. Suppose a given network 

is divided into two groups with 𝛲𝑖 =1 if node 𝑖 belongs to group 1 and 𝛲𝑖 = −1 if the node 

belongs to group 2. Let 𝑔𝑖𝑗 be the number of links between nodes 𝑖 and 𝑗, and denote the 
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expected number of links between nodes 𝑖 and 𝑗 if links were generated at random as 𝑑𝑖 𝑑𝑗 2𝑚⁄ , 

then the modularity of the network is calculated following (Newman 2006) as 

(1) 𝑀 =
1

4𝑚
∑ (𝑔𝑖𝑗 −

𝑑𝑖𝑑𝑗

2𝑚
) 𝛲𝑖𝛲𝑗𝑖𝑗  

where 𝑑𝑖 and 𝑑𝑗 are the degrees of the nodes and 𝑚 =
1

2
∑ 𝑑𝑖𝑖  is the total number of links in the 

network. The statistic ranges from -1 to 1, where a measure of negative values mean segments 

are not isolated from others (i.e., integrated components). Positive values of modularity statistic 

mean strong segments (i.e., segmented components) and 0 means the components of the 

network are not capturing anything.  

 

Panel B of table 3.4 presents modularity statistic of the networks, also across selected years. 

For the 14+ year length network, the network (average) modularity is 0.35 and this consistently 

declines overtime to 0.28, for the <1 to 5-year network. These values suggest the presence of 

latent network structures in these networks, which appears to gradually weaken overtime. This 

is unsurprising because of the possibility of social structures to weaken overtime due to changes 

in demographics and development. The modularity of a network can condition the rate of 

diffusion of the improved technology, such that if the village network is highly segregated into 

components (i.e., high modularity), it can slow down diffusion at the village level.   

 

To show such a possibility, we present the summary statistics of the time-taken-to-adopt (i.e., 

adoption spell) and adoption decisions (i.e., failure or adopted) across terciles of modularity, 

for the network based on links known for 14+ years and <1 to 5 years, in table 3.5. The average 

time-taken-to-adopt increases from about 7 years for the bottom tercile to an average of about 

12 years for the top tercile of modularity, with the difference in average time-to-adoption being 

significantly higher for the middle and top terciles (p<0.05). Conversely, the proportion of 

adopters significantly decreases from 81% in the bottom tercile, for both networks, to about 

49% and 47% for the top terciles for the <1 to 5 and 14+ years networks, respectively. These 



 

104 
 

changes show the possible role of network structures in affecting diffusion of the improved 

variety in these networks. Please refer to table 3.B2 in Appendix B for the sampled networks 

(column 1) across quintiles of modularity.     

 

Table 3.5. Adoption spell and adoption by modularity distribution 

 By tercile of modularity distribution 

 (1) (2) (3) = (2) - (1)   (4) (5) = (4) – (2) 

 1st 2nd Difference 3rd Difference 

Adoption spell      

   J known <1-5 years 7.31 

(0.35) 

8.71 

(0.35) 

   1.39** 

  (0.49) 

11.51 

(0.35) 

   2.81*** 

  (0.43) 

   J known 14+ years 7.25 

(0.34) 

8.78 

(0.35) 

   1.53*** 

  (0.49) 

11.51 

(0.27) 

   2.73*** 

  (0.44) 

      

Failure (adopted)      

   J known <1-5 years 0.81 

(0.03) 

0.70 

(0.04) 

   0.11** 

  (0.05) 

0.49 

(0.04) 

   0.21*** 

  (0.05) 

   J known 14+ years 0.81 

(0.03) 

0.70 

(0.04) 

   0.11** 

  (0.05) 

0.47 

(0.04) 

   0.23*** 

  (0.05) 

N 180 160  160  
Notes: Table shows the adoption spell (i.e., the time taken to adopt) and failure (i.e., whether adopted) by tercile of 

modularity distribution. These were reported for networks that were defined based on relationships formed before the 

introduction of the improved variety (i.e., the node indicated to have known the match, 𝑗 ∈  𝐽, for 14+ years) and the network 

of relationships that were formed within the past 5 years to 2016 (i.e., the node indicated to have known the match, , 𝑗 ∈  𝐽, 

for <1-5 years). Column (1) reports these for the first tercile of modularity, column (2) reports for the second tercile and column 

(4) reports that of the third tercile. Columns (3) and (5) shows the differences between the first and second terciles and the 

second and third terciles, respectively. Values in parenthesis are standard errors. *, ** and *** are significant at the 10%, 5% 

and 1% respectively 

 

3.3 Theoretical framework 

Using the target input model outlined in Foster and Rosenzweig (1995) and Bandiera and Rasul 

(2006), we develop a model of how farmers learn about new technologies from their social 

network members. Our model extends this framework by taking account of the drivers of social 

learning in the form of benefits, know-how, and the topological characteristics of the social 

network structure. For the theoretical as well as the empirical models, we do not only consider 

that farmers learn from those they have direct social links with (i.e., neighbors), but also the 

cohesiveness of their neighborhood, the level of segregation of the community and the farmer’s 

importance within the social network.  
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3.3.1 Updating profitability belief 

The model assumes each farmer i  knows the yield TV

iQ of the traditional variety cultivated on 

an acre of his land. The average yield of the improved variety IV

iQ  is not known. Thus, farmer 

i  forms beliefs about the profitability of the improved variety 𝑄𝑖
𝐼𝑉(𝒷) to guide his decision to 

learn or not. Farmers’ beliefs are within the range of 𝒷 ∈ [𝒷, 𝒷], with 0< 𝑄𝑖
𝐼𝑉(𝒷) < 𝑄𝑖

𝐼𝑉 <

𝑄𝑖
𝐼𝑉(𝒷).  

 

We delineate social learning process in two stages (Nourani 2019).26 In the first-stage, farmers 

are interested in knowing whether the expected yield potential of the improved variety is higher 

than the expected yield of the traditional variety cultivated on his land. We specify the first-

stage of the social learning process as a DeGroot updating process (DeGroot 1974), where we 

assume that the beliefs of the yield are based on the yield potential, i.e., the yields obtained 

with excellent production know-how. Since the formation of beliefs about the average yield of 

the improved variety is seen as a filter before realizing more intensive social learning based on 

Bayesian updating, it is desirable that this stage of the learning process is computationally 

simple and immediate. Moreover, DeGroot-updating allows for agents’ beliefs not converging 

to the same belief. Instead, groups of agents may reach different consensuses. The occurrence 

of different consensuses seem plausible in the case of farmers, since groups of farmers have 

context specific conditions, such as agronomic or farmer specific characteristics like, soil 

quality, exposition of the land, microclimate, agronomic experience or education. 

 

Communication with other farmers provides farmer i  information about other farmers’ beliefs. 

Farmer i  weights this information according to the reliability or trust he puts on farmer j . Let 

                                                           
26 Nourani (2019) links each stage of the two-stage learning process with a different type of agents. In our theoretical 

model each stage is based on all social ties of each agent. However, in the first-stage agents learn about the yield potential and 

in the second-stage about the know-how. 
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B  be an 𝑁 × 𝑁 interaction matrix between agents, where entries 𝑏𝑖𝑗 indicate the relative weight 

or trust farmer i  puts on farmer j  in comparison with all other farmers ,k k j , he relates to. 

As the weight is relative, the entries of each row of the matrix, 𝐵 sum up to one when 

normalized. The farmers’ initial beliefs at time 0 are exogenous and denoted by 𝒷𝑖0 for farmer 

i  . DeGroot updating from time period 1t   to period t  is given by the following rule 𝒷𝑖𝑡 =

∑ 𝑏𝑖𝑗
𝑁
𝑗=1 𝒷𝑗𝑡−1. Based on the updated value of 𝒷𝑖𝑡, farmer i  decides to learn about the 

cultivation technique, once his beliefs 𝒷𝑖𝑡 are higher than a given threshold. It can be given, 

for instance by the yield of the traditional variety, i.e., 𝑄𝑖
𝐼𝑉(𝒷) > 𝑄𝑖

𝑇𝑉.  

 

3.3.2 Learning about the production process 

Farmers can improve their initially rudimentary knowledge about the cultivation of the 

improved variety by learning from farmers that have adopted in the past and by their own 

experience once they have adopted. We assume that farmers use Bayesian updating to improve 

their knowledge about the cultivation technique. To keep the model simple, we do not consider 

institutional or public learning and focus on the effect of social learning. Furthermore, we 

assume that the price of output is normalized to one, inputs are costless and all farmers own 

the same size of land that is entirely cultivated to either the traditional or the improved variety. 

The agricultural production of farmer i  at time t  is a function of the applied input itI  . Farmers 

know the underlying production function of the improved variety up to a random optimal or 

“target” use of the applied input I . The yield of the improved variety ˆ IV

itQ , declines in the 

square of the deviation of actual applied input itI  and the uncertain target ˆ
it . By observing the 

obtained yields of the improved variety and the applied input, the farmer learns about optimal 

target by his own and other farmers’ experiences. The observed yield of the improved variety 

ˆ IV

itQ is expressed as 
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 (2) �̂�𝑖𝑡
𝐼𝑉 = 𝑄𝑖𝑡

𝐼𝑉 − [𝐼𝑖𝑡 − 𝜃𝑖𝑡]
2
, 

where *ˆ
it itu   . The term  

*  represents the mean optimal effective input and itu  is the 

transitory random shocks that are i.i.d. with  20, uN  . At time t , farmers are assumed to be 

informed about 2

u  and to have prior beliefs about 
*  that are distributed as  * 2,it itN   . In 

each period, farmers learn about the systematic part of the target by observing input and yield 

from their own trial and/or from their social network members. This information allows farmers 

to update their prior 
*

t , and infer the systematic component of ̂ . This results in a posterior 

belief about the variance over 
*  as 

 (3) 𝜎𝜃𝑖𝑡

2 =
1

𝜋0+𝜋𝑝𝑝𝑖𝑡−1+𝜋𝑝𝐻 (𝐶𝑖𝑡−1,𝜆𝑖,𝜏𝑖,𝑀)
 ,   

 

where 
0

2

0 1/
i

   is the precision of the farmer’s initial priors about the true value of 𝜃∗, 

21/p u  , is the precision of the information produced by farmer i ’s own trial or by his peers’ 

trials, 1itp   is an indicator of i ’s cumulative information of his own trial up to time 1t  , and 

 H  represents the cumulative information farmer i ´s has obtained from his peers in the past 

up to time 1t  . The information gathered in the term 
, 1i tC 

is based on the share of peer adopters 

in farmer i ´s neighborhood, 𝐴𝑗𝑡−1, farmer i ´s neighbors’ input 
1jtI 
 and the yields 

1

IV

jtQ 
 of the 

improved variety of farmer i ´s neighbors at time 𝑡. Thus, it is given by the function 

𝐶𝑖𝑡−1(𝐴𝑗𝑡−1, 𝐼𝑗𝑡−1𝑄𝑗𝑡−1
𝐼𝑉 ) ≥ 0.  

 

The term i denotes the centrality of farmers, which accounts for farmer i ’s immediate 

learning possibilities from farmers who are directly connected to him, as well as learning from 

well-connected neighbors (walks of length one). A high score means that a farmer is connected 

to many farmers or to farmers who themselves have high scores. If the number of walks tend 
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to infinity, i  stands for eigenvector centrality.27 Farmers learn from others as they receive 

information about input and yield. However, farmers may give more or less credibility to the 

information, depending on the strength of the social ties between farmer i  and farmer j . 

Although the strength of social ties cannot be measured directly, it can be assumed to be 

stronger if the neighborhood is tied together by mutual friendships, or shared responsibilities. 

As a proxy for the strength of social ties, we consider the cohesiveness of the neighborhood 

(i.e., farmer i ’s neighbors are also connected among each other). Thus, the more cohesive 

farmer i ´s neighborhood is, the more credible is the information that flows to farmer i . The 

local cohesiveness of farmer i ’s neighborhood is denoted by i , with [0,1]i   in equation (3), 

see Appendix A for a precise definition of these network statistics and their corresponding 

metrics.  

 

Another influential factor for social learning, and central to this study, is the strength of 

segregation of a network into modules (modularity) that is denoted by M . In a highly 

segregated community, farmers obtain information from their neighbors, but there is no or only 

weak flow of information between the segregated modules. Thus, farmers are more likely to 

learn only from others if adopters form part of their module, while their chances of learning 

are slim if adopters do not form part of their module. Also, the strength of modularity affects 

the structure of the neighborhood of all agents, such that the centrality and cohesiveness are 

lower for agents who are not located in the central parts of the module relative to that of agents 

at the center of the module. The unbalanced distribution of these topological characteristics 

due to modularity can shape the nature of information diffusion and social learning. Thus, the 

overall quantity and quality of information gathered from other farmers, together with the effect 

                                                           
27 Paths are possible connections between agents of any length where no agent is visited more than once. Walks are 

also connections but agents and links can be visited/traversed multiple times. 
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of local cohesiveness, eigenvector centrality and modularity are given by the function 

 1 0, , ,i iitH MC    . The function H  recognizes that the social network related variables 

1, , ,i ijtA M 
are interdependent. For instance, an increase in the degree or modularity changes 

the strength of local cohesiveness, the eigenvector centrality and the share of adopters. For this 

reason, one should think of H as a composite function where the inner function reflects the 

interdependencies between the social network variables in a form of a system of equations, and 

the outer function as the quantity and quality of the information the social network variables 

together with 𝐼𝑗𝑡−1and 𝑄𝑗𝑡−1
𝐼𝑉  provide.   

 

To maximize expected output, farmer 𝑖 applies inputs at the expected optimal level, such that 

𝐼𝑖𝑡 = 𝐸𝑡(𝜃𝑖𝑡) = 𝜃𝑡
∗, given 𝐸𝑡(𝑢𝑖𝑡) = 0. Following equations (2) and (3), and the expected 

optimal level of input application, we express the conditional expected output function as 

 (4) 𝐸𝑡�̂�𝑖𝑡
𝐼𝑉[ 𝐻(𝐶𝑖𝑡−1, 𝜆𝑖, 𝜏𝑖, 𝑀)] = 𝑄𝑖𝑡

𝐼𝑉 −
1

𝜋0+𝜋𝑝𝑝𝑖𝑡−1+𝜋𝑝𝐻 (𝐶𝑖𝑡−1,𝜆𝑖,𝜏𝑖,𝑀)
− 𝜎𝑢

2  

which implies that the expected output increases as the uncertainty of the farmer’s beliefs on 

the optimal target and the variance of the transitory random shocks decreases.  

 

3.3.3 Adoption decision 

We assume farmers have access to improved variety and a riskless traditional variety with 

output TV

iQ , such that adoption, 1itA  , if a farmer adopts the new crop variety at time t , and 

0itA   otherwise. Following equation (4), we express the value of output flow to farmer 𝑖 from 

time t  to 1t   as 

𝑉𝑡[𝑝𝑖𝑡−1, 𝐻(𝐶𝑖𝑡−1, 𝜆𝑖, 𝜏𝑖, 𝑀)] 

(5) = max
𝐴𝑖𝑡∈{0,1}

(1 − 𝐴𝑖𝑡)𝑄𝑖𝑡
𝑇𝑌 + 𝐴𝑖𝑡𝐸𝑡�̂�𝑖𝑡

𝐼𝑉[𝑝𝑖𝑡−1, 𝐻(𝐶𝑖𝑡−1, 𝜆𝑖, 𝜏𝑖 , 𝑀)] 

              + 𝑟𝑉𝑡+1[{(1 − 𝐴𝑖𝑡)𝑝𝑖𝑡−1, 𝐴𝑖𝑡𝑝𝑖𝑡}, 𝐻(𝐶𝑖𝑡−1, 𝜆𝑖 , 𝜏𝑖, 𝑀)]  
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where r  is the farmer’s discount rate.28 The farmer adopts the new crop variety at time t , if  

 (6) 𝐸𝑡{�̂�𝑖𝑡
𝐼𝑉[𝑝𝑖𝑡−1, 𝐻(𝐶𝑖𝑡−1, 𝜆𝑖, 𝜏𝑖 , 𝑀)] + 𝑟𝑉𝑡+1[𝑝𝑖𝑡, 𝐻(𝐶𝑖𝑡−1, 𝜆𝑖 , 𝜏𝑖, 𝑀)]} 

                                                                ≥ 𝐸𝑡{𝑄𝑖
𝑇𝑌 + 𝑟𝑉𝑡+1[𝑝𝑖𝑡−1, 𝐻(𝐶𝑖𝑡−1, 𝜆𝑖, 𝜏𝑖, 𝑀)]}    .  

 

Thus, farmer 'i s adoption decision at time t  depends on the information obtained from his 

neighbors and the change in net value of output from adopting at time t  with respect to his 

neighbors experiences, 𝐶𝑖𝑡−1, and other social network related information 𝐴𝑗𝑡−1, 𝜆𝑖, 𝜏𝑖 and 𝑀. 

Let these five variables form a set denoted by S , with each element denoted by vS , where 

𝑣 =1,2,…,5. With respect to an increase in a farmer- or social network-related variable vS , the 

derivative of expected stream of net benefits at time t  is given by: 

 

            [
𝜕𝐸𝑡�̂�𝑖𝑡

𝐼𝑉[𝑝𝑖𝑡−1,𝐻(𝐶𝑖𝑡−1,𝜆𝑖,𝜏𝑖,𝑀)]

𝜕𝐻
+ 𝑟

𝜕𝐸𝑡{𝑉𝑡+1[𝑝𝑖𝑡,𝐻(𝐶𝑖𝑡−1,𝜆𝑖,𝜏𝑖,𝑀)]−𝑉𝑡+1[𝑝𝑖𝑡−1,𝐻(𝐶𝑖𝑡−1,𝜆𝑖,𝜏𝑖,𝑀)]}

𝜕𝐻
]

𝜕𝐻

𝜕𝑆𝑣
 

(7)       = [
1

[𝜋0+𝜋𝑝𝑝𝑖𝑡+𝜋𝑝𝐻 (𝐶𝑖𝑡−1,𝜆𝑖,𝜏𝑖,𝑀)]
2     

 +𝑟 ∑ 𝑟𝑢𝑇
𝑢=1 {

1

[𝜋0+𝜋𝑝𝑝𝑖𝑡+𝜋𝑝𝐻 (𝐶𝑖𝑡−1,𝜆𝑖,𝜏𝑖,𝑀)]
2 −

1

[𝜋0+𝜋𝑝𝑝𝑖𝑡−1+𝜋𝑝𝐻 (𝐶𝑖𝑡−1,𝜆𝑖,𝜏𝑖,𝑀)]
2}]

𝜕𝐻

𝜕𝑆𝑣
⋚ 0 

 

where the first terms on both sides of the equation indicate the increase in current benefits 

resulting from more information,  ˆ 0IV

t ítE Q H   , conditional on adoption of the improved 

variety.29 This indicates the learning externality, as farmer i  obtains more and better 

information about cultivating the improved variety. The sign of the learning externality is 

positive and favors adoption. The second term, enclosed in curly brackets, represents the 

difference in the future stream of discounted benefits, between adoption and non-adoption at 

                                                           
28 For instance, if we consider the initial moment of time where 0t  , the values of  1tp   and tp  are given by 0 and 1, 

respectively. 

29 If the improved variety were not adopted the current benefits would not change as a result of more information. 
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time t . Given that 1

1 1

T T

u u

u u

p p 

 

  , the sign of the sum is negative, suggesting that additional 

information from farmer i ´s own trials is less valuable than the additional information obtained 

from the farmer’s neighbors. Thus, farmer 𝑖 may strategically delay adoption to make use of the 

additional and more precise information obtained from his peer adopters. Thus, the sign of 

strategic delay is negative and tends to delay adoption. The overall effect of more and better 

information about the cultivation of the improved variety depends on the magnitude of these 

two effects and the sign of vSH  . The latter derivative indicates the marginal effect of 

farmer-related and social network-related variables on the quantity and quality of information 

received by farmer i  from neighbor j .    

 

It is expected that  decrease in modularity, and an increase in local cohesiveness i , the 

centrality of farmer i  in the social network, i , the share of past adopting peers, 𝐴𝑗𝑡−1, and the 

peers’ experiences about their input and output lead to more and better information about the 

improved variety, i.e.,  0vH S   . Since the learning externality is always positive and 

strategic delay is always negative, the change in the magnitude of these two effects as a result 

of more and better information tends to determine whether the farmer adopts or delays 

adoption. Although strategic delay is always negative, the difference between the terms in curly 

brackets decreases, if the value of H  increases and becomes dominant in both denominators. 

Thus, the sum of all terms in equation (7) tends to change sign from negative to positive as H  

increases and adoption takes place. However, if  0vH S   , the opposite result is obtained, 

whereby adoption is delayed.  
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Hypothesis 1: When the belief about expected profitability of the improved variety is lower 

than a given threshold, higher learning opportunities from experienced peers do not 

significantly increase the likelihood of adopting the improved variety.   

 

Hypothesis 2: The likelihood of adoption is low with increased modularity of the social 

network, but the influence of modularity on learning from peers for adoption is weaker, if social 

learning is among direct peers or within modules. 

 

Hypothesis 3: When increased local cohesiveness and centrality lead to more opportunities 

for learning and adoption, lower modularity is more likely to increase the likelihood of 

adoption than higher modularity.    

 

The theoretical model describes the signs of the effects of the driving forces on adoption, but 

does not offer insights about the strength of the effects. In the next section, we employ 

observational data to examine the magnitude of the influence of these unknowns.   

 

3.4. Empirical specification and estimation 

3.4.1 Empirical specification   

Our theoretical framework shows that the time at which a farmer adopts the new technology 

relates to the past adoption decisions of peers, information from past peer experiences, and the 

structure and characteristics of the social network. Based on the notation used in the theoretical 

framework, we specify our empirical model, by assuming a lag transmission of social network 

effects (Manski 1993) as: 

(8) 𝑃𝑟[𝑇 = 𝑡|𝑇 ≥ 𝑡, 𝐺, 𝐴0 … 𝐴𝑡 , 𝐶0 … 𝐶𝑡, 𝑋𝑡] 

       = 𝜌𝐺𝑡𝐴𝑡−1 + 𝛼𝐺𝑡𝐶𝑡 + 𝛽1𝑀𝑡 + 𝛽2𝐷𝑡 + 𝛽3𝐺𝑡𝐷𝑡 + 𝑋𝑡
′𝛾1 + 𝑋𝑡

′𝐺𝑡𝛾2 + 𝜄𝑡𝐺 + 휀𝑡, 

where 𝑇 is a random variable that denotes the time of adoption of the improved variety, 𝐺𝑡 is a 

normalized social network matrix, and 𝐺𝑡𝐴𝑡−1 is the share of past adopting peers. Given that 
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adoption decisions are based on the net expected returns from adoption, as discussed in the 

theoretical framework, it follows that changes in peer adoption decisions will inform the farmer 

about the profitability of the improved variety. Thus, 𝜌 shows the effect of the association 

between share of past peer adoption decisions, which indicates profitability signal, and the 

conditional probability of adoption at any given time. 𝐶𝑡 is farmers’ experience in cultivating 

the improved variety, 𝐺𝑡𝐶𝑡 is the average peer experience in the cultivation of the variety and 

𝛼 is the association between peer experience (i.e., learning about production process) and the 

conditional probability of adoption at time 𝑡. 𝐷𝑡 is a vector of farmer level network statistics 

[i.e., transitivity (𝜏𝑡) and centrality measures (𝜆𝑡)], 𝐺𝑡𝐷𝑡 is the farmer’s average peer network 

statistics, 𝑀𝑡 is the modularity of the network, and 𝛽1, 𝛽2 and 𝛽3 are vectors of parameters to 

be estimated, while 휀𝑡 is the error term. 

 

Our specification of the effects of peer adoption decisions differs from the “traditional” 

endogenous peer effect as in Manski (1993). Specifically, we define this effect based on 

previous peer adoptions, and not contemporaneous adoptions. This simplifies the econometric 

framework because of the reflection problem. It also enhances identification, since farmers 

react to their peers’ adoption decisions only when observed (i.e., timing between own decision 

and peer decisions).  However, two critical concerns that arise are the contextual and correlated 

effects. Contextual effects refer to similarities in exogenous characteristics among peers, which 

can cause behaviors to correlate through such peer exogenous characteristics, and not due to 

peer behavior. We control for contextual effects with individual and peer characteristics (i.e., 

𝑋𝑡
′ and 𝑋𝑡

′𝐺𝑡, respectively), and the associated parameters to be estimated as 𝛾1 and 𝛾2 in 

equation (8).     

 

Next is the possibility of unobservables at the network and individual levels to drive 

correlations in individual adoption decisions (i.e., correlated effects) and cause identification 
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problems by confounding the peer effects estimates (Manski 1993; Moffitt 2001; Blume et al. 

2011). These are represented with the vector 𝜄𝑡𝐺  in equation (8), which consists of time, village 

and environmental factors (i.e., correlated effects) that affect adoption. Available approaches 

for accounting for these unobservables in the literature, given our setting, include, the use of a 

(i) standard instrumental variable approach, (ii) network fixed-effects to account for potential 

network-specific unobserved factors (Lee 2007; Liu and Lee 2010),30 and (iii) the control 

function for accounting for self-selection within social interactions (Goldsmith-Pinkham and 

Imbens 2013; Hsieh and Lee 2016). 

 

Our approach to accounting for correlated unobservable basically involve the last two: First, 

we decompose 𝜄𝑡𝐺  into time, 𝛿𝑡, and network, 𝓋𝐺 , effects and control for both in our 

specifications. The second approach (i.e., (iii) above) involves a first-stage model of network 

formation, given that link formation is a phenomenon of choice, determined by observed and 

unobserved agents’ characteristics. The estimated unobserved determinants of link formation, 

defined as �̂�𝑡, at the first-stage, are retrieved and inserted into a second-stage adoption decision 

model to account for endogeneity of the network effect. This is similar in spirit to the Heckman 

(1979) sample selection approach and the Brock and Durlauf (2001; 2006) generalized 

multinomial control function for self-selection corrections with social interactions. Another 

merit of the use of this approach is that it allows us account for concerns of measurement errors 

due to the use of sampled networks (Chandrasekhar and Lewis 2016), as well as provides a 

natural source of instruments for identifying the social interaction effects (Brock and Durlauf 

2001) in order to obtain consistent estimates.  

 

  

                                                           
30 See Horrace et al. (2016) and Hsieh and Lee (2016) for discussion of these approaches. 
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3.4.2 Empirical estimation  

Our interest is in examining the network effects on the conditional probability of adopting 

improved soybean variety at time 𝑡 given that the farmer has not adopted until this time. Given 

that adoption of the technology in question were observed on annual basis, where observed 

durations are clustered at mass points, we model our duration to adoption in a discrete-time 

method to account for the banded nature of the survival time. Also, discrete-time methods do 

not impose functional form restriction on the time effects (allowing for specific time fixed 

effects to be captured) compared to the continuous time proportional hazard models, and make 

it possible to account for time-varying covariates (Jenkins 2005). 

 

If we define 𝑛 as the total number of farmers (𝑖 = 1,2,3, …) observed until time 𝑡𝑖, at which 

point the farmer either adopts the improved variety (i.e., uncensored) or do not adopt (i.e., 

censored). In this study, the entrance date is 2003 which is the year in which the improved 

variety was introduced (i.e., 𝑡 = 1). The exit date of the spell for the farmers who adopt the 

improved variety is the year of adoption, and farmers who have not adopted at the 2016 farming 

season are right-censored, because the data was collected on farmers’ agricultural production 

in the 2016 farming season. If we define 𝑿𝑖𝑡 as a vector of explanatory variables and 𝓑 as the 

associated vector of parameters in equation (8), we express the discrete-time hazard rate as 

 (9) 𝐴𝑖𝑡 = 𝑃𝑟[𝑇𝑖 = 𝑡|𝑇𝑖 ≥ 𝑡, 𝑿𝑖𝑡]  

where 𝑇 is the discrete random variable representing the adoption time of the farmer31. In order 

to express the dependence of the hazard rate on time and the explanatory variables, we use the 

complementary log-log link function which is not sensitive to the length of the time intervals, 

compared to the logistic regression function (Allison 1982). The complementary log-log 

                                                           
31 This also represents the conditional probability of adoption at time 𝑡, given that the farmer has not adopted until this time. 
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function assumes the data generating process is based on the continuous-time proportional 

hazard model and is express as   

 (10) 𝐴𝑖𝑡 = 1 −exp[−exp(𝓑′𝑿𝑖𝑡)]. 

Equation (10) represents the discrete-time proportional hazard model. We estimate the hazard 

model by maximizing the likelihood of the function. Given that some of the observations are 

censored, we express the likelihood function of the data generation process as  

 (11) 𝐿 = ∏ [Pr (𝑇𝑖 = 𝑡𝑖)]𝑎𝑖[Pr (𝑇𝑖 > 𝑡𝑖)]1−𝑎𝑖𝑛
𝑖=1    

where 𝐿 is the likelihood of function, and 𝑎𝑖 is set equal to 1 if 𝑖 is uncensored and zero 

otherwise. Expressing each of the probabilities in equation (11) as a function of the hazard rate 

and taking the logarithm of this deliver the log-likelihood function as 

 (12) log 𝐿 = ∑ ∑ 𝑦𝑖𝑡
𝑡𝑖
𝑠=1

𝑛
𝑖=1 log[𝐴𝑖𝑠/(1 − 𝐴𝑖𝑠)] + ∑ ∑ log (1 − 𝐴𝑖𝑠)

𝑡𝑖
𝑠=1

𝑛
𝑖=1  

where 𝑦𝑖𝑡 is a dummy variable equal to 1 if farmer 𝑖 adopted the improved variety at time 𝑡, 

and zero otherwise32. Each discrete-time unit for a farmer is treated as a separate observation, 

and the dependent variable is coded 1 if the farmer adopted the improved variety in that time 

unit and zero otherwise. The farmer contributes to the computation of 𝐴𝑖𝑠, if he adopts the 

improved variety at time 𝑡𝑖, and (1 − 𝐴𝑖𝑠) for the period before 𝑡𝑖. If the farmer does not adopt 

(i.e., censored) by the 2016 cropping season, he only takes part in the computation of the term 

second term of the right-hand size.  

 

Following the discussion of the identification of the peer effects and the hazard model, equation 

(8) can now be specified as:  

𝐴𝑖𝑡 =  𝜌𝐺𝑡𝐴𝑖𝑡−1 + 𝛼𝐺𝑡𝐶𝑖𝑡 + 𝛽
1
𝑀𝑡 + 𝛽

2
𝐷𝑖𝑡 + 𝛽

3
𝐺𝑡𝐷𝑖𝑡  

        (13)         + 𝜌𝛼𝐺𝑡𝐴𝑖𝑡−1 × 𝐺𝑡𝐶𝑖𝑡 + 𝜌𝑀𝐺𝑡𝐴𝑖𝑡−1 × 𝑀𝑡 + 𝛼𝑀𝐺𝑡𝐶𝑖𝑡 × 𝑀𝑡 + 𝛽𝑀𝐺𝑡𝐷𝑖𝑡 × 𝑀𝑡 

                             + 𝑋𝑖𝑡
′ 𝛾1 + 𝑋𝑖𝑡

′ 𝐺𝑡𝛾2 + 𝛿𝑡 + 𝓋𝐺 + �̂�𝑖𝑡 + 𝜖𝑖𝑡, 

                                                           
32 See Allison (1982) for the steps required to arrive at the log-likelihood function.  
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where 𝜌 and 𝛼 represent the effects of learning about profitability and know-how, respectively; 

𝛽1, 𝛽2 and 𝛽3 show the effects of network characteristics; 𝛾1 and 𝛾2 represent contextual effects; 

𝛿𝑡, 𝓋𝐺  and �̂�𝑖𝑡 account for correlated effects. The parameter 𝛿𝑡 is a flexible baseline hazard 

which indicates the pattern of duration dependence in the diffusion process over time, and is 

used to account for time fixed effects. The parameter 𝓋𝐺  accounts for network level effects that 

might drive peers’ behavior to be correlated. �̂�𝑖𝑡 is a vector of predicted residuals of the link 

formation model used to account for unobserved factors that affect network formation at the 

farmer level (refer to Appendix B for discussion and estimation of the network-formation 

model).  

 

To examine the relationship between learning about profitability, know-how, and network 

statistics, the second row of equation (13) shows the interactions among these variables. In 

particular 𝜌𝛼 denotes the interaction effects of past adopting, 𝐺𝑡𝐴𝑖𝑡−1, and experienced peers, 

𝐺𝑡𝐶𝑖𝑡. 𝜌𝑀 and 𝛼𝑀 show the effects of past adopting, 𝐺𝑡𝐴𝑖𝑡−1, and experienced peers, 𝐺𝑡𝐶𝑖𝑡, 

conditioned on modularity of the network, 𝑀𝑡, respectively. 𝛽𝑀 represents the effect of farmer 

level network statistics, 𝐺𝑡𝐷𝑖𝑡, (i.e., local transitivity, degree and eigenvector centrality), 

conditioned on modularity of the network, 𝑀𝑡, and the rest are as defined in equation (8).  

 

3.5 Empirical results and discussions 

This section presents and discusses the results of our empirical estimates. Table 3.6 presents 

the unconditional hazard ratio estimates of peer adoption, peer experience and network 

statistics on adoption, whereas table 3.7 presents the hazard ratio estimates of these conditioned 

on modularity of the social network.  

 

We first consider the unconditional hazard ratios of past peer adoption of the improved variety 

on adoption in columns (1, 3, 5 and 7) with degree centrality, and in columns (2, 4, 6 and 8) 

with eigenvector centrality, in table 3.6. Columns (1-4), present a restricted specification, 
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which does not control for contextual peer effects. Columns (5-8) control for peer contextual 

effects, 𝛾2, (refer to Appendix C table 3.C1 for estimates of the controls). There is little 

difference in the hazard ratios of peer adoption, peer experience and network statistics in any 

given year, when we estimate with and without the contextual peer effects. This suggests that 

adoption of the improved variety is unlikely to be due to the observable contextual peer 

characteristics. Columns (5-8) of table 3.C1 in the appendix show that the residuals, �̂�𝑡 , of the 

network formation model are jointly statistically significant at the 5% level, indicating the 

significance of controlling for the unobservable factors that affect link formation at the farm 

household level. The baseline hazard33 estimates reveal that the rates of adoption increase 

overtime and peak in years 9 and 10 bin, and then begins to slowdown afterwards (see 

Appendix C, tables 3.C1 and 3.C2). The coefficients of the time effect dummies together show 

increasing and positive duration dependence in the adoption process. This is not surprising, 

because one will expect the adoption conditions to improve overtime, as the aggregate 

experience with the improved variety at the village level makes learning from others more 

effective.                 

 

3.5.1 Peer adoption decisions, experiences and diffusion  

We now focus on the unrestricted model in columns (5-8) in table 3.6 in discussing social 

network effects on the speed of adoption. The estimates reveal a positive and significant effect 

of past share of adopting peers on the conditional probability of adoption across all 

specifications. In fact, a percentage increase in adopting peers is associated with about 135 

percent higher hazard rate. Similarly, the coefficient estimates of peer experience indicate that 

those with more experienced peers with the improved variety have higher hazard rates. 

                                                           
33 A challenge with the time dummies in our application is that some of the year bins have very few incidences of adoption, 

which drops out during estimation. This means that using year specific time effects can lead to loss of important information 

required to estimate the network effects. To circumvent this situation, we select same-length of time bins (i.e., two-year-long 

periods) which allows for at least enough incidence of adoption for each of the time bins.    
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Specifically, a year increase in average peer experience with the improved variety is associated 

with about 84 percent higher hazard rate. Thus, signals from increased peer adoption decisions 

and experienced peers tend to increase learning opportunities and decrease learning costs, 

which consequently can speed up adoption of the improved variety (Beaman et al. 2018). 

 

We also present the distribution of marginal effects of estimates of the main specification in 

column (5) in Figure 3.1. These estimates reveal that a 20 percent standard deviation increase 

in adopting peers is associated with a 10 percentage points increase in the conditional 

probability of adoption in any given year. Similarly, a 20 percent (which translated into 1.4 

years) standard deviation increase in average peer experience is associated with about 9 

percentage points increase in the probability of adoption in any given year.  

 

The effects of peer experience with the improved variety on the conditional probability of 

adoption is lower than the effects of share of adopting peers, when the share of past adopting 

peers is below 25 percent. However, the effects of peer experience become higher and remains 

so with increasing peer experience in the cultivation of the improved variety, when more than 

30 percent of peers have adopted the improved variety. This is expected because the higher 

efforts required in learning about the production process will make farmers expect a certain 

level of peer adoption in order to increase learning opportunities, as indicated in the theoretical 

framework. Past studies found evidence of either learning about hard-to-use (Oster and 

Thornton 2012), or easy-to-use technologies in conditions of visible benefits (Magnan et al. 

2015). A possible implication of our finding is that network effects could drive both learning 

about benefits and application (use) of a technology that is relatively hard-to-apply, and with 

visible expected benefits that can be inferred from peer decisions, albeit the precise 

mechanisms cannot be determined with the data.
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Table 3.6. Estimates of Social learning and farmers’ adoption 

Notes: Random-effects complementary log-log estimation. Models 1-4 do not include average peer characteristics (i.e., contextual effects). Models 5-8 include these average peer characteristics 

(their coefficients and that of other controls are presented in appendix table 3.C1). Correlated effects include time fixed-effects, 𝛿𝑡, link formation residuals, �̂�𝑡, and standard errors clustered at 

the village (i.e., network) level, in order to account for village factors that might drive peer behaviors to be correlated, 𝓋𝐺 [we did not use village dummies because of the need to avoid the 

incidental parameter problem (Lee et al., 2010) by having to include 25 village dummies, and also the fact that modularity is calculated for the entire network/village]. The asterisks ***, ** 

and * are significance at 1%, 5% and 10% levels, respectively.  

    No Contextual Effects  Contextual Effects 

       (1) (2) (3) (4)  (5) (6) (7) (8) 

Share of peer adopters   𝜌  2.350** 

(0.761) 

 2.319**             

(0.746) 

 1.424 

(0.542) 

 1.417 

(0.541) 

  2.374** 

(0.762) 

 2.348** 

(0.746) 

 1.513 

(0.569) 

                1.503 

               (0.567) 

Peer experience   𝛼  1.840*** 

(0.232) 

 1.885*** 

(0.224) 

 1.770*** 

(0.226) 

 1.818*** 

(0.220) 

  1.834*** 

(0.224) 

 1.883*** 

(0.216) 

 1.771*** 

(0.216) 

                1.821*** 

               (0.209) 

Peer experience  

 × Share of peer adopters  

𝜌𝛼    1.523 

(0.414) 

 1.512 

(0.419) 

    1.459 

(0.382) 

                1.453 

               (0.391) 

Modularity  𝛽1  0.182** 

(0.146) 

 0.139** 

(0.118) 

 0.166** 

(0.129) 

 0.127** 

(0.103) 

  0.186** 

(0.139) 

 0.126** 

(0.103) 

 0.169** 

(0.121) 

                0.115** 

               (0.088) 

Transitivity  𝛽2  3.146** 

(1.340) 

 3.186** 

(1.435) 

 3.155** 

(1.331) 

 3.191** 

(1.424) 

  3.301** 

(1.449) 

 3.328** 

(1.534) 

 3.303** 

(1.438) 

                3.322** 

               (1.521) 

Degree 𝛽2  1.088 

(0.058) 

  1.090 

(0.058) 

   1.099* 

(0.056) 

  1.102* 

(0.057) 

 

Average peer degree   𝛽3  1.124* 

(0.074) 

  1.127* 

(0.073) 

   1.160** 

(0.080) 

  1.163** 

(0.081) 

 

Eigenvector   𝛽2   1.092 

(0.389) 

  1.119 

(0.397) 

   1.211* 

(0.409) 

                  1.243 

                (0.419) 

Average peer eigenvector  𝛽3   2.170** 

(0.793) 

  2.208** 

(0.799) 

   2.464** 

(1.049) 

                  2.509** 

                (1.066) 

Controls 𝛾1   Yes   Yes   Yes   Yes    Yes    Yes   Yes                   Yes 

Contextual effects 𝛾2    No    No    No    No    Yes    Yes   Yes                   Yes 

Correlated effects  𝛿𝑡,𝓋𝐺 ,�̂�𝑡   Yes   Yes   Yes   Yes    Yes    Yes   Yes                   Yes 

  𝜌 + 𝜌𝛼 = 0     5.68(0.02)                  5.73(0.02) 

  𝛼 + 𝜌𝛼 = 0     10.67(0.00)                 11.04(0.00) 

Link Residuals  𝑿𝟓
𝟐(p-val)  22.58(0.00) 25.64(0.00) 22.66(0.0

0) 

25.59(0.00)  22.71(0.00) 25.65(0.01) 22.99(0.00)                 26.21(0.00) 

LogLikelihood  -972.6 -972.6  -970.3  -971.2   -964.8  -965.8  -963.6                 -964.7 

Clusters     25    25    25     25     25      25     25                  25 

N   4,551  4,551   4,551   4,551   4,551   4,551   4,551                  4,551 
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Figure 3.1 Marginal Effects of peer adoption and production experience 
 

Notes: Marginal effects of the fully specified model (i.e., column 5 of table 3.6). In each case (e.g., peer 

adoption), all variables other than peer adoption are held constant at their mean values. Peer experience is 

expressed as a percent of the maximum average peer experience in the sample. Starting from baseline year 

adoption probabilities of about 9% and 6% for share of adopting and experienced peers, respectively, the 

probability of adoption marginally increases to about 18% with increased peer adoption of the improved variety 

(i.e., the thick-dot line), and to about 38% with increased peer experience in farming the improved variety 

soybean (i.e., the solid line).  

 

 

To show the dependence between signals from past peer adoption decisions and peer experience 

in soybean farming, we also estimated the conditional network effects by interacting share of past 

adopting peers with peer experience [i.e., the first term of row two in specification (13)] in columns 

(7) and (8). The estimates reveal that whereas the main effect, 𝜌, and interaction effect, 𝜌𝛼, are 

each not statistically significant, the main effect of peer experience, 𝛼, remains positive and 

statistically significant. This suggests that a year increase in average peer experience with the 

improved variety is associated with a hazard rate of at least 77 percent.   
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Figure 3.2 shows the marginal effects of the interaction between share of peer adopters and peer 

experience on the conditional probability of adoption in any given year. The interaction effects 

between the two appear to be complementary on the probability of adoption. Specifically, the 

probability of adoption is generally low at lower shares of adopting peers and peer experience, and 

does not exceed 25 percent with 10 percent adopting peers and even with 4 years (on average) peer 

experience. Even at the maximum levels of peer adoption of the improved variety, the conditional 

probability of adoption in any given year is between 24 – 33 percentage points with lower (i.e., 2 

year) average peer experience with the improved variety. However, a farmer who has peers with 

6 years average experience and 80 percent share of adopting peers has about 79-89 percentage 

points likelihood of adoption in any given year.  

 

Figure 3.2 Predicted probability of adoption by peer adoption and production experience 
 

Notes: Predicted probability of farm household adoption by peer adoption and production experience based on column 7 of table 

3.6. There is a positive association between peer adoption and production experience. Starting from a baseline probability of 15% 

with lower levels of peer adoption and experience, the probability of adoption increases to at least 79-89% at high levels of peer 

adoption and production experience.    
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This finding suggests that although having many adopting and experienced peers can increase the 

learning opportunities and possibly reduces the duration of non-adoption, the effects of learning 

about know-how from peer experience on adoption is much higher than the effect of peer adoption 

decisions. This is expected because soybean production is quite demanding in terms of labor 

inputs, management and timing of other inputs application, making the marginal returns to learning 

about production relatively higher than just signal from peer adoption decisions.  

3.5.2 Network statistics and diffusion  

We next consider the network statistics by first focusing on the individual level statistics (i.e., 

transitivity, degree and eigenvector centralities). In respect of degree and eigenvector centralities, 

we focus on the averages of farmers’ peer degree and eigenvector centralities because of our 

interest in showing the effects of a farmer’s connection to highly connected or important peers on 

the probability of adoption, and not that of the farmer himself. The results, reported in table 3.6, 

show a positive and significant association between the transitivity and the conditional probability 

of adoption in any given year across all specifications. In addition, farmers’ connections (i.e., 

degree) and farmers’ average peer connections (i.e., farmers’ average peer degrees) in column (7) 

as well as farmers’ average peer eigenvector centrality in column (8) each significantly increases 

the hazard rate in any given year. Interestingly, however, the hazard rate of transitivity is 

significantly higher than the hazard rate of peer degree (p=0.022), but not significantly different 

from the hazard rate of farmers’ average peer eigenvector centrality (p>0.1)34.  

                                                           
34 The coefficient of transitivity is also significantly higher than the coefficient of farmers’ own degree (p=0.00) in column (7). 
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This finding suggests that obtaining information on the new technology from multiple and 

interconnected sources is very important than from a highly connected farmer. This could be due 

to the fact that the influence of central nodes is more local35 (i.e., limited to few known direct 

nodes and the unknown nodes just learn by imitation) (e.g., see Banerjee et al. 2014; Beaman and 

Dillon 2018), and/or because the central node’s trustworthiness is low. It could also be associated 

with the fact that central nodes are unable to communicate intensively over a certain time for other 

farmers to get the required information (especially if learning is not easy) (Beaman et al. 2018).   

 

We earlier on argued that the extent of partitioning of the network into groups, which defines 

modularity, can affect the rate of interaction and diffusion of the improved variety, particularly if 

a network has high modularity statistics (i.e., highly segregated). Estimates of modularity show 

significant and negative association with adoption across all specifications in table 3.6. Thus, 

farmers who belong to highly segregated networks (i.e., higher modularity network) tend to have 

longer duration of non-adoption of the improved variety. Thus, whereas increasing transitivity of 

a farmer’s neighborhood is associated with higher hazard rate due to less structural holes and 

increased efficiency in information flow and diffusion, increasing modularity leads to lower hazard 

rate due to the highly structured latent groups in the networks. This confirms the arguments by 

Rogers (1995), Alatas et al. (2016), and Jackson et al. (2017) that the likelihood of information or 

behavior to spread from one node to other nodes is high in networks with less latent community 

structures and/or highly cohesive subgroups.  

 

 

  

                                                           
35 Beaman and Dillon (2018) found that information does not diffuse to people who are far from the first recipient of the 

information 
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3.5.3 Network modularity versus transitivity and centrality on diffusion  

To examine whether network modularity conditions the effects of information about peer adoption 

decisions, – and for that matter profitability beliefs –, and peer experiences in soybean production 

on the conditional probability of adoption by farmers, we interact past peer adoption decision and 

peer experiences with modularity in columns (1) and (2) of table 3.7. Although the main effects of 

peer adoption decisions and experiences remained significantly positive, it is the interaction effects 

of peer experience with modularity that is significant, suggesting that there is some dependence of 

learning from peer experiences on modularity.  

 

This is clearly shown in Figure 3.3 where the conditional probability of adoption continues to 

increase with increasing peer adoptions but with higher probability at higher levels of adopting 

peers and lower modularity (Fig. 4A). Similarly, the conditional probability of adoption increases 

with increasing peer experience but appears to show high effect of learning from peer experiences 

at higher peer experiences and modularity (Fig. 4B). These relationships suggest that farmers 

depend more on their direct peers or peers within their components in the network in learning from 

peer experiences, and possibly on both direct and indirect peers or even peers across components 

in observing peer adoption decisions.  

 

Our findings substantiate the argument by Jackson et al. (2017) that flow of information or 

behavior among nodes is stronger and can possibly reach all nodes, if these nodes belong to the 

same component in a network, and that of Nourani (2019) that farmers tend to learn about 

production knowledge from strong ties, and about profitability from weak ties. In effect, the figures 

show that when the proportion of peer adopters and years of experience are low changes in the 

modularity has little effect on adoption. When these values are high changes in the modularity are 

highly effective.  
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Table 3.7. Impact of network modularity on farmers’ adoption 

     (1)    (2)    (3)   (4) 
Share of peer adopters 𝜌  2.223*** 

(0.610) 

 2.194*** 

(0.588) 

  2.480** 

(0.788) 

 2.485*** 

(0.776) 

Peer experience  𝛼  1.934*** 

(0.223) 

 1.987*** 

(0.221) 

  1.773*** 

(0.214) 

 1.793*** 

(0.204) 

Modularity 𝛽1  0.159* 

(0.115) 

 0.109** 

(0.085) 

  0.134** 

(0.123) 

 0.127** 

(0.119) 

Transitivity 𝛽2  3.107** 

(1.328) 

 3.176** 

(1.427) 

  3.462** 

(1.531) 

 3.417** 

(1.593) 

Degree 𝛽2  1.117** 

(0.055) 

   1.060 

(0.052) 

 

Average peer degree 𝛽3  1.171** 

(0.082) 

   1.084 

(0.076) 

 

Eigenvector 𝛽2   1.257 

(0.413) 

   1.204 

(0.407) 

Average peer eigenvector 𝛽3   2.450** 

(1.067) 

   2.194* 

(0.866) 

Modularity 

          × Share of peer adopters 

𝜌𝑀  1.541 

(7.895) 

 1.297 

(6.514) 

   

Modularity 

         × Peer experience 

𝛼𝑀  4.273* 

(3.349) 

 3.544** 

(2.679) 

   

Modularity 

          × Transitivity 

𝛽𝑀     2.38E-5*** 

(8.43E-5) 

 1.16E-5*** 

(4.45E-5) 

Modularity 

          × Average peer degree 
𝛽𝑀     0.372** 

(0.154) 

 

Modularity 

          × Average peer eigenvector 

𝛽𝑀      0.004** 

(0.010) 

Controls 𝛾1   Yes   Yes     Yes   Yes 

Contextual effects 𝛾2   Yes   Yes     Yes   Yes 

Correlated effects  𝛿𝑡, 𝓋𝐺 , �̂�𝑡   Yes   Yes     Yes   Yes 

LogLikelihood  -961.4 -963.2   -958.6  -959.1 

Clusters      25     25      25     25 

N   4,551  4,551    4,551   4,551 
Notes: Random-effects complementary log-log estimation of equation (13). Column 1 controls for the interactions of 

modularity on one hand and peer adopters and experience on the other hand as well as agent’s degree and average peer degree. 

Column 2 controls for the interactions of modularity on one hand and peer adopters and experience on the other hand but with 

agent’s eigenvector centrality and average peer eigenvector centralities. Column 3 controls for the interactions of modularity on 

one hand and agent’s local transitivity, degree and average peer degree, whiles column 4 controls for the interactions of modularity 

on one hand and agent’s local transitivity, eigenvector centrality and average peer eigenvector centrality. The coefficients of agents’ 

controls and that of peer characteristics are presented in appendix table 3.C2). Peer experience is the number of years of peer 

experience in cultivating the improved variety. Correlated effects include time fixed-effects, 𝛿𝑡, link formation residuals, �̂�𝑡, and 

standard errors clustered at the village (i.e., network) level, in order to account for village factors that might drive peer behaviors 

to be correlated, 𝓋𝐺 [we did not use village dummies because of the need to avoid the incidental parameter problem (Lee et al., 

2010) by having to include 25 village dummies, and also the fact that modularity is calculated for the entire network/village]. The 

asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively.  

 

Thus, it is beneficial to target share of adopters through extension services and training workshops 

in promoting adoption in the short run, and then focus on measures that facilitate interactions 

among farmers at the village level in order to minimize the constraining effects of modularity on 
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social learning in the long run. We next check whether the latent network structures (modularity) 

condition the roles of transitivity and centrality in the social learning process, which is the last 

term of row two in specification (13). This is important because, the effectiveness of transitivity 

and centrality in the diffusion process depend on the extent of modularity of the network. High 

modularity networks are expected to constrain the role of transitivity and centrality in enhancing 

learning and diffusion in the network and the vice versa. 

 

 

Figure 3.3 Predicted probability of adoption by modularity, peer adoption and experience  
Notes: The figure depicts the predicted probability of household adoption by modularity and peer adoption (A) and by modularity 

and peer experience (B). Starting from lower levels of adoption probabilities of 7.8% and 11% respectively for A and B, the 

probability of adoption increases to about 16% and 85%, with increasing peer adoption and peer experience but at lower and higher 

modularity, respectively. 
 

 

Columns (3) and (4) of table 3.7 show how modularity conditions the effects of these micro-

network structures by interacting transitivity, average peer degree and eigenvector centrality with 
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modularity. Whereas the main effects of transitivity show that increase in transitivity of a farmer’s 

neighborhood is associated with higher hazard rate, the coefficients of modularity and the 

interaction with transitivity in both columns show lower hazard rates.   

 

Similar effects are observed in the main and interaction effects of average peer degree, and 

eigenvector centrality with modularity. The interaction effects of modularity with average peer 

degree in column (3), and with average peer eigenvector centrality in column (4) are significant 

and less than one. These suggest that latent network structures significantly limit the role of these 

node level statistics in promoting social learning and diffusion. Figure 3.4 shows the interaction 

plots of modularity and average peer degree (A), average peer eigenvector (B) and farmer’s local 

transitivity (C). We find that the association between transitivity, average peer degree and 

eigenvector centrality, and the conditional probability of adoption in any given year changes, based 

on the level of modularity. Generally, the conditional probability of adoption in any given year 

increases with increase in each of these statistics at lower levels of modularity.  

