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Abstract: Recent work investigating the development of the phonological lexicon, where edges
between words represent phonological similarity, have suggested that phonological network
growth may be partly driven by a process that favors the acquisition of new words that are
phonologically similar to several existing words in the lexicon. To explore this growth mechanism,
we conducted a simulation study to examine the properties of networks grown by inverse preferential
attachment, where new nodes added to the network tend to connect to existing nodes with
fewer edges. Specifically, we analyzed the network structure and degree distributions of artificial
networks generated via either preferential attachment, an inverse variant of preferential attachment,
or combinations of both network growth mechanisms. The simulations showed that network
growth initially driven by preferential attachment followed by inverse preferential attachment led to
densely-connected network structures (i.e., smaller diameters and average shortest path lengths),
as well as degree distributions that could be characterized by non-power law distributions, analogous
to the features of real-world phonological networks. These results provide converging evidence that
inverse preferential attachment may play a role in the development of the phonological lexicon and
reflect processing costs associated with a mature lexicon structure.

Keywords: network growth; preferential attachment; inverse preferential attachment; language
networks; language development

1. Introduction

Many complex systems, such as the Internet, brain networks, and social networks, can be classified
as networks—collections of entities connected to each other in a web-like fashion—permitting the
application of network analysis to study these systems (see [1] for a review). A common feature across
diverse complex networks is their scale-free degree distribution, whereby most nodes in the network
have very few edges or links and a few nodes have many edges or links. Preferential attachment
models of network growth, where new nodes that are added to the network tend to connect to existing
nodes with many links (i.e., high degree nodes), have been prominent in the literature covering
network growth and evolution, because such models describe a generic mechanism that provides an
elegant account of the emergence of scale-free complex networks [2–5]. In this paper, we conducted a
series of network simulations to specifically examine the properties of networks grown via a different
mechanism, which we refer to as inverse preferential attachment, where new nodes added to the
network tend to connect to existing nodes with fewer edges.

Our present approach of simulating network growth via inverse preferential attachment was
directly motivated by recent research examining the development of language networks constructed
from phonological similarity among words. In these language networks, nodes represent words,
while edges are placed between words that share similar sounds [6]. Previous research has shown
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that the structure of the phonological lexicon has measurable influences on various language-related
processes [7–9]. Research investigating the processes that facilitate the acquisition of the phonological
form of a word indicate that phonological network growth may be driven by alternative network
growth mechanisms other than the widely studied preferential attachment [10–12]. Central to the
present study is a recent paper by Siew and Vitevitch [12], who conducted a longitudinal analysis
of phonological networks of English and Dutch words and found that preferential attachment was
a better predictor of acquisition than preferential acquisition. Furthermore, although the standard
preferential attachment model was a significant predictor of acquisition at early stages of network
growth (i.e., when the phonological network was “young”), there was a subsequent shift in the network
growth mechanism, such that an inverse variant of preferential attachment became a significant
predictor of acquisition at later stages of network growth (i.e., when the phonological network matured
and contained many nodes and edges). To put it in another way, a network growth mechanism that
prioritized the learning of words that were phonologically similar to words with many phonological
neighbors (i.e., many edges) in the lexicon was important in the early stages of development, whereas
a growth mechanism that prioritized the learning of words that were phonologically similar to words
with few phonological neighbors (i.e., few edges) in the lexicon was important in the later stages of
development. Siew and Vitevitch [12] provided further empirical support for inverse preferential
attachment by conducting a word learning experiment, which found that people with mature lexicons
(i.e., college students) were able to better learn made-up words that were phonologically similar to
words with few phonological neighbors in the lexicon, as compared to made-up words that were
phonologically similar to words with many phonological neighbors.

