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A B S T R A C T

The Ebola Virus is a causative agent of viral hemorrhagic fever outbreaks and a potential global health risk. The
outbreak in West Africa (2013–2016) led to 11,000+ deaths and 30,000+ Ebola infected individuals. The
current outbreak in the Democratic Republic of Congo (DRC) with 3000+ confirmed cases and 2000+ deaths
attributed to Ebola virus infections provides a reminder that innovative countermeasures are still needed. Ebola
virus encodes 7 open reading frames (ORFs). Of these, the nucleocapsid protein (eNP) encoded by the first ORF
plays many significant roles, including a role in viral RNA synthesis. Here we describe efforts to target the C-
terminal domain of eNP (eNP-CTD) that contains highly conserved residues 641–739 as a pan-Ebola antiviral
target. Interactions of eNP-CTD with Ebola Viral Protein 30 (eVP30) and Viral Protein 40 (eVP40) have been
shown to be crucial for viral RNA synthesis, virion formation, and virion transport. We used nuclear magnetic
response (NMR)-based methods to screened the eNP-CTD against a fragment library. Perturbations of 1D 1H
NMR spectra identified of 48 of the 439 compounds screened as potential eNP CTD interactors. Subsequent
analysis of these compounds to measure chemical shift perturbations in 2D 1H,15N NMR spectra of 15N-labeled
protein identified six with low millimolar affinities. All six perturbed an area consisting mainly of residues at or
near the extreme C-terminus that we named “Site 1” while three other sites were perturbed by other compounds.
Our findings here demonstrate the potential utility of eNP as a target, several fragment hits, and provide an
experimental pipeline to validate viral-viral interactions as potential panfiloviral inhibitor targets.

1. Introduction

Ebola virus (EBOV) causes severe hemorrhagic fevers with case
fatality rates up to 90% during rare outbreaks (Feldmann and Geisbert,
2011). The major 2013–2016 outbreak in West Africa (Messaoudi et al.,
2015) and the more recent outbreak in the Democratic Republic of
Congo (DRC) have motivated increased efforts to develop counter-
measures. As yet, only a handful of therapies are under consideration
for approval, with some recently receiving approval, while others are
being used for emergency basis and under compassionate use guideline
(Geisbert, 2017). Moreover, like other hemorrhagic fever viral infec-
tions, it appears that convalescent plasma and sera have shown some
efficacy (Group et al., 2016). Recent efforts have mainly focused on
therapeutics to target the Ebola Virus in three ways. The most popular

and effective method is targeting the viral life cycle. Disruption of the
cycle at key steps like RNA synthesis have been shown to be effective in
in vitro and mice models, making small molecule inhibitors, antisense
therapies like siRNA, and phosphorodiamate morpholino inhibitors as
potent antiviral agents (Bixler et al., 2017). Other therapies have aimed
to disrupt host-viral interactions, like the interaction of GP with host
entry proteins like cathepsins (Bixler et al., 2017). Scientists have also
looked to combat the disease via immune-modulatory therapies, like
vaccines such as the Zmapp cocktail and therapeutics that can tame the
cytokine storm and limit inflammation (Bixler et al., 2017). While the
efforts on these different pipelines look promising, there is a clear gap
in the small molecule approach, which can have significant advantages
over vaccines and biologics, with their lower compliance burden and
cold chain custody requirement. We describe here our efforts to target a
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key EBOV component by screening a small molecule fragment library.
The EBOV genome is a non-segmented, single-stranded, negative-

sense RNA encoding seven open reading frames (ORFs) (Messaoudi
et al., 2015). Among these ORFs, only the RNA-dependent RNA poly-
merase (RdRp) known as the Large or “L” protein, has enzymatic ac-
tivity. While the L protein has so far resisted both structural determi-
nation and effective drug development, there are some broad-spectrum
inhibitors. Therefore, an attractive alternative is the disruption of
protein-protein or protein-RNA interactions. Drugs targeting interac-
tions also have the purported advantage of slowing the development of
resistance, since resistance may require a mutation disallowing drug
binding and a second complementary mutation in the partner to restore
the interaction (Cierpicki and Grembecka, 2015; Zinzalla and Thurston,
2009). Complete or partial structures of all six proteins have been
solved, an enormous advantage in this effort. However, targeting in-
teractions is challenging owing to the relatively flat, featureless surfaces
often involved, as well as the relative novelty of this approach com-
pared to targeting of enzyme active sites.

In this work we targeted the EBOV nucleoprotein (eNP), a multi-
functional protein that is essential for genome replication, genome
packaging, transcription, and viral structure. eNP binds the ssRNA viral
genome and protects it from host nucleases, associates with proteins L/
VP35/VP24/VP30 and genomic RNA to form the transcription/re-
plication complex, and is essential for formation of the multiprotein
nucleocapsid structure that surrounds the genome in the free virus
(Messaoudi et al., 2015; Ruigrok et al., 2011).

The 739-residue eNP protein can be divided into structured hy-
drophobic N-terminal (1–450) and hydrophilic C-terminal domains
(641–739) separated by a comparatively unstructured region
(Dziubanska et al., 2014; Leung et al., 2015). The C-terminal domain
(eNP-CTD) has no significant homology to any other protein; and its
function is unclear; however, it is highly conserved among EBOV strains
(Sherwood and Hayhurst, 2013); its deletion results in loss of viral
viability (Muhlberger, 2007; Muhlberger et al., 1999); and antibodies
cross-linked to it reduce viral progeny (Darling et al., 2017). It has been
proposed that eNP-CTD is a hub for protein-protein interactions in the
nucleocapsid (Dziubanska et al., 2014; Licata et al., 2004). Collectively,
eNP-CTD and the unstructured region bind matrix protein VP40 (Licata
et al., 2004; Noda et al., 2007) and transcription activator VP30 (Xu
et al., 2017) and appear to regulate nucleocapsid formation, virion
assembly, and budding (Bharat et al., 2012; Licata et al., 2004; Noda
et al., 2007; Su et al., 2018).

High-resolution X-ray structures of eNP-CTD (PDB codes 4QB0 and
4QAZ) solved by Dziubanska and coworkers (Dziubanska et al., 2014)
show a four α-helix/four β-strand arrangement distantly related to the
β-grasp superfamily. It has been speculated that the extreme C-terminal
helix is a critical central scaffold (Dziubanska et al., 2014).

Development of drug leads by screening with low molecular weight
(< 200 Da) compound “fragments” instead of larger drug-like mole-
cules is increasingly popular; much smaller chemical libraries are re-
quired for reasonable coverage of chemical space, and hit rates are
much higher, typically 3–10% (Hubbard, 2016). However, such hits are
weak binders (Kd high μM to low mM) and require extensive develop-
ment, often including chemical linkage of fragments binding to neigh-
boring sites, to develop drug-like affinity. Nuclear magnetic resonance
(NMR) spectroscopy is one of only a few techniques that can detect such
weak interactions.

We screened eNP-CTD against 439 fragment compounds. We used a
one-dimensional 1H NMR ligand-observe screen to quickly filter the
chemical library to a manageable number of hits while requiring rela-
tively small amounts of unlabeled protein. We carried out a secondary
screen of the initial hits by two-dimensional 1H,15N Heteronuclear
Single Quantum Coherence (HSQC) spectra of 15N labeled protein in the
absence and presence of added ligand, which determined binding lo-
cation and affinity. Six chemically diverse compounds were found to
bind to four sites on the protein surface with low mM affinity. All six

compounds perturbed the chemical shifts of residues in the extreme C-
terminus and those structurally nearby. Subsets of the six compounds
perturbed residues located in three other sites. We chose from a sepa-
rate fragment library 25 new compounds that were structurally similar
to the best of the six hits, and screening of these identified several with
Kd values of approximately 1 mM.

2. Materials and methods

2.1. NMR spectroscopy

All NMR spectra were acquired at 298 K (25 °C) on a Bruker Avance
III 600 MHz spectrometer (Billerica, MA, USA) equipped with a 1H
(13C/15N/31P) cryogenic probe SampleJet autosampler and Topspin v.
3.5p17 software. One-dimensional proton spectra were collected using
the ZGESGPPE pulse sequence (Adams et al., 2013; Hwang and Shaka,
1995). MestreNova v12.0 software (Mestrelab Research S.L., Santiago
de Compostela, Spain) was used to process and overlay spectra for
comparison of peak intensities and frequencies; 1H,15N Heteronuclear
Single Quantum Coherence (HSQC) perturbation and titration experi-
ments were analyzed with the same software with the addition of the
Chemical Shift Perturbation (Mbinding) plugin.

2.2. Preparation of fragment compound mixtures

The 1000-compound Maybridge Ro3 Core fragment library and the
2500-compound Maybridge Ro3 library were purchased from Thermo-
Fisher Scientific (Waltham, MA, USA). We diluted 2.4 μL of each
compound in plates 1–3 and 5–7 of the Core Library (483 total com-
pounds supplied as 10 mM in 100% DMSO‑d6) to 160 μL with Screening
Buffer A (11 mM bis-Tris-d19 buffer, pH 7.4, 150 mM NaCl, 0.04%
NaN3, with 15 μM DSS (Dimethyl-silapentane-sulfonate) and 200 μM
Na sodium formate as chemical shift references, in D2O) to achieve a
final concentration of 150 μM. For collection of 1H NMR reference
spectra, solutions were transferred into 3 mm Bruker SampleJet tubes.
We developed MestreNova scripts for high throughput spectral pro-
cessing and to generate peak lists used as input to NMRMix (Stark et al.,
2016) for the virtual assembly of mixtures with minimal peak overlap
(93 mixtures of 4–5 compounds each). We used another in-house script
(H. Dashti, unpublished) that converted the output from NMRMix to a
worklist for an Eppendorf (Hauppauge, NY) epMotion 5075 liquid-
handling robot, which physically assembled mixtures of the compounds
so that each was 2 mM in DMSO‑d6.

2.3. Protein expression and purification

Both unlabeled and 15N labeled eNP (641–739) proteins were ex-
pressed as maltose binding protein (MBP) fusion proteins in BL21(DE3)
E. coli cells (Novagen). For unlabeled protein, LB media was used. For
15N labeling, M9 media was used supplemented with 1.5 g/L15N NH4Cl,
2 g/L glucose, 0.1 mM CaCl2, 1 mM MgSO4, and 1X vitamin mix
(Sigma-Aldrich B6891). Protein expression was induced at an optical
density of 0.6 (measured at 600 nm) with 0.5 mM IPTG and grown for
12–15 h at 18 °C. Cells were harvested, resuspended in lysis buffer
containing 25 mM Tris (pH 7.5), 150 mM NaCl, 20 mM imidazole, and
5 mM 2-mercaptoethanol (BME), lysed using an EmulsiFlex-C5 homo-
genizer (Avestin), and clarified by centrifugation at 30,000×g at 4 °C
for 45 min eNP 641–739 constructs were purified using a series of af-
finity and ion exchange chromatographic columns. The MBP tag was
cleaved using TEV protease prior to a final application on a size ex-
clusion column. The purity of the samples was determined by SDS-
PAGE.

2.4. Initial ligand-observe fragment screening by 1H T2 relaxation NMR

Protein was buffer-exchanged by centrifugal filtration into
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Screening Buffer A (described above) or Screening Buffer B (50 mM
phosphate buffer, pH 7.4, 75 mM NaCl, 0.04% NaN3, 15 μM DSS, in
D2O); the protein concentration in these buffers was adjusted to 15 μM.
Fragment compound mixtures were diluted from 6 μL to a final 160 μL
with screening buffer (for samples without protein) or with 15 μM
protein in the same buffer (for samples with protein). Final con-
centrations were 75 μM for each compound and 3.75% v/v for
DMSO‑d6.

2.5. Secondary protein-observe screening by 1H,15N HSQC NMR

We utilized 2D 1H,15N HSQC NMR spectra of 15N-labeled protein to
detect chemical shift perturbations from backbone and side-chain
amide groups resulting from the addition of hit compounds from the
initial screen. Experiments were performed in 10 mM HEPES buffer, pH
7.0, 150 mM NaCl, 0.04% NaN3, with 10% D2O for the frequency lock.
Perturbation tests were performed with compounds at 1628 μM and
protein at 50–100 μM. Titrations to determine affinity were performed
with compounds at 25, 51, 153, 407, 814, and 1628 μM, and protein at
35–100 μM. Significant perturbation for individual residues was de-
fined as ≥ 0.015 ppm combined 15N/1H perturbations, using
MestreNova's default normalization factor (Eq. (1)):

([ΔδH]2 + [0.156*ΔδN]2)0.5 (1)

We combined chemical shift perturbation data from multiple titra-
tion experiments on residues within discrete binding sites to determine
Kd values and standard errors for each compound and binding site. We
used SigmaPlot 13.0 (Systat Software, Inc., San Jose, CA) to analyze the
data according to “Simple Ligand Binding” and “one site saturation” (Eq
(2)):

y = Bmaxx/Kd + x (2)

2.6. FTMap analysis

We used the FTMap computational map server (Kozakov et al.,
2015) to identify ligand-binding hotspots. The NP-CTD structure 4QB0
(Dziubanska et al., 2014) was uploaded, and analysis run in PPI (Pro-
tein-Protein Interaction) Mode, according to instructions. The results
were visually inspected using PyMol (DeLano, 2002).

2.7. Virtual ligand docking

We used the docking program HADDOCK (van Zundert et al., 2016)
according to instructions for “Small Molecule Binding Site Screening” to
predict ligand binding locations and poses. eNP-CTD structure 4QBO
was manually formatted to HADDOCK specifications. Perturbed eNP-
CTD residues identified in this work were used in an initial step as
unambiguous restraints to place the ligand within binding sites, then as
ambiguous restraints to allow the molecule to move within the site.

3. Results and discussion

3.1. Testing fragment compounds and assembling mixtures

We purchased a compound fragment screening library to test for
binding against recombinant NP. To validate the identity and purity of
the compounds from Maybridge, we used the provided structure along
with the 1D 1H NMR spectrum of each of 483 compounds as input to
GISSMO software (Dashti et al., 2017b,
2018bib_Dashti_et_al_2018bib_Dashti_et_al_2017b) used in simulating
its spin system matrix. We used in-house software [H. Dashti, an un-
published extension to ALATIS (Dashti et al., 2017a)] to overlay the
spectrum simulated from the spin system matrix with the experimental
spectrum. This analysis identified 439 of the compounds as chemically
correct and free of major contaminants (all spectra and their corre-
sponding spin system matrices are available at http://gissmo.nmrfam.
wisc.edu/library by chemical name and by Maybridge Ro3 Core Library
plate positions). Confirmed compounds were assembled into mixtures
as described in Materials and Methods.

3.2. Initial screening of eNP-CTD protein against fragment compounds

We collected 1D 1H NMR spectra of the fragment compound mix-
tures without and with unlabeled eNP-CTD protein. Comparison of
overlaid spectra indicated 48 compounds exhibiting binding-induced
spectral perturbations (Fig. 1).

One of the 48 compounds, Maybridge CC03846, was predicted by
online tools ZINC Patterns Identifier (Irwin et al., 2015) and Dock
Advisor (Ferreira et al., 2010) to self-aggregate, which often results in
non-specific binding and false positive results (Dahlin et al., 2015;
Ferreira et al., 2010)). Experimental confirmation was obtained as
disaggregation-induced changes in chemical shifts, peak dispersion, and
peak intensity in 1D 1H NMR spectra as a function of progressive di-
lution or addition of 0.16% Triton X-100 detergent (LaPlante et al.,
2013) (data not shown) and the compound was discarded.

3.3. Secondary screen employing 15N-labeled eNP-CTD protein

In order to determine which residues these remaining 47 com-
pounds perturbed, the remaining compounds were tested individually
against 15N-labeled protein at either a single 1628 μM compound
concentration vs. a DMSO‑d6 control or with a titration series between
25 μM and 1628 μM (Fig. 2) in which DMSO‑d6 was held constant at
0.8%. 1H,15N HSQC protein spectra showed 20 compounds (not shown)
for which at least one residue was perturbed. Five compounds per-
turbing only a tryptophan sidechain amide were discarded as making
insufficient contact with the protein.

Fig. 1. Identification of fragments binding to
eNP-CTD. (A) The C-terminal domain of eNP
(residues 641–739) was screened with 439
fragment compounds from the Maybridge Ro3
Core Library, formulated as mixtures of 4–5
compounds such that 15 μM protein was ex-
posed to 75 μM of each compound. (B) Example
of overlaid one-dimensional proton spectra of a
compound peak with 15 μM protein (blue) and
without (red). Significant protein-binding ef-
fects, defined as ≥ 10% loss of peak intensity or
≥0.002 ppm (1.2 Hz) change in chemical shift
or both, for at least one compound peak, were
found for 48 compounds.
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Fig. 2. Affinity determination by 1H,15N HSQC NMR and mapping of perturbations onto protein structure. (A) Forty-seven compounds were tested by 1H,15N
protein-observe HSQC experiments (shown here, Maybridge CC69846) at single concentrations or in titration series and significantly perturbed peaks noted. The
Q739 backbone amide and an unassigned W (Trp) sidechain amide are shown as examples of commonly perturbed peaks. (B) The nine residues perturbed by
CC69846 could be grouped into Sites 1, 3, and 4; Site 2 was perturbed by other compounds. Structure models were prepared using Pymol. (C) Titration data for all
perturbed residues within a site for three replicate CC69846 titrations were combined and fitted to give a single binding curve and Kd for each site.
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3.4. Mapping perturbations onto the eNP-CTD protein structure and affinity
measurements

Residues perturbed by the remaining 15 compounds were mapped
onto X-ray structure 4QBO (Dziubanska et al., 2014) using the 1H,15N
HSQC NMR assignments from the same source (Fig. 2). Binding affi-
nities were determined by titration of 15N-labeled protein with each
compound up to 1628 μM. Perturbations mapping onto discrete sites
were plotted as a group vs. compound concentration to determine a
single affinity for that site. Only six compounds (Fig. 3) had affinities
with Kd < 7.0 mM as determined from chemical shift perturbations at

one or more of four discrete patches on the surface of the protein. All six
compounds perturbed Site 1, consisting of extreme C- terminal residues
commonly including W699, L735, Q736, H738, and Q739, as well as
structurally adjacent residues (G683, in the example shown in Fig. 2, or
T714). Two compounds additionally perturbed Site 2 (shown in
Fig. 2B), most commonly consisting of residues V676 and V677. Three
compounds perturbed Site 3, most commonly residues H669, M670,
and H727. Two compounds perturbed Site 4, in which only H654 was
significantly affected.

Fig. 3. Six compounds binding to discrete sites with Kd <7.0 mM. Binding sites and Kd values for each compound are shown.

Fig. 4. Correspondence of small-molecule
binding hotspots with perturbed sites. FTMap
placed up to 16 compounds onto various sites on the
crystal structure of eNP-CTD (4QB0) (Dziubanska
et al., 2014) to identify small-molecule binding hot-
spots. For comparison, commonly perturbed residues
at the four experimentally-determined binding sites
are indicated by colored patches.
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3.5. Comparison of perturbation sites to predicted small-molecule binding
hotspots

FTMap is a tool for identifying small-molecule binding hotspots
(Kozakov et al., 2015) on the basis of fitting small compounds of
varying size, shape and polarity onto the surface of a protein structure
model as scored by calculated van der Waals and electrostatic energies
as well as shape compatibility. FTMap assigned the highest hotspot
scores for eNP-CTD protein (PDB: 4QBO) to the groove between Sites 1
and 2 (Fig. 4, cyan stick representations) and at the lower of end of Site
1 (pink sticks) where it placed all 16 compounds. FTMap assigned a
high score to the deep pocket in Site 1 (yellow sticks) that was per-
turbed by 15 of the compounds.

3.6. Testing of compounds similar to CC35601 (3-pyrid-4-ylbenzoic acid)

We used ChemMine (http://chemmine.ucr.edu/) Hierarchical
Clustering of Tanimoto scores to identify eight compounds from a new
library, the 2500-compound “Maybridge Ro3”, related to CC35601 with
the goal of increasing binding affinity. We determined the effects of
these on 1H,15N HSQC spectra of 15N-labeled eNP-CTD at single con-
centrations (1628 μM). All eight compounds were found to bind on the
basis of peak perturbations. However, titration studies showed that
none had stronger affinity than compound CC35601 (Suppl. Table 1).

3.7. Testing of compounds similar to CC69846 (N-methyl-[1-(pyrid-3-
ylmethyl)piperid-4-yl]methylamine)

CC69846 perturbed Sites 1 and 3 with Kd 1.6 ± 0.2 mM and Kd

1.9 ± 0.3 mM, respectively, as well as Site 4 with lower affinity.

Motivated by the possibility of improved affinity at any of the three
sites, we used ChemMine to select the 17 compounds in the 2500-
compound library most resembling CC69846 (Table 1). Titration effects
of these compounds on 1H,15N HSQC spectra of 15N-labeled eNP-CTD
showed that positively charged amines on the right ring sidechain ap-
pear to increase affinity while negatively charged carboxylates abolish
binding and neutral hydroxyls decrease affinity somewhat. We found no
compounds that bound more tightly than CC69846 at Site 1. Although
seed compound CC69846 did not bind Site 2, four of the related com-
pounds did so.

Thirteen of the 16 compounds that bound NP-CTD did so at multiple
sites, a possible indicator of nonspecific binding. However, 2 com-
pounds with high similarity to CC69846 did not bind at all to the
protein (Table 1). In addition, only 2 of the 16 compounds in Table 1
(CC68513 and CC66709) bound an unrelated Ebola protein (eVP30,
residues 130–272) in single-compound ligand-observe NMR experi-
ments like those in Fig. 1 (data not shown). Both of these factors argue
against promiscuity.

Affinities at Sites 3 and 4 exhibited some correlation, suggesting
that they may be considered a single site. Indeed, residue M670 in Site 3
and residue H654 in Site 4 are only 16 Å apart (Fig. 5). FTMap iden-
tification of a single hotspot containing 14 of 16 possible compounds
between these sites (Fig. 4) tends to support this hypothesis. Pertur-
bation-guided docking of compound CC68513 using Haddock (Geng
et al., 2017) suggests two high-quality binding poses with predicted
hydrogen bonding in this pocket (Fig. 5).

4. Discussion

Previous studies have highlighted the importance of the eNP CTD in
context of viral replication and potentially impacting protein interac-
tions, in part through truncation analysis (Bharat et al., 2012; Licata
et al., 2004). But, we currently lack direct means to target eNP CTD and
its interactions critical for viral replication through small molecules. To
address this need, we screened a fragment library from which we
identified several fragment hits that potentially interact with specific
regions with in the eNP CTD. Interestingly, eNP CTD has been im-
plicated in interactions with eVP40 and other minor matrix proteins
such as eVP30 and eVP24 (Watanabe et al., 2006). Additionally, several
studies have labeled the eNP CTD as a hub for interaction with eVP40,
the matrix protein important for proper assembly and transport of the
nucleocapsid. These interactions were determined through a co-im-
munoprecipitation experiment between both WT eNP FL and WT
eVP40, but when the CTD was truncated by 50 residues, the binding
was abolished. The truncation analysis points to the possibility of the
binding domain residing within the eNP CTD screened against above,
but a structural change in residues closer to the N-terminus within the
CTD (not contained in the 641–739 region) could similarly explain the
drop in binding (Watanabe et al., 2006). Validating this interaction
could prove significant given that the eVP40-eNP interactions have
been shown to be necessary for efficient transport and nucleocapsid
incorporation into viral capsids. Our results now provide an opportu-
nity to test these important interactions mediated by eNP CTD.

Our studies here, using NMR-based fragment screening assays have
identified several fragments that can potentially bind and restrict in-
teractions between eNP CTD with viral and host proteins. Our data also
identifies several regions in the eNP CTD that may be important for
forming the viral nuclearcapsid and for viral replication. In addition,
our fragment-based screens also provide the framework for future stu-
dies to tether the compounds in order to target multiple sites within the
eNP CTD.

Declaration of competing interest

None.

Fig. 5. Groove between Sites 3 and 4 and Docking of CC68513. (A) The
shallow groove between Site 3 (cyan, H669 and M670) and Site 4 (dark blue,
H654) with moderately perturbed residues D663 and Y667 (medium blue) is
shown with the distance between M670 and H654 side chains. (B) Two poses of
compound CC68513 (magenta) placed within the groove by docking program
HADDOCK are shown in the same orientation as above, with hydrogen bonds to
D663 and Q659 (the latter not perturbed or highlighted) as predicted by Pymol.
Compound CC68513 itself is 9.5 Å long. Three other poses suggested by
HADDOCK have been omitted for clarity.
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