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Significant contribution of small icebergs to the
freshwater budget in Greenland fjords
Soroush Rezvanbehbahani 1,2✉, Leigh A. Stearns 1,2, Ramtin Keramati3, Siddharth Shankar1,2 &

C. J. van der Veen4

Icebergs represent nearly half of the mass loss from the Greenland Ice Sheet and provide a

distributed source of freshwater along fjords which can alter fjord circulation, nutrient levels,

and ultimately the Meridional Overturning Circulation. Here we present analyses of high

resolution optical satellite imagery using convolutional neural networks to accurately

delineate iceberg edges in two East Greenland fjords. We find that a significant portion of

icebergs in fjords are comprised of small icebergs that were not detected in previously-

available coarser resolution satellite images. We show that the preponderance of small

icebergs results in high freshwater delivery, as well as a short life span of icebergs in fjords.

We conclude that an inability to identify small icebergs leads to inaccurate frequency-size

distribution of icebergs in Greenland fjords, an underestimation of iceberg area (specifically

for small icebergs), and an overestimation of iceberg life span.
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Iceberg production is recognized as a self-organized critical
process with fractal frequency–size distribution1,2 resulting in
large numbers of small icebergs. Over the last decade, several

studies have investigated the size and spatial distribution of ice-
bergs in Greenland and Antarctica using both optical3,4 and radar
imagery5–7. The goal of those studies has been to identify or track
large icebergs (surface area A ≥ 105 m2) with long life spans.
While identifying large icebergs in open waters may appear
straightforward (due to the sharp contrast between the reflectance
properties of ice and water), identifying small icebergs (hereafter
icebergs with A ≤ 103 m2) is particularly challenging in optical
imagery for two main reasons: (1) small icebergs often have a
lower contrast in open water and appear as ‘dark spots’ and (2)
aggregates of small icebergs often appear as one large iceberg.
Given that the majority of the previous work on iceberg seg-
mentation is done using threshold-based algorithms, small ice-
bergs are either left unidentified or are clustered as large icebergs.
The latter may not introduce a significant error in terms of total
iceberg area in a fjord, but it skews iceberg frequency–size dis-
tributions and consequently melt rate estimates. Although high-
resolution images (~0.5 m) have been used in iceberg detections8,
small icebergs are often neglected and their importance has not
been investigated.

Here we use high-resolution optical satellite imagery from
PlanetLabs with a spatial resolution of ~3 m to segment icebergs
in Sermilik and Kangerlussuaq fjords in East Greenland. For
precise segmentation of various iceberg sizes, we employ a deep
learning approach and train a convolutional neural network,
UNet9 (hereafter P-UNet, to designate the use of UNet on Planet
imagery). UNet architecture consists of a downsampling and an
upsampling branch for object identification and localization
within the image (see Section S2.1). Although applicability of
optical imagery in polar regions is limited by cloud cover or lack

of solar illumination, these images are substantially easier to use
for providing ground truth data required for training. We choose
nearly 400 sub-images (up to ~2000 × 2000 m) from Greenland
fjords with a varying number of icebergs in each sub-image. We
manually annotate a total of 10,000 instances of icebergs in those
sub-images and perform elastic deformation and random rotation
to augment the training data to a total of 1800 sub-images (over
40,000 iceberg instances, see Section S2.2). We label Planet sub-
images from different fjords in east and west Greenland to
incorporate variations in our training data. Because identifying
iceberg edges is crucial for frequency–size distributions, we apply
a weighted cross-entropy loss function that penalizes the false
detection of edges five times greater than false detections of non-
edge regions. We perform hyperparameter tuning to find the best
parameters that minimize the loss function and conduct cross-
validation to ensure that the model is not overfitting (see
Section S2.2).

In order to compare the effect of resolution and segmentation
method on iceberg detection, we acquire near-coincident (same
day) Sentinel-2 imagery at ~10 m resolution. Iceberg detection
using optical imagery is commonly done using a thresholding
scheme; through a manual iterative process, a pixel intensity
threshold is defined above which icebergs are detected4,8. Fol-
lowing Moyer and others (2019), we use a normalized digital
number of 0.13 from the Top of the Atmosphere (TOA) reflec-
tion on the near-infrared band (B8) of Sentinel-2 imagery as a
threshold for differentiating between icebergs and fjord water
(hereafter S-TOA, to designate the use of TOA thresholding on
Sentinel-2 imagery). Sentinel-2 tiles are acquired on June 15 and
July 7, 2019, for Sermilik and Kangerlussuaq fjords, respectively.
The near-coincident image acquisition of Planet and Sentinel-2
imagery (~30 min apart for Sermilik Fjord and <2 h apart for
Kangerlussuaq Fjord) allows a close comparison between high