 

The conditional probability of adoption reaches about 14, 10 and 9 percentage points at the highest 

levels of local transitivity, average peer eigenvector centrality and average peer degree, 

respectively, and at the lowest levels of modularity. However, the conditional probabilities of 

adoption are at most about 4 percentage points at the highest levels of local transitivity, average 

degree and eigenvector centrality when modularity is above 0.3. Thus, the higher the modularity 

of the network, the less effective is the influence of the local transitivity of a farmer’s 

neighborhood, and the effect of peers with higher connections and importance in the network. The 

rationale is that when the network has many small components, information or behavior that 

originates among neighbors or from central and influential nodes in a given component – 



 

129 
 

especially when important nodes are targeted in placement of intervention – will probably take 

more time to spread to nodes in other components.   

 

 

Figure 3.4 Predicted probability of adoption by modularity, centrality and transitivity 
 
Notes: The figure shows the interaction plots of the probability of household adoption by modularity and average peer degree (A), 

modularity and average peer eigenvector centrality (B) and modularity and peer transitivity (C). In all cases, the effect of these 

local measures on the probability of adoption is limited when the modularity of the network is high.   
 

        

This finding demonstrates the importance of social groups (i.e., latent network segregation pattern) 

in social learning and the technology diffusion process, as well as the need to consider social 

diversity and structures in interventions that are aimed at promoting information dissemination 

and technology diffusion. This is in line with the studies by Girvan and Newman (2002) and 

Newman (2002) who argue that communities in a network might signify actual social groupings 

based on interest, backgrounds or identities that are important in understanding and exploiting 
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networks effectively. The implication of this finding is that the common strategy of targeting initial 

adopters who are central in their networks may not be sufficient for promoting diffusion of 

improved soybean in these villages, if the community structures and diversities that underlie 

farmers’ interactions are ignored. The reason being that, the effect of a central member in a network 

will be limited in the presence of network structures and diversities. Hence, the use of approaches 

(such as farmer field days, self-help groups or multiple targeting) that lead to more interactions 

and subsequently creating more connection and increasing the density of contacts among farmers 

(as documented by Centola 2010; Magnan et al. 2015; Alatas et al. 2016) will be appropriate in 

promoting diffusion at the village (network). 

   

3.5.4 Other possible effects and robustness checks 

This section presents robustness checks by investigating the possibility of concerns that might 

threaten the effects observed in our analysis. Despite the fact that our specifications account for 

some correlated unobservables, with the residuals of the network formation model, and that all the 

study villages are in the Northern region of Ghana and have similar agricultural, climatic and 

market conditions, we nevertheless cannot completely rule out the possibility that our estimates 

could be driven by village and other environmental effects.    

 

Individual ability and spurious correlations 

The first concern is the possibility of the peer adoption effects to be spuriously correlated due to 

differences in farmers’ and household abilities rather than due to social learning. To check this, 

we estimated our baseline models in columns (5) and (6) of table 3.6 with the squared term of peer 

adoption decisions, which are reported in column (1) of table 3.8. The coefficients of share of peer 

adopters and the share of peer adoption squared show a nonlinear relationship between peer 
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adoption and the conditional probability of adoption of the improved variety, which partly suggests 

these effects are not driven by spurious correlations. This suggests that the total impact of peer 

adoption share is much stronger for low levels of peer adoption and then levels out for moderate 

levels of peer adoption. The effect tends to negative at high levels of peer adoption, which is 

consistent with the social learning literature that the marginal benefit of peer adoption decreases 

with increased peer adoption (Bandiera and Rasul 2006).  

 

Table 3.8. Peer adoption squared and resource pooling 
 Peer adoption squared Excludes sample below the 5th and above 

the 95th average peer 

  Excludes 

landholding 

below 5th and above 

95th percentile 

Landholding 

 

Household 

size 

Liquidity 

constraints 

      

     (1)               (2)    (3)     (4)     (5) 

Share of peer adopters  3.031*** 

(0.689) 

           3.004*** 

         (0.824) 

 0.855** 

(0.370) 

 1.067*** 

(0.309) 

 1.333*** 

(0.426) 

Peer experience   0.554*** 

(0.117) 

          0.497*** 

         (0.143) 

 0.569*** 

(0.129) 

 0.608*** 

(0.128) 

 0.506*** 

(0.136) 

Modularity -1.676** 

(0.707) 

         -1.537 

         (0.949) 

-1.976** 

(0.743) 

-1.814** 

(0.814) 

-1.435* 

(0.863) 

Transitivity  1.156** 

(0.427) 

          1.134** 

         (0.424) 

 1.111** 

(0.496) 

 1.165** 

(0.437) 

 1.630*** 

(0.396) 

Degree  0.084 

(0.049) 

          0.099* 

         (0.051) 

 0.123* 

(0.061) 

 0.090* 

(0.053) 

 0.089 

(0.068) 

Average peer degree  0.142** 

(0.067) 

          0.155** 

         (0.069) 

 0.172** 

(0.068) 

 0.170** 

(0.077) 

 0.195** 

(0.079) 

Share of peer adopters 

squared 

-3.697*** 

(1.053) 

         -3.565*** 

         (1.272) 

   

      

Controls   Yes            Yes    Yes   Yes   Yes 

Contextual effects   Yes            Yes    Yes   Yes   Yes 

Correlated effects    Yes            Yes    Yes   Yes   Yes 

Log Likelihood -961.2         -812.1 -833.7 -901.3 -787.2 

Clusters    25             25      25     25    25 

N  4,551          3,811  4,055  4,136  3,582 
Notes: Random-effects complementary log-log estimation of equation (11). Column 1 controls for peer adoption squared, 

and column 2 controls for peer adoption squared but without households below the 5th percentile and above the 95th percentile 

of household land holding. Columns 3-5 present estimates of our baseline model excluding households with average peer 

landholding, household size and liquidity constraints below the 5th percentile and above the 95th percentile of the distribution 

of peer landholding, household size, and liquidity constraints. Correlated effects include time fixed-effects, 𝛿𝑡, link formation 

residuals, �̂�𝑡, and standard errors clustered at the village (i.e., network) level, in order to account for village factors that might 

drive peer behaviors to be correlated, 𝓋𝐺 [we did not use village dummies because of the need to avoid the incidental parameter 

problem (Lee et al., 2010) by having to include 25 village dummies, and also the fact that modularity is calculated for the entire 

network/village]. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 
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However, Bandiera and Rasul (2006) argue about the possibility of heterogeneities in abilities to 

spuriously drive such nonlinear peer relationship, particularly, when relatively low-ability 

households tend to be constrained in adoption, and high-ability households with investment 

options tend to be less likely to adopt. Thus, we estimated the same specification in column (1) of 

table 3.8 by excluding households with landholding below the 5th and above the 95th percentiles. 

The results, which are reported in column (2) of table 3.8, show the inverse U-shaped relationship 

still persists, suggesting that social learning does play a role in the diffusion process.      

 

Resource effects and not learning 

The next concern is resource-sharing effects, where exchanges of resources among peers can speed 

up the ability of resource constrained farm households to adopt the improved variety. The 

assumption is that households who are relatively resource poor can depend on relatively better 

households for resources required for cultivation. Also, gains from peer adoption that ease input  

constraints such as land, labor and liquidity can enhance the ability of poor and resource 

constrained households to access these inputs for cultivation. This has the potential of showing 

effects that are similar to social learning, where a farmer’s conditional probability of adoption 

increases as a result of past adoption decisions of peers in the farmer’s network.  

 

To investigate this, we first replicated the results of the baseline model in column (5) of table 3.6 

excluding households with average peer landholding, household size and liquidity constraints 

below the 5th and the 95th percentiles. These resources are important for soybean production in the 

area because the crop is labor intensive and also requires application of inputs such as inoculant, 

fertilizer and herbicides to obtained desired output (Heatherly and Elmore 2004). Farmers who are 

constrained in these inputs can benefit through increased access, following adoption of their peers, 
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or from better-off peers. Reassuringly, the results remain stable, with positive and significant peer 

effects on the conditional probability of adoption in any given year.  

 

Furthermore, we interact farmers’ and peers’ landholding and household size to examine whether 

households with more or less own and peer landholding and household size are more or less likely 

to adopt faster, and how such dependence in terms of resources affect our results. We report the 

results in columns (1) and (2) of table 3.9.  Both estimates are small and statistically insignificant, 

suggesting that increase in peer landholding (household size), given the farmer’s landholding 

(household size) is associated with a delayed (faster) adoption, but statistically not significant. The 

estimates of peer adoption decisions and the other network effects remain robust to this exercise.  

 

Threats of geographic proximity 

Another challenge has to do with residential and/or farm proximity between farmers and their 

peers, where farmers with similar soil quality and features on their plots, that favor a particular 

variety, might appear to have similar varietal choices. This may drive adoption decisions between 

peers and farmers to be correlated without social learning effect. Column (3) of table 3.9 contains 

interaction of farmers’ soil quality with average peer soil quality, and the term shows that farmers 

who have peers with high (on average) soil quality have higher conditional probability of adoption, 

albeit not statistically significant. This suggests weak dependence in soil quality of farmers and 

peers. Columns (4) of table 3.9 investigate the validity of this issue in respect of residential 

proximity. We control for the average distance between household locations of farmers and their 

peers in this specification. Despite these specifications, the results in terms of magnitudes and 

directions of our estimates remain qualitatively similar to the baseline model, suggesting that social 

learning does play a role in the adoption of the improved variety.  
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Table 3.9. Geographic proximity, soil and experience 
   Land Household 

size 

   Soil  Household 

distance 

 Correlated 

effects 

     (1)     (2)     (3)        (4)     (5) 

Share of peer adopters  0.866** 

(0.319) 

 0.868** 

(0.318) 

 0.876** 

(0.322) 

      0.857** 

    (0.315) 

  0.138 

(0.319) 

Peer experience   0.602*** 

(0.121) 

 0.605*** 

(0.123) 

 0.600*** 

(0.125) 

     0.606*** 

   (0.123) 

  0.225** 

(0.084) 

Modularity -1.628** 

(0.763) 

-1.717** 

(0.765) 

-1.792** 

(0.768) 

    -1.617** 

   (0.736) 

  

Transitivity  1.190** 

(0.435) 

 1.181** 

(0.436) 

 1.174** 

(0.433) 

     1.165** 

   (0.437) 

  1.061** 

(0.518) 

Degree  0.088* 

(0.051) 

 0.099** 

(0.048) 

 0.100* 

(0.051) 

     0.091* 

   (0.051) 

  0.158** 

(0.063) 

Average peer degree  0.150** 

(0.069) 

 0.148** 

(0.068) 

 0.149** 

(0.069) 

     0.147** 

   (0.069) 

  0.117 

(0.077) 

Landholding 

        × average peer landholding 

-0.036 

(0.044) 

   

 

    

Household 

        × average peer household size 

  0.014 

(0.026) 

     

Soil quality 

        × average peer soil quality 

   

 

 0.140 

(0.121) 

    

Distance: household and peers         0.015 

   (0.025) 

  

Controls   Yes   Yes   Yes       Yes    Yes 

Contextual effects   Yes   Yes   Yes       Yes    Yes 

Correlated effects    Yes   Yes   Yes       Yes    Yes 

Correlated effects by village and 

time 

   No    No    No        No    Yes 

Log Likelihood -964.6 -964.6 -964.1    -962.1  -850.5 

Clusters    25    25    25       25      25 

N  4,551  4,551  4,551     4,549   3,469 

 Notes: Random-effects complementary log-log estimation of equation (11). Columns 1-3 control for the interactions 

of household and average peer soil quality, land holding and average peer landholding, and household size and average peer 

household size. Columns 4 control for the average distance between households and peers. Column 5 controls for correlated 

effects by village and time. The sample size in column 5 is 3,469 because the village by time interactions resulted in some 

village-time bins not having enough observation and as a result some observations were dropped in the estimation process due 

to collinearity. Correlated effects include time fixed-effects, 𝛿𝑡, link formation residuals, �̂�𝑡, and standard errors clustered at 

the village (i.e., network) level, in order to account for village factors that might drive peer behaviors to be correlated, 𝓋𝐺 [we 

did not use village dummies because of the need to avoid the incidental parameter problem (Lee et al., 2010) by having to 

include 25 village dummies, and also the fact that modularity is calculated for the entire network/village]. The asterisks ***, 

** and * are significance at 1%, 5% and 10% levels, respectively.  

 

 

Within village correlated effects 

The next concern is the issue of correlated effects due to village-specific time trends, which might 

affect farmers’ decisions to adopt the improved variety. One issue that arises in considering this is 

the fact that modularity is calculated for the whole network and only varies at the village level.  
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Hence, the inclusion of modularity, time and village fixed effects, and village × time fixed effects 

result in convergence problem during the estimation. As a result, modularity is dropped in this 

specification. Column (5) of table 3.9 presents results of the specification that includes time, 

village and village × time fixed effects, and shows, with the exception of share of adopters which 

loses its significance but still positively correlates with adoption, that most of the coefficients are 

qualitatively similar to the baseline results.   

 

Sampled networks and robustness of results   

Given that our network data is sampled and not based on a census of connections of households of 

these villages, there could be some bias in the estimates. Households were asked whether they 

know any of 5 households randomly drawn from the village sample and assigned to them, and 

links were defined based on whether the household knew the match or not. This implies that, when 

a household is not randomly assigned to a responding household, one cannot determine whether 

the responding household knows the non-sampled household (𝑔𝑖𝑗 = 1) or not (𝑔𝑖𝑗 = 0).  

 

To investigate this issue, we use the graphical reconstruction technique developed by 

Chandrasekhar and Lewis (2016) to simulate the complete network for each village. We first 

estimate a model of network formation, using the sampled network of each village, and then use 

the estimated model to simulate the complete networks (i.e., predict the missing links of the 

network) (see appendix B for model, estimates and networks). We next calculate our social 

network statistics (i.e., modularity, transitivity, degree and eigenvector centrality) using the 

complete networks, and then use these statistics to estimate our baseline specification. The results 

are reported in columns (1) and (2) of table 3.10 for degree and eigenvector, respectively, and the 

key findings remain similar to the baseline estimates.  
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Furthermore, in order to investigate the direction of potential bias associated with the use of the 

sample networks in the calculation of the network statistics used in the estimations, we use an 

approach similar to Alatas et al. (2016). That is, we explore what would happen to the estimates if 

we progressively drop links of the simulated network up to the sample selection ratio of our 

sampled networks, which is 34 percent of households in the median village. To explore this, we 

first drop 25 percent of links uniformly at random, calculate the network statistics used in the 

analysis and estimate the baseline specification with these statistics, with the results, reported in 

columns (3) and (4) of table 3.10 with degree and eigenvector centrality, respectively.  

 

We further drop 50 percent of the links, calculate the network statistics and re-estimate our baseline 

specification, and these results are reported in columns (5) and (6) of table 3.10. Finally, we drop 

70 percent of the links and repeat the analysis and present the results in columns (7) and (8) of 

table 3.10. The results, generally, remain qualitatively similar to the baseline in terms of the 

direction of their effects, although with generally decreasing levels of the coefficients of these 

network statistics, as more links are dropped. This suggest that our point estimates of the effects 

of these network statistics using the sample networks are susceptible to measurement errors, which 

is shown to be an attenuation bias. Thus, the estimated parameters of the network statistics should 

best be considered as a lower bound on the true coefficients.  
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Table 3.10.  Bias in estimation of network statistics (modularity, transitivity, degree and eigenvector centralities) based 

on model specification in columns (5) and (6) 

 100% links  75% links  50% links  30% links 

     (1)     (2)     (3)    (4)     (5)     (6)     (7)    (8) 

Share of peer adopters  0.833** 

(0.310) 

  0.861** 

 (0.307) 

  0.820** 

(0.301) 

 0.855** 

(0.307) 

  0.808** 

(0.305) 

 0.836** 

(0.306) 

  0.804** 

(0.308) 

 0.828** 

(0.309) 

Peer experience   0.596*** 

(0.123) 

  0.591*** 

 (0.118) 

  0.604*** 

(0.119) 

 0.613*** 

(0.118) 

  0.621*** 

(0.120) 

 0.625*** 

(0.112) 

  0.624*** 

(0.117) 

 0.624*** 

(0.111) 

Modularity -5.599* 

(3.109) 

-11.351*** 

 (2.457) 

 -1.728 

(2.614) 

-5.337** 

(2.716) 

 -2.080 

(2.055) 

-4.440** 

(1.982) 

 -3.251* 

(1.757) 

-4.414** 

(1.700) 

Transitivity  2.386** 

(0.992) 

  2.707** 

 (1.014) 

  1.021** 

(0.503) 

 0.778 

(0.552) 

  0.677 

(0.474) 

 0.591 

(0.506) 

  0.628 

(0.459) 

 0.562 

(0.458) 

Degree  0.061** 

(0.021) 

   0.047*** 

(0.016) 

   0.048** 

(0.016) 

   0.026 

(0.020) 

 

Average peer degree  0.137** 

(0.076) 

   0.166** 

(0.069) 

   0.171** 

(0.068) 

   0.174** 

(0.068) 

 

Eigenvector    0.627 

 (0.387) 

   0.408 

(0.351) 

   0.496 

(0.346) 

   0.214 

(0.265) 

Average peer eigenvector    1.130** 

 (0.436) 

   1.161*** 

(0.393) 

   1.151*** 

(0.399) 

   1.200*** 

(0.405) 

Controls    Yes     Yes     Yes    Yes     Yes     Yes     Yes    Yes 

Contextual effects    Yes     Yes     Yes    Yes     Yes     Yes     Yes    Yes 

Correlated effects    Yes     Yes     Yes    Yes     Yes     Yes     Yes    Yes 

LogLikelihood  -959.5   -961.1   -966.6  -969.2   -966.5  -968.8  -967.9 -968.7 

Clusters     25      25      25     25      25      25     25    25 

N   4,551    4,551    4,551   4,551    4,551    4,551   4,551  4,551 
Notes: Random-effects complementary log-log estimation of equation (11). Columns (1) and (2) present estimates where network statistics (i.e., modularity, transitivity, degree 

and eigenvector centrality) are calculated using the simulated complete social networks. Columns (3) and (4) show estimates with 25% of links of the simulated complete social 

networks deleted (i.e., estimated with 75% of the links in each simulated village network). Columns (5) and (6) present the same estimates with network statistics computed from 

networks with 50% of the links deleted (i.e., calculated with 50% of links of the simulated network). Columns (7) and (8) depict estimates with only 30% of the links (i.e., 70% of 

links of the simulated social networks deleted). Correlated effects include time fixed-effects, 𝛿𝑡, link formation residuals, �̂�𝑡, and standard errors clustered at the village (i.e., network) 

level, in order to account for village factors that might drive peer behaviors to be correlated, 𝓋𝐺 [we did not use village dummies because of the need to avoid the incidental parameter 

problem (Lee et al., 2010) by having to include 25 village dummies, and also the fact that modularity is calculated for the entire network/village]. The asterisks ***, ** and * are 

significance at 1%, 5% and 10% levels, respectively. 
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3.6 Conclusion 

Although learning for technology adoption has become an important focus of research and policy 

interventions in promoting agricultural advancement, especially in developing countries, the 

complexity of the technology itself, heterogeneity of benefits and in understanding the technology, 

as well as in the structure of social interactions have often led to sub-optimal adoption and 

inconclusive evidence of social network effects. Policy interventions have operated based on the 

assumption that farmers can learn from their peers, with little friction in the flow of information. 

However, this assumption can be costly in the presence of heterogeneity in social network 

structures, which condition the flow of information. We investigated this assertion using 

observational data from a survey of 500 farm households in Northern Ghana and random matching 

within sample to generate social network contacts. 

 

We first provide a dynamic framework of how social learning and heterogeneity of network 

structures influence farmers’ adoption decisions. Second, we estimate the effect of learning from 

peers on the speed of adoption, conditional on the transitivity of farmers’ neighborhoods, 

connectivity to important peers and modularity of the network. Our approach of accounting for 

contextual effects and correlated effects (using the control function approach, clustering at 

village/network level, and village and time fixed effects) are key to the identification of the 

different network effects.  

 

Our empirical results reveal significant and positive duration dependence in the adoption process, 

justifying the relevance of the duration model in this study. Generally, having past adopting peers 

and high (on average) experienced peers tend to increase the speed of adoption, but the magnitude 

of peer experience on the speed of adoption is higher if the farmer has more peers already adopting 
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the improved variety. Thus, we find evidence that both benefits and production know-how play 

important roles in how farmers learn from their network contacts, which suggests the existence of 

social learning among network members. The likelihood of adopting faster increases with high 

values of transitivity and centrality. However, we generally find the role of local transitivity in the 

learning process to be stronger and more efficient in enhancing diffusion, compared to centrality. 

This could be attributed to the limited influence of central members to farmers they have direct 

contacts with, especially when the frequency and intensity of interactions between groups of agents 

is limited by highly segregated network structures. On the other hand, highly cohesive networks 

favor the frequency and intensity of interactions, in segregated network structures, that seems 

important for social learning.   

The findings generally suggest that the common extension strategy of targeting initial and 

influential adopters in the network for disseminating information may not be appropriate in 

engendering diffusion at the network level. Given the role of transitivity in promoting adoption 

and that of modularity in restricting diffusion, and the influence of the other network 

characteristics, it will be important for policymakers to consider introducing the technology 

through densely subgroups, or using policies and interventions aimed at engineering connections 

among farmers (such as farmer field days or self-help groups) to improve information flow. Also, 

network-oriented policies such as workshops and seminars or supporting adopters’ association that 

is open also to non-adopters can increase the diffusion process. Furthermore, interventions such as 

extension services, public learning and training workshops, where people are specifically invited 

from different segments of the village at the early stages of adoption, can promote bridges between 

modules and diffusion. These would create more avenues for interactions in order to increase links 

among farmers and between groups which could overcome the limitations of lowly cohesive or 
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highly segregated networks. Network oriented policies are likely to enhance the role of social 

networks in information and diffusion process of the technology.  

  



 

141 
 

References 

Alatas, V., Banerjee, A., Chandrasekhar, A.G., Hanna, R. and Olken, B.A. (2016). “Network 

Structures and the Aggregation of Information: Theory and Evidence from Indonesia.” 

American Economic Review, 106(7): 1663 -704. 

Alliance for Green Revolution in Africa and Scaling Seeds Technologies Partnership (AGRA-

SSTP) (2017). “Ghana Early Generation Seed Study.” United State Agency for International 

Development (USAID). Accra. 

Allison, P.D. (1982). “Discrete-Time Methods for the Analysis of Event Histories.” Sociological 

Methodology, 13: 61-98. 

Ambrus, A., Mobius, M. and Szeidl, A. (2014). “Consumption Risk-Sharing in Social Networks.” 

American Economic Review, 104(1): 149-82. 

Ampadu-Ameyaw, R., Omari,R., Essegbey, G.O. and Dery, S. (2016). “Status of Agricultural 

Innovations, Innovation Platforms, and Innovation Investment. 2015.” PARI project 

country report: Republic of Ghana. Forum for Agricultural Research in Africa (FARA), 

Accra Ghana. 

Bandiera, O. and Rasul, I. (2006). “Social networks and technology adoption in northern 

Mozambique.” The Economic Journal, 116(514): 869-902.  

Banerjee, A., Chandrasekhar, A.G., Duflo, E. and Jackson, M.O. (2013). “The Diffusion of 

Microfinance.” Science, 341 1236498. 

Banerjee, A., Chandrasekhar, A.G., Duflo, E. and Jackson, M.O. (2014). “Gossip: Identifying 

Central Individuals in a Social Network.” NBER Working Papers 20422, National Bureau 

of Economic Research, Inc. 

Beaman, L. and Dillon, A. (2018). “Diffusion of agricultural information within social networks: 

Evidence on gender inequalities from Mali.” Journal of Development Economics, 

133(26):147-61. 

Beaman, L., BenYishay, A., Magruder, J. and Mobarak, A.M. (2018). “Can Network Theory-

based Targeting Increase Technology Adoption?” Yale University Economic Growth 

Center Discussion Paper No. 1062 

BenYishay, A. and Mobarak, A.M. (2018). “Social Learning and Incentives for Experimentation 

and Communication.” Review of Economic Studies, 0: 1-34. 



 

142 
 

Blume, L.E., Brock, W.A., Durlauf, S.N. and Ioannide, Y.M. (2010). “Identification of Social 

Interactions.” In Handbook of Social Economics SET: 1A, 1B Volume 1, ed. Jess Benhabib, 

A. Bisin, and M.O. Jackson, 859-964: Elsevier, North-Holland. 

Bollobas, B. (2001). “Random Graphs.” Second edition. Cambridge and New York: Cambridge 

University Press. 

Bramoulle, Y., Djebbari, H. and Fortin, B. (2009). “Identification of peer effects through social 

networks.” Journal of Econometrics, 150(1): 41 – 55. 

Brock, W.A. and Durlauf, S.N. (2001). “Interaction-Based models.” In Handbook of 

Econometrics, Vol. 5, ed. Heckman, J., Leaner, E. pp. 3297 – 3380: North-Holland. 

Brock, W.A. and Durlauf, S.N. (2006). “Multinomial choice with social interactions”. In The 

Economy as an Evolving Complex System, Vol. III, ed. Blume, L.E., Durlauf, S.N. pp. 175 

– 206: Oxford University Press.  

Cai, J., de Janvry, A. and Sadoulet, E. (2015). “Social Networks and the Decision to Insure.” 

American Economic Journal: Applied Economics, 7(2):81-108. 

Centola, D. (2010). “An Experimental Study of Homophily in the Adoption of Health Behavior.” 

Science, 334 (6060):1269-72.  

Chandrasekhar, A.G. and Lewis, R. (2016). “Economics of sampled networks.” Mimeo, 

Massachusetts Institute of Technology. 

Conley, T.G. and Udry, C.R. (2010). “Learning about a new technology: Pineapple in Ghana.” 

American Economic Review, 100(1): 35–69. 

Council for Scientific and Industrial Research and Savanna Agricultural Research Institute (CSIR-

SARI). (2013). “Effective farming systems research approach for accessing and developing 

technologies for farmers.” Annual Report, SARI: CSIR-INSTI.  

Dogbe, W., Etwire, P. M., Martey, E., Etwire, J. C., Baba, I. I. Y. and Siise, A. (2013). “Economics 

of Soybean Production: Evidence from Saboba and Chereponi Districts of Northern Region 

of Ghana.” Journal of Agricultural Science, 5(12): 38-46. 

Duflo, E., Kremer, M. and Robinson, J. (2011). “Nudging Farmers to Use Fertilizer: Theory and 

Experimental Evidence from Kenya.” American Economic Review, 101(6):2350 – 2390.  

Foster, A.D. and Rosenzweig, M.R. (1995). “Learning by Doing and Learning from Others: 

Human Capital and Technical Change in Agriculture.” Journal of Political Economy, 

103(6):1176-1209. 



 

143 
 

Foster, D.V., Foster, J.G., Grassberger, P. and Paczuski, M. (2011). “Clustering drives assortativity 

and community structures in ensembles of networks.” Physical Review E 84, 066117: 1-5. 

Gerhart, J.D. (1975). “The Diffusion of Hybrid Maize in Western Kenya”. Ph.D. Dissertation, 

Princeton University.   

Girvan, M. and Newman, M.E.J. (2002). “Community structures in social and biological 

networks.” Proceedings of the National Academy of Sciences, 99, 7821-7826. 

Goldsmith, P. (2017). “The Faustian Bargain in Tropical Soybean Production.” Commercial 

Agriculture in Tropical Environments: Special Issue, 10(1-4). 

Goldsmith-Pinkham, P. and Imbens, G.W. (2013). “Social Networks and the Identification of Peer 

Effects.” Journal of Business and Economic Statistics, 31(3): 253 – 264.  

Heatherly, L.G. and Elmore, R.W. (2004). “Managing inputs for peak production.” In Soybeans: 

Improvement, Production and Uses. Agronomy Monograph 16, ed. Boerma H. R., Specht, 

J. E. pp. 451-536: American Society of Agronomy, Crop Science Society of America, and 

Soil Science Society of America, Madison, Wisconsin, USA.  

Heckman, J. (1979). “Sample Selection Bias as a Specification Error.” Econometrica, 47(1): 153 

– 161. 

Heckman, J. and Singer, B. (1984). “Econometric Duration Analysis.” Journal of Econometrics 

24(1-2): 63 – 132. 

Horrace, W.C., Liu, X. and Patacchini, E. (2016). “Endogenous network production functions with 

selectivity.” Journal of Econometrics, 190(2): 222-32. 

Hsieh,C-S. and Lee, L-F. (2016). “A Social Interactions Model with Endogenous Friendship 

Formation and Selectivity.” Journal of Applied Econometrics, 31(1): 301 – 319.  

Jackson, M.O. (2008). Social and Economic Networks. Princeton University Press.  

Jackson, M.O., Rogers, B.W. and Zenou, Y. (2017). “The Economic Consequences of Social-

Network Structure.” Journal of Economic Literature, 55(1): 49 – 95.  

Jackson, M.O., Rodriguez-Barraquer, T. and Tan, X. (2012). “Social Capital and Social Quilts: 

Network Patterns of Favor Exchange.” American Economic Review, 102(5): 1857 – 1897. 

Jenkins, S.P. (2005). Survival Analysis. Unpublished manuscript, Institute for Social and 

Economic Research, University of Essex, UK. 

Karlan, D., Mobius, M., Rosenblat, T. and Szeidl, A. (2009). “Trust and Social Collateral.” 

Quarterly Journal of Economics, 124(3): 1307-61.  



 

144 
 

Krishnan, P. and Sciubba, E. (2009). “Links and Architecture in Village Networks.” The Economic 

Journal, 119(537): 917-949.  

Lancaster, T. and Nickell, S. (1980). “The Analysis of Re-Employment Probabilities for the 

Unemployed.” Journal of the Royal Statistical Society. Series A (General) 143(2):141-165. 

Lee, L-F. (2007). “Identification and estimation of econometric models with group interactions, 

contextual factors and fixed effects.” Journal of Econometrics, 140(2): 333-74. 

Lee, L. F., Liu, X. and Lin, X. (2010). “Specification and estimation of social interaction models 

with network structures.” The Econometrics Journal 13(2): 145-76. 

Liu, X. and Lee, L-F. (2010). “GMM estimation of social interaction models with centrality.” 

Journal of Econometrics, 159(1): 99-115. 

Magnan, N., Spielman, D.J., Lybbert, T.J. and Gulati, K. (2015). “Leveling with friends: Social 

networks and Indian farmers’ demand for a technology with heterogeneous benefits.” 

Journal of Development Economics, 116(C): 223-251. 

Manski, C.F. (1993). “Identification of endogenous social effects: The reflection problem.” Review 

of Economic Studies, 60(3): 531–542. 

Ministry of Food and Agriculture (MoFA) (2017). “Planting for Food and Jobs: Strategic Plan for 

Implementation (2017 – 2020).” Ministry of Food and Agriculture. Accra, Ghana. 

Moffitt, R. (2001). “Policy Interventions, Low-Level Equilibria, and Social Interactions.” In Social 

Dynamics, ed. Durlauf, S. and Young, H.P.: pp. 45-82. Cambridge: MIT Press. 

Munshi, K. (2004). “Social learning in a heterogeneous population: technology diffusion in the 

Indian Green Revolution.” Journal of Development Economics, 73(1): 185-213. 

Newman, M.E.J. (2002). “The spread of epidemic disease on networks.” Physics Review, E, 66, 

016128. 

Newman, M.E.J. (2006). “Modularity and community structure in networks.” Proceedings of the 

National Academy of Sciences of the United States of America, 103(23): 8577-8582. 

Nourani, V. (2019). Multi-objective learning and technology adoption in Ghana: Learning from 

friends and reacting to acquaintances. Unpublished working paper, Department of 

Economics, Massachusetts Institute of Technology. 

Oster, E. and Thornton, R. (2012). “Determinants of technology adoption: Peer effects in Mensural 

Cup Take-up.” Journal of the European Economic Association, 10(6): 1263-1293. 

https://econpapers.repec.org/article/ecjeconjl/
https://econpapers.repec.org/article/ecjeconjl/
https://econpapers.repec.org/article/eeeeconom/
http://econpapers.repec.org/article/eeedeveco/


 

145 
 

Rogers, E.M. (1995). Diffusion of Innovations, Fourth edition. New York: Simon and Schuster, 

Free Press.  

Suri, T. (2011). “Selection and Comparative Advantage in Technology Adoption.” Econometrica, 

79 (1): 159 – 209. 

Walker, T.S., Alene, A., Diagne, A., Labarta, R., LaRovere, R. and Andrade, R. (2011). 

Assessment of the late 1990s IARC commodity by country data on varietal release, cultivar-

specific adoption, and strength of NARS in crop improvement in Sub-Saharan Africa. 

Fletcher, North Carolina, USA. 

Walker, T., Alene, A., Ndjeunga, J., Labarta, R., Yigezu, Y., Diagne, A., Andrade, R., Muthoni 

Andriatsitohaina, R., De Groote, H., Mausch, K., Yirga, C., Simtowe, F., Katungi, E., Jogo, 

W., Jaleta, M. and Pandey, S. (2014). “Measuring the effectiveness of crop improvement 

research in Sub-Saharan Africa from the perspectives of varietal output, adoption, and 

change: 20 crops, 30 countries, and 1150 cultivars in farmers’ fields.” Report of the Standing 

Panel on Impact Assessment (SPIA), Rome, Italy, CGIAR Independent Science and 

Partnership Council (ISPC) Secretariat. Rome, Italy. 

Wooldridge J. M. (2015). “Control Function Methods in Applied Econometrics.” The Journal of 

Human Resources, 50(2): 420-445. 

 



 

146 
 

Appendix  

Appendix A  

Metrics of Transitivity, Degree and Eigenvector centrality 

Transitivity or local cohesiveness/clustering coefficient τ𝑖 measures how close the 

neighborhood 𝑑𝑖(𝑔) of a farmer (𝑖) is to being a complete network. If farmer 𝑖 has 𝑑𝑖 neighbors 

(degree) in the network 𝑔, such that 𝑗𝑘 ∈ 𝑑𝑖, the local transitivity coefficient is calculated as 

 (A1) τ𝑖  =
#{𝑗𝑘∈𝑔|𝑘≠𝑗,𝑗∈𝑑𝑖(𝑔),𝑘∈𝑑𝑖(𝑔)}

𝑑𝑖(𝑔)[𝑑𝑖(𝑔)−1]/2
 .    

Transitivity lies in the range of 0 and 1, with 1 suggesting a full interconnected neighborhood 

and 0 indicating there are no contacts of a farmer that are linked to each other (e.g. a network 

in the form of a star).   

Degree centrality measures how well a farmer is connected, in terms of direct connections and 

is simply calculated as 𝑑𝑖(𝑔). High values of degree centrality imply that the farmer is 

central/influential and low values mean that the farmer is less central.   

Eigenvector centrality measures the centrality of a farmer 𝑖 by considering how important 

(central) his neighbors are. The centrality of a farmer is proportional to the sum of the centrality 

of its neighbors. Thus, we calculate the eigenvector centrality, Λ𝑑𝑖
𝑒(𝑔), of 𝑖 as 

 (A3) Λ𝑑𝑖
𝑒(𝑔) = ∑ 𝑔𝑖𝑗𝑑𝑗

𝑒(𝑔)𝑗  

where Λ is a proportionality factor and represents the corresponding eigenvalue of 𝑑𝑖
𝑒(𝑔). This, 

when normalized, ranges from 0 to 1 with values close to 1 meaning the farmer is very important 

and values close to 0 implies the farmer is not important. Both degree and eigenvector 

centralities are represented in the theoretical framework by the same notation 𝜆𝑖 but can 

distinguished by the value 𝜆𝑖. However, these three farmer level statistics are represented by 𝐷𝑡 

in the empirical specifications in eqns. (8), (11) and (12).    
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Appendix B 

Network formation model and estimates 

B.1 The network formation model 

Our model of network formation is based on the behavior of utility maximization. In this 

framework, each group member is assumed to have some characteristics that are only observed 

by other group members in the same group, and the distances in these observable and 

unobservable characteristics between individuals explain their link formation (Hsieh and Lee 

2016).  Each individual 𝑖, chooses to link to 𝑗, that is 𝑑𝑖𝑗,𝑔 = 1, if 𝑈𝑖𝑗,𝑔(𝑑𝑖𝑗,𝑔 = 1) −

𝑈𝑖𝑗,𝑔(𝑑𝑖𝑗,𝑔 = 0) > 0, and 𝑑𝑖𝑗,𝑔 = 0 otherwise, where 𝑈𝑖𝑗,𝑔 denotes utility function from the 

link 𝑖𝑗. We express the above utility differences as 

 (B1) 𝑈𝑖𝑗,𝑔(𝑑𝑖𝑗,𝑔 = 1) − 𝑈𝑖𝑗,𝑔(𝑑𝑖𝑗,𝑔 = 0) = 𝑉𝑖𝑗,𝑔(𝐿𝑔, 𝒜) + 𝑟𝑖𝑗,𝑔,       

 

where 𝑉𝑖𝑗,𝑔(𝐿𝑔, 𝒜) is the observed link formation due to exogenous effects with specific 

elements, 𝑙𝑖𝑗,𝑔, as a vector of observed dyad-specific variables (such as age, sex, years of 

schooling etc.) and attributes of the link between 𝑖 and 𝑗 such as geographical and social distance 

between them. 𝑟𝑖𝑗,𝑔 is the error term and represents the unobservable characteristics that effect 

link formation between 𝑖, 𝑗, and  𝒜 is a vector of parameter estimates.  

 

We implement this by estimating a conditional edge independence model, which assumes links 

form independently, conditional on node- and link- level covariates (Fafchamps and Gubert 

2007; Chandrasekhar and Lewis 2016) as follows;  

(B2) 𝑃𝑖𝑗 = 𝒶0 + 𝒶1|𝑙𝑖,𝑔 − 𝑙𝑗,𝑔| + 𝒶2(𝑙𝑖,𝑔 + 𝑙𝑗,𝑔) + 𝒶3|𝑙𝑖𝑗,𝑔| + 𝑟𝑖𝑗,𝑔  

where 𝑃𝑖𝑗 is an 𝑁 × (𝑁 − 1) matrix indicating whether there is a link between individuals 𝑖 and 

𝑗,  𝑙𝑖,𝑔 and 𝑙𝑗,𝑔 are characteristics of individual 𝑖 and 𝑗. 𝒶1 measures the influence of differences 

in their attributes, and 𝒶2 measures the effect of combined level of their attributes. 𝑙𝑖𝑗,𝑔 captures 
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attributes of the link between 𝑖 and 𝑗 such as geographical or social distance between them, and 

𝒶3 is the associated parameter estimate. The estimates of eq. (B1.1) are reported in table 3.B1.  

With respect to potential endogeneity due to unobservables at the farmer link formation level, 

we retrieved the predicted residuals, �̂�𝑖𝑗,𝑔, and inserted these into our estimation equation to 

account for these threats. This also allows us to account for concerns of measurement errors 

due to the use of sampled networks (Chandrasekhar and Lewis 2016) by using the predicted 

probabilities of links in the respective village networks to simulate the completed networks of 

the villages. This is termed the graphical reconstruction approach by Chandrasekhar and Lewis 

(2016). With this, we are able to reconstruct the networks and thus able to predict what we 

would find if we had the missing part of the networks. This was used to perform sensitivity 

checks of our parameters to measurement errors due to the use of the sample data (see figures 

in table 3.B2 for a number of the sampled networks and their respective reconstructed versions).  
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B.2 The network formation estimates 

Table 3.B1. Dyadic logit regression of network formation model  
       Village1    Village2    Village3    Village4    Village5    Village6    Village7    Village8    Village9 

 Distance between peers in kilometres -0.040 0.025 0.116** -0.035 -0.025 -0.005 -0.075 -0.019 -0.006 

   (0.062) (0.044) (0.050) (0.039) (0.079) (0.045) (0.059) (0.048) (0.044) 

 Difference in distance to road between peers in kilometres -0.003 0.202* -0.044 0.076 -0.020 0.094** -0.171*** 0.042** 0.041 

   (0.030) (0.104) (0.055) (0.058) (0.030) (0.038) (0.029) (0.019) (0.025) 

 Relatives = 1 0.013 0.121 0.064 -0.323 0.304 0.294 0.407 -0.001 -0.685** 

   (0.339) (0.369) (0.580) (0.558) (0.389) (0.662) (0.303) (0.508) (0.349) 

 Same religion = 1 n.a n.a. -0.095 -0.730** -0.652** -0.020 -0.610* -0.013 -0.281 

   n.a. n.a. (0.245) (0.329) (0.326) (0.486) (0.342) (0.402) (0.323) 

 Difference: Sex (= 1 if male) 1.150*** 0.821*** 7.767*** -0.306 0.428 0.013 0.334 0.976*** 0.260 

   (0.342) (0.251) (0.375) (0.256) (0.332) (0.258) (0.329) (0.300) (0.516) 

 Difference: Age 0.004 -0.031** 0.031** -0.003 0.003 -0.037*** -0.044 -0.001 0.041*** 

   (0.008) (0.013) (0.013) (0.015) (0.013) (0.012) (0.031) (0.016) (0.014) 

 Difference: Years of schooling 0.090** 0.015 0.066 0.062 -0.046 -0.081** -0.175*** 6.946*** 0.020 

   (0.046) (0.040) (0.050) (0.064) (0.043) (0.033) (0.043) (0.611) (0.067) 

 Difference: Household size -0.212** -0.097 -0.080 0.067 0.074 0.157** 0.046 -0.177*** 0.103 

   (0.097) (0.096) (0.090) (0.085) (0.099) (0.073) (0.098) (0.052) (0.070) 

 Difference: Household landholding in hectares -0.239 -0.200** 0.098 0.343*** -0.172 0.487** 0.369*** 0.008 -0.071 

   (0.218) (0.096) (0.173) (0.119) (0.201) (0.217) (0.130) (0.082) (0.132) 

 Difference: Village born = 1 if farmer was born in village 1.065** 0.287 -0.469 0.845*** 0.374 -0.028 0.607** 0.143 -0.671** 

   (0.513) (0.353) (0.310) (0.290) (0.342) (0.323) (0.266) (0.448) (0.307) 

 Difference: Household wealth (predicted) in GHS 1.173 -0.223 0.882 0.189 -0.181 -0.288 -0.589 -1.611 0.060 

   (1.211) (0.786) (0.685) (0.993) (1.060) (0.798) (0.665) (1.840) (0.843) 

 Sum: Sex (= 1 if male) -0.651*** 0.483*** 7.522*** -0.345 0.160 0.380* -1.051*** 0.637** 0.295 

   (0.239) (0.185) (0.356) (0.217) (0.329) (0.229) (0.215) (0.313) (0.311) 

 Sum: Age -0.005 0.011 -0.019 -0.023*** -0.010 0.001 -0.005 0.027*** -0.015 

   (0.007) (0.008) (0.013) (0.008) (0.010) (0.008) (0.016) (0.008) (0.011) 

 Sum: Years of schooling -0.018 0.028 0.012 -0.141** 0.008 0.042 0.008 -6.015*** -0.066 

   (0.042) (0.020) (0.037) (0.062) (0.038) (0.026) (0.036) (0.646) (0.058) 

 Sum: Household size -0.010 0.163*** 0.112 -0.002 0.091 -0.040 0.140*** 0.106* 0.121*** 

   (0.051) (0.056) (0.070) (0.051) (0.057) (0.036) (0.038) (0.054) (0.046) 

 Sum: Household landholding in hectares -0.051 -0.005 0.011 0.113 0.174 -0.360** 0.134 0.083 0.173* 

   (0.113) (0.062) (0.136) (0.136) (0.120) (0.159) (0.100) (0.081) (0.097) 

 Sum: Village born = 1 if farmer was born in village 1.019*** 0.169 0.096 0.029 0.921*** 0.259 0.794*** 0.955** -0.925*** 

   (0.367) (0.331) (0.283) (0.217) (0.342) (0.255) (0.266) (0.394) (0.190) 

 Intercept -3.504* -5.325*** -17.991*** 0.004 -3.781* -1.176 -3.036 -4.480 -1.282 

   (1.983) (1.838) (1.825) (1.742) (1.941) (1.986) (1.876) (4.427) (1.827) 

          

 N 400 400 400 400 400 400 400 400 400 

 Pseudo R2  0.114 0.072 0.092 0.082 0.061 0.077 0.146 0.083 0.080 

Notes: the table reports results of the dyadic regression of network link formation in eq. (B2). The dependent variable = 1 if 𝑖 (𝑗) cites 𝑖 (𝑗) as knowing the other. Estimator is logit and all standard errors are clustered at 

the village level.  Standard errors are in parenthesis. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 
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Table 3.B1. (continued)  
       Village10    Village11    Village12    Village13    Village14    Village15    Village16    Village17    Village18 

 Distance between peers in kilometres 0.011 -0.079 -0.058 -0.022 0.028 0.038 -0.065 -0.042 0.018 

   (0.043) (0.064) (0.038) (0.056) (0.054) (0.042) (0.045) (0.035) (0.052) 

 Difference in distance to road between peers in kilometres 0.002 6.556** -0.024 0.065 0.047** 0.069** -0.142** 0.034 0.617 

   (0.026) (2.820) (0.053) (0.069) (0.022) (0.031) (0.060) (0.047) (3.403) 

 Relatives = 1 0.026 0.274 0.051 -0.025 -0.346 0.570 -0.685** 0.103 -0.712 

   (0.241) (0.384) (0.382) (0.552) (0.283) (0.376) (0.304) (0.514) (0.435) 

 Same religion = 1 0.324 -0.129 0.320 0.038 -0.369 0.349 -0.811* 0.183 0.759 

   (0.389) (0.361) (0.317) (0.268) (0.307) (0.503) (0.439) (0.342) (0.506) 

 Difference: Sex (= 1 if male) -0.400 0.254 0.522 -0.134 0.437 0.744** 0.381 0.821*** -0.919*** 

   (0.293) (0.314) (0.461) (0.344) (0.335) (0.359) (0.359) (0.283) (0.195) 

 Difference: Age 0.017 -0.028* 0.009 0.026*** -0.051*** 0.038*** 0.093*** 0.033 0.010 

   (0.014) (0.014) (0.012) (0.010) (0.017) (0.010) (0.036) (0.023) (0.009) 

 Difference: Years of schooling 1.131*** -0.033 0.060 1.402*** 3.489*** -0.044* 3.064*** -0.143*** 0.144* 

   (0.073) (0.050) (0.052) (0.103) (0.189) (0.025) (0.386) (0.055) (0.075) 

 Difference: Household size -0.117 0.087 0.005 0.163 -0.223** -0.123 0.011 -0.043 -0.042 

   (0.082) (0.069) (0.120) (0.118) (0.091) (0.103) (0.063) (0.133) (0.082) 

 Difference: Household landholding in hectares 0.137 -0.067 0.007 0.579*** 0.130 -0.197* 0.089 -0.115 0.268* 

   (0.169) (0.085) (0.146) (0.152) (0.153) (0.110) (0.113) (0.149) (0.155) 

 Difference: Village born = 1 if farmer was born in village 0.227 -0.395 0.907** -0.570 -0.262 -0.865*** 6.740*** -0.062 -0.122 

   (0.272) (0.320) (0.444) (0.382) (0.239) (0.262) (0.516) (0.232) (0.313) 

 Difference: Household wealth (predicted) in GHS -0.205 -0.709 0.541 0.152 0.826 -1.780*** 2.738* -0.858 2.433*** 

   (1.309) (1.303) (1.063) (0.658) (1.291) (0.588) (1.592) (0.976) (0.935) 

 Sum: Sex (= 1 if male) 0.535** -0.027 0.500* 0.874*** 0.942*** 0.577** 0.548* -0.068 0.426** 

   (0.250) (0.298) (0.296) (0.212) (0.298) (0.277) (0.314) (0.266) (0.175) 

 Sum: Age 0.019** 0.000 -0.010 -0.011 0.012 -0.032*** -0.056** -0.029** -0.002 

   (0.009) (0.010) (0.011) (0.008) (0.013) (0.008) (0.025) (0.012) (0.009) 

 Sum: Years of schooling -1.125*** -0.043 -0.033 -1.482*** -3.470*** -0.014 -3.092*** 0.071*** 0.088 

   (0.087) (0.034) (0.048) (0.080) (0.180) (0.031) (0.398) (0.022) (0.068) 

 Sum: Household size -0.093 0.172*** 0.130* -0.153* 0.064 0.028 -0.037 0.171** 0.048 

   (0.097) (0.053) (0.072) (0.093) (0.046) (0.061) (0.076) (0.083) (0.041) 

 Sum: Household landholding in hectares 0.083 0.091 -0.013 -0.539*** -0.246*** 0.181* -0.058 -0.129 -0.115 

   (0.134) (0.064) (0.115) (0.143) (0.094) (0.107) (0.096) (0.093) (0.102) 

 Sum: Village born = 1 if farmer was born in village 0.422 0.392 0.572 0.362 -0.039 0.082 6.841*** 0.078 -0.231 

   (0.268) (0.277) (0.405) (0.288) (0.256) (0.234) (0.487) (0.218) (0.196) 

 Intercept -3.558** -2.183 -5.001** 0.240 -3.804** 0.751 -14.108*** 1.407 -3.877** 

   (1.657) (2.780) (2.115) (1.978) (1.606) (1.442) (2.475) (2.590) (1.602) 

          

 N 400 400 400 400 400 400 400 400 400 

 Pseudo R2  0.049 0.059 0.047 0.117 0.096 0.113 0.122 0.073 0.073 

Notes: the table reports results of the dyadic regression of network link formation in eq. (B2). The dependent variable = 1 if 𝑖 (𝑗) cites 𝑖 (𝑗) as knowing the other. Estimator is logit and all standard errors are clustered at 

the village level.  Standard errors are in parenthesis. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 
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   Table 3.B1. (continued) 
      Village19    Village20    Village21    Village22    Village23    Village24    Village25 

 Distance between peers in kilometers -0.006 -0.040 0.044 0.060 -0.009 0.018 0.009 

   (0.061) (0.046) (0.050) (0.067) (0.039) (0.030) (0.047) 

 Difference in distance to road between peers in kilometres 0.012 -1.666 0.024 0.059** 0.686 0.820 0.024 

   (0.008) (3.250) (0.016) (0.024) (0.659) (2.653) (0.018) 

 Relatives = 1 -0.471* 0.227 -0.523 1.345 0.090 0.390* 0.717 

   (0.268) (0.307) (0.538) (1.195) (0.272) (0.205) (0.605) 

 Same religion = 1 -0.304 n.a. 0.152 0.107 0.180 n.a. -0.014 

   (0.383) n.a. (0.423) (0.578) (0.479) n.a. (0.384) 

 Difference: Sex (= 1 if male) -0.385 -0.457 0.744* 8.166*** -0.352 0.849* 0.435 

   (0.275) (0.278) (0.392) (0.399) (0.423) (0.447) (0.336) 

 Difference: Age 0.003 -0.009 0.029 -0.000 -0.040** -0.016 0.012 

   (0.019) (0.012) (0.025) (0.014) (0.020) (0.018) (0.019) 

 Difference: Years of schooling 0.009 0.421*** 0.142*** n.a. 0.043 -0.054* 0.803*** 

   (0.045) (0.062) (0.050) n.a. (0.065) (0.030) (0.060) 

 Difference: Household size 0.049 0.252*** 0.229*** 0.076 0.086 0.149* 0.020 

   (0.063) (0.093) (0.081) (0.097) (0.088) (0.089) (0.082) 

 Difference: Household landholding in hectares -0.066 0.619*** -0.263 0.126 -0.077 -0.088 0.289*** 

   (0.088) (0.235) (0.218) (0.163) (0.100) (0.105) (0.085) 

 Difference: Village born = 1 if farmer was born in village 6.526*** 0.210 -0.235 0.638 8.173*** -0.273 -1.469*** 

   (0.422) (0.327) (0.412) (0.490) (0.403) (0.315) (0.419) 

 Difference: Household wealth (predicted) in GHS 1.450 -2.289*** -0.522 2.782*** -0.100 -1.353 -3.162*** 

   (1.150) (0.794) (1.269) (0.976) (0.639) (0.884) (0.861) 

 Sum: Sex (= 1 if male) 0.504* 0.219 0.161 8.878*** -0.293 0.810** 0.134 

   (0.284) (0.173) (0.278) (0.517) (0.245) (0.388) (0.294) 

 Sum: Age -0.012 0.030** -0.002 0.017 0.010 -0.004 0.016 

   (0.011) (0.013) (0.021) (0.015) (0.011) (0.013) (0.012) 

 Sum: Years of schooling 0.033 -0.460*** 0.019 n.a. 0.210*** 0.077*** -0.733*** 

   (0.024) (0.047) (0.059) n.a. (0.037) (0.021) (0.045) 

 Sum: Household size -0.000 0.099 -0.284*** 0.028 -0.072 -0.044 0.196*** 

   (0.048) (0.085) (0.056) (0.062) (0.062) (0.054) (0.055) 

 Sum: Household landholding in hectares 0.123 -0.413* 0.248 -0.382* 0.270*** -0.078 -0.063 

   (0.092) (0.213) (0.169) (0.198) (0.082) (0.085) (0.080) 

 Sum: Village born = 1 if farmer was born in village 6.413*** 0.725*** -0.821*** 1.116** 7.525*** -0.381 0.213 

   (0.380) (0.228) (0.278) (0.435) (0.430) (0.240) (0.374) 

 Intercept -17.238*** -2.388 0.730 -26.287*** -18.598*** -0.160 -0.735 

   (2.569) (1.844) (2.514) (2.386) (1.453) (1.444) (2.445) 

        

 N 400 400 400 400 400 400 400 

 Pseudo R2  0.075 0.083 0.201 0.155 0.160 0.086 0.155 

    Notes: the table reports results of the dyadic regression of network link formation in eq. (B2). The dependent variable = 1 if 𝑖 (𝑗) cites 𝑖 (𝑗) as knowing the other. Estimator is logit and all 

standard errors are clustered at the village level.  Standard errors are in parenthesis. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 
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Table 3.B2. Sampled and simulated networks by quintiles of modularity  

1. Sampled network 2. Simulated networks 

 

 

Fig. 1A. Lowest modularity network (0.143) Fig. 2A. Lowest modularity network (0.163) 

 

 

Fig. 1B. Mean modularity network (0.289) Fig. 2B. Lowest modularity network (0.205) 

 

 

Fig. 1C. Median modularity network (0.345)  Fig. 2C. Lowest modularity network (0.233) 

 

 

Fig. 1D. Highest modularity network (0.414) Fig. 2D. Lowest modularity network (0.319) 
Notes: the table shows plots of some of the social networks by quintiles of modularity in two columns. Column 1 shows a 

cross section of the sampled networks used categorized into the network at the lowest (Fig. 1A), at the mean (Fig. 1B), at the 

median (Fig. 1C) and at the highest (Fig. 1D) of modularity distribution.  Column 2 shows the respective simulated (i.e., 

reconstructed) versions of these sampled networks based on the approach of Chandrasekhar and Lewis (2016). Figs. 1A and 1B 

have more interconnected nodes and lower modularity statistics, of 0.143 and 0.289, respectively, than figs. 1C and 1D. Similar 

trend is observed in the modularity statistics when calculated with simulated complete versions of these networks in figs. 2A-2D. 

