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Abstract: Background and Objectives: Continuous cover forestry is of increasing importance,
but operational forest growth models are still lacking. The debate is especially open if more complex
spatial approaches would provide a worthwhile increase in accuracy. Our objective was to compare
a nonspatial versus a spatial approach for individual Norway spruce tree growth models under
single-tree selection cutting. Materials and Methods: We calibrated nonlinear mixed models using
data from a long-term experiment in Finland (20 stands with 3538 individual trees for 10,238 growth
measurements). We compared the use of nonspatial versus spatial predictors to describe the
competitive pressure and its release after cutting. The models were compared in terms of Akaike
Information Criteria (AIC), root mean square error (RMSE), and mean absolute bias (MAB), both with
the training data and after cross-validation with a leave-one-out method at stand level. Results:
Even though the spatial model had a lower AIC than the nonspatial model, RMSE and MAB of the
two models were similar. Both models tended to underpredict growth for the highest observed values
when the tree-level random effects were not used. After cross-validation, the aggregated predictions
at stand level well represented the observations in both models. For most of the predictors, the use of
values based on trees” height rather than trees’ diameter improved the fit. After single-tree selection
cutting, trees had a growth boost both in the first and second five-year period after cutting, however,
with different predicted intensity in the two models. Conclusions: Under the research framework here
considered, the spatial modeling approach was not more accurate than the nonspatial one. Regarding
the single-tree selection cutting, an intervention regime spaced no more than 15 years apart seems
necessary to sustain the individual tree growth. However, the model’s fixed effect parts were not able
to capture the high growth of the few fastest-growing trees, and a proper estimation of site potential
is needed for uneven-aged stands.
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1. Introduction

Continuous cover forestry (CCF) is a silvicultural system that avoids the use of clear-felling and
thus maintains a continuity of woodland conditions across the site [1]. CCF is of increasing interest
as a potential solution for delivering a wide range of ecosystem services due to the resulting more
complex stand structures [2]. In Fennoscandia, however, [3] highlighted the lack of research data and
of adequate growth models for CCF when compared with even-aged plantation forestry, or rotation
forestry (RF). In particular, Norway spruce (Picea abies (L.) Karst.) is one of the most economically and

Forests 2020, 11, 1338; d0i:10.3390/f11121338 www.mdpi.com/journal/forests


http://www.mdpi.com/journal/forests
http://www.mdpi.com
https://orcid.org/0000-0001-9544-7400
https://orcid.org/0000-0002-2713-7088
http://www.mdpi.com/1999-4907/11/12/1338?type=check_update&version=1
http://dx.doi.org/10.3390/f11121338
http://www.mdpi.com/journal/forests

Forests 2020, 11, 1338 20f17

ecologically important tree species of Fennoscandia, and also one of the most adapted species that can
be managed with CCF principles in the region [3].

Individual tree modeling has long been recognized as the best approach for simulating the growth
of irregular stands [4,5]. Since age is not known in CCF stands, functional growth curves [6,7] are often
used in RF to model size development as function of time cannot be easily employed. References [8,9]
overcame this issue by transforming widely used functional growth curves in age-independent forms.
More commonly, tree size increment has been simulated as a function of various tree, stand, and site
characteristics with linear or nonlinear models. Novel machine learning techniques have also been
used [10].

Tree growth is consistently strongly correlated with the tree size. While bigger trees may have
higher growth potential in absolute terms due to more photosynthetic elements, they also have higher
respiration costs [11,12] and their relative growth is smaller than that of small trees [13]. Due to this
complex relationship between growth and size, many models have employed either linear equations
with multiple terms related to tree size [14-19] or nonlinear equations [5,20-26]. In many cases the
simulated output of those studies has been a sigmoid-like curve: growth increases with size but
eventually reaches a plateau or even decreases.

For stand characteristics, most of the focus has been on describing the negative effect of competition,
one of the most important factors affecting tree growth [10]. Different authors have used spatially explicit
approaches, that is, where spatial coordinates of the trees are known and specific conditions could be
assessed for every individual according to their location, or nonspatial approaches, where competition
is calculated regardless of the trees’ locations within the stand. For the spatial approaches, in some
cases competition has been calculated considering the interaction between neighboring trees using
2-D representations of the stand [9,23,25,27,28]. In other cases, more complex 3-D representations of
the canopy have been used to simulate light interception and availability within the stand [20,29-32].
In most of the latter 3-D cases, tree growth is a function of light availability and not tree size.
Additionally, some models have included a positive effect connected to the structural diversity of the
stand, which can provide more space and resource use efficiency [33,34].

