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Abstract: Results of experiments on numerical data sets discretized using two methods—global
versions of Equal Frequency per Interval and Equal Interval Width-are presented. Globalization of
both methods is based on entropy. For discretized data sets left and right reducts were computed. For
each discretized data set and two data sets, based, respectively, on left and right reducts, we applied
ten-fold cross validation using the C4.5 decision tree generation system. Our main objective was to
compare the quality of all three types of data sets in terms of an error rate. Additionally, we compared
complexity of generated decision trees. We show that reduction of data sets may only increase the
error rate and that the decision trees generated from reduced decision sets are not simpler than the
decision trees generated from non-reduced data sets.
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1. Introduction

The problem of reducing (or selecting) the set of attributes (or features) is known for many
decades [1–6]. It is a central topic in multivariate statistics and data analysis [7]. It was recognized as a
variant of the Set Covering problem in [3]. The problem of finding a minimal set of features is crucial for
the study of medical and bioinformatics data, with tens of thousands of features representing genes [7].
An analysis of feature selection methods, presented in [7], included filter, wrapper and embedded
methods, based on mathematical optimization, e.g., on linear programming. An algorithm for
discretization that removes redundant attributes was presented in [8–10]. An example of a MicroArray
Logic Analyzer (MALA), where feature selection was based on cluster analysis, was presented in [11].
An approach to feature selection, based on logic, was presented in [12]. A lot of attention has been
paid to benefits of feature reduction in data mining, machine learning and pattern recognition, see
for example, References [4–6,13–17]. Recently, feature reduction or reducing of the attribute set,
combined with discretization of numerical attributes, was discussed in Reference [13,15,16,18,19].
In Reference [18], results of experiments conducted on ten numerical data sets with four different
types of reducts were presented. The authors used two classifiers, Support Vector Machine (SVM) [20]
and C4.5 [21]. In both cases, results of the Friedman test are inconclusive, so benefits of data reduction
are not clear. In experiments presented in Reference [19], genetic algorithms and artificial neural
networks were used for a few tasks: discretization, feature reduction and prediction of stock price
index. It is difficult to evaluate how feature reduction contributed to final results. In Reference [13]
experimental results on ten numerical data sets, discretized using a system called C-GAME , are
reported. C-GAME uses reducts during discretization. The authors claim that C-GAME outperforms
five other discretization schemes. Some papers, for example, Reference [14–16], discuss reducts
combined with discretization. However, no convincing experimental results are included. A related
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problem, namely how reduction of the attribute set as a side-effect of discretization of numerical
attributes changes an error rate, was discussed in Reference [17].

For symbolic attributes, it was shown [22] that the quality of rule sets induced from reduced data
sets, measured by an error rate evaluated by ten-fold cross validation, is worse than the quality of rule
sets induced form the original data sets, with no reduction of the attribute set.

2. Reducts

The set of all cases of the data set is denoted by U. An example of the data set with numerical
attributes is presented in Table 1. For simplicity, all attributes have repetitive values, though in real-life
numerical attribute values are seldom repetitive. In our example U = {1, 2, 3, 4, 5, 6, 7, 8}. The set of all
attributes is denoted by A. In our example A = {Length, Height, Width, Weight}. One of the variables is
called a decision, in Table 1 it is Quality.

Table 1. An example of a data set with numerical attributes.

Case Attributes Decision
Length Height Width Weight Quality

1 4.8 1.2 1.6 0.8 high
2 4.8 1.4 1.8 0.8 high
3 4.8 1.4 1.8 0.8 high
4 4.4 1.4 1.6 1.0 medium
5 4.4 1.2 1.6 1.4 medium
6 4.2 1.2 1.8 1.4 low
7 4.2 1.8 1.8 1.4 low
8 4.2 1.8 1.8 1.4 low

Let B be a subset of the set A of all attributes. The indiscernibility relation IND(B) [23,24] is defined
as follows

(x, y) ∈ IND(B) if and only if a(x) = a(y) for any a ∈ B,

where x, y ∈ U and a(x) denotes the value of an attribute a ∈ A for a case x ∈ U. The relation IND(B)
is an equivalence relation. An equivalence class of IND(B), containing x ∈ U, is called a B-elementary
class and is denoted by [x]B. A family of all sets [x]B, where x ∈ U, is a partition on U denoted by B∗.
A union of B-elementary classes is called B-definable. For a decision d we may define an indiscernibility
relation IND{d} by analogy. Additionally, {d}-elementary classes are called concepts.