We, therefore, expect learning and diffusion to be faster in the case of figures A and B. 
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Table 3.B3. Instrumenting regression for Wealth in Dyadic model 
 Difference of wealth  Sum of wealth 

 Coefficient Robust 

S. E. 

Dyadic 

S. E. 

Coefficient Robust 

S. E. 

Dyadic 

S. E. 

 All regressors as difference All regressors as sums 

 (1) (2) (3) (4) (5) (6) 

Sex = 1 if male      0.080 0.036 0.086   -0.237* 0.034 0.154 

Years of education of farmer  -0.026** 0.004 0.010   -0.040** 0.004 0.017 

Born = 1 if born in village  -0.106* 0.036 0.069       0.200* 0.034 0.144 

Value of inherited land in GHS      0.277*** 0.040 0.089       0.925*** 0.048 0.142 

        

District dummies        

     1 if farmer resides in district 1  -0.322 0.052 0.262   -0.552* 0.066 0.397 

     1 if farmer resides in district 2  -0.493** 0.051 0.257   -0.757** 0.066 0.405 

     1 if farmer resides in district 3      0.298 0.068 0.327       0.429 0.090 0.539 

     1 if farmer resides in district 4  -0.150 0.082 0.426   -0.369 0.097 0.560 

             

Intercept      1.488*** 0.056 0.214       2.614*** 0.088 0.429 

N      9500         9500   
Notes: the table presents first-stage estimates for instrumenting wealth in the dyadic link formation model. Columns 1, 2 

and 3 present results for the difference of wealth between neighbors. Value of inherited land is use as the instrument. Columns 

4, 5 and 6 show results of the sum of wealth estimates. The table also show both the conventional robust standard errors (in 

columns 2 and 5) and the Fafchamps and Gubert (2007) group dyadic standard errors (columns 3 and 6). The asterisks ***, ** 

and * are significance at 1%, 5% and 10% levels, respectively. 
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Appendix C 

Other estimates 

Table 3.C1. Control and contextual variables in Table 6 
 (5) (6) (7) (8) 

 Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Household controls,  𝜸𝟏         

   Age -0.008 0.006 -0.008 0.006 -0.008 0.006 -0.008 0.006 

   Gender  0.325 0.213  0.355 0.217  0.325 0.210  0.356* 0.215 

   Education  0.131*** 0.039  0.130*** 0.039  0.129*** 0.040  0.128*** 0.040 

   Experience -0.229*** 0.041 -0.226*** 0.040 -0.228*** 0.042 -0.225*** 0.040 

   Household -0.083 0.054 -0.085 0.055 -0.082 0.054 -0.084 0.055 

   Landholding  0.270*** 0.071  0.263*** 0.071  0.228*** 0.071  0.259*** 0.070 

   Credit -0.306 0.774 -0.195 0.780 -0.354 0.784 -0.238 0.790 

   Risk  0.021 0.074  0.027 0.076  0.023 0.075  0.029 0.076 

   Extension  1.024 0.866  1.157 0.868  0.998 0.870  1.139 0.872 

   Association -0.322*** 0.100 -0.325*** 0.100 -0.322*** 0.100 -0.326*** 0.100 

   Price -1.742** 0.621 -1.814*** 0.610 -1.727** 0.616 -1.806*** 0.605 

   Soil quality  0.530*** 0.155  0.385*** 0.111  0.526*** 0.156  0.526*** 0.157 

Contextual (peer) controls, 𝜸𝟐        

   Gage  0.010 0.012  0.011 0.012  0.009 0.012  0.010 0.012 

   GGender -0.596* 0.306 -0.551* 0.306 -0.588* 0.302 -0.543* 0.301 

   GEducation -0.043 0.052 -0.041 0.052 -0.038 0.051 -0.035 0.050 

   GHousehold -0.009 0.078 -0.005 0.078  0.010 0.076  0.007 0.078 

   GLandholding -0.061 0.106 -0.053 0.106 -0.054 0.105 -0.046 0.107 

   GCredit -0.400 0.267 -0.397 0.267 -0.390 0.263 -0.389 0.266 

   GRisk  0.237 0.164  0.241 0.164  0.233 0.166  0.237 0.163 

   GExtension  0.337 0.375  0.355 0.375  0.336 0.373  0.354 0.374 

   GAssociation  0.096 0.143 -0.105 0.143  0.086 0.142  0.095 0.139 

   GPrice -0.859 0.684 -0.916 0.684 -0.889 0.685 -0.951 0.687 

   GSoil quality -0.079 0.150 -0.079 0.150 -0.086 0.150 -0.086 0.147 

Time effects,  𝜹𝒕         

   Year 3&4  0.736*** 0.183  0.735*** 0.180  0.739*** 0.190  0.738*** 0.187 

   Year 5&6  1.081*** 0.339  1.111*** 0.331  1.089*** 0.350  1.120*** 0.341 

   Year 7&8  1.509*** 0.374  1.535*** 0.367  1.544*** 0.389  1.572*** 0.382 

   Year 9&10  1.945*** 0.432  1.964*** 0.420  1.985*** 0.445  2.006*** 0.432 

   Year 11&12  1.798*** 0.467  1.808*** 0.456  1.841*** 0.474  1.853*** 0.462 

   Year 13&14  1.842*** 0.520  1.785*** 0.516  1.879*** 0.528  1.820*** 0.522 

Link residuals,  �̂�𝒕         

   Av.Residual 1st quintile  -5.768*** 1.970 -6.142*** 2.011 -5.709*** 1.939 -6.097*** 1.983 

   Av.Residual 2nd quintile 10.067** 3.823  9.530** 3.945  9.433** 3.671  8.883** 3.791 

   Av.Residual 3rd quintile  1.265* 0.765  1.029 0.742  1.251* 0.752  1.015 0.729 

   Av.Residual 4th quintile  0.076 0.122  0.037 0.133  0.080 0.120  0.041 0.131 

   Av.Residual 5th quintile -0.156 0.097 -0.170* 0.089 -0.162 0.098 -0.178* 0.091 

District fixed-effects         

    SaveluguNanton -0.781*** 0.229 -0.770*** 0.229 -0.768*** 0.234 -0.758*** 0.234 

    Karaga -0.668* 0.358 -0.580 0.356 -0.663* 0.360 -0.574 0.357 

    Gushegu -0.984** 0.366 -0.886** 0.372 -0.989** 0.369 -0.888** 0.374 

First-stage residuals         

    Residuals Extension -0.098 0.522 -0.158 0.527 -0.094 0.525 -0.158 0.529 

    Residuals Liquidity constr. -0.288 0.408 -0.351 0.415 -0.264 0.414 -0.329 0.421 

Notes: The table presents coefficients of controls of the models in columns 5-8 of table 3.6. D is the social network. Years 1 and 2 

are the reference years. Av.Residual is the average residuals of the link formation model over a given quintile arranged in ascending 

order – 1st quintile is average of the predicted residuals of the first four set of peers of a household with the least predicted residuals 

(i.e., less likely to link up due to unobserved determinant of link formation). The 2nd quintile is the average residuals of the link 

formation model for the next set of four peers and so on until the 5th set of four peers as those with the highest residuals (i.e., those 

most likely to link up due to unobserved determinants of link formation). These are used as instruments to account for potential 

endogeneity due to correlated unobservables at the link formation level. The asterisks ***, ** and * are significance at 1%, 5% and 

10% levels, respectively. 
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Table 3.C2. Control and contextual variables in Table 7 
 (1) (2) (3) (4) 

 Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

Household controls         

   Age -0.008 0.006 -0.008 0.006 -0.009 0.006 -0.008 0.006 

   Gender  0.336* 0.201  0.365* 0.208  0.364* 0.210  0.395* 0.215 

   Education  0.128*** 0.039  0.127*** 0.039  0.133*** 0.039  0.134*** 0.039 

   Experience -0.218*** 0.043 -0.217*** 0.042 -0.225*** 0.040 -0.218*** 0.038 

   Household -0.076 0.052 -0.080 0.053 -0.077 0.053 -0.083 0.053 

   Landholding  0.263*** 0.071  0.258*** 0.071  0.256*** 0.070  0.250*** 0.069 

   Credit -0.293 0.734 -0.176 0.746 -0.108 0.757 -0.003 0.773 

   Risk  0.019 0.073  0.025 0.076  0.026 0.069  0.024 0.070 

   Extension  0.897 0.851  1.055 0.861  1.306 0.843  1.319 0.865 

   Association -0.314*** 0.097 -0.318*** 0.098 -0.344*** 0.097 -0.339*** 0.096 

   Price -1.690** 0.638 -1.779** 0.629 -1.683** 0.605 -1.672*** 0.574 

   Soil quality  0.515*** 0.152  0.518*** 0.153  0.497*** 0.148  0.505*** 0.148 

Contextual (peer) controls         

   Gage  0.010 0.012  0.011 0.012  0.007 0.012  0.008 0.012 

   GGender -0.516* 0.271 -0.473* 0.277 -0.553* 0.326 -0.526* 0.315 

   GEducation -0.042 0.052 -0.040 0.051 -0.036 0.054 -0.035 0.052 

   GHousehold  0.001 0.075 -0.002 0.078  0.001 0.072  0.001 0.076 

   GLandholding -0.061 0.101 -0.051 0.104 -0.050 0.096 -0.061 0.098 

   GCredit -0.397 0.263 -0.392 0.268 -0.391 0.280 -0.417 0.278 

   GRisk  0.232 0.161  0.238 0.159  0.210 0.153  0.221 0.154 

   GExtension  0.300 0.373  0.331 0.370  0.349 0.356  0.349 0.356 

   GAssociation  0.110 0.139  0.122 0.136  0.080 0.140  0.072 0.135 

   GPrice -0.920 0.659 -0.970 0.666 -0.781 0.667 -0.874 0.671 

   GSoil quality -0.093 0.150 -0.091 0.148 -0.097 0.145 -0.101 0.143 

Time effects         

   Year 3&4  0.726*** 0.177  0.729*** 0.176  0.745*** 0.178  0.746*** 0.175 

   Year 5&6  1.018*** 0.335  1.058*** 0.328  1.114*** 0.344  1.137*** 0.333 

   Year 7&8  1.413*** 0.350  1.455*** 0.351  1.535*** 0.379  1.561*** 0.366 

   Year 9&10  1.813*** 0.404  1.850*** 0.402  1.964*** 0.444  1.987*** 0.426 

   Year 11&12  1.613*** 0.416  1.647*** 0.417  1.804*** 0.471  1.821*** 0.456 

   Year 13&14  1.590*** 0.483  1.545*** 0.501  1.914*** 0.539  1.900*** 0.530 

Link residuals         

   Av.Residual 1st quartile -5.441*** 1.888 -5.932*** 1.926 -5.671*** 1.818 -5.820*** 1.835 

   Av.Residual 2nd quartile  9.985** 3.675  9.447** 3.815  9.861** 3.642  9.436** 3.749 

   Av.Residual 3rd quartile  1.241 0.838  0.974 0.803  1.138 0.765  0.998 0.737 

   Av.Residual 4th quartile  0.075 0.116  0.029 0.128  0.091 0.122  0.077 0.130 

   Av.Residual 5th quartile -0.186** 0.090 -0.196** 0.082 -0.095 0.099 -0.103 0.095 

District fixed-effects         

    SaveluguNanton -0.813*** 0.198 -0.799*** 0.205 -0.668*** 0.231 -0.679*** 0.224 

    Karaga -0.655* 0.335 -0.563* 0.339 -0.618* 0.353 -0.577* 0.343 

    Gushegu -0.981*** 0.322 -0.879** 0.338 -0.890** 0.377 -0.813** 0.378 

First-stage residuals         

    Residuals Extension -0.033 0.507 -0.103 0.517 -0.245 0.509 -0.243 0.526 

    Residuals Liquidity constr. -0.305 0.392 -0.373 0.400 -0.361 0.409 -0.428 0.415 

Notes: The table presents coefficients of controls of the models in columns 5-8 of table 3.6. D is the social network. Years 1 and 2 

are the reference years. Av.Residual is the average residuals of the link formation model over a given quintile arranged in ascending 

order – 1st quintile is average of the predicted residuals of the first four set of peers of a household with the least predicted residuals 

(i.e., less likely to link up due to unobserved determinant of link formation). The 2nd quintile is the average residuals of the link 

formation model for the next set of four peers and so on until the 5th set of four peers as those with the highest residuals (i.e., those 

most likely to link up due to unobserved determinants of link formation). These are used as instruments to account for potential 

endogeneity due to correlated unobservables at the link formation level. The asterisks ***, ** and * are significance at 1%, 5% and 

10% levels, respectively.
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Appendix D 

Endogeneity of credit-constraint and extension contact 

The final issue we address is the potential endogeneity of credit-constraint and extension 

contact. Credit-constraint could be endogenous because farmers with higher yields and incomes 

will be less credit-constrained as a result of the associated increased yields and incomes from 

adoption. On the other hand, extension contact could be endogenous because extension officers 

may be more inclined to visit farmers who adopted than farmers who did not adopt. We used a 

two-stage generalized residual inclusion estimation procedure suggested by Wooldridge 

(2015), where we first estimate a probit model for each of these endogenous variables using the 

variables in the diffusion model (to be estimated in the second-stage) and two instruments in 

each case as explanatory variables. The generalized residuals from the first-stage estimation are 

then included with the observed values of the potentially endogenous variables in the second-

stage specification.  

We use credit-constraint and extension contacts of farmer 𝑖’s indirect, 𝑋𝑖𝑡
′ 𝐺𝑡

2,𝔫
, [i.e., first (𝑖, 𝑗 +

1) generation] peers (neighbors) as instruments. These are considered valid and relevant 

instruments because the credit-constraint and extension contacts of the 𝑗 + 1 peers of farmer 𝑖 

relate indirectly to his own credit-constraint and extension contacts through the credit-

constraints and extension contacts of his direct neighbors 𝑗, (i.e., 𝑋𝑡
′𝐺𝑡

𝔫) who are direct peers of 

the 𝑗 + 1 peers. These variables, however, are not expected to directly affect the farmer’s 

conditional probability of adoption. Bramoulle et al. (2009) show that these are valid 

instruments once there are intransitive triads36 in the network, so that the characteristics of the 

first and higher generation neighbors of the farmer affect the characteristics and outcomes of 

                                                           
36 The average transitivity statistics in table 3.4 is less than 0.2 across the networks, suggesting that majority of triads on 

average are intransitive. 
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the farmer through his direct neighbors. Estimates of the first-stage probit are presented in table 

3.D1.  

 

Table 3.D1. First stage probit estimates for credit constraints and extension contact 
Variable  Credit constraint  Extension 

 Coefficient S.E.  Coefficient S.E. 

  Age     -0.004 0.005     0.003 0.005 

  Gender     -0.489*** 0.141    -0.078 0.147 

  Education      0.045* 0.022    -0.002 0.021 

  Experience     -0.016 0.020    -0.029 0.019 

  Household     -0.025 0.030     0.001 0.032 

  Landholding     -0.069 0.046     0.094** 0.044 

  Credit       -0.394** 0.141 

  Risk      0.104* 0.055    -0.157** 0.061 

  Extension     -0.391** 0.147    

  Association     -0.146** 0.057    -0.206*** 0.054 

  Price     -1.410*** 0.417     2.251*** 0.441 

  Soil quality     -0.103 0.071     0.068 0.075 

       

  DAge     -0.003 0.009   -0.004 0.009 

  DGender      0.115 0.237   -0.119 0.240 

  DEducation      0.056** 0.036   -0.039 0.038 

  DExperience      0.004 0.034   -0.003 0.032 

  DHousehold      0.044 0.048   -0.017 0.058 

  DLandholding     -0.021 0.077   -0.022 0.086 

  DCredit     -0.267 0.270   -0.080 0.278 

  DRisk     -0.137 0.092    0.123 0.097 

  DExtension      0.093 0.248   -0.554* 0282 

  DAssociation     -0.014 0.093    0.089 0.095 

  DPrice     -0.279 0.633    0.628 0.661 

  DSoil quality     -0.037 0.109    0.108 0.119 

    D2Credit      2.942*** 0.483  - - 

    D2Extension       -     2.741*** 0.572 

Constant      2.113 1.161   -5.462*** 1.214 

       

Instrument validity 𝑿𝟐(p-value)      37.12(0.000)   23.01(0.000) 

Log likelihood    -252.34   -227.64  

Wald (𝑿𝟐𝟓
𝟐 )     144.35    140.94  

    p-value      0.000     0.000  

Pseudo 𝑹𝟐      0.265     0.288  

Notes: the table presents first-stage estimates of credit constraints and extension contacts of households. S.E. is robust 

standard errors. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 

 

 

 

 

 

. 

 

 



 

158 
 

Chapter Four 

Social networks, adoption of improved variety and household welfare: Evidence from 

Ghana 

Yazeed Abdul Mumin and Awudu Abdulai   

Department of Food Economics and Consumption Studies, University of Kiel, Germany  

 

European Review of Agricultural Economics (Forthcoming) 

 

Abstract  

In this study, we examine the effects of own and peer adoption of improved soybean variety on 

household yields, food and nutrients consumption, using observational data from Ghana. We 

employ the marginal treatment effect approach to account for treatment effects heterogeneity 

across households, and a number of identification strategies to capture social network effects. 

Our empirical results show that households with higher unobserved gains are more likely to 

adopt because of their worse outcomes when not adopting. We also find strong peer adoption 

effect on own yield, only when the household is also adopting, and on food and nutrients 

consumption when not adopting. However, the peer adoption effect on consumption attenuates 

when the household adopts the improved variety. Furthermore, our findings reveal that adoption 

tends to equalize households in terms of observed and unobserved gains on consumption, and 

can thus serve as a mechanism for promoting food security and nutrition in this area.       

  

JEL codes: C21, D60, D85, O13, O33 

Keywords: Improved variety, Technology adoption, Social networks, Marginal treatment 

effects, Food and nutrition security  
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4.1 Introduction 

Food insecurity remains a major concern across many sub-Saharan African countries, despite 

significant strives and improvements in agricultural technologies and crop varieties over the 

past few decades (Shiferaw et al. 2014; FAO, et al. 2019). Globally, the prevalence of hunger 

increased from 10.6% in 2015 to 10.8% in 2018, while that of sub-Saharan Africa increased 

from 20.9% in 2015 to 22.8% in 2018 (FAO, et al. 2019), suggesting the prevalence in sub-

Saharan Africa is not only twice that of the world prevalence, but also a cumulative increase 

from 2015 of about nine times that of the world. This increasing food insecurity in the midst of 

increased availability of improved agricultural technologies, particularly in sub-Saharan Africa 

(Minten and Barrett 2008; Shiferaw et al. 2014), suggest the need to obtain better understanding 

of technology adoption and consumption of food and specific nutrients in order to enhance the 

effectiveness of improved technologies in addressing food insecurity in these areas.  

While the literature has made significant strides in investigating the importance of improved 

crop varieties on household welfare, not much consideration has been given to the impact of 

improved crop varietal adoption by households and their peers on household food and nutrients 

consumption (Minten and Barrett 2008; Shiferaw et al. 2014; Smale et al. 2015; Verkaart et al. 

2017). Also, studies that examined the impact of technology adoption on performance outcomes 

tend to focus on crop yield and income related measures (e.g., Becerril and Abdulai, 2010; 

Abdulai and Huffman 2014; Verkaart et al. 2017; Wossen et al. 2019). There is virtually no 

rigorous empirical evidence on the potential impact of improved crop varieties on the 

consumption of specific nutrient rich foods among households (Hotz et al. 2012; Smale et al. 

2015; Larsen and Lilleør 2016; Ogutu et al. 2020)37. The few that examined the impact of 

                                                           
37 Previous studies focused on production diversification on households’ and children’s dietary diversity and consumption of 

specific food groups (Dillon et al. 2015; Lovo and Veronesi 2019); caregivers nutrition knowledge on the types of foods 
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improved crop varietal adoption on food security and nutrition focused on food group diversity 

and vitamin A intake (Hotz et al. 2012; Smale et al. 2015; Larsen and Lilleør 2016), without 

much consideration given to the other components of nutrients such as protein rich food intake. 

In particular, improving household consumption of protein rich foods is important in the 

prevention of wasting, stunting and micronutrients deficiencies that cause diseases and deaths38. 

Thus, a better understanding of the link between adoption of improved technology and 

consumption of food and these specific nutrients is key in helping policy-makers design policies 

to promote food and nutrition security.    

 

Despite the increasing interest in understanding the role of social interaction on households’ 

decision-making and individual welfare (e.g., Bandiera and Rasul 2006; Fafchamps and Gubert 

2007; Conley and Udry 2010; Garcia et al. 2014; De Giorgi et al. 2020), the voluminous 

literature on social interactions has virtually not provided evidence on the potential benefits of 

peer adoption of agricultural technologies on household food and nutrients consumption. With 

the exception of a few such as Maurer and Meier (2008), and De Giorgi et al. (2020) on 

endogenous consumption peer effects; and Kuhn et al. (2011) on lottery prices39, this has not 

been done on peer adoption effects. There are various reasons one will expect spill overs from 

peer adoption on household food and nutrients consumption. First, peer adoption that leads to 

                                                           
consumed by children (Hirvonen et al. 2017) and the impacts of improved extension designs on smallholder sensitivity to 

nutrition (Ogutu et al. 2020).  See Sibhatu and Qaim (2018) for a meta-analysis.  

38 The World Food Program (2015) argues that tackling vitamin A deficiency, before the age of five, can reduce mortality and 

infectious diseases up to a third.   

39 Maurer and Meier (2008) study intertemporal consumption effects among peers using panel data from US, and find moderate, 

but significant evidence of consumption externalities across peer-groups. De Giorgi et al. (2020) investigate consumption 

network effects, using administrative dataset and complementing it with data on consumption survey of households’ 

expenditure on goods, and find peer consumption effects on household consumption to be non-negligible. Kuhn et al. (2011) 

study the effect of lottery prices on neighbors of winners, and find evidence for effects of lottery prices on winners’ neighbors, 

but only for consumption of cars.  
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increased learning opportunities and productivity of the household can enhance the household’s 

consumption, especially in rural Africa, where the issues of missing and inefficient markets are 

prevalent (de Janvry et al. 1991). Second, when peer adoption leads to increased peer 

productivity, and changes in peer consumption, can affect household consumption either due to 

endogenous peer effect, or through private cash transfers to the household in a form of safety 

net.  

The purpose of this study is twofold: to investigate the effect of household adoption of improved 

crop variety on the consumption of food and specific nutrients among households; and to 

examine the effect of peer adoption of the improved crop variety on yield, food and nutrients 

consumption. We do this by using detailed data of 500 farm households from northern Ghana 

to examine the effect of household and peer adoption of improved soybean variety on crop 

yield, and the household’s consumption of food, vitamin A and protein rich foods. Analytically, 

we exploit spatial econometric techniques to generate instruments (Bramoullé et al. 2009; 

Acemoglu et al. 2015), and then use the instruments, in addition to controlling for network fixed 

effects and potential endogeneity of network link formation with the control function approach 

by Brock and Durlauf (2001) to identify peer adoption effects on own adoption and outcomes. 

We employ the marginal treatment effects (MTE) approach, following Heckman and Vytlacil 

(2005) and Cornelissen et al. (2018) to estimate the treatment effects heterogeneities. This 

approach is significant in the sense that it allows us to identify, at least, a substantial part of the 

range of individual treatment effects, and as a result characterize the extent and pattern of 

treatment effects heterogeneity (Cornelissen et al. 2016; 2018)40.  

                                                           
40 Previous studies (e.g., Minten and Barrett 2008; Shiferaw et al. 2014) have assumed homogenous treatment effects, focusing 

mainly on addressing selectivity problems arising from unobserved characteristics, and aggregate parameter estimates. As 

argued by Cornelissen et al. (2016), this approach can mask important heterogeneity in treatment effects.  
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Poverty incidence and its extreme form have been consistently higher in northern Ghana than 

the national average and that of the rest of the country since 2005, and with worsening rates of 

extreme poverty, as the incidence increased from 29.7% in 2012/13 to 34.5% in 2016/17 (GSS 

2018). This has resulted in higher incidence of food insecurity and malnutrition in the area, 

compared to the rest of the country, and the use of a number of strategies including credit 

purchases and borrowing from friends and relatives to cope with food insecurity (WFP and GSS 

2012). This makes northern Ghana a suitable area for assessing the impact of improved crop 

varietal adoption by households and their peers on crop yield, and household food and nutrients 

consumption.  

Our findings show strong evidence of heterogeneity in returns to adoption in both observed and 

unobserved characteristics. Specifically, we find positive selection on gains due to unobserved 

characteristics, mainly driven by worse outcomes, of households with less resistance to adopt, 

in the non-adoption state. However, adoption appears to make the potential outcomes of 

households quite homogenous, irrespective of their level of resistance to adoption. Peer 

adoption increases the household’s food and nutrients consumption, when the household is not 

adopting the improved variety, but with attenuating effects when the household adopts, 

suggesting that non-adopters tend to depend more on adopting peers in terms of food and 

nutrients consumption than adopters. We, however, note that the estimated effects cannot be 

interpreted as causal-effects in its strictest sense, given that households were not randomly 

assigned to treatment and control groups, as in a randomized controlled trial41.   

Our study contributes to the literature in threefold: first, it provides empirical insights into the 

importance of improved crop varieties on welfare indicators such as crop yields and 

consumption of specific nutrient rich foods, while highlighting heterogeneity in returns to 

adoption in observed and unobserved characteristics. To the best of our knowledge, this is the 

                                                           
41 We thank the reviewers and editor for suggesting this to us. 
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first study to use this approach to quantify the effects of improved crop variety on food and 

nutrients consumption. Second, the paper presents evidence of exogenous interaction effects 

(Manski 2013) on food and nutrients consumption of smallholders. As indicated previously, 

understanding the relationship between peer adoption and household consumption may present 

an alternative to public food and nutrition security interventions through private transfers 

among peers, given the challenges of sustainable and exit mechanisms of public food transfer 

modalities (Holden et al. 2006). Finally, the study provides insights into the effectiveness of 

policy options (i.e., whether to promote affordability or availability of the improved soybean 

seeds) that shift some non-adopting households to adopt on the outcomes.   

The next section presents the conceptual framework of the analysis. In section 4.3, we present 

the context and data used in the analysis. Section 4.4 presents the analytical and empirical 

frameworks and estimation. In Section 4.5, we report the results, and then discuss in section 

4.6. The final section presents a brief summary and conclusions.   

4.2 Conceptual framework 

In this section, we explore the conceptual mechanisms by which own and peer adoption may 

affect crop yield, food and nutrients consumption. To the extent that the improved variety is 

characterized as high yielding, early maturing and resistant to agricultural and climatic stress 

(CSIR-SARI 2013), own adoption of the improved variety can lead to increased yields and 

reduced production costs, which may result in increased farm income and subsequently 

increased food consumption. However, when own adoption and investments in the new variety 

is not complemented with good production “know-how”, or soybean market, this may lead to 

reduced income and food consumption, since soybean is not a staple food in the area but is 

mainly produced for cash sales42. Similarly, food and nutrients consumption may decrease, if 

                                                           
42 The other pathways through which agriculture production can affect food security and nutrition are changes in food prices, 

consumption of own production and intra-household dynamics related to gender and resource control. However, we do not 
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additional income from adoption of the improved variety is not spent on food and nutrients 

(Carletto et al. 2015, Sibhatu and Qaim 2018).   

 

Given that smallholder farmers in the rural areas of developing countries often face missing or 

inefficient markets, making household production and consumption decisions jointly 

determined and thus “non-separable” (de Janvry et al. 1991), peer adoption decisions that affect 

household production can alter household consumption decisions as well. For example, peer 

adoption that provides learning opportunities and eases input constraints can lead to increased 

crop yield, farm income and consequently food consumption possibilities (Conley and Udry 

2010; De Giorgi et al. 2020). However, when a household does not adopt, peer adoption can 

reduce (increase) learning opportunities (costs), especially if the production processes of the 

improved and traditional varieties are not complementary (Niehaus 2011), which can constrain 

household productivity, income and possibly consumption capabilities.  

 

Peer adoption effects can also impact on own yield and food consumption through private 

transfers that result in a shift in the household’s resources. In particular, if peer adoption leads 

to increased yield, income and wealth of peers, this can as well empower peers to undertake 

private transfers to the household. This can then lead to an increase in the household resource 

possibilities to (a) directly spend on food and/or (b) indirectly relax the liquidity constraint of 

the household in production, which may increase crop yield and food consumption possibilities.  

However, own adoption by the household which leads to increased productivity and income 

especially of poorer households may attenuate peer effects through private transfers on the 

households’ food consumption, when the increase in productivity and income from adoption, 

                                                           
emphasize the food price and intra-household effects because the focus of the study is on farm-level effects and not on 

individual household members (Carletto et al. 2015). Also, consumption of own production is not emphasized here because 

soybean is not a staple food in the study area but a crop that mainly produced for cash sales and incomes (CSIR-SARI 2013).  
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leads to a decrease in the private transfers from peers or reduce dependence on peers. Studies 

have noted that, when the cost of sharing or altruistic effort is sufficiently higher than the 

benefit, then no member will undertake any effort to share (e.g., Alger and Weibull 2012; Di 

Falco and Bulte 2013). Finally, peer adoption effect on food consumption could decline, 

following own adoption, if own adoption by the household, leads to increased productivity and 

results in the need to settle past transfer commitments (Di Falco et al. 2018). 

 

We deduce a number of implications from the foregoing discussion to guide our interpretation 

of the empirical results. When the household is not adopting, the impact of peer adoption on 

the household’s yield and food consumption could be either positive, if the production processes 

of the improved and traditional varieties are complementary, or negative if otherwise, thereby 

constraining transferability of production “know-how” and other inputs. The impact of peer 

adoption on household food security should be positive, if peer adoption leads to increased 

private transfers from peers. When the household adopts, the impact of peer adoption on crop 

yield and food consumption could be positive, if own adoption enhances learning and relaxes 

input constraints, which leads to increased household productivity, income and spending on 

food. On the contrary, the impact of peer adoption on consumption in particular could be 

negative, if increased productivity and income due to own adoption either results in reduction 

of dependence on social transfers from peers, or in the need to return private transfers received 

from peers by the household, indicating peer and own adoption are substitutes (Di Falco et al. 

2018).  

 

4.3 Context and data 

4.3.1 Context  

Ghana is a lower middle-income country that has made steady progress in economic growth, 

food security, and in reducing poverty rate from 56.5% in 1991 to 23.4% in 2018 (GSS 2018). 

Despite this progress, substantial regional disparities exist, with some of the poorest indicators 
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(i.e., high incidence of poverty, food insecurity and malnutrition) found in the northern part of 

the country. In the three northern regions (Northern, Upper East and Upper West regions) of 

Ghana, about 16% of all households are food insecure, with diets consisting of staple foods and 

occasionally accompanied by oil and vegetables (WFP and GSS 2012). Food insecurity in these 

regions is largely associated with poverty, weather constraints, seasonal effects and high food 

prices. The major sources of food for households are own production and market purchases, 

with more than 65% of food consumption coming from cash purchases during the lean season 

months. Similarly, households in this area resort to borrowing food or money from friends and 

relatives in coping with food insecurity (WFP and GSS 2012).  

Soybean is a viable crop that can enhance the incomes and resilience of the poor households, 

because of its commercial potential and also the fact that it is mainly produced in the northern 

regions, which are the poorest regions in the country. The climatic conditions in this area are 

suitable for soybean cultivation, because of the high temperature requirement of 20oC to 30oC 

for successful cultivation. Among the regions of the north, the Northern region, in particular, 

which is the study region, accounts for over 65% of the total area cultivated to the crop and 

produces about 72% of the national output. The crop is cultivated mostly by smallholder 

farmers under rain-fed conditions, and with an average area cultivated of less than two acres. It 

has received significant promotion by the Ministry of Food and Agriculture (MoFA) and the 

Ghana ADVANCE43 program in value chain enhancement and through seed price subsidies to 

farmers aimed at increasing productivity and incomes (MoFA 2017). 

The Council for Scientific and Industrial Research (CSIR) and the Savanna Agricultural 

Research Institute (SARI) developed and introduced the improved variety in order to 

                                                           
43 ADVANCE refers to the Feed the Future Ghana Agricultural Development and Value Chain Enhancement Project funded 

by the United States Agency for International Development (USAID). 
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circumvent the problems associated with the traditional variety44. The improved variety has 

higher yield potential of over 2.0 MT/ha, resistant to pod-shattering, matures in about 35 days 

earlier, and is resistant to other agricultural and climatic variabilities (CSIR-SARI 2013). 

Despite these interventions, the average national yield of 1.68MT/ha has remained below the 

national achievable yields of 2.50 – 3.10MT/ha (CSIR-SARI 2013). Also, available evidence 

shows that the use of improved soy seed is still quite low, with estimates ranging between 16% 

and 33% (CSIR-SARI 2013) of soybean farmers. Although, SARI and the Ministry of Food 

and Agriculture (MoFA) have worked with private seed companies and other local input dealers 

to enhance supply at the district level, farmers in some communities still travel long distances 

to acquire the seeds from input dealers (MoFA 2017). 

4.3.2 Data 

Data on farm households 

We conducted a survey in 25 villages across 5 districts in the Northern region of Ghana between 

June and September 2017. A random sample of 500 farm households was drawn in three stages. 

In the first step, we purposively sampled five (5) soybean producing districts in the region, 

based on their intensity of soybean production. In the second stage, we used a list of soybean 

producing villages in each district obtained from the Ministry of Food and Agriculture (MoFA) 

offices to randomly sample 8 villages in Savelugu-Nanton, 6 in Gushegu, 5 in Tolon, 4 in 

Karaga and 2 in Kumbungu districts, in proportion to the number of households engaged in 

agriculture in each district (GSS 2014).   

 

In the third stage, (i.e., the village level), we conducted a listing of households in each village 

and randomly selected 20 households in each village for interview and a structured 

                                                           
44 The traditional variety, Salintuya, has been described as low yielding (about 1.0 MT/ha), early shattering of pods and 

susceptible to disease and pests, which sometimes lead to complete loss of output (CSIR-SARI 2013). 
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questionnaire was administered to them. We obtained information from households about their 

agricultural production for the 2016 cropping year, household land, assets and wealth, 7-day 

recall daily food and nutrients consumption; and distance to the nearest soybean seed source 

among others. Finally, we organized a focus group discussion with 4 to 6 village leaders in each 

village, and village level information such as local farm input prices, wage rate, and distance to 

the nearest paved road, market and the district capital was collected from this medium.    

 

Data on social networks 

We used the random matching within sample, which involves drawing a random sample from 

a population and collecting information on the links among them (Conley and Udry 2010). This 

approach offers the advantage of having both households (i.e., nodes45) in any link, randomly 

selected (Fafchamps and Gubert 2007). At the beginning of the interview for each household, 

we randomly matched 5 households from the rest of the village sample to the household, and 

information was collected on the matched households the respondent knew. In particular, we 

collected information on exchanges of agricultural information, labor, credit and land; social 

relations (i.e., whether relatives and friends) and geographic proximity (i.e., whether farm 

neighbors) between the household and the assigned matches the household knew.  

 

We then define the matched households the household shared any of the above exchanges, 

social relation and geographical proximity with as the social contacts. Using these social 

contacts and denoting the responding household as 𝑖 and a given village as 𝑣, we next construct 

a 20 x 20 village social network, which we denote as 𝑁(𝑣). Thus, 𝑁(𝑣) denotes a symmetric 

matrix of the set of 20 households randomly sampled in a village, with undirected entries, being 

equal to one if the respondent has any of these social contacts with a known match (which 

                                                           
45 Nodes represent agents (i.e., households in this study) in a network. Degree is the number of links of a household (i.e., node) 

in an undirected network (Chandrasekhar and Lewis 2016). 
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defines the peers), and zero if otherwise. A household in the network [i.e., 𝑁𝑖(𝑣)]46 has an 

average of 4 links (i.e., degree) with other sampled households in the village, and an average 

node transitivity of 0.46, suggesting that 46% of triads of a household head and the peers have 

links with one another. 

 

Descriptive statistics 

This section describes the data used by focusing on the main outcomes which are soybean 

yields, food consumption score (food) and nutrient rich food consumption scores. Soybean yield 

is measured as the total soybean output in kilograms divided by the acres47 cultivated to the 

crop by household. Given that the food and nutrients outcomes measure the frequency of 

consumption of food and nutrient rich foods, we ask households the question “How many days 

in the last 7 days your household ate the following foods?” We calculated the food consumption 

score by first grouping all food items consumed by households into main staple, pulses, 

vegetables, fruit, meat and fish, milk, sugar, oils and condiments, and the food consumption 

score-nutrition by grouping food items into 15 food groups.  

 

We then categorized these groups into vitamin A rich foods as dairy, organ meat, eggs, orange 

and green vegetables, and orange fruits, and protein rich foods as pulses, dairy, flesh meat, 

organ meat, fish and eggs (WFP 2015). We next sum all the consumption frequencies of the 

food and nutrient rich food items of the same group. For the food consumption score, we 

multiply the value obtained for each food group by the group weight to obtain weighted food 

group scores, and then add the weighted food groups to generate the food consumption score 

                                                           
46 𝑁𝑖(𝑣) is the 𝑖th row of the network matrix 𝑁(𝑣). 

47 The acres cultivated to soybean exclude the proportion of the plots cultivated to vegetables by the 1% of farmers who planted 

some vegetables on their soybean plots. 
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for a household48. For each nutrient rich food group, we sum the number of days the food sub-

group belonging to this was consumed to obtain the food consumption score-nutrition for the 

household (WFP 2015).     

 

The descriptive statistics of these outcome variables are presented in table 4.1 for the whole 

sample and by own adoption status and quintiles of average peer adoption. With a mean soybean 

yield of 631 kilograms per acre (kgs/ac), the mean yield for adopters is 726 kgs/ac, which is 

significantly higher than the mean yield, 439 kgs/ac, of non-adopters.  

Table 4.1. Descriptive statistics of outcomes by own and quintiles of average peer 

adoption 
  By quintiles of average peer adoption 

 All 1st  2nd  3rd  4th  5th  

Main outcomes       

Soybean yield 630.7 551.8 621.8 610.9 667.9 701.1 

   Adopters 725.8 688.5 727.7 705.1 751.7 739.8 

   Nonadopters 439.5 420.5 433.7 443.5 472.3 442.3 

   Adopters – nonadopters  286.3***      

       

Food   33.6 29.5 33.2 32.4 35.2 37.3 

    Adopters  34.9 34.1 33.6 33.0 36.2 37.2 

    Nonadopters  30.7 25.1 32.6 32.0 33.1 38.6 

    Adopters – nonadopters    4.2***      

       

Vitamin A  12.4 10.1 12.4 12.0 13.5 14.3 

    Adopters  13.4 12.9 12.9 12.4 13.9 14.3 

    Nonadopters  10.5 7.3 11.5 11.0 12.4 14.4 

    Adopters – nonadopters    2.9***      

       

Protein   6.2 4.5 6.3 5.8 6.8 7.2 

    Adopters   7.4 7.7 7.4 6.7 7.6 7.5 

    Nonadopters   3.8 2.2 4.4 4.1 4.9 5.2 

    Adopters – nonadopters   3.8***      

       

Nadoption at means  0.69 0.38 0.61 0.71 0.81 0.94 
Notes: The table presents means of the main outcomes, and proportion of adopting peer for the sample and by quintiles of 

proportions of adopting peers. For each variable, the table presents the mean for all the sample, adopters and non-adopters. 

Nadoption denotes the proportion of peers who adopted the improved variety. The table also presents the differences between 

adopters and non-adopter for all the variables. *** denotes significance at 1%. 

                                                           
48 The food consumption score (FCS) is highly correlated with the household dietary diversity score (HDDS) given that they 

both measure the frequency of consumption of different food groups at the household level (FAO 2010). However, whereas 

the FCS weights the various food groups based on nutrient quality, the HDDS uses the unweighted food groups in the 

computation. The limitation of these measures is that they do not provide information on food consumption, dietary diversity 

and specific nutrient intake of individuals in the household, which make them suitable only for household level analysis (FAO 

2010; WFP 2015).     
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The mean food consumption frequency is 34 for the entire sample, with the mean consumption 

of 35 for adopters, being significantly higher than the mean food consumption of 31 for non-

adopters. Similarly, adopters of the improved variety have significantly higher consumption 

frequencies of nutrient rich foods (i.e., vitamin A and protein rich foods). These observations 

motivate the empirical investigation, where there is significant unequal consumption 

frequencies of food and nutrient rich foods that appear to coincide with adoption status. 

 

Given the association between household adoption and food and nutrients consumption 

frequencies, we next explore whether peer adoption can possibly be associated with household 

food and nutrients consumption by providing descriptive statistics according to quintiles of peer 

adoption. The mean soybean yield increases from 552, 689 and 421 kgs/ac for the lowest 

quintile to 701, 740 and 442 kgs/ac for all the sample, adopters and non-adopters, respectively, 

in the top quintile, an increase that is statistically significant for all sample (p = 0.000) and only 

adopters (p = 0.015). The mean food consumption frequency also increases from 30, 34 and 25 

for the bottom quintile to 37, 37 and 39 for the top one for the entire sample, adopters and non-

adopters respectively, an increase which is statistically significant (p = 0.000).  However, the 

food consumption difference between adopters and non-adopters markedly narrows at the top 

quintile of peer adoption (p = 0.449).   

Similarly, the mean consumption frequencies of nutrient rich foods closely follow that of food 

consumption in general. While the consumption of vitamin A and protein rich foods by non-

adopters significantly increase from 7.3 and 2.2 for the bottom quintile to 14.4 and 5.2 for the 

top one, respectively, the consumption frequencies of adopters do not witness significant 

changes. The weaker correlation between peer adoption and yield of non-adopters and the 

stronger association between peer adoption and non-adopters’ food and nutrients consumption, 

suggest the possibility of stronger peer adoption effects in the form of risks sharing and private 

transfers when the farmer is not adopting.  
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We present definition, measurement and descriptive statistics of characteristics of the sample 

and peers in table 4.2. Of particular interest is panel B, which presents the main instrument, 

distance to the nearest soybean seed source used to identify household adoption of the improved 

variety. In our sample, the average distance from the household location to the nearest seed 

source is about 6 kilometres (km). Even though some households are located in less than 2 km 

to the nearest soybean seed source, the distance increases to an average of about 11 km for the 

households in the highest distance quintile in the sample (see Table 4.A1 in appendix A3). 

Panels C of table 4.2, shows that a household has an average of 65% of the peers being males, 

aged 44 years and with landholding of 2.7 hectares.  Also, 63% of a household’s peers of peers 

are males, aged 44 and with landholding of 2.7 hectares (panel D).  

 

4.4 Methodology 

4.4.1 Analytical framework 

The significant differences between the outcomes of adopters and non-adopters, and the 

heterogeneity in these outcomes across the distribution of adopting peers, shown in section 4.3, 

suggest the need for a framework that can estimate the effects of own adoption on these 

outcomes, while accounting for heterogeneity in gains from peer adoption, as well as other 

observed and unobserved characteristics of these farm households. Thus, we use the marginal 

treatment effects framework, which is based on the generalized Roy model (Heckman and 

Vytlacil 2005; Cornelissen et al. 2016; 2018).  

 

We assume that treatment (adoption) of a household, 𝑖, is a binary variable denoted by 𝐴𝑖, and 

the household’s potential outcome (e.g., yield, food and nutrients consumption) under the 

hypothetical situation of being an adopter (𝐴𝑖 = 1) and non-adopter (𝐴𝑖 = 0) as 𝑌1𝑖 and 𝑌0𝑖, 

respectively. Let 𝐴𝑗 represent peer adoption, with 𝜌1 and 𝜌0 as the parameter estimates showing 

the effects of peer (𝑗’s) adoption on own (𝑖) potential outcomes under the situation of the 

household adopting and not adopting, respectively.  
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Table 4.2. Variable definition, measurement and descriptive statistics 

Variables Definition and measurement Mean SD 

Panel A:    Household characteristics       

Adoption 1 if farmer adopted the improved variety; 0 otherwise 0.67 0.47 

Nadoption Proportion of peers who adopted the improved variety  0.69 0.01 

Sex 1 if male; 0 otherwise 0.59 0.49 

Age Age of farmer (years) 44.03 12.04 

Education Number of years in school 1.27 3.27 

Hsize Household size (number of persons) 5.64 2.14 

HLand Total land size of household (in hectares) 2.56 1.56 

HWealth Value of household durable assets in 10,000 GHS 1.29 2.00 

HRisk Risk of food insecurity (No. of months household was food inadequate) 0.93 1.37 

Soil fertility 4=fertile; 3=moderately fertile; 2=less fertile; and 1=infertile 2.97 0.97 

Seed use Quantity of soybean seeds used per acre in kilograms  9.58 4.37 

Fertilizer cost Cost of fertilizer applied per acre in GHS  151.4 226.1 

Pesticide cost Cost of pesticides applied per acre in GHS  1.45 5.26 

Weedicide cost Cost of weedicides applied per acre in GHS 22.52 37.18 

Machinery Log of machinery cost per acre 4.16 0.50 

Local wage rate Log of local wage rate per day 1.80 0.23 

Labor use Number of man-days per acre  14.95 10.21 

Extension 1 if ever had extension contact; 0 otherwise 0.34 0.47 

Farm revenue Total farm revenue of household in 1000 GHS 6.37 4.23 

Soybean income Net income from soybean in GHS calculated as total soybean revenue 

per acre minus the cost of seeds, fertilizer, weedicide, labor and 

machinery used on soybean farm per acre.  

  

Association Number of associations the farmer is a member in the community 1.07 1.27 

Town center Distance from community to main town center in kilometers 15.46 11.86 

    

Panel B:    Instruments   

SoySeed price Soybean seed price in GHS/kilograms 1.06 0.19 

SoySeed distance   Distance from household location to soybean seed source in kilometers 5.54 3.51 
NResident distance Average distance from farmer to peers’ residence in kilometers 5.33 3.48 
N2Resident 

distance 
Average distance from peers to peers of peers’ residence in kilometers 5.22 2.06 

    

Panel C:   Direct peer characteristics      

NSex Proportion of male peers  0.65 0.17 

NAge Average age of peers  43.65 4.37 

NEducation Average years of schooling of peers 1.58 1.12 

NHsize Average households’ size (number of persons) of peers 5.74 0.79 

NLandholding Average landholdings of peers  2.67 0.67 

NWealth Average value of household durable assets of peers (normalized) 0.03 0.34 

NSoil Average soil fertility of peers  3.02 0.31 

NExtension Proportion of peers with extension contact ever 0.38 0.15 

NFarm revenue Log of average total farm revenue of peers 8.55 0.52 

NSoySeed 

distance 

Average distance from peers’ household locations to soybean seed 

source in kilometers  

5.52 3.30 

    

Panel D:   Indirect peer characteristics          

N2Sex Proportion of male peers of peers 0.63 0.13 

N2Age Average age of peers of peers 43.73 3.82 

N2Education Average years of schooling of peers of peers 1.51 0.92 

N2Hsize Average households’ size (number of persons) of peers of peers 5.73 0.74 

N2Landholding Average landholdings of peers of peers 2.65 0.59 

N2Wealth Average value of household durable assets of peers of peers  0.04 0.31 

N2Soil Average soil fertility of peers of peers 3.01 0.29 

N2Extension Proportion of peers of peers with extension contact ever 0.38 0.14 

N2Farm revenue Log of average total farm revenue of peers of peers 8.56 0.51 

N2SoySeed 

distance 

Average distance from peers of peers household locations to soybean 

seed source in kilometers  

5.51 3.28 
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Also, let 𝑋𝑖 denote a vector of farmer and household characteristics, with 𝜂1 and 𝜂0 being the 

associated vector of parameter estimates under the situation of being an adopter and non-

adopter, respectively; 𝐺𝑖 represents a vector of village characteristics and network fixed effects. 

Given these definitions, we model the potential outcomes as 

 𝑌1𝑖 = 𝜌1(𝐴𝑗) + 𝜂1(𝑋𝑖) +  𝐺𝑖
′𝜏 + 𝑈1𝑖,  

(1)  

 𝑌0𝑖 = 𝜌0(𝐴𝑗) +  𝜂0(𝑋𝑖) + 𝐺𝑖
′𝜏 + 𝑈0𝑖  

 

where 𝜏 is a vector of parameters to be estimated, while  𝑈1𝑖 and 𝑈0𝑖 represent deviations from 

the mean and are assumed to have means of zero. The peer adoption variable, 𝐴𝑗, is obtained 

by multiplying the adoption variable, 𝐴𝑖, by the 𝑖th row of the social network matrix 𝑁(𝑣) 

[i.e., 𝑁𝑖(𝑣)𝐴𝑖], which we discussed in subsection 4.3.2  

We express adoption decision of 𝑖 in the following latent variable (i.e., 𝐴𝑖
∗) discrete choice 

model: 

(2) 𝐴𝑖
∗ = Θ𝐴(𝐴𝑗 , 𝑋𝑖, 𝐺𝑖 , 𝑅𝑖) − 휀𝑖  with 𝐴𝑖 = {

1 if 𝐴𝑖
∗ ≥ 0 

 0  otherwise
 

where 𝐴𝑖 is a binary indicator that equals 1 if household 𝑖 adopts the improved soybean variety 

and zero otherwise. The other variables are as defined earlier, and 𝑅𝑖 is an instrument excluded 

from eq. (1), and used to identify the effect of household adoption decisions on the outcomes. 

Θ𝐴 is a vector of parameters to be estimated. 휀𝑖 is an i.i.d. error term, and because it enters the 

selection equation with a negative sign, it represents the unobserved characteristics, also 

referred to as resistance, that make individuals less likely to adopt.  

 

If we assume a cumulative distribution function (c.d.f.) of 휀𝑖 as Φ(휀𝑖), then the mean part of eq. 

(2) [i.e., Θ𝐴(. )] will represent the propensity score of adoption [defined as Φ(Θ𝐴(. ))≡ 𝑃(𝑍)], 

which is based on the observed characteristics. The c.d.f. of 휀𝑖 represents the quantiles of 

distribution of the unobserved resistance to adoption [defined as Φ(휀𝑖) ≡ 𝑈𝐴]. A farm household 

will adopt, if the propensity score of adoption is greater than the unobserved resistance to 
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adoption [i.e., Φ(Θ𝐴(. )) ≥ Φ(휀𝑖)]. Given the propensity score and eq. (1), we can estimate the 

outcome equation as a function of the observed regressors (𝐴𝑗 , 𝑋𝑖, 𝐷𝑖 , 𝐺𝑖) and the propensity 

score 𝑃(𝑍) as   

 𝐸[𝑌|𝐴𝑗 = 𝑎, 𝑋𝑖 = 𝑥,   𝐺𝑖 = 𝑔,  𝑃(𝑍) = 𝑝] 

(3) 

  = 𝐴𝑗𝜌0 + 𝑋𝑖
′𝜂0 + 𝐺𝑖𝜏 + 𝐴𝑗

′(𝜌1 − 𝜌0)𝑝 + 𝑋𝑖
′(𝜂1 − 𝜂0)𝑝 + 𝐸(𝑈1𝑖 − 𝑈1𝑖)𝑝 

 

where 𝑌 = 𝑌1𝑖 − 𝑌0𝑖, (𝜌1 − 𝜌0)𝑝 and (𝜂1 − 𝜂0)𝑝 measure the returns to adoption for 

households with different levels of peer adopters, 𝐴𝑗 , and other observable covariates, 𝑋𝑖, 

respectively. These observed gains could be positive or negative depending on whether 

households with higher values (such as more adopting peers) have higher or lower than average 

returns to adoption (Carneiro et al. 2011). 𝐸(𝑈1𝑖 − 𝑈1𝑖)𝑝 represents the returns to adoption due 

to unobserved ability of the household. Suppose that 𝑌 is yield, a positive (negative) effect of 

𝐸(𝑈1𝑖 − 𝑈1𝑖)𝑝 will imply a negative (positive) selection on unobserved gains.  