Fig. 1 Visual comparison of the two segmentation methods. Examples of UNet performance on Planet imagery a, c vs. conventional thresholding of top of
atmosphere (TOA) of Sentinel-2 imagery b, d. Both images a, b are acquired roughly 30min apart on June 15, 2019. Note the small patch of cloud that is in
the left-center of both Planet and Sentinel-2 images, which is falsely detected as an iceberg with thresholding method, while UNet predicts a true negative.
The colormap shows the probability of iceberg detections which is set to ≥75% for UNet detections. Panel a is from ©Planet Labs Inc. 2020. All Rights
Reserved.
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(3 m) to moderate resolution (10 m) imagery on iceberg seg-
mentation (Fig. 1). Our analysis is focused on non-mélange
regions, because the spectral properties of icebergs within mél-
ange are substantially different from that in open water. All
images contain <10% cloud cover.

Note that since our study is focused on exploring the impor-
tance of small icebergs, we do not perform UNet on Sentinel-2
imagery. Icebergs that occupy <3–4 pixels in Sentinel-2 imagery
(A < 500 m2) are extremely hard to identify and manually anno-
tate. This would lead to unreliable training data which hinders
robust segmentation of small icebergs. Alternatively, thresholding
methods can be applied on high-resolution Planet imagery,
however, our analysis using global thresholding and Otsu
thresholding methods shows that the frequency–size distribution
of icebergs cannot be accurately obtained with generic thresh-
olding methods (see Supplementary Fig. 3), hence, highlighting
the superiority of convolutional neural networks for iceberg
detection.

Results
Iceberg size distribution. Our results show that the net surface
area of detected icebergs can be substantially different between
the two approaches. For Sermilik Fjord, segmentation with P-
UNet detects 60.4 ± 7.2 km2 area of icebergs in the fjord. This
surface area is nearly 50% greater than the iceberg surface area
obtained with S-TOA (42.9 ± 7.7 km2). Both methods robustly
detect large icebergs with A ≥ 104 m2 (~11.5 vs. ~14 km2 for P-
UNet and S-TOA, respectively). S-TOA slightly overestimates the
total area of large icebergs, due to erroneous merging of clusters
of small neighboring icebergs with large ones. However, the total
number of small icebergs in Planet imagery is nearly five times
greater than those in Sentinel-2 (Fig. 2a, b). This count difference
translates to a net surface area of ~4 km2 for P-UNet, as opposed
to ~1 km2 for small icebergs using S-TOA. Also, a large portion
of differences between P-UNet and S-TOA lies in the range of
102 <A < 103 (roughly 2–4 pixels in Sentinel-2 imagery), where
icebergs are not sufficiently bright to be detected by thresholding

methods (Figs. 1 and 2). Similar results are obtained for Kan-
gerlussuaq Fjord, however, the area under estimation of S-TOA
and abundance of small icebergs is less pronounced. The total
number of small icebergs for Kangerlussuaq Fjord is ~13,000
icebergs, more than double the number for S-TOA (Fig. 2c, d).

The frequency–size distribution of icebergs in fjords is often
expressed as power-law when iceberg formation is mostly fracture-
dominated and log-normal when dominated by iceberg melt2,4.
However, these designations are without the inclusion of small
icebergs. Our analysis confirms that iceberg frequency–size
distributions exhibit a power-law, that is n∝A−α, with n the
number of icebergs. However, the power-law distribution applies
only for icebergs greater than ~300m2 (Fig. 3). For Sermilik Fjord,
S-TOA results in a power-law distribution with α= 1.29, as
opposed to α= 1.27 for P-UNet (Fig. 3a). A smaller difference in
power-law exponents is obtained for Kangerlussuaq Fjord (Fig. 3b).

While power-law distribution holds for iceberg sizes greater
than ~300 m2, it sharply deviates from power-law at small
icebergs, hinting at a critical shift in the dominant processes that
control different populations2,4,10. For icebergs with A ≤ 300 m2,
the distribution becomes relatively steady. The observed uni-
formity in frequency of small icebergs is likely due to the fact that
small icebergs do not fracture and produce smaller icebergs;
instead they shrink and deteriorate only by melting10. Identifying
the physical meaning of critical iceberg sizes requires further
investigation and is beyond the scope of the present work.