A decision d depends on the subset B of the set A of all attributes if and only if B∗ ≤ {d}∗. For
partitions π and τ on U, π ≤ τ if and only if for every Y ∈ τ there exists X ∈ π such that X ⊆ Y. For
example, for B = {Width, Weight}, B∗ = {{1}, {2, 3}, {4}, {5}, {6, 7, 8}}, {d}∗ = {{1, 2, 3}, {4}, {5, 6, 7, 8}} and
B∗ ≤ {d}∗. Thus d depends on B.

For Table 1 and for B = {Weight}, B∗ ={{1, 2, 3}, {4}, {5, 6, 7, 8}}. The concepts {4, 5}, {6, 7, 8}
are not B-definable. For an undefinable set X we define two definable sets, called lower and upper
approximations of X [23,24]. The lower approximation of X is defined as follows

{x | x ∈ U, [x]B ⊆ X}

and is denoted by BX. The upper approximation of X is defined as follows

{x | x ∈ U, [x]B ∩ X 6= ∅}

and is denoted by BX. For Table 1 and B = {Weight}, B{6, 7, 8} = ∅ and B{6, 7, 8} = {5, 6, 7, 8}.
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A set B is called a reduct if and only if B is the smallest set with B∗ ≤ {d}∗. The set {Width, Weight}
is the reduct since {Width}∗ = {{1, 4, 5}, {2, 3, 6, 7, 8}} 6≤ {d}∗ and {Weight}∗ = {{1, 2, 3}, {4}, {5, 6, 7, 8}}
6≤ {d}∗, so B is the smallest set with B∗ ≤ {d}∗.

An idea of the reduct is important since we may restrict our attention to a subset B and construct
a decision tree with the same ability to distinguish all concepts that are distinguishable in the data set
with the entire set A of attributes. Note that any algorithm for finding all reducts is of exponential
time complexity. In practical applications, we have to use some heuristic approach. In this paper, we
suggest two such heuristic approaches, left and right reducts.

A left reduct is defined by a process of a sequence of attempts to remove one attribute at a time,
from right to left and by checking after every attempt whether B∗ ≤ {d}∗, where B is the current set
of attributes. If this condition is true, we remove an attribute. If not, we put it back. For the example
presented in Table 1, we start from an attempt to remove the rightmost attribute, that is, Weight. The
current set B is {Length, Height, Width}, B∗ = {{1}, {2, 3}, {4}, {5}, {6}, {7, 8}} ≤ {d}∗, so we remove Weight
for good. The next candidate for removal is Width, the set B = {Length, Height}, B∗ = {{1}, {2, 3}, {4}, {5},
{6}, {7, 8}} and B∗ ≤ {d}∗, so we remove Width as well. The next candidate is Height, if we remove it, B
= {Length} ≤ {d}∗, so {Length} is the left reduct since it cannot be further reduced.

Similarly, a right reduct is defined by a similar process of a sequence of attempts to remove one
attribute at a time, this time from left to right. Again, after every attempt we check whether B∗ ≤ {d}∗.
It is not difficult to see that the right reduct is the set {Width, Weight}.

For a discretized data set we may compute left and right reducts, create three data sets: with the
discretized (non-reduced) data set and with attribute sets restricted to the left and right reducts and
then for all three data sets compute an error rate evaluated by C4.5 decision tree generation system
using ten-fold cross validation. Our results show again that reduction of data sets causes increase of
an error rate.

3. Discretization

For a numerical attribute a, let ai be the smallest value of a and let aj be the largest value of a. In
discretizing of a we are looking for the numbers ai0 , ai1 ,..., aik , called cutpoints, where ai0 = ai, aik = aj,
ail < ail+1

for l= 0, 1,..., k− 1 and k is a positive integer. As a result of discretization, the domain [ai, aj]

of the attribute a is divided into k intervals

{[ai0 , ai1), [ai1 , ai2), ..., [aik−2
, aik−1

), [aik−1
, aik ]}.

In this paper we denote such intervals as follows

ai0 ..ai1 , ai1 ..ai2 , ..., aik−2
..aik−1

, aik−1
..aik .

Discretization is usually conducted not on a single numerical attribute but on many numerical
attributes. Discretization methods may be categorized as supervised or decision-driven (concepts are
taken into account) or unsupervised. Discretization methods processing all attributes are called global
or dynamic, discretization methods processing a single attribute are called local or static.