Given these intriguing patterns of phonological network growth observed in our prior work,
the aim of the present paper was to conduct a computational exploration of these patterns. To this
end, we conducted a series of network growth simulations to examine if networks generated by the
preferential attachment growth algorithm and its inverse variant, as well as combinations of each
algorithm, might lead to structurally different networks. Even though we examine a simple model
of network growth here, this has potentially important theoretical implications for understanding
how the large-scale development of the phonological lexicon could occur. For instance, the artificial
randomly grown networks examined by Callaway and colleagues [13] exhibited many network
characteristics that were also observed in real phonological networks [6], and we wanted to investigate
if simulating network growth with typical or inverse preferential attachment mechanisms may also
lead to networks with characteristics observed in real phonological networks. Computing network
measures (such as average shortest path length, network diameter) and degree distributions is one way
of evaluating the structure of simulated networks. Network measures such as the average shortest
path length and network diameter provide an indication of the overall efficiency of the network
(i.e., efficiency referring to a network’s ability to quickly exchange information or for activation to
spread in a network [14]), whereas degree distributions can be considered as structural signatures of
the network, which can inform us about the growth processes that gave rise to the network [2]. If the
overall network measures of simulated networks are qualitatively similar to real-world phonological
language networks, this suggests that growth mechanisms that gave rise to the observed structure of
the simulated networks might also contribute to the acquisition of phonological representations.

It is important to acknowledge that the approach taken here does not provide conclusive proof
that either one of these network growth algorithms is entirely responsible for producing the structures
observed in real-world phonological networks. Indeed, much research (e.g., [15]) has demonstrated
that the famed scale-free network, for example, can be produced not only by the preferential attachment
algorithm proposed by Barabási and Albert [2], but also by a number of other methods as well. In the
absence of any other information, it would indeed be unwise to assert that a particular algorithm
was responsible for producing a network with a particular set of characteristics. In the domain of
psycholinguistics, however, there is a long and rich history of research that provides some guidance on
which possible algorithms are unattested in the languages of the world, and therefore not plausible
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as a mechanism for the acquisition of words; or which algorithms have been observed with other
research methods (e.g., case studies, archival analyses, laboratory-based experiments), and therefore
might be plausible mechanisms for the acquisition of words and may also provide insight into certain
language disorders (e.g., [16]). We performed the present simulation merely to offer an additional piece
of evidence to complement the archival analyses and experiments in our earlier work [12], which might
help to constrain the realm of possibility to the more restricted space of plausibility.

2. Materials and Methods

Each simulation began with a single node. The growth of the network was simulated by adding
a new node and a single new link to the network at each iteration. Each simulation continued for
999 iterations, such that each resulting network consisted of 1000 nodes and 999 edges. To simulate the
growth of the network via preferential attachment, the probability that a new node connected to a
given existing node was proportional to the number of connections that the existing node had to other
nodes in the network. Therefore, a new node was more likely to connect to an existing node with a
high degree. To simulate the growth of the network via inverse preferential attachment, the probability
that a new node connected to a given existing node was inversely proportional to the number of
connections that the existing node had to other nodes in the network. In this case, a new node was
more likely to connect to an existing node with a low degree. Finally, in random attachment, the new
node had an equal probability of connecting to any existing node, regardless of its degree.

There was a total of 11 different network types, i.e., networks that were grown by different
mechanisms and by various combinations of those mechanisms (see Figure 1 for a summary).
Three network types were generated by a single mechanism, i.e., entirely via preferential attachment
(PATT), entirely via inverse preferential attachment (iPATT), and via random attachment (Random).
For ease of exposition, PATT refers to networks generated by preferential attachment and iPATT refers to
networks generated by inverse preferential attachment. The remaining 8 network types were generated
using a combination of preferential attachment and inverse preferential attachment, to explore how the
“blending” of different growth models affected the development of the network, given that Siew and
Vitevitch [12] found that preferential attachment was influential earlier in development but not later
in development. Of these 8 network types, four were generated via preferential attachment first (for
200, 400, 600, and 800 iterations) followed by the inverse variant for the remainder of the iterations,
and four were generated via inverse preferential attachment first (for 200, 400, 600, and 800 iterations)
followed by the original preferential attachment model for the remainder of the iterations. The network
growth simulations were repeated 100 times for each network type, resulting in a total of 1100 simulated
networks. All simulations were conducted in R using the igraph library [17]. Analyses of the final
network structure and their degree distributions were also conducted in R using the igraph and
poweRlaw [18] libraries, respectively. The simulation and analysis R scripts, as well as the simulated
network data, are available via the Supplementary Materials.