 

Following Heckman and Vytlaci (2005) and Cornelissen et al. (2018) we obtain the marginal 

treatment effects (MTE) for 𝐴𝑗 , 𝑋𝑖 and 𝑈𝐴 = 𝑝 by taking the derivative of eq. (3) with respect 

to 𝑝 as  

(4) MTE(𝑎, 𝑥, 𝑝) =
𝜕𝐸[𝑌| .  , 𝑃(𝑍)=𝑝]

𝜕𝑝
= 𝐴𝑗

′(𝜌1 − 𝜌0) + 𝑋𝑖
′(𝜂1 − 𝜂0) +

𝜕𝐾(𝑝)

𝜕𝑝
 

where 𝐾(𝑝) is a nonlinear function of the propensity score. Equation (4) suggests that treatment 

effects heterogeneity can result from both observed and unobserved characteristics. Estimation 

of the treatment effects requires a first-stage in which the instrument, 𝑅𝑖, in eq. (2) causes 

variation in the probability of adoption, conditional on the observed characteristics [i.e., 𝑅𝑖 ⊥

(𝑈0𝑖, 𝑈1𝑖, 휀𝑖)|(𝐴𝑗, 𝑋𝑖, 𝐺𝑖)]. Given the exclusion instrument, we estimate a first-stage probit eq. 

(2) to obtain estimates of the propensity score �̂� = Φ(Θ𝐴(. )). Modeling 𝐾(�̂�) as a polynomial 

in degree 2, we estimate the marginal treatment effects (MTE), using the local instrumental 
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variable (IV) estimator by expressing eq. (3) as a function of observed regressors (𝐴𝑗 , 𝑋𝑖, 𝐺𝑖) 

and the propensity score 𝑃(𝑍). This is specified as 

 

(5) 𝑌 = 𝐴𝑗𝜌0 + 𝑋𝑖
′𝜂0 + 𝐺𝑖𝜏 + 𝐴𝑗(𝜌1 − 𝜌0)�̂� + 𝑋𝑖

′(𝜂1 − 𝜂0)�̂� + 𝐾(�̂�) + 𝜇𝑖 

 

 

where 𝐾(�̂�) is a non-linear function of the propensity score and 𝜇𝑖 is the error term. Equation 

(5) expresses the returns to adoption for an individual with adopting peers  𝐴𝑗 = 𝑎, and 

observed characteristics 𝑋𝑖 = 𝑥, who is in the 𝑈𝐴th quantile of the distribution of 휀. We compute 

the unconditional treatment effects of household adoption [i.e., the average treatment effects 

(ATE), treatment effects on the treated (TT) and treatment effects on the untreated (TUT)] by 

aggregating the MTE over the 𝑈𝐴 and the appropriate distributions of the covariates. Given our 

interest in evaluating policy intervention that seeks to subsidize soybean seed price or reduce 

distance to soybean seeds source, we also use the Policy Relevant Treatment Effects (PRTE) to 

estimate the aggregate effects of such policy changes (Heckman and Vytlacil 2005) (refer to 

appendix A1 for expression of these treatment effects measures).  

 

4.4.2 Exclusion restriction and identification of the peer effect  

The first identification concerns are issues of standard endogeneity and omitted variable biases 

of own adoption in eq. (1), due to the fact that own adoption is endogenously determined. Our 

strategy for dealing with this is to rely on the distance of the household to the closest source of 

soybean seeds, and not necessarily where soybean seeds are actually purchased. We argue that 

distance to soybean seed source indicates the availability of the soybean seeds in the district, 

and will likely alter the relative cost of adoption by a household (see also Suri 2011). Thus, 

households located close to improved soybean seed source will have lower costs and possibly 

higher net benefits from adoption, which will make them more likely to adopt than those not 

closer. We further argue that distance to soybean seed source is not directly related to our 

outcome variables, except through the effect on adoption, because the main sources of the 
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improved soybean variety are agricultural input dealers some of who are located in the district 

capitals (CSIR-SARI 2013)49.  

Two main possible concerns about the exogeneity of our instrument are that; if soybean seed 

dealers chose their location strategically close to their buyers, and if households’ location was 

endogenously determined based on the location of input dealers. In respect of the first concern, 

we show that this is not the case with results of t-test of differences in means, across different 

distance bandwidths, for variables at the village level, household levels and the outcomes in 

table 4.A1 in appendix A3. The tests suggest that villages and households located closer to 

soybean seed source are not systematically different from those located further away. The 

second concern is not likely the case, because soybean is not the main crop cultivated by these 

households and thus, it is unlikely that a household will change location because it wants to 

access improved soybean seeds. Table 4.A1 further shows no significant difference in distance 

and adoption status among households who changed location over the past 5 and 10 years as at 

the time of the interviews.  

The next critical issue of identification is the peer effects in eqs. (1) and (2). The first concern 

is the endogeneity of the peer effects. First, the peer adoption effect (i.e., 𝐴𝑗), in eq. (1) cannot 

generally be consistently estimated, especially with OLS, because of the correlation of the error 

term in this equation with this term [i.e., cov(𝐴𝑗 , 𝑈1,0𝑖) ≠ 0], possibly due to the omitted effects 

of the peer outcomes (Acemoglu et al. 2015). The second aspect is that, the estimation of own 

                                                           
49 Of course, distance to seed source could be correlated with distance to town centre, where households who have their closest 

seed source located in the town centre inadvertently live closer to the town centre and therefore more likely to be wealthy 

and to be able to buy or trade for food, increasing food security. This could threaten our identification strategy because 

distance to soybean source in this case can affect our outcomes through closeness to town centre and household wealth, and 

not only through adoption. For this reason, we controlled for distance to town centre and household wealth in all 

specifications.    
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and peer adoption (𝐴𝑗 is endogenous effect) in eq. (2) poses endogeneity concerns because of 

the Manski’s (1993) “reflection problem” and correlated unobservables [i.e., cov(𝐴𝑗 , 휀𝑖) ≠ 0]. 

The reflection problem is the result of the coexistence of the endogenous peer effect and the 

contextual effect in eq. (2)50. 

In order to identify the contextual effect in eq. (1), and the contextual and endogenous effects 

in eq. (2), we follow the approaches of Bramoullé et al. (2009) and Acemoglu et al. (2015), 

who use the average characteristics of peers of peers [i.e., 𝑁2(𝑣)] as an instrument for the 

average adoption of peers. Intuitively, since the characteristics of a household’s peers of peers 

are correlated with the behavior and outcome of the household’s peers, but are exogenous to 

the behavior and outcome of the household, these satisfy the exclusion restriction of being valid 

instruments for the adoption decision of the household’s peers (see Appendix A2 for a case on 

social network structures and identification of peer effects). Two key requirements for the use 

of this strategy are that the peers of peers characteristics (such as distance to soybean seed 

source by peers of peers) that are used as instruments should be uncorrelated with the instrument 

used to identify own adoption, and that the peers of peers instrument must be independent of 

own outcomes, except through average peer adoption (Acemoglu et al. 2015).  

However, given that our main instrument is the distance to soybean seed source, it is likely that 

the household’s own distance to seed source will be correlated with the average distance to 

soybean seed source by peers of peers. As a result, we use the average distance between the 

residence of the household’s peers and the peers of peers as an instrument to identify the effect 

of average peer adoption on household own adoption and the outcomes. The reasoning is that, 

when farmers are residentially close to each other, they are more likely to interact and exchange 

                                                           
50 These identification issues are discussed in the social networks and peer effects literature (Bramoullé et al. 2009; Acemoglu 

et al. 2015; De Giorgi et al. 2020). The formal development of these issues is beyond the scope of this paper. We refer the 

reader to Acemoglu et al. (2015) for the formal development and identification problems therein.    
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information and resources, which can increase the likelihood of them influencing the behavior 

and decisions of each other. Thus, if a farmer has geographically closed peers whose closer 

peers have new and more access to information about the improved variety, that farmer could 

receive this information and advice from the peers of peers through the farmer’s peers.    

Indeed, whereas the distance to soybean seed source of peers of peers appears to be highly 

correlated with own distance (0.942), the average distance between the residence of farmer’s 

peers and the peers of peers is uncorrelated with own distance to the seed source (0.010) as 

shown in table 4.A2. To test the second assumption, we followed the approach of Di Falco et 

al. (2011) by regressing the outcomes of non-adopters on the own and average peer adoption 

instruments in table 4.A3. Whereas the estimate generally show that these instruments do not 

significantly correlate with the outcomes, tables 4.B1.1 and 4.C1-4.C3 in the supplementary 

material show that the instruments significantly explain average peer adoption and own 

adoption, respectively.  

 

Thus, to account for the endogeneity of peer adoption, we regress peer adoption on own, 𝑋𝑖, 

and peer characteristics (𝑁𝑖(𝑣)𝑋𝑖), as well as the characteristics of the peer of peers (𝑁𝑖
2(𝑣)𝑋𝑖), 

obtain the predicted peer adoption, and use this as the peer adoption variable in the outcome 

(eq.1) and selection (eq.2) equations (see table 4.B1.1 in appendix B1). Finally, we partly 

capture correlated effects by including village dummies to account for network fixed effects 𝐺𝑖 

(i.e., individuals self-select into networks based on network-specific characteristics). To 

account for correlated effects at the link formation level, we estimated a network formation 

model and inserted the predicted generalized residuals of this model into eqs. (1) and (2) as 

control functions (Brock and Durlauf 2001) (see Appendix B2.).    
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4.5 Empirical Results  

4.5.1 First-stage adoption  

Table 4.3 reports the marginal effects estimates of the first-stage probit selection model in 

column (1) for soybean yield, and in column (2) for food and nutrients consumption. The 

distance to the closest soybean seed source is a strong predictor of adoption, and as expected, 

the coefficients of the distance suggest a strong relationship between the availability of the 

improved seeds and the decision to adopt.  

 

Table 4.3. First-stage adoption results of yield and food and nutrients consumption 

specifications  
 (1) 

Yield  

 (2) 

Food and nutrients  

Coefficient S. E. Coefficient S. E. 

𝚯𝑨 𝚯𝑨 

Nadoption (Predicted)      0.168*** 0.047       0.110** 0.049 

Sex      0.050 0.052       0.011 0.053 

Age  -0.002 0.001   -0.002 0.001 

Education      0.002 0.008       0.004 0.008 

Hsize  -0.035** 0.013   -0.041*** 0.013 

HLand      0.052** 0.022       0.041* 0.021 

HWealth (predicted)      0.163*** 0.045       0.169*** 0.045 

Soil fertility      0.022 0.026       0.038 0.027 

Seed use  -0.014** 0.006   -0.015** 0.006 

Fertilizer cost   -1.8E-5    7.0E-5   -3.9E-5    6.0E-5 

Pesticide cost      0.001 0.004       0.003 0.004 

Weedicide cost      3.6E-4 0.001   -2.6E-5 0.001 

Machinery  -0.006 0.052   -0.066 0.059 

Labor use      0.001 0.002       0.001 0.002 

Extension (predicted)      0.568*** 0.110       0.572*** 0.108 

Soy selling price      0.166 0.203       0.088 0.194 

Farm revenue (predicted)         0.270*** 0.070 

Residuals_NWLink  -0.054 0.034   -0.046 0.034 

   Local wage rate      0.137 0.101   -0.266* 0.151 

   Network Fes       Yes         Yes  

   Town center      0.004* 0.002       0.005** 0.002 

   NSex  -0.240 0.151   -0.498*** 0.163 

   NAge      0.003 0.005       0.002 0.005 

   NLand  -0.098** 0.040   -0.116** 0.040 

   SoySeed Distance    -0.478*** 0.089   -0.483*** 0.094 

   N2SoySeed Distance      0.147*** 0.027       0.144*** 0.029 

   SoySeed price  -0.481** 0.193   -0.497** 0.194 

      
The table reports the first-stage adoption results of the yield equation in column (1) and food and nutrients consumption equation in 

columns (2). The estimates are marginal effects from probit selection model of adoption decisions (first-stage eq. 2). Our instrument 

is distance to soybean seed source, which is normalized about its overall mean. Θ𝐴 is a vector of parameter estimates from equation 

(2). Network FEs is network fixed effects and Residuals_NWLink is residuals of the link formation model. S.E. are bootstrapped 

standard errors with 50 replications. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 
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As expected, the soybean seed price shows a strong negative correlation with the decision to 

adopt. We also report the chi-squared test of the excluded instruments at the bottom panels of 

these tables, and based on this, we can, throughout, reject the hypotheses that the excluded 

instruments are not relevant. The results suggest that there is a strong and significant 

relationship between the adoption decisions of peers and one’s own decision to adopt the 

improved variety. To facilitate interpretation, we normalize peer adoption over its mean. 

Specifically, a standard deviation (SD) increase in the number of adopters of the improved 

variety among a household’s peers, raises the probability of the household’s (own) adoption by 

at least about 11 percentage points. The estimated peer adoption effects correct for the potential 

endogeneity of the peer adoption variable by using predicted peer adoptions, and account for 

correlated unobservables with the network fixed effects and residuals of the link formation 

model (Residuals_NWLink) in all specifications.  

 

The first-stage probit generates a large common support for the propensity score P(Z) and this 

ranges from 0.1 to at least 0.99 (figure 4.1) for both soybean yield (part A) and food and 

nutrients (part B). This satisfies the requirement that the instrument should generate enough 

common support for the estimation of the MTE (Cornelissen, et al. 2016).  
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Figure 4.1 Common support for Soybean yield and food and nutrition security  
 

The figure plots the frequency distribution of the propensity score by adopters and non-adopters. The 

propensity score is predicted from the baseline first-stage regressions. Part A is based on the regression for 

soybean yield and part B is based on the regressions on food and nutrition. We have two different specification 

of the first-stage equation, and thus the two propensity score plots because we included extension contact in 

both the selection and the outcome stages in the yield equation, but included it only in the first-stage of the food 

and nutrients consumption equations. The reason is that whereas extension was conceived as having potential 

effects on both adoption and yield directly, we considered the effect of extension on food and nutrients 

consumption will be through farm income which we controlled for.  
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4.5.2 Summary treatment effects and marginal treatment effects of household adoption 

We report the summary treatment effect estimates of eq. (5) in panel A of table 4.4 (refer to 

table 4.C1-4.C3 in appendix C for the complete estimates). The ATE indicates that for a 

soybean producing household chosen at random from the population of soybean producing 

households, adopting the improved variety increases soybean yield by 61 percentage points. 

Our results for the TT imply that for an average adopting household, adoption significantly 

results in about 77 percentage points increase in soybean yield.  In the TUT case, for an average 

non-adopting household, adoption would significantly increase soybean yield of the household 

by 28 percentage points. 

 

    Table 4.4. Aggregate Treatment effects of adoption on Yield, food and nutrients 

consumption  
 (1) (2) (3) (4) 

 Yield Food Vitamin A Protein 

Panel A     

ATE       0.606*** 

(0.095) 

      0.294*** 

 (0.080) 

      0.526*** 

(0.121) 

      1.041*** 

(0.198) 

TT       0.772*** 

(0.149) 

    0.299** 

(0.118) 

      0.596*** 

(0.173) 

      1.128*** 

(0.284) 

TUT    0.278** 

(0.098) 

      0.283*** 

(0.078) 

     0.384*** 

(0.089) 

      0.864*** 

(0.185) 

     

Panel B     

Nadoption 𝜌0   -0.051 

     (0.033) 

    0.087** 

(0.033) 

      0.198*** 

(0.049) 

      0.292*** 

(0.086) 

TE for Nadoption (𝜌1 − 𝜌0) �̂�       0.128** 

     (0.051) 
 -0.107*** 

(0.034) 

   -0.214*** 

(0.055) 

    -0.346*** 

(0.087) 

     

p-values for essential 

heterogeneity 

0.010 0.001 0.000 0.000 

Observations 500 500 500 500 
Notes: The table reports the average treatment effect (ATE), average treatment effect on the treated (TT), average 

treatment effect on the untreated (TUT), effect of peer adoption (i.e., Nadoption 𝜌0), treatment effect of peer adoption, 

[i.e., TE for Nadoption (𝜌1 − 𝜌0) �̂�] using the baseline specification and the 𝜌’s are as defined in equations (1) and (3). 

The yield column (1) refers to the soybean yield equation. The food, vitamin A and protein columns (2 to 4) refer to 

the food consumption, and vitamin A and protein rich food consumption equation (estimates of other variables are in 

tables 4.C1 to 4.C3). The p-value for the test of essential heterogeneity tests for a nonzero slope of the MTE curve. 

Bootstrapped standard errors with 50 replications are reported in parentheses. The asterisks ***, ** and * are 

significance at 1%, 5% and 10% levels, respectively.   

 

Similarly, for a soybean producing household picked at random from the soybean producing 

population, adoption of the improved variety increases food and nutrients consumption from 

29 percentage points, for food, to about 104 percentage points for protein. These estimated 



 

184 
 

parameters are all statistically significant at the 1% level. Also, the TT estimates show that for 

an average adopting household, adoption results in 30 percentage points increase in food 

consumption, and 60 to 113 percentage points increase in nutrients consumption. These 

parameters are significantly different from zero, at least, at the 5% level. The significance of 

adoption is still observed, even in the untreated case, where the food and nutrients consumption 

of non-adopters will increase by 28 to 86 percentage points, if they adopt the improved variety.  

 

The summary measures of treatment effects suggest possible treatment effect heterogeneity 

among soybean producing households. In particular, all parameter estimates in table 4.4 show 

that the TT is greater than the ATE, which is also greater than the TUT. This is suggestive of 

positive selection on gains, where individuals who are more likely to adopt (perhaps because 

of their innate ability or variation in the quality of adoption and production conditions) tend to 

benefit more from adoption in terms of yield and food/nutrients consumption. However, as 

indicated earlier, these summary measures mask such treatment effects heterogeneity and thus, 

we show the marginal treatment effects (MTEs) in figures 4.2. These figures relate the 

unobserved parts of the outcomes ( 𝑈1 −  𝑈0) to that of the adoption decision ( 𝑈𝐴). Higher 

values of  𝑈𝐴 imply lower probabilities of adoption (i.e., higher resistance to adoption).  

 

The MTE curves decline with increasing resistance to treatment in all instances, and indicate a 

pattern of positive selection on gains. In effect, given the unobserved characteristics, 

households who are most likely to adopt the improved variety appear to benefit the most from 

adoption. Thus, the slopes of the MTE curves in each case suggest a pattern of heterogeneity in 

returns to adoption, that is significantly different from zero at the 5% level (see the p-values for 

the test of essential heterogeneity at the bottom of table 4.4). Part A of figure 4.2 depicts the 

MTE for yield and shows that for households who are more likely to adopt than the average 

household ( 𝑈𝐴 < 0.5), their returns to adoption are higher than the average household albeit not 

significantly different from the returns to adoption of an average household. For the households 
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with higher resistance to adoption than the average household, their yield returns to adoption is 

significantly lower than that of the average household selected at random for the 30% of 

households with the highest resistance to adoption ( 𝑈𝐴 > 0.7). 

 

 
Figure 4.2 MTE curves for soybean yield  

 

The figure shows the marginal treatment effect (MTE) curves for yield, food and nutrient rich food consumption at the 

average values of the covariates based on specifications in equations (4 and 5). U_A denotes unobserved resistance to 

treatment/adoption. Part A is the MTE curve for soybean yield. Part B depicts the MTE curve for food consumption, part C 

shows the MTE curve for vitamin A rich foods consumption and part D is the MTE curve for protein rich foods consumption. 

The dashed lines are the average treatment effects (ATE). The 95% confidence interval (95% CI) is based on bootstrapped 

standard errors with 50 replications. 

 

 

Figure 4.2 also shows there is clear heterogeneity in returns to adoption in terms of food and 

nutrients consumption. We observe a similar pattern of positive selection on gains, with returns 

to adoption significantly higher than the average household, at least, for the 20%, for food 

consumption, and 25% for nutrients consumption of households who are most likely to adopt. 

Figure 4.2 further shows that returns to adoption in terms of food and nutrients consumption 
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decrease and fall below that of the average soybean producing household, for the households 

with over 33% (i.e.,  𝑈𝐴 > 0.33) resistance to adoption.  

 

In order to probe for the source of this treatment effect heterogeneities, we check whether the 

positive gains on selection on unobserved characteristics (i.e.,  𝑈1 −  𝑈0| 𝑈𝐴 =  𝑢𝐴) are because 

of heterogeneity in the outcomes when not adopting [i.e., upward sloping in 𝐸( 𝑌0| 𝑈𝐴 =  𝑢𝐴)], 

when adopting [i.e., downward sloping 𝐸( 𝑌1| 𝑈𝐴 =  𝑢𝐴)], or both. We report the plot of  𝑌1 and 

 𝑌0 for the various outcomes in figure 4.C1. The figure shows, across all outcomes that, the 

differences in the outcomes are driven by worse outcomes in the non-adoption state, as shown 

by the increasing dashed-dotted lines. However, the outcomes in the adoption state (i.e., dotted 

lines) are more homogenous throughout.  

 

4.5.3 Treatment effect heterogeneity in peer adoption  

For easy reference, we report the estimates of peer adoption effects in panel B of table 4.4, 

where we first present the effect for the case when the household is not adopting (i.e., 𝜌0) and 

when the household is adopting [i.e., (𝜌1 − 𝜌0) �̂�]. The results show that in the non-adoption 

state, a standard deviation increase in the number of adopting peers of the improved soybean 

variety, is associated with a decrease in one’s own soybean yield, although not statistically 

significant. However, the treatment effect of peer adoption is significantly positive and 

increases own yield by about 13 percentage points.  

 

In respect of food and nutrients consumption, the results show that when not adopting, a 

standard deviation increase in peer adoption increases food consumption of the household by 9 

percentage points, and consumption of vitamin A and protein rich foods by 20 and 29 

percentage points, respectively. These effects are significant at least at the 5% level, and suggest 

that non-adopting households benefit from their adopting peers in terms of enhanced food and 

nutrients consumption. Interestingly, when the household adopts, the treatment effect of a 
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standard deviation increase in adopting peers is negative (i.e., (𝜌1 − 𝜌0) �̂�), suggesting that 

household adoption of the improved variety significantly reduces the heterogeneity in food and 

nutrients consumption due to adopting peers by 11, 21 and 35 percentage points for food, 

vitamin A and protein consumption, respectively. These results indicate that households with 

more (fewer) adopting peers tend to gain more in terms of increased soybean yields (food and 

nutrients consumption), when they adopt than their counterparts with fewer (more) adopting 

peers.  This is not surprising because as shown in table 4.1, non-adopters appear to have lower 

yields and food consumption.  

 

4.5.4 Effect mechanisms  

Given the generally positive effects of adoption of the improved variety on yields, food and 

nutrients consumption, we next investigate the mechanisms by which adoption can affect food 

and nutrients consumption in particular. Our conceptual framework suggests that own adoption 

can enhance consumption through increased yields and changes in household income, 

consumption of own production, food prices and intra-household dynamics51. This analysis is 

shown explicitly in table 4.5, where we first estimate the levels and heterogeneity effects of 

gains in yield from adoption on soybean income, food and nutrients consumption (cols. 1-4). 

The estimates reveal a significantly positive association between gains in yield and income 

from soybean. In particular, a log percentage point increase in yield from adoption of the 

improved variety significantly increases the gains in soybean income by over GHS 700 [i.e., 

(𝜂1 − 𝜂0)𝑝], which is about 30% higher than the mean soybean income of non-adopters.  

 

                                                           
51 Given the macro nature of food prices and the focus of the analysis on farm level links, and the limitation of data on the 

sources of households’ food and nutrients consumption (i.e., whether from own production or purchases), we are unable to 

show the effects of changes in food prices and consumption of own produce on food and nutrients consumption.  
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In addition, food and nutrients consumption gains from increased yield due to adoption is 

positive, but significant for food and vitamin A and not for protein. This is expected, given that 

soybean is not a staple food consumed by households, but a crop that is primarily produced for 

sale to enhance household income. Following this, we next check the effects on food and 

nutrients consumption given income gains from adoption (cols. 5-7). In effect, whereas at the 

non-adoption state increase in household income is significantly and positively associated with 

increased food and nutrients consumption, the nutrients consumption, in particular, is 

significantly higher for non-adopters when they adopt, as revealed by the negative treatment 

effects for income.  

 

Table 4.5. Estimates of effects mechanisms 
Soybean  (1) 

Soybean 

income 

(2) 

Food 

(3) 

Vitamin A 

(4) 

Protein 

(5) 

Food 

(6) 

Vitamin A 

(7) 

Protein 

Yield 𝜂0 653.4*** 

(34.1) 

 0.084 

(0.208) 

 0.027 

(0.335) 

 0.112 

(0.545) 

   

TE for Yield 

(𝜂1 − 𝜂0)�̂� 

764.5*** 

(50.6) 

 0.467* 

(0.247) 

 0.833** 

(0.414) 

 1.057 

(0.740) 

   

        

Income 𝜂0      0.211*** 

(0.069) 

 0.476*** 

(0.143) 

 0.545*** 

(0.163) 

TE for Income 

(𝜂1 − 𝜂0)�̂� 

    -0.030 

(0.079) 

-0.395** 

(0.165) 

-0.497** 

(0.196) 

        

Sex 𝜂0      0.103* 

(0.055) 

 0.148 

(0.102) 

 0.140 

(0.117) 

TE for Sex 

(𝜂1 − 𝜂0)�̂� 

    -0.905 

(0.069) 

-0.130 

(0.126) 

-0.126 

(0.158) 

        

Observations    500   500   500   500   500   500    500 

Notes: the table shows the effect pathways of adoption of the improved soybean variety. 𝜂0 presents effects of yield and 

income on soybean income and food and nutrients consumption when the household is not adopting as in equations 

(3). (𝜂1 − 𝜂0)�̂� shows the treatment effects on consumption due to yield and income gains from adoption also as in equation 

(3). TE denotes treatment effects. 

 

 

We also noted in the conceptual framework that the effect of agricultural production on food 

and nutrients consumption can be mediated by gender-related issues (Carletto et al 2015). 

Interestingly, table 4.5 shows that the treatment effect of adoption is not statistically significant 

across gender for all the outcomes, although the negative sign suggests females tend to benefit 

more from adoption in terms of food and nutrients consumption compared to males. This 
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finding confirms that the main mechanism by which adoption affects food and nutrients 

consumption is through increased soybean yields and household income. It further suggests that 

the attenuating treatment effects of peers observed when a farmer adopts can be attributed to 

increased household income following own adoption.    

 

4.5.5 Policy strategies 

Our results so far, have demonstrated that adoption of the improved variety does not only lead 

to increased soybean yield, but also contributes to increasing food and nutrients consumption 

of not only adopters, but that of non-adopters should they adopt. This implies that policies that 

seek to overcome structural barriers and induce people to adopt can be much rewarding. Thus, 

we show the effects of a policy that reduces soybean seed price by 50% (in line with current 

Government policy in Ghana), and a policy that reduces the distance of the household to the 

nearest soybean seed source to a maximum of four kilometres, using the policy-relevant 

treatment effects (PRTE). Whereas the subsidy policy seeks to improve affordability, the 

distance policy attempts to enhance availability of the seeds of the improved variety. 

 

Table 4.6 (col. 1) shows the propensity score at the baseline policy, columns (2) and (3) show 

the propensity scores and the PRTE, respectively, for soybean seed price subsidy, and columns 

(4) and (5) show the propensity scores and PRTE, respectively, for the policy of reducing 

distance to soybean seed source. The estimates show that subsidizing soybean seed price by 

50%, and reducing the distance to soybean seed source to a maximum of four kilometres shift 

households with high unobserved resistance to adoption into adoption, and as a result 

significantly increase soybean yield by 42 and 36 percentage points, respectively, per household 

shifted from non-adoption into adoption. The magnitude of the price subsidy effect on yield is 

higher than that of the distance to seed source. We find statistically significant policy effects 

for both policies in food and nutrients consumption, but with marginally higher effects for the 

reduction in distance to seed source. These findings show that, whereas reducing distance to 
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soybean seeds source appears to be more effective in promoting food and nutrients consumption 

through adoption than the price subsidy, the subsidy appears to produce higher yield effect than 

the policy of reducing the distance to soybean seed source.   

 

Table 4.6.  Policy simulations of the effects of changes in soybean price and distance 

to soybean seed source on soybean yield, food and nutrients consumption 

  Soybean seed price  Distance seed source 

 (1) (2) (3)  (4) (5) 

 Baseline 

propensity 

score 

Policy 

propensity 

score 

PRTE  Policy 

propensity 

score 

PRTE 

Soybean yield 0.664 0.819     0.421*** 

(0.082) 

 0.829       0.361*** 

(0.109) 

Food 0.665 0.823     0.205*** 

(0.055) 

 0.828       0.275*** 

(0.055) 

Vitamin A 0.665 0.823       0.323*** 

(0.078) 

 0.828       0.373*** 

(0.072) 

Protein 0.665 0.823       0.733*** 

(0.099) 

 0.828       0.859*** 

(0.109) 
Notes: The table presents the policy-relevant treatment effects (PRTE) per net household shift into 

adoption for two different policies. Column 1 reports the baseline propensity score, and columns 2 and 4 report 

the increase in the propensity induced by the soybean price subsidy and increase proximity to seed source, 

respectively, based on the baseline specification for the various outcomes. Columns 3 and 5 are the policy-

relevant treatment effects for the soybean seed and seed proximity policies respectively. Bootstrapped standard 

errors (50 replications) are reported in parentheses. The asterisks *** indicates significance at 1% level.  

 

 

4.5.6 Robustness  

In order to examine the robustness of our estimates, we examine the sensitivity of our results to 

changes in alternative specifications of the MTE functional form, outcome and selection 

equations, as well as in the peer effects. We first consider the baseline pattern of our MTE curve 

of positive selection on gains. This is because the estimation of the MTE depends on the 

functional form assumptions invoked, and also the MTE obtained under different functional 

form assumptions may yield different weighted effects of the instrument (i.e., IV effects) 

(Heckman and Vytlaci, 2005). In figure 4.C2 in appendix C, we present MTE curves that 

include specifications based on the parametric normal model (which assumes returns to 

adoption decreases monotonically with resistance to adoption), parametric cubic and a 

semiparametric approach. These curves suggest that the basic shape of the MTE curve is robust 
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to different functional forms, and generally show a similar pattern as in the baseline 

specification.   

 

We next consider the sensitivity of our ATE, TT and TUT to different specifications, as these 

put most weights in different segments of the MTE, and therefore could be sensitive to changes 

in the estimated MTE (Carneiro, et al. 2011). In panel A of table 4.C5, we present estimates 

from a model where we control for other contextual peer effects (i.e., peers’ sex, age, 

landholding and soil fertility) in the outcome equations (cols. 1-3) to assess whether the 

observed peer and treatment effects could be driven by contextual effects or correlation in soil 

conditions between farmers and their peers. In columns 4 to 6, we present estimates of a 

specification that excludes the effects of peer adoption to examine these estimates under the 

stable unit treatment value assumption (SUTVA)52. The estimates are marginally low and high 

for yield and food consumption (col. 4-6), and suggest expansion and attenuation biases, 

respectively, albeit similar in directions and significance to the baseline estimates.  

 

In columns 1 to 3 of panel B, we report estimates when estimating the first-stage with a squared 

term of distance to nearest soybean seed source as additional instrument to account for the fact 

that at longer distances to seed sources, the probability of adoption will become very low. In 

columns 4 to 6 of panel B, we interact distance to soybean seed source with household wealth 

and household size, because the effect of our instrument is likely to vary across households, 

based on their observed resource status (Carneiro, et al. 2011). Table 4.C6 reports results that 

show the sensitivity of the estimates to the use of standard errors clustered at the village level 

in columns (1) to (3) (Cameron, et al. 2008), and when we control for mobile phone network 

                                                           
52 The SUTVA requires that the potential outcomes of treatment observed on one farm household should not be affected by the 

treatment of other farm households. The inclusion of the peer adoption effects violates this assumption but Manski (2013) 

provides characterization of bounds on the treatment effects under social interactions, and thus our estimates should be 

interpreted as bounds and not necessarily as the point estimates.  
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coverage in the village in columns (4) and (5). In order to show the sensitivity of the results to 

changes in the measure of household food consumption, we report treatment effects of adoption 

on household dietary diversity in column (6) of table 4.C6 (FAO 2010). In spite of these 

exercises, the treatment effects estimates remain qualitatively similar to those reported in table 

4.4. 

 

Finally, table 4.C7, columns (1) to (3) of panel A explore the sensitivity of the estimates to peer 

effects through means other than peer adoption. Recall from subsection 4.3.2 that links in our 

networks are defined using social and farm plot proxies, and some of these (such as labor and 

land exchanges) can present effects similar to peer adoption effects. We explore this by 

accounting for household (node) degree, which is the total number of connections a household 

has in the network. A related concern is the issue of the use of the sampled networks which 

truncate the number of households’ social connections and could lead to important links and 

nodes not observed, which can bias the estimates (Chandrasekhar and Lewis 2016).  

 

In order to examine the sensitivity of our estimates to this issue, we follow the approach of Liu 

et al. (2017) by re-running our models without households with links with all the 5 randomly 

matched households to them. Finally, in columns (1) to (3) of panel B, we report estimates with 

difference in adopting peers of a household between a year after the introduction of the 

improved variety (i.e., 2004) and the 2016 cropping season. The results of these exercises 

remain very similar to our baseline results in table 4.4, suggesting that our findings of the pattern 

of selection and the treatment effects are robust to various functional forms and specifications.  

 

4.6 Discussion 

We find significant effects of household adoption on yield, food and nutrients consumption as 

expected, which can be partly attributed to the yield, income and agro-climatic advantages of 

the improved over the traditional variety (CSIR-SARI, 2013). The high magnitudes of these 
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effects, especially on food and nutrients consumption can be explained by the interplay of two 

factors: one is the timing of the survey, as it was conducted in the lean season when households 

rely heavily on food consumption from cash purchases, and the commercial status of soybean, 

as an income enhancing crop for households (see also WFP and GSS 2012; Carletto et al. 2015).  

 

Our findings of heterogeneity in returns to adoption show that households with low resistance 

to adoption do much worse than an average soybean producing household without adoption of 

the improved variety. However, these households become relatively similar with adoption. This 

is perhaps because the production of the traditional variety is more demanding (in terms of time 

and labor), and requires farmers to invest more resources to minimize the production 

challenges. This could increase the risk of vulnerable households who are not able to meet these 

production requirements of losing their crops or entire investment due to early shattering. But 

the improved variety is quite resistant to these issues (CSIR-SARI 2013).     

 

Whereas peer adoption effect has significant and positive effect on households’ yields when 

adopting, we find no significant peer effect on yield when the household is not adopting. A 

potential interpretation is that when the household is not adopting, increased peer adoption 

could reduce private learning opportunities from peers, especially if the production processes 

of the improved and traditional varieties are not complementary. However, household adoption 

increases private learning and imitation opportunities from adopting peers (Niehaus 2011).  

 

Our findings on peer adoption effect on food and nutrients consumption in the non-adoption 

state are suggestive of some form of private transfer among peers, since consumption increases 

with peer adoption in the non-adoption state.  However, own adoption leads to attenuating peer 

adoption effects and this can primarily be attributed to the yield and income gains from the 

improved soybean variety that tend to substantially increase the consumption of non-adopters 

when they adopt. This indicates that consumption benefits from peer adoption tend to decline 
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with own adoption, suggesting that increased own productivity and household income lead to 

reduction in farmers’ dependence on peers (Alger and Weibull 2012; Di Falco et al. 2018).  

 

4.7 Conclusion 

This paper examined the impact of adoption of improved soybean variety on soybean yield, and 

household food and nutrients consumption, using household survey data from Ghana. In 

particular, we estimated the marginal treatment effects of adoption of the improved variety on 

these outcomes, and thus, show heterogeneities in returns to adoption due to observed and 

unobserved characteristics of households. The results generally show positive association 

between adoption and the outcomes, but do not necessarily establish causality. We note three 

main findings: First, a pattern of positive selection on unobserved gains from adoption of the 

improved variety is observed across all outcomes, which is due to the fact that households who 

are more likely to adopt the improved variety have lower returns, than that of an average 

soybean producing household, when not adopting. This finding is in line with the hypothesis of 

adoption based on comparative advantage (Suri, 2011). However, adoption of the improved 

variety tends to make these households quite homogeneous across these outcomes, suggesting 

that adoption can serve as means by which poorer households can narrow the gaps in yields, 

and food and nutrients consumption with better and richer households.    

 

Second, we find that households benefit, in terms of increased soybean yield, from having peers 

who are adopters only when the households also adopt, suggesting the possibility of social 

learning, imitation and/or exchange of resources that are complementary in the soybean 

cultivation process. However, on food and nutrients consumption, we find that having adopting 

peers results in increased household food and nutrients consumption, when the household is not 

adopting, but attenuates when the household adopts. This suggests that households tend to 

depend on peers more in meeting food and nutrients consumption, when not adopting (possibly 

in the form of private transfers) which decreases when the household adopts. These findings 
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suggest that network effects can be an important means of promoting adoption of the improved 

variety and food and nutrients consumption of vulnerable households. Interventions, such as 

self-help groups and/or farmer field-days, aimed at promoting interactions among farm 

households, and enhancing exchange can increase the effectiveness of social networks in 

promoting adoption, soybean yield, and household food security and nutrition. 

 

Finally, subsidizing soybean seed price, and reducing distance to soybean seed source are 

estimated to increase adoption, soybean yield, and household food and nutrients consumption. 

This implies that interventions to minimize production and structural constraints to adoption 

could be an important strategy in mitigating the cost associated with technology adoption, at 

least in the setting at hand. Whereas our evidence suggests that input subsidy is likely to be a 

move in the right direction in enhancing adoption and household outcomes, the option of 

increasing access by reducing the distance to soybean seed source could produce some 

additional gains in food and nutrients consumption. Hence, government and development 

partners can consider increasing access through availability of the improved seeds at the local 

levels, such as empowering village level shops or community-based groups to engage in input 

marketing. 
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Appendix 

Appendix A1: Expressions of treatment effects measures 

 

A.1.1 Conventional treatment effects measures 

E.1  ATE = 𝐸[𝑌1 − 𝑌0] = 𝐸[𝜂1(𝑋𝑖) − 𝜂0(𝑋𝑖)];  

E.2 TT = 𝐸[𝑌1 − 𝑌0|𝐴𝑖 = 1] = 𝐸[𝜂1(𝑋𝑖) − 𝜂0(𝑋𝑖)|𝐴𝑖 = 1] + 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝐴𝑖 = 1]  

E.3 TUT = 𝐸[𝑌1 − 𝑌0|𝐴𝑖 = 0] = 𝐸[𝜂1(𝑋𝑖) − 𝜂0(𝑋𝑖)|𝐴𝑖 = 0] + 𝐸[𝑈1𝑖 − 𝑈0𝑖|𝐴𝑖 = 0]. 

 

A.1.2 Policy Relevant Treatment Effects (PRTE) 

Given that the conventional treatment parameters often present estimates of effects of 

interventions in gross terms (Heckman & Vytlacil 2005), we use the Policy Relevant Treatment 

Effects (PRTE) to estimate the aggregate effects of policy intervention that seek to subsidize 

soybean seed price or reduce distance to soybean seeds source. Such a policy only changes who 

selects into adoption but does not change the underlying distribution of treatment effects or 

preference for treatment (Cornelissen et al. 2016). Suppressing the 𝑖 subscript, if 𝐴 represents 

adoption under the prevailing state, and �̃� as the adoption under the alternative policy (i.e., after 

the subsidy or seed availability intervention), the unconditional PRTE is defined as  

(6) PRTE=  𝐸[𝑌1 − 𝑌0|�̃� = 1]𝐸[�̃�] − [𝑌1 − 𝑌0|𝐴 = 1]𝐸[𝐴]  + 𝐸[𝑈1−𝑈0|𝐴=1]𝐸[𝐴]−[𝑈1−𝑈0|𝐴=1]𝐸[𝐴]

𝐸[𝐴]−𝐸[𝐴]
 .    

This is the mean effect of going from the prevailing policy to the alternative policy per net 

person shift (Heckman & Vytlacil 2005; Cornelissen et al. 2016).   
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Appendix A2: Note on social network structures and identification of peer effects  

 

Manski’s linear-in-means model assumed individuals in a group are affected by all members of 

the group, and not by members outside. The simultaneity in behaviour of same group members 

creates perfect collinearity between the behavioural peer effect and the contextual effects, 

which causes identification problem. However, in majority of social networks, individuals are 

influenced by their direct connections or peers, making the impact of members on individuals 

not even in the network. In this case, the structure of the social network can be relied on to 

identify peer effects. This makes it possible to identify the two effects if there exist 

intransitivities in the network such that if individuals 𝑖 and 𝑗 are connected and 𝑗 and 𝑘 are 

connected but 𝑖 and 𝑘 are not connected, then the characteristics of 𝑘 can be used as an 

instrument to identify the effect of 𝑗 on 𝑖 (Bramoullé et al. 2009; Di Giorgi et al 2019). 
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Appendix A3: Excluded instruments 

 

Table 4.A1. Difference in community and key household characteristics across 

different bandwidths of distance to soybean seed source  

Quartiles 1 2 1-2 3 1-3 4 1-4 5 1-5 

Distance bandwidth 

in kilometres (km) 

0.30 

to 

2.50 

2.70 

to 

4.00 

 4.10  

to  

5.40 

 5.5    

to   

8.00 

 8.30 

to 

17.00 

 

          

Community characteristics        

Periodic market (0,1) 0.45 

(0.05) 

0.53 

(0.05) 

-0.08 

(0.07) 

0.43 

(0.05) 

0.02 

(0.07) 

0.40 

(0.05) 

0.05 

(0.07) 

0.41 

(0.05) 

0.04 

(0.07) 

Mobile phone 

network (0,1) 

0.75 

(0.04) 

0.71 

(0.05) 

0.04 

(0.06) 

0.73 

(0.05) 

0.02 

(0.06) 

0.64 

(0.05) 

  0.11* 

(0.06) 

0.77 

(0.04) 

-0.02 

(0.06) 

Nearest paved road 

(Distance in km) 

7.81 

(0.68) 

9.26 

(0.78) 

-1.45 

(1.04) 

7.90 

(0.68) 

-0.09 

(0.96) 

9.41 

(0.74) 

-1.60 

(1.00) 

8.13 

(0.53) 

-0.32 

(0.87) 

Local wage rate (in 

GHS) 

6.21 

(0.11) 

6.20 

(0.13) 

0.01 

(0.18) 

6.08 

(0.15) 

0.12 

(0.18) 

6.49 

(0.13) 

-0.28 

(0.17) 

6.22 

(0.12) 

-0.01 

(0.16) 

Local soybean price 

(in GHS) 

1.06 

(0.02) 

1.06 

(0.02) 

0.00 

(0.03) 

1.04 

(0.02) 

0.02 

(0.03) 

1.05 

(0.02) 

0.01 

(0.03) 

1.05 

(0.02) 

0.01 

(0.03) 

          

Household          

Wealth (in 10,000 

GHS) 

1.61 

(0.31) 

1.23 

(0.16) 

0.34 

(0.35) 

1.20 

(0.18) 

0.41 

(0.36) 

1.22 

(0.13) 

0.39 

(0.33) 

1.16 

(0.17) 

0.45 

(0.36) 

Landholding (in 

hectares) 

2.89 

(0.17) 

2.44 

(0.16) 

  0.46* 

(0.23) 

2.48 

(0.15) 

  0.41* 

(0.22) 

2.62 

(0.17) 

0.27 

(0.23) 

2.36 

(0.12) 

    0.53** 

(0.21) 

Household size  5.37 

(0.20) 

5.24 

(0.20) 

0.12 

(0.28) 

5.52 

(0.20) 

-0.15 

(0.29) 

5.47 

(0.22) 

-0.10 

(0.29) 

6.67 

(2.16) 

-1.31*** 

(0.29) 

Farmer education (in 

years) 

1.55 

(0.37) 

2.13 

(0.42) 

-0.57 

(0.56) 

0.86 

(0.24) 

0.69 

(0.45) 

0.80 

(0.24) 

0.75* 

(0.44) 

1.01 

(0.31) 

0.54 

(0.49) 

Change location in 

5yrs (0,1) 

0.02 

(0.01) 

0.03 

(0.02) 

-0.01 

(0.02) 

0.02 

(0.01) 

0.00 

(0.02) 

0.01 

(0.01) 

0.01 

(0.02) 

0.03 

(0.02) 

-0.01 

(0.02) 

Change location in 

10yrs (0,1) 

0.04 

(0.02) 

0.06 

(0.02) 

-0.02 

(0.03) 

0.03 

(0.02) 

0.01 

(0.03) 

0.06 

(0.02) 

-0.02 

(0.03) 

0.05 

(0.02) 

-0.01 

(0.03) 

          

Outcomes          

Soybean yield 638.6 

(15.4) 

641.3 

(15.7) 

-2.6 

(22.0) 

626.2 

(17.2) 

12.4 

(23.0) 

626.4 

(15.5) 

12.1 

(21.9) 

620.0 

(18.0) 

18.6 

(23.5) 

Food cons. score 32.6 

(0.7) 

33.9 

(0.7) 

-1.4 

(1.1) 

33.4 

(0.8) 

-0.8 

(1.1) 

33.5 

(0.8) 

-0.9 

(1.1) 

34.4 

(0.9) 

-1.8 

(1.2) 

Vitamin A Cons.  12.0 

(0.4) 

12.7 

(0.4) 

-0.7 

(0.5) 

12.4 

(0.4) 

-0.4 

(0.5) 

12.6 

(0.4) 

-0.6 

(0.5) 

12.3 

(0.4) 

-0.3 

(0.6) 

Protein Cons.  6.4 

(0.4) 

6.7 

(0.3) 

-0.3 

(0.5) 

6.0 

(0.3) 

0.4 

(0.5) 

5.9 

(0.3) 

0.4 

(0.5) 

5.9 

(0.4) 

0.5 

(0.5) 

Hem iron Cons.  3.9 

(0.2) 

4.1 

(0.2) 

-0.2 

(0.3) 

3.7 

(0.2) 

0.2 

(0.3) 

3.6 

(0.2) 

0.3 

(0.3) 

3.6 

(0.2) 

0.3 

(0.3) 

          

Mean (in km) 1.46 

(0.73) 

3.46 

(0.46) 

 4.95 

(0.27) 

 6.79 

(0.75) 

 11.46 

(2.15) 

 

Observations  101 103  96  107  93  
Notes: the table reports results of t-test of community and household level characteristics by different bandwidths of the 

distance of farm households to the closest soybean seed source. Distance to seed source was categorized into 5 quantiles and 

the closest bandwidth (i.e., columns 1) was compared with the rest of the bandwidths. The asterisks ***, ** and * are 

significance at 1%, 5% and 10% levels, respectively 
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Table 4.A2. Pairwise correlations between own instruments and peers of peers’ 

instruments 
 (1) (2) (3) (4) (5) 

 SoySeed 

Distance   

N2SoySeed 

Distance 

SoySeed 

price 

NResident 

distance 

N2Resident 

distance 

SoySeed Distance        

N2SoySeed Distance 0.942 

(0.000) 

    

SoySeed price 0.008 

(0.857) 

-0.009 

 (0.825) 

   

NResident distance -0.029 

(0.505) 

-0.016 

 (0.717) 

-0.048 

 (0.275) 

  

N2Resident distance 0.010 

(0.823) 

0.013 

(0.767) 

-0.007 

 (0.859) 

0.019 

 (0.666) 

 

Adopted -0.238 

(0.000) 

-0.157 

(0.000) 

-0.011 

 (0.798) 

-0.090 

 (0.044) 

0.091 

(0.042) 

      Note: Values in parenthesis are p-values. 

 

 

Table 4.A3. OLS estimates of the effect of distance to soybean seed source on 

outcomes 
      (1)   (2)   (3)   (4)   (5)   (6)   (7)   (8) 

 Instruments for own adoption Instruments for peer adoption 

Panel A       Yield    Food    Vitamin A    Protein    Yield    Food    Vitamin A    Protein 

SoySeed 

Distance   

   -0.041    -0.046 -0.036 0.017     

   (0.025) (0.032) (0.042) (0.071)     

N2SoySeed 

Distance 

0.013* 0.012 0.020 0.009     

   (0.008) (0.010) (0.014) (0.023)     

SoySeed price    -0.036    -0.049      -0.012 -0.032     

   (0.066) (0.085) (0.124) (0.228)     

NResident 

distance  

    0.004 -0.004 -0.010 0.001 

       (0.003) (0.006) (0.010) (0.010) 

N2Resident 

distance 

    0.003 0.002 0.011 0.023 

       (0.005) (0.007) (0.014) (0.017) 

Household 

controls 

Yes Yes Yes Yes Yes Yes Yes Yes 

Farm inputs and 

revenue 

Yes Yes Yes Yes Yes Yes Yes Yes 

Contextual 

controls 

Yes Yes Yes Yes Yes Yes Yes Yes 

Network Fes Yes Yes Yes Yes Yes Yes Yes Yes 

Intercept 5.666*** 1.297*** -0.182 -2.095*** 5.511*** 0.756 -1.603* -3.089** 

   (0.145) (0.220) (0.358) (0.572) (0.305) (0.510) (0.822) (1.230) 

 R-squared  0.815 0.476 0.472 0.500 0.504 0.551 0.523 0.585 

 Observation 166 166 166 166 166 166 166 166 

Notes: the table presents an ordinary least square (OLS) regression to test the effect of the distance to soybean seed source (i.e., 

the exclusion instrument) on our outcomes. Conditional on the household, network (also village) and district controls, the 

instrument (SoySeed Distance) does not significantly affect any of the outcomes. Values in parenthesis are standard errors. The 

asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively 
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Appendix B1: First stage estimates 

Table 4.B1.1.  First-stage estimates of peers’ adoption of improved soybean variety 
       Peer adoption 

    Coefficients S.E. 

Sex 0.004 0.010 

Age        -0.000 0.000 

Education        -0.002 0.001 

Hsize         0.005** 0.002 

HLand 0.002 0.003 

HWealth (predicted) 0.001 0.005 

Soil fertility        -0.009 0.005 

Seed use         0.001 0.001 

Fertilizer cost         0.000 0.000 

Pesticide cost 0.001 0.001 

Weedicide cost 0.000 0.000 

Machinery        -0.005 0.008 

Labor use   -0.001** 0.000 

Local wage rate        -0.192*** 0.032 

Soyseed price        -0.002 0.019 

Extension (predicted)        -0.037 0.032 

Residuals_NWLink 0.007 0.006 

Degree 0.006 0.004 

   

NSex  0.053* 0.030 

NAge        -0.002 0.002 

NEducation        -0.000 0.009 

NHsize         0.007 0.014 

NLandholding         0.042** 0.017 

NWealth      0.111*** 0.041 

NSoil        -0.110** 0.047 

NExtension        -0.198 0.129 

NResident distance        -0.002** 0.001 

   

N2Sex        -0.312*** 0.055 

N2Age         0.001 0.002 

N2Education         0.016 0.012 

N2Hsize        -0.055*** 0.014 

N2Landholding      -0.081*** 0.017 

N2Wealth         0.110** 0.055 

N2Soil         0.294*** 0.058 

N2Soyseed price         0.822*** 0.137 

N2Extension        -0.154 0.162 

N2Resident distance        -0.005*** 0.002 

   

Town centre        -0.002*** 0.001 

Network Fes           Yes 

Intercept -0.229 0.181 

   

R-squared          0.882  

Observation 500  

Notes: table reports first-stage estimates of peer adoption equations used to predict the peer 

adoption variable. Columns 1 and 2 present results for the soybean yield specification, whereas 

columns 3 and 4 display the results for the food and nutrition specification. S.E. are reported robust 

standard errors. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 
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B1.2. Further empirical Issues 

Our final concern is the potential endogeneity of household wealth, extension contact and farm 

revenue. In the adoption and outcome equations, household wealth and farm revenues are 

potentially endogenous because households who adopted the improved variety are expected to 

have higher yields, which will likely translate into higher farm revenues, incomes and more 

assets. Also, given that soybean is a market-oriented crop, one can expect that households who 

are food secured will more likely invest in the new variety, which could lead to increased yield, 

farm revenues and enhanced wealth. Extension contact could also be endogenous because 

extension officers may be more inclined to visit farmers who adopted (or performing farmers) 

than non-adopting (or nonperforming farmers).  

 

To account for this, we use predicted instead of the observed values of these variables obtain 

from a regression of each of these variables on the entire set of exogenous characteristics and 

at least an instrument. For the wealth equation, we use whether any parent of the farmer or 

spouse ever had authority in the community, as instrument. We believe this to be valid and 

relevant instrument because the authority of the parents in the traditional political system are 

mostly predetermined by lineage, and can therefore be reasonably assumed to be exogenous. 