The comparison between spatial and nonspatial approaches has not yet reached a conclusive
answer. In many cases nonspatial predictors were found as good as spatial ones (e.g., [35,36]).
Reference [37] stated that most of such comparisons were carried out in homogenous plantations,
while spatial approaches may seem more appropriate in stands with heterogenous structures such
as the ones resulting under CCF management. However, the same authors went on demonstrating
that nonspatial approaches were sufficiently accurate for most operational growth and yield models
also in heterogenous conditions. Additionally, most of either the nonspatial or spatial competition
indices considered in the studies reviewed here have been based somehow on the trees’ stem diameters.
However, as [38] pointed out, the vertical structure of the forest is equally important, and especially so
in heterogenous conditions. Height data is becoming increasingly easier to obtain directly with remote
sensing techniques such as aerial laser scanning or digital aerial photography (e.g., [39]) instead of
retrieving it indirectly with height-diameter curves, thus in the future it will be more available as input
for growth modeling.

The response to cutting has not been often included in modeling growth for CCF. After a release
from competition, Norway spruce may take up to around five years, also depending on its age and the
intensity of competition prior to release, to acclimatize to the new light conditions (see the extensive
review from [40]). Reference [18] did not find significant explicit variables related to thinning, but the
study may have been confounded by pooling the data with a rotation forestry dataset [24,26,32,41],
including a direct growth boost due to release after cutting, for the latter also due to natural mortality.
Reference [23] included an indirect growth boost by simulating a longer crown size for trees left after
thinning, which in turn will grant higher growth. A better knowledge of the response after partial
cutting in CCF is crucial to compare different intervention scenarios.
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Climate and site characteristics have been included in various ways, for example, with very detailed
climatic variables, such as mean temperature, mean precipitation, and global radiation [15,17,20,24];
detailed edaphic characteristics, such as nutrients supply, soil type, and depth [14,20,22,24,30];
and detailed topographic variables, such as elevation, slope, and aspect [14,15,22,24,26,42]. Site index,
a commonly used parameter in RF representing the dominant height of a stand at a certain age,
has sometimes been used also in CCF [15,21,23]. However, the concept is problematic in uneven-aged
stands where the age-height relationship is not nearly as straightforward, and it has been sometimes
adapted to the uneven-aged structure in different ways [26,43] or substituted with general fertility
classes [42]. In Finland, temperature sum (the sum of daily average temperatures in excess of a threshold
of 5 °C during the annual growing season) and forest site types have often been used [5,16,18]. In one
study [10], it was assessed that the climate variables contributed to around 18% of the variance in tree
growth, and site variables to 4%.

The overall objective of this study was to compare the performances of spatial versus nonspatial
approaches for Norway spruce individual tree growth modeling in single-tree selection cutting
conditions, using nonlinear mixed models. Specifically, using data from fully mapped stands, we wanted
to answer the following research questions: (1) Are spatial competition indices and cutting variables
more accurate as growth predictors than their nonspatial counterparts? (2) Are variables related
to the trees” height more accurate as growth predictors than their counterparts related to the trees’
diameter? (3) What is the temporal tree-level growth response after single-tree selection cuttings of
different intensity?

2. Methods

2.1. Study Material

We used data from a long-term experiment of CCF permanent sample plots involving single-tree
selection in 20 Norway spruce-dominated stands in Southern Finland (60°30’-62°30" N, 25-27 ° E)
(Table 1). Most of the stands (16) belonged to the submesic Myrtillus type site classification, or grove-like
heath and fresh heath, while the rest (4) to the mesic Oxalis-Myrtillus [44,45]. The stands had been
managed with single-tree selection for 25-30 years, and their prior development was also characterized
by complex stand structures and partial harvests of variable intensity. The stands had emerged from
natural regeneration with irregular initial development, and structural complexity was characteristic
for the stands throughout their growth. Utilizing the existing structural complexity, single-tree selection
was started in the 1980s. A selection cutting was carried out in all the stands in 1985-1988. After the
establishment of the experimental stands in their current form (1991-1996), the selection cutting was
repeated in 1996 in 16 stands. Four stands were not harvested in 1996 due to their low growing stock.
All stands were harvested again in 2011. All trees with defects or damage were removed first, and then
healthy trees mainly from the larger diameter classes (>25 cm) were removed until a target basal area
was achieved. All stands can be characterized as truly multiaged (with trees up to 170 years old) and
full-storied (in the sense of [46]).