The characteristics of the 1100 simulated networks can be quantified in various ways to examine
how the overall structures of these networks differ across different simulation conditions (i.e., network
type). The following network measures will be computed: average shortest path length, network
diameter, and degree distribution.

The shortest path length between two nodes refers to the fewest number of links that must be
traversed to get from one node to another node in the network. The average shortest path length
(ASPL) is the mean of the shortest path length obtained from every possible pairing of nodes in the
network. A closely related measure is the diameter of the network; this is the longest shortest path
length that exists in the network. The degree distribution refers to the probability distribution of node
degrees in the network; in other words, how many nodes have a given number of connections in the
network. Recall that degree refers to the number of connections incident to a node.
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of variance. This result may suggest that networks generated by the preferential attachment growth 
algorithm at the initial stages (even for a short period) may be more navigable than networks that are 
generated by the inverse preferential attachment growth algorithm at the initial stages. 

Table 1. Means and standard deviations of network measures of simulated networks, summarized 
by each of the 11 simulation conditions. Note that all simulated networks had the same number of 
nodes and edges (1000 nodes and 999 edges). 
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Figure 1. A summary of the 11 network growth conditions simulated in the present study. Red cells
indicate growth by standard preferential attachment, blue cells indicate growth by inverse preferential
attachment. PATT, preferential attachment.

3. Results

3.1. Overall Network Characteristics of Simulated Networks

For each of the simulated networks, the average shortest path length and network diameter was
computed. Table 1 shows the mean ASPL and network diameter for the networks in each condition
(i.e., network type) of the simulations.

Table 1. Means and standard deviations of network measures of simulated networks, summarized by
each of the 11 simulation conditions. Note that all simulated networks had the same number of nodes
and edges (1000 nodes and 999 edges).

Network Nodes Edges ASPL Diameter

PATT
M 1000 999 8.34 11.55
SD 0 0 0.50 1.42

Inverse PATT
M 1000 999 13.07 16.42
SD 0 0 0.62 1.80

Random
M 1000 999 10.91 13.81
SD 0 0 0.52 1.54

PATT–Inverse PATT

200/800 M 1000 999 9.97 13.27
SD 0 0 0.50 1.47

400/600 M 1000 999 9.22 12.58
SD 0 0 0.49 1.58

600/400 M 1000 999 8.83 12.29
SD 0 0 0.49 1.43

800/200 M 1000 999 8.55 11.93
SD 0 0 0.49 1.50

Inverse PATT–PATT

200/800 M 1000 999 11.25 14.28
SD 0 0 0.59 1.60

400/600 M 1000 999 12.00 15.17
SD 0 0 0.61 1.63

600/400 M 1000 999 12.48 15.59
SD 0 0 0.59 1.76

800/200 M 1000 999 12.81 15.92
SD 0 0 0.62 1.74

Legend: M = mean; SD = standard deviation; ASPL = average shortest path length; PATT = preferential attachment.
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Independent samples t-tests comparing the average shortest path length and network diameter
of PATT and iPATT networks showed that iPATT networks had larger diameters (t(189.76) = 59.47,
p < 0.001) and longer ASPLs (t(187.7) = 21.27, p < 0.001) than PATT networks (see Figure 2). This suggests
that networks generated by preferential attachment tend to be denser and more compact as compared
to networks generated by inverse preferential attachment, despite having the same numbers of nodes
and edges (see Figure 3 for network visualizations of the overall network structures).
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Figure 2. Boxplots of ASPL (a) and network diameter (b) values of networks grown via preferential
attachment (PATT), inverse preferential attachment (Inverse PATT), and random attachment (Random).
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Figure 3. Network visualizations of exemplar networks generated via pure preferential attachment (left),
pure inverse preferential attachment (center), and preferential attachment followed by inverse preferential
attachment (hybrid model; right). Each network consisted of 100 nodes. The size of each node reflects
its degree.