Also, the traditional authority system gives the parent access to land and other natural resources 

in the village, which the children can benefit from. One issue that might threaten the use of 

these as instruments is when access to these resources are able to affect our outcomes through 

a different route, such as household landholding, as well. For this reason, we control for 

household landholding in all specifications. In the extension contact and farm revenue, 

following the network literature, we use the extension contact and farm revenues, respectively, 

of direct and indirect peers, respectively, as instruments. The first-stage instrumenting 

regressions are presented in table 4.B1.2.   
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Table 4.B1.2.  Instrumenting regressions for wealth, extension contact and farm 

revenue 
      (1)    (2)    (3)  

       Wealth     Extension     Extension  

 Coefficient S.E. Coefficient S.E. Coefficient S.E. 

Adoption      0.131** 0.057      0.168*** 0.038      0.066 0.043 

Nadoption      0.100 0.227     -0.007 0.144      0.017 0.145 

Sex     -0.079 0.058     -0.013 0.039      0.033 0.036 

Age      0.001 0.002      0.001 0.001      0.001 0.001 

Education     -0.012 0.009      0.003 0.006     -0.002 0.006 

Hsize      0.004 0.016      0.008 0.009      0.015* 0.009 

HLand      0.056** 0.023      0.008 0.014      0.024** 0.012 

HWealth(predicted)        0.012 0.027      0.011 0.022 

HRisk     -0.015 0.019     -0.034** 0.013     -0.010 0.014 

Soil fertility      0.045 0.031      0.034* 0.018     -0.024 0.020 

Seed use      0.012* 0.007      0.007 0.005      0.006 0.004 

Fertilizer cost      0.000* 0.000      0.000 0.000      0.000** 0.000 

Pesticide cost      0.002 0.005     -0.002 0.003      0.001 0.003 

Weedicide cost      0.000 0.001     -0.000 0.000      0.001* 0.000 

Machinery      0.084 0.077      0.004 0.030      0.105** 0.042 

Labor use      -0.002 0.003      0.002 0.002      0.001 0.002 

Soybean seed price      0.103 0.164        0.223*** 0.081 

Extension (predicted)         -0.047 0.072 

Local wage rate     -0.038 0.123        0.106 0.088 

Town center     -0.003 0.003     -0.001 0.002     -0.001 0.002 

       

Contextual effects and link residual      

NSex      0.103 0.172      0.179* 0.102      0.055 0.102 

NAge     -0.008 0.006     -0.001 0.004     -0.001 0.004 

NLandholding      0.003 0.045      0.019 0.031      0.021 0.030 

Residuals_NWLink     -0.009 0.037      0.000 0.024      0.006 0.022 

       

Instruments       

Parent authority      2.200*** 0.132     

NExtension         -2.756*** 0.253   

N2Extension        3.671*** 0.262   

Association        0.063*** 0.014   

NFarm Revenue          -5.747*** 0.892 

N2Farm Revenue          -2.636 2.283 

N3Farm Revenue          9.333*** 3.034 

Network FEs       Yes         Yes          Yes  

Intercept     -0.713 0.553     -0.269 0.274     -0.722* 0.406 

R-squared       0.678       0.446       0.746  

Observation       500        500        500  

Notes: the table presents first-stage estimates for instrumenting wealth, extension and revenue used in the soybean yield and 

food and nutrition estimations. Columns 1 and 2 present results for the household wealth equation. Columns 3 and 4 shows the 

extension contact results and columns 5 and 6 presents the results of the revenues equation. Network FEs is network fixed effects 

and Residuals_NWLink is residuals of the link formation model. S.E. are reported robust standard errors. The asterisks ***, ** 

and * are significance at 1%, 5% and 10% levels, respectively. 
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Appendix B2 First-stage network formation model and estimates 

 

B2.1. Network formation model 

The section describes the network formation model estimated. We estimated a conditional edge 

independence model, which assumes links form independently, conditional on node- and link- 

level covariates as follows;  

(B2.1) 𝐿𝑖𝑗 = 𝛽0 + 𝛽1|𝑐𝑖 − 𝑐𝑗| + 𝛽2(𝑐𝑖 + 𝑐𝑗) + 𝛽3|ℒ𝑖𝑗| + 𝜇𝑖𝑗  

where 𝐿𝑖𝑗 is an 𝑁 × (𝑁 − 1) matrix indicating whether there is a link between individuals 𝑖 and 

𝑗,  𝑐𝑖 and 𝑐𝑗 are characteristics of individual 𝑖 and 𝑗. 𝛽1 measures the influence of differences in 

their attributes, and 𝛽2 measures the effect of combined level of their attributes. ℒ𝑖𝑗 captures 

attributes of the link between 𝑖 and 𝑗 such as geographical or social distance between them, and 

𝛽3 is the associated parameter estimate. The estimates of eq. (B2.1) are reported in table 4.B2.1. 

We next use the average of the predicted residuals of the link formation model as control 

functions in our selection and outcome equations to account for the endogeneity of peer effects 

due to unobserved factors that determine link formation. 
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Table 4.B2.1. Dyadic regression of network link formation 
       Village1    Village2    Village3    Village4    Village5    Village6    Village7    Village8    Village9 

 Distance between peers in kilometers -0.040 0.025 0.116** -0.035 0.028 -0.005 0.038 -0.065 -0.006 

   (0.062) (0.044) (0.050) (0.039) (0.054) (0.045) (0.042) (0.045) (0.044) 

 Difference in distance to road between peers in kilometres -0.003 0.202* -0.044 0.076 0.047** 0.094** 0.069** -0.142** 0.041 

   (0.030) (0.104) (0.055) (0.058) (0.022) (0.038) (0.031) (0.060) (0.025) 

 Relatives = 1 0.013 0.121 0.064 -0.323 -0.346 0.294 0.570 -0.685** -0.685** 

   (0.339) (0.369) (0.580) (0.558) (0.283) (0.662) (0.376) (0.304) (0.349) 

 Same religion = 1 n.a n.a. -0.095 -0.730** -0.369 -0.020 0.349 -0.811* -0.281 

   n.a. n.a. (0.245) (0.329) (0.307) (0.486) (0.503) (0.439) (0.323) 

 Difference: Sex (= 1 if male) 1.150*** 0.821*** 7.767*** -0.306 0.437 0.013 0.744** 0.381 0.260 

   (0.342) (0.251) (0.375) (0.256) (0.335) (0.258) (0.359) (0.359) (0.516) 

 Difference: Age 0.004 -0.031** 0.031** -0.003 -0.051*** -0.037*** 0.038*** 0.093*** 0.041*** 

   (0.008) (0.013) (0.013) (0.015) (0.017) (0.012) (0.010) (0.036) (0.014) 

 Difference: Years of schooling 0.090** 0.015 0.066 0.062 3.489*** -0.081** -0.044* 3.064*** 0.020 

   (0.046) (0.040) (0.050) (0.064) (0.189) (0.033) (0.025) (0.386) (0.067) 

 Difference: Household size -0.212** -0.097 -0.080 0.067 -0.223** 0.157** -0.123 0.011 0.103 

   (0.097) (0.096) (0.090) (0.085) (0.091) (0.073) (0.103) (0.063) (0.070) 

 Difference: Household landholding in hectares -0.239 -0.200** 0.098 0.343*** 0.130 0.487** -0.197* 0.089 -0.071 

   (0.218) (0.096) (0.173) (0.119) (0.153) (0.217) (0.110) (0.113) (0.132) 

 Difference: Village born = 1 if farmer was born in village 1.065** 0.287 -0.469 0.845*** -0.262 -0.028 -0.865*** 6.740*** -0.671** 

   (0.513) (0.353) (0.310) (0.290) (0.239) (0.323) (0.262) (0.516) (0.307) 

 Difference: Household wealth (predicted) in GHS 1.173 -0.223 0.882 0.189 0.826 -0.288 -1.780*** 2.738* 0.060 

   (1.211) (0.786) (0.685) (0.993) (1.291) (0.798) (0.588) (1.592) (0.843) 

 Sum: Sex (= 1 if male) -0.651*** 0.483*** 7.522*** -0.345 0.942*** 0.380* 0.577** 0.548* 0.295 

   (0.239) (0.185) (0.356) (0.217) (0.298) (0.229) (0.277) (0.314) (0.311) 

 Sum: Age -0.005 0.011 -0.019 -0.023*** 0.012 0.001 -0.032*** -0.056** -0.015 

   (0.007) (0.008) (0.013) (0.008) (0.013) (0.008) (0.008) (0.025) (0.011) 

 Sum: Years of schooling -0.018 0.028 0.012 -0.141** -3.470*** 0.042 -0.014 -3.092*** -0.066 

   (0.042) (0.020) (0.037) (0.062) (0.180) (0.026) (0.031) (0.398) (0.058) 

 Sum: Household size -0.010 0.163*** 0.112 -0.002 0.064 -0.040 0.028 -0.037 0.121*** 

   (0.051) (0.056) (0.070) (0.051) (0.046) (0.036) (0.061) (0.076) (0.046) 

 Sum: Household landholding in hectares -0.051 -0.005 0.011 0.113 -0.246*** -0.360** 0.181* -0.058 0.173* 

   (0.113) (0.062) (0.136) (0.136) (0.094) (0.159) (0.107) (0.096) (0.097) 

 Sum: Village born = 1 if farmer was born in village 1.019*** 0.169 0.096 0.029 -0.039 0.259 0.082 6.841*** -0.925*** 

   (0.367) (0.331) (0.283) (0.217) (0.256) (0.255) (0.234) (0.487) (0.190) 

 Intercept -3.504* -5.325*** -17.991*** 0.004 -3.804** -1.176 0.751 -14.108*** -1.282 

   (1.983) (1.838) (1.825) (1.742) (1.606) (1.986) (1.442) (2.475) (1.827) 

          

 Observation 400 400 400 400 400 400 400 400 400 

 Pseudo R2  0.114 0.072 0.092 0.082 0.096 0.077 0.113 0.122 0.080 

Notes: the table reports results of the dyadic regression of network link formation in eq. (B2.1). The dependent variable = 1 if 𝑖 (𝑗) cites 𝑖 (𝑗) as ever having any of the social and locational contact dimensions discussed 

under section 4.2.2. Estimator is logit and all standard errors are clustered at the village level.  Standard errors are in parenthesis. n.a. denotes not available. The asterisks ***, ** and * are significance at 1%, 5% and 

10% levels, respectively. 
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Table 4.B2.1. (continued)  
       Village10    Village11    Village12    Village13    Village14    Village15    Village16    Village17    Village18 

 Distance between peers in kilometers -0.022 -0.079 -0.058 0.011 -0.025 -0.075 -0.019 0.009 -0.042 

   (0.056) (0.064) (0.038) (0.043) (0.079) (0.059) (0.048) (0.047) (0.035) 

 Difference in distance to road between peers in kilometres 0.065 6.556** -0.024 0.002 -0.020 -0.171*** 0.042** 0.024 0.034 

   (0.069) (2.820) (0.053) (0.026) (0.030) (0.029) (0.019) (0.018) (0.047) 

 Relatives = 1 -0.025 0.274 0.051 0.026 0.304 0.407 -0.001 0.717 0.103 

   (0.552) (0.384) (0.382) (0.241) (0.389) (0.303) (0.508) (0.605) (0.514) 

 Same religion = 1 0.038 -0.129 0.320 0.324 -0.652** -0.610* -0.013 -0.014 0.183 

   (0.268) (0.361) (0.317) (0.389) (0.326) (0.342) (0.402) (0.384) (0.342) 

 Difference: Sex (= 1 if male) -0.134 0.254 0.522 -0.400 0.428 0.334 0.976*** 0.435 0.821*** 

   (0.344) (0.314) (0.461) (0.293) (0.332) (0.329) (0.300) (0.336) (0.283) 

 Difference: Age 0.026*** -0.028* 0.009 0.017 0.003 -0.044 -0.001 0.012 0.033 

   (0.010) (0.014) (0.012) (0.014) (0.013) (0.031) (0.016) (0.019) (0.023) 

 Difference: Years of schooling 1.402*** -0.033 0.060 1.131*** -0.046 -0.175*** 6.946*** 0.803*** -0.143*** 

   (0.103) (0.050) (0.052) (0.073) (0.043) (0.043) (0.611) (0.060) (0.055) 

 Difference: Household size 0.163 0.087 0.005 -0.117 0.074 0.046 -0.177*** 0.020 -0.043 

   (0.118) (0.069) (0.120) (0.082) (0.099) (0.098) (0.052) (0.082) (0.133) 

 Difference: Household landholding in hectares 0.579*** -0.067 0.007 0.137 -0.172 0.369*** 0.008 0.289*** -0.115 

   (0.152) (0.085) (0.146) (0.169) (0.201) (0.130) (0.082) (0.085) (0.149) 

 Difference: Village born = 1 if farmer was born in village -0.570 -0.395 0.907** 0.227 0.374 0.607** 0.143 -1.469*** -0.062 

   (0.382) (0.320) (0.444) (0.272) (0.342) (0.266) (0.448) (0.419) (0.232) 

 Difference: Household wealth (predicted) in GHS 0.152 -0.709 0.541 -0.205 -0.181 -0.589 -1.611 -3.162*** -0.858 

   (0.658) (1.303) (1.063) (1.309) (1.060) (0.665) (1.840) (0.861) (0.976) 

 Sum: Sex (= 1 if male) 0.874*** -0.027 0.500* 0.535** 0.160 -1.051*** 0.637** 0.134 -0.068 

   (0.212) (0.298) (0.296) (0.250) (0.329) (0.215) (0.313) (0.294) (0.266) 

 Sum: Age -0.011 0.000 -0.010 0.019** -0.010 -0.005 0.027*** 0.016 -0.029** 

   (0.008) (0.010) (0.011) (0.009) (0.010) (0.016) (0.008) (0.012) (0.012) 

 Sum: Years of schooling -1.482*** -0.043 -0.033 -1.125*** 0.008 0.008 -6.015*** -0.733*** 0.071*** 

   (0.080) (0.034) (0.048) (0.087) (0.038) (0.036) (0.646) (0.045) (0.022) 

 Sum: Household size -0.153* 0.172*** 0.130* -0.093 0.091 0.140*** 0.106* 0.196*** 0.171** 

   (0.093) (0.053) (0.072) (0.097) (0.057) (0.038) (0.054) (0.055) (0.083) 

 Sum: Household landholding in hectares -0.539*** 0.091 -0.013 0.083 0.174 0.134 0.083 -0.063 -0.129 

   (0.143) (0.064) (0.115) (0.134) (0.120) (0.100) (0.081) (0.080) (0.093) 

 Sum: Village born = 1 if farmer was born in village 0.362 0.392 0.572 0.422 0.921*** 0.794*** 0.955** 0.213 0.078 

   (0.288) (0.277) (0.405) (0.268) (0.342) (0.266) (0.394) (0.374) (0.218) 

 Intercept          

   0.240 -2.183 -5.001** -3.558** -3.781* -3.036 -4.480 -0.735 1.407 

 (1.978) (2.780) (2.115) (1.657) (1.941) (1.876) (4.427) (2.445) (2.590) 

 Observation 400 400 400 400 400 400 400 400 400 

 Pseudo R2  0.117 0.059 0.047 0.049 0.061 0.146 0.083 0.155 0.073 

Notes: the table reports results of the dyadic regression of network link formation in eq. (B2.1). The dependent variable = 1 if 𝑖 (𝑗) cites 𝑖 (𝑗) as ever having any of the social and locational contact dimensions discussed 

under section 4.2.2. Estimator is logit and all standard errors are clustered at the village level.  Standard errors are in parenthesis. n. a. denotes not available. The asterisks ***, ** and * are significance at 1%, 5% and 

10% levels, respectively. 
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   Table 4.B2.1. (continued) 
      Village19    Village20    Village21    Village22    Village23    Village24    Village25 

 Distance between peers in kilometers -0.006 0.018 -0.009 0.060 0.018 -0.040 0.044 

   (0.061) (0.030) (0.039) (0.067) (0.052) (0.046) (0.050) 

 Difference in distance to road between peers in kilometres 0.012 0.820 0.686 0.059** 0.617 -1.666 0.024 

   (0.008) (2.653) (0.659) (0.024) (3.403) (3.250) (0.016) 

 Relatives = 1 -0.471* 0.390* 0.090 1.345 -0.712 0.227 -0.523 

   (0.268) (0.205) (0.272) (1.195) (0.435) (0.307) (0.538) 

 Same religion = 1 -0.304 n.a. 0.180 0.107 0.759 n.a. 0.152 

   (0.383) n.a. (0.479) (0.578) (0.506) n.a. (0.423) 

 Difference: Sex (= 1 if male) -0.385 0.849* -0.352 8.166*** -0.919*** -0.457 0.744* 

   (0.275) (0.447) (0.423) (0.399) (0.195) (0.278) (0.392) 

 Difference: Age 0.003 -0.016 -0.040** -0.000 0.010 -0.009 0.029 

   (0.019) (0.018) (0.020) (0.014) (0.009) (0.012) (0.025) 

 Difference: Years of schooling 0.009 -0.054* 0.043 n.a. 0.144* 0.421*** 0.142*** 

   (0.045) (0.030) (0.065) n.a. (0.075) (0.062) (0.050) 

 Difference: Household size 0.049 0.149* 0.086 0.076 -0.042 0.252*** 0.229*** 

   (0.063) (0.089) (0.088) (0.097) (0.082) (0.093) (0.081) 

 Difference: Household landholding in hectares -0.066 -0.088 -0.077 0.126 0.268* 0.619*** -0.263 

   (0.088) (0.105) (0.100) (0.163) (0.155) (0.235) (0.218) 

 Difference: Village born = 1 if farmer was born in village 6.526*** -0.273 8.173*** 0.638 -0.122 0.210 -0.235 

   (0.422) (0.315) (0.403) (0.490) (0.313) (0.327) (0.412) 

 Difference: Household wealth (predicted) in GHS 1.450 -1.353 -0.100 2.782*** 2.433*** -2.289*** -0.522 

   (1.150) (0.884) (0.639) (0.976) (0.935) (0.794) (1.269) 

 Sum: Sex (= 1 if male) 0.504* 0.810** -0.293 8.878*** 0.426** 0.219 0.161 

   (0.284) (0.388) (0.245) (0.517) (0.175) (0.173) (0.278) 

 Sum: Age -0.012 -0.004 0.010 0.017 -0.002 0.030** -0.002 

   (0.011) (0.013) (0.011) (0.015) (0.009) (0.013) (0.021) 

 Sum: Years of schooling 0.033 0.077*** 0.210*** n.a. 0.088 -0.460*** 0.019 

   (0.024) (0.021) (0.037) n.a. (0.068) (0.047) (0.059) 

 Sum: Household size -0.000 -0.044 -0.072 0.028 0.048 0.099 -0.284*** 

   (0.048) (0.054) (0.062) (0.062) (0.041) (0.085) (0.056) 

 Sum: Household landholding in hectares 0.123 -0.078 0.270*** -0.382* -0.115 -0.413* 0.248 

   (0.092) (0.085) (0.082) (0.198) (0.102) (0.213) (0.169) 

 Sum: Village born = 1 if farmer was born in village 6.413*** -0.381 7.525*** 1.116** -0.231 0.725*** -0.821*** 

   (0.380) (0.240) (0.430) (0.435) (0.196) (0.228) (0.278) 

 Intercept        

   -17.238*** -0.160 -18.598*** -26.287*** -3.877** -2.388 0.730 

 (2.569) (1.444) (1.453) (2.386) (1.602) (1.844) (2.514) 

 Observation 400 400 400 400 400 400 400 

 Pseudo R2  0.075 0.086 0.160 0.155 0.073 0.083 0.201 

Notes: the table reports results of the dyadic regression of network link formation in eq. (B2.1). The dependent variable = 1 if 𝑖 (𝑗) cites 𝑖 (𝑗) as ever having any of the social and locational contact 

dimensions discussed under section 4.2.2. Estimator is logit and all standard errors are clustered at the village level.  Standard errors are in parenthesis. n.a. denotes not available. The asterisks ***, 

** and * are significance at 1%, 5% and 10% levels, respectively. 
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Table 4.B2.2. Instrumenting regression for Wealth in Dyadic model 
 Difference of wealth  Sum of wealth 

 Coefficient Robust 

S. E. 

Dyadic 

S. E. 

 Coefficient Robust 

S. E. 

Dyadic 

S. E. 

 All regressors as difference  All regressors as sums 

    

Sex = 1 if male      0.080 0.036 0.086   -0.237* 0.034 0.154 

Years of education of farmer  -0.026** 0.004 0.010   -0.040** 0.004 0.017 

Born = 1 if born in village  -0.106* 0.036 0.069       0.200* 0.034 0.144 

Value of inherited land in GHS      0.277*** 0.040 0.089       0.925*** 0.048 0.142 

        

District dummies        

     1 if farmer resides in district 1  -0.322 0.052 0.262   -0.552* 0.066 0.397 

     1 if farmer resides in district 2  -0.493** 0.051 0.257   -0.757** 0.066 0.405 

     1 if farmer resides in district 3      0.298 0.068 0.327       0.429 0.090 0.539 

     1 if farmer resides in district 4  -0.150 0.082 0.426   -0.369 0.097 0.560 

             

Intercept      1.488*** 0.056 0.214       2.614*** 0.088 0.429 

Observations      9500         9500   

Notes: the table presents first-stage estimates for instrumenting wealth in the dyadic link formation model. Columns 1, 2 and 

3 present results for the difference of wealth between neighbors. Columns 4, 5 and 6 show results of the sum of wealth estimates. 

The table also show both the conventional robust standard errors (in columns 2 and 5) and the Fafchamps and Gubert (2007) 

group dyadic standard errors (columns 3 and 6). S.E. denotes standard errors. The asterisks ***, ** and * are significance at 

1%, 5% and 10% levels, respectively. 
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Appendix C: Results 

 

Table 4.C1. Soybean varietal adoption and yield 
 Selection   Outcome  

 Coefficient  S. E.  Coefficient S. E. 

    Panel A            𝚯𝑨  𝝆𝟎, 𝜼𝟎 

Nadoption (Predicted)    0.168*** 0.047    -0.051 0.033 

Sex    0.050 0.052    -0.028 0.053 

Age   -0.002 0.001     0.001 0.002 

Education    0.002 0.008     0.029*** 0.008 

Hsize   -0.035** 0.013    -0.005 0.011 

HLand    0.052** 0.022     0.047 0.029 

HWealth (predicted)    0.163*** 0.045     0.069 0.074 

Soil fertility    0.022 0.026     0.009 0.026 

Seed use   -0.014** 0.006     0.005 0.006 

Fertilizer cost   -1.8E-5 7.0E-5    -2.4E-5  8.4E-5 

Pesticide cost    0.001 0.004    -0.006 0.012 

Weedicide cost    3.6E-4 0.001     0.002** 0.001 

Machinery   -0.006 0.052     0.102 0.095 

Labor use    0.001 0.002    -0.001 0.002 

Extension (predicted)    0.568*** 0.110    -0.021 0.127 

Soy selling price    0.166 0.203    -0.046 0.130 

Residuals_NWLink   -0.054 0.034     0.055* 0.031 

Intercept       5.435*** 0.406 

   Panel B             (𝝆𝟏 − 𝝆𝟎) �̂�, (𝜼𝟏 − 𝜼𝟎) �̂� 

Nadoption (Predicted)       0.128** 0.050 

Sex       0.053 0.061 

Age      -0.002 0.002 

Education      -0.013 0.010 

Hsize       0.001 0.014 

HLand      -0.036 0.032 

HWealth (predicted)      -0.061 0.078 

Soil fertility       0.012 0.032 

Seed use      -0.004 0.007 

Fertilizer cost       6.1E-5 1.0E-4 

Pesticide cost       0.008 0.014 

Weedicide cost      -0.003*** 0.001 

Machinery      -0.106 0.104 

Labor use       0.001 0.002 

Extension (predicted)       0.066 0.139 

Soy selling price       0.018 0.176 

Residuals_NWLink      -0.042 0.042 

Intercept       1.106** 0.460 

    Panel C      (𝝉 ) 
   Local wage rate    0.137 0.101    -0.013 0.042 

   Network FEs     Yes        Yes  

   Town center    0.004* 0.002    -0.001 0.001 

   NSex   -0.240 0.151    

   NAge    0.003 0.005    

   NLand   -0.098** 0.040    

   SoySeed Distance     -0.478*** 0.089    

   N2SoySeed Distance    0.147*** 0.027    

   SoySeed price   -0.481** 0.193    

X2: excluded instruments       36.99     

p-value: excluded instruments       0.000     

p-value: observed heterogeneity    0.000  

Observations         500   500  

Notes: The “selection” column reports the marginal effects from probit selection model of adoption decisions, with Θ𝐴 as the 

vector of parameter estimates, equation (2). Our instrument is distance to soybean seed source, which is normalized about its overall 

mean. �̂� is the predicted propensity score from the estimated first-stage adoption equation. The “outcome” column shows the estimates 

of the soybean yield equations (1 and 5). 𝜌0, 𝜂0 in panel A denote effects of covariates on the outcome when the household is not 

adopting as in equations (3). (𝜌1 − 𝜌0) �̂�, (𝜂1 − 𝜂0)�̂� in panel B denote the treatment effects of the covariates on the outcome due to 

gains from adoption as in equation (3). 𝜏 is a parameter vector of village characteristics and network fixed effects (Network Fes). 

Residuals_NWLink is residuals of the link formation model. S.E. are bootstrapped standard errors with 50 replications. The asterisks 

***, ** and * are significance at 1%, 5% and 10% levels, respectively.   
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Table 4.C2. Soybean variety adoption, food and vitamin A consumption 
 Selection Outcome 

   Food Vitamin A 

 Coefficient S. E. Coefficient S. E. Coefficient S. E. 

    Panel A                  𝚯𝑨 𝝆𝟎, 𝜼𝟎 𝝆𝟎, 𝜼𝟎 

Nadoption (predicted)    0.110** 0.049    0.087** 0.033    0.198*** 0.048 

Sex    0.011 0.053    0.103* 0.055    0.148 0.102 

Age   -0.002 0.001   -0.002 0.002    0.003 0.003 

Education    0.004 0.008    0.022** 0.010    0.040*** 0.011 

Hsize   -0.041*** 0.013   -0.035*** 0.011   -0.016 0.027 

HLand    0.041* 0.021    0.058** 0.027    0.036 0.043 

HWealth (predicted)    0.169*** 0.045    0.127* 0.076    0.190** 0.087 

Soil fertility    0.038 0.027    0.030 0.035   -0.045 0.048 

Seed use   -0.015** 0.006    0.003 0.007    0.007 0.010 

Fertilizer cost   -3.9E-5 6.0E-5    2.4E-5 6.8E-5   -3.8E-5 1.3E-4 

Pesticide cost    0.003 0.004    0.012* 0.007    0.015 0.011 

Weedicide cost   -2.6E-5 0.001   -8.6E-5 0.001    1.7E-4 0.001 

Machinery   -0.066 0.059    0.056 0.090    0.023 0.128 

Labor use    0.001 0.002    0.007** 0.002    0.010** 0.004 

Farm revenue (predicted)    0.270*** 0.070    0.211*** 0.064    0.476*** 0.127 

Residuals_NWLink   -0.046 0.034    0.017 0.029    0.049 0.057 

Soybean selling price    0.088 0.194    0.227* 0.137    0.073 0.270 

Intercept      0.519 0.669   -2.980*** 0.920 

     Panel B              (𝝆𝟏 − 𝝆𝟎) �̂�, (𝜼𝟏 − 𝜼𝟎) �̂� (𝝆𝟏 − 𝝆𝟎) �̂�, (𝜼𝟏 − 𝜼𝟎) �̂� 

Nadoption (predicted)     -0.107*** 0.033 -0.214*** 0.055 
Sex     -0.095 0.069 -0.130 0.126 
Age      0.003 0.003 -0.002 0.004 
Education     -0.024** 0.010 -0.042*** 0.014 
Hsize      0.041** 0.015  0.026 0.035 
HLand     -0.075** 0.030 -0.035 0.047 
HWealth (predicted)     -0.135 0.083 -0.195* 0.100 
Soil fertility     -0.030 0.047  0.068 0.062 
Seed use       0.003 0.009 -0.004 0.013 
Fertilizer cost     -1.2E-5 8.7E-5  1.1E-4    1.8E-4 
Pesticide cost     -0.013* 0.008 -0.017 0.013 
Weedicide cost      3.4E-4 0.001  3.6E-5 0.002 
Machinery     -0.006 0.098  0.050 0.149 
Labor use     -0.011*** 0.003 -0.014** 0.005 
Farm revenue (predicted)     -0.030 0.068 -0.395** 0.145 
Residuals_NWLink     -0.039 0.040 -0.091 0.073 
Soybean selling price     -0.232 0.179 -0.120 0.337 
Intercept      1.072 0.761  3.931*** 0.995 
      Panel C   (𝝉 ) (𝝉 ) 
   Extension (predicted)    0.572*** 0.108     

   Local wage rate   -0.266* 0.151  0.015 0.040  0.166** 0.065 

   Network FEs       Yes    Yes     Yes  

   Town center    0.005** 0.002  0.001 0.001  0.005*** 0.001 

   NSex   -0.498*** 0.163     

   NAge    0.002 0.005     

   NLand   -0.116** 0.040     

   SoySeed Distance     -0.483*** 0.094     

   N2SoySeed Distance    0.144*** 0.029     

   SoySeed price   -0.497** 0.194     

X2: excluded instruments 38.10      

p-value: excluded instruments 0.000      

p-value: observed heterogeneity   0.000  0.000  

Observations 500  500  500  

Notes: The “selection” column reports the marginal effects from probit selection model of adoption decisions, with Θ𝐴 as the 

vector of parameter estimates, equation (2). Our instrument is distance to soybean seed source, which is normalized about its overall 

mean. �̂� is the predicted propensity score from the estimated first-stage adoption equation. The “outcome” column shows the estimates 

of the food and vitamin A foods consumption equations (1 and 5). 𝜌0, 𝜂0 in panel A denote effects of covariates on the outcomes when 

the household is not adopting as in equations (3). (𝜌1 − 𝜌0) �̂�, (𝜂1 − 𝜂0)�̂� in panel B denote the treatment effects of the covariates on 

the outcomes due to gains from adoption as in equation (3). 𝜏 is a parameter vector of village characteristics and network fixed effects 

(Network Fes). Residuals_NWLink is residuals of the link formation model. S.E. are bootstrapped standard errors with 50 replications. 

The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively.   
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 Table 4.C3. Soybean variety adoption and protein consumption 
 Selection  Protein  

 Coefficient S. E. Coefficient S. E. 

    Panel A                  𝚯𝑨 𝝆𝟎, 𝜼𝟎 
Nadoption (predicted)    0.110** 0.049    0.292*** 0.086 

Sex    0.011 0.053    0.140 0.117 

Age   -0.002 0.001    0.001 0.005 

Education    0.004 0.008    0.074** 0.027 

Hsize   -0.041*** 0.013   -0.031 0.036 

HLand    0.041* 0.021    0.076 0.058 

HWealth (predicted)    0.169*** 0.045    0.440*** 0.118 

Soil fertility    0.038 0.027    0.068 0.065 

Seed use   -0.015** 0.006    0.019 0.019 

Fertilizer cost   -3.9E-5 6.0E-5   -2.4E-5 2.1E-4 

Pesticide cost    0.003 0.004   -0.005 0.024 

Weedicide cost   -2.6E-5 0.001    0.002 0.003 

Machinery   -0.066 0.059   -0.070 0.243 

Labor use    0.001 0.002    0.010 0.007 

Farm revenue (predicted)    0.270*** 0.070    0.546*** 0.157 

Residuals_NWLink   -0.046 0.034     0.008 0.068 

Soybean selling price    0.088 0.194   -0.194 0.253 

Intercept     -4.702*** 1.440 

     Panel B              (𝝆𝟏 − 𝝆𝟎) �̂�, (𝜼𝟏 − 𝜼𝟎) �̂� 

Nadoption (predicted)     -0.346*** 0.087 

Sex     -0.126 0.158 

Age      0.003 0.007 

Education     -0.101*** 0.033 

Hsize      0.030 0.047 

HLand     -0.045 0.065 

HWealth (predicted)     -0.510*** 0.145 

Soil fertility     -0.001 0.096 

Seed use      -0.012 0.025 

Fertilizer cost      1.6E-4 2.5E-4 

Pesticide cost      0.009 0.029 

Weedicide cost     -0.002 0.004 

Machinery      0.219 0.295 

Labor use     -0.015* 0.008 

Farm revenue (predicted)     -0.497** 0.200 

Residuals_NWLink     -0.039 0.095 

Soybean selling price      0.185 0.316 

Intercept      4.319** 1.837 

      Panel C   (𝝉 ) 
   Extension (predicted)    0.572*** 0.108   

   Local wage rate   -0.266* 0.151    0.310** 0.121 

   Network FEs       Yes        Yes  

   Town center    0.005** 0.002    0.011*** 0.002 

   NSex   -0.498*** 0.163   

   NAge    0.002 0.005   

   NLand   -0.116** 0.040   

   SoySeed Distance     -0.483*** 0.094   

   N2SoySeed Distance    0.144*** 0.029   

   SoySeed price   -0.497** 0.194   

X2: excluded instruments 38.10    

p-value: excluded instruments 0.000    

p-value: observed heterogeneity   0.000  

Observations 500  500  

Notes: The “selection” column reports the marginal effects from probit selection model of adoption decisions, with Θ𝐴 as the 

vector of parameter estimates, equation (2). Our instrument is distance to soybean seed source, which is normalized about its overall 

mean. �̂� is the predicted propensity score from the estimated first-stage adoption equation. The “outcome” column shows the estimates 

of the protein foods consumption equations (1 and 5). 𝜌0, 𝜂0 in panel A denote effects of covariates on the outcome when the household 

is not adopting as in equations (3). (𝜌1 − 𝜌0) �̂�, (𝜂1 − 𝜂0)�̂� in panel B denote the treatment effects of the covariates on the outcome 

due to gains from adoption as in equation (3). 𝜏 is a parameter vector of village characteristics and network fixed effects (Network 

Fes). Residuals_NWLink is residuals of the link formation model. S.E. are bootstrapped standard errors with 50 replications. The 

asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively.   
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Table 4.C4. Soybean variety adoption, yield and food consumption with mobile 

phone coverage 
 Selection Outcome 

   Yield Food 

 Coefficient S. E. Coefficient S. E. Coefficient S. E. 

    Panel A                  𝚯𝑨 𝝆𝟎, 𝜼𝟎 𝝆𝟎, 𝜼𝟎 

Nadoption (predicted)  0.138** 0.052 -0.064 0.037  0.097*** 0.097 

Sex  0.043 0.052 -0.027 0.045  0.103** 0.103 

Age -0.002 0.001  0.001 0.002 -0.002 -0.002 

Education  0.001 0.008  0.030*** 0.009  0.022** 0.022 

Hsize -0.034** 0.013 -0.004 0.011 -0.035** -0.035 

HLand  0.054** 0.022  0.049 0.034  0.057** 0.057 

HWealth (predicted)  0.159*** 0.045  0.056 0.139  0.128 0.128 

Soil fertility  0.021 0.026  0.011 0.027  0.032 0.032 

Seed use -0.014** 0.006  0.005 0.006  0.003 0.003 

Fertilizer cost -1.7E-05   7.0E-05 -1.9E-05     8.9E-05  2.2E-05     2.2E-05 

Pesticide cost  0.001 0.004 -0.009 0.010  0.013 0.013 

Weedicide cost  0.001 0.001  0.002*** 0.001 -9.9E-05   -9.9E-05 

Machinery -0.008 0.051  0.125 0.089  0.048 0.048 

Labor use  0.001 0.002 -0.001 0.002  0.007*** 0.007 

Extension (predicted)  0.580*** 0.111 -0.021 0.114   

Farm revenue (predicted) -0.064 0.029    0.215*** 0.215 

Residuals_NWLink -0.052 0.034  0.055 0.033  0.015 0.015 

Soybean selling price  0.161 0.205 -0.052 0.148  0.234* 0.234 

Intercept       5.376*** 0.477  0.524 0.524 

     Panel B              (𝝆𝟏 − 𝝆𝟎) �̂�, (𝜼𝟏 − 𝜼𝟎) �̂� (𝝆𝟏 − 𝝆𝟎) �̂�, (𝜼𝟏 − 𝜼𝟎) �̂� 

Nadoption (predicted)    0.137** 0.059 -0.111*** 0.033 

Sex    0.049 0.051 -0.094* 0.055 

Age   -0.001 0.002  0.002 0.003 

Education   -0.014 0.010 -0.024** 0.011 

Hsize    0.001 0.015  0.039** 0.016 

HLand   -0.039 0.037 -0.075*** 0.024 

HWealth (predicted)   -0.047 0.150 -0.137 0.092 

Soil fertility    0.009 0.031 -0.032 0.031 

Seed use    -0.004 0.007  0.003 0.008 

Fertilizer cost    5.0E-05     1.1E-04 -7.6E-06     9.2E-05 

Pesticide cost    0.011 0.012 -0.014 0.009 

Weedicide cost   -0.003*** 0.001  0.001 0.001 

Machinery   -0.135 0.099  0.008 0.087 

Labor use    0.002 0.003 -0.011*** 0.003 

Extension (predicted)    0.066 0.131   

Farm revenue (predicted)     -0.033 0.077 

Residuals_NWLink   -0.041 0.044 -0.036 0.034 

Soybean selling price    0.043 0.192 -0.241 0.152 

Intercept    1.163** 0.536  1.082 0.745 

      Panel C   (𝝉 ) (𝝉 ) 
   Local wage rate  0.145 0.101 -0.019 0.036  0.014 0.046 

   Mobile network  0.112 0.098  0.018 0.029  0.033 0.027 

   Network FEs       Yes    Yes     Yes  

   Town center  0.004 0.002  0.001 0.001  0.002*** 0.001 

   NSex -0.254* 0.154     

   NAge  0.002 0.005     

   NLand -0.068 0.046     

   SoySeed Distance   -0.483*** 0.091     

   N2SoySeed Distance 0.154*** 0.029     

   SoySeed price -0.465** 0.197     

p-value: observed heterogeneity   0.000  0.000  

Observations 500  500  500  

Notes: The “selection” column reports the marginal effects from probit selection model of adoption decisions, with Θ𝐴 as the 

vector of parameter estimates, equation (2). Our instrument is distance to soybean seed source, which is normalized about its overall 

mean. �̂� is the predicted propensity score from the estimated first-stage adoption equation. The “outcome” column shows the estimates 

of the soybean yield and food consumption equations (1 and 5). 𝜌0, 𝜂0 in panel A denote effects of covariates on the outcomes when 

the household is not adopting as in equations (3). (𝜌1 − 𝜌0) �̂�, (𝜂1 − 𝜂0)�̂� in panel B denote the treatment effects of the covariates on 

the outcomes due to gains from adoption as in equation (3). 𝜏 is a parameter vector of village characteristics and network fixed effects 

(Network Fes). Residuals_NWLink is residuals of the link formation model. S.E. are bootstrapped standard errors with 50 replications. 

The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively.    
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Figure 4.C1 Counterfactual outcomes  

The figure shows the treatment effects and potential outcomes (unobserved) as a function of resistance to treatment (U_A) for 

all the outcomes, based on the baseline specification. In each case, it displays the marginal treatment effects, MTE (solid line), 

and average treatment effects, ATE (dashed line).  More importantly, it shows the distribution of the outcomes, Y0 and Y1, in 

the non-adoption (dashed-dot line) and adoption (dotted line) states, respectively.  
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Figure 4.C2 MTE Functional form sensitivity for food and nutrition security 

 
Figure 4.C2 shows the marginal treatment effects (MTE) functional form robustness checks based on the same specifications 

in figure 4.3, evaluated at average values of the covariates. U_A denotes unobserved resistance to treatment/adoption. Part A 

depicts MTE curves for soybean yield, part B shows the MTE curve for food consumption, part C is the MTE curve for vitamin 

A rich foods consumption, while part D is the MTE curve for protein rich foods consumption. The solid MTE curve refers to 

our baseline specification, where we include the propensity score and its square in the specification. The figure also displays 

three additional specifications that allow for a specification without square of the propensity score (i.e., normal), one with cubic 

of the propensity score (third order) and a specification obtained from semiparametric approach (Semiparametric). 
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Table 4.C5. Aggregate treatment effects of adoption on Soybean yield, food and 

vitamin A: Sensitivity to different specification of the outcomes and selection 

equations  
 (1) (2) (3)  (4) (5) (6) 

Panel A Sensitivity to different specification of the outcome equation 

 Contextual network effects and peer soil  Exclude peer effects for SUTVA 

 Yield Food Vitamin A  Yield Food Vitamin A 

ATE   0.671*** 

 (0.119) 

  0.276*** 

 (0.093) 

  0.589*** 

 (0.164) 

  0.527*** 

(0.122) 

  0.329*** 

 (0.070) 

  0.566*** 

 (0.128) 

TT   0.867*** 

 (0.164) 

  0.279** 

 (0.129) 

  0.677*** 

 (0.234) 

  0.625*** 

(0.163) 

  0.374*** 

 (0.103) 

  0.716*** 

 (0.188) 

TUT   0.284** 

 (0.115) 

  0.271*** 

 (0.076) 

  0.411*** 

 (0.101) 

  0.333** 

(0.127) 

  0.241*** 

 (0.077) 

  0.267*** 

 (0.086) 

Nadoption 𝜌0  -0.070 

 (0.037) 

  0.088** 

 (0.040) 

  0.155** 

 (0.069) 

    

TE for Nadoption (𝜌1 − 𝜌0) �̂�   0.157*** 

 (0.043) 
-0.085** 

 (0.047) 

-0.135* 

 (0.079) 

    

        

p-values for essential 

heterogeneity 

  0.002    0.011    0.001   0.041    0.001    0.000 

        

Panel B Sensitivity to the specification of the choice equation 

 Distance squared   Distance interacted with wealth and 

household size 

 Yield Food Vitamin A  Yield Food Vitamin A 

ATE   0.569*** 

 (0.124) 

  0.342*** 

 (0.072) 

  0.621*** 

 (0.133) 

   0.622*** 

 (0.105) 

  0.292*** 

 (0.071) 

  0.535*** 

 (0.118) 

TT   0.723*** 

 (0.172) 

  0.380** 

 (0.111) 

  0.742*** 

 (0.190) 

   0.791*** 

 (0.159) 

  0.287** 

 (0.107) 

  0.604*** 

 (0.161) 

TUT   0.265** 

 (0.124) 

  0.265*** 

 (0.063) 

  0.379*** 

 (0.079) 

   0.287** 

 (0.103) 

  0.299*** 

 (0.074) 

  0.394*** 

 (0.086) 

Nadoption 𝜌0 -0.050 

 (0.034) 

  0.075** 

 (0.027) 

  0.180*** 

 (0.056) 

 -0.059 

(0.035) 

  0.089** 

 (0.033) 

  0.198*** 

 (0.058) 

TE for Nadoption (𝜌1 − 𝜌0) �̂�   0.135** 

 (0.049) 
-0.089** 

 (0.031) 

-0.188** 

 (0.065) 

   0.136** 

 (0.048) 
-0.108 

 (0.038) 

-0.211*** 

 (0.063) 

        

p-values for essential 

heterogeneity 

  0.003   0.000   0.000    0.001    0.001   0.001 

Notes: The table reports the average treatment effect (ATE), average treatment effect on the treated (TT), average treatment 

effect on the untreated (TUT), effect of peer adoption (i.e., Nadoption 𝜌0), treatment effect of peer adoption, [i.e., TE for Nadoption 

(𝜌1 − 𝜌0) �̂�] using different specification for soybean yield, food and nutrients consumption. The 𝜌’s are as defined in equations (1) 

and (3). Panel A shows the sensitivity of the outcome equations to different specifications. Panel B dwells on sensitivity of the selection 

equation, which includes the square of the instrument and the instrument interacted with household size and wealth. The p-value for 

the test of essential heterogeneity tests for a nonzero slope of the MTE curve. Bootstrapped standard errors (50 replications) are reported 

in parentheses. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively.  
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Table 4.C6. Aggregate treatment effects of adoption on outcomes: Sensitivity to use 

of clustered standard errors, mobile phone network coverage and household 

dietary diversity 
 (1) (2) (3)  (4) (5) (6) 

 Sensitivity to: 

Use of clustered errors  Mobile network HDDS 

Yield Food Vitamin A  Yield Food 

ATE  0.606*** 

(0.105) 

 0.294*** 

(0.078) 

 0.526*** 

(0.143) 

 0.617*** 

(0.103) 

0.295*** 

(0.077) 

 1.317** 

(0.521) 

TT  0.772*** 

(0.142) 

 0.299** 

(0.101) 

 0.596** 

(0.188) 

 0.788*** 

(0.166) 

0.296** 

(0.107) 

 1.206* 

(0.727) 

TUT  0.278** 

(0.121) 

 0.283*** 

(0.086) 

 0.384*** 

(0.106) 

 0.280** 

(0.119) 

0.294*** 

(0.065) 

 1.532*** 

(0.451) 

Nadoption  𝜌0 -0.051 

(0.033) 

 0.087** 

(0.028) 

 0.198*** 

(0.057) 

 0.064 

(0.037) 

0.097*** 

(0.030) 

 0.455** 

(0.226) 

TE for Nadoption (𝜌1 − 𝜌0) �̂�  0.128** 

(0.045) 

-0.107*** 

(0.033) 

-0.214*** 

(0.053) 

 0.137** 

(0.059) 

-0.111*** 

(0.033) 

-0.613** 

(0.245) 

        

p-values for essential 

heterogeneity 

 0.004  0.001  0.003  0.016 0.001 0.045 

Observations    500    500     500  500 500  500 

Notes: The table reports the average treatment effect (ATE), average treatment effect on the treated (TT), average treatment 

effect on the untreated (TUT), effect of peer adoption (i.e., Nadoption 𝜌0), treatment effect of peer adoption, [i.e., TE for Nadoption 

(𝜌1 − 𝜌0) �̂�]. The 𝜌’s are as defined in equations (1) and (3). Columns (1) to (3) report estimates where standard errors are clustered 

at the village level following Cameron et al. (2008). Columns (4) and (5) present estimates where we accounted for village mobile 

phone network coverage, whiles column (6) presents estimates where household food dietary diversity score (HDDS) is used as the 

outcome. The p-value for the test of essential heterogeneity tests for a nonzero slope of the MTE curve. Bootstrapped standard errors 

(50 replications) are reported in parentheses in columns (4) to (6). The asterisks ***, ** and * are significance at 1%, 5% and 10% 

levels, respectively.  

 

 

  



 

220 
 

Table 4.C7. Aggregate treatment effects of adoption on Soybean yield, food and 

vitamin A: Sensitivity to Network Fixed Effects, Unobserved Link formation and 

differences in peers 
 (1) (2) (3)  (4) (5) (6) 

Panel A Sensitivity to farmers’ degree and truncation of links due to sampling 

 Degree  Without those with links with all 5 

 Yield Food Vitamin A  Yield Food Vitamin A 

ATE   0.627*** 

 (0.115) 

  0.312*** 

 (0.082) 

  0.547*** 

 (0.128) 

  0.618*** 

(0.096) 

 0.316*** 

(0.093) 

 0.549*** 

(0.123) 

TT   0.796*** 

 (0.165) 

  0.346*** 

 (0.119) 

  0.671*** 

 (0.188) 

  0.789*** 

(0.139) 

 0.335** 

(0.146) 

 0.629*** 

(0.181) 

TUT   0.293** 

 (0.113) 

  0.244*** 

 (0.066) 

  0.301*** 

 (0.090) 

  0.296** 

(0.108) 

 0.279*** 

(0.059) 

 0.396*** 

(0.096) 

Nadoption  𝜌0  -0.046 

 (0.046) 

  0.128** 

 (0.046) 

  0.279*** 

 (0.074) 

 -0.045 

(0.032) 

 0.082*** 

(0.032) 

 0.198*** 

(0.049) 

Degree 𝜌0,𝑑   0.042 

 (0.070) 

 -0.071 

 (0.061) 

 -0.122 

 (0.121) 

    

TE for Nadoption (𝜌1 − 𝜌0) �̂�   0.113* 

 (0.058) 

 -0.165*** 

 (0.055) 

 -0.328*** 

 (0.098) 

  0.122** 

(0.047) 

-0.101** 

(0.037) 

-0.215*** 

(0.054) 

        

TE for Degree (𝜌1,𝑑 − 𝜌0,𝑑) �̂�   0.045 

 (0.078) 

  0.146 

 (0.072) 

  0.278* 

 (0.147) 

    

p-values for essential 

heterogeneity 

  0.005   0.006   0.018   0.000  0.000  0.000 

    500    500     500    478   478   478 

        

        

Panel B Sensitivity to changes in adopting peers over time and use of HDDS 

 Difference in peer adopters: 2016 – 2004   

 Yield Food Vitamin A     

ATE   0.598*** 

 (0.119) 

  0.298*** 

 (0.076) 

  0.540*** 

 (0.131) 

    

TT   0.760*** 

 (0.169) 

  0.307*** 

 (0.106) 

  0.615*** 

 (0.179) 

    

TUT   0.279** 

 (0.109) 

  0.281*** 

 (0.078) 

  0.390*** 

 (0.091) 

    

Nadoption 𝜌0  -0.055 

 (0.039) 

  0.075** 

 (0.029) 

  0.176*** 

 (0.075) 

    

TE for Nadoption (𝜌1 − 𝜌0) �̂�   0.131** 

 (0.050) 
-0.101*** 

 (0.031) 

-0.203*** 

 (0.059) 

    

        

p-values for essential 

heterogeneity 

  0.006   0.000   0.000     

Observations    500    500    500     

Notes: The table reports the average treatment effect (ATE), average treatment effect on the treated (TT), average treatment effect 

on the untreated (TUT), effect of peer (i.e., 𝜌0 and 𝜌0,𝑑 for peer adoption and degree, respectively), treatment effect of peers [i.e., 

(𝜌1 − 𝜌0) �̂� and (𝜌1,𝑑 − 𝜌0,𝑑) �̂� for peer adoption and degree, respectively] and the p-value for the test of essential heterogeneity 

using different specification for soybean yield, food and nutrients consumption. Panel A shows the sensitivity of our estimates to 

household degree and measurement errors due to the use of the sampled networks. Panel B dwells on sensitivity of the estimates the 

use of differenced peer adoption.  The p-value for the test of essential heterogeneity tests for a nonzero slope of the MTE curve. 

Bootstrapped standard errors (50 replications) are reported in parentheses. The asterisks ***, ** and * are significance at 1%, 5% and 

10% levels, respectively. 
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   Table 4.C8. Estimates of network fixed effects (Tables C1 and C2 continued) 
      (1)   (2) (3) (4) 

 Selection equations Outcome equations 

       Yield   Food Yield  Food 

 Village 2 184.375*** 178.404*** 0.063 -0.030 

   (64.354) (62.591) (0.077) (0.074) 

 Village 3 128.749*** 124.759*** -0.031 -0.123* 

   (44.421) (43.226) (0.076) (0.067) 

 Village 4 126.167*** 122.800*** 0.002 -0.065 

   (44.058) (42.831) (0.057) (0.067) 

 Village 5 117.003*** 113.338*** 0.052 -0.124** 

   (41.210) (40.053) (0.091) (0.062) 

 Village 6 43.525*** 42.898*** -0.032 -0.142** 

   (14.861) (14.426) (0.075) (0.069) 

 Village 7 375.646*** 363.032*** -0.024 -0.053 

   (130.379) (126.753) (0.057) (0.064) 

 Village 8 78.181*** 75.635*** -0.030 0.015 

   (28.067) (27.265) (0.098) (0.080) 

 Village 9 121.510*** 115.719*** -0.024 -0.037 

   (41.596) (40.539) (0.066) (0.093) 

 Village 10 -100.812*** -99.107*** 0.113 0.021 

   (34.630) (33.657) (0.076) (0.085) 

 Village 11 -100.972*** -99.779*** -0.086 -0.053 

   (35.957) (34.953) (0.073) (0.105) 

 Village 12 -78.137*** -77.489*** -0.007 -0.036 

   (27.630) (26.847) (0.054) (0.094) 

 Village 13 -9.003* -9.642** -0.151 -0.061 

   (4.933) (4.772) (0.095) (0.121) 

 Village 14 -50.025*** -48.998*** 0.050 -0.027 

   (17.612) (17.047) (0.071) (0.072) 

 Village 15 -18.533** -18.862** -0.183** -0.101 

   (8.561) (8.315) (0.091) (0.114) 

 Village 16 -5.114* -5.135* -0.071 -0.054 

   (2.727) (2.687) (0.068) (0.085) 

 Village 17 138.474*** 132.801*** -0.013 -0.011 

   (48.015) (46.701) (0.058) (0.069) 

 Village 18 -38.725*** -37.550*** -0.019 -0.048 

   (13.670) (13.328) (0.051) (0.057) 

 Village 19 -6.225*** -6.795*** 0.005 0.037 

   (1.926) (1.913) (0.063) (0.073) 

 Village 20 30.308*** 28.587*** 0.022 0.024 

   (10.833) (10.501) (0.056) (0.058) 

 Village 21 -92.361*** -90.162*** -0.157 -0.026 

   (30.394) (29.590) (0.142) (0.128) 

 Village 22 -134.078*** -129.525*** -0.180 0.015 

   (44.845) (43.647) (0.186) (0.138) 

 Village 23 59.334*** 58.869*** -0.126 -0.147 

   (19.061) (18.561) (0.077) (0.100) 

 Village 24 65.202*** 63.404*** -0.038 -0.171** 

   (22.110) (21.540) (0.067) (0.067) 

 Village 25 n.a. n.a. 0.024 0.090 

 n.a. n.a. (0.103) (0.078) 

     Notes: Bootstrapped standard errors (50 replications) are reported in parentheses. The 

asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. n.a. denotes not 

available. 
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Abstract 

This article presents a systematic review of the literature on policy options to improve food 

security and nutrition in developing countries, and an empirical analysis of the impact of 

smallholder market participation on food security and nutrition in Ghana. The review focuses 

on the impacts of policy strategies such as structural changes in relative prices, agricultural 

infrastructure, economic incentives and agricultural technologies. In order to account for threats 

of selection bias and omitted variable problem, the empirical analysis uses an ordered probit 

selection model to jointly estimate households’ market orientation decisions and food and 

nutrients consumption. The empirical results show that transitioning from one market 

orientation to another significantly increase households’ food and nutrients consumption.  
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5.1 Introduction 

Food insecurity in sub-Saharan Africa remains a major developmental challenge, despite 

several interventions to improve food security and nutrition in many developing regions. Recent 

official estimates suggest that hunger and malnutrition appear to be increasing in most sub-

Saharan African countries, a situation that is in contrast to the rest of the world (FAO, ECA and 

AUC 2020)53. The increasing food insecurity in Africa, combined with the fact that persistent 

food insecurity contributed to the failure of countries in the region in meeting the Millennium 

Development Goal (MDG) of halving the number of hungry people by 2015 (Abdulai and 

Kuhlgatz 2012), suggest the need for continuous efforts in supporting and promoting measures 

to improve food security in the region. While the worsening food situation can partly be 

attributed to climate change (Abdulai 2018; FAO, ECA and AUC 2020), as well as poor and 

weakening market conditions, the impact of agricultural markets on food security and nutrition 

appears to be far from being conclusive (Carletto et al. 2017; Linderhof et al. 2019; Ehui 2020).  