Let v be a variable and let v1, v2,..., vn be values of v, where n is a positive integer. Let S be a
subset of U. Let p(vi) be a probability of vi in S, where i = 1, 2,..., n. An entropy HS(v) is defined as
follows

HS(v) = −
n

∑
i=1

p(vi) · log p(vi).

All logarithms in this paper are binary.
Let a be an attribute, let a1, a2,..., am be all values of a restricted to S, let d be a decision and let d1,

d2,..., dn be all values of d restricted to S, where m and n are positive integers. A conditional entropy
HS(d|a) of the decision d given an attribute a is defined as follows
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−
m

∑
j=1

p(aj) ·
n

∑
i=1

p(di|aj) · log p(di|aj),

where p(di|aj) is the conditional probability of the value dj of the decision d given aj; j ∈ {1, 2, ..., m}
and i ∈ {1, 2, ..., n}.

As is well-known [25–36], discretization that uses conditional entropy of the decision given
attribute is believed to be one of the most successful discretization techniques.

Let S be a subset of U, let a be an attribute and let q be a cutpoint splitting the set S into two
subsets S1 and S2. The corresponding conditional entropy, denoted by HS(d|a) is defined as follows

|S1|
|U| HS1

(a) +
|S2|
|U| HS2(a),

where |X| denotes the cardinality of the set X. Usually, the cutpoint q for which HS(d|a) is the smallest
is considered to be the best cutpoint.

We need how to halt discretization. Commonly, we halt discretization when we may distinguish
the same cases in the discretized data set as in in the original data set with numerical attributes. In this
paper discretization is halted when the level of consistency [26], defined as follows

L(A) =
∑X∈{d}∗ |AX|

|U|

and denoted by L(A), is equal to 1. For Table 1, A∗ = {{1}, {2, 3}, {4}, {5}, {6}, {7, 8}}, so AX = X for any
concept X from {d}∗. On the other hand, for B = {Weight},

L(B) =
|B{1, 2, 3}|+ |B{4, 5}|+ |B{6, 7, 8}|

|U| =
|{1, 2, 3}|+ |∅|+ |∅|

8
= 0.375.

4. Equal Frequency per Interval and Equal Interval Width

Both discretization methods, Equal Frequency per Interval and Equal Interval Width, are
frequently used in discretization and both are known to be efficient [25]. In local versions of these
methods, only a single numerical attribute is discretized at a time [31]. The user provides a parameter
denoted by k. This parameter is equal to a requested number of intervals. In the Equal Frequency per
Interval method, the domain of a numerical attribute is divided into k intervals with approximately
equal number of cases. In the Equal Interval Width method, the domain of a numerical attribute is
divided into k intervals with approximately equal width.

In this paper we present a supervised and global version of both methods, based on entropy [26].
Using this idea, we start from discretizing all numerical attributes assuming k = 2. Then the level
of consistency is computed for the data set with discretized attributes. If the level of consistency is
sufficient, discretization ends. If not, we select the worst attribute for additional discretization. The
measure of quality of the discretized attribute, denoted by ad and called the average block entropy, is
defined as follows

M(ad) =
∑B∈{ad}∗

|B|
|U|H(B)

|{ad}∗|
.

A discretized attribute with the largest value of M(ad) is the worst attribute. This attribute is
further discretized into k + 1 intervals. The process is continued by recursion. The time computational
complexity, in the worst case, is O(m · logm · n2), where m is the number of cases and n is the number
of attributes. This method is illustrated by applying the Equal Frequency per Interval method for the
data set from Table 1. Table 2 presents the discretized data set for the data set from Table 1. It is not
difficult to see that the level of consistency for Table 2 is 1.
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For the data set presented in Table 2, both left and right reducts are equal to each other and equal
to {Heightd, Widthd, Weightd}.

Table 3 presents the data set from Table 1 discretized by the Global Equal Interval Width
discretization method. Again, the level of consistency for Table 3 is equal to 1. Additionally, for
the data set from Table 3, both reducts, left and right, are also equal to each other and equal to {Lengthd,
Widthd}.

Table 2. A data set discretized by Equal Frequency per Interval.