Interestingly, the networks grown by PATT first followed by iPATT tended to have smaller
diameters and shorter average shortest path lengths than the networks grown by iPATT first followed
by PATT, regardless of when the growth model “switched” to the other growth model (see Figure 4).
This observation is supported by significant the interaction effects of the network type (PATT–inverse
PATT; inverse PATT–PATT) and time of switch (20%, 40%, 60%, 80% of nodes added) for ASPL
(F(1, 796) = 761.04, p < 0.001) and diameter (F(1, 796) = 91.68, p < 0.001) in a between-group two-way
analysis of variance. This result may suggest that networks generated by the preferential attachment
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growth algorithm at the initial stages (even for a short period) may be more navigable than networks
that are generated by the inverse preferential attachment growth algorithm at the initial stages.
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Figure 4. Boxplots of ASPL (a) and network diameter (b) values of networks grown via blends of
preferential attachment and inverse preferential attachment. The x-axis indicates the percentage
proportion of nodes added before the network algorithm was switched. Red bars indicate networks
first grown by PATT followed by inverse PATT. Blue bars indicate networks first grown by inverse
PATT followed by PATT.

3.2. Degree Distributions

In this section, we examine the degree distributions of networks generated in Section 2. Raw counts
of the numbers of nodes with degrees of various values were obtained from each network. In part 1,
a power law was first fitted to the degree distributions and the goodness-of-fit of the power law
to the data was evaluated via a bootstrapping approach. In part 2, the data were fit to alternative
distributions (log-normal, exponential, and Poisson distributions) and tests were conducted to assess
the fit of the power law to the data as compared to alternative distributions. This sequence of analyses
closely follows the recommendations of Clauset, Shalizi, and Newman [19] for analyzing power
law-distributed data in a statistically rigorous manner (see [18] for more information on how to
implement this analysis pipeline).

3.2.1. Test for Power Law Fits via Bootstrapping

A power law was fit to the degree distributions of each of the simulated networks. Specifically, a power
law was fit to the data and the scaling parameter, α (i.e., the exponent of the power law), was computed
for a given xmin value (the minimum value for which the power law holds; see the xmin and α columns in
Table 2). Note that all exponents were <2, lower than what is usually observed in real-world networks,
where 2 < α < 3 [19]. This may be due to the simplicity of the simulations conducted (i.e., only 1 node and
1 edge were added to the network at each iteration), which led to sparser networks.

As suggested by Clauset et al. [19], we evaluated whether the observed degree distributions
actually followed a power law via a bootstrapping approach. Specifically, 1000 degree distributions
were sampled from the empirical degree distribution of interest, a power law was fit to that
degree distribution, and the exponent was computed. Mean α indicates the mean exponent of
the 1000 bootstrapped networks and SD α indicates the standard deviation of the 1000 bootstrapped
networks. A goodness-of-fit test was then conducted to determine if the exponent obtained from the
original degree distribution was likely to have come from the bootstrapped “population” of exponents.
As the point estimate p-values were not significant (all p-values > 0.05), this indicated that for all
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11 network types, the power law distribution provided a plausible fit to the degree distributions
(i.e., the exponent estimate is stable despite random fluctuations). Table 2 shows a summary of the
results of the goodness-of-fit test for all 11 network types (see the mean α, SD α, Kolmogorov–Smirnov
statistics, and p-value columns).