The spatial variation in frequency–size distribution is very
heterogeneous in both fjords (Fig. 4). Along Sermilik Fjord, both
segmentation methods show a notable peak in iceberg sizes
ranging ~100–500 m2, with a gradual decrease away from
terminus (Fig. 4a, b). However, iceberg size distribution in
Kangerlussuaq Fjord exhibits three ‘clusters’ of iceberg frequency,
peaking within the same size range of ~100–500 m2 (Fig. 4c, d).
The cause of these cluster formations requires further investiga-
tion, however, it is potentially linked to water and wind
circulation along the fjord. Both segmentation techniques exhibit
similar spatial patterns along the fjord, but the number of iceberg
detections are more pronounced in P-UNet. The decrease in

Fig. 2 Area and frequency of icebergs in two Greenland fjords. Distribution of icebergs in Sermilik fjord for a UNet on Planet imagery, and b top of
atmosphere thresholding on Sentinel-2 imagery, and similar results for Kangerlussuaq Fjord c, d. Purple bar charts show the iceberg size distribution (left y-
axis) and green lines represent the net area in each bin (right y-axis). Mean weighted error is ~12% for P-UNet and 18% for S-TOA (see Section S2.3).
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number of icebergs smaller than ~100 m2 is evident in P-UNet
detections for both fjords (Fig. 4a, c).

Iceberg melt rate and life span. In order to evaluate the sig-
nificance of small icebergs in the freshwater budget, we derive a
simple set of equations to estimate the freshwater discharge from
icebergs. The melt rate is governed by three major processes11,12

(i) wave erosion induced by winds, Me, (ii) erosion of the sub-
merged sidewall from buoyancy convection, Mv, and (iii) turbu-
lent melt at the bottom of icebergs, Mb. Among these processes,
wave-induced erosion of submerged sidewalls is at least an order
of magnitude greater than the other two13. Our derivation
incorporates Me and Mv, while Mb is assumed negligible relative
to Me. These melt rates can be estimated using fjord water

Fig. 3 Frequency–size distribution of icebergs in the two fjords. Distribution of iceberg area within a Sermilik, and b Kangerlussuaq fjords. Solid blue and
orange lines correspond to power-law fits (with α exponents) for P-UNet and S-TOA segmentations, respectively. Shaded background areas show the
range of data used for colored power-law fits with Amin determined by minimizing misfit between data and power-law distribution function23,24 (see
“Methods” section). The black dashed lines represent the power-law fit to the entire data spectrum. The power-law for the entire S-TOA iceberg sizes is
very similar to the optimal fit, while the slopes are very different for P-UNet fits. Note that small icebergs (≤300m2 in P-UNet) clearly deviate from a
power-law distribution and are therefore excluded from the fits. Relative abundance is defined as the ratio of number of icebergs in each bin divided by the
total number of icebergs.

Fig. 4 Spatial distribution of icebergs in two Greenland fjords. 2-D histogram of icebergs' size distribution along the fjord for a, b Sermilik, and c, d
Kangerlussuaq fjords for both segmentation methods. Colors show the number of icebergs. x-axis starts near the terminus and ends near fjords mouth (see
Supplementary Fig. 1). Note that the two fjords have different color ranges.
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properties and wind conditions (see Section S4), and are much
greater than surface melt rate13 which is ignored here.

To estimate the width and keel depth of icebergs given their
surface area, we use empirical relations that link the longest
length of an iceberg (L) to iceberg width (W= L/1.62) and keel
depth (D= 2.91L0.71)13,14. L is chosen as the maximum length of
a rectangular bounding box around an iceberg. This assumption
allows the derivation of a time-dependent volume/mass relation-
ship of icebergs (see Section S4) that reads

MðtÞ ¼ ρice1:8 �ðMe þMvÞt þ L½ �2:71; ð1Þ
where ice density is ρice= 917 kg m−3, and t denotes time (in s).
The mass of fresh water from iceberg melt is estimated from the
difference between M(t) in Eq. (1), and the total iceberg mass
M= ρiceLW D= ρice1.8L2.71. Iceberg life span, T �, can be readily
estimated by setting M(t)= 0, therefore, T � ¼ L0