The 20 stands were grouped in five areas, each with 2-7 stands. The stand area was 1.5-2 ha.
Within each stand, a single plot 40 m x 40 m was set up in the central part of the stand with good
representation of site and structural variation within the stand. The stands were managed similarly
within the plot and outside of it. Near the plot borders, the whole neighborhood was considered
during the tree selection for cutting. Tree measurements on the plots started in 1991 and were repeated
every five growing seasons (only in one case, a plot was measured after six growing seasons and
growth values were rescaled accordingly). Species, diameter at breast height (above bark, measured at
1.3 m from the ground in two perpendicular directions with a caliper and then averaged), tree height
(measured with a Haglof Vertex hypsometer, Haglof Sweden AB, Langsele, Viasternorrland, Sverige),
height of the crown base, and local coordinates were assessed for each tree during any measurement,
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carried out before the cutting. See [47,48] for more detailed information on the experimental setting,
measurements, and stand properties.

Table 1. Summary of study sites and tree-level measurements. The methods for calculating some of
the variables are described later in the data processing section. Local neighborhoods are circular plots
located around each subject tree.

Dataset Number

Number of plots 20
Number of trees 3547
Number of growth measurements 10,238

Stand data min median max
Mean height, basal area weighted (m), stand level 16.30 19.30 25.50
Stems per hectare (n), stand level 538 1575 3619
Basal area (m? ha™1), stand level 9.19 18.95 32.84
Total height of all trees (km ha™1), stand level 5.55 13.49 20.25
Total height of all trees (km ha™1), local neighborhoods (300 m?) 3.19 14.90 31.16
Total height of all trees taller than subject tree (km ha™!), stand level 0 9.83 19.82
Hegyi index calculated for height, local neighborhoods (200 m?) 0.13 8.05 68.64
Basal area removed during cutting (%), stand level 0.13 0.27 0.59
Basal area removed during cutting (%), local neighborhoods (200 m?) 0 0.19 0.50
Mean annual increment (m? ha™! year‘l) 0.23 0.56 0.80
Standard deviation of height distribution, stand level 5.64 6.87 10.15
Gini diversity index for height, local neighborhoods (100 m?) 0.33 0.44 0.56

Tree data min median max

Diameter (cm) 1.05 7.05 49.95
Height (m) 1.40 6.50 322
Live crown ratio 0.05 0.67 0.98
Basal area growth (ecm? year‘5 ) -4.19 10.4 209.07

2.2. Data Processing

Since we wanted to precisely assess the effect of thinning, we used only the data since the first
detailed recorded thinning (in 1996 or 2011) for each plot (for a total of 64 combinations of plots and
growth periods). For each tree we calculated basal area (ba, cm?) as the cross-sectional stem area at 1.3 m
from the ground. Our dependent variable was then individual basal area growth (Aba, cm? year™),
calculated for each alive Norway spruce tree as the difference between two consecutive measurements.
Our explanatory variables could be categorized into tree, competition, stand, cutting, and site
characteristics. To calculate all spatial variables, as edge correction for trees at the border of the mapped
plots, we applied a translation approach [49]. We virtually recreated the stand in a 3 x 3 grid with
the original mapped plot as central cell, and in all the other cells, we copied the same plot with the
same orientation.

For the tree characteristics, we considered size, as either stem diameter (d, cm) or height (1, m),
and live crown ratio (Icr), the ratio between the tree height (1) and the length of the live crown. Due to
the nonlinear relationship between growth and size, we tested for d and & various transformations
(root, power, and logarithmic) and the use of multiple terms.

For the competition, we calculated various indices, both symmetric (i.e., independent of the relative
size of the competing trees) and asymmetric (i.e., where relatively bigger trees would apply higher
competition against relatively smaller trees). We considered: basal area sum of all trees (batot, m? ha™!);
height sum of all trees (htot, km ha~1); basal area sum of trees larger than the subject tree (bal, m? ha™1);
height sum of trees taller than the subject tree (htal, km ha~!). We calculated them both with a nonspatial
and a spatial approach. For the former, we considered all the alive trees in the plot. For the latter,
we considered only the trees within local neighborhoods around each tree, using different radii (namely
5.64 m, 7.97 m, and 9.77 m to reach 100 m?2, 200 m?2, and 300 m?, respectively). We also estimated
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the Hegyi’s competition indeX, calculated both for dbh (diameter at breast height, 1.3 m) and height
(hegyip and hegyip) according to Equation (1), using all the trees present in the three different local
neighborhoods [50]:
n .
hegyi; = Z(%)/(distanceij + 1) 1)