Table 2. Power law scaling parameter estimates and uncertainty estimates from the bootstrap procedure.
Note that the bootstrap procedure was conducted for each simulated network; the means and standard
deviations of estimates are shown in the table.

xmin α Mean Bootstrapped α SD Bootstrapped α KS-Statistic p-Value

Network M SD M SD M SD M SD M SD M SD

PATT 2.09 2.27 1.45 0.06 1.55 0.08 0.36 0.14 0.11 0.02 0.74 0.16
Inverse PATT 9.98 10.97 1.42 0.15 1.70 0.24 0.74 0.26 0.25 0.02 0.34 0.08

Random 10.51 13.51 1.49 0.17 1.68 0.20 0.67 0.23 0.19 0.02 0.52 0.15
PATT/Inverse PATT

200/800 1.14 0.51 1.34 0.03 1.47 0.05 0.40 0.07 0.16 0.02 0.60 0.13
400/600 1.13 0.40 1.39 0.03 1.51 0.04 0.40 0.08 0.12 0.02 0.72 0.18
600/400 1.28 0.80 1.41 0.04 1.51 0.05 0.37 0.09 0.11 0.02 0.76 0.16
200/800 1.34 0.89 1.42 0.04 1.52 0.05 0.35 0.09 0.11 0.02 0.73 0.19

Inverse PATT/PATT
200/800 8.50 6.87 1.56 0.13 1.72 0.15 0.63 0.18 0.15 0.02 0.70 0.20
400/600 18.07 14.73 1.64 0.20 1.84 0.21 0.81 0.26 0.17 0.02 0.67 0.19
600/400 23.40 20.21 1.65 0.25 1.87 0.26 0.86 0.28 0.20 0.02 0.59 0.18
200/800 24.34 27.48 1.61 0.29 1.84 0.28 0.84 0.29 0.23 0.02 0.48 0.14

Legend: M = mean; SD = standard deviation; KS = Kolmogorov–Smirnov; PATT = preferential attachment.

Although the results of the bootstrap seem to suggest that both degree distributions from the PATT
and iPATT networks followed a power law, a closer look at Table 2 indicates that the Kolmogorov–Smirnov
statistic for the iPATT network (D = 0.25) was larger than the Kolmogorov–Smirnov statistic for the PATT
network (D = 0.11). The magnitude of D is an indicator of the “distance” between the fitted distribution
and the actual data. In this case, the degree distribution of the network that was simulated via inverse
preferential attachment deviated to a greater extent from a power law as compared to the network that
was simulated via preferential attachment. This was confirmed by a visual inspection of the cumulative
degree distributions (see Figure A3 in the Appendix A).

3.2.2. Statistical Comparison with Other Degree Distributions

As recommended by Clauset et al. [19], another way of investigating the nature of degree
distributions in networks is to fit alternative distributions (exponential, log-normal, and Poisson
distributions) to the degree distributions of all networks and conduct the relevant goodness-of-fit tests
to compare the fit of these distributions to the fit of the power law to the data. The comparison of
the power law and these distributions constitutes a non-nested model comparison, so Vuong’s test
of non-nested hypotheses was used instead of the likelihood ratio test (for details, please see [20]).
Vuong’s test computes a V-statistic, one-sided p-value, and two-sided p-value. The one-sided p-value
indicates the probability of obtaining the particular value of log likelihood ratio if the power law is not
true. In other words, a significant one-sided p-value indicates that the power law distribution is a good
fit to the data (low probability that the alternate distribution could account for the data), whereas a
non-significant one-sided p-value indicates that the power law distribution is a not good fit to the data
(high probability that the alternate distribution could account for the data). The two-sided p-value
indicates the probability that both distributions being compared are equally “distant” from the data.
In other words, a significant two-sided p-value indicates that one distribution is a significantly better
fit to the data than the other distribution, whereas a non-significant two-sided p-value indicates that
neither distribution is preferred.

The results of these comparisons are summarized in Table 3 below, with more detailed statistics
available in Table A1 of Appendix A. For the power law and Poisson comparison, the significant
two-sided p-values and significant one-sided p-values for all 11 network types indicate that a power
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law distribution was a significantly better fit to the data than a Poisson distribution. For the power law
and log-normal comparison, the non-significant two-sided p-values for all 11 network types indicate
that one distribution cannot be favored over the other. See Figures A1 and A2 in the Appendix A for a
visual depiction of these results.