 

Many authors have emphasized the role of new agricultural technologies, specialization and 

commercialization in increasing farm productivity and household welfare through enhanced 

efficiency, competitiveness and gains from comparative advantage (Govereh and Jayne 2003; 

Ochieng et al. 2019). However, prohibitive transaction costs imposed by underdeveloped 

market systems and infrastructure, market failures, and inadequate access to finance and 

technologies in most developing countries have often hindered the efficiency of food market 

systems, and limited the potentials of agricultural marketing in these areas (Fafchamps 1992; 

Abdulai and Birachi 2009; Abdul-Rahaman and Abdulai 2020). Notwithstanding these 

                                                           
53 Whereas there was no increase in the prevalence of undernourishment in the rest of world between 2014-2018, growth in 

prevalence for the whole of Africa and sub-Saharan Africa was 1.7 and 2.0 percentage points, respectively, over the same period 

(FAO, ECA and AUC 2020). 
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constraints, smallholder marketing has been shown to increase farmers’ access to improved 

crop inputs, productivity and income (Ashraf et al. 2009; Abdul-Rahaman and Abdulai 2020).  

 

Despite the widespread agreement on the role of smallholder marketing in improving food 

security and nutrition, the empirical evidence on this issue remain scanty, with mixed findings 

(Carletto et al. 2017; Linderhof et al. 2019; Kuma et al. 2018). While studies such as Ochieng 

et al. (2019) analyzed the impact of commercialization of bananas and legumes on dietary 

diversity in central Africa, and Kuma et al. (2018), who examined the effects of coffee 

production on household food security in Ethiopia show that commercialization improved 

household dietary diversity and food security, others authors report that the impacts of 

commercialization on food consumption and nutrition is either negative or non-existent (e.g., 

Carletto et al. 2017; Linderhorf et al. 2019).  

 

Moreover, most of these studies have often failed to consider the possible market orientation54  

of smallholders’ crop sales, which may mask the extent and pattern of gains from crop sales, 

given that smallholders’ crop sales are driven by profit and non-profit motives (Pingali and 

Rosegrant 1995; Jacoby and Minten 2009). Production and marketing decisions of smallholders 

in Africa are often fragmented and characterized by a blend of subsistence, surplus, commercial 

and distress55 motives, which may have various implications on the gains and impacts of 

commercialization across farmers (Pingali and Rosegrant 1995). For instance, if households are 

                                                           
54 Household market orientation in developing countries has been classified into three (FAO 1989; Pingali and Rosegrant 1995). 

1) Subsistence farmer where the farmer’s objective is food self-sufficiency, produces wide range of products and/or sells not 

more than 25% of the output; 2) Transitional or surplus farmer where the farmer produces for household consumption and sale 

of surplus, but sells at least 25% and less than 50% of the output; and 3) Commercial farmer where the farmer is profit oriented, 

highly specialized and with high market engagement, and sells more than 50% of the output.    

55 Distress sales usually arise when farmers are forced to sell their harvest to meet immediate financial requirements (such as 

servicing of debts or meeting other household needs) (Jacoby and Minten 2009). 
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subsistence-oriented or surplus-oriented, they may choose to produce different crop mix in 

order to secure food self-sufficiency, and to spread market-related risks due to market 

imperfections and lack of risk mitigating mechanisms such as insurance and credit markets 

(Zanello 2012; Ecker 2018). If, however, farm households are commercial-oriented, then 

production and marketing decisions could be based on profit and some market intelligence, 

which can result in higher ‘gains’ from trade, increased household income and improved food 

security and nutrition (Pingali and Rosegrant 1995; Abdulai and Huffman 2000).   

 

In this paper, our goal is twofold: First, to provide an overview of the literature on food security 

and nutrition strategies in developing countries. While food security and nutrition are of interest 

in their own rights, we focus on the survey of the literature on economic policies and micro 

strategies of promoting smallholder food security and nutrition in sub-Saharan Africa. Second 

is to provide an empirical example of how smallholder market orientation impacts on food 

security and nutrition in Ghana. The empirical analysis builds on the review by showing how 

commercially/profit-oriented market engagement by smallholders can serve as a food security 

and nutrition enhancing strategy in the area. While previous studies have considered the role of 

smallholder market participation and commercialization on food security and nutrition, there is 

almost no study on how smallholder market orientation affects the impacts of 

commercialization on food security and nutrition56. The empirical analysis is partly justified by 

the fact that the extent of smallholder market integration is closely associated with the motive 

                                                           
56 Some studies examine the impacts of smallholder market participation and commercialization by focusing on market 

participation decisions, cultivation and sale of cash crops, as well as the value of total crop harvest sold. Strasberg et al. (1999), 

Govereh and Jayne (2003), Zanello (2012) and Kuma et al. (2018), for instance, focus on smallholder marketing decisions, and 

cultivation and sales of cash crops, and Carletto et al. (2017) and Linderhof et al. (2019) focus on the value of crops sold. 

Notable exceptions are Ochieng et al. (2019) who focus on the effect of households moving from non-commercialized to 

commercialized, and Ogutu et al. (2019) who emphasis the effects of commercialization in a continuum (i.e., continuous 

treatment effects), but not on how market orientation affects food security and nutrition. 
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of production, which tends to have varied impacts on household welfare (Abdulai and Huffman 

2000; Ecker 2018). This, therefore, allows us to delineate smallholder market participation 

effects on household food security and nutrition under different motives of market engagement 

by smallholders.       

 

Second, the empirical analysis allows us to highlight the impact of smallholder transition from 

subsistence to commercial on the consumption of specific nutrient rich foods. The analysis on 

specific nutrients intake is significant in this setting for at least two reasons: First, unlike most 

previous studies that focused on calorie and/or food consumption (Kuma et al. 2018; Ochieng 

et al. 2019), which do not enhance the understanding of individual nutrients intake patterns, 

analysis of the consumption of nutrient rich foods provide insights into specific nutrients intake 

and therefore, serve as a wedge between food patterns and food quality (Freisling et al. 2010). 

Second, the distinction between food/calorie and specific nutrient rich foods is important, 

because many African countries, including the study country, face deficiencies in specific 

nutrients such as vitamins, protein and iron, in spite of appreciable or relatively normal levels 

of food and calorie intake (Abdulai and Kuhlgatz 2012; Colen et al. 2018). This, coupled with 

the fact that the recent deteriorating food security and nutrition situation in Africa has been 

partly attributed to adverse food market conditions, underscore the need to further understand 

how smallholder market orientation affects the impact of commercialization on household food 

security and nutrition.    

  

The rest of the paper is organized into three main sections as follows: The next section presents 

an overview of food security research in Africa, with particular emphasis on food security and 

nutrition promotion strategies in the literature. Section 5.3 shows the empirical example of 

smallholder market participation as a food security and nutrition enhancing strategy. Section 

5.4 concludes and highlights some policy and future research implications.   
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5.2 Food Security in Africa 

The recent increase in the incidence of food insecurity and malnutrition in sub-Saharan African 

(SSA) countries calls for the need to seriously assess and find ways to promote food security in 

the sub-region. Evidence shows that the prevalence of food insecurity and malnutrition have 

risen from 18.2% in 2014 to 20% in 2018 in Africa, with that of sub-Saharan Africa, increasing 

from 20.8% to 22.8% over the same period (FAO, ECA and AUC 2020). Estimates from the 

FAO, ECA and AUC (2020) reveal that about 239 million in the region were undernourished 

in 2018. The number of undernourished people in Nigeria, which is the most populated country 

in the region, was estimated to be over 25 million in 2018, which is about 180% increase over 

the past decade (FAO, ECA and AUC 2020). This development suggests that, as was in the 

case of the failure to achieve the Millennium Development Goal of halving the incidence of 

hunger by 2015, the realization of the Sustainable Development Goal two of eradicating hunger 

and improving nutrition by 2030 may not be realized, if concerted efforts are not made to 

overcome the barriers to improving food security and nutrition in the region (OECD 2016).  

 

The state of food security and nutrition in developing countries has been a consequence of 

environmental and economic factors including climate shocks; conflicts; unemployment; low 

wages and food price inflation; lack of access to and adoption of improved technologies; and 

lack of institutions, structures and markets for farmers and consumers (Weber et al. 1988; 

Abdulai and Kuhlgatz 2012; Abdulai and Huffman 2014; FAO, ECA and AUC 2020). In this 

section, we provide an overview of the literature on how these factors have impacted food 

security and nutrition, as well as general household welfare.   

 

5.2.1 Economic Policies and Food Security  

In most African countries, the fundamental agricultural policy objectives have been to increase 

productivity and private sector engagement in agriculture, reduce state involvement, improve 

innovation and technology, opening up markets and allowing prices to determine the allocation 
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of factors of production (Abdulai and Huffman 2000). Food security policies in many of these 

economies have also focused on improving food trade and market integration through enhanced 

infrastructure, private and state trade support policies, and public buffer stocks. These policies 

have resulted in key policy initiatives such as the Comprehensive Africa Agricultural 

Development Programme (CAADP) and the African Regional Nutrition Strategy (ARSN) 

aimed at increasing investment in research and development, agricultural infrastructure, 

extension services and the subsidization of farm inputs to increase productivity, trade and food 

security (Sheahan and Barrett 2017; FAO, ECA and AUC 2020).  Also, in the wake of the 

COVID-19 pandemic, which has resulted in border closures, lockdowns and curfews, and the 

consequent disruption in supply chains as well as projected contraction of agricultural 

production, ministers for agriculture of African Union members have publicly committed to 

implementing measures to minimize food system disruptions and ensure food security and 

nutrition for their citizens (Ehui 2020). 

 

The issue of food prices has been a key focus of interest in food security policies in many 

developing countries. Such policies aim at improving food access through lower market prices 

and stabilization of consumption in times of high food price inflation (Barrett 2002; OECD 

2016). Two main approaches have been widely used to implement these policies in the past. 

These included universal price subsidies that benefit net buyers of food, and limited access 

subsidies that provide rationed quantities at reduced prices (Byerlee et al. 2006; Abdulai and 

Kuhlgatz 2012). However, the limitations of these policies have been the lack of sustainability 

and exit mechanisms, and the accruals of greater shares of rationed food gains to political actors 

and groups at the expense of the poor. Moreover, a number of these price policies did not 

sufficiently incorporate country specific price and production risk factors. This resulted in the 

failure of several food price policies to produce the desired results with respect to food security 

and nutrition measures (Barrett 2002; Byerlee et al. 2006).  
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Similarly, the Structural Adjustment Programs that were implemented by many African 

governments in the 1980s also contributed to food security dynamics in many of these countries. 

Available evidence shows that the response of the agriculture sector in Africa to these policy 

reforms was encouraging, because output and productivity increased in the countries that 

pursued reforms compared to countries that failed to implement these reforms (Byerlee et al. 

2006; Abdulai and Kuhlgatz 2012). However, the reduction or removal of subsidies on farm 

inputs following the structural reforms also led to increased input prices, which later led to 

reduced farm output and productivity, and increased food insecurity and malnutrition (Abdulai 

and Huffman 2000). This suggests the need for policy-makers and researchers to put particular 

emphasis on how long-term policies and interventions can ensure a balance between state 

efficiency and productivity, without compromising food security and nutrition goals.  

 

5.2.2 Climate Change and Food Security 

Climate change and shocks continue to have serious adverse effects on agricultural production 

and food security, particularly in developing countries (Abdulai 2018; Eastin 2018; Shahzad 

and Abdulai 2020; FAO, ECA and AUC 2020). In particular, high temperatures, heat, water 

stress and related weather extremes tend to affect poor people in developing countries the most, 

because of their heavy reliance on agriculture for their livelihoods, low economic 

diversification and their inability to cope with food price inflation and income shocks (Abdulai 

and CroleRees 2001; Eastin 2018). Several attempts have been made to address or mitigate the 

adverse impacts of climate change in Africa, with some prominent strategies being the 

development of irrigation systems and the adoption of climate-smart agricultural practices 

(Lipper et al. 2014; Abdulai 2018). Climate-smart agriculture is an embodiment of practices 

that seek to promote the reliance on agricultural systems and livelihoods to promote production, 

and reduce risks of food insecurity and malnutrition for the current and future generations 

(Lipper et al. 2014; Issahaku and Abdulai 2020).  
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The literature has shown a variety of climate-smart practices that include conservation 

agriculture, use of improved and drought-tolerant crop varieties, adoption of improved 

technologies, crop rotation and mixed cropping, matching livestock to supply of grazing land 

as well as crop diversification and economic diversification into non-farm income activities 

(Abdulai and CroleRees 2001; Di Falco and Veronesi 2013; FAO 2016; Shahzad and Abdulai 

2020). Earlier studies on the impact of climate change focused on crop productivity at the 

country, regional and global levels, and only provided insights into the impacts of climate 

change in aggregate terms (Di Falco et al. 2011). However, the need to promote resilience of 

the poorest and vulnerable segments of rural population in developing countries (Eastin 2018), 

resulted in the need to understand smallholder adaptation strategies (Di Falco et al. 2011; 

Issahaku and Abdulai 2020). Thus, recent studies have focused on understanding the drivers of 

smallholder adaptation to climate change in developing countries, and also quantifying the 

effects of adaptation strategies on farm performance and household welfare measures such as 

yields, net returns, poverty reduction, and food security and nutrition (FAO 2016; Eastin 2018; 

Issahaku and Abdulai 2020; Shahzad and Abdulai 2020).    

 

Promotion of drought resistant crop varieties, and conservation agriculture remain top of the 

list of climate change adaptation practices, since these have been shown to have substantial 

impacts on household resilience to climate change and on household welfare in Africa (Di Falco 

et al. 2011; Abdulai 2018). Many studies have shown positive effects of climate change 

adaptation practices such as changing crop varieties, soil and water conservation practices, 

water harvesting and irrigation, tree planting, matching livestock to supply of grazing land, and 

economic diversification on household welfare in Africa and Asia (e.g., Di Falco et al. 2011; 

FAO 2016; Issahaku and Abdulai 2020; Shahzad and Abdulai 2020). For instance, Issahaku 

and Abdulai (2020) show that smallholder adaptation to climate change increases household 
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dietary diversity and reduces household food insecurity by about 15% and 35%, respectively in 

Ghana. 

  

Despite the benefits of these practices, adoption of specific climate-smart practices remains low 

in many African countries (Walker et al. 2014; Abdulai and Huffman 2014; Issahaku and 

Abdulai, 2020). Whereas available evidence estimates the average adoption of climate-smart 

practices at about 66% (Di Falco et al. 2011; Issahaku and Abdulai 2020), the incidence of 

adoption of specific strategies have been quite low. For instance, Di Falco and Veronesi (2013) 

show that farmers’ adoption of water strategies ranges from 4 to 16%, while their adoption of 

other strategies such as the use of new technologies and diversification into off-farm jobs stand 

at 1.35% and 6.83%, respectively. Also, in spite of the burgeoning literature on impact of 

adaptation to climate change, discourse between adaptation and food security and nutrition in 

developing countries is quite limited (Di Falco et al. 2011; Di Falco and Veronesi 2013; 

Issahaku and Abdulai 2020). 

 

5.2.3 Adoption of Technology and Food Security  

In addition to the issues of climate-smart and sustainable agriculture, the association between 

adoption of improved agricultural technologies and household welfare has received 

considerable attention among policymakers and researchers (Abdulai and Huffman 2005; 

Foster and Rosenzweig 2010). This is due to the long recognition that productivity growth in 

agriculture partly depends on the availability of improved technologies and the adoption of 

these technologies (Foster and Rosenzweig 2010; Pannell and Zilberman 2020). Studies on this 

front can be broadly categorized into those that focus on understanding the drivers of 

technology adoption and diffusion in developing countries, and those that examine the impacts 

of adoption on household welfare (Foster and Rosenzweig 2010; Abdulai and Huffman 2014; 

Wossen et al. 2019; Huffman 2020).  
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In the case of the former, many factors have been found to be associated with the lack of 

adoption of improved technologies, particularly in sub-Saharan Africa. Prominent among these 

factors are credit constraints, absence of insurance and other risk mitigating schemes, high 

transaction costs due to lack of market infrastructure and efficient markets, lack of access to 

extension services and some behavioral limitations (Foster and Rosenzweig 2010; Pannell and 

Zilberman 2020). Information failure has also been identified as an important factor that limits 

farmers awareness, understanding and adoption of improved technologies in many developing 

countries. This contributed to increased interest in understanding the role of social learning and 

other peer effects in the adoption and diffusion of improved technologies in Africa (Abdulai 

and Huffman 2005; Foster and Rosenzweig 2010; Huffman 2020).  

 

The other strand of adoption studies focused on understanding the impacts of adoption on 

household welfare (e.g., Becerril and Abdulai 2010; Abdulai and Huffman 2014; Kassie et al. 

2017; Wossen et al. 2019). Most of these studies show that adoption of improved technologies 

tends to increase household productivity, income and consumption, with some of the studies 

reporting impacts of 24% and 16% increase in smallholder crop yields and farm net returns, 

respectively (Abdulai and Huffman 2014; Kassie et al. 2017; Wossen et al. 2019). 

Unfortunately, despite the significance of improved technologies for farm productivity and 

income, Africa has lagged behind in the use of improved and modern technologies, and as such 

has not been able to reap the productivity and welfare benefits of the so-called Green revolution 

(Sheahan and Barrett 2017). For instance, Walker et al. (2014) estimate the mean level of 

adoption across 20 improved crop varieties at 35% in Africa, with two-thirds of these crops 

having adoption rates lower than this mean level.  

 

Similarly, in spite of the high interest in understanding the impact of agricultural technologies 

on household welfare, not much has been done on the impacts of adoption of improved crop 

varieties on food security and, in particular, on the consumption of specific nutrient rich foods 
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in Africa. Previous studies mostly focused on adoption, farm returns and to a lesser extent on 

food security (Abdulai and Huffman 2014; Kassie et al. 2017; Wossen et al. 2019), and when 

attempts are made in the realm of specific nutrients consumption, the focus has been on calorie-

income and price elasticities (Abdulai and Aubert 2004; Colen et al. 2018). There is therefore 

the need for an in-depth examination and understanding of the impacts of specific food security 

promotion strategies such as adoption of new technologies, smallholder diversification and 

marketing, as well as the associated impact mechanisms on specific food nutrients intake. Such 

information would be relevant in informing the design and implementation of pro-poor policies 

in Africa, and in increasing the effectiveness of food security and nutrition policies in realizing 

the Sustainable Development Goal of eradicating hunger, achieving food security and improved 

nutrition, and promoting sustainable agriculture (Abdulai 2018; Colen et al. 2018).  

 

Thus, the empirical analysis considers the role of smallholder market engagement as a 

diversification strategy that can enhance the resilience of smallholders to food and nutrition 

insecurity. Smallholder farmers market engagement generally include non-farm employment, 

diversification into cash cropping, selling of harvest and purchases of food to minimize seasonal 

variation in food availability (Abdulai and CroleRees 2001; Wiggins et al. 2011; Di Falco and 

Veronesi 2013; Kuma et al. 2018), and these have been recognized as food insecurity coping 

mechanisms (Di Falco and Veronesi 2013; Shahzad and Abdulai 2020). Also, the integration 

of smallholders into output and input markets can result in increased motivation of smallholders 

to produce for profit maximization, which may lead to increased household welfare (Abdulai 

and Huffman 2000). Thus, the next section focuses on the issues of agricultural 

commercialization and household food security and nutrition.  

 

5.2.4 Market Engagement and Food Security  

Agricultural marketing or commercialization has been conceived in the literature as involving 

smallholder participation in non-farm economic activities, participation in output and input 
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markets, as well as the profit motive or orientation of the farm business (Pingali and Rosegrant 

1995; Abdulai and Delgado 1999; Wiggins et al. 2011; Dithmer and Abdulai 2017; Carletto et 

al. 2017). A considerable body of empirical research has focused on understanding the role of 

smallholder non-farm work and market participation on household welfare (Abdulai and 

Delgado 1999; Abdulai and CroleRees 2001; Zanello 2012; Carletto et al. 2017). This is due to 

the fact that non-farm engagement or marketing has long been recognized as a means by which 

smallholders can move from subsistence farming to a more commercialized one, and also 

minimize agricultural risks, given the failure or absence of consumption and insurance markets 

in developing countries (Pingali and Rosegrant 1995; Reardon et al. 2006). These studies place 

more emphasis on understanding the determinants of smallholder participation in non-farm 

work or marketing, and the impact of such participation on smallholder welfare indicators such 

as productivity, net returns and income (Abdulai and Delgado 1999; Abdulai and CroleRees 

2001; Wiggins et al. 2011; Zanello 2012).   

 

Many factors such as education, availability of markets and other infrastructure, household 

access to credit, income and capital have been reported as influencing smallholders’ decisions 

to participate in non-farm work or economic diversification, since the lack of access to these 

factors appears to make it difficult for smallholders in many developing countries to diversify 

away from subsistence agriculture (Abdulai and CroleRees 2001; Wiggins et al. 2011). Also, 

studies have shown that transaction costs, wealth and assets, contractual and cooperative 

marketing substantially affect smallholders’ marketing decisions and the quantities of inputs 

and outputs traded (Abdulai and Birachi 2008; Zanello 2012; Abdul-Rahaman and Abdulai 

2020). In particular, recent studies show that smallholder contract and cooperative marketing 

tend to reduce market risks, increase smallholders’ bargaining power, and contribute to increase 

farm productivity, income and household welfare in some Asian and African countries (Abdulai 

and Birachi 2008; Ma et al. 2018; Abdul-Rahaman and Abdulai 2020).  
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In addition, several studies have examined the impacts of non-farm work and diversification 

(Holden et al. 2004; Owusu et al. 2011; Ecker 2018), sale and purchase of food (Zanello 2012; 

Ogutu et al. 2019), and contracting or cooperative marketing (Ma et al. 2018; Abdul-Rahaman 

and Abdulai 2020) on household welfare. Smallholder marketing has contributed to increased 

household productivity and farm returns in Asia and Africa (Ma et al. 2018; Abdul-Rahaman 

and Abdulai 2020; Ogutu et al. 2019; Ochieng et al. 2019), although its impacts on food security 

and particularly nutrients intake remain inconclusive (Zanello 2012; Carletto et al. 2017; Ogutu 

et al. 2019).   

 

One possibility of resolving the mixed and inconclusive findings on the impacts of smallholder 

marketing on food security and nutrition is to consider the fact that consumption gains from 

commercialization could be heterogeneously distributed among households, and also within 

household members (Carletto et al. 2017; Ogutu et al. 2019). However, studies have mostly 

failed to consider these dimensions in examining the impacts of commercialization on 

household welfare (Carletto et al. 2017). In addition, existing studies have completely neglected 

smallholder profit or market orientation on welfare gains, in spite of the fact that smallholders’ 

production and marketing decisions in developing countries are characterized by different 

motives, including “distress sales” (Pingali and Rosegrant 1995; Reardon 2006; Jacoby and 

Minten 2009). A notable exception is Ogutu et al. (2019), who examined the heterogeneity in 

the impacts of agricultural commercialization on household calorie and micronutrients 

consumption, but did not consider the profit motive or market-orientation of smallholders.  

 

The empirical analysis builds on these previous studies, by examining the impact of smallholder 

market-orientation on household food and nutrient rich food consumption. This is partly 

justified by the fact that the extent of smallholder market integration is closely associated with 

the motive of production, which has been argued as having varied impacts on household welfare 
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(Abdulai and Huffman 2000; Ecker 2018). Another motivation for the analysis is the fact that, 

the recent upsurge in malnutrition in Africa has been attributed to the adverse impact of climate 

change and worsening food markets’ conditions in the region (FAO, ECA and AUC 2020).  

 

5.3 Empirical Analysis  

This section presents the empirical analysis of the impact of smallholder market participation 

as household food security and nutrition strategy. The section consists of the conceptual 

framework, the study area and data, analytical and empirical strategies, as well as the results of 

the analysis.  

 

5.3.1 Conceptual Framework 

In this section, we outline three pathways highlighting the conditions under which smallholder 

market orientation may lead to different levels of food and nutrients consumption among 

households. 

 

The first is the pure income effect. The underlying premise of this pathway is that agricultural 

commercialization and specialization through high value crops, or selling higher quantities at 

higher prices for current crops can lead to increased farm incomes and consequently increased 

household consumption possibilities of food and other essential household needs (Carletto et 

al. 2017; Kuma et al. 2018). Increased household income from commercialization can also 

enhance the household’s ability to purchase food items that are not produced by the household 

through cash purchases from the market (Abdulai and Aubert 2004; Ecker 2018).  However, 

increased specialization in cash crops and sale of output may lead to reduced production of 

diverse foods and availability of staples for home consumption, which can predispose 

commercially-oriented households to food insecurity and malnutrition, especially if the 

additional income is not spent on food, or if output prices are low (von Braun et al. 1989; 

Carletto et al. 2017).  
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Second is that cash income from crop sales can enhance households’ access to and affordability 

of improved farm inputs and better technologies that can be used for staple crop production 

(Minten et al. 2011). Likewise, households who diversify their crops may enjoy economies of 

scope, where skills, experiences and inputs acquired to grow staple crops for domestic 

consumption can also be used to produce cash crops, and vice versa (Abdulai and CroleRees 

2001; Govereh and Jayne 2003; Ecker 2018). However, missing, inefficient or very volatile 

food markets can lead to high transaction costs or interrupted input supply, which may tend to 

limit households access to inputs and other market opportunities, and can result in reduced 

household income, food purchases and consumption (Fafchamps1992; Abdul-Rahman and 

Abdulai 2020). This could present a situation where subsistence or surplus-oriented households 

tend to have higher food and calorie intake than commercially-oriented households.  

 

Finally, when there is considerable seasonal variation in household food availability and food 

prices, which is often due to climatic shocks and inadequate infrastructure, this can lead to 

farmers who grow more cash or high valued crops benefiting more in terms of food and 

nutrients consumption (WFP and GSS 2012; Kuma et al. 2018; Issahaku and Abdulai 2020). In 

sum, the effects of crop commercialization on household food and nutrients consumption will 

be higher for commercial and perhaps surplus than subsistence households, if market conditions 

are favorable and additional incomes from crop sales are spent on food consumption, and lower 

if otherwise. In addition, commercially-oriented households may benefit more if seasonality of 

food supply tends to increase households’ reliance on purchased food in times of household 

food deficits. Finally, the magnitude of the effects of commercialization will be much higher 

for the consumption of food items that are largely purchased from the market. We examine 

these issues based on the case of smallholder farmers in the Northern region of Ghana.   
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5.3.2 Study Area 

Despite the importance of agriculture as a source of livelihood of the majority of the population 

in Ghana, the incidence of poverty was highest among households engaged in the agriculture 

sector (42.7%) in 2016-2017. Also, the incidence of poverty in the northern regions have been 

higher than the rest of the country since 2006 (GSS 2018). Food insecurity and malnutrition 

have also been the highest in these regions, compared to the rest of the country, with an average 

of 18% of households being severely food insecure. Farm households in these regions are faced 

with inadequate rains, structural constraints and poor soils, which have often led to low 

agricultural output, fluctuation in food prices, and food insecurity (WFP and GSS 2012). In 

spite of efforts made to promote commercialization of agriculture and smallholders in the 

northern regions, the average marketed crop surplus across the three regions remains low, 

ranging from 15% in the Upper East region to 34% in the Northern region (IFAD-IFPRI 2011). 

The high incidence of poverty, food insecurity and malnutrition in the Northern region amid 

slightly higher proportion of marketed crops than the national average of 33%, presents an 

apparent paradox that provides an appropriate context for the investigation of the impact of 

households’ crop commercialization on food and nutrients consumption.     

5.3.3 Data and Descriptive Statistics  

We conducted a survey of 500 farm households in the Northern region of Ghana between July 

and September 2017. Five districts were purposively selected based on their intensity of 

cultivation of both staple and cash food crops, and then 25 villages were randomly selected 

across these districts, with the allocation of villages done in proportion to the total households 

in each district. These villages are remote and small, with less than 150 households in each. 

Given this, we randomly selected 20 household heads in each village, and then used structured 

questionnaires to interview the primary decision-makers in the households. In addition, a 

detailed discussion using an interview guide was administered in each village to a focus group 
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of village leaders and representatives to obtain information on village characteristics. The 

survey combined modules of household characteristics, agricultural production and marketing 

to collect household data for the 2015-2016 cropping season.   

 

Given our interest in measuring commercialization from the output market participation side, 

and in terms of sales of all crops cultivated by the household in the 2015-2016 season, we use 

the Household crop commercialization index (HCCI) suggested by Strasberg et al. (1999). The 

index is expressed as: 

 𝐻𝐶𝐶𝐼 =
∑ �̅�𝑣,𝑐𝑀𝑖,𝑐

�̅�
𝑐=1

∑ �̅�𝑣,𝑐,𝑄𝑖,𝑐
�̅�
𝑐=1

× 100          [1] 

where �̅�𝑣,𝑐 is the average village level crop 𝑐 price in village 𝑣, 𝑀𝑖,𝑐 is the quantity of crop 𝑐 

marketed by household 𝑖, 𝑄𝑖,𝑐 is total quantity of crop 𝑐 produced by the household 𝑖, and 𝑐 is 

an index of crops produced, with 𝑐 =1,…, 𝑐̅. On the basis of this measure, a household’s degree 

of commercialization can be expressed in a continuum that ranges from pure subsistence of 

HCCI = 0 to completely commercialized production of HCCI = 100. In order to characterize 

households’ market orientation, we use the categorization by FAO (1989), which categorizes 

households into three orientations, based on the proportion of crop output sold (see also Pingali 

and Rosegrant 1995). Thus, we classify our farmers into subsistence-oriented, if the farmer sells 

less than 25% of the output; surplus-oriented, if the farmer sells at least 25%, but less than 50% 

of the output; and commercial-oriented if the farmer sells more than 50% of the output.    

 

The outcomes of interest in this study are food consumption score (food) and food consumption 

scores-nutrition. Given that these outcomes measure the frequency of consumption of food and 

nutrient rich foods, we asked households the question “How many days in the last 7 days your 

household ate the following foods?” (refer to notes under table 5.1 for details). We next sum all 

the consumption frequencies of the food and nutrient rich food items of the same group. For the 

food consumption score, we multiply the value obtained for each food group by the group 
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weight to obtain weighted food group scores, and then add the weighted food groups to generate 

the food consumption score for a household. With regards to the nutrient consumption, we sum 

the number of days that foods belonging to each nutrient sub-group (i.e., vitamin A, protein and 

hem iron) were consumed in the household to obtain the food consumption score-nutrition for 

the household (WFP 2015).    

 

In order to explore how food and nutrients consumption vary by household market orientation, 

we present the mean differences in food and nutrient rich foods consumption by household 

market orientation in table 5.1. We first present the means for the whole sample in column (1). 

In columns (2) to (4), we compare the mean differences of households who did not report any 

sales and those who reported sales of 0 < HCCI < 25%. The table suggests that households who 

did not sell any of their harvest have slightly lower food and nutrient rich food consumption 

than those who sold at most 25% of the harvest, albeit not statistically significant across all 

outcomes. This justifying our classification of households with less than 25% HCCI as 

subsistence-oriented.     

 

Columns (5) to (7) present the means and the mean differences between subsistence and 

surplus-oriented households, while columns (8) to (10) report the comparison between 

commercial on the one hand and surplus and subsistence households, on the other hand. The 

comparison shows that both surplus and commercial-oriented households have significantly (at 

the 1% level) higher income, food and nutrient rich foods consumption than subsistence-

oriented households. At the same time, commercial-oriented farm households appear to have 

significantly higher income, food and nutrients consumption than surplus-oriented households. 

These suggest the possibility of significant differences in the returns to household crop 

commercialization across market orientations.  
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Table 5.1. Means and differences in means of food and nutrient rich food consumption outcomes across market orientation   
 All sample  Sell 

none 

Sell < 

25% 

Difference  Subsistence-

oriented 

Surplus-

oriented 

Difference Commercial-

oriented 

Difference Difference 

 (1) (2) (3) (4) = (3-2) (5) (6) (7) = (6-5) (8) (9) = (8-5) (10) = (8-6) 

Food consumption score 33.55 

(8.23) 

 27.95 

(1.03) 

30.08 

(0.67) 

2.13 

(1.85) 

 29.83 

(0.61) 

33.73 

(0.52) 

  3.90*** 

 (0.79) 

39.11 

(0.59) 

  9.28*** 

 (0.89) 

  5.38*** 

 (0.83) 

Vitamin A 12.43 

(3.83) 

 10.18 

(0.69) 

10.56 

(0.34) 

0.38 

(0.94) 

 10.52 

(0.31) 

12.55 

(0.24) 

  2.03*** 

 (0.38) 

15.23 

(0.18) 

  4.71*** 

 (0.41) 

  2.68*** 

 (0.34) 

Protein 6.18 

(3.46) 

 3.13 

(0.57) 

4.26 

(0.24) 

1.12 

(0.69) 

 4.13 

(0.23) 

6.14 

(0.22) 

  2.01*** 

 (0.31) 

9.52 

(0.15) 

  5.39*** 

 (0.31) 

  3.38*** 

 (0.31) 

Hem iron 3.77 

(2.26) 

 1.91 

(0.37) 

2.48 

(0.16) 

       0.57 

(0.45) 

 2.41 

(0.15) 

3.75 

(0.14) 

  1.34*** 

 (0.21) 

5.96 

(0.09) 

  3.55*** 

 (0.19) 

  2.21*** 

 (0.20) 

Log income 8.39 

(0.71) 

 7.93 

(0.14) 

8.23 

(0.04) 

      0.30*** 

(0.12) 

 8.19 

(0.04) 

8.33 

(0.04) 

  0.14** 

 (0.06) 

8.83 

(0.09) 

  0.64*** 

 (0.09) 

  0.49*** 

 (0.08) 

Notes: the table shows the descriptive statistics and the differences in means across household market orientation for the food and nutrient rich foods consumption outcomes and household annual income. 

Column (1) presents the means of household consumption of food and nutrients, and household income for the entire sample. Columns (2) and (3) depict the means for households who did not sell any of 

the output and those who sold less than 25% of the output, respectively, while column (4) shows the differences in these means. Columns (5), (6) and (8) present the means for subsistence-oriented, surplus-

oriented and commercial-oriented households. Column (7) reports the differences in means between subsistence and surplus-oriented households, whiles column (9) presents the differences in means between 

subsistence and commercial-oriented households. Column (10) shows the differences in means between surplus and commercial-oriented households. Values in parenthesis are standard deviations in column 

(1) and standard errors in columns (2) to (10). The asterisks *** and ** are significance at 1% and 5% levels, respectively.  

We calculated the food consumption score by first grouping all food items consumed by households into main staple, pulses, vegetables, fruits, meat and fish, milk, sugar, oils and condiments and 

the food consumption score-nutrition by grouping food items into 15 food groups under vitamin A rich foods (i.e., dairy, organ meat, eggs, orange and green vegetables; and orange fruits), protein rich 

foods (pulses, dairy, flesh meat, organ meat, fish and eggs) and iron rich foods (flesh meat, organ meat and fish) (WFP 2015). 
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Table 5.2. Variable definition, measurement and descriptive statistics 
Variables Definition and measurement Mean S.D. 

Panel A: Commercialization   

HCCI Household crop commercialization index (in percentage) 36.76 19.02 

Subsistence-oriented 1 if household sells less than 25% of harvest; 0 otherwise 0.36 0.48 

Surplus-oriented 1 if household sells between 25% & 49.99% of harvest; 0 otherwise 0.41 0.49 

Commercial-oriented  1 if household sells at least 50% of harvest; 0 otherwise 0.23 0.41 

Panel B: Household characteristics    

HHAge Age of household head (years) 44.03 12.04 

HHSex 1 if household head is male; 0 otherwise 0.59 0.49 

HHEducation Number of years in school by household head 1.27 3.27 

HHSize Household size (number of persons) 5.63 2.14 

HHLandholding  Total land size of household (in hectares) 2.56 1.56 

CB_Assoiations Number of associations the farmer is a member in the community 1.07 1.27 

Log HHIncome Log of total household annual income  8.39 0.71 

Log HHLivestock Log value of household livestock at beginning of 2015 season  7.65 2.19 

Log HHDAsset Log value of household durable assets at beginning of 2015 season 9.11 0.88 

Extension 1 if ever had extension contact; 0 otherwise 0.34 0.47 

Save money 1 if household regularly save money; 0 otherwise 0.72 0.45 

Save food 1 if household at least save some food surplus; 0 otherwise 0.06 0.23 

Panel C: Community variables and district Fes   

Town distance Distance from community to main town centre in kilometres 15.46 11.86 

Local wage  Local wage rate per day in GHS 6.22 1.34 

Gushegu 1 if household resides in Gushegu district; 0 otherwise 0.24 0.43 

Karaga 1 if household resides in Karaga district; 0 otherwise 0.15 0.36 

Savelugu-Nanton 1 if household resides in Savelugu-Nanton district; 0 otherwise 0.32 0.46 

Tolon 1 if household resides in Tolon district; 0 otherwise 0.19 0.39 

Kumbungu 1 if household resides in Kumbungu district; 0 otherwise 0.09 0.28 

Panel D: Instruments    

PreProductContract  1 if farmer has no pre-planting input contract in the past 5 years, 0 

otherwise 

0.18 0.39 

HHMobileNetwork 1 if household location has a telecommunication network coverage, 0 

otherwise 

0.72 0.45 

CMarket 1 if household resides in community with market, 0 otherwise 0.44 0.49 

Farm_shock 1 if household experience any shock in farming due to weather or 

bush/wildfires in the past 5 years, 0 otherwise 

0.59 0.49 

NonEmployTravel 1 if a household member left the community for non-employment 

reasons (such as marriage, education or religion) in the past year, 0 

otherwise 

0.23 0.42 

Panel E: Other covariates of the First-stage household income model    

Tractor Tractor cost per acre in GHS 57.28 40.85 

SeedUse Quantity of crop seeds used per acre in kilograms  67.15 207.32 

SeedPrice Average seed price in GHS 32.01 177.68 

Fertilizer Cost of fertilizer applied per acre in GHS  56.94 67.01 

Pesticides Cost of pesticides applied per acre in GHS  1.47 5.98 

Weedicides Cost of weedicides applied per acre in GHS 20.65 30.28 

Labor Number of man-days per acre 22.98 10.68 

Soil fertility 4=fertile; 3=moderately fertile; 2=less fertile; and 1=infertile 1.20 0.36 

Notes: the table depicts the definition, measurement and descriptive statistics of household crop commercialization, instruments 

and other controls.  Panel A shows the household crop commercialization index (HCCI) and the proportion of households under 

each market orientation. Panels B and C consist of household, community and district controls, while panel D contains the 

instruments used for exclusive restriction in the first-stage market orientation model as well as the first-stage household income 

regression to account for potential endogeneity of household income. Panel E consists of farm inputs and soil characteristics of 

households. GHS is Ghana cedis, which is the Ghanaian currency.     
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Table 5.2 presents the definition, measurement and descriptive statistics of all the variables used 

in the analysis for the entire sample. Panel A shows that 36% of the farm households surveyed 

are subsistence-oriented, 41% are surplus-oriented, and 23% are commercial-oriented. Also, 

the average household head is 44 years old and with 1.27 years of schooling. The average 

household size and landholding are 5.63, and 2.6 hectares, respectively (panel B). The average 

distance from the villages to the nearest town centre is about 15 kilometres, and the mean village 

wage rate is about 6 GHS. We also compare the differences in the main controls between market 

orientation in table 5.A1 in the appendix, and this shows significant differences mostly in the 

household characteristics across market orientation. 

 

5.3.4 Analytical Framework and Empirical Strategy 

Our conceptual framework shows how smallholder food and nutrients consumption tend to 

depend on household market orientation and market conditions. Given the categorization of 

smallholders’ market orientation into subsistence, surplus and commercial-oriented, based on 

the proportion of output marketed, we model household market orientation as an ordered choice 

(Heckman et al. 2006). We define the latent variable 𝐶𝑖𝑗
∗ , which denotes sorting of farm 

households 𝑖 into the 3 categories of market orientation, based on an ordered probit selection 

rule as; 

𝐶𝑖𝑗
∗ = 𝛼𝑗

′𝒁𝑖 + 𝜇𝑖𝑗, 

where   

 𝐶𝑖𝑗 = 𝟏[𝜏𝑗(𝑤𝑗) < 𝛼𝑗
′𝒁𝑖 + 𝜇𝑖𝑗 ≤ 𝜏𝑗+1(𝑤𝑗+1)],      [2] 

  

 𝑗 = 1, 2…𝐽 ̅

 

and the cutoffs satisfy  

 

 𝜏𝑗(𝑤𝑗) ≤ 𝜏𝑗+1(𝑤𝑗+1),   𝜏0(𝑤0) = −∞, and 𝜏𝐽̅(𝑤𝐽̅) = ∞ 

  

where 𝐶𝑖𝑗 is a multivalued observed treatment variable, 𝒁𝑖 is a vector of observed controls, 

𝛼𝑗
′𝒁𝑖 + 𝜇𝑖𝑗 is a latent linear index, 𝛼𝑗 is a vector of parameters to be estimated, 𝑤𝑗 is a vector of 
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observed regressors, 𝜏𝑗(𝑤𝑗) are threshold parameters, which are allowed to depend on the 

regressors57, and 𝜇𝑖𝑗 are error terms. To the extent that we are interested in the estimation of the 

impact of farm household market orientation (𝐶𝑖𝑗) on food and nutrients consumption, we 

denote the observed food and nutrients consumption outcomes as 𝑌𝑖𝑗 for the three market 

orientations.  We express the outcomes as linear functions of a vector of observed independent 

variables, 𝑋𝑖 as;  

 𝑌𝑖𝑗 = {

𝛽1
′𝑋𝑖 + 𝜖𝑖1    𝑖𝑓 𝐶𝑖 = 1 

𝛽2
′ 𝑋𝑖 + 𝜖𝑖2    𝑖𝑓 𝐶𝑖 = 2

𝛽3
′ 𝑋𝑖 + 𝜖𝑖3     𝑖𝑓 𝐶𝑖 = 3

           [3] 

 

where the vector of coefficients, 𝛽𝑗, of 𝑋𝑖 are allowed to depend on the treatment options, and  

𝜖𝑖𝑗 is assumed to have a zero mean and variance of 𝜎𝑗
2, for each 𝑗 = 1,2,3.  

Households’ market orientation in this study are non-random and implies that orientation status 

of farmers could differ systematically due to self-selection of households into categories. 

Selection bias can result from both observed factors (such as education, landholding, wealth 

etc) and unobserved factors (such as innate abilities). Such factors may simultaneously drive 

correlations in households’ market orientation and the outcomes, which will result in omitted 

variable problem (Heckman et al. 2018). As a result, estimation of equation (3) with ordinary 

least squares will generally result in biased and inconsistent estimates. We can control for the 

observed sources of selection (to the extent possible) with detailed household and contextual 

data, but the unobservable factors remain a source of concern for this analysis.  

In order to account for the threats of selection bias and omitted variable problem in the light of 

the ordered nature of the selection variable, we employ the ordered probit selection model 

                                                           
57 Such a model is referred to as the generalized ordered probit model, as opposed to the classical ordered choice model which 

assumes the distribution of 𝑤𝑗  are degenerate, and thus the thresholds 𝜏𝑗  are assumed constants (Heckman et al. 2006).  



 

245 
 

(Heckman et al. 2006). This is a parametric model that assumes joint normality of the errors in 

equations (2) and (3) (i.e., 𝜖𝑖𝑗,  𝜇𝑖𝑗), and utilizes full information maximum likelihood procedure 

to jointly estimate a first-stage ordered probit of household market orientation in equation (2), 

and a second-stage outcome models for the three regimes of market orientation (equation 3). 

The process accounts for selection bias and omitted variable problem by inserting calculated 

inverse Mills ratios from the first-stage ordered choice model into the second-stage food and 

nutrients consumption model. The coefficients of the inverse Mills ratios, which we denote as 

𝜌𝑗 = Corr(𝜖𝑖𝑗 ,  𝜇𝑖𝑗), define the correlation between the errors in equations (2) and (3).  

Significance of the correlation coefficients, 𝜌𝑗, will suggest the presence of selection bias 

indicating that households’ market orientation decisions are endogenous. The signs of the 𝜌𝑗’s 

show the pattern of correlation.  

A critical concern is that the estimation of the selection and outcome equations requires an 

exclusion restriction, or a source of variation to avoid collinearity and enhance identification. 

However, an issue that complicates the exclusion restriction in the ordered choice setting is the 

need for an instrument for each transition (Heckman et al. 2006). The three ordered choices 

give two transitions (i.e., subsistence to surplus, and surplus to commercial) which intuitively 

suggest the need for at least two instruments. In this study, we use farmers’ access to pre-

planting input contract for the past 5 years prior to the 2015 cropping season, 

telecommunication network coverage at the location of the household and the presence of at 

least periodic market in the village as instruments.  

 

Past pre-planting input contract, is correlated with farmer market orientation, because it 

contributes to minimizing market risks and transaction costs (Mishra et al. 2018). Whereas we 

do not expect past pre-planting contract to directly affect current food and nutrients 

consumption, it is possible that it may affect current consumption through past food stored for 

current consumption. Table 5.2 (panel B) shows this is not a threat, because very few (6%) 
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households reported saving food from previous season. Also, these households do not 

systematically differ across market orientation (table 5.A1, panel C) and past pre-planting 

contract status in table 5.B1 in appendix B. Access to telecommunication network coverage and 

village markets in Ghana vary substantially across villages (Zanello 2012), and are expected to 

be good predictors of household market orientation, because these can increase households’ 

access to real-time market information, and reduce transaction cost of marketing, which are key 

constraints to market engagement in these areas (MoFA 2017). However, these instruments 

should not directly affect households’ current food and nutrients consumption, other than 

through households’ market engagement. We further control for distance to the town centre, 

household income and assets to ensure that the instruments are not picking up any proximity, 

wealth and income effects.      

 

The final issue is the potential endogeneity of household income. Household income may be 

endogenous in the market orientation equation, because increased commercialization can lead 

to increased farm income through high price premiums. In the food and nutrients consumption 

equation, household income may be endogenous because of the joint production and 

consumption decisions among agricultural households in developing countries (Fafchamps 

1992). To account for the potential endogeneity, we employ the Control Function approach 

(Woodridge 2010; Abdulai and Huffman 2014), using households experience of any shock on 

the farm due to weather or wildfires in the past 5 years as instrument. Such shocks are usually 

exogenously determined by idiosyncratic factors and are expected to be good predicters of 

households’ total income, because of the association between such shocks and household crop 

output and income. Given this, we estimate a first-stage generalized linear model of household 

income on the instrument and other controls, and then insert the predicted residuals into the 

selection and the outcome equations to account for the potential endogeneity of household 

income.   
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Given the correction for sample selection and the identification issues, we estimate the average 

treatment effects for transitioning between two orientations, 𝑗 and 𝑗 + 1, on the population 

(ATE†), on everyone at the transition point between 𝑗 and 𝑗 + 1  (ATE), on the treated (ATT) 

and on the untreated (ATU).  The difference between ATE† and ATE shows the difference in 

the characteristics of farmers in the entire population and those at the transition between two 

market orientations. In addition, the difference between the ATT and ATE measures sorting on 

gains, whereas the difference between ATU and ATE measures sorting losses (Heckman et al. 

2018). Finally, the relationship among ATE, ATT and ATU shows the pattern of sorting on 

gains, such that if ATT > ATE >ATU, this will suggest positive selection on gains, and if ATU 

>ATE>ATT will indicate reverse selection on gains (Cornelissen et al. 2018).  

 

5.3.5 Results and Discussion 

This section presents and discusses the results of our estimations. We first present the results of 

the first-stage estimates of households’ market orientation and the second-stage estimates of 

food and nutrient rich foods consumption. We next report the results of the treatment effects of 

households’ market orientation.   

  

First- and Second-Stage Results   

We report the marginal effects of the first-stage ordered probit estimates of determinants of 

household market orientation in table 5.3, with subsistence-oriented as the base category. The 

estimates show that household income and wealth significantly affect market orientation. In 

particular, a percentage increase in household income decreases the probabilities of being 

subsistence and surplus-oriented by 0.14 and 0.13, respectively, and increases the probability 

of being commercial-oriented by about 0.27. The estimates show that a percentage increase in 

household livestock value significantly increases the probability of being commercial-oriented 

by about 0.04. 
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Table 5.3. First-stage determinants of market orientation 

 Subsistence-oriented 

(1) 

 Surplus-oriented 

(2) 

 Commercial-oriented 

(3) 

 Marginal 

effect 

S.E. Marginal 

effect 

S.E. Marginal 

effect 

S.E. 

         

HHAge -0.001 0.001   0.001 0.001   9.1E-5 0.001 

HHSex -0.029 0.053   0.137** 0.057  -0.108** 0.042 

HHEducation -0.009 0.008   0.005 0.008   0.003 0.005 

HHSize  0.013 0.011  -0.017 0.012   0.004 0.008 

HHLandholding  -0.014 0.017   0.007 0.018   0.006 0.012 

CB_Assoiations  0.022 0.019  -0.047** 0.020   0.025 0.015 

Log HHIncome -0.144** 0.064  -0.130** 0.064   0.274*** 0.047 

Log HHLivestock -0.016 0.011  -0.020 0.014   0.036*** 0.012 

Log HHDAsset -0.107*** 0.029   0.096*** 0.030   0.010 0.021 

Town distance -0.001 0.021   0.006** 0.003  -0.005** 0.002 

Local wage   0.041* 0.021  -0.062** 0.023   0.020 0.018 

Gushegu  0.060 0.084  -0.246** 0.108   0.186* 0.092 

Karaga  0.041 0.087  -0.352*** 0.110   0.310*** 0.094 

Savelugu-Nanton  0.140 0.085  -0.386*** 0.097   0.245*** 0.084 

PreProductContract   0.272*** 0.061  -0.220*** 0.063  -0.051 0.046 

HHMobileNetwork -0.228*** 0.054   0.100* 0.056   0.128*** 0.037 

CMarket -0.039 0.048  -0.099* 0.053   0.138*** 0.040 

HHIncomeResid  0.139 0.089   0.075 0.089  -0.214*** 0.056 

         

Log likelihood        -426.27     

LR X2(36)         217.65     

Prob X2          0.000     

X2 (3) Excluded Instruments         39.60     

Prob X2          0.000     

Number of observations       180          206        114  

Notes: First-stage generalized ordered probit estimation of equation (2). Column (1) presents the marginal effects and the 

standard errors (S.E.) of the various covariates on the likelihood of being a subsistence-oriented household. Columns (2) and 

(3) report the marginal effects and standard error of the covariates on the likelihood of being a surplus-oriented and commercial-

oriented household respectively. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 

 

 

Similarly, the probability of being subsistence-oriented household decreases by about 0.11, 

while that of being surplus and commercial-oriented households increase by 0.09 and 0.01 

respectively, when the value of household durable assets increases by 1%, albeit not significant 

for commercial-oriented. These estimates generally suggest that wealthy households appear to 

be more commercially inclined than less wealthy households. These results confirm the finding 

by Abdulai and CroleRees (2001) that household income and wealth play important roles in 

households’ diversification away from subsistence agriculture. Wealthy households tend to be 

less vulnerable to risks of market failures and exposure to food insecurity, because of the 
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relatively high security due to their wealth and income, compared to poorer households who 

are severely affected by market imperfections and inefficiencies (von Braun et al. 1989; Abdulai 

and Aubert 2004; Ogutu et al. 2019).  