SlZ(i‘]'

where 7 is the number of trees present in the local neighborhood, size; and size; are either the dbh or
height, respectively, of the competitor i and of the subject tree j, distance;; is the distance in meters
between the two trees. We did not consider a nonspatial equivalent for this index. Such indices
calculated for a defined neighborhood could be referred to as semi-spatial indices. Lastly we calculated
two spatial indices corresponding to the area potentially available for resources, calculated by means
of Voronoi polygons around each subject tree, either with standard polygons (apa, m?) or weighted
by means of each tree’s dbh (apaw.d, m?) and height (apaw.h, m?) [37,51] (see Figure 1 for examples
and further explanations). Standard polygons were built with the package dismo [52] of R Statistical
Software (R Foundation for Statistical Computing: Vienna, Austria) [53], while the code used under R
to build the weighted polygons is shown in Supplementary Materials Section S1. We tried both a linear
and a square root weight for the size, and a squared distance. The area potentially available is not
strictly a competition index as it is expected to be positively correlated with growth, but it expresses
the same concept in a different way. Please refer to Table 2 for a summary of all competition indices.

Table 2. Competition and growing space indices tested. Local neighborhoods include plots of 100, 200,
and 300 m?.

Index Evenness Spatial Dependence

Total basal area (batot, m> ha™1) nonspatial & spatial

tri .

Total height of trees (htot, km ha™!) SYMMELHe (local neighborhoods)
Basal area of larger trees (bal, m? ha™!) . non-spatial & spatial

. 1 asymmetric .
Height of taller trees (htal, km ha™") (local neighborhoods)
Hegyi’s competition index for diameter (hegyip) and . spatial
for height (hegyip) asymmetric (local neighborhoods)
Area potentially available, standard Voronoi polygons (apa, m?)  symmetric spatial (fixed)
Area potentially available, Voronoi polygons weighted for asymmetric spatial (fixed)

diameter (apaw.d, m?) and for height (apaw.h, m?)

Figure 1. Examples of standard (left) and weighted (right) Voronoi polygons created starting from the
same trees (red points, size proportional to their height). The standard polygon for a tree includes all
the area that is closer to that tree. The weighted polygon pushes its boundaries towards neighbors with
lower size.
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For the stand category, we calculated one index of species diversity as the ratio between the
total basal area of all spruce trees and the total basal area of all trees (mixba, %). For the nonspatial
approach, we considered all the trees in the stand, while for the spatial approach, only the trees
in local neighborhoods. We considered two indices of the structural diversity of the dbh and the
height distribution: the Gini coefficient (giniy and giniy) [54], calculated with the package ineq [55] of
R Statistical Software; and the standard deviation (sd; and sdj,). As above, we considered either all
trees in the stand or only local neighborhoods. We also considered the plot basal area weighted mean
diameter (Dg) and basal area weighted mean height (Hg), as an indication of stand development.

For the cutting characteristics, under the nonspatial approach, we considered the basal area
removed during the last intervention relative to the total stand basal area prior to the cutting (bacuty);
and similarly, the sum of the trees” height removed relative to the total (hcuty). Under the spatial
approach, we calculated the same for the local neighborhoods. We considered the time after the last
cutting using dummy variables as follows: time after cutting class 1 (tacl) if the growing period started
immediately after the intervention, tac2 if 6 years after (second measurement period after intervention),
and tac3 if 11 years (third measurement period, the maximum in this dataset).

For the site characteristics, we simply considered the forest type using a dummy variable omt,
with value of 1 for the stands in the Oxalys-Myrtillus site type and 0 for the other sites, and a climatic
continuous variable, tsum, the temperature sum in degree-days [56]. As an alternative to forest type,
to describe the site potential, we calculated the mean annual growth of each stand in terms of basal
area, averaged throughout all the measurements (mag, m> ha! year™!).

After being used to calculate all predictors, trees with external signs of strong damage as specifically
recorded in the field forms were removed from the following growth modeling activities, together with
trees showing the largest and the smallest 0.1% of Aba values considered as outliers [24].