Table 3. Summary of Vuong’s tests of non-nested models comparing power law distributions to
alternative distributions (exponential, log-normal, Poisson). The cell indicates the preferred distribution
from the comparison; n.d. indicates that no distribution can be favored.

Network PL vs. Exp PL vs. LN PL vs. Pos

PATT PL n.d. PL
Inverse PATT n.d. n.d. PL

Random n.d. n.d. PL
PATT/Inverse PATT

200/800 n.d. n.d. PL

400/600 PL n.d. PL
600/400 PL n.d. PL
200/800 PL n.d. PL

Inverse PATT/PATT
200/800 n.d. n.d. PL
400/600 n.d. n.d. PL
600/400 n.d. n.d. PL
200/800 n.d. n.d. PL

Legend: PL = power law; LN = log-normal; Pos = Poisson; Exp = exponential; PATT = preferential attachment;
n.d. = no difference.

The comparison between the power law and exponential distribution is more informative
(see Figure 5). For the PATT network, the two-sided p-value was significant, indicating that the
two distributions were not equivalent in terms of their fit to the data, with one distribution being a
better fit. The results of the one-sided test indicate that the power law was a better fit for the degree
distribution generated by the preferential attachment as compared to an exponential distribution.
For the iPATT and random network, the two-sided p-value was not significant, indicating that the
two distributions (power law and exponential) were equivalent in terms of their fit to the data.

Turning to the results of Vuong’s test for the combination (i.e., blended) networks, we observe
that for all network types generated with iPATT followed by PATT, the two-sided p-values for the
power law and exponential comparison were non-significant, indicating that the two distributions
were equivalent in terms of their fit to the data, similar to the iPATT-only and random networks.
In contrast, the pattern of results varied for the networks generated with PATT followed by iPATT.
The network where the first 200 iterations were based on the PATT model had two-sided p-values that
were non-significant (similar to the iPATT-only network), whereas the other networks where the first
400, 600, and 800 iterations were based on the PATT model had two-sided and one-sided p-values
that were significant, indicating that the power law was a better fit than the exponential distribution
(similar to the PATT only network).

In summary, the key finding of the analyses of the network structure and degree distributions
was that the blended network that was first generated by PATT followed by iPATT led to (i) a network
structure with relatively low values for the ASPL and diameter (i.e., low values of ASPL and diameter
in Figure 4a,b) and (ii) degree distributions that could not be exclusively classified as a power law
(i.e., p-values > 0.05 in Figure 5b)—qualitatively resembling the properties of real-world phonological
networks [21].
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Figure 5. Boxplots of two-sided p-values from Vuong’s test of non-nested models comparing the
fits of power law and exponential distributions to the degree distributions of simulated networks.
Panel (a) compares the degree distributions of pure networks and panel (b) compares the degree
distributions of blended networks. Non-significant p-values (based on an alpha-level of 0.05) indicate
that neither distribution is preferred. Significant p-values (based on an alpha-level of 0.05) indicate that
one distribution fits the empirical data better. Based on the 1-sided p-values (see Table A1), the power
law distribution provides a better fit than the exponential distribution for all networks grown by
preferential attachment, except for when the switch to its inverse variant occurs early.

4. Discussion

The key finding from the simulations was that a model where the network was first generated
by PATT for a short period (the first 200 out of 1000 iterations) before switching to the iPATT growth
mechanism led to a network structure that was (i) more densely connected than if the growth models
were reversed (i.e., smaller diameters and ASPL) and (ii) had a degree distribution that could be
accounted for by alternative distributions (i.e., the exponential distribution that provided similar fits to
the data as did the power law).