MeþMv
, where L0 is

the initial length of an iceberg.
To estimate the spatial distribution of meltwater production,

we divide the fjords into 2.5 km segments; within each segment
we estimate the melt rate, as well as iceberg life span (Fig. 5a, b).
These variables are estimated for both P-UNet and S-TOA
segmentations. Our estimates of freshwater mass production
using S-TOA match those of ref. 15. For Sermilik Fjord our
discharge estimate along the fjord is ~1310 ± 420 m3 s−1 which is
comparable to 1270 ± 735 m3 s−1 for the June–July average in
201715, confirming the validity of our freshwater estimates
(Fig. 5a). However, the estimated freshwater production using
P-UNet in Sermilik Fjord is ~2020 ± 630m3 s−1 which is more
than 50% greater than that of S-TOA. These results demonstrate
the significant input of freshwater delivery to Sermilik Fjord due
to the large number of small icebergs. The estimated melt rates
for Kangerlussuaq Fjord using P-UNet is greater than that of S-
TOA. Since the difference between the net iceberg detections are
not as great as those of Sermilik Fjord, the freshwater discharge
estimates are more similar (Fig. 5b). However, note that S-TOA
overestimates the net area of large icebergs (A > 104 m2, Fig. 2c, d)

which partially explains why the freshwater estimates are closer
for Kangerlussuaq fjord.

Our analysis shows that a large portion of icebergs will not live
longer than ~10 days. Since the majority of these small icebergs
are close to the terminus, we conclude that most icebergs
disintegrate before reaching the ocean (similar to findings using
Sentinel-2 data for large icebergs15). The difference between life
span calculations is more notable for Sermilik Fjord (Fig. 5c), and
is less pronounced for Kangerlussuaq Fjord (Fig. 5d).

Discussion
A comparative study of different sources of freshwater input to
Sermilik Fjord shows that although the peak of subglacial dis-
charge is greater than iceberg melting, the net freshwater from
icebergs exceeds subglacial discharge on an annual scale. The
findings of ref. 13 are based on an average June–July melt rate
estimates of ~400–600 m3 s−1, nearly 3–5 times smaller than our
~2020 m3 s−1 estimates. Although the analysis of temporal
changes of icebergs freshwater distribution is beyond the scope of
the present work, if we assume that the contribution of small
icebergs is proportionally the same throughout the year, the
freshwater budget from iceberg melt can be up to five times
greater than some previous estimates13.

In addition to direct estimation of iceberg freshwater flux from
iceberg detections, alternative methods have been developed to infer
freshwater discharge from analyzing heat and salt budget in
Greenland fjords16. Applying these indirect methods to Sermilik
Fjord suggests that the net freshwater discharge (iceberg melt and
glacier submarine melt) in the summer is ~1200 ± 700m3 s−1.
Although these estimates are for a different time period than our
analysis (2011–2013), they are substantially lower than estimates
presented in this study. Unlike large icebergs, freshwater delivery
from small icebergs is near the surface that may induce a different
buoyancy-driven circulation from the freshwater forcing in the
fjord. Investigating the oceanographic implications of our findings

Fig. 5 Estimates of freshwater discharge from icebergs along fjords and iceberg life span in each fjord. The distance between melange edge and fjord
mouth is divided into 2.5 km segments and melt rate is calculated within each segment. Solid lines in panels a and b represent melt rate calculations with
wind velocity v!a ¼ 1:7m s−1 which is the mean v!a for June–July 2019, obtained from PROMICE MIT weather station25. Colored regions represent one
standard deviation of wind velocity σ= 1.2 m s−1 (see Section S4). Life span histograms are calculated with v!a ¼ 1:7m s−1. Note the differences in y-axes.
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requires improved analysis of salt and heat budget of Greenland
fjords using the updated estimates of freshwater budget.

We note that in estimating life span and melt rate, we have not
considered the stratigraphy of the fjord water and the possibility
of having two different water currents at depth. The stratigraphy
of fjord water becomes important when the iceberg has a deep
keel and portions of the iceberg fall in the boundary between two
different water flow regimes in the fjord17. In such cases, velocity
difference of water currents at depth can substantially alter the
melt rate. However, since the focus of our study is the significance
of small icebergs, we ignore these fjord properties.