2.3. Statistical Analyses

We used the following nonlinear mixed model form (Equation (2)), fitted with the package
nlme [57] of R Statistical Software, to model the growth of Norway spruce trees:

Aba = eXp(bo + b= Vi+ . byt VyFu + Ugp + ump.t) + €aptm (2)

where Aba was the individual tree growth; by a fixed intercept; V; ...V, the explanatory variables;
by ... by coefficients to be determined during model fitting; u,, usp , and u, p ¢ random nested effects
respectively for each area and plot to account for the spatial correlation of trees in the same areas and
plots, and for each tree to account for the longitudinal experimental design structure (i.e., the repeated
measurements on the same trees); and &, .t.m the error for each measurement. We used a variance
function to reduce heteroscedasticity [17,34,58], and an autoregressive structure where correlation is
higher for nearby measurement periods than for farther-apart periods [34,59]. With the package nlme,
we used the option VarPower for the former (with the formula based on tree basal area) and corrAR1
for the latter.

We prepared two base model structures with all potential explanatory variables: one using
only the nonspatial variables, and one only the spatial variables. In both cases, to avoid overfitting,
only one symmetric and one asymmetric competition were included (see Table 2). In the spatial model,
we compared the same variables calculated with different local neighborhood size. We then reached a
final model structure in both cases by removing variables according to the following criteria: lower AIC,
better residual distribution, and sound biological validity. We compared the two final models by visual
assessment of predictions and residuals, and by means of mean annual bias (MAB) and root mean
square error (RMSE). We did so after both autovalidation and a cross-validation with a leave-one-out
approach at the plot level [60]. For the latter, we refitted the models 20 times, removing all trees from
one plot and then validating the model on the removed data. In this case, we also analyzed the results
aggregated at stand level for each measurement period.
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3. Results

The diameter distribution in all stands followed a classic reverse ] curve: on average more than
half of the trees belonging to the smaller classes 5 and 10 cmn DBH. However, on average more than
half of the stem growth at stand level was realized by the trees in the middle classes from 15 to 25 cm
DBH. Figure 2 shows the relative contribution for each diameter class both in terms of number of trees
and basal area growth to the stand totals.

0.51
e
0.4+ > °
e
[
. [ ]
© 0.3 ° ° label
S
s ‘ BA growth
X024 H E No. of trees
I .
0.1 o o
®
L
ﬁ ' - . —
0.0- = - -

5 10 15 20 25 30 35 40 45 50
DBH classes (cm)

Figure 2. Contribution to total growth and total number of trees for each diameter class, calculated in
every plot and measurement period and shown as boxplots.

The best nonspatial and spatial model structures were very similar, differing only in the kind
of asymmetric competition and structural diversity variable used. The models were defined with
Equation (3) for the nonspatial and Equation (4) for the spatial:

2
Aba =exp(by * h+Dby» 18ﬁ + b3 # lcr 4 by * htot + bs * sqrth(tlﬁl)

+ be * bacuty, = tacl + by = bacut,, (3)
* tac2 + bg* % + by *mag + by *sdh)

Aba =exp(by * h+Dby» % + bz = lcr + by # htot + bs * hegyiy, + bg
* bacuty * tacl + by * bacut,, 4)
* tac2 + bg* % + bgxmag + by *ginih)

where h was the tree height (m); Icr the live crown ratio; htot the sum of the height of all trees (km ha™1)
as symmetric competition; in the nonspatial model, hfal was the sum of the heights of the trees
taller than the subject tree (km ha!), and in the spatial model, hegyi, was the Hegyi competition
index for height, both as asymmetric competition; bacut, was the basal area removed during cutting
relative to the total basal area prior to the intervention; tacl, tac2, and tac3 were dummy variables
indicating each progressive five-year period after cutting; mag was the mean annual growth of the stand
(m? ha~! year™!); in the nonspatial model, sdj, was the standard deviation of all tree heights, and in the
spatial model, gini, was the Gini coefficient for all tree heights, both as indicator of structural diversity.
In the spatial model, htot was calculated for the 300 m? local neighborhoods of each tree, bacut, and
hegyiy, for the 200 m? local neighborhoods, and ginij, for the 100 m? local neighborhoods. In all cases
except for the cutting intensity, variables based on tree height significantly improved the fit compared
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to their counterparts based on tree diameter. A nonspatial model with only diameter-related predictors
had AIC 68,714, and a spatial one AIC 68,384, both higher than their selected counterparts based mostly
on height-related predictors (Table 3), although with comparable RMSE and MAE (please refer to
Supplementary Materials Section S2 for more information). The area-level random effect was removed
since it did not significantly decrease the AIC.