Case Attributes Decision
Lengthd Heightd Widthd Weightd Quality

1 4.3..4.8 1.2..1.3 1.6..1.7 0.8..1.2 high
2 4.3..4.8 1.3..1.8 1.7..1.8 0.8..1.2 high
3 4.3..4.8 1.3..1.8 1.7..1.8 0.8..1.2 high
4 4.3..4.8 1.3..1.8 1.6..1.7 0.8..1.2 medium
5 4.3..4.8 1.2..1.3 1.6..1.7 1.2..1.4 medium
6 4.2..4.3 1.2..1.3 1.7..1.8 1.2..1.4 low
7 4.2..4.3 1.3..1.8 1.7..1.8 1.2..1.4 low
8 4.2..4.3 1.3..1.8 1.7..1.8 1.2..1.4 low

Table 3. A data set discretized by Equal Interval Width.

Case Attributes Decision
Lengthd Heightd Widthd Weightd Quality

1 4.5..4.8 1.2..1.5 1.6..1.7 0.8..1.2 high
2 4.5..4.8 1.2..1.5 1.7..1.8 0.8..1.2 high
3 4.5..4.8 1.2..1.5 1.7..1.8 0.8..1.2 high
4 4.2..4.5 1.2..1.5 1.7..1.8 0.8..1.2 medium
5 4.2..4.5 1.2..1.5 1.7..1.8 1.2..1.4 medium
6 4.2..4.5 1.5..1.8 1.7..1.8 1.2..1.4 low
7 4.2..4.5 1.5..1.8 1.7..1.8 1.2..1.4 low
8 4.2..4.5 1.5..1.8 1.7..1.8 1.2..1.4 low

5. Experiments

We conducted experiments on 13 numerical data sets, presented in Table 4. All of these data sets
may be accessed in Machine Learning Repository, University of California, Irvine, except for bankruptcy.
The bankruptcy data set was described in Reference [37].

The main objective of our research is to compare the quality of decision trees generated by C4.5
directly from discretized data sets and from data sets based on reducts, in terms of an error rate and
tree complexity. Data sets were discretized by the Global Equal Frequency per Interval and Global
Equal Interval Width methods with the level of complexity equal to 1. For each numerical data set
three data sets were considered:

• an original (non-reduced) discretized data set,
• a data set based on the left reduct of the original discretized data set and
• a data set based on right reduct of the original discretized data set.

The discretized data sets were inputted to the C4.5 decision tree generating system [21]. In our
experiments, the error rate was computed using an internal mechanism of the ten-fold cross validation
of C4.5.
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Additionally, an internal discretization mechanism of C4.5 was excluded in experiments for left
and right reducts since in this case data sets were discretized by the global discretization methods, so
C4.5 considered all attributes as symbolic.

We illustrate our results with Figures 1 and 2. Figure 1 presents discretization intervals for yeast
data set, where discretization was conducted by the internal discretization mechanism of C4.5. Figure 2
presents discretization intervals for the same data set with discretization conducted by the global
version of the Equal Frequency per Interval method (right reducts and left reducts were identical).

Figure 1. Attribute intervals for the yeast data set discretized by the internal discretization mechanism
of C4.5.

Figure 2. Attribute intervals for the yeast data set discretized by the global version of Equal Frequency
per Interval method and then computing right reducts.

Results of our experiments are presented in Tables 5–8. These results were analyzed by the
Friedman rank sum test with multiple comparisons, with 5% level of significance. For data sets
discretized by the Global Equal Frequency per Interval method, the Friedman test shows that there
are significant differences between the three types of data sets: the non-reduced discretized data sets
and data sets based on left and right reducts. In most cases, the original, non-reduced data sets are
associated with the smallest error rates than both left and right reducts. However, the test of multiple
comparisons shows that the differences are not statistically significant.

For data sets discretized by the Global Equal Interval Width method results are more conclusive.
There are statistically significant differences between non-reduced discretized data sets and data sets
based on left and right reducts. Moreover, an error rate for the non-reduced discretized data sets is
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significantly smaller than for both types of data sets, based on left and right reducts. As expected, the
difference between left and right reducts is not significant.

For both discretization methods and all types of data sets (non-reduced, based on left and right
reducts) the difference in complexity of generated decision trees, measured by tree size and depth, is
not significant.

Table 8 shows the size of left and right reducts created from data sets discretized by the Global
versions of Equal Frequency per Interval and Equal Interval Width methods. For some data sets, for
example, for bupa, both left and right reducts are identical with the original attribute set.

Table 4. Data sets.