 

Our results further show that the instruments strongly predict the probability of either being 

subsistence, surplus or commercial-oriented household. The estimates show that households 

with past pre-planting input contracts are more likely to be surplus-oriented, whereas those with 

access to telecommunication network and markets in the village are more likely to be 

commercial-oriented. We test the validity of the instrument by regressing the respective 

outcomes on our set of controls and the instruments in part B of table 5.B3, and the results show 

that all the instruments are valid, as they do not significantly explain food and nutrients 

consumption. 

 

We further check the relevance and validity of these instruments by presenting test diagnostics 

of a generalized method of moments (IV-GMM)58 estimations of the effect of 

commercialization on the outcomes in table 5.B2. The diagnostics test statistics reported at the 

bottom of table 5.B2 (col. 1) further suggest the instruments are together relevant, and as such, 

good predictors of household degree of commercialization. Specifically, the Cragg-Donald F-

statistic of 14.75, the Kleibergen-Paap rk Wald F-statistic of 45.98 and the associated Angrist 

and Pischke (2009) p-value (p=0.000) all reject the null hypothesis that the instruments are 

weak. Moreover, given the Hansen J test statistic of 3.452 and the p-value of 0.178, we cannot 

reject the null hypothesis of zero correlation between the instruments and the error term (the 

second-stage estimates are reported in part A of table 5.B3).  

 

                                                           
58 We use the IV-GMM estimator because of its efficiency over the conventional two-stage least squares when the equation is 

over-identified (which is the case in our application as the number of instruments, three, exceed the number of endogenous 

regressors of one) and its robustness to heteroskedasticity (Kuma et al. 2018).   
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We report results of the second-stage estimates of food and nutrients consumption in tables 

5.C1 and 5.C2. The estimates show that education significantly increases the consumption of 

food, protein and hem iron rich foods for subsistence-oriented households, and the consumption 

of food and only vitamin A rich foods for surplus-oriented households. This confirms past 

findings that education is positively associated with better food and dietary diversity (Issahaku 

and Abdulai 2020). In addition, an increase in household size results in increased consumption 

of food and vitamin A rich foods, although weakly significant at the 10% level, for surplus-

oriented households. This suggests the labor effect of household size, which contributes to 

increased crop production, outweighs the dependency effect for the surplus-oriented 

households, and thus, explains the positive effect of the household size59 in this case. 

 

The results further reveal that household income significantly increases food and vitamin A 

food consumption for surplus-oriented households, and the consumption of protein and hem 

iron foods for surplus and commercial-oriented households, lending support to past studies that 

income growth tend to increase calorie intake (Abdulai and Aubert 2004; Colen et al. 2018; 

Kuma et al. 2018). However, household income generally reduces food and nutrient rich food 

consumption for subsistence-oriented households, although not statistically significant. This 

suggests that some sales of crops by subsistence-oriented households are due to distress that 

results in a trade-off between household food and nutrients consumption on one hand and the 

household income on the other hand. This incidence has been reported in the context of 

developing countries where farmers are forced to sell their harvest to meet immediate financial 

requirements (such as servicing of debts or other household needs) and later on have to buy 

food from the market, or borrow food to meet household food needs (Reardon et al. 2006; 

Jacoby and Minten 2009). 

                                                           
59 Family labour is an important part of household labor in the sample and constitutes about 74% of the total labor days used 

on households’ farms in the sample.  
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Similarly, household wealth plays an important role in enhancing food and nutrients 

consumption. In particular, an increase in the value of household livestock significantly 

increases household food and nutrient rich food consumption for subsistence, while 

significantly increasing the consumption of only nutrient rich foods for surplus-oriented 

households. Furthermore, an increase in the value of household durable assets is estimated to 

significantly increase food consumption for subsistence and surplus-oriented households, and 

increase nutrient rich foods consumption for all groups.  

 

We report the 𝜌s, which show the correlation between the errors in equations (2) and (3) at the 

bottom of tables 5.C1 and 5.C2. The estimated correlations are weakly significantly different 

from zero (p<0.1) for protein and hem iron foods consumption in the commercial-oriented 

category, indicating the presence of self-selection. This implies that transitioning into 

commercial-orientation may not have the same effect on protein and hem iron foods 

consumption for the other two market orientations if they transition (Heckman et al. 2006; 

Abdulai and Huffman 2014). The positive signs of the coefficients indicate reverse selection on 

unobserved gains, suggesting that farm households with more than average protein and iron 

rich food consumption have lower probabilities of transitioning into commercial-oriented 

category.   

 

Treatment Effects Measures 

Table 5.4 presents the treatment effects estimates of farm households’ transition between 

market orientation. Panel A presents the treatment effects between subsistence and surplus-

oriented, while panel B reports the treatment effects between surplus and commercial-oriented. 

We report the treatment effects between subsistence and commercial-oriented in panel A of 

table 5.5, although we mainly focus on table 5.4 in what follows.  
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In respect of transitioning between subsistence and surplus orientation (panel A), the ATE† 

estimates for the entire population show that moving from subsistence to surplus-oriented 

increases food consumption by 14.9%, and the consumption of vitamin A, protein and iron rich 

foods by 18%, 25% and 26%, respectively, for an average household chosen at random. This is 

higher than the other treatment effects measures (i.e., ATE, ATT and ATU) that condition on 

those making this transition. This suggests that the characteristics of those at the transition 

between subsistence and surplus are somewhat less favourable than those in the population, 

possibly due to the better characteristics of commercial-oriented households (Heckman et al., 

2018). For those transitioning from surplus to commercial orientation, the average treatment 

effects (ATE†) of a farm household chosen at random from the population is estimated as 18% 

for food consumption, and 15%, 39% and 44% for vitamin A, protein and iron rich foods 

consumption, respectively (panel B).  

 

We next focus on the specific treatment effects across the outcomes, as their relationships 

indicate the pattern of selection as stated in the analytical framework. Regarding food 

consumption in column (1), the treatment effects (i.e., ATE, ATT and ATU) are all statistically 

significant at the 1% level across the transitions (table 5.4). Recall that the ATE measures the 

average effects only for households transitioning between two market orientation. The results 

show that food consumption significantly increases by 11.6% and 14.3% for a randomly chosen 

farm household at the transition between subsistence and surplus-orientation and between 

surplus and commercial-orientation, respectively. With regards to nutrient rich foods 

consumption, the ATE suggests that going from subsistence to surplus-orientation tend to 

increase vitamin A, protein and iron rich foods consumption by about 13%, 18% and 19%, 

respectively, for an average household transitioning between subsistence and surplus-

orientation (panel A). 
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   Table 5.4. Treatment effects estimates of household market orientation on food and nutrients outcomes 
 (1) 

Food 

 (2) 

Vitamin A 

 (3) 

Protein 

 (4) 

Hem iron 

 Treatment 

effect 

% of base 

choice 

Treatment 

effect 

% of base 

choice 

Treatment 

effect 

% of base 

choice 

Treatment 

effect 

% of base 

choice 

Panel A            

Subsistence vs. Surplus            

ATE†  4.405*** 

(0.159) 
14.89  1.893*** 

 (0.087) 
17.73  1.231*** 

(0.072) 
25.27  0.780*** 

(0.049) 
26.42 

ATE  3.462*** 

(0.151) 
11.62  1.338*** 

 (0.079) 
12.51  0.825*** 

(0.065) 
17.89  0.517*** 

(0.046) 
18.66 

ATT  3.971*** 

(0.530) 
13.34  1.705*** 

 (0.254) 
15.72  1.102*** 

(0.179) 
21.89  0.668*** 

(0.117) 
21.66 

ATU  2.879*** 

(0.490) 
9.65  0.919*** 

 (0.245) 
8.73  0.509** 

(0.179) 
12.33  0.345*** 

(0.115) 
14.30 

Panel B            

Surplus vs. Commercial            

ATE†  6.107*** 

(0.206) 
17.97  1.892*** 

 (0.087) 
15.05  2.360*** 

(0.078) 
38.67  1.635*** 

(0.053) 
43.79 

ATE  4.959*** 

(0.256) 
14.29  1.639*** 

 (0.116) 
12.41  1.917*** 

(0.099) 
27.67  1.303*** 

(0.067) 
30.42 

ATT  2.664*** 

(0.619) 
7.31  0.831*** 

 (0.261) 
5.77  1.164*** 

(0.228) 
13.93  0.724*** 

(0.149) 
13.81 

ATU  6.229*** 

(0.427) 
18.46  2.087*** 

 (0.179) 
16.63  2.333*** 

(0.130) 
38.02  1.623*** 

(0.085) 
43.25 

Notes: the table shows ordered Heckman treatment effects estimates of the impact of household market orientation on households’ food, vitamin A, protein and hem iron rich 

foods consumption between subsistence and surplus in panel A, and between surplus and commercial in panel B. ATE† is the average treatment effects for the entire population; 

ATE is the average treatment effects for those at the point of deciding between two orientation, ATT is average treatment effects on the treated and ATU is average treatment 

effects on the untreated. Values in parenthesis are robust standard errors. The asterisks *** and ** are significance at 1% and 5% levels, respectively. 
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Similarly, going from surplus to commercial-orientation increases consumption of foods rich 

in vitamin A, protein and iron by about 12%, 28% and 30%, respectively, for an average 

household transitioning between surplus and commercial-orientation (panel B). The ATT 

estimates for food consumption indicate that for a surplus-oriented household, going from 

subsistence to surplus-orientation results in 13.3% increase in food consumption, whereas for 

a commercial-oriented household, going from surplus to commercial-orientation increases food 

consumption by 7.3%.  

 

The results of the ATT for vitamin A, protein and iron rich foods consumption suggest that for 

an average surplus-oriented household, going from subsistence to surplus-orientation increases 

the consumption of foods rich in these nutrients by 16%, 22% and 22%, respectively. At the 

same time, going from surplus to commercial-orientation increases vitamin A, protein and iron 

rich foods consumption by about 6%, 14% and 14%, respectively, for a commercial-oriented 

household. We also considered what the returns to marketing will be should subsistence-

oriented households become surplus-oriented, or surplus-oriented households become 

commercial-oriented in the estimates of the ATU. 

 

For subsistence-oriented household, going from subsistence to surplus-orientation increases 

food consumption by 9.7%, while transitioning from surplus to commercial-orientation 

increases food consumption by 18.5%. The estimates for the nutrient rich food consumption 

show that for a subsistence-oriented household, going from subsistence to surplus-orientation 

increases consumption of vitamin A, protein and iron rich foods by 8.7%, 12.3% and 14.3%, 

respectively, if they transition into surplus-orientation. Similarly, going from surplus to 

commercial-orientation increases the consumption of vitamin A, protein and iron rich foods by 

about 16.6%, 38% and 43.3%, respectively.   
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Table 5.5. Treatment effects between subsistence and commercial, and difference 

in treatment effects between subsistence to surplus for non-sellers and those 

selling less than 25% 
 Food Vitamin A Protein Hem iron 

Panel A     

Subsistence to commercial (1) (2) (3) (4) 

ATE† 10.512*** 

(0.172) 

 3.785*** 

(0.095) 

 3.592*** 

(0.076) 

 2.415*** 

(0.049) 

ATE 10.730*** 

(0.218) 

 3.781*** 

(0.120) 

 3.701*** 

(0.095) 

 2.502*** 

(0.060) 

ATT 10.263*** 

(0.576) 

 4.602*** 

(0.259) 

 3.769*** 

(0.187) 

 2.393*** 

(0.119) 

ATU 11.026*** 

(0.399) 

 3.261*** 

(0.202) 

 3.658*** 

(0.135) 

 2.571*** 

(0.087) 

Panel B     

Subsistence to surplus      

ATU for 0< sales < 25% of output  2.912  

(0.232) 

 0.986 

(0.120) 

 0.569 

(0.095) 

 0.391 

(0.068) 

ATU for 0 sales of output  2.642 

(0.721) 

 0.434 

(0.325) 

 0.078 

(0.095) 

 0.011 

(0.184) 

Difference in ATUs  0.270 

(0.675) 

 0.552 

(0.344) 

 0.490* 

(0.275) 

 0.379* 

(0.194) 

Notes: the table shows ordered Heckman treatment effects estimates of the impact of household market orientation on household 

food and nutrient rich foods consumption. In panel A, ATE† is the average treatment effects for the entire population; ATE is 

the average treatment effects for those at the point of deciding between two transition, ATT is average treatment effects on the 

treated and ATU is average treatment effects on the untreated. Panel B compares the treatment effects of subsistence farmers 

transitioning from subsistence to surplus-oriented (i.e., ATU) between non-selling farm households and those who sell less 

than 25% of the output. Values in parenthesis are robust standard errors. The asterisks *** and * are significance at 1% and 

10% levels, respectively. 
 

   

5.4 Conclusions and Policy Implications 

Food insecurity and malnutrition remain major challenges in sub-Saharan Africa, despite many 

interventions like the Millennium Development Goals and the Sustainable Development Goals, 

which aimed at reducing poverty and hunger in the world. Similarly, several authors have 

analyzed the policy options which have been implemented and their impacts on household 

welfare measures such as income, wages, as well as food security and nutrition. In this article, 

we presented a systematic overview of the literature on policies and strategies to improve food 

security and nutrition in Africa, as well as an empirical analysis on the impact of smallholder 

market participation as a strategy for enhancing food security and nutrition in Ghana. 

 

The survey of the literature shows that most food security and nutrition policies and 

interventions in Africa have centred around indirect measures such as improving agricultural 
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infrastructure and economic incentives, as well as providing smallholders with new agricultural 

technologies, and climate-smart practices to increase farm output and productivity. These 

indirect policy options have gained considerable attention over the past three decades. In 

addition to these, some direct interventions such as structural changes in relative prices and 

targeted food subsidies have been implemented with the aim of improving food access through 

lower market prices and the stabilization of consumption in times of high food price inflation. 

However, lack of proper targeting of the poor, removal of subsidies, as well as the lack of 

sustainability and exit mechanisms of these direct interventions have often led to the failure of 

many of these policies. These have led to governments using measures that stimulate sufficient 

levels of demand to improve food security and nutrition. These measures commonly involve 

cash transfers, income diversification strategies and increased access to markets.  

 

To this end, several studies have examined the effects of market participation on household 

productivity, income and calorie intake. However, the impacts of smallholder market 

participation, especially on food security and nutrition, varies across food and nutrition 

outcomes, and also over smallholder market orientation. The results from the empirical analysis 

on Ghana show that gains from commercialization are higher for protein and iron rich foods 

consumption compared to that of food and vitamin A rich food consumption, which are mainly 

due to increased farm and household incomes. Household income tend to increase vitamin A 

rich food consumption of surplus oriented smallholders, and protein and iron rich foods 

consumption of both surplus and commercial oriented smallholders. This is not surprising, 

given the low dietary quality in the area and the fact that most foods rich in protein and iron 

such as meat, fish and eggs are generally from cash purchases compared to staple foods, which 

are mostly from own production (WFP and GSS 2012; GSS 2018).  

 

In addition, food and nutrient rich foods consumption are generally higher for smallholders 

transitioning from surplus to commercial, compared to their counterparts transitioning between 
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subsistence and surplus. This is probably because the level of market integration, albeit 

generally low among the farmers, is comparatively higher for commercial-oriented households, 

due to the high profit and market orientation (von Braun et al. 1989; Pingali and Rosegrant 

1995). In fact, we see that there is no substantial difference in consumption between pure 

subsistence smallholders and those who sell some but not more than 25% of the output in panel 

B of table 5.5. These findings imply that smallholders will benefit more from marketing if they 

are able to sell more with the motive of making profit.  

 

Furthermore, the pattern of consumption gains differs across market orientation. There is 

positive selection on gains in transitioning from subsistence-orientation to surplus-orientation, 

suggesting that more endowed subsistence-oriented households tend to benefit more in terms 

of consumption when they move to surplus-oriented, than their less endowed counterparts.  

However, less endowed households appear to benefit more in going from surplus to 

commercial-orientation, suggesting reverse selection on gains, where disadvantaged 

households who are less likely to transition from surplus to commercial tend to benefit more if 

they move from surplus to commercial. Thus, when less endowed subsistence and surplus-

oriented households are able to overcome existing market constraints and transition into 

commercial orientation, this will substantially increase their food and nutrients consumption 

through increased income (Pingali and Rosegrant 1995; Abdulai and Huffman 2000). In effect, 

the overview of the literature and the empirical analysis suggest the following policy directions: 

 

 To the extent that ineffective targeting of the poor has been partly responsible for the 

failure of many policies in sub-Saharan Africa, public policies need to move beyond 

“broader targeting”, where sectors and subsectors that are conceived to strongly affect 

the poor are targeted. Thus, “narrow targeting”, where poor locations and segments of 

the population are earmarked and targeted for food security and nutrition interventions 

could be considered. It is also important to promote collaboration between government 
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and other development partners at national and local levels to develop workable criteria, 

and to supervise the intervention process to eschew the accrual of intervention gains to 

political actors and influential groups.   

 

 Structural reforms that were implemented by many African countries, initially 

contributed to increased output and productivity. However, the reduction or removal of 

subsidies on farm inputs in many cases led to increased input prices, reduced 

productivity, and increased food insecurity and malnutrition in the long run. 

Policymakers should put emphasis on how policies and interventions can ensure a 

balance in state efficiency and productivity, without compromising food security and 

nutrition in the long run. Governments can consider measures such as promotion of 

market access and efficient supply chains, income diversification and other productivity 

enhancing interventions that stimulate sufficient and sustained levels of production and 

demand. 

 

 Smallholder commercialization can promote household food security and nutrition 

through increased household income, as shown by the empirical analysis. Smallholder 

commercialization therefore can serve as a strategy for stimulating household demand 

for food and nutrients, although inadequate market information and access often limit 

their market participation. Thus, policies should consider providing platforms such as 

mobile agriculture services and trainings on market intelligence and promotion services 

to increase smallholder commercial orientation and market integration.  

 

 Smallholder transition from subsistence to surplus-orientation tend to favor more 

endowed households in terms of consumption. Policymakers can consider measures that 

minimize smallholders resource constraints and stimulate household crop productivity 

in order to enhance the capacity of less endowed subsistence households. Such measures 
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may include cash crop programmes that support farmers with inputs, and training to 

increase their access to improved inputs and innovations, and also to facilitate other 

spill-over benefits between food and cash crop cultivation (Govereh and Jayne 2003).  

 

 Conversely, less endowed households appear to benefit more in transitioning from 

surplus to commercial-oriented. Thus, promotion of higher smallholder 

commercialization will require in addition to output augmenting measures the 

mitigation of some of the market barriers and failure (such as, market availability, 

physical access and information, market standards, inadequate credits etc) that limit 

poor smallholders from engaging in sales for profit (see also Wiggins et al. 2011; Abdul-

Rahaman and Abdulai 2020). Interventions such as market information platforms, 

farmer cooperatives and collective actions as well as contract buying, which provides 

ready markets for farmers, will be quite rewarding (Ma et al. 2018). 

 

In addition to these policy directions, there are some potential areas future research efforts could 

consider to increase our understanding of the role of smallholder market engagement, and the 

impacts of policies and strategies to enhance food security and nutrition in developing countries. 

One of such areas will be to examine how smallholder engagement in input markets, and the 

integration into the rural cash economy impact food security and nutrition (von Braun et al. 

1989). This is because past studies in this area tend to focus on output market participation and 

drivers of diversification (Abdulai and Delgado 1999; Abdulai and ColeRess 2001). Also, 

studies that examined the impacts of non-farm work mostly neglect the nutritional aspect of 

food security, in spite of the income elasticity differences among various food and nutrient 

elements (Abdulai and Aubert 2004; Colen et al. 2018; Owusu et al. 2011).  

 

Another area related to the empirical analysis in this article is how farmers’ market orientation, 

and marketing affect intra-household production decisions and food consumption distribution, 
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since their effects could be heterogeneously distributed across individuals and various 

demographic groups of household members (Carletto et al. 2017; Ogutu et al. 2019). In 

particular, there is the need to understand the effects of smallholder marketing and 

diversification on intra-household power and decision-making, domestic violence, and poverty. 

It will be interesting to also know which demographic groups are the most affected by food and 

nutrition insecurity, and to what extent do smallholder market engagement and related policies 

contribute to intra-household distributive impacts on food and nutrition insecurity.  

 

Moreover, not much has been done on how heterogeneities in costs and returns to climate-smart 

adaptation practices affect smallholder adaptation, although there is some growing interest in 

the literature (Di Falco et al. 2011; Issahaku and Abdulai 2020). There is, therefore, the need 

for future studies to also examine heterogeneities in returns to climate change adaptation 

practices, given that such returns may be different across households and adaptation strategies. 

In particular, it will be interesting to examine how climate change, climate shocks and socio-

cultural norms impact vulnerable groups (such as the physically challenged, aged, women and 

children) who are normally disadvantaged in productive capacities, and in economic and 

geographical mobility. It is also important to understand how smallholder market and non-farm 

engagement can be used as climate change resilience strategies, particularly for vulnerable 

groups in developing countries, given the reliance of many of such groups on crop marketing, 

and the fact that agriculture is the hardest hit sector by climate change in these regions. 
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Appendix  

Appendix A: Differences in characteristics between market orientations 

Table 5.A1. Mean differences in household characteristics across market 

orientation   
 Subsistence Surplus Difference Commercial Difference Difference 

 (1) (2) (3) = (2-1) (4) (5) = (4-1) (6) = (4-2) 

Panel A: Household characteristics   

HHAge 43.73 

(0.86) 

44.45 

(0.86) 

0.73 

(1.22) 

43.74 

(1.16) 

  0.01 

 (1.42) 

  -0.72 

  (1.44) 

HHSex 0.58 

(0.04) 

0.62 

(0.03) 

0.04 

(0.05) 

0.58 

(0.05) 

  0.00 

 (0.06) 

  -0.04 

  (0.06) 

HHEducation 0.65 

(0.18) 

1.18 

(0.22) 

0.53* 

(0.28) 

2.43 

(0.40) 

  1.79*** 

 (0.39) 

   1.23*** 

  (0.42) 

HHSize 5.64 

(0.16) 

5.55 

(0.14) 

0.09 

(0.22) 

5.73 

(0.21) 

  0.08 

 (0.26) 

   0.17 

  (0.25) 

HHLandholding  2.20 

(0.09) 

2.57 

(0.11) 

   0.37** 

(0.15) 

3.09 

(0.16) 

  0.89*** 

 (0.18) 

   0.51** 

  (0.19) 

CB_Assoiations 1.11 

(0.10) 

1.01 

(0.08) 

0.10 

(0.13) 

1.13 

(0.11) 

  0.02 

 (0.15) 

   0.12 

  (0.14) 

Log HHIncome 8.19 

(0.04) 

8.33 

(0.04) 

   0.14** 

(0.05) 

8.82 

(0.08) 

  0.63*** 

 (0.08) 

   0.49*** 

  (0.08) 

Log HHLivestock 7.01 

(0.20) 

7.65 

(0.13) 

   0.64** 

(0.23) 

8.68 

(0.11) 

  1.66*** 

 (0.27) 

   1.02*** 

  (0.19) 

Log HHDAsset 8.83 

(0.05) 

9.19 

(0.06) 

     0.36*** 

(0.08) 

9.40 

(0.09) 

  0.57*** 

 (0.10) 

   0.21** 

  (0.10) 

Panel B: Community level variables and districts   

Town distance 15.33 

(0.92) 

15.78 

(0.80) 

0.44 

(1.22) 

15.09 

(1.09) 

  -0.24 

 (1.45) 

  -0.69 

  (1.35) 

Local wage  6.29 

(0.09) 

6.18 

(0.10) 

-0.11 

(0.13) 

6.19 

(0.12) 

  -0.10 

 (0.15) 

   0.01 

  (0.16) 

Gushegu 0.27 

(0.03) 

0.23 

(0.03) 

-0.04 

(0.04) 

0.21 

(0.04) 

  -0.06 

 (0.05) 

  -0.02 

  (0.05) 

Karaga 0.11 

(0.02) 

0.14 

(0.02) 

0.04 

(0.03) 

0.24 

(0.04) 

  0.14*** 

 (0.04) 

   0.10** 

  (0.04) 

Savelugu-Nanton 0.37 

(0.04) 

0.27 

(0.03) 

  -0.10** 

(0.05) 

0.32 

(0.04) 

 -0.05 

 (0.06) 

   0.05 

  (0.05) 

Tolon 0.16 

(0.03) 

0.24 

(0.03) 

   0.08** 

(0.04) 

0.15 

(0.03) 

 -0.01 

 (0.04) 

  -0.09** 

  (0.04) 

Kumbungu 0.08 

(0.02) 

0.09 

(0.02) 

0.01 

(0.03) 

0.07 

(0.02) 

 -0.01 

 (0.03) 

  -0.02 

  (0.03) 

Panel C: Identification instruments   

PreProductContract  0.29 

(0.03) 

0.14 

(0.02) 

    -0.14*** 

(0.04) 

0.07 

(0.03) 

  -0.22*** 

 (0.04) 

  -0.07* 

  (0.04) 

HHMobileNetwork 0.59 

(0.04) 

0.75 

(0.03) 

     0.15*** 

(0.05) 

0.85 

(0.03) 

  0.26*** 

 (0.05) 

   0.11** 

  (0.05) 

CMarket 0.42 

(0.04) 

0.41 

(0.03) 

-0.01 

(0.05) 

0.53 

(0.05) 

  0.10* 

 (0.06) 

   0.11* 

  (0.06) 

Save money 0.71 

(0.03) 

0.70 

(0.03) 

-0.01 

(0.05) 

0.76 

(0.04) 

  0.06 

 (0.05) 

   0.07 

  (0.05) 

Save food 0.07 

(0.02) 

0.06 

(0.02) 

-0.01 

(0.02) 

0.04 

(0.02) 

  0.03 

 (0.03) 

   0.02 

 (0.03) 

Notes: the table reports the means and the differences in means of the controls in panels A and B, and the instruments, in 

panel C, across household market orientation. Columns (1), (2) and (4) show the means of these variables for subsistence-

oriented, surplus-oriented and commercial-oriented households. Column (3) shows the differences in the means of subsistence 

and surplus-oriented households. Column (5) shows the mean differences in the variables for subsistence and commercial-

oriented households, while column (6) depicts the mean differences in these covariates for surplus and commercial-oriented 

households. Values in parenthesis are standard errors. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, 

respectively.  
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Appendix B: Instruments diagnostics 

         Table 5.B1. Tests of systematic difference among households based on instrument status 
 Pre-planting inputs contract between 

2001-2015 

 Telecommunication network 

coverage at household location 

 At least periodic market in village 

 No Yes Mean 

Difference 

No Yes Mean 

Difference 

No Yes Mean 

Difference 

Panel A: Endogenous targeting            

Village level characteristics            

Local wage rate in GHS  6.23 

(0.14) 

 6.22 

(0.07) 

-0.01 

(0.16) 

  6.40 

(0.11) 

 6.15 

(0.07) 

-0.25* 

(0.13) 

  6.46 

(0.06) 

 5.91 

(0.10) 

-0.56*** 

(0.12) 

Distance to town in Km 16.07 

(1.42) 

15.32 

(0.56) 

-0.75 

(1.36) 

 19.64 

(1.23) 

13.83 

(0.54) 

 5.81*** 

(1.15) 

 15.22 

(0.65) 

15.76 

(0.86) 

 0.55 

(1.06) 

Household level characteristics            

Household income in 1000 GHS  4.90 

(0.39) 

 5.32 

(0.25) 

 0.41 

(0.56) 

  5.24 

(0.41) 

 5.24 

(0.25) 

 0.00 

(0.48) 

  5.44 

(0.29) 

 4.99 

(0.33) 

-0.45 

(0.44) 

Household non-farm income in 1000 

GHS 

 0.29 

(0.05) 

 0.60 

(0.07) 

 0.31** 

(0.14) 

  0.57 

(0.13) 

 0.54 

(0.06) 

 0.03 

(0.12) 

  0.51 

(0.06) 

 0.59 

(0.10) 

 0.07 

(0.11) 

Household durable asset value in 1000 

GHS 

13.95 

(1.75) 

14.33 

(0.81) 

 0.37 

(1.89) 

 13.57 

(1.35) 

14.53 

(0.87) 

-0.95 

(1.64) 

 15.37 

(1.03) 

12.85 

(1.02) 

 2.52* 

(1.48) 

Household livestock value in 1000 GHS  4.98 

(0.81) 

 6.08 

(0.33) 

 1.11 

(0.78) 

  5.83 

(0.57) 

 5.91 

(0.36) 

-0.08 

(0.67) 

  5.76 

(0.39) 

 6.03 

(0.48) 

 0.26 

(0.61) 

Household size  5.77 

(0.21) 

 5.59 

(0.11) 

-0.17 

(0.24) 

  5.82 

(0.18) 

 5.55 

(0.11) 

 0.27 

(0.21) 

  5.59 

(0.12) 

 5.67 

(0.15) 

 0.08 

(0.19) 

Landholding (in hectares)  2.33 

(0.14) 

 2.61 

(0.08) 

 0.27 

(0.17) 

  2.52 

(0.13) 

 2.57 

(0.08) 

 0.05 

(0.16) 

  2.50 

(0.09) 

 2.63 

(0.11) 

 0.13 

(0.14) 

Education (in years)  0.66 

(0.23) 

 1.41 

(0.17) 

 0.75 

(0.37) 

  1.11 

(0.26) 

 1.34 

(0.17) 

-0.24 

(0.32) 

  1.23 

(0.19) 

 1.34 

(0.22) 

 0.11 

(0.29) 

Save money  0.68 

(0.05) 

 0.72 

(0.02) 

 0.04 

(0.05) 

  0.74 

(0.04) 

 0.71 

(0.02) 

 0.03 

(0.05) 

  0.72 

(0.03) 

 0.72 

(0.03) 

 0.00 

(0.04) 

Save food  0.04 

(0.02) 

 0.06 

(0.01) 

 0.02 

(0.03) 

  0.07 

(0.02) 

 0.05 

(0.01) 

 0.02 

(0.02) 

  0.05 

(0.01) 

 0.06 

(0.02) 

 0.01 

(0.02) 

Panel B: Endogenous location of household           

Head Change village of birth (0,1)  0.32 

(0.05) 

 0.29 

(0.02) 

-0.03 

(0.05) 

  0.34 

(0.04) 

 0.29 

(0.02) 

 0.05 

(0.05) 

  0.29 

(0.03) 

 0.32 

(0.03) 

 0.02 

(0.04) 

Change location in 5yrs (0,1)  0.02 

(0.02) 

 0.02 

(0.01) 

 0.00 

(0.02) 

  0.01 

(0.01) 

 0.03 

(0.01) 

-0.02 

(0.01) 

  0.02 

(0.01) 

 0.02 

(0.01) 

 0.00 

(0.01) 

Observations    92  408    140  360     280   220  

Notes: the table reports result of t-test of community and household level characteristics by access to past pre-planting input contract, access to telecommunication 

network coverage and whether village has market. Values in parenthesis are standard errors. The asterisks *** and * are significance at 1% and 10% levels, respectively. 
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Table 5.B2. First-stage regressions of the IV-GMM and potential endogeneity of 

household income 

Notes: the table presents firsts-stage estimations of the IV-GMM regression of household HCCI on the set of controls 

and the instruments as in our first-stage market orientation model reported in table 5.3, and the first-stage household income 

regression. S.E. denotes robust standard errors, AIC denotes Akaike information criterion and BIC represents the Bayesian 

information criterion. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 

 

  

 

 First-stage IV-GMM 

 

(1) 

 First-stage Household 

Income 

(2) 

 Coefficient S.E.  Coefficient S.E. 

HHAge  5.3E-5 0.001  -3.1E-5 1.2E-4 

HHSex -0.029* 0.016   0.010** 0.005 

HHEducation  0.001 0.002   0.002** 0.001 

HHSize -0.002 0.003  -0.002** 0.001 

HHLandholding   0.004 0.005   0.002* 0.001 

CB_Assoiations  0.005 0.006    

Log HHIncome  0.125*** 0.020    

Log HHDAsset  0.009** 0.003   0.007** 0.002 

Log HHLivestock  0.015* 0.009   0.003** 0.001 

Town distance -1.6E-4 0.001   5.0E-4* 3.0E-4 

Local wage -2.9E-4 0.007   0.001 0.001 

Gushegu  0.030 0.027  -0.019** 0.009 

Karaga  0.029 0.025  -0.024*** 0.007 

Savelugu-Nanton  0.039 0.026  -0.055*** 0.008 

HHIncomeResid -0.093** 0.038    

PreProductContract  -0.083*** 0.020    

HHMobileNetwork  0.069*** 0.016    

CMarket  0.041** 0.016  -0.009* 0.004 

HHExtension     0.020*** 0.006 

Tractor    -1.2E-4* 6.9E-5 

SeedUse     6.3E-5** 2.7E-5 

SeedPrice    -3.4E-5   5.8E-5 

Fertilizer     4.9E-5* 2.8E-5 

Pesticides    -2.4E-4 3.0E-4 

Weedicides     1.1E-4 1.0E-4 

Labor     6.1E-5 4.1E-5 

Soil fertility     0.089*** 0.009 

Farm_shock    -0.033*** 0.007 

NonEmployTravel    -0.018*** 0.005 

Constant -0.961*** 0.170   1.946*** 0.031 

      

   R2    0.849     

   Weak identification tests:      

       Cragg-Donald F-statistic    14.49     

       Kleibergen-Paap rk Wald F statistic    45.17     

       P-value of Angrist-Pischke F-test    0.000     

   Over identification test:      

       Hansen J     3.452     

       p-value    0.178     

   Log likelihood      -287.46  

   AIC        1.25  

   BIC      -2859.49  

   Number of observations     500       500  
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Table 5.B3. Household crop commercialization and food and nutrients rich food consumption 
 Part A: IV-GMM    Part B:  OLS  

 Food 

(1) 

 Vitamin A 

(2) 

 Protein 

(3) 

 Hem iron 

(4) 

  Food 

(5) 

 Vitamin A 

(6) 

 Protein 

(7) 

 Hem iron 

(8) 

 Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.  Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 

HCCI 14.20** 5.37   6.05** 2.58   4.84** 2.34  3.02* 1.53  12.93*** 1.71  6.60*** 0.89   8.01*** 0.65  5.29*** 0.43 

HHAge -0.01 0.02  -0.01 0.01   0.01 0.01  0.01 0.01  -0.02 0.02 -0.01 0.01   0.01 0.01  0.01 0.01 

HHSex  0.39 0.61   0.28 0.27   0.11 0.26  0.07 0.16   0.37 0.64  0.28 0.27   0.20 0.25  0.14 0.13 

HHEducation  0.28*** 0.09   0.11*** 0.03   0.06* 0.03  0.04* 0.02   0.30*** 0.08  0.12*** 0.04   0.06 0.04  0.04* 0.02 

HHSize  0.04 0.13   0.08 0.06   0.01 0.05  0.01 0.03   0.05 0.15  0.08 0.07   0.01 0.06  0.01 0.03 

HHLandholding   0.01 0.18   0.07 0.09   0.10 0.08  0.06 0.05   0.02 0.20  0.05 0.09   0.08 0.07  0.05 0.05 

CB_Assoiations  0.30 0.24   0.01 0.10  -0.08 0.09 -0.09 0.05   0.30 0.23  0.01 0.12  -0.09 0.08 -0.10* 0.05 

Log HHIncome  2.33** 1.03   0.67 0.45   1.05** 0.40  0.75*** 0.26   2.38** 0.84  0.53 0.39   0.62** 0.28  0.43** 0.16 

Log HHLivestock  0.28* 0.14   0.26*** 0.07   0.22*** 0.05  0.14*** 0.03   0.32** 0.15  0.26*** 0.06   0.20*** 0.05  0.12*** 0.03 

Log HHDAsset  1.60*** 0.32   0.73*** 0.14   0.68*** 0.13  0.45*** 0.08   1.64*** 0.36  0.72*** 0.16   0.62*** 0.12  0.42*** 0.07 

Town distance -0.01 0.03  -0.03** 0.01  -0.02* 0.01 -0.01* 0.01  -0.01 0.03 -0.03** 0.01  -0.02* 0.01 -0.01* 0.01 

Local wage   0.14 0.26   0.06 0.12   0.08 0.11  0.03 0.07   0.14 0.29  0.06 0.11   0.08 0.11  0.03 0.06 

Gushegu -6.79*** 1.03  -2.47*** 0.46  -0.41 0.41 -0.29 0.25  -6.29*** 1.04 -2.33*** 0.46  -0.47 0.35 -0.33 0.23 

Karaga -3.69*** 0.98  -0.28 0.40   1.43*** 0.39  0.88*** 0.25  -3.29*** 1.01 -0.20 0.36   1.35*** 0.38  0.82*** 0.22 

Savelugu-Nanton -4.54*** 1.03  -2.61*** 0.48  -0.47 0.44 -0.27 0.28  -4.36*** 1.04 -2.63*** 0.50  -0.60* 0.34 -0.38 0.29 

PreProductContract            0.51 0.72  0.30 0.31   0.30 0.38  0.17 0.20 

HHMobileNetwork           0.96 0.71  0.27 0.33  -0.11 0.26 -0.07 0.18 

CMarket          -0.50 0.52 -0.17 0.24  -0.22 0.26 -0.21 0.13 

HHIncomeResid -0.76 1.17   0.01 0.52  -0.26 0.49 -0.28 0.32  -0.68 1.33  0.14 0.47   0.07 0.39 -0.02 0.26 

Constant -5.56 7.99  -3.34 3.35 -13.40*** 3.02 -9.33*** 1.95  -6.82 7.34 -2.54 2.70 -10.16*** 1.94 -6.89*** 1.27 

                  

R2  0.48    0.50     0.47   0.47     0.48     0.50    0.50    0.50  

Wald X2          606.76   759.58  1788.07  1136.52  

p-value           0.00     0.00    0.00    0.00  

F-statistic  25.50    27.64   30.55   31.54           

p-value  0.00    0.00     0.00    0.00           

Number of 

observations 

 500    500     500    500     500     500    500    500  

Notes: the table shows the second-stage of the two-stage least squared generalized methods of moments (IV-GMM) and the ordinary least square (OLS) estimations of the impact of household crop 

commercialization on food and nutrient rich foods consumption. The coef. and S.E. are coefficient and standard errors, respectively. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, respectively. 
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Appendix C: Second-stage estimates of the model 

 

Table 5.C1. Second stage estimates of determinants of food and vitamin A rich food consumption  
 Food       Vitamin A      

 Subsistence- oriented Surplus-oriented Commercial-oriented  Subsistence- oriented Surplus-oriented Commercial-oriented 

 Coefficient S.E. Coefficient S.E. Coefficient S.E.  Coefficient S.E. Coefficient S.E. Coefficient S.E. 

HHAge -0.041 0.042 -0.043 0.029  0.022 0.048   0.001 0.021  -0.018 0.014 -0.011 0.014 

HHSex  0.631 1.174 -0.101 0.888  0.087 1.255   0.112 0.593   0.614 0.416 -0.194 0.345 

HHEducation  0.451* 0.229  0.391*** 0.116  0.171 0.164   0.196 0.124   0.221*** 0.047  0.028 0.040 

HHSize -0.221 0.239  0.442* 0.235  0.107 0.229   0.023 0.120   0.210* 0.113  0.008 0.075 

HHLandholding   0.584 0.409 -0.011 0.216 -0.618 0.409   0.299 0.223   0.001 0.118 -0.102 0.112 

CB_Assoiations  0.238 0.432  0.823* 0.411  0.023 0.420   0.050 0.208   0.213 0.147 -0.143 0.131 

Log HHIncome -1.400 2.003  4.556*** 1.358  1.811 2.134  -1.289 0.944   1.968*** 0.524  0.599 0.545 

Log HHLivestock  0.401* 0.234  0.210 0.217  0.023 0.434   0.350*** 0.115   0.186* 0.110  0.105 0.130 

Log HHDAsset  2.489*** 0.791  0.930* 0.468  0.982 0.613   1.102*** 0.311   0.517** 0.233  0.546*** 0.183 

Town distance  0.040 0.071 -0.091* 0.048  0.118 0.082   2.505** 1.123  -0.081 0.586 -0.649 0.494 

Local wage   0.130 0.592  0.341 0.382  0.091 0.471  -0.044 0.031  -0.032 0.021  0.017 0.020 

Gushegu -7.979*** 2.090 -6.090*** 1.484 -3.124* 1.785  -3.490*** 0.930  -1.512** 0.624 -1.435** 0.657 

Karaga -4.544** 2.016 -3.335** 1.458 -2.660 1.935  -0.978 0.924   0.619 0.614 -0.521 0.542 

Savelugu-Nanton -6.899*** 2.061 -2.798* 1.649 -1.961 1.933  -4.570*** 0.984  -1.363* 0.759 -1.294** 0.579 

HHIncomeResid  3.466 2.390 -0.375 1.462 -1.903 1.661   0.104 0.283   0.235 0.184 -0.167 0.151 

Constant 19.330 18.397 -14.045 11.852 14.832 26.894   9.925 8.072 -11.621** 4.919  6.202 6.318 

              

𝜌𝜖𝜇   -0.304 0.316  -0.082   0.212  -0.292  0.676   -0.225 0.229    0.101 0.235  0.192 0.470 

              

LR 𝑋2(3) (𝜌𝜖𝜇 = 0)    1.29         1.01      

Prob 𝑋2    0.732         0.798      

Log likelihood  -2029.44       -1603.46      

LR X2(18)    143.42         142.73      

Prob X2    0.000          0.000      

Number of 

observations 

      

   180      

  

     206 

      

  

 

     114 

        

    180      

  

      206 

      

  

 

      114 

 

Notes: the table shows the second-stage ordered Heckman estimations of equation (3) for food consumption score and vitamin A rich foods consumption frequencies. 𝜌𝜖𝜇 denotes the correlation between 

the unobservables in the first-stage ordered probit selection equation (2) and the second-stage outcome equations (3). S.E. denotes robust standard errors. The asterisks ***, ** and * are significance at 1%, 

5% and 10% levels, respectively. 
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Table 5.C2. Second stage estimates of determinants of protein and iron rich food consumption  
 Protein       Hem iron      

 Subsistence- oriented Surplus-oriented Commercial-oriented  Subsistence- oriented Surplus-oriented Commercial-oriented 

 Coefficient S.E. Coefficient S.E. Coefficient S.E.  Coefficient S.E. Coefficient S.E. Coefficient S.E. 

HHAge  0.011 0.017   0.014 0.014 -0.002 0.012   0.006 0.010   0.005 0.009 -0.002 0.007 

HHSex -0.195 0.512   0.599 0.467 -0.257 0.294  -0.073 0.330   0.432 0.310 -0.221 0.176 

HHEducation  0.170** 0.076   0.113 0.072 -0.024 0.029   0.117** 0.052   0.068 0.046 -0.013 0.018 

HHSize -0.049 0.072   0.036 0.110 -0.016 0.067  -0.030 0.045   0.053 0.071 -0.014 0.041 

HHLandholding   0.351** 0.171  -0.016 0.135 -0.057 0.137   0.214* 0.110  -0.009 0.087 -0.046 0.083 

CB_Assoiations -0.087 0.164  -0.100 0.156  0.105 0.123  -0.097 0.107  -0.114 0.105  0.041 0.072 

Log HHIncome -0.281 0.696   1.904*** 0.584  0.930*** 0.307  -0.248 0.443   1.330*** 0.387  0.597*** 0.187 

Log HHLivestock  0.222*** 0.074   0.257** 0.100  0.065 0.100   0.151*** 0.048   0.151** 0.065  0.035 0.061 

Log HHDAsset  1.037*** 0.232   0.627** 0.244  0.301* 0.163   0.694*** 0.146   0.411** 0.161  0.201** 0.094 

Town distance -0.038 0.027  -0.023 0.026  0.006 0.014  -0.026 0.017  -0.015 0.016  0.002 0.008 

Local wage   0.160 0.204   0.107 0.185  0.053 0.134   0.071 0.132   0.088 0.121 -0.024 0.083 

Gushegu -1.350* 0.748   0.472 0.652  0.156 0.489  -0.959** 0.465   0.369 0.421  0.004 0.303 

Karaga -0.043 0.855   2.310*** 0.663  1.491*** 0.469  -0.042 0.566   1.552*** 0.435  0.723** 0.296 

Savelugu-Nanton -2.207** 0.779  -0.046 0.756  1.018** 0.491  -1.484*** 0.493   0.109 0.487  0.475 0.301 

HHIncomeResid  0.989 0.817   0.157 0.743 -0.787** 0.337   0.642 0.516  -0.036 0.488 -0.506** 0.216 

Constant -4.447 6.017 -19.547*** 5.592 -3.222 2.608  -2.434 3.784 -13.744*** 3.694 -1.488 1.601 

              

𝜌𝜖𝜇 -0.006 0.218    0.245 0.239  0.307* 0.158   0.033 0.212    0.258 0.239  0.269* 0.153 

              

LR 𝑋2(3) (𝜌𝜖𝜇 = 0)  2.05        2.03      

Prob 𝑋2  0.562        0.566      

Log likelihood -1563.33       -1339.87      

LR X2(18)  142.76        142.65      

Prob X2   0.000           0.000      

Number of observations      180          206          114        180            206     114  

Notes: the table shows the second-stage ordered Heckman estimations of equation (3) for protein and hem iron rich foods consumption frequencies. 𝜌𝜖𝜇 denotes the correlation between the unobservables 

in the first-stage ordered pobit selection equation (2) and the second-stage outcome equations (3). S.E. denotes standard errors. The asterisks ***, ** and * are significance at 1%, 5% and 10% levels, 

respectively
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Chapter Six 

Summary, conclusions and policy implications 

The low uptake of innovations and improved technologies, and the recent increase in food 

insecurity and malnutrition in sub-Saharan Africa, in the midst of increased availability of 

improved agricultural technologies in the continent motivated the need to investigate the role 

of social networks in technology adoption, and the implications of improved technology 

adoption and crop commercialization on household welfare. This study contributes to the 

existing literature by examining the impact of social networks, technology adoption and 

smallholder market-orientation on household welfare in developing countries. First, the study 

examined the impacts of smallholders’ peer adoption of two improved and competing soybean 

varieties on their adoption decisions of these varieties, showing the instances under which a 

given improved variety is likely to become dominant in terms of adoption in a farmer’s social 

networks and when a farmer is likely to defer adoption of any of the improved varieties.  

 

Second, the study investigated the role of learning about both production techniques and 

expected benefits of improved soybean varieties from peers on diffusion of these varieties, and 

the influence of social network structures, specifically transitivity and modularity on diffusion 

of these improved soybean varieties. Following these, the study then examined the effects of 

own and peer adoption of the improved variety on household soybean yield, food consumption, 

as well as the consumption of vitamin A, and protein rich foods. Finally, the study explored the 

impacts of smallholder market-orientation on household food consumption, and on the 

consumption of nutrient (such as vitamin A, protein and hem iron) rich foods.  

 

6.1 Summary of empirical methods 

Given the endogeneity and identifications concerns of social network effects, and the threats of 

sample selection and missing variable biases, this study utilized a number of empirical methods 

in the analysis depending the nature of the problem and the issue of being investigated. In 
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particular, the study used the spatial autoregressive multinomial approach, Bayesian estimation 

approach, Markov Chain Monte Carlo (MCMC), random-effects complementary log-log 

hazard model, graphical reconstruction of social networks, marginal treatment effects, and 

ordered-Probit selection model.  

  

Chapter two employed a spatial autoregressive multinomial probit model (SAR Probit) to 

examine how neighbors’ varietal and cross varietal adoption of improved varieties, affect a 

farmer’s adoption decision in the social network. Due to challenges of multidimensional 

integrals, correlations in the error terms and the complexity of the spatial dependence in the 

estimation of spatial models in a multinomial setting, the study used the Markov Chain Monte 

Carlo (MCMC) sampling, which is a Bayesian estimation framework, to estimate the SAR 

Probit model since this allows for the higher dimensional integrals to be re-specified into 

sequence of draws. This spatial autoregressive model directly accounts for contextual network 

effects in order to identify the endogenous network effect. Finally, network fixed-effects and 

the control function approach were used to account for correlated network effects due to similar 

institutional and environment conditions faced by farmers in the same network and unobserved 

determinants of link formation between individuals, respectively. 

 

In chapter three, a Random-effects complementary log-log hazard function was employed to 

estimate the conditional probability of adoption in a small-time interval for a farmer who has 

not adopted the technology up to this time. Given that adoption of the improved varieties was 

observed on annual basis, the duration to adoption was modelled in a discrete-time method to 

account for the banded nature of the survival time. In order to identify endogenous from 

exogenous, the model controlled for contextual peer characteristics. Given that the network 

structure, modularity, was measured at the network level, which makes the use of network 

dummies to control for network fixed-effects challenging due to the incidental parameter 

problem, the study accounted for correlated effects in a network by controlling for time fixed-
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effects, use of residuals of link formation model as control functions and clustering standard 

errors at the village (i.e., network) level. To investigate the extent of bias due to the use of 

sampled networks, instead of complete networks, in the construction of the network structures, 

the study used the graphical reconstruction approach to simulate complete networks, and then 

used these to calculate the network structures for estimation of the hazard model as robustness.  

 

Chapter four used spatial econometric techniques to generate instruments, and then use the 

instruments, in addition to controlling for network fixed-effects and for potential endogeneity 

of network link formation with the control function approach to identify peer adoption effects 

on own adoption and outcomes. The marginal treatment effects (MTE) approach was used to 

estimate the treatment effects heterogeneities across households. The MTE approach allows an 

identification of a substantial part of the range of individual treatment effects, and as a result 

characterize the extent and pattern of treatment effects heterogeneity from adoption due to 

observed and unobserved characteristics. It also shows the pattern of selectivity and allows for 

computation of average treatment effects (ATE), average treatment effects on the treated (TT) 

and the average treatment on the untreated (TUT). The Policy Relevant Treatment Effect 

(PRTE) was used to estimate the effects of policies that either increase affordability of soybean 

seeds through input subsidy, or increase access to soybean seeds by reducing distance to the 

nearest soybean seed source.  

 

Chapter five provides a review of food security and nutrition strategies in sub-Saharan Africa 

countries, and an empirical analysis of smallholder market participation as a food security and 

nutrition strategy. Smallholders were classified based on their market-orientation into 

subsistence-oriented, surplus-oriented and commercial-oriented. To the extent that the 

treatment of farm households in this study is non-random implies that market-orientation status 

of farmers could differ systematically due to self-selection of households into categories. In 

order to account for the threats of selection bias and omitted variable problem due to observed 
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and unobserved factors in the light of the ordered nature of the selection variable, the study 

employed the ordered-Probit selection model. This is a parametric model that utilizes full 

information maximum likelihood procedure to jointly estimate a first-stage ordered-Probit of 

smallholder market-orientation, and a second-stage outcome models for the three regimes of 

market-orientation. The process accounts for selection bias and omitted variable problem by 

inserting calculated inverse Mills ratios from the first-stage ordered choice model into the 

second-stage food and nutrients consumption model. Finally, the approach allows for the 

calculation of average treatment effects (ATE) for the entire population and for those at one of 

the transition stages, the average treatment effects on the treated (ATE) and the average 

treatment effects on the untreated (ATU). 

 

6.2 Summary of results 

The results of chapter two show that a farmer’s likelihood of adopting an improved variety is 

lower than the proportion of adopting neighbors of that variety when the proportion is below a 

threshold. However, the likelihood of adoption becomes higher than the proportion of adopting 

neighbors when the share of neighbors adopting that variety is above this threshold. The results 

also show that a farmer’s adoption decision of a given improved variety is positively influenced 

by the adopting neighbors of this variety, but negatively by the adopting neighbors of the 

competing improved variety. Furthermore, when the relative share of adopting neighbors are 

equal, farmers are more likely to wait and not to switch from the old variety. Similarly, when 

the proportion of adopters of both improved varieties in a farmer’s neighborhood are less than 

25% or greater than 25%, then the farmer is more likely to defer adoption of improved varieties.   

 

In chapter three, the results reveal a positive and significant effect of past share of adopting 

peers on the conditional probability of adoption across all specifications. Similarly, there is a 

positive and significant effect of peer experience in the cultivation of the improved varieties on 

the speed of adoption. These suggest that both learning about benefits and production process 
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are important in accelerating adoption, although the effects of experience are higher when 

sufficient peers adopt the improved varieties. The interaction effects between the past adopting 

peers and peer experience with the improved varieties appear to be complementary on the 

conditional probability of adoption up to an average peer experience of 5 years, after which it 

begins to exhibit decreasing probability of adoption with increasing peer experience. The results 

of the network structures show the role of transitivity in the learning and diffusion processes to 

be stronger, compared to centrality. However, modularity tends to slow down the diffusion 

process, and limits the significance of both transitivity and centrality.   

 

The results of chapter four show that own adoption tend to significantly increase yield, food 

and nutrients consumption of the household, albeit the effects of adoption on nutrients rich food 

consumption are stronger and higher in magnitudes than the effect on food consumption.  The 

results reveal positive selection on gains due to unobserved characteristics, mainly driven by 

worse outcomes, of households with less resistance to adopt, in the non-adoption state. 

However, adoption tends to make the potential outcomes of households quite homogenous, 

irrespective of their level of resistance to adoption. The results show that peer adoption tends 

to strongly affect own yield, only when the household is also adopting, which is in line with the 

notion of social learning or contagion effects. In terms of food and nutrients consumption, the 

results show that peer adoption tends to increase own food and nutrients consumption when not 

adopting, and attenuating peer adoption effects when adopting, which are suggestive of stronger 

private transfers received from peers in the form of cash or food safety nets when the household 

is not adopting.  