Recall that Siew and Vitevitch [12] found through an archival analysis and laboratory-based
experiments that novel words that connected to existing words with few phonological neighbors in
the lexicon were more likely to be learned than novel words that connected to existing words with
many connections at later stages of development. We suggested that this switch may arise due to the
increased processing costs associated with navigating a lexicon with a crowded phonological space [22],
as well as the increased pressures on lexical representations to be better differentiated from each other
in a more densely connected phonological lexicon (see the lexical restructuring hypothesis; [23,24]).
We wished to explore these intriguing ideas computationally and simulated networks that were
generated by a blend of different network growth mechanisms. Our results suggest that it is possible
that the development of the phonological network may be better captured, at least partly, by an
alternative network growth algorithm.

Overall, the simulations suggest that a particular combination of the PATT and iPATT network
growth algorithms (i.e., the network that is initially “grown” by PATT followed by inverse PATT) led
to the emergence of network characteristics that are suggestive of increased efficiencies in network
navigation [25] (i.e., lower ASPL and smaller diameter) and degree distributions that are not necessarily
best captured by a pure power law (i.e., not a purely scale-free degree distribution). We observed this in
the case where the network was generated with PATT driving the initial stage for a short period (200 out
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of 1000 iterations) and iPATT driving the later stages of growth. This led to a network structure that was
more densely connected than if the order of the growth models was reversed (i.e., iPATT followed by
PATT) and a degree distribution that could be accounted for by alternative non-power law distributions,
such as the exponential distribution, rather than if preferential attachment persisted for a longer period
of time at the beginning (i.e., PATT continued for a longer period before the switch to iPATT occurred
in the simulations).

Although small, simple networks were simulated in this study, the present findings nevertheless
provide a proof-of-concept that the new growth principle that we proposed—inverse preferential
attachment—can produce a degree distribution that is not necessarily captured by a power law and still
lead to the emergence of network characteristics that facilitate efficient navigation (i.e., small diameter
and low ASPL). These network features are qualitatively similar to the network features observed in
real-world phonological networks [6,21]. In addition, we wish to highlight that the present analyses
do not provide evidence that only the preferential attachment or inverse preferential attachment
mechanisms are directly influencing the network structure of the phonological lexicon. What these
results do suggest is that a countably infinite list of complicated and detailed constraints that capture
the microscopic details of language may not be necessary to produce the structure observed in the
phonological network. Rather, a simple assumption, such as the assumption examined mathematically
by Callaway et al. [13]—stating that newly added nodes do not necessarily need to be attached to an
existing node in the network—may lead to some of the structural features of the phonological network,
such as the presence of lexical hermits in the phonological lexicon as observed by [6]. The results of the
present simulation in conjunction with the long and rich history of research in psycholinguistics also
allows us to constrain our search of possible algorithms involved in the acquisition of words to the
space of plausible algorithms. Furthermore, the results of the present simulation lend credence to the
idea that the principles that affect word learning may change over time as the lexicon becomes more
“crowded” with similar sounding words or other cognitive constraints begin to exert an influence on
acquisition (for similar influences on semantics, see [26]).

Finally, our results provide new avenues for research within the field of network science.
First, although network scientists have previously examined the influence of constraints of costs on
network growth (e.g., financial or space limitations on the expansion of air transportation networks [27]),
the present findings suggest that it may also be important to consider how different costs introduced
at different time-points of development shape future network growth. Second, network scientists
commonly view network growth as operating via a process that maximizes node fitness [3,5]. In the
case of preferential attachment and close variants of this model, the fitness of an individual node
(i.e., its ability to gain new edges) is maximized by attaching to a high-degree node. The present
findings suggest that understanding network growth requires a careful consideration of the functional
purpose of each complex network. In the case of phonological network development, prioritizing the
acquisition of new words that occupy sparser, peripheral areas of the phonological space at later stages
of development when the core of the lexicon is already highly filled out may be especially important
to increase the overall fitness and efficiency of the entire network. This provides accurate coverage
of the entire phonological space in order to attain an overall network structure that is optimized for
language processing. In other words, network growth may not be only about maximizing the fitness of
individual nodes, but may also leverage on different types of network growth algorithms (such as
inverse preferential attachment) to maximize the fitness of the network as a whole in order to facilitate
the processes and operations that occur within that network.
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Appendix A

The appendix contains additional detail in relation to the analyses of the degree distributions of
the simulated networks.