Table 3. Summary of the selected nonspatial and spatial models. All parameters were significant with
p values < 0.001. AIC is Akaike Information Criteria, RMSE is root mean square error, MAB is mean
absolute error. Validation results are provided for both auto-validation with all data and leave-one-out
cross-validation at plot level.

Nonspatial Spatial
Parameter Value Std. Error Value Std. Error
b1 0.11486 0.00688 0.18073 0.00546
b2 —1.46631 0.19220 —2.75815 0.17771
b3 1.98195 0.06214 1.71348 0.06099
b4 —-0.02246 0.00423 —0.04018 0.00234
b5 —0.18687 0.00914 —0.02532 0.00139
b6 0.69657 0.04096 1.35389 0.03716
b7 1.58766 0.05023 1.29873 0.04539
b8 —0.36905 0.07901 —1.16805 0.06132
b9 1.61820 0.18853 1.09708 0.13946
b10 0.03160 0.00895 0.46179 0.08486
Random effect St. Dev St. Dev
Plot level 0.155 0.171
Tree level 0.258 0.285
AIC 68,409 67,708
Validation Auto Cross Auto Cross
RMSE 9.42 15.58 9.40 16.03
MAB 5.59 8.89 5.37 8.88

Both models fit reasonably well to the observed data. The differences in RMSE and MAB after
autovalidation on the training data were negligible between the models (Table 3). Figure 3 shows the
fitted values against the observed values (graphs a and b), and the residuals against the fitted values
(graphs c and d) for both models.

The size-growth relationship was quasi-sigmoid in both models since they included individual
size (in terms of height) as multiple terms. In Figure 4 we predicted growth only as a function of tree
height (set to vary throughout the observed range), while we kept the rest of the predictors at the
average observed for each five-year period after cutting (accounting for the increase of symmetric
competition over time after a thinning). The only exceptions were the asymmetric competition indices
(htal and hegyiy,): a model was constructed for them as a function of tree height (see Supplementary
Materials Section S3) and their values were fixed to the model predictions (accounting for the decrease
of competition with higher tree size). All random effects were omitted. On average, the predictions
were similar to the observed mean in both models, although there was an underestimation for the
tallest trees above 20-25 m, especially in the period 11-15 years after cutting. When observing the fitted
values of both models with the random effects, there was no such underestimation and the trend closely
resembled the locally estimated scatterplot smoothing curve (LOESS) in Figure 4 (results not shown).
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Figure 3. Results for both models of individual tree growth. (Top row): fitted versus observed values,
respectively, for nonspatial and spatial model (dashed blue line: locally estimated scatterplot smoothing
curve, or LOESS, fitted to the scatter plot). (Bottom row): normalized residuals versus fitted values,
respectively, for nonspatial and spatial model. The continuous black line in all graphs is the identity line.

After cross-validation, again there were only negligible differences amongst the two models,
both at tree and stand level. In Figure 5, the simulations are compared with the observations, both at
tree level and stand level. There was, however, a serious underestimation of growth for the faster
growing trees (roughly above basal area growth 150 cm? year~>, which accounts for only 1% of the
total trees in the dataset, and 5% of the total observed growth). Overall, the stand-level results seemed
to fit well the observations. Mean annual growth as predictor of site potential, when compared to the
forest type OMT/MT dummy variable, strongly decreased the errors in the cross-validation process for
both models: with the latter variable, there was a strong negative bias in all MT plots in both models
(results not shown).

Due to the above results, we investigated further the random effects. The tree-level random effects
were found to be significantly and slightly positively correlated to the individual tree mean growth
(averaged over all the measurement periods), with a Pearson correlation coefficient of 0.35 and 0.33 for
the nonspatial and spatial model, respectively. No other significant correlations were found between
the model predictors and the tree-level random effects.
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Figure 4. Individual basal area growth as function of tree height. The points are observed data
(with continuous dotted lines as locally estimated scatterplot smoothing curves, or LOESS, estimated
directly from the data, not from the models). Top left plot shows all data, and different observed LOESS
curves for different time after harvesting classes (tac1): 1-5 years, (tac2): 6-10 years, (tac3): 11-15 years.
In the remaining graphs, only specific time after harvesting classes are displayed. The colored dashed
and continuous lines are predicted values for the nonspatial and spatial model, respectively, while the
black continuous dotted lines the corresponding LOESS curves of the top left graph.