Apart from the glaciologic and oceanographic significance of
iceberg detection, they are becoming increasingly important for
maritime transport. With the increase of Arctic temperatures and
the decline in perennial sea ice coverage, a larger region of the
Arctic will be open to marine transportation. Therefore, it is crucial
to accurately identify both small and large icebergs in Greenlandic
fjords and the North Atlantic ocean, as well as investigating their
trajectories18–20 with high spatial and temporal resolution.

Methods
Manual annotation. We obtain PlanetScope tiles from different fjords in east and
west Greenland and divide them into sub-images of up to ~700 × 700 pixels for
manual annotation. We label nearly 200 sub-images with a total of about 10,000
individual iceberg annotations. The annotation is done using VGG annotation
tool21. Data augmentation is done using elastic deformation and random rotation
to increase the training data.

Training and validation. We use a deep convolutional neural network archi-
tecture, UNet9, for iceberg detection. A weighted cross-entropy loss function is
implemented, with iceberg edges weighted five times greater than the rest of the
sub-image. This heavy penalization ensures that the network identifies iceberg
edges properly. Cross-validation is then performed by training on ~80% and
validating on ~20% of the labeled sub-images. We use Adam optimizer22 to
minimize the weighted cross-entropy loss function. The loss function is minimized
by a learning rate of 5 × 10−5 in 50 epochs with 100 iterations in each epoch.
Hyperparameter tuning is performed to ensure the loss is minimized, and a
dropout of 0.75 is used to prevent overfitting.

Power-law distributions. Power-law fits to empirical data vary based on the
choice of linear or log-space bins4. Because the iceberg sizes span several orders of
magnitude, linear binning is inappropriate. Therefore, we divide the distance
between the minimum and maximum size of icebergs into 100 logarithmic bins.

Empirical power-law fits often require a minimum value (i.e., xmin) below which
the power-law does not apply. In our case, the minimum iceberg size is determined
by finding the smallest iceberg size that minimizes the Kolmogorov–Smirnov
distance between data and the power-law fit23. For Sermilik Fjord, optimized Amin
values for P-UNet and S-TOA are 288 and 12,000 m2, respectively. For
Kangerlussuaq Fjord these values are 387 and 3200 m2 for P-UNet and S-TOA. The
Amin is calculated using Python ‘powerlaw’ library24.

Iceberg melt rate. The three dominant iceberg melting processes are formulated
as

Me ¼ a1j v!aj
1=2 þ a2j v!aj; ð2Þ

Mv ¼ b1Tw þ b2Tw
2; ð3Þ

Mb ¼ cj v!w � v!ij
4=5ðTw � T iÞ L�1=5: ð4Þ

The numerical investigation of ref. 13 shows that Me≫Mv, Mb, therefore, our
analysis only includes Me and Mv. Surface air velocity, iceberg velocity, and surface
water velocity are represented by v!a, v

!
i , and v!w, respectively, and Tw denotes the

sea surface temperature (SST) at 4 °C. Since basal melt is ignored in our analysis,
the derived formulation is independent of parameters in Mb. v!a is chosen as the
mean recorded wind velocity during June–July 2019 from PROMICE MIT weather
station25 (see Supplementary Fig. 1). The coefficients to the above equations are
reported in Section S4.

Using empirical relations of ref. 14, we derive a time-dependent freshwater
production from iceberg melt, where width, W, and keel depth, D, are expressed as
a function of iceberg length, L, as W ¼ L

1:62 and D= 2.91L0.71, which leads to an
expression for volume as V= 1.8L2.71. Because dL

dt ¼ �Me �Mv
26, integration

results in a time-dependent expression for iceberg length as

LðtÞ ¼ �ðMe þMvÞt þ L0; ð5Þ

with t as time (in s) and L0 the initial iceberg length. Applying the above equation
in the volume–length relationship and converting volume to mass leads to an
equation that expresses the iceberg mass as a function of time as

MðtÞ ¼ 1:8ρice �ðMe þMvÞt þ L0½ �2:71: ð6Þ
When M(t)→ 0, one can determine the life span of an iceberg (T �), therefore,

T � ¼ L0
Me þMv

: ð7Þ

Data availability
Sentinel-2 imagery used in this study are available through Sentinel Hub EO Browser
https://apps.sentinel-hub.com/eo-browser/ and Planet imagery are obtained from www.
planet.com. Unique IDs are listed in Supplementary Tables 1 and 2.

Code availability
The codes developed for training the network and performing the analysis are available at
https://bitbucket.org/soroushr/planet-unet/src/master/.
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