 

The impact of commercialization on food and nutrients rich food consumption is generally 

shown to be positive across transitions of smallholder market-orientation in Chapter five, which 

is mainly due to increased farm and household income. Specifically, transitioning from 

subsistence to surplus orientation increases household consumption across all food and nutrient 



 

278 
 

items. Also, transitioning from surplus to commercial orientation substantially increases 

household food and nutrients consumption. However, the magnitudes of the treatment effects 

for protein and iron rich food consumption are higher compared to that of food and vitamin A 

food consumption. The results also show substantial heterogeneities in gains (i.e., sorting gains 

and losses), where positive selection on gains is shown, in transitioning between subsistence 

and surplus orientations, while reverse selection on gains is revealed in transitioning between 

surplus and commercial orientations. These suggest that less (more) endowed and constrained 

households who are less (more) likely to transition from surplus (subsistence) to commercial 

(surplus) orientation tend to gain more in food and nutrients consumption if they go from 

surplus (subsistence) to commercial (surplus)-oriented. 

 

6.3 Policy implications 

The findings of this study show that social networks are important in promoting technology 

adoption, diffusion, and household welfare. These have some implications for policy. The 

findings of the differential adoption rates of competing technologies and the ultimate 

dominance of varieties in networks suggest the need to do a stepwise introduction of improved 

varieties before a full-scale promotion in the villages. It will be rewarding to first expose some 

farmers in the network (i.e., village) to the improved varieties, observe the extent of adoption 

and then following-up with a wide-scale introduction and promotion of the variety that leads in 

adoption in the network. This will reduce the prohibitive costs associated with promotion of 

several varieties at the same time. The finding that information about benefits and production 

process matter in the diffusion process, and that farmers are likely not to adopt the improved 

varieties when the proportion of adopting neighbors of the improved varieties are equal suggest 

the need for policymakers to focus promotion efforts on demonstrating the relative benefits and 

production process of improved varieties introduced to farmers, since these would motivate 

farmers to adopt.  
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The finding on the role of transitivity in promoting adoption and that of modularity in restricting 

diffusion, and the influence of the other network characteristics suggest that the common 

extension strategy of targeting initial and influential adopters in a network for disseminating 

information may not be appropriate in enabling diffusion at the network level. Given that 

networks can be important means of increasing yield, and promoting welfare of vulnerable 

households, interventions, such as self-help groups and/or farmer field-days, aimed at 

promoting interactions among farm households, and enhancing exchange can increase the 

effectiveness of social networks in these respects. Also, training workshops, where people are 

specifically invited from different segments of the village at the early stages of adoption, can 

promote bridges between network components and diffusion. The policy simulation suggests 

that interventions to minimize production and structural constraints to adoption could be an 

important strategy in mitigating the cost associated with technology adoption. Hence, 

government and development partners can consider increasing access through availability of 

the improved seeds at the local levels, such as empowering village level shops or community-

based groups to engage in input marketing. 

 

Finally, the findings show substantial heterogeneity in consumption gains across market-

orientations and suggest the need for transition-sensitive policies in promoting smallholder food 

security and nutrition through crop commercialization.  Thus, promoting food security and 

nutrition among subsistence-oriented households need to consider productivity enhancing 

measures such as cash crop programmes that support farmers with inputs to facilitate spill-over 

benefits between food and cash crop cultivation, and promotion of policies to increase their 

access to improved inputs and innovations. Also, the promotion of higher smallholder 

commercialization will require in addition to output augmenting measures the mitigation of 

some of the market barriers and failures (such as, markets availability, physical access and 

information) that limit poor smallholders from engaging in sales for profit. Interventions such 
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as promotion of market information platforms, farmer cooperatives and collective actions as 

well as contract buying, which provides ready markets for farmers, will be more rewarding.
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Appendices  

Appendix 1: Household survey questionnaire 

                                                                                                                        
 

Social Networks, Technology Adoption and Agriculture Commercialization on Smallholder Welfare in the Northern Region of Ghana 

Introduction 
Good day Sir/Madam and thank you for talking to me. We are conducting a survey of smallholder farmers to examine the impacts of farmer individual social and 

economic networks, adoption of technologies and agricultural commercialization on their welfare. The specific purposes of this survey are to assess the impacts of 

farmers’ perceptions about technology features and social networks on technology adoption; roles of social networks and technology adoption on household 

agriculture commercialization processes and to examine the impacts of agriculture commercialization on household welfare. The information gathered will provide 

significant input into the write-up of a PhD thesis in Agriculture and Food Economics at the University of Kiel, Germany. The interview will take about 1 hour 30 

minutes and your participation is entirely by choice.  Your name, identity and individual responses will be kept confidential. 

Do you wish to participate in this survey? 0 =No 1 =Yes 

 

Survey identification 
Questionnaire number: ___________   Name of enumerator: _____________________________   Enumerator’s ID: ____________      

Date of interview:   |_____|_____|_______|  Start time (24hr Clock): |___:____|     End time (24hr Clock): |___:____|  

Location 
1. District name: ____________________________________________   2. District code: __________________________________ 

3. Name of community: ______________________________________  4. Community ID: ________________________________ 

5. Head of Household (name): _________________________________   6. Household ID: _________________________________ 

 
Note on soybean varieties:  Afayak: (a bit yellowish compared to jenguma & matures in 85 to 90 days)   Jenguma: (Short, whitish & matures in 90 days)   

Suong-Pungun: (More yellowish at maturity and matures in 75 days)  Salintuya: (tall, can be intercropped and matures in 120 days) 

 

Put “99” for “Not Applicable” and “Don’t know”  

Christian-Albrechts University of Kiel, Germany 

Institute of Food Economics and Consumption Studies 
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Section A: General information 

A1 A2 A3 A4 

What is/are the main languages spoken at 

home? 

 Codes A 

What is the ethnicity of the household 

head 

Codes B 

What is the family type of the 

household?  

Codes D 

What type of marriage is the household head 

practicing?  

Codes E 

 

 

   

 

Section B: Socio-demographic characteristics 
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 

What is the 

farmer’s 

relationship 

with the 

household 

head? 

Codes F 

 

Sex of 

farmer?

 

0=F 

1=M 

How 

old is 

the 

farmer? 

What is 

farmer’s 

educational 

level? (In 

completed 

years of 

schooling) 

What is 

farmer’s 

religion? 

Codes C 

 

What is 

farmer’s 

marital 

status? 

Codes G 

 

What is 

farmer’s 

main 

occupation? 

Codes H 

Number 

of years 

farmer is 

living in 

the 

village 

 

 

Farmer’s 

experience 

(years) in 

own 

farming 

activities 

 

Farmer’s 

experience 

(years) in 

cultivating 

maize 

Does the 

household 

head hold 

any of the 

following 

authorities 

at the 

community 

level? 

Codes I 

Does the 

household 

head’s spouse 

hold any of the 

following 

authorities at 

the community 

level? 

Codes I 

Household 

size (number 

of persons 

who share 

cooking 

arrangement/

under your 

care) 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Codes A 

1. Likpakpaln (Konkomba) 10. Sissali    

2. Chekosi  11. Gruni 

3. Mampruli  12. Kasem 

4. Dagbali (Dagbani) 13. Nankan 

5. Nanunli  14. Kusaal 

6. Gonja   15. Twi  

7. Hausa   16. Ewe 

8. Bimoba  17. Ga  

9. Dagaare/Wali  18. Other (specify) 

Codes B 

1. Konkombas  10. Sissalas                

2. Chekosi  11. Grunsi 

3. Mamprusi  12. Kassenas 

4. Dagombas  13. Nankan 

5. Nanumbas  14. Kusasi 

6. Gonjas   15. Akans  

7. Hausas   16. Ewes  

8. Bimobas  17. Gas  

9. Dagaabas/Walas  18. Other (specify) 

Codes C 

0 No religion  

1 Muslim   

2 Christian  

3 Traditional    

4 Other (specify) 

 __________________ 

 

Codes E 

1 Polygynous  

2 Monogamous  

3 Other (specify)  

___________________ 

 

Codes G 

0 Never married   

1 Married   

2 Consensual union  

3 Separated   

4 Divorced   

5 Widowed 

Codes I 

0 None  

1 Chief/community leader 

2 Chief council member 

3 Assembly/unit committee 

    member 

4 Religious leader 

5 Youth leader 

6 Women leader 

7 Political party leader 

 

Codes D 

1 Nuclear   

2 Extended    

3 Other (specify)  

   ______________ 

 

Codes F  

1 Head   6 Son/Daughter-in-law 

2 Spouse   7 Other relative 

3 Child    8 Adopted/Foster/Stepchild 

4 Grandchild  9 House help 

5 Parent/Parent-in-law  10 Non-relative   

Codes H 

1 Farming (crop and/or livestock) 

2 Housekeeping   

3 Casual labour on another farm  

4 Non-farm business (shops, trade, etc) 
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Please complete the table below on the age composition and non-farm work of the household members  

B14 B15 B16 B17 B18 B19 

(less than 16 years) (16 - 30 years) (31 - 60 years) (above 60 years) Family non- farm workers  

Male Female Male Female Male Female Male Female Male 

 

Female 

                  

  

 

 

Please complete the table on the household and household head’s social issues 

# Question  I # Question   II # Question   III 

B20 What is household head’s settlement status in the 

community?       

                       0 =Settler       1 =Native 

B28 If no, how long has the household head been 

in this community? 

                          _______ (Years) 

B36 Did any member of the household experience any court, police or 

major theft incidence in last 5 years?               

                                                0 =No        1 =Yes 

B21 Has the household head a royal lineage?  

                                              0 =No       1 =Yes 
B29 How many times has the household head 

travelled outside the village in last 12 

months?          _______ (times) 

B37 Did you or any member of the household undertake any lumpy 

expenditure (such as construction of house and/or room) in last 5 

years?             0 =No        1 =Yes  

B22 Has any of the parents of the household head or spouse 

any important position or representation in the traditional 

political or authority system?  

                                              0 =No      1 =Yes 

B30 Has the household change location in the 

past….  

      5 years?                 0 =No          1 =Yes 

    10 years?                 0 =No          1 =Yes 

B38 Did you experience any shock or loss in your farming activities in 

last 5 years?  

                                                0 =No >>B41        1 =Yes 

B23 Has any member of the household been away from the 

community for more than 6 months in the last 12 months? 

                                       0 =No  >>B26     1 =Yes 

B31 Did you have a wedding ceremony in the 

household in the past 2 years? 

 

                0 =No  >>B33         1 =Yes 

B39 If yes, which of the following did you experience? 

          1 =Weather shocks      2 =bush/wildfires  

          3 =Other (specify)______________________ 

B24  If yes, how many people?      

                                          _________ 

 

B32 If yes, how many times? 

                                        _______ (times) 
B40 If yes, how regular is the incidence of these shocks/losses? 

          1 =Very regular     2 =Regular      3 =Occasional 

B25 For what reason did the person move away? 

Codes A 

B33 Did you have an outdooring ceremony in 

the household in the past 2 years?  

                0 =No >>B35       1 =Yes 

B41 Did you experience a sudden death of any household/family 

member in last 5 years?  

                        0 =No >>B43      1 =Yes  

B26 Was the household head born in this community? 

                                  0 =No        1 =Yes 
B34 If yes, how many times? 

                                        _______ (times) 
B42 If yes, how many times did you experience this in the past 5 years?  

_________ (times) 

 

B27 Did the household head grow-up in this community? 

                     

                                  0 =No         1 =Yes  >>B29 

B35 Did any household member fall sick in the 

in last 12 months?  

                        0 =No        1 =Yes 

B43 Did you experience a long period of sickness of a household 

member which led to his/her death in last 5 years? 

                           0 =No        1 =Yes 

 
Codes A 

1. Job transfer   2. Seeking employment   3. Spouse’s employment  

4. Marriage   5. Other family reason   6. Education 

7. Political/religious 8. Ethnic/chieftaincy conflict  9. Other (specify)____      
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Section CI: Social networks 
Contact Name/ID CI1 CI2 Have any of you ever sought or exchanged (S/E) any of the following from each other?            

Do you 

know (X) 

 

0=No >> 

next contact 

1=Yes 

How 

long 

have 

you 

known 

(X)? 

Information on improved soybean 

variety (Jenguma) 

Seeds of Jenguma 

variety 

Information on other soybean 

varieties  Codes A 

Seeds of other 

soybean varietie/s 

CI3 CI4 CI5 CI6 CI7 CI8 CI9 CII08 

S/E 

0=No 

1=Yes 

No. of times 

in the past 

12 months 

Type of 

information 

Codes C 

S/E 

0=No 

1=Yes 

S/E 

0=No 

1=Yes 

No. of times 

in the past 

12 months 

Variety 

Codes A 

S/E 

0=No 

1=Yes 

1           

2           

3           

4           

5           

 

 
Contact 

ID 
Have any of you ever sought or exchanged (S/E) any of the following from each other?           CI18 CI19 

Information on other crops (specify) Seeds of other crop 

varieties 

Information on 

soybean marketing 

Information on other 

crop  marketing 

If yes, type 

of 

information 

exchanged? 

Codes D 

In the past 12 

months, how 

many times did 

you have such 

exchanges? 

 

CI11 CI12 CI13 CI14 CI15 CI16 CI17 

S/E 

0=No 

1=Yes 

Crop 

(Codes B) 

No. of times 

in the past 

12 months 

Type of 

information 

Codes C 

S/E 

0=No 

1=Yes 

S/E 

0=No 

1=Yes 

S/E 

0=No 

1=Yes 

1          

2          

3          

4          

 

 
 

 

 

 

 

 
 

 

 

Crops B 

1 Rice         5 Cassava 9 Cotton 

2 Maize        6 Soya bean 10 Yam 

3 Millet        7 Cowpea  11 Vegetables 

4 Sorghum       8 Groundnut  12 Fruits  

13 Other (specify): _________________________ 
     

Codes C 

1 Crop choice   5 Harvesting 

2 Agronomic practices  6 Pesticides 

3 Fertilizer application  7 Storage 

4 Weedicides   8 Other(specify)_________ 

 

Codes D 

1 Prices 

2 Demand situation 

3 Buyers 

4 Inputs availability 

5 Other (specify)____ 

Code A 

1 Jenguma  6 Salintuya-I (medium) 

2 Quarshie  7 Salintuya-II (late) 

3 Afayak   8 Songda 

4 Suong-Pungun 9 Local variety 

5 Anidaso 10 Other (specify) ____ 
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Contact 

ID 

Have any of you ever sought or exchanged (S/E) any of the following from each other?            

Labor for soybean activities Credit and/or gift transactions Land exchange/transaction 

CI20 CI21 CI22 CI23 CI24 CI25 CI26 CI27 CI28 CI29 

S/E 

0=No 

1=Yes 

No. of times 

in the past 12 

months 

No. of man-

days per 

exchange 

S/E 

0=No 

1=Yes 

Nature of 

exchange 

Codes A 

No. of times 

in the past 

12 months 

Amount received 

GHS______ and/or given 

GHS______ 

S/E 

0=No 

1=Yes 

Nature of the 

exchange 

Codes B 

If rented, how 

much was 

paid? (GHS) 

1           

2           

3           

4           

5           

 

Section CII Social learning 
Please tell me about contact (X) soybean farming activities during the 2015/16 season  

(NOTE: Ask if respondent at least know contact even if nothing was sought or no exchange between respondent and contact). Put “99” for “Don’t know” 

Contact 

ID 

CII1 If yes, i.e. (X) cultivated soybean 
Did (X) 

cultivate 

soybean 

 

0 =No >> 

next contact 

1=Yes 

CII2 CII3 CII4 CII5 CII6 CII7 CII8 CII9 CII10 CII11 

When did (X) 

started 

cultivating 

soybean? 

Codes C 

Soybean 

varieties 

cultivated 

Codes D 

 

Where did 

(X) get seeds 

of soybean 

varieties? 

Codes E 
 

Did (X) use 

fertilizer on 

soybean 

plot? 

0= No 

1= Yes 

Did (X) use 

manure on 

soybean plot? 

0= No 

1= Yes 

 

Did (X) use 

pesticides 

on soybean 

plot? 

0= No 

1.=Yes 

Did (X) use 

weedicides 

on soybean 

plot? 

0=No 

1=Yes 

How 

much 

soybean 

did (X) 

harvest 

(100kg)? 

Did (X) 

sell the 

soybean 

harvest? 

0= No 

1= Yes 

If yes, at 

what price 

(GHS/kg)? 

 

1            

2            

3            

4            

5            

 

 

 

  

 

  
 

 

Codes A 

1 Credit  

2 Gift 

3 Both 

Codes B 

1 Purchased            4 Allocated free of charge  

2 Tenant rented (for cash or kind)  5 Begged 

3 Sharecropped                  6 Borrowed 

6 Other (specify)______________________________________ 

 

Codes C 

1 Not yet   3 At the same time as me 

2 Before me 4 After me 

Code D 

1 Jenguma  6 Salintuya-I (medium) 

2 Quarshie  7 Salintuya-II (late) 

3 Afayak   8 Songda 

4 Suong-Pungun 9 Local variety 

5 Anidaso 10 Other (specify) ____ 

 

Codes E 

0 Own storage  6 Local seed producers 

1 Agro-input dealer  7 Extension officer (MoFA) 

2 Purchased from market 8 NGO 

3 Exchange (farmer) 9 Gift 

4 Private aggregator 10 SARI/CSI 

5 FBO (cooperative)  

11 Other (specify) ___________ 
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Contact 

ID 

CII12 CII14 CII15 CII16 CII17 CII18 CII19 CII20 CII21 CII22 

I will now ask you information about contacts’ maize cultivation 

Did X 

cultivate 

maize? 

0=No 

1=Yes 

Was crop 

of modern 

variety? 

0=No 

1=Yes 

Where did 

(X) get seeds 

of crop 

varieties? 

 Codes A 

Did (X) use 

fertilizer on 

crop plot? 

0=No 

1=Yes 

Did (X) use 

manure on crop 

plot? 

0=No 

1=Yes 

Did (X) use 

pesticides on crop 

plot? 

0=No 

1=Yes 

Did (X) use 

weedicides 

on crop plot? 

0=No 

1=Yes 

How much 

maize did 

(X) harvest 

(100kg)? 

 

Did (X) sell 

the maize 

harvest? 

0=No 

1=Yes 

If yes, at 

what price 

(GHS/kg)? 

 

1           

2           

3           

4           

5           

 

         I will like to ask you about the social and physical proximity issues between you and the matched contacts  

Contact 

ID 

CII23 CII24 CII25 CII26 CII27 CII28 CII29 CII30 

How is (X) 

related to 

you? 

Codes B 

Have same 

family name 

0=No 

1=Yes 

 

Do you and contact 

families trace your origin 

to same region? 

0=No 

1=Yes 

Have you ever visited 

the home of (X)? 

0=No >> CII28 

1=Yes 

If yes, number 

of visits per 

month to (X) 

home? 

Where does 

this person 

live? 

Codes C 

Approximately how 

far does this person 

live from you (in 

minutes of walking)? 

Is (X)’s field/ plot 

adjacent to yours? 

 0=No 

1=Yes 

1         

2         

3         

4         

5         

 

 

 

 

 

  
 

 

 

 

 

 

 

 

Codes B  

1 Parent   8 Friend  

2 Child   9 Same family lineage; 

3 Sibling  10 Neighbor; 

4 Grandparent  11 Attend same church/ mosque 

5 Grandchild  12 belong to same association 

6 In-law   13 Professional/business colleague  

7 Other relative  14 Other (specify)____________ 

 

Codes C 

1 Next house/neighbor 

2 Neighbor of my neighbor  

3 Not neighbor of me  

   or of my neighbor  

 

Codes A 

0 Own storage  6 Local seed producers 

1 Agro-input dealer  7 Extension officer (MoFA) 

2 Purchased from market 8 NGO 

3 Exchange (farmer) 9 Gift 

4 Private aggregator 10 SARI/CSI 

5 FBO (cooperative)  

11 Other (specify) ___________ 
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Contact 

ID 

CII31 CII32 CII33 CII34 CII35 How frequent do you attend… 

Do you pass by X's 

field when going to 

field? 

0=No 

1=Yes >> CII33 

If no, have you ever 

passed by the field of 

(X)? 

0=No 

1=Yes 

Do you perceive the soil 

conditions of your farm(s) 

as similar with (X)? 

 0=No 

1=Yes 

How many of 

these contacts 

know one 

another? 

Generally speaking, 

would you say that 

most people can be 

trusted? 

Codes A  

CII36 CII37 

…social events 

(such as weddings, 

funerals and 

festivals)? 

Codes E 

…religious events 

(such as visiting 

mosque, church or 

shrine)? 

Codes E 

1        

2        

3        

4         

5        

 

       Section CIII: Famers networks of family and friends/acquaintances  
         I will like to ask you about your network of close relatives and friends your share farming information and resources with, in the community.  

Network members CIII1 CIII2 CIII3 CII

I4 

CII

I5 

CII

I6 

CII

I7 

CII

I8 

CII

I9 

CII

I10 

CII

I11 

CII

I12 

CII

I13 

CIII14 CIII15 

How many people do 

you consider relevant 

for exchanging 

information about 

agronomic issues 

with? 

How 

many of 

them 

know each 

other? 

How many 

of them 

cultivate 

soybean? 

How many of them cultivate soybean variety?  

(varieties codes B) 

In general, how 

many cultivators 

of soybean do 

you know in the 

community? 

How 

many of 

them 

cultivate 

maize? 

1 2 3 4 5 6 7 8 9 10 

Family                

Friends/acquaintances                 

Family & Friends                

 
Network members CIII17 CIII18 CIII19 CIII20 CIII21 CIII22 CIII23 CIII24 CIII25 CIII26 

How many of them implement the following agronomic practices on the soybean 

farm? (Practice codes C) 

How many of them uses the following in threshing 

soybean? (Threshing code D) 

 1 2 3 4 5 6 0 1 2 3 

Family           

Friends/acquaintances           

 

 
 

Code B 

1 Jenguma  6 Salintuya-I (medium) 

2 Quarshie  7 Salintuya-II (late) 

3 Afayak   8 Songda 

4 Suong-Pungun 9 Local variety 

5 Anidaso 10 Other (specify) ____ 

 

Codes D 

0 Manual with sticks 

1 Tractor  

2 Thresher  

3 Other (specify) _____ 
 

Codes A scale of 1 to 6 

1 = Cannot be too careful  

2 

3 

4 

5 

6 = Most can be trusted 

Codes C 

1 Recommended depth of planting 

2 Row planting 

3 Inoculant use 

4 Crop rotation 

5 No burn of crop residue 

6 Other (specify) _____________ 

Codes E 

1 Daily 

2 Biweekly 

3 Weekly 

4 Fortnightly  

5 Monthly 

6 Yearly 
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Source of information CIII27 CIII28 CIII29 CIII30 CIII31 CIII32 CIII33 CIII34 CIII35 

Do you 

know any 

external 

officer from 

the 

following…? 

0=No 

1=Yes 

How 

long (in 

years) 

have you 

known 

officer? 

Have you ever 

sought or received 

soybean 

information from 

any of the 

following in the 

past? 

0=No 

1=Yes 

If yes to CIII29, 

How many 

of them do 

you discuss 

with? 

In a normal 

month, how 

many times 

do you talk 

with…? 

 

In a normal 

month, how 

many times 

do you 

discuss 

soybean 

varieties 

with…? 

In a normal 

month, how 

many times do 

you discuss 

soybean 

agronomic 

practices 

with…? 

In a normal 

month, how 

many times do 

you general 

farming issues 

with…? 

 

In a normal 

month, how 

many times do 

you discuss 

marketing 

with…? 

Neighbours          

Family          

Friends/acquaintances          

External officer          

Agric. Ext Officer (MoFA)          

Research organization          

NGOs          

Other farmer organizations          
 

 

Network member CIII37 CIII38 CIII39 CIII40 CIII41 CIII42 CIII43 CIII44 

Have you ever sought or received any of the following from any of the following in the past?                    

Soy seeds Labour Credit Land 

0/1 No. of contacts 0/1 No. of contacts 0/1 No. of contacts 0/1 No. of contacts 

Family         

Friends/acquaintances         
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Agricultural Production 

         Section DI: Soybean varieties 
          I will like to ask you about your farming activities now starting with issues of soybean cultivation 

DI1 DI2 DI3 DI4 DI5 DI6 DI7 DI8 DI9 DI10 DI11 DI12 DI13 DI14 

Which 

soybean 

varieties 

do you 

know? 

Codes A 

When 

(year) 

did you 

first hear 

about the 

variety? 

From 

whom did 

you first 

hear about 

it?, rank up 

to three 

Code F 

Have 

you ever 

planted 

the 

variety? 

0=No  

>> next 

variety 

1=Yes 

How 

many 

times 

have 

you 

planted 

it in the 

past? 

Years cultivated soybean and acreage  Did you 

cultivate 

variety in the 

2015/2016 

cropping 

season? 

0=No      

1=Yes 

Did you 

use 

certified 

seed? 

0=No 

1=Yes 

Acres 

under 

certified 

seeds 

If No, to 

DI11 

why 

not? 

Codes 

G, rank 

3 

 

Yr1 Acre Yr2 Acre Yr3 Acre Yr4 Acre Yr5 Acre 

                   

                   

                   

 

DI15 DI16 DI17 DI18 DI19 DI20 DI21 DI22 DI23 DI24 

Hypothetical 

question, what is 

the minimum 

addition to net 

benefit that made 

you adopt for sure? 

(%) 

If No to DI4, 

hypothetical question, 

please estimate the 

average yield of 

soybean varieties if you 

had adopted last year? 

(%) 

Which of the following agronomic practices do you implement 

and what proportion of the field is under this? 

Codes B 

If the farmer 

rotated soybean 

with another 

crop, which 

crop(s)? 

Codes D 

Before adopting 

did you see the 

variety in the 

field? 

0=No >> DI24       

1=Yes 

If yes, 

where 

was this 

plot 

located? 

Codes C 

Have you 

ever 

attended any 

training on 

soybean 

cultivation? 

Prac. 

code 

Acres Prac. 

code 

Acres Prac. 

code 

Acres Prac. 

code 

Acres 

              

              

              

 

 

 

 

 

 

 

 

 

Codes F 

1 Telephone/cell phone    7 Extension officer   

2 Friends or relatives        8 Demonstrations/Field days 

3 Neighbor                    9 Agro-input dealer 

4 Radio/TV       10 GOs/NGOs          

5 Traders                 11 FBO      

6 Newspaper          12 ICT platform (e.g  ESOKO) 

13 Neighboring community  14 Other, specify _______ 

Codes G 

1 Cannot get seed at all   8 Low yielding variety  

2 Lack of cash to buy seed   9 Poor prices  

3 Susceptible to field pests/diseases  10 No market  

4 Susceptible to storage pests   11 Requires high skills  

5 Poor taste    12 Seeds are expensive  

6 Requires more rainfall   13 Cannot get credit 

7 Don’t know how to use it  14 Need for other crops 

15 Other (specify) ____                                                
 

Codes B 

1 Recommended depth of planting 

2 Row planting 

3 Inoculant use 

4 Crop rotation 

5 No burn of crop residue 

6 Other (specify) _____________ 

Codes D 

1 Rice           7 Cowpea 

2 Maize          8 Groundnut 

3 Millet          9 Cotton 

4 Sorghum         10 Yam  

5 Cassava         11 Vegetables 

6 Soya bean       12 Fruits 

13 Other (specify): _____________ 
  Codes C 

1 Next to my plot  

2 On the way to my plot  

3 Different locality area in the community 

4 Outside the community 

 

Code A 

1 Jenguma  6 Salintuya-I (medium) 
2 Quarshie  7 Salintuya-II (late) 

3 Afayak   8 Songda 

4 Suong-Pungun 9 Local variety 
5 Anidaso  10 Other (specify) ____ 
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Section DII: Farmers’ perception  
          Please I will like to ask you of your perception about characteristics of Jenguma and Afayak compared with the traditional soybean variety.  

          Which is better?  [Use Codes:                     0= Traditional  1=Afayak   2=Jenguma] 

 

Section E: Land, crops cultivated, farm operations and extension 
I will now like to ask you about your farming activities during the 2015/2016 season. 

E1 E2 E3 E4 E5 E10 E11 

Which crops 

did you 

cultivate in the 

2015/16 

season? 

 

Codes A and B 

Farm 

location 

Codes E 

How far is 

this farm 

from your 

home? 

Codes B 

Approximate size of 

this entire farm, 

including uncultivated 

acreage or acreage 

being farmed by 

someone outside your 

household? 

Unit Codes C 

Do you keep some part of your land fallow?     

                                                                        0=No >> E10    1=Yes 

Did you 

cultivate 

other crop 

on this 

land? 

 

0=No 

1=Yes 

 

If yes, what 

portion of 

land is 

cultivated 

to this main 

crop? 

(%) 

E6 E7 E8 E9 

Size of land under 

fallow 

Unit Codes C  

How long 

(years) 

have you 

left this 

fallow? 

Could you leave the land 

fallow for several 

months without being 

worried about losing it? 

0=No 

1=Yes 

If no, how or 

why might 

you lose the 

land? 

Codes D 
Num. Unit Num. Unit 

Soybean:             

            

            

Other crops:             

            

            

 

 

         

 

# Characteristics Afayak Jenguma # Characteristics Afayak Jenguma 

 Production     Market and economics    

DII1 High grain yield     DII8 Quality grain   

DII2 Climate stress tolerance    DII9 Marketability (demand)    

DII3 Striga resistant   DII10 Good price    

DII4 Field resistant to pod shattering     Post-harvest    

DII5 Easy threshability    DII11 Longer shelf life in storage    

DII6 Less labour demand    DII12 Ease of processing     

DII7 Easier to understand and 

cultivate 
  DII13 Overall comparison    

Codes D 

1 I would lose title to the land 

2 Land would be given to somebody else 

3 Somebody else would start to use the land 

4 Other (specify)____________________ 

Codes B  

1 Meter  

2 Km  

3 Mile 

 

Codes C 

1 Acre 

2 Hector 

3 Pole 

4 Rod 

5 Other (specify)________ 

Codes B 

1 Rice           7 Groundnut 

2 Maize          8 Cotton 

3 Millet          9 Yam 

4 Sorghum         10 Vegetables 

5 Cassava         11 Fruits 

6 Cowpea            12 Other (specify): __ 
 

  

Code A 

1 Jenguma  6 Salintuya-I (medium) 

2 Quarshie  7 Salintuya-II (late) 

3 Afayak   8 Songda 
4 Suong-Pungun 9 Local variety 

5 Anidaso  10 Other (specify) ____ 

 
Codes E 

1 Within the homestead  

2 Outside the homestead, same village  

3 Outside the homestead, different village 
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Crop 

Codes 

E12 E13 E14 E15 E16 E17 E18 E19 E20 

How 

fertile is 

the soil 

on this 

farm? 

Codes A 

 

What is the 

dominant 

texture of soils 

on this farm? 

Codes B 

How wet is this land compared 

to other lands in your 

community? 

 

1…less wet 

2….same 

3…more wet 

Slope of this 

land 

 

1 = Plain 

 2 =Gentle  

3 =Hilly 

Is the land 

watered from 

a source other 

than rain? 

0=No 

1=Yes 

If yes, what is 

your primary 

source of 

watering? 

Codes C 

How did you 

obtain this plot, 

or gain the right 

to farm this plot? 

Codes D 

If tenant, what 

type of tenancy 

arrangement do 

you operate? 

Codes E 

If fixed 

rent, what 

is the 

duration 

of tenure? 

Soy:          

          

          

Other:          

          

          

 

Crop 

Codes 

E21 E22 E23 E26 E27 E28 Did you use items on plot in the 2015/16 farming season? 

If share 

cropping, what 

are the terms of 

this rent? (i.e. 

harvest shared) 

How long have 

you been 

farming this 

land? 

(Yrs) 

Do you practice 

soil and water 

conservation? 

0=No 

1=Yes 

If yes, which 

type(s) do you 

practice? 

Codes F 

Average 

size of land 

under this 

practice 

(acres) 

Does water 

log on plot? 

0=No 

1=Yes 

E29 E30 E31 E32 

Tractor  

 

0=No 

1=Yes 

Cost (give 

money value 

if in kind) 

GHS 

Drought 

animal  

0=No 

1=Yes 

Cost (give 

money value 

if in kind) 

GHS 

Soy:           

           

           

Other:           

           

           

 

 

 

 

  

Codes B 

1 Sandy 

2 Rocky/gravely 

3 Clay-filled 

4 Silty 

5 Loamy             

Codes A 

1 Fertile  

2 Moderately fertile  

3 Less fertile  

4 Infertile            

 

Codes D 

1 Owner    5 Allocated free of charge  

2 Purchased  6 Begged 

3 Inherited from deceased 7 Borrowed   

   family member                    8 Other (specify)__________ 

4 Tenant Rented (cash/kind)  

 

Codes F 

1 Crop rotation  

2 Land enriching cover crops  

3 Legumes   

4 Zero tillage 

5 Minimal tillage 

6 Composting 

7 Agroforestry 

8 Other (specify) ________  

Codes E 

1 Fixed rent  

2 Sharecropped 

Codes C 

1 Well   

2 Borehole  

3 Pond/tank    

4 Weir 

5 River/stream 

6 Other (specify)____ 
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Section F: Inputs (seeds and materials) 
Please I will like to ask you about your inputs applications during the 2015/2016 cropping season 

Crop 

Codes 

 

F1 F2 F3 F4 F5 F6 F7 F8 F9 

What quantity of 

crop seeds did 

you use on farm? 

(Kg) 

What type or variety 

of the seed did you 

plant on farm? 

Codes D 

How did you 

obtain the crop 

seeds planted 

on this farm? 

Codes C 

If any seeds were 

purchased, what 

quantity was 

purchased? 

(kg) 

How much did 

you pay for the 

purchased seeds 

used on farm?  

(GHS) 

Did you apply 

fertilizer to 

farm? 

0=No 

1=Yes 

Which 

type did 

you 

apply? 

Codes E 

What 

quantity 

was 

applied? 

(Kg) 

What 

was the 

unit 

price? 

(GHS) 

Soy:          

          

          

Other:          

          

          

 

Crops 

Codes 

F10 F14 F18 F19 F20 

Did you apply pesticides?   0=No  1=Yes Did you apply weedicides?  0=No  1=Yes Did you 

apply green 

manure? 

0=No    

1=Yes 

Did you apply 

animal 

manure? 

0=No    

1=Yes 

Did you apply 

composted 

manure? 

0=No    

1=Yes 

F11 F12 F13 F15 F16 F17 

Which types 

did you apply?  

Codes F 

Quantity 

applied on farm 

(litres/kg) 

Total expenditure 

on pesticides? 

(GHS) 

Which types 

did you apply? 

Codes F 

Quantity 

applied on 

farm (litres) 

Total expenditure 

on weedicides? 

(GHS) 

Soy:          

          

          

Other:          

          

          

 

 

 

 

 

 

 

 

 

Codes F 

0 None 

1 Powder/Comdemn 

2 Sarosate 

3 Insecticide 

4 Fungicide 

5 Tintani 

6 Other (specify)________        

 

Codes E  

1 Fertilizer: NPK (15-15-15) 

2 Fertilizer: ammonium sulphate (SA) 

3 Fertilizer 23-10-5 (Actyva) 

4 Other compound fertilizer 

5 Fertilizer: Other (specify) 

6 Urea 

7 Commercial organic fertilizer 

    (including Fertisoil, Cocopeat) 

8 Phosphorus  

9 Sulfan 

10 Inoculant 

10 Other (specify) ___________ 

Code A 

1 Jenguma  6 Salintuya-I (medium) 

2 Quarshie  7 Salintuya-II (late) 

3 Afayak   8 Songda 

4 Suong-Pungun 9 Local variety 

5 Anidaso 10 Other (specify) ____ 

 

Codes C 

0 Own storage  6 Local seed producers 

1 Agro-input dealer  7 Extension officer (MoFA) 

2 Purchased from market 8 NGO 

3 Exchange (farmer) 9 Gift 

4 Private aggregator 10 SARI/CSI 

5 FBO (cooperative)  

11 Other (specify) ___________ 

 

Codes D  0 Local  1 Improved 

Codes E 

1 Rice           7 Groundnut 

2 Maize          8 Cotton 

3 Millet          9 Yam 

4 Sorghum         10 Vegetables 

5 Cassava         11 Fruits 

6 Cowpea           12 Other (specify): __ 
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Section G: Labour and credit  
Please I will like to ask about your labour use in farming during the 2015/2016 farming season 

Crop 

Codes 

G1 

Family 

G2 G3 

Hired Communal 

Did you use hired labour?   0=No   1=Yes Did you use communal labour?  

0=No   1=Yes 

Males Females Children Males Females Males Females 

Num. Days Num. Days Num. Days Num. Days Rate(GHS)/ 

Codes A 
Num. Days Rate(GHS)/ 

Codes A 
Num. Days Num. Days 

Soybean:                 

                 

                 

Other crops:                 

                 

                 

 
   

Please I will now like to ask about your credit needs and access during the 2015/2016 cropping season 

G4 During the cropping season, did you have liquidity constraints in financing production 

(inputs)?                     0=No          1=Yes 
G10 If no, how much were you given?     ___________(GHS) 

G5 If yes, did you apply/ask for any loan to finance production?      0=No  >>  H        1=Yes G11 Was collateral required in getting the loan facility? 0=No       1=Yes 

G6 If yes, were you granted?                                                                   0=No          1=Yes G12 What did you use as collateral?       Codes C 

G7 Where did you access the credit?   Codes D 

 
G13 What was the interest you paid on the credit facility? 

                                                                                     _________GHS 

G8 How much did you apply for?  ______(GHS) 

 
  

G9 Were you given all you applied for?                            0=No        1=Yes 

 
 

 

 

  

Activity codes:   

1 Clearing   

2 Ploughing   

3 Planting   

4 Chemical application 

5 Weeding  

6 Harvesting  

Codes A 

1 Day 

2 Acre 

Codes D 

1 Friends or relatives    

2 Local moneylenders     

3 Banks     

4 NGOs (specify) ________     

5 Nonbank financial institution (including MFI) 

6 Private aggregator  

7 Input dealer 

8 Outgrower 

9 FBO 

10 Others (specify)_________ 

 

Codes C 

1 Land   4 Building 

2 Livestock  5 Household asset 

3 Farm produce  6 Other (specify) 

__ 
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Section H: Harvest, storage and marketing 
Crop 

Codes 

 

H1 H2 H3 For soybean H9 H10 

What quantity of 

crop was harvested 

from plot over the 

2015/2016 farming 

season? 

Was any crop 

lost during 

harvesting on 

field?  

0=No 

1=Yes 

How much 

of crop did 

you lose in 

total? (%) 

How did 

you store 

crop? 

Codes H 

Do you treat 

harvest under 

storage with 

chemicals? 

0=No    

1=Yes 

H4 H5 H6 H7 H8 

How was 

it 

harvested? 

Codes E 

 

How was 

it 

threshed? 

Codes F 

On what 

was it 

threshed? 

Codes G  

Was any crop 

lost during 

threshing? 

0=No 

1=Yes 

How much 

of crop did 

you lose in 

total? (%) 

Soybean:           

           

           

Other crops:           

           

           

 

 

 

 

 
 

  

 

 
 

  

Codes F 

0 Manual with sticks 

1 Tractor  

2 Thresher  

3 Other (specify) _____ 

 

Codes E 

0 Hand   

1 Combine harvester 

2 Other(specify) ___ 

 

Code A 

1 Jenguma  6 Salintuya-I (medium) 

2 Quarshie  7 Salintuya-II (late) 

3 Afayak   8 Songda 

4 Suong-Pungun 9 Local variety 

5 Anidaso  10 Other (specify) ____ 

 

Codes G 

0 On the floor 

1 Fertilizer sacks 

2 Tapolin          

Codes B 

1 Rice           7 Groundnut 

2 Maize          8 Cotton 

3 Millet          9 Yam 

4 Sorghum         10 Vegetables 

5 Cassava         11 Fruits 

6 Cowpea            12 Other (specify): __ 
 

  

Codes H  

0 Not stored   3 With private aggregator 

1 Local silo at home/farm  4 Cooperative/FBO facility 

2 In bags at home/farm  5 Communal storage unit 

6 Other (specify)     
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Crop  

Codes 

H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23 

Did 

you 

sell 

crop? 

0=No 

>>crop 

1=Yes 

Did you find 

out about 

market 

conditions 

before sale? 

0=No 

1=Yes 

If yes, 

what was 

the infor. 

source? 

 

Codes A 

 

Quantity 

sold 

during and 

since 

harvest(s) 

in 

2015/16? 

What 

unit 

price 

did you 

sell 

most of 

crop? 

Where 

did you 

sell most 

of the 

crop? 

 

Codes B 

Distance to 

market for 

crops 

transported to 

the market for 

sale? 

(Km) 

What 

was the 

transport 

cost to 

the 

market? 

GHS 

What 

other 

marketing 

costs did 

you incur? 

 

Codes C 

Who did 

you sell 

most of 

your 

harvest to? 

 

Codes E 

What 

proportion 

was sold 

to this 

buyer? 

(Kg) 

 

Did buyer 

provide 

you with 

any 

services? 

0=No 

1=Yes 

If yes, 

which 

services 

were you 

provided 

with? 

Codes F 

Soy:              

              

              

Other:              

              

              

 

Crop  

code 

H24 H25 H26 H27 

When did 

you sell 

most of 

the 

harvest? 

Codes G 

What was 

the 

principal 

reason for 

these sales? 

Codes H 

Is the crop 

considered 

primarily as a 

cash or staple 

food crop? 

Codes D 

Did you buy any crop for household consumption?          0=No  >> next crop       1=Yes 

H28 H29 H30 H31 H32 H33 H34 

If yes, quantity 

of crop 

purchased in 

2015/16? 

What unit price 

did you sell 

most of crop? 

(GHS) 

Did you find out about 

market before buying? 

0=No 

1=Yes 

If yes, what 

was the source 

of infor.? 

Codes A 

Where did 

you buy most 

of these? 

Codes B 

If in the market, 

distance to 

purchase point? 

(Km) 

Transport 

cost from 

the market? 

GHS 

Soy:           

           

           

Other:           

           

           

 

 

 

 

 

 

 

 

 
Codes D 

0 =Staple food crop 

1 =Cash crop 

 

Codes A 

1 Telephone/cell phone         

2 Friends or relatives             

3 Radio/TV  

4 Traders             

5 Newspaper     

6 Extension officer   

7 GOs/NGOs          

8 Farmer based organisation (FBO)      

9 ICT platform (ESOKO, e AGRI)      

10 Other (specify) _______________ 

Codes E  

1 Consumer within c’ty 6 Outgrower 

2 Consumer elsewhere 7 Pre harvest contractors 

3 Market traders  8 Input dealer 

4 Private aggregator 9 Other,specify_______ 

5 =Cooperative/FBO   

Codes G 

1 Immediately after harvest or before cultivation 

2 When household is cash constraint   

3 When I noticed I had enough food for consumption 

4 Noticed output price increases/anticipate a decrease  

   in the near future 

Codes H 

1 Meeting household basic needs/necessities       
2 Had some surplus left   

3 Profit or take advantage of favorable market conditions 

 

Codes B 

1 On the farm 

2 Market in the community  

3 Market outside the com’ty 

 
Codes C 

1 Market toll 

2 Loading/offloading 

3 Other (specify) ___________ 

 

Codes F 

1 Plough/tractor    6 Fertilizers/chemical 

2 Seeds    7 Organic fertilizer  

3 Weedicides/herbicides   8 Extension 

4 Post-harvest chemicals  9 Transportation 

5 Post-harvest processing   10 Other, specify _____ 
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H35 Do you have a mobile phone in the household?   0=No     1=Yes H43 If yes, how many agricultural associations are you involved in? 

H36 Is there a mobile phone reception at the location of the household? 

                                                                              0=No     1=Yes 
H44 Do you attend association meetings?    

                                                                                            0=No    1=Yes 

H37 Have you ever used mobile phone (either yours/someone’s) to call for market 

information?                                                         0=No >> H39    1=Yes 
H45 How many times did you attend meetings during the 2015/16 season? 

H38 If yes, how many times in the 2015/16 copping season?                                                                         H46 Have you ever had contract with an entity/individual in your farming in the past 5 years 

prior to the 2015-2016 farming season?         0=No >> Section I    1=Yes 

H39 

 

 

H40 

When you sold most output, did you negotiate and/or bargain with buyer(s)?                                                                            

                                                                                         0=No    1=Yes 

 

Did you sell crop to any official source?                         0=No    1=Yes 

H47 If yes, which crops, 

quantity and unit 

price did you sell to 

contractors? 

Crop code Quantity (Kg) Unit price (GHS) 

   

   

   

   

   
 

H41 Did you purchase crop from an official source?              0=No    1=Yes H48 When were prices determined between you and the contractor(s)?  

                   0 =Before cultivation   1 =After harvest 

H42 Do you belong to an agricultural association?                 0=No    1=Yes H49 Which services did the contractor provide you? Codes A 

Section I: Income, financing and expenditure 
Please indicate the annual income you earn from the following sources:  

 Source of income  Amount/GHS 

I1 Annual income from sale of farm produce/crops  

I2 Annual income from sale of livestock  

I3 Annual income from non-farm activities  

I4 Gifts and remittances  

I5 Aid (from NGO/Gov’t)  

I6 Other not classified  

 

Please indicate which of the following apply to you:   
 Finance Response 

I7 Does the household often save food for household consumption in the next year?    0=No    1=Yes  

I8 Does the household head regularly save money?                                                        0=No    1=Yes  

I9 Do you hold a bank account?                                                                                       0=No    1=Yes  

I10 Do you hold other financial assets?                                                                             0=No    1=Yes  

I11 Do you often borrow money to meet regular expenditure requirements?                   0=No    1=Yes  

    

Please indicate the household expenditure on the under listed items: 
I12 Expenditure item Expenditure (GHS) 

I13 How much did you spend on food in a regular month?  [GHS]  

I14 How much did you spend on other regular non-food items (e.g.) in a regular month?  [GHS]  

I15 Other expenditures (e.g. funerals, remittance, gifts, weddings e.t.c) over the past year? [GHS]  

Codes A  

0 None    

1 Plough/tractor    

2 Fertilizer/other chemicals  

3 Seeds In bags at home/farm  

6 Extension 

3 Harvest and post-harvest services 

5 Transportation 

6 Other (specify) __________      
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Section J: Household food and nutritional status  
Please answer the following questions in your capacity as the person responsible for food provision/preparation in the household in the past 4 weeks/one month. 

              J1. Could you please tell me how many days in the last 7 days your household has eaten the following foods? 

 Food item Days eaten in last week (0-7 days) 

1 Maize |____________| 

2 Millet/Sorghum |____________| 
3 Rice |____________| 
4 Bread/Wheat |____________| 
5 Tubers (yam, cassava, plantain, other) |____________| 
6 Groundnuts and Pulses (beans, other nuts) |____________| 
7 Fish (eating as a main food) |____________| 
8 Fish powder, small fish (used for flavor only, Maggi) |____________| 
9 Red meat (sheep/goat/beef/etc) |____________| 
10 White meat (poultry) |____________| 
11 Vegetable oil, butter, shea butter, fats |____________| 
12 Eggs |____________| 
13 Milk and dairy products (main food) |____________| 
14 Milk in tea in small amounts |____________| 
15 Vegetables (including green leaves) |____________| 
16 Fruits |____________| 
17 Sweets, sugar, honey |____________| 

 

 J2. In the last 7 days, how many hot meals did you have on average per day? ____________ (number of meals) 

 J3. In the last 3months, was there an instance where the household took less preferred food? 0=No 1=Yes 

 I will like to ask about your household food situation for the last 12 months 

J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 

In the last 12 months, 

since (current month) of 

last year, did you ever 

reduce the quantity or 

quality of (entire 

household) meals 

because there wasn't 

enough money for 

food? 

Codes A 

How many 

months did 

you 

experience 

this 

situation? 

In the last 12 months, 

since (current month) of 

last year, did you ever 

reduce the quantity or 

quality of (your 

child’s/any of the 

children’s) meals 

because there wasn’t 

enough money for food 

Codes A 

How many 

months did 

you 

experience 

this 

situation? 

In the last 12 months, 

was there ever no food 

to eat of any kind in 

your household because 

of lack of resources to 

get food? 

0=No  1=Yes 

How many 

months did 

you 

experience 

this 

situation? 

In the past 12 

months, did you or 

any household 

member go to sleep 

at night hungry 
because there was 

not enough food? 

0=No   1=Yes 

How many 

months did you 

experience this 

situation? 

Do you 

currently 

receive food 

aid from 

government 

or an NGO? 

 

0=No 

1=Yes 

If yes, how 

many years 

have you 

been 

receiving 

the aid? 

 

 

         

  

 Codes A:   1=Yes quantity was reduced 2=Yes quality was reduced 3=Yes both quantity and quality was reduced 4= No 
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     Section K: Livestock and other assets  
      Please I will like to ask about your livestock and other assets of the household. 

 

K1 

 

Do you own any of these animals in the household? 
Cattle Sheep Goat Pigs Poultry Others_____ Others_____ 

0=No 

1=Yes 

0=No 

1=Yes 

0=No 

1=Yes 

0=No 

1=Yes 

0=No 

1=Yes 

0=No 

1=Yes 

0=No 

1=Yes 

K2 If yes, how many does the household own?          

K3 How many did you sell in the 2015/16 season?        

K4 At what price did you sell most of this? (GHS)        

K5 How many did you buy in the 2015/16 season?        

K6 At what price did you buy most of this? (GHS)        

K7 Do you seek for veterinary services for them?  

                                                            0=No 1=Yes 

       

K8 If yes, how much did it cost you to vaccinate them in 

the last 12 months? GHS 

       

 
Please complete the table below on the asset owned by your household 

# Asset/Item Do you have 

item? 

0=No     1=Yes 

If yes, how many 

in all? 

If yes, how many as at 

the beginning of 2015? 

How much did you 

purchase the most current 

item? GHS 

Price if you were to 

sell it now GHS 

1 Cutlass      

2 Hoe      

3 Knapsack      

4 Irrigation pump/kit      

5 Radio      

6 Television      

7 Bicycle      

8 Motorcycle      

9 Car/Moto-King/kia      

10 Bullock/ Donkey      

11 Thresher      

12 Tractor      

13 Mechanized sheller      

14 House       

15 Other (specify)……      

16 Other (specify)……      

 
End of interview and thank you for participating
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Appendix 2: Focus group interview guide                                                                                         

            

 

 

Main ethnicity and religion 

1. What is/are the main languages spoken in the community? 

 

 

 

 

 

2. Which ethnic group is the dominant?  

 

 

 

 

3. Which religion is the dominant? 

 

 

 

Farm labour wage rate   

4. What was the wage rate per day during 2015/2016 season? _____________ GHS  

5. Was the wage rate same for male and female?  0=No 1=Yes  

6. If no, what was the wage rate for a female worker during 2015/2016 growing season?  

___________ GHS 

 

Transactions costs 

7. What is the distance to the nearest tared road?    ______________ Km  

8. What is the most used means of transport to the nearest road? 

 

9. How many minutes does it take you from the community to the nearest tared road using this 

most common means?  ____________________Mins 

 

 

 

Codes  

1. Likpakpaln (Konkomba) 7. Hausa   13. Nankan 

2. Chekosi  8. Bimoba  14. Kusaal 

3. Mampruli  9. Dagaare/Wali  15. Twi 

4. Dagbali (Dagbani) 10. Sissali    16. Ewe 

5. Nanunli  11. Gruni  17. Ga 

6. Gonja   12. Kasem 18. Other (specify) ________ 

   

    

   

Codes  

1. Konkombas 7. Hausas   13. Nankan               

2. Chekosi 8. Bimobas   14. Kusasi 

3. Mamprusi 9. Dagaabas/Walas   15. Akans 

4. Dagombas 10. Sissalas   16. Ewes 

5. Nanumbas 11. Grunsi   17. Gas  

6. Gonjas  12. Kassenas  18. Other (specify)________  

    

   

   

Codes C 

0 No religion  

1 Muslim  3 Traditional 

2 Christian 6 Other (specify) __________________ 

 

   

 

 

Codes 

0 Foot  2 Bicycle  4 Motor King 6 Truck  

1 Animal  3 Motor bike 5 Tractor  7 Other (specify) ______________
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10. What is the distance to the district capital?          ______________ Km 

11. What is the distance to the nearest agriculture office?          ______________ Km 

12. What is the distance to the nearest agriculture extension officer?          ______________ 

Km 

13. What is the distance to the nearest NGO or Research organization? ________________Km 

Market 

14. Do you have at least periodic market in the community?    0=No  1=Yes 

15. What was the average soybean price in the community last year ____ GHS 

16. What is the distance to the nearest market center?          ______________ Km 

17. What is the distance to the nearest financial institution? _________________Km 

18. How many days per week a car/vehicle plies the community? ______________Days 

19. Does the entire community has mobile phone service?  0=No  1=Yes 

20. If no to 19, do you have mobile phone service in some sections of the community? 

0=No  1=Yes 

21. If yes to 19, how many of such spots do you know of in the community? 

____________ 

 

 

 