For both models, there was a growth boost in both the first and second five-year period after
cutting. In Figure 6, this effect is observed for a sample tree of mean height (9 m). Predictions for
both models were calculated considering all parameters set at the average observed for each time after
cutting period, and only the removed basal area was allowed to vary throughout the observed range.
The two models differed in the intensity of the growth boost: it was much higher in the first five-year
period for the nonspatial model compared to the second one, while it was of similar intensity in the
two five—year periods after cutting for the spatial model. However, the two models agreed that more
than 10 years after cutting, the growth could decrease to half the level of the first 10-year period.



Forests 2020, 11, 1338

Non-spatial
250+
ks
B
O 200
N o ® @
e o o
£ 150 ©° %"
< & g 4 o
-§ o 0o Qe > 8
o % Q )
E) 100~ QOO Og °
< o5 O&®
m 00 OCp
B o o
T 50 o
° %@ o
'-5 o
® 01
o
0 50 100 150 200 250
Observed BA growth (cm2 year’5 )
Non-spatial
‘TA 1.00 1
@
(] [ ]
>
T
8 0751
o 7 &
S
~ Y Y
= A
2 0501 e g ®
9 : [] ..
o ° °
<
o 6 o8
o 1) (]
D 0254 % .
Qo (%4
g o
o
0.25 0.50 0.75 1.00

Observed BA growth (m? ha ' year ')

11 0f 17

Spatial

2501

LrI)L o . (o]

© [o2] o)

O 200 TG 2

NE ® % o

L 1504 o o ¢ %o@o )

= o %0 o &L

€ 8,0 = © c&)o

IS 4 @Sﬁ

S, 100- ocd .
%008 &

< o ® o

o 098300 s

O 501 d%J o

@

"5 @]

e o

04

o

0 50 100 150 200 250

Observed BA growth (cm2 year’5 )

Spatial
7“ 1.00
@
[
>
T
©
8 0.754 .
o~ ,
E e
g « LA
g 0504 °
(@] oo ® 4 L]
< ® Soo%e °
m .. .. e
©
2 025 w9
(&)
5 *
o
o

0.25 0.50 0.75 1.00

Observed BA growth (m? ha ' year )

Figure 5. Cross-validation results for both models of individual tree growth (left column) nonspatial,

(right column) spatial; (top row) fitted versus observed individual tree growth; (bottom row)

fitted versus observed growth, both aggregated at stand level for each measurement period. The black

line in all graphs shows the identity line, the dashed blue line a locally estimated scatterplot smoothing

curve for the scatterplot.
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Figure 6. Individual tree growth response to single-tree selection cutting intensity, measured as
percentage of basal area (BA) removed relative to levels prior the cutting, for different times after
cutting and models. In the nonspatial model, cutting intensity is calculated at stand level, in the spatial
model for the local 200 m? neighborhood around the subject tree. The lines show the growth of a tree
of average height (9 m), when growing either 1-5 years after cutting (continuous line), 6-10 years after
(dashed line), or 11-15 years (dotted line).

4. Discussion

Are spatial competition indices and cutting variables more accurate as growth predictors than
their nonspatial counterparts? The spatial model, although having a lower AIC than the nonspatial one,
did not provide an increase in the model accuracy when looking at the prediction errors, both during
the auto- and cross-validation processes. This was in line with previous research [35-37]. However,
for a full forest growth simulation, the modeling of processes such as regeneration could still require
spatial information, since they may be more sensible to local variation in stand density (e.g., [61]).
For the spatial model, different predictors had a different local area of effect. For the symmetric
competition, the largest area considered (300 m?) provided better results, while for other predictors
related to asymmetric competition and the irregular structure, smaller areas provided better results
(200 and 100 m? for the Hegyi and Gini index, respectively). Our spatial approach had a limitation in
considering a defined threshold distance for the effect of most of the predictors, apart from the Voronoi
polygons that were eventually not included in the final models due to their lower predictive power
(i.e., higher AIC). See [62] for a discussion on the matter.