Table A1. Degree distributions of simulated networks were fitted to exponential, log-normal,
and Poisson distributions and compared against the fitted power law distribution using Vuong’s test of
mis-specified, non-nested hypotheses. Note that each set of model comparisons was conducted for
each of the 100 simulated networks per condition or network type. The present table displays the mean
and standard deviations of the test statistic and p-values.

Power Law Vs. Exponential
V-statistic 2-sided p 1-sided p

Network M SD M SD M SD

PATT 2.387 0.614 0.046 0.080 0.023 0.040
Inverse PATT −0.156 0.251 0.800 0.113 0.560 0.098

Random 0.420 0.359 0.682 0.222 0.347 0.120
PATT/Inverse PATT

200/800 1.614 0.399 0.135 0.111 0.067 0.056
400/600 2.320 0.483 0.037 0.048 0.018 0.024
600/400 2.597 0.578 0.025 0.041 0.012 0.021
200/800 2.626 0.511 0.021 0.039 0.011 0.020

Inverse PATT/PATT
200/800 1.116 0.357 0.293 0.151 0.147 0.076
400/600 0.593 0.288 0.570 0.176 0.285 0.088
600/400 0.221 0.241 0.817 0.161 0.416 0.088
200/800 0.009 0.253 0.849 0.120 0.498 0.097

Power law vs. Log-normal
V-statistic 2-sided p 1-sided p

Network M SD M SD M SD

PATT −0.735 0.350 0.488 0.171 0.756 0.085
Inverse PATT −0.695 0.227 0.498 0.137 0.751 0.069

Random −0.672 0.267 0.517 0.160 0.742 0.080
PATT/Inverse PATT

200/800 −0.777 0.201 0.446 0.091 0.777 0.045
400/600 −0.809 0.391 0.448 0.132 0.776 0.066
600/400 −0.798 0.340 0.450 0.154 0.775 0.077
200/800 −0.774 0.354 0.465 0.138 0.768 0.069

Inverse PATT/PATT
200/800 −0.519 0.272 0.618 0.172 0.691 0.086
400/600 −0.500 0.272 0.631 0.176 0.685 0.088
600/400 −0.514 0.260 0.620 0.167 0.690 0.084
200/800 −0.590 0.270 0.570 0.171 0.715 0.085

Power law vs. Possion
V-statistic 2-sided p 1-sided p

Network M SD M SD M SD

PATT 1.860 0.066 0.063 0.009 0.032 0.005
Inverse PATT 3.198 0.411 0.003 0.005 0.002 0.003

Random 2.453 0.151 0.015 0.006 0.008 0.003
PATT/Inverse PATT

200/800 3.390 0.161 0.001 0.001 0.000 0.000
400/600 2.926 0.138 0.004 0.002 0.002 0.001
600/400 2.554 0.118 0.011 0.003 0.006 0.002
200/800 2.184 0.075 0.029 0.005 0.015 0.003

Inverse PATT/PATT
200/800 1.899 0.072 0.058 0.009 0.029 0.005
400/600 1.967 0.084 0.050 0.009 0.025 0.005
600/400 2.103 0.118 0.037 0.010 0.018 0.005
200/800 2.460 0.240 0.017 0.012 0.008 0.006
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Figure A2. Boxplots of two-sided p-values from Vuong’s test of non-nested models comparing
the fits of power law and Poisson distributions to the degree distributions of simulated networks.
Panel (a) compares the degree distributions of pure networks and panel (b) compares the degree
distributions of blended networks. Significant p-values (based on an alpha-level of 0.05) indicate that
one distribution fits the empirical data better. Based on the one-sided p-values (see Table A1), the power
law distribution provides a better fit than the Poisson distribution.
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