Data Set Number of
Cases Attributes Concepts

Abalone 4177 8 29
Australian 690 14 2
Bankruptcy 66 5 2
Bupa 345 6 2
Echocardiogram 74 7 2
Ecoli 336 8 8
Glass 214 9 6
Ionosphere 351 34 2
Iris 150 4 3
Leukemia 415 175 2
Wave 512 21 3
Wine Recognition 178 13 3
Yeast 1484 8 9

Table 5. Error rates for discretized data sets.

Data Set Equal Frequency per Interval Equal Interval Width
No Left Right No Left Right
Reduction Reducts Reducts Reduction Reducts Reducts

Abalone 76.87 76.99 77.47 76.90 77.42 77.42
Australian 12.46 14.49 22.46 13.33 30.14 14.64
Bankruptcy 3.03 3.03 3.03 10.61 10.61 10.61
Bupa 35.94 35.94 35.94 34.49 34.49 34.49
Echocardiogram 27.03 27.03 27.03 31.08 39.19 39.19
Ecoli 30.65 28.87 28.87 28.57 28.57 28.57
Glass 41.12 39.25 41.59 33.18 33.64 33.64
Ionosphere 13.11 19.15 20.85 10.83 11.97 15.82
Iris 12.67 12.67 12.67 4.00 4.00 4.00
Leukemia 1.45 2.93 1.60 1.32 1.99 1.59
Wave 25.59 27.15 28.91 27.54 31.46 28.13
Wine Recognition 10.11 10.67 12.36 9.55 8.99 10.67
Yeast 57.82 57.82 57.82 56.54 56.87 56.87
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Table 6. Tree size for discretized data sets.

Data Set Tree Size
Equal Frequency per Interval Equal Interval Width
No Left Right No Left Right

Reduction Reducts Reducts Reduction Reducts Reducts

Abalone 28,236 27,202 24,905 18,711 16,491 16,491
Australian 41 3 12 39 95 3
Bankruptcy 3 3 3 6 6 6
Bupa 17 17 17 27 27 27
Echocardiogram 8 13 13 16 16 16
Ecoli 61 40 40 109 107 107
Glass 70 63 56 186 191 191
Ionosphere 33 53 71 34 24 70
Iris 11 11 11 4 4 4
Leukemia 139 125 132 229 139 174
Wave 62 42 44 107 73 96
Wine Recognition 19 30 30 18 15 18
Yeast 662 678 678 913 914 914

Table 7. Tree depth for discretized data sets.

Data Set Tree Depth
Equal Frequency per Interval Equal Interval Width
No Left Right No Left Right

Reduction Reducts Reducts Reduction Reducts Reducts

Abalone 2 2 2 3 3 3
Australian 5 1 2 5 4 1
Bankruptcy 1 1 1 1 1 1
Bupa 2 2 2 2 2 2
Echocardiogram 2 2 2 3 3 3
Ecoli 3 2 2 3 3 3
Glass 5 4 5 5 5 5
Ionosphere 6 6 5 6 4 6
Iris 2 2 2 1 1 1
Leukemia 6 4 4 6 4 5
Wave 9 7 9 11 9 6
Wine Recognition 6 6 6 5 4 5
Yeast 4 4 4 3 3 3
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Table 8. Number of attributes in left and right reducts for discretized data sets.

Data Set Discretized Equal Frequency Equal Interval
Non-Reduced per Interval Width
Data Set Left Right Left Right

Reducts Reducts Reducts Reducts

Abalone 8 6 6 6 6
Australian 14 8 10 9 9
Bankruptcy 5 4 4 4 4
Bupa 6 6 6 6 6
Echocardiogram 7 5 5 6 6
Ecoli 7 5 5 5 5
Glass 9 8 8 7 7
Ionosphere 34 11 13 11 10
Iris 4 4 4 4 4
Leukemia 15 8 8 11 10
Wave 21 15 14 14 14
Wine Recognition 13 8 8 10 10
Yeast 8 6 6 6 6

6. Conclusions

Our preliminary results [22] show that data reduction combined with rule induction causes an
increase of the error rate. The current results, presented in this paper, confirm these results: the
reduction of data sets, associated with C4.5 tree generation system, causes the same effect. Decision
trees generated from reduced data sets increase the error rate as evaluated by ten-fold cross validation.
Additionally, decision trees generated from reduced data sets, in terms of a tree size or tree depth,
are not simpler than decision trees generated from non-reduced data sets.Therefore, it is obvious that
reduction of data sets (or feature selection) should be used with caution since it may degrade results of
data mining.

In the future we are planning to extend our experiments to large data sets and to include other
classifiers than systems for rule induction and decision tree generation.
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