Are variables related to the trees” height more accurate as growth predictors than their counterparts
related to the trees’” diameter? Variables related to height were generally better predictors than their
counterparts based on the diameter. Diameter and height are strongly correlated, so it may be expected
that they would provide similar results. Nonetheless, it seems that height-related variables better
described the competition dynamics for light in the irregular stands considered in this study. It would
be interesting to test the same in even-aged forests where there is generally less variation in the
vertical structure. The success in fitting a model with only height-related variables has important
considerations for future development. Advances in remote sensing with drones and UAV could soon
switch the routine tree-level measurement from diameter-based to height-based. Many applications
proved it was possible to retrieve the tree diameter from remotely sensed data, and then use such
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values as inputs for growth simulations [63,64]. However, since tree height may be a comparable or
better input at least in vertically diverse forests, there would not be the need of such intermediate steps.

What is the temporal tree-level growth response after single-tree selection cuttings of different
intensity? The growth boost in the first 10 years after cutting (for both models) is in line with previous
research on release of spruce trees. However, there were contrasting results between models on the
intensity of such a boost in the two five-year periods after intervention. [40] concluded that Norway
spruce may need up to five years to adapt to the new light environment, depending on size and
previous history of the trees. The stands in this study were already being managed with selective
cutting for many years before the measurements started, so it may be that the dominated trees were
not heavily suppressed and quick to exploit the higher light availability. The growth measurement
period of five years may be too coarse to properly identify the finer scale annual response. As a
comparison, [41] analyzed yearly growth measurements in irregular coniferous forests in the USA
after thinning. Their findings show that the response of coniferous species after release, averaged over
five years, was similar in the first two five-year periods after thinning. However, there was a less
sharp decline in the third period. For white pine (Pinus strobus L.), [65] found the growth response
after release cutting evident already after three years, reaching a maximum around 13 years and then
decreasing. According to volume increment compared with control trees, the response was higher in
more dominated trees, similar to our findings. In any case, for Finnish conditions, a selection cutting
system not more than 15 years apart is supported by the data to sustain a good individual growth.
Further study on lighter intensity but more frequent interventions (i.e., every 10 years) could be also
investigated, due to the observed lower growth in the period 11-15 years after cutting. We acknowledge
that for that period, both models strongly underestimated the growth for the larger trees, indicating a
need to improve the fit.

Generally, both models had a sound biological validity. Growth was strongly and nonlinearly
correlated with tree size, reaching a peak for the bigger trees only when random effects were not
used [5]. However, the random effects simulations suggested a continuous increase with size [66].
Longer live crown ratios were significantly and positively correlated with growth, likely as another
indicator of past competition [23]. Both a symmetric and an asymmetric competition index seemed
to be necessary to fully describe the tree-level interactions [41]. The irregular vertical structure in
the forest (through the standard deviation or Gini coefficient for tree heights) provided a small but
significant additional boost to growth, maybe due to better resource use efficiency [33]. An indicator
of site productivity estimated from the overall observed growth was necessary as an alternative to
climatic variables and the forest site dummy indicators. We are aware that such a predictor cannot be
estimated a priori for stands without growth observations, thus other variables should be investigated.
Temperature sum did not have significant results, probably due to the limited variability of climatic
conditions across the sites.

We observed a correlation between tree random effects and mean tree growth, and underestimation
of growth for the faster-growing trees during the cross-validation process. It may be that the fixed
effects part of the model was not able to describe the specific causes, such as microfertility variations
or genetic profiles, for few faster-growing trees (around 1% of the total, contributing to 5% of the
total growth, considering an arbitrary threshold of basal area growth 150 cm? year~>). This could
provide concerns for the applicability of these models outside the calibration data. On the other hand,
the cross-validation results aggregated at stand level were promising for both models, suggesting the
underestimation of those trees did not affect much the overall growth.

5. Conclusions

We did not find any evidence that a spatial approach is better than a nonspatial one for modeling
individual tree growth for Norway spruce stands managed with single-tree selection, when using the
nonlinear mixed modeling approach. Variables related to the tree height were in almost all cases better
predictors of tree growth than their counterparts based on tree diameter. Selection cutting provided
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a growth boost proportional to its intensity on remaining trees that were released from competition.
The effect lasted for the first 10-year period after cutting, and then disappeared. Even if there were
some issues in the models (underestimation of fast-growing trees, need to identify a better site potential
variable), the cross-validation results for the nonspatial model provided promising results.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/12/1338/s1,
Section S1. Script to calculate weighted Voronoi polygons in R; Section S2. Alternative model structures for trees’
diameter; Section S3. Modeling asymmetric competition as function of tree height.
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