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Abstract 

 

Bilateral strength asymmetry of the quadriceps muscles has been implicated in a variety 

of special populations and movement performance deficits. However, while there is 

consensus of the main determinants of maximal and explosive strength, it is unclear to 

what extent these may determine strength asymmetries. The association between 

asymmetries in quadriceps strength and movement are also not well understood. This 

thesis aimed to determine the magnitude and variability of quadriceps maximum and 

explosive strength asymmetry, the underpinning neuromuscular determinants of these 

asymmetries, and the association of these asymmetries with movement. These aims were 

investigated in two populations distinct in their degree of habitual movement asymmetry 

during typical lower-body activities; able-bodied and individuals with unilateral transtibial 

amputations (ITTAs). This thesis also aimed to assess the effects of long-term muscle 

disuse, caused by habitual asymmetrical loading during movement in the ITTAs. The 

magnitudes of maximum and explosive strength asymmetry were similar (10% and 13%, 

respectively) in able bodied, and not explained by any systematic combinations of 

asymmetries in the neuromuscular determinants of strength (e.g. neural activation, 

muscle architecture and contractile properties). In both able bodied and ITTAs there was 

a greater variability in explosive strength asymmetry compared to that in maximum 

strength, which was associated with loading asymmetry in drop landings in able-bodied, 

and a good predictor of walking speed in ITTAs (r = -0.83). Additionally, greater strength 

asymmetry in ITTAs was associated with greater asymmetry in single support time (r = 

0.60 – 0.83) and limb loading asymmetry (r = 0.54 – 0.89) at faster walking speeds. When 

utilising ITTAs as a model for long-term muscle disuse, we found substantially greater 

strength decrements than could be predicted from short-term disuse studies in otherwise 

young, healthy, and active adults. The reductions in maximum voluntary torque (MVT; -

59%) were likely due to considerable declines in muscle thickness (-41%) and neural 
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drive (~-44%), whilst reductions in explosive strength (-75%) appeared due to the decline 

in MVT, coupled with a slowing of the contractile properties. Overall, the results from this 

thesis suggest that asymmetries in explosive strength play a more important role in 

movement in both populations than maximum strength asymmetry. Furthermore, the 

novel findings from this thesis may help to inform the development of intervention 

programmes to target strength asymmetry in ITTA populations, and additionally, to 

combat the degenerative changes present in muscle as a by-product of long-term disuse. 

  



iii 

 

Dissemination of Research 

 

Oral Presentations 

Sibley A.R., Strike S., Moudy S., Tillin N.A. (2018) Do Strength Asymmetries Explain 

Walking Gait Asymmetries in Unilateral Transtibial Amputees? ISPO Annual Scientific 

Meeting, University of Southampton 

Sibley A.R., Strike S., Moudy S., Tillin N.A. (2017) Neuromuscular Adaptations to Long-

term Muscle Disuse in Unilateral Transtibial Amputees. 23rd Annual Congress ECSS, 

Dublin 

Poster Presentations 

Sibley A.R., Strike S., Moudy S., Tillin N.A. (2016) Effects of Transtibial Amputation on 

Neuromuscular Function at the Quadriceps. ISPO Annual Scientific Meeting, University 

of Cambridge 

Other Oral Presentations  

Sibley A.R., Strike S., Moudy S., Tillin N.A. (2019) Quadriceps Strength Asymmetry: 

Magnitude, Mechanisms, and the Relation to the Performance of Functional Movements. 

Presented at: University of North Texas 

Sibley A.R., Strike S., Moudy S., Tillin N.A. (2017) The Effect of Transtibial Amputation 

on Strength and Neuromuscular Function at the Quadriceps. Presented at: University of 

Roehampton, London  

Sibley A.R., Strike S., Moudy S., Tillin N.A. (2017) The Response of the Quadriceps 

Muscles to Unilateral Trans-tibial Amputation. Presented at: University of Southern 

Denmark, Odense 

Submissions 

Sibley A.R., Strike S., Moudy S., Tillin N.A. (2019) The Effects of Long-Term Muscle 

Disuse on Neuromuscular Function in Unilateral Transtibial Amputees. Experimental 

Physiology. In press. 

  



iv 

 

Acknowledgements 

For Grandpa, whose irrepressible humour was reflected in the important life lesson you 

taught me aged eight: nil illegitimi carborundum. Your memory makes me smile every day. 

 

I am very lucky to have a long list of people to whom I owe my thanks and gratitude for helping 

me on this journey. Firstly, to my supervisors, Dr Siobhán Strike and Dr Neale Tillin. I really 

couldn’t have asked for a better supervisory team. Thank you for your guidance and support 

from day one. In particular, thank you Neale for a frankly astonishing level of patience and 

attention to detail – even though the latter has occasionally driven me to wine! I have learned 

so much from you about what it means to be a good scientist. 

To the University of Roehampton, for providing me the means to feed and house myself for 

three years. I would not have been able to complete this thesis without the financial aid of the 

Vice-Chancellor’s Scholarship. 

To Dr Sarah Moudy, a.k.a. the second half of the amputee dream team. My Salad. One day 

I’ll forgive you for finishing first. 

To Alison Carlisle and Tom Reeves for all your technical help and letting me hide out in your 

office when I should have been working; to Ralph Gordon, for always giving up your femoral 

nerve in the name of science; to Jodie Moss, who never fails to make me laugh; and to the 

rest of the Sport Science team at UoR. It’s been great fun working alongside you all. 

To my fabulous colleagues at LSBU, Clare Deary and Mark Thomas. This last year would 

have been awful – and I would probably still be going(!) – had you not been so supportive. 

To the participants, for giving your time and effort for what was a fairly gruelling data collection 

process. I am particularly grateful to all the amputees who took part, who often came from 

very long distances. And to those of you who brought chocolate! 

To my poor, long-suffering mum and dad, Hilary and Paul, for your unfailing love and support, 

and believing in me always. To Beatrix and Ciarán, for the constant encouragement (read: 

telling me to hurry up and finish so I can talk about something else and stop boring you). To 

Grandma, for always insisting that you wanted a Doctor in the family, and someone had got 

to do it... To my friends, for not giving up on me after I essentially pulled a vanishing act for 

the last four years, and particularly Hatty, who knows that a jug of piña colada, leopard fleece 

and a BBQ will always cheer me up. 

And finally, Nick. You have put up with so much over the course of this PhD and not 

complained once (well, hardly ever). I genuinely don’t know if I could have got through it 

without you. You’re the best. 



v 

 

Table of Contents 

Abstract ................................................................................................................... i 

Dissemination of Research .................................................................................. iii 

Acknowledgements .............................................................................................. iv 

Table of Contents .................................................................................................. v 

List of Tables ......................................................................................................... x 

List of Figures ..................................................................................................... xiii 

List of Abbreviations .......................................................................................... xix 

 

Chapter 1 

Introduction ............................................................................................................ 1 

 

Chapter 2 

Literature Review ................................................................................................... 6 

2.1 Introduction .................................................................................................... 6 

2.2 Strength and strength asymmetry ................................................................... 6 

2.2.1 Muscular Strength .................................................................................... 6 

2.2.2 Strength Asymmetry ................................................................................ 9 

2.3 Determinants of Muscular Strength .............................................................. 17 

2.3.1 Muscle Organisation and Mechanism of Contraction ............................. 17 

2.3.2 Determinants of Maximum Strength ....................................................... 21 

2.3.3 Determinants of Explosive Strength ....................................................... 30 

2.3.4 Determinants of Strength Asymmetry..................................................... 37 

2.4 Associations between Strength and Movement Asymmetry ......................... 39 

2.4.1 Able-Bodied Populations ........................................................................ 39 

2.4.2 ITTAs ..................................................................................................... 43 

2.5 ITTA Asymmetry as a Model of Disuse ......................................................... 48 

2.5.1 Neuromuscular Adaptations to Disuse ................................................... 49 

2.6 Summary and Thesis Aims ........................................................................... 58 

 

 



vi 

 

Chapter 3 

Methods ................................................................................................................ 61 

3.1 Ethical Approval and Participant Recruitment ............................................... 61 

3.2 Participant Populations ................................................................................. 62 

3.3 Study Design ................................................................................................ 63 

3.4 Strength and Neuromuscular Function ......................................................... 64 

3.4.1 Experimental Setup ................................................................................ 65 

3.4.2 Data Collection ...................................................................................... 67 

3.4.3 Data Processing .................................................................................... 70 

3.4.4 Variable Extraction ................................................................................. 71 

3.5 Movement Analysis ...................................................................................... 76 

3.5.1 Experimental Setup ................................................................................ 76 

3.5.2 Anthropometric Measures ...................................................................... 76 

3.5.3 Marker Placement .................................................................................. 77 

3.5.4 Data Collection ...................................................................................... 77 

3.5.5 Data Processing .................................................................................... 80 

3.5.6 Variable Extraction ................................................................................. 81 

3.6 Data and Statistical Analysis ........................................................................ 82 

3.6.1 Asymmetry Calculations ........................................................................ 82 

3.6.2 Interpreting Asymmetry Indices .............................................................. 86 

3.6.2 Statistical Analysis ................................................................................. 88 

 

Chapter 4 

Associations between Asymmetry in Quadriceps Strength and its 

Neuromuscular Determinants in an Able-Bodied Population ........................... 89 

4.1 Introduction .................................................................................................. 89 

4.2 Methods ....................................................................................................... 92 

4.2.1 Participant Information ........................................................................... 92 

4.2.2 Data Collection ...................................................................................... 93 

4.2.3 Data Analysis ......................................................................................... 93 

4.3 Results ......................................................................................................... 95 

4.3.1 Asymmetries in Maximal and Explosive Strength ................................... 95 

4.3.2 Determinants of Asymmetries in Maximal Strength ................................ 97 

4.3.3 Determinants of Asymmetries in Explosive Strength .............................. 97 

4.4 Discussion .................................................................................................. 101 

4.4.1 Maximum and Explosive Strength Asymmetry ..................................... 102 



vii 

 

4.4.2 Neuromuscular Asymmetry .................................................................. 103 

4.5 Conclusion ................................................................................................. 104 

 

Chapter 5 

The Association between Asymmetries in Strength and Jump Take-off/ Drop 

Landing Capabilities in an Able-Bodied Population ........................................ 106 

5.1 Introduction ................................................................................................ 106 

5.2 Methods ..................................................................................................... 109 

5.2.1 Participant Information ......................................................................... 110 

5.2.2 Data Extraction and Analysis ............................................................... 110 

5.3 Results ....................................................................................................... 115 

5.3.1 CMJ ..................................................................................................... 115 

5.3.2 Drop Landing ....................................................................................... 119 

5.4 Discussion .................................................................................................. 122 

5.4.1 Associations between Strength and Movement Asymmetries .............. 123 

5.5 Conclusion ................................................................................................. 127 

 

Chapter 6 

The Association between Asymmetries in Strength and Gait in Unilateral 

Transtibial Amputees ........................................................................................ 129 

6.1 Introduction ................................................................................................ 129 

6.2 Methods ..................................................................................................... 132 

6.2.1 Participant Information ......................................................................... 132 

6.2.2 Data Collection .................................................................................... 132 

6.2.3 Data Extraction and Analysis ............................................................... 133 

6.3 Results ....................................................................................................... 137 

6.3.1 Maximal and Explosive Strength Asymmetries ..................................... 137 

6.3.2 Walking Speed and Gait Asymmetry .................................................... 138 

6.3.3 Relationships between Strength Asymmetry and Walking Speed ........ 141 

6.3.4 Relationships between Strength and Gait Asymmetries ....................... 142 

6.4 Discussion .................................................................................................. 145 

6.4.1 Strength Asymmetry and Walking Speed ............................................. 146 

6.4.2 Influence of Strength Asymmetry on Gait ............................................. 147 

6.5 Conclusion ................................................................................................. 151 

 

 



viii 

 

Chapter 7 

The Effects of Long-Term Disuse on Neuromuscular Function in Unilateral 

Transtibial Amputees ......................................................................................... 153 

7.1 Introduction ................................................................................................ 153 

7.2 Methods ..................................................................................................... 156 

7.2.1 Participant Information ......................................................................... 156 

7.2.2 Data Collection .................................................................................... 157 

7.2.3 Data Processing and Extraction ........................................................... 158 

7.2.4 Statistical Analysis ............................................................................... 159 

7.3 Results ....................................................................................................... 160 

7.3.1 Knee Kinetics in Gait ............................................................................ 160 

7.3.2 Maximal and Explosive Strength .......................................................... 161 

7.3.3 Neural Drive ......................................................................................... 163 

7.3.4 Intrinsic Contractile Properties ............................................................. 163 

7.3.5 Muscle Architecture ............................................................................. 164 

7.4 Discussion .................................................................................................. 164 

7.4.1 ITTAs as a model for long-term disuse................................................. 165 

7.4.2 Changes in Strength ............................................................................ 166 

7.4.3 Mechanisms of Strength Differences ................................................... 167 

7.5 Conclusion ................................................................................................. 170 

 

Chapter 8 

General Discussion ........................................................................................... 172 

8.1 Strength Asymmetry and its Determinants ................................................. 172 

8.2 Strength Asymmetry and Movement Performance ..................................... 174 

8.3 ITTAs as a Model for Long-Term Disuse .................................................... 177 

8.4 Limitations .................................................................................................. 179 

8.5 Potential Implications ................................................................................. 181 

8.6 Future work ................................................................................................ 182 

 

Appendix A 

Calculation of Asymmetry ................................................................................. 184 

 

Appendix B 

Data Tables  ....................................................................................................... 190 



ix 

 

Appendix C 

Ethical Approval ................................................................................................ 193 

 

Appendix D 

Participant Documentation ............................................................................... 196 

 

Appendix E 

Isokinetic Dynamometer Adaptations .............................................................. 211 

 

Appendix F 

Neuromuscular Methods Test-Retest Reliability ............................................. 214 

 

References ......................................................................................................... 217 

 

  



x 

 

List of Tables 

 

Table 2.1. Summary of papers that have assessed strength asymmetries in the 

quadriceps. Asymmetry scores are as given in the paper cited. Calculations are explained 

in Appendix A. Values in brackets (if presented) are the mean absolute asymmetry score. 

            12 

Table 3.1. Anthropometric measures collected for input into Vicon Nexus to create the 

subject model. All were measured using sliding calipers, except leg length (measured 

using a metal tape measure).         77 

Table 4.1. Bilateral asymmetries (BSA) in isometric knee-extensor maximal voluntary 

torque (MVT), peak rate of torque development (RTD), and explosive torque measured 

at 50-ms time points from torque onset. Data are presented as mean ± SD for n = 21. 

           95 

Table 4.2. Bilateral asymmetries (BSA) in the determinants of maximum and explosive 

strength in the knee extensors of an active able-bodied population (measured as 

maximum voluntary torque [MVT] and rate of torque development [RTD], respectively). 

BSA calculated as the absolute difference between the two limbs. BSA_DIR calculated 

between the strong and weak limb for the strength variable in question. Bivariate 

correlation coefficients (r) correspond to the relationships between BSA MVT and BSA 

RTD with BSA_DIR in the neural, contractile and architectural determinants of each 

strength variable. Data are presented as mean ± SD for n = 20 (evoked octet) and n = 21 

(all other variables). * indicates a significant (p < 0.05) relationship.    99 

Table 4.3. Neural, contractile and architectural determinants of maximum (measured as 

maximum voluntary torque, MVT) and explosive strength (measured as rate of torque 

development, RTD)  in the knee extensors of an active able-bodied population. Data are 

grouped by either the maximally or the explosively strongest and weakest legs, and 

presented as mean ± SD for n = 20 (evoked octet) and n = 21 (all other variables).    100 

Table 5.1. Bilateral asymmetries (BAI) in the kinetic characteristics of the take-off phase 

a countermovement jump in an active, able-bodied population. BAI calculated as the 

absolute difference between the two limbs. BAI_DIR calculated between the strong and 

weak limb for the strength variable in question, i.e. maximum or explosive strength of the 

knee extensors (measured as maximum voluntary torque [MVT] and rate of torque 



xi 

 

development [RTD], respectively). Bivariate correlation coefficients (r) correspond to the 

relationships between BAI MVT and BAI RTD with BAI_DIR in the kinetic parameters of 

movement. Data are presented as mean ± SD for n = 21. * indicates a significant (p < 

0.05) relationship.                              117 

Table 5.2. Kinetic characteristics of the take-off phase of a countermovement jump in an 

active, able-bodied population. Data are grouped by the limb with either the maximally 

(measured as maximum voluntary torque, MVT) or the explosively (measured as rate of 

torque development, RTD) strongest vs weakest quadriceps muscles, and presented as 

mean ± SD (n = 21). Differences between strong and weak are denoted by * (p < 0.05). 

                    119 

Table 5.3. Bilateral asymmetries (BAI) in the kinetic characteristics of a 30 cm drop 

landing task in an active, able-bodied population. BAI calculated as the absolute 

difference between the two limbs. BAI_DIR calculated between the strong and weak limb 

for maximum or explosive strength of the knee extensors (measured as maximum 

voluntary torque [MVT] and rate of torque development [RTD], respectively). Bivariate 

correlation coefficients (r) correspond to the relationships between BAI MVT and BAI RTD 

with BAI_DIR in the drop landing kinetic parameters. Data are presented as mean ± SD 

for n = 21. * indicates a significant (p < 0.05) relationship.               121 

Table 5.4. Kinetic characteristics of a 30 cm drop landing in an active, able-bodied 

population. Data are grouped by either the maximally (measured as maximum voluntary 

torque, MVT) or the explosively (measured as rate of torque development, RTD) strongest 

and weakest legs, and presented as mean ± SD for n = 21. Differences compared to the 

weak limb of each group are denoted by * (p < 0.05).                122 

Table 6.1. Individual participant information and mean average values for eight ITTAs. 

                     133 

Table 6.2. Criteria used to establish whether walking speed should be covaried for via 

semi-partial or partial correlations instead of bivariate correlations, between BAI for a 

given strength variable and BAI for a given gait variable. Covariation was deemed 

necessary in the presence of a moderate or greater relationship (i.e. when r ≥ 0.5).          

                     137 

Table 6.3. Absolute, relative (to bodymass, BM) and BAI values for isometric MVT and 

peak RTD of the knee extensors in the amputated and intact limbs of unilateral transtibial 

amputees. Data are presented as mean ± SD (n = 8). Paired differences between the 



xii 

 

amputated and intact limbs are denoted by * (p < 0.05) or ** (p < 0.001), and between BAI 

MVT and BAI RTD by †† (p ≤ 0.001).                  138 

Table 6.4. BAI in temporo-spatial and kinetic parameters of gait between the amputated 

(AMP) and intact (INT) limb of unilateral transtibial amputees (n = 8), walking at a self-

selected habitual and fast speed. Data are presented as mean ± SD. Paired differences 

between the amputated and intact limbs within a given walking speed are denoted by * (p 

< 0.05) or ** (p < 0.001).                   140 

Table 6.5. Bivariate (boxed), semi-partial (white) and partial (grey) correlation coefficients 

(r) between both BAI in MVT and RTD (measured during voluntary isometric contractions 

of the knee extensors), and BAI in gait variables in unilateral transtibial amputees (n = 8). 

BAI in gait variables were measured at a self-selected habitual and fast walking speed. 

Significant relationships are denoted by * (p < 0.05) or ** (p ≤ 0.001).              144 

Table 7.1. Participant information. Data are presented as mean ± SD. Data is presented 

for n = 9 for both groups, except walking speed (n = 8 TTAs and n = 9 controls).        157 

Table 7.2. Knee extensor kinetics throughout the stance phase of gait, muscle strength 

and neuromuscular function in the amputated (AMP) and intact (INT) limbs of unilateral 

transtibial amputees, and in an able-bodied control limb (CON). Data are presented as 

mean ± SD for n = 9 (AMP and INT) and n = 9 (CON). Data in italics correspond to those 

variables where n = 8. Differences compared to AMP are denoted by * (p < 0.05) or ** (p 

< 0.001).                     162 

Table A1. Equations that have been used in literature to calculated strength asymmetries. 

Adapted from Bishop et al. (2016, 2018).                 185 

Table B1. Summary of studies investigating the effect of unloading on knee extensor 

muscle strength as depicted in Figure 2.10. Adapted from Narici & de Boer (2011).    191 

Table B2. Summary of studies investigating the decreases in strength in amputees as 

depicted in Figure 2.10.                                192 

Table F1. Test-retest reliability of measures of knee extensor muscle strength, assessed 

during voluntary isometric contractions; intrinsic contractile properties, assessed during 

evoked twitch and octet contractions; neural drive, assessed as VA and during voluntary 

contractions using EMG; and muscle architecture, assessed using B-mode 

ultrasonography of the Vastus Lateralis. Data are presented for n = 8 for all measures 

other than evoked octet (n = 7) and EMG measures (n = 4).                  216  



xiii 

 

List of Figures 

 

Figure 2.1. Torque-time curves recorded during (A) a maximal voluntary isometric 

contraction of the knee extensors and (B) an explosive voluntary isometric contraction of 

the knee extensors. The greatest peak torque recorded during an isometric maximal 

voluntary contraction is defined as Maximum Voluntary Torque (MVT). The method of 

measuring explosive strength referred to in this thesis is peak voluntary Rate of Torque 

Development (RTD), calculated using the peak slope of the torque-time curve 

(Δtorque/Δtime).          8 

Figure 2.2. Muscular force production in the form of maximum voluntary force (MVF) and 

rate of force development (RFD) are influenced by multiple factors within the 

neuromuscular system. Furthermore, factors that contribute to MVF will also improve the 

mean RFD. Reproduced with permission from Maffiuletti et al. (2016). CSA, cross-

sectional area; MU, motor unit.        20 

Figure 2.3. Pennate muscles such as VL have fibres that run at an oblique angle to their 

tendon. Angle of pennation (ϴ) and muscle thickness (MT) measured using 

ultrasonography can be used to calculate Lf (fascicle length). Adapted from Lieber & 

Friden (2000).           24 

Figure 2.4. The length-tension relationship of a muscle describes the relationship 

between sarcomere length and its force production capability. It represents the force a 

sarcomere is capable of generating while held at a series of discrete lengths, and states 

that isometric tension generation in skeletal muscle is a function of the magnitude of 

overlap between actin and myosin. Along the ascending limb, adjacent actin filaments 

overlap, interfering with the myosin-actin cross-bridge mechanism, therefore reducing the 

potential for force production. At very short sarcomere lengths, the myosin filament 

collides with the Z-discs, causing further disruption to the cross-bridge mechanism. At the 

plateau of the length-tension relationship, optimal overlap of the contractile filaments 

exists, which in turn maximises the number of potential cross-bridges. Along the 

descending limb, the overlap between actin and myosin filaments is minimised, which 

reduces the number of potential cross-bridges and, by extension, force production. 

Adapted from Gordon, Huxley & Julian (1966).      25 



xiv 

 

Figure 2.5. The force-velocity relationship describes the behaviour of single muscle fibres 

(Hill, 1938); however, it also seems to hold true for single joint movements (Hauraix et al., 

2017). It is a hyperbolic relationship, i.e. the rate of change of force alters with changing 

velocity. During eccentric muscle action, where contraction velocity is high, muscle 

force output can also be high (a). Where muscle force is low, contraction velocity must 

be low (b). The opposite is true in concentric muscle action: where contraction velocity is 

high, muscle force must be low (c). Where muscle force is low, contraction velocity must 

be high (d).           26 

Figure 2.6. Force-velocity relationships for three stimulation conditions of the cat 

semitendinosus muscle: proximal portion (), distal portion (), and entire muscle (). 

Illustrate5s the direct relationship between Vmax and muscle fibre length. Reproduced 

with permission from Bodine et al. (1982).       27 

Figure 2.7. Two muscles with the same anatomical cross-sectional area (ACSA – the 

maximum cross-sectional area of a muscle perpendicular to its long axis) can 

nevertheless demonstrate different physiological cross-sectional area (PCSA – the 

maximum cross-sectional area of a muscle perpendicular to its fibres). Pennate muscles 

such as (A) will have a larger PCSA when compared to fusiform muscles (B).  29 

Figure 2.8. Force-time curves recorded from isolated motor units in the soleus muscle of 

rats when activated at (a) the minimum frequency required to produce maximal tetanic 

fusion, and (b) a supramaximal frequency that also produced maximal tetanic fusion. It is 

clear that RFD is greater when firing frequency is supramaximal. Adapted from Nelson 

(1996).           32 

Figure 2.9. Twitch parameters used to assess the intrinsic contractile properties of a 

muscle. A twitch is a muscle contraction that occurs in response to a single, isolated 

action potential in a muscle fibre. The latent period is the time between stimulation and 

force onset during which excitation-contraction coupling takes place. Variables measured 

in this thesis are peak torque; peak RTD (calculated as the first derivative of the torque-

time curve using a 15 ms time constant); and torque at 50 ms from onset (T50). In evoked 

octets, which display the muscle’s response to a train of eight stimuli at 300 Hz, torque at 

100 ms from onset (T100) is additionally measured.     34 

Figure 2.10. Explained variance between MVF and voluntary RFD during an isometric 

contraction of the knee extensors. RFD was measured at 10 ms time intervals of up to 

250 ms from the onset of contraction. Adapted from Andersen & Aagaard (2006).  37 



xv 

 

Figure 2.11. Percentage decrease in maximum voluntary torque (MVT) at the knee 

extensors following differing periods of ground-based unloading ( bed rest;  limb 

immobilisation;  unilateral lower-limb suspension [ULLS]), reported relative to MVT pre-

intervention. Dashed lines show mean knee extensor MVT decrease for (a) all unloading 

studies; (b) the intact vs. a control limb; (c) amputated vs. intact limb; and (d) the 

amputated vs. a control limb (Isakov et al 1996a, Lloyd et al. 2010, Moirenfeld et al. 2000, 

Pedrinelli et al. 2002, Renstrom, Grimsby & Larsson 1983). Adapted from Narici & de 

Boer (2011). See Appendix B for full data table.      50 

Figure 2.12. Schematic diagram illustrating the changes in fibre length and pennation 

angle occurring with muscle atrophy resulting from disuse. Muscle thickness, pennation 

angle and fibre length before and after atrophy are indicated by t1 and t2, θ1 and θ2, Lf1 

and Lf2, respectively. Reproduced with permission from Narici (1999).   54 

Figure 3.1. Percutaneous electrical stimulation of the femoral nerve. Stimulation was 

achieved via a cathode stimulation probe firmly pressed into the femoral triangle. 

Locations of EMG electrodes for (a) Rectus Femoris, (b) Vastus Lateralis and (c) Vastus 

Medialis are also visible.         67 

Figure 3.2. Muscle architecture variables. Muscle thickness (MT) is the distance between 

the superficial and deep aponeuroses, while pennation angle (ϴ) is the angle between 

the fascicle and the deep aponeurosis. The fascicle length (Lf) is the length that the 

fascicle extends between the aponeuroses. Fascicles typically extended off the image, 

so the non-visible portion of the fascicle was estimated via linear extrapolation.  72 

Figure 3.3. Identification of peak rate of torque development (RTD; denoted by dashed 

black line) from explosive torque (black line) using the slope of the torque-time curve (grey 

line). Slope calculated using a 15 ms time constant.      73 

Figure 3.4. Typical Vastus Medialis (VM), Vastus Lateralis (VL) and Rectus Femoris (RF) 

electromyograph (EMG) signals during an isometric voluntary explosive contraction (A). 

Onset for was defined as the first instance in which the signal deflected away from the 

baseline noise in any muscle. In this example, onset was detected in the VM signal (B). 

The signal in (C) shows the scale at which the investigator determined onset (red dashed 

line), which was standardised for every contraction analysed.     75 

Figure 3.5. Schematic of the drop landing frame.      80 

Figure 3.6. Schematic representation of possible scatterplot distributions when 

correlating absolute and directional asymmetry values for a hypothetical variable 1 

(predictor; V1) and 2 (dependent; V2).        87 



xvi 

 

Figure 4.1. Percentage of the sample within each asymmetry band for bilateral 

asymmetries (BSA) in maximum voluntary torque (MVT), peak rate of torque development 

(RTD), and explosive torque measured at 50-ms time points from torque onset.  96 

Figure 4.2. Pearson’s product-moment correlation between bilateral asymmetries (BSA) 

and relative BSA (BSA_DIR) in isometric knee-extensor maximum voluntary torque 

(MVT) and peak voluntary rate torque development (RTD). BSA_DIR provides a measure 

of BSA relative to the direction of BSA in the other strength variable. Data in bold indicate 

significant (p < 0.05) relationships.        96 

Figure 5.1. Kinetics of the take-off phase of a bilateral countermovement jump (CMJ). 

Centre of mass (CoM) velocity (A) was used to calculate sub-phases, determined by the 

change from eccentric to concentric muscle action, i.e. lowering ends when CoM velocity 

becomes positive. Variables of interest include (B) peak vertical ground reaction force 

(vGRF), RFD (Δforce/Δtime from beginning of propulsion to peak vGRF), decay rate 

(Δforce/Δtime from peak vGRF to toe-off), and impulse in both sub-phases; (C) peak knee 

extension (KE) moment and total KE moment impulse; and (D) peak knee power. The 

knee joint phase of interest was defined from the beginning of the take-off phase to the 

last point of positive knee power. Impulse is calculated as the area under the waveform 

of interest.                                       111 

Figure 5.2. Kinetics of the absorption phase of a bilateral drop landing, defined as the 

time from touchdown to maximum knee flexion. Variables of interest include (A) peak 

vertical ground reaction force (vGRF) and average vGRF loading rate; (B) peak knee 

extensor (KE) moment, average KE; loading rate and KE moment impulse; and (C) peak 

knee power. Impulse is calculated as the area under the waveform of interest.           113 

Figure 5.3. Bivariate correlation coefficients (r) between countermovement jump height 

and Bilateral Asymmetry Index (BAI) in (A) maximum and (B) explosive strength 

(measured during voluntary isometric contractions of the knee extensors) for n = 21 

active, able-bodied males.                   116 

Figure 5.4. Bivariate correlation coefficient (r) between Bilateral Asymmetry Index (BAI) 

in explosive strength of the knee extensors, (measured as Rate of Torque Development, 

RTD) and BAI_DIR in vertical ground reaction force (vGRF) lowering phase impulse. 

BAI_DIR calculated between the explosively strong and weak limb. Data are presented 

for n = 21 active, able-bodied males.                  118 

Figure 6.1. Illustration of amputated and intact step length. Note that step length is 

defined by the limb being stepped onto.                 134 



xvii 

 

Figure 6.2. (A) Sagittal plane knee moments, (B) vertical ground reaction forces (vGRF) 

and (C) antero-posterior ground reaction forces (hGRF) during the stance phase of level 

walking gait for an example intact limb trial, expressed relative to body weight (BW). 

Positive values indicate knee extension moments. Shaded areas correspond to the 

braking (light grey) and propulsive (light grey) phases. Peak vGRF was recorded for both 

phases.                    135 

Figure 6.3. Sagittal plane knee moments during the stance phase of (A) habitual and (B) 

fast walking for the amputated (AMP, light grey line) and intact (INT, dark grey line) limbs 

of unilateral transtibial amputees. Knee joint moment is expressed as internal moment 

relative to body mass (BM). Positive and negative values indicate knee extension and 

flexion moments, respectively. Data are presented as mean ± SD for n = 8 (AMP and 

INT).                      141 

Figure 6.4. The relationships between walking speed and asymmetry in both maximal 

voluntary torque (BAI MVTBM) and rate of torque development (BAI RTDBM) of the knee 

extensors, in unilateral transtibial amputees. Walking speed was assessed during both 

self-selected habitual (A and C) and fast (B and D) speeds. Change in walking speed 

from habitual to fast walking (ΔSpeed; E and F) was also evaluated.              143 

Figure 7.1. Sagittal plane knee moments during the stance phase of walking for the 

amputated (AMP, light grey line) and intact (INT, dark grey line) limbs of unilateral 

transtibial amputees, and of an able-bodied control limb (CON, green dashed line). Joint 

moment is expressed as internal moment. Positive and negative values indicate knee 

extension and flexion moments, respectively. Data are presented as mean ± SD for n = 8 

(AMP and INT) and n = 9 (CON).                  159 

Figure 7.2. Static B-mode ultrasound image of the Vastus Lateralis muscle for the 

amputated (AMP) and intact (INT) limb of one TTA, and one control limb (CON). 

Architectural measures taken included pennation angle relative to the deep aponeurosis 

(a), extrapolated fascicle length (b) and muscle thickness, measured between the 

superficial and deep aponeuroses (c). Significant reduction in amputated limb muscle 

thickness is evident, while similarities in pennation angle in all three limbs, and muscle 

thickness between INT and CON, can clearly be seen.               164 

Figure E1.1. Posterior (A) and anterior (B) view of the custom-made, rigid knee pad for 

the isokinetic dynamometer. This could be tightly clamped down using the screws to 

remove unnecessary rotation (usually present in dynamometers to assist dynamic 

movement) around the shaft that connects knee pad to the crank arm.             212 



xviii 

 

Figure E2.1. Normal (A) and flipped (B) position of the isokinetic crank arm. The red arrow 

indicates the bottom of the crank arm. Normal positioning was utilised for control limbs 

and the intact limb in ITTAs. The crank arm was flipped by 180° for the ITTA amputated 

limb, allowing the ankle adaptor to be placed higher to account for the shortened tibia. 

                    213 

Figure E2.2. Schematic showing the placement of the knee pad and relative position of 

the isokinetic crank arm for (A) the control and intact limbs and (B) the amputated limb. 

The red circle indicates the point of rotation of the crank arm.             213 

 

 

  



xix 

 

List of Abbreviations 

  Page 
Reference 

ACL Anterior Cruciate Ligament  

ACSA Anatomical Cross-Sectional Area 29 

ADP Adenosine Diphosphate  

AMP Amputated limb  

ATP Adenosine Triphosphate  

BAI Bilateral Asymmetry Index 82 

BAI_DIR Directional Bilateral Asymmetry Index 84 

ΔBAI Difference in BAI from habitual to fast walking speeds 135 

BM Body Mass  

BSA Bilateral Strength Asymmetry 82 

BSA_DIR Relative Bilateral Strength Asymmetry 84 

Ca2+ Calcium ion  

CMJ Countermovement Jump  

CoM Centre of Mass  

CON Control limb  

CSA Cross Sectional Area  

CV Coefficient of Variation  

DHP Dihydropyridine voltage receptors  

EMG Electromyography  

EMGMVT Electromyography at Maximum Voluntary Torque 74 

EMG0-100 Electromyography from 0 – 100 ms of an explosive 
contraction 

74 

hGRF Horizontal Ground Reaction Force 46 

ICC Intraclass Correlation Coefficient  

INT Intact limb  

ITT Interpolated Twitch Technique 21 

ITTA Individual with a Transtibial Amputation  

MHC Myosin Heavy Chain  

Mmax Maximum M-wave 21 



xx 

 

MRI Magnetic Resonance Imaging  

MVC Maximum Voluntary Contraction 21 

MVF Maximum Voluntary Force 8 

MVT Maximum Voluntary Torque 8 

PCSA Physiological Cross-Sectional Area 23 

PT Peak Torque 8 

RF Rectus Femoris  

RFD Rate of Force Development 8 

RMS EMG Root Mean Square Electromyography  

RTD Rate of Torque Development 8 

TOV Centre of Mass take-off velocity 110 

TS Temporospatial  

ULLS Unilateral Lower Limb Suspension  

VA Voluntary Activation 158 

vGRF Vertical Ground Reaction Force  

VL Vastus Lateralis  

VM Vastus Medialis  

Vmax Maximum shortening velocity 26 

VMO Vastus Intermedius  

 



Chapter 1. Introduction 
 
 

 

1 
 

 

Chapter 1 

Introduction 

 

Muscular strength is defined as the ability of a muscle to produce force in a given 

situation (Knuttgen & Komi 1992). It is an important component of health, as weak 

muscles may limit both a person’s physical fitness and their capability to perform 

activities of daily living (Mizner et al. 2005, Mizner & Snyder-Mackler 2005, Maffiuletti 

2010). Muscular strength can be subdivided into maximum, defined as the maximum 

force a muscle can produce (measured as Maximum Voluntary Torque, MVT) and 

explosive strength, defined as the muscle’s capacity to rapidly exert force (commonly 

measured as Rate of Torque Development, RTD; Abernethy et al. 1995).  At the 

quadriceps, persistent maximum strength deficits have been shown to impair dynamic 

knee stability, physical function and quality of life (Rice & McNair, 2010). In addition, 

weakness of these muscles has been linked to increased risk of knee joint injury and 

is thought to contribute to the development and progression of degenerative 

conditions (Hurley, Rees & Newham 1998).  

Analyses of inter-limb asymmetries compare the performance of one limb in respect 

to another. Substantial quadriceps strength asymmetries have been found in the 

elderly (Skelton, Kennedy & Rutherford 2002), and particularly those prone to falling 

(Perry et al. 2007), as well as a variety of pathological conditions such as multiple 

sclerosis (Sandroff, Sosnof & Motl 2013), osteoarthritis (Suetta et al. 2007) and 



Chapter 1. Introduction 
 
 

 

2 
 

transtibial amputation (Lloyd et al. 2010). Additionally, strength asymmetries of the knee 

extensors have been extensively studied in populations with anterior cruciate ligament 

injuries, where inter-limb deficits of ≤ 10% have been linked to successful outcomes of 

return to activity (Grindem et al. 2016). Strength asymmetries are typically measured 

by quantifying the inter-limb difference in maximum strength; however, little is known 

about the extent of asymmetry in explosive strength, which may be more functionally 

relevant to human movement in situations when time to develop force is small (e.g. 

recovering from a perturbation, and sports-specific movements such as sprinting and 

jumping; Behan, Pain & Folland 2018, Tillin, Pain & Folland 2013a). In a healthy 

population, substantial strength asymmetries in maximum strength have been found at 

the quadriceps (Graham-Smith, Al-Dukhail & Jones 2015, Kobayashi et al. 2013), but 

the magnitude of explosive strength asymmetry is understudied. Furthermore, while 

there is consensus on the determinants of single limb maximal (neural drive, muscle 

architecture and size) and explosive strength (neural drive, intrinsic contractile 

properties and maximum force production capacity), it is unclear to what extent these 

neuromuscular mechanisms may underpin asymmetries in maximum and explosive 

strength.  

While the effect of between-limb differences in movement on sporting performance is 

a popular topic in research literature, we currently have little understanding of the 

underpinning mechanisms of these asymmetries (Bishop, Turner & Read 2018). As 

previous research has linked significant lower limb maximum strength asymmetries 

to reduced jump performance (Bailey et al. 2013), and deficits in sport-specific skills 

such as kicking accuracy (Hart et al. 2014) and sprint cycling power (Rannama et al. 

2015), it seems logical that quadriceps strength and neuromuscular asymmetries may 

play a role in overall movement performance. Jumping is a key skill in many sport and 

recreational activities. Importantly, the knee plays a key role in both the take-off and 

landing phases, with a large contribution from the quadriceps that is partially 
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determined by maximal and, to a greater extent, explosive strength (Chang et al. 

2015, de Ruiter et al. 2007, Sandler and Robinovitch 2001), which makes these 

movements an excellent means of assessing the relationships between movement 

and strength asymmetries.  

Investigating the movement patterns of a population with known asymmetries in 

strength and movement allows a further opportunity to establish the relationships 

between these asymmetries in further detail. In individuals with unilateral trans-tibial 

amputations (ITTAs) who are characterised by the loss of the ankle joint and the 

surrounding musculature on one limb, there are decreases in maximal strength in the 

intact (-30%), and more severely, in the amputated (-60%) limb when compared to a 

non-injured population. This results in substantial inter-limb strength asymmetries of 

~42% (Isakov et al. 1996, Lloyd et al. 2010, Moirenfeld et al. 2000, Pedrinelli et al. 

2002, Powers et al. 1996). However, deficits in explosive strength, and by extension, 

explosive strength asymmetry, have not been considered in this population. 

Furthermore, as ITTAs are increasingly encouraged to exercise for health and quality 

of life, understanding how asymmetries in strength result in changes in movement 

patterns is key to inform healthy movement prescription. In walking, which is vital for 

independent living, ITTAs have demonstrated reduced walking speed compared to 

able-bodied groups, suggesting a decline in gait function (Bohannan 1997, Oberg et 

al. 1993, Sanderson & Martin 1997). In addition, there is evidence of asymmetries in 

temporospatial (e.g. step length and single support time; Renstrom et al. 1983, 

Powers et al. 1996) and kinetic loading variables (e.g. ground reaction forces, joint 

moments and powers; Lloyd et al. 2010, Nolan et al. 2003). Through investigating the 

relationships between strength asymmetries and those in gait in ITTAs, we may be 

able to provide additional information to therapists to improve rehabilitation 

programmes and interventions in this population, particularly with regards to walking 
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performance. This may be particularly important as muscular demand, and loading 

asymmetry, increases with increased walking speed (Nolan et al. 2003).  

By investigating the neuromuscular characteristics of populations with known 

asymmetries, we can answer some broader physiological questions. Gait analyses in 

ITTAs has shown reductions in whole-limb and knee extensor loading of the 

amputated compared to intact limb while walking (e.g. Sanderson & Martin 1997, 

Silverman et al. 2008), therefore suggesting that they chronically disuse the knee 

extensor musculature of their amputated limb. The effects of long-term muscular 

disuse – a problem in multiple patient populations (e.g. individuals who are bedridden 

or have suffered a stroke) – on neuromuscular function are unclear. Current 

knowledge of the effects of muscle disuse on strength and neuromuscular function is 

based on short-term (typically < 120 days) bed rest or limb suspension studies (Narici 

& de Boer 2011); however, the short-term nature of these studies makes it difficult to 

draw conclusions about the long-term effect of disuse on skeletal muscle. 

Furthermore, the effects of disuse on explosive strength have not been studied. Given 

the apparent association between asymmetries in limb loading during locomotion and 

quadriceps muscle strength in ITTAs (Lloyd et al. 2010), a young, healthy ITTA 

population provides a novel model for investigating the long-term (> 120 days) effects 

of muscle disuse with the intact limb acting as an internal control.  

The purpose of this thesis was therefore to investigate strength asymmetry, its 

underpinning neural and mechanical determinants, and to determine its 

influence on movement asymmetry. This was achieved by (1) quantifying the 

magnitude, direction and variability of knee extensor strength asymmetries and their 

potential underlying determinants in a healthy, active, control population; (2) 

investigating the influence of knee extensor strength asymmetries on movement 

asymmetries in two populations with different levels of inherent strength asymmetries; 



Chapter 1. Introduction 
 
 

 

5 
 

and (3) utilising a known asymmetric ITTA population to assess the effects of long-

term disuse on strength and neuromuscular function of the quadriceps muscles.
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Chapter 2 

Literature Review 

 

2.1 Introduction 

This literature review is structured as follows: first a brief overview of the determinants 

of strength, and how these impact maximal and explosive voluntary force production, 

is presented. This is followed by an exploration of strength asymmetry in various 

populations, and current understanding of its influence on movement performance. 

This will lead to a discussion of how strength and movement asymmetry may result 

in long-term disuse of the quadriceps in ITTAs. Finally, the changes in strength and 

neuromuscular function commonly found in short-term muscular disuse will be 

examined. 

2.2 Strength and strength asymmetry 

2.2.1 Muscular Strength 

Muscular strength can be subdivided into maximum (the maximum force a muscle 

can produce) and explosive strength (the muscle’s capacity to rapidly exert force; 

Abernethy et al. 1995).  Maximal strength sets the upper limit of the system: 

theoretically, the greater an individual’s maximal force production capabilities, the 

greater absolute forces they will be able to produce in any situation – be it a maximal, 

submaximal, fast or slow contraction. It is associated with the ability to perform daily 
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ambulatory activities such as rising from a chair, walking at an appropriate speed, 

and ascending and descending stairs (Bassey et al. 1992, Buchner & Lateur 1991). 

Furthermore, reduced maximal strength has been identified as one of the most 

frequent factors accompanying degenerative loading diseases (Petterson et al. 

2008), and has been implicated in populations showing increased limb loading during 

gait (Lloyd et al. 2010). As the time required to produce maximum force is generally 

>300 ms from onset in isometric and eccentric muscle contractions (Thorstensson et 

al. 1976, Tillin, Pain & Folland 2012a), explosive strength is considered especially 

important in situations where the time to develop muscular force is limited. In 

situations such as restabilising the body following a loss of balance or during 

explosive sports activities, the muscles must produce as much force as possible in 

time periods that could be as small as 50 – 250 ms, and high contractile RTD may be 

more important for performance than MVT (Aagaard et al. 2003, Izquierdo 1999, 

Maffiuletti et al. 2010, Pijnappels et al. 2008, Tillin, Pain & Folland 2013a). RTD has 

previously been shown to be an important determinant of the effectiveness of postural 

corrections following mechanical perturbations (Behan, Pain & Folland 2018). 

Additionally, in some populations such as the elderly, who, similarly to ITTAs, display 

strength impairments and reduced ability to adapt their gait pattern to environmental 

changes (Hofstad et al. 2006, Houdjik et al. 2012) knee extensor RTD appears 

associated with several typical tasks of daily life such as climbing stairs and walking 

(Bassey et al. 1992). Furthermore, relationships between asymmetry in RTD, but not 

MVT, and subjective knee function have been reported after total knee arthroplasty 

(Maffiuletti et al. 2010).   

One of the most common methods of measuring strength experimentally is 

dynamometry, whereby strength can be measured in dynamic situations 

(isokinetically; e.g. Impellizzeri et al. 2007) or isometrically (e.g. Tillin, Pain, & Folland 

2011).  While maximum strength (Figure 2.1A) is defined by the greatest peak of the 
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force-time curve, irrespective of when it occurs (isometric: maximum voluntary force/ 

torque [MVF/ MVT], isokinetic: peak torque [PT]; Abernethy et al. 1995), explosive 

strength can be measured in multiple ways, for example, as rate of force/ torque 

development (RFD/ RTD) (the slope of the force-time curve, as utilised in this thesis; 

Figure 2.1B [Aagaard et al. 2002]), the force produced at specific time points from the 

onset of the contraction, or as impulse beneath the force-time curve (Aagaard et al. 

2002). Both isometric and isokinetic measures of maximum strength have high 

reliability (isometric MVT, Coefficient of Variation [CV] = 3 – 5%, Intraclass Correlation 

Coefficient [ICC] = 0.95 – 0.97%; isokinetic PT, CV 3 – 7%, ICC 0.97 – 0.99%; 

Impellizzeri et al. 2008, Maffiuletti et al. 2007, Tillin, Pain & Folland 2011). However, 

while the reduced ecological validity of assessing muscle function in a non-dynamic 

contraction is recognised, isometric measures of RTD are necessary to remove the 

confounding influence of joint angle changes that are inherent in isokinetic 

contractions (Maffiuletti et al. 2016). 
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2.2.2 Strength Asymmetry 

Inter-limb strength asymmetry refers to the concept of comparing the strength of one 

limb in respect to the other. This section of the review will focus on asymmetry of the 

lower limbs, and specifically, the quadriceps, given that quadriceps strength deficits 

have been shown to impair dynamic knee stability, physical function and quality of life 

(Rice & McNair, 2010). In addition, weakness of these muscles has been linked to 

increased risk of knee joint injury and is thought to contribute to the development and 

progression of degenerative conditions (Hurley, Rees & Newham 1998). Knee 

extensor strength asymmetries have been found in the elderly (Skelton, Kennedy & 

Rutherford 2002), those prone to falling (Perry et al. 2007), and pathological 

populations (Lloyd et al. 2010, Sandroff, Sosnof & Motl 2013, Suetta et al. 2007). 

Furthermore, asymmetries at the quadriceps have been linked to performance deficits 

(Hart et al. 2014, Rannama et al. 2015), and there is evidence that inter-limb differences 

>10% have a detrimental effect on the outcomes of return to activity following knee 

injuries (Grindem et al. 2016).  

2.2.2.1 Calculation of Asymmetry 

Before discussing current perspectives on strength asymmetry, it is important to 

understand how asymmetry indices are generated. Multiple equations exist for the 

calculation of asymmetry (Appendix A), and there is no systematic agreement 

amongst researchers on the best method. In non-injured groups, inter-limb 

asymmetries in strength have previously been calculated by comparing strong and 

weak, right and left, and dominant and non-dominant limbs. This makes it difficult to 

compare the results of the many studies that have assessed the magnitude of 

quadriceps strength asymmetries in a variety of healthy populations. One of the issues 

with calculating strength asymmetries between the left/ right, or dominant/ non-

dominant limbs is that there is a tendency for the average difference to be around zero 
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due to the variability in the direction of the asymmetry (Kobayashi et al. 2013, Newton 

et al. 2006, Schiltz et al. 2009). Indeed, when taking the direction (i.e. whether the 

asymmetry was positive or negative) as well as the extent of the measured asymmetry 

into account, Impellizzeri et al. (2007) found an average maximum lower-limb strength 

asymmetry of just 0.8%, but a range of -15 to 15%. For this reason, some studies have 

grouped limbs by strong vs. weak, in order to calculate absolute asymmetry. Calculated 

this way, the average lower-limb asymmetry reported by Impellizzeri et al. (2007) 

becomes 6%. Furthermore, two studies that compared asymmetry scores when 

calculated using strong/ weak vs. left/ right reported significant differences in the 

former, but not the latter, for all methods of asymmetry assessment (Jones & 

Bampouros 2010, Newton et al. 2006; Table 2.1). Jones & Bampouros (2010) 

postulated that this was because, despite all participants in their study being right-

sided (i.e. being right handed and preferring the right limb in throwing and kicking 

tasks), some subjects were actually left leg dominant in strength, nullifying strength 

differences when averaged across the groups. This serves to indicate one of the 

problems with classifying limb dominance for the calculation of asymmetry (discussed 

further in Appendix A).  

2.2.2.2 Maximum Strength Asymmetry 

Most studies that have investigated inter-limb strength asymmetries at the quadriceps 

have used isokinetic, isotonic or isometric dynamometry to assess maximum strength 

(measured as PT [dynamic] or MVT [isometric]; Table 2.1), as this measure has been 

associated with the ability to perform daily ambulatory activities such as rising from a 

chair, walking at an appropriate speed, and ascending and descending stairs (Bassey 

et al. 1992, Buchner & Lateur 1991). Little research however, has focused on 

asymmetry in young, healthy, recreationally active adults, concentrating instead on 

special populations such as sports people, the elderly and those suffering from 
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pathology. Studies investigating athletes from different sports, a variety of strength 

measures (both isometric and isokinetic), and a mix of genders and ages, have found 

an average magnitude of asymmetries of 7%, but a wide range of 1 – 18% (Table 2.1). 

Furthermore, Bell et al. (2014) found that the majority (79%) of athletes had peak force 

asymmetries of 0 – 10%, with 16% presenting in the 10 – 15% band, and 4% in the 

>15% band. The variability of strength asymmetry within each population, as evidenced 

by large ranges and standard deviations (e.g. Impellizzeri et al. [2007], who reported 

asymmetries of 0 – 15%) may stem from factors such as limb dominance (Sjöström et 

al. 1991), previous injury (Newton et al. 2006) and training background (Rahnama, 

Lees & Bambaecichi 2005, Theoharopoulos et al. 2000). Each of these factors are 

likely to introduce muscular adaptations at the affected limb that may influence strength. 

Training, for example, causes adaptations such as increased muscle thickness and 

enhanced neural drive (Narici et al. 1989, Tillin & Folland 2014), which contribute to 

both maximum and explosive strength (Sections 2.3 and 2.4). In an athlete that 

participates in a sport that has a more unilateral demand, it may be the limb that 

experiences increased loading more regularly experiences greater muscle adaptation, 

and therefore is capable of greater force production. This is supported by the work of 

Bell et al. (2014) who demonstrated that sports that involve greater demand on one 

lower limb than the other (i.e. American football and football [soccer], both of which 

involve kicking; and hockey) showed a greater proportion of athletes with larger 

strength asymmetries than those that require more symmetrical involvement of the 

lower limb (e.g. softball and volleyball).  
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Evidence of maximum quadriceps strength asymmetry has also been found in ageing 

(Skelton, Kennedy & Rutherford 2002) and pathological populations such as, for 

example, those suffering from osteoarthritis (Suetta et al. 2007), multiple sclerosis 

(Sandroff, Sosnof & Motl 2013), and ITTAs, who display musculoskeletal asymmetry 

due to the loss of their ankle on one side, with resultant strength asymmetries of ~42% 

(see Section 2.5.2.1; Isakov et al 1996a, Lloyd et al. 2010, Moirenfeld et al. 2000, 

Pedrinelli et al. 2002, Renstrom, Grimsby & Larsson 1983). In females over the age of 
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65 years, substantial maximum strength asymmetries have been found (mean ~14%, 

range 0.6 – 30.7%; Nakao et al. 2006, Skelton, Kennedy & Rutherford 2002). 

Furthermore, Schimidt et al. (2014) found significant differences (i.e. asymmetries, 

calculated using a dominant/ non-dominant limb split) in knee extensor MVT in older 

participants, but not in young adults or children. They postulated that this was 

because of the higher daily involvement of younger individuals in bilateral actions, 

which they theorised contribute to similar force-production abilities between limbs. In 

contrast, Perry et al. (2007) found no effect of age on quadriceps strength asymmetry, 

although elderly fallers exhibited greater asymmetry in MVT (~15%) than healthy 

young controls (~10%).  However, similarity in asymmetry values between all ages in 

the latter study may be due to the calculation of asymmetry as the difference between 

left and right sides (Perry et al. 2007), as opposed to between the strong and weak 

(Skelton, Kennedy & Rutherford 2002) or dominant and non-dominant limb (Schimidt 

et al. 2014). In support of this argument, Skelton, Kennedy & Rutherford (2002) 

reported that the asymmetries found did not follow the dominance pattern of the limbs, 

and were not consistent to one side of the body. 

2.2.2.3 Explosive Strength Asymmetry 

However, as previous research has suggested that strength asymmetries are task- 

and variable-specific (Maloney et al. 2019), we cannot extrapolate these findings to 

inform us of typical asymmetry in explosive strength. To the author’s knowledge, 

asymmetry in peak voluntary RTD has only been assessed in elderly and pathological 

populations (Table 2.1), with conflicting results. In a study investigating changes in RTD 

asymmetry following an anterior cruciate ligament (ACL) reconstruction, Knezevic et al. 

(2014) found that explosive strength asymmetry was significantly greater than that of 

maximum strength both pre- and post-surgery. Other studies have not identified 

significantly greater explosive when compared to maximum strength asymmetries 
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(Maffiuletti et al. 2010, Suetta et al. 2007). These differences may be related to the 

different populations tested, who were a mix of genders and ages, and who had 

differing pathologies. Additionally, as maximum strength asymmetry appears to be 

greater in pathological conditions (15 – 32%; Knezevik et al. 2014, Maffiuletti et al. 

2010, Suetta et al. 2007) when compared to healthy, young subjects (1 – 18%; e.g. 

Kobayashi et al. 2013, Graham-Smith, Al-Dukhail & Jones 2015, Table 2.1), it is difficult 

to comprehend how, in the latter population, asymmetries in the two forms of strength 

might differ. Although perhaps not as large as those in pathological populations, we 

may hypothetically expect to see larger asymmetries in explosive strength, owing to the 

greater inter-individual variability present in explosive strength (CV = 23 – 48%,), 

when compared to MVT (CV = 21%; Folland, Buckthorpe & Hannah 2014). 

Furthermore, there is greater between-session variability in RTD (ICC = 0.90, CV = 

7.2%; Buckthorpe et al. 2012) compared to MVT (ICC ≥ 0.90, CV <4%; Buckthorpe 

et al. 2012, de Ruiter et al. 2004, Place et al. 2007), which suggests that explosive 

strength asymmetry may be more variable, and potentially therefore larger, than 

maximum strength asymmetry.  

In summary, current literature has focussed mainly on strength asymmetries in 

special populations such as athletes, the elderly, and those who are suffering from 

various pathological conditions. There is little research that has explored strength 

asymmetry in young, healthy, recreationally active individuals with no specific training 

bias that may predispose the individuals to greater magnitudes of strength 

asymmetry. Furthermore, the extent of quadriceps explosive strength asymmetry has 

not been investigated in detail in such a group. Current literature is therefore unclear 

on the variability within MVT and RTD asymmetry, and how asymmetries in the two 

forms of strength might differ. An in-depth investigation of the magnitude and 

variability of strength asymmetry in such a sample would allow comparison to other 

patient groups, e.g.  ITTA, among others. Finally, while the presence of asymmetry 
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may indicate pathology, the global nature of strength assessment alone is not 

particularly helpful in guiding the rehabilitation process. To this end, it may be useful to 

quantify the determinants of strength asymmetry. However, before we can consider 

the determinants of strength asymmetry, it is necessary to first consider how strength 

is produced and what factors determine the level of force the system is capable of 

producing at the single-limb level.  

2.3 Determinants of Muscular Strength 

2.3.1 Muscle Organisation and Mechanism of Contraction 

Muscles are innervated by motor neurons. A single α-motor neuron in the anterior 

horn of the spinal cord can innervate multiple muscle fibres via its peripheral axon – 

the neuron and all the muscle fibres it innervates is known as a motor unit (MacIntosh, 

Gardiner & McComas 2006). A muscle is made up of groups of fibres (the elongated, 

multinucleated muscle cells) collectively known as fascicles. Each single fibre 

consists of bundles of myofibrils (the contractile elements of muscle) in parallel. The 

myofibrils are surrounded by cytoplasm (known in the muscle as sarcoplasm), which 

contains mitochondria, the internal membrane systems of the sarcoplasmic reticulum 

(SR), the T-system, and glycogen (Keynes & Aidley 2001). A single myofibril is 

composed of multiple sarcomeres arranged end-to-end. Sarcomeres consist of two 

types of contractile proteins – actin (known as the thin filament) and myosin (thick 

filament). Muscle contraction is a result of the relative movement of one type of 

filament over the other, without a change in the length of the filament themselves 

(McCubble & Kay 1980). This movement is due to the connection of the two filaments 

to form cross bridges when stimulated by action potentials from nerves, which allows 

the production of force (McArdle, Katch & Katch 2010). 
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The motor unit is the fundamental component of the motor system responsible for all 

voluntary and involuntary contractions (Doherty et al. 2002). The motor neuron is 

activated only when a stimulus equal to or greater than the threshold potential (the 

critical level to which a membrane potential must be depolarised to initiate an action 

potential) is received. If the stimulus is beneath this threshold, the neuron will not 

respond, while the response to any stimulus greater than the threshold is the same 

(i.e. all fibres of the motor unit will be activated): this is known as the all-or-none law 

(Lucas 1909). Once the threshold has been met, an action potential is transmitted 

along the length of the axon to the neuromuscular junction between the neuron and 

activates all of the muscle fibres that motor neuron innervates. This is the beginning 

of the process that leads to a muscle contraction. 

The process of converting an electrical signal to a mechanical response is known as 

excitation-contraction coupling (Bertorini 2008). Once an action potential has crossed 

the neuromuscular junction, a wave of depolarisation spreads across the cell 

membrane (sarcolemma) of the muscle fibre. The sarcolemma is electrically excitable 

to enable it to transmit action potentials (Keynes & Aidley 2001). This depolarisation 

is then propagated along the t-tubules (inward foldings of the sarcolemma that runs 

transversely across the fibre adjacent to the sarcoplasmic reticulum) to the 

dihydropyridine (DHP) voltage receptors. The DHP receptors, which are coupled with 

ryanodine receptors on the sarcoplasmic reticulum, undergo voltage-induced 

conformational change in the presence of an action potential. The shape change of 

the DHP is transmitted to the ryanodine receptors on the sarcoplasmic reticulum, 

causing them to be activated allosterically. This allows the release of a large quantity 

of calcium ions (Ca2+) into the sarcoplasm from stores in the sarcoplasmic reticulum 

(Keynes & Aidley 2001). 
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The presence of Ca2+ in the sarcoplasm causes changes to the troponin-tropomyosin 

complex at the sarcomere. Tropomyosin is a long, thin protein that extends between, 

and binds to, troponin, which associates with actin. The troponin-tropomyosin 

complex consists of tropomyosin and troponins I (inhibitory), C (calcium binding) and 

T (tropomyosin binding). In a resting muscle, the complex blocks the myosin binding 

site on actin. When Ca2+ binds to troponin C, however, it undergoes a conformational 

change which causes the complex to move slightly, dislocating troponin I and 

tropomyosin (McCubbin & Kay 1980, Lehman, Craig & Bibertt 1994). This acts to free 

the binding sites for myosin on the actin. Myosin heads carrying adenosine 

triphosphate (ATP – the molecule involved in providing energy for biological 

processes) attach to the actin filaments to form cross-bridges. During the formation 

of the cross-bridge, ATP is hydrolysed in a reaction catalysed by myosin ATPase, to 

form adenosine diphosphate (ADP) and an inorganic phosphate. Initially, the 

association is relatively weak; however, the release of the Pi from the myosin head 

catalyses the transition to a strongly bound state (Holmes 1995). Stronger binding 

triggers what is known as the powerstroke, during which the myosin head flexes 

strongly to pull the actin filament over the myosin and the ADP is released from the 

cross-bridge. It is the powerstroke that generates force, and subsequently returns the 

actin-myosin complex to its strongly bound state of ‘rigour’ (i.e., no nucleotides are 

bound). In order for the cross-bridge cycle to continue, the myosin head must be 

released from the actin filament. This is achieved by the attachment of another ATP 

molecule to the myosin head. The cross-bridge cycle can therefore begin again. 

Continued coupling of the actin and myosin occurs until electrical stimulation is no 

longer present at the muscle fibre (Keynes & Aidley 2001). 

When the electrical stimulation from the action potential ceases, so does the 

depolarisation of the sarcolemma. At this point, Ca2+ is no longer released into the 

sarcoplasm, and the Ca2+ bound to the troponin molecules is released and actively 



Chapter 2. Literature Review 
 
 

 

20 
 

transported back into the sarcoplasmic reticulum. The troponin then moves back to 

its original position, causing the conformational change on the tropomyosin that 

revealed the binding site on the actin to reverse. This consequently prevents any 

further cross-bridges from forming, and tension falls (Keynes & Aidley 2001). 

Both central and peripheral factors are involved in the production of muscular force 

(summarised in Figure 2.2). Centrally, agonist neural drive (sections 2.3.2.1 and 

2.3.3.1) is a product of motor unit discharge rate and recruitment. Peripheral factors 

include the intrinsic contractile properties of a muscle (defined as the contractile 

response of the muscle to known stimuli, which dictates contractile time; section 

2.3.3.2) and muscle architecture (including muscle size; section 2.3.2.2). The 

following sections of the review will therefore discuss the determinants of both 

maximum and explosive strength and how they differ. 
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2.3.2 Determinants of Maximum Strength 

2.3.2.1 Agonist Neural Drive 

The level of force produced during voluntary muscular contractions is largely a result 

of descending neural drive to the muscle from the motor cortex. Neural determinants 

of force production include motor unit recruitment and firing frequency (or discharge 

rate), which together define the muscle activation (Figure 2.2; de Ruiter et al. 2004, 

2006). Increasing the number of motor units recruited will increase the number of 

muscle fibres contributing to force production, therefore increasing force output 

(MacIntosh, Gardiner & McComas 2006). Meanwhile, the firing frequency of the 

motoneuron influences both the magnitude of the force produced and the RTD of the 

muscle (Miller, Mirka & Maxfield 1981, Nelson 1996), although evidence suggests 

that it is particularly important for the latter (del Vecchio 2019a).  

Neural drive during contractions can be measured using electromyography (EMG), 

or the interpolated twitch technique (ITT). EMG measures the voltage generated 

across the sarcolemma of the muscle fibres in response to neural activation. The 

amplitude of EMG signals increases with increased motor unit recruitment and firing 

frequency, and is therefore useful for measuring neural drive to a muscle (de Luca 

1997). Surface EMG, which is used for analysing large muscle groups, is a 

summation of all the voltage potentials detected by electrodes on the skin’s surface. 

The signal is therefore affected by factors such as electrode placement, muscle cross-

talk, subcutaneous adipose tissue, muscle biochemistry and equipment noise (de 

Luca 1997, Lanza et al. 2018). As such, a normalisation procedure is usually 

undertaken to facilitate both between- and within-individual comparisons. The two 

most commonly utilised methods of normalisation are reporting EMG (1) relative to 

peak EMG during an isometric maximum voluntary contraction (MVC) and (2) as a 

ratio of a maximal M-wave (peak-to-peak amplitude, Mmax) for the same muscle. The 
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M-wave is a compound muscle action potential recorded in response to electrical 

stimulation of the motoneurons. Mmax is achieved when all motoneurons in a motor 

pool are activated maximally, and therefore time-aligns with the maximum force 

response for a single electrical impulse (Maffiuletti et al. 2001). The latter method of 

normalisation is preferable as it allows comparison between muscle, tasks and 

individuals (Halaki & Ginn 2012); removes the influence of electrode location, and 

reduces the influence of subcutaneous adipose tissue thickness (which is problematic 

due to its high electrical resistance; Lanza et al. 2018). 

The ITT, meanwhile, assesses the capacity of the central nervous system to activate 

muscles by calculating the difference in the amplitude of the force produced by twitch 

contractions evoked at rest and superimposed on an MVC. Theoretically, the 

superimposed stimulus will recruit the motor units not already active, and/ or increase 

the firing frequency of active motor units that are firing at submaximal frequencies. In 

other words, if not all motor units are recruited at MVF, the effect of the superimposed 

stimulus would to be further increase force output. The force increments from different 

motor units are summed across the entire muscle to produce an additional twitch. The 

greater the number of motor units recruited during a voluntary contraction, and the 

greater the firing frequency, therefore, the smaller the superimposed twitch will be. 

During a contraction that produces maximal possible muscle force, all motor units in 

the muscle should be recruited and firing at a sufficient frequency that additional 

stimulation will not produce an evoked twitch (Merton 1954). Voluntary activation (VA, 

the outcome measure for ITT, given as a percentage of maximum possible force) has 

therefore been defined as the level of voluntary drive to a muscle during a contractile 

effort (Gandevia 2001). 

There are several methodological issues that should be considered to improve the 

reliability and validity of ITT measures. Firstly, as previous research has shown a 

curvilinear relationship between voluntary and superimposed force, the stimulus 
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should be superimposed when the participant is producing force at or above 80% of 

their MVF, whereby changes in superimposed force are minimal (Kooistra, de Ruiter 

& de Haan 2007). Additionally, twitch contractions can potentiate by around 70% 

immediately following an MVC, before force declines exponentially. However, twitch 

force remains significantly above the unpotentiated level (~12%) for at least five 

minutes (Hamada et al., 2000). A potentiated twitch elicited after the contraction (as 

opposed to an unpotentiated twitch elicited before) theoretically allows more valid 

comparison to the superimposed stimulus, which appears to be potentiated (Folland 

2009).  

Some authors have suggested that a single superimposed stimulus may not be 

adequate to assess the absolute force capacity of a muscle. The force produced by 

paired stimuli is greater and less variable than for a single twitch, which may not be 

clearly noticeable at the plateau of an MVC due to signal noise. The second impulse 

is likely to depolarise any motor units that were both not firing maximally and in the 

refractory period at the time of the first impulse (Duchateau 2009). However, trains of 

stimuli are both uncomfortable for the participant, and are likely to be reduced by both 

antidromic collisions and spinal reflexes (Herbert & Gandeiva 1999).  

2.3.2.2 Muscle Architecture and Size  

Skeletal muscle architecture can be defined as ‘the arrangement of muscle fibres 

within a muscle relative to the axis of force generation’ (Lieber & Frieden 2001: 141). 

The size and architectural properties of a muscle (pennation angle, i.e. the angle at 

which the fascicle inserts into the aponeurosis, and fascicle length; Figure 2.3) 

strongly influence its functional capabilities. While the maximum force generating 

potential of a muscle is dependent architecturally on the maximum number of 

sarcomeres in parallel (in other words, the physiological cross-sectional area (PCSA) 

of the muscle, which in itself depends on the pennation angle of the fibres), the 
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maximum shortening velocity is dependent on the number of sarcomeres in 

series (Narici et al. 2003).  

 

The architecture of a muscle influences its functional properties through the length-

tension and force-velocity relationships. Sarcomere length is critical to a muscle’s 

ability to produce force, as it relies on actin-myosin overlap during the formation of 

cross-bridges (Figure 2.4). On the activation of the process of cross-bridge cycling 

during muscle contraction, the greatest force is produced at an optimal sarcomere 

length, with an overlap of actin and myosin that provides maximal cross-bridge 

interaction. When sarcomere length is outside this optimal length, the force production 

capability of a muscle decreases. At lengths below the optimum, force production 

decreases due to the overlap of actin from opposite ends of the sarcomere, combined 

with the compression of myosin filaments colliding with the Z-disk. In contrast, when 

stretched beyond the optimal length, cross-bridge interaction is decreased as there 
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is less overlap between actin and myosin, which also serves to decrease force 

production at the sarcomere (Gordon et al. 1966, Lieber et al. 1994). 

 

The velocity of muscle contraction dictates the force production capability of a muscle 

due to the limiting effect of actin-myosin cross-bridge cycling. The force-velocity 

relationship therefore describes the inverse relationship between muscle force 

production and contractile velocity (Gordon, Huxley & Juilan 1966; Figure 2.5). The 

amount of force generated by a muscle is determined by the number of cross-bridges 
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attached at any one time. As it takes a fixed period of time for cross-bridges to attach, 

the total number of cross-bridges attached at any given point decreases as the 

velocity of muscle shortening increases. A muscle is therefore capable of producing 

less force as the velocity of a concentric or isometric muscle contraction is increased. 

During eccentric contractions, the tension produced by the muscle increases as the 

velocity of lengthening increases (Hill 1938).  

 

An increased number of sarcomeres in series in a muscle fibre allows the generation 

of force over greater ranges of motion by increasing the length of the fibre; a property 

that tends to be very uniform within a muscle (Wickiewicz et al. 1983). Maximum 

contraction velocity (Vmax) also increases with a greater number of sarcomeres 

arranged in series (Blazevitch & Sharp 2006). This is supported by the work of Bodine 

et al. (1982) who investigated the anatomical and mechanical properties of the cat 
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semitendinosus muscle. This muscle provides a unique model, as it is comprised of 

two discrete heads (proximal and distal) separated by connective tissue and each 

with distinct neural innervation. Both heads of the muscle were electronically 

stimulated separately and then simultaneously. The Vmax of the shorter proximal and 

longer distal head was 224 mm/s and 424 mm/s respectively. When the two heads 

were stimulated simultaneously, the whole muscle Vmax was 624 mm/s (the sum of 

the two velocities), indicating a positive proportional relationship between Vmax and 

fibre lengths (Figure 2.6).  

 

In terms of maximal strength production, large pennation angles are biomechanically 

important as they allow increased attachment of contractile tissue to the tendon and 

aponeurosis, increasing the muscle PCSA. The PCSA of a muscle represents the 

sum of the cross-sectional areas of all the muscle fibres within the muscle (see Figure 

2.7). It is therefore directly proportional to the maximum tetanic force generated by 

the muscle (Lieber & Friden 2000). It is calculated using equation 2.1: 
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𝑃𝐶𝑆𝐴 (𝑚𝑚2) =  
𝑚𝑢𝑠𝑐𝑙𝑒 𝑚𝑎𝑠𝑠 (𝑔) ∙ 𝑐𝑜𝑠 𝜃

𝜌(𝑔/𝑐𝑚3) ∙ 𝑓𝑖𝑏𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚𝑚)
 

(2.1) 

where  represents muscle density (1.056 g/cm3 for mammalian muscle) and  

represents surface pennation angle (Powell et al. 1984). This equation divides the 

volume of a muscle by the length of the fibres and their area. The inclusion of the 

cosine (cos) factor considers the force that is not transmitted directly to the tendon as 

a result of muscle fibres that are not oriented relative to the axis of force generation 

(i.e., a pennation angle greater than 0°). The term 𝑥 ∙ cos 𝜃 therefore represents the 

proportion of the muscle fibre force that is transmitted along the muscle axis. Large 

pennation angles can therefore lead to mechanical disadvantage as a result of 

reduced transfer of force to the tendon (Fukanaga et al. 1997). Conversely, increased 

rotation of fibres at greater pennation angles increases tendon displacement for a 

given shortening of fibres during contraction, which makes it more likely that they can 

operate closer to their optimum length (Figure 2.4). Larger pennation angles are 

therefore likely to result in increased force generation (Blazevich & Sharp 2006). 

However, the positive features of muscles with large pennation angles (i.e. increased 

PCSA resulting from a greater number of fibres in parallel) offset the negatives, so 

that increases in pennation angle up to 45° are beneficial. Above this value, however, 

the advantages are outweighed, and maximal force production is compromised 

(Kawakami 2005). 
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Anatomical cross-sectional area (ACSA; the cross-sectional area of a muscle 

perpendicular to its line of pull) and muscle volume are both measures of muscle size, 

and consequently infer the number of muscle fibres in series and contractile force. It 

is therefore perhaps unsurprising that strong relationships have been reported 

between the size of a muscle and its strength. At the quadriceps, similar relationships 

have been found between different measures of muscle size and isometric strength: 

ACSA r = 0.73 – 0.87 (Blazevich et al. 2009, Chapman et al. 1984); muscle volume r 

= 0.77 – 0.84 (Blazevich et al. 2009, Evangelidis et al. 2016); PCSA r = 0.72 

(Blazevich et al. 2009). A strong relationship with isometric strength and muscle 
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thickness of the quadriceps, measured using ultrasound, has also been shown: r = 

0.76 – 0.88 in old, and r = 0.84 – 0.92 in young men (Strasser et al. 2013). 

The muscles that comprise quadriceps femoris (rectus femoris [RF], vastus lateralis 

[VL], vastus medialis [VM] and vastus intermedius [VMO]) are all pennate muscles, 

with fascicles that attach obliquely to its tendon. Muscle pennation angles are typically 

less than 30º (Ward et al. 2009); angles of pennation of the VL muscle, for example, 

have been reported to be 6 – 27° in healthy subjects (Blazevich et al. 2006, 

Henriksson-Larsen et al. 1992, Rutherford & Jones 1992). This compares to 

pennation angles of 10 – 29°, 10 – 14°, and 8 – 9° at VM, RF and VMO, respectively 

(Blazevich et al. 2006, Strasser et al. 2013). These large pennation angles found at 

the quadriceps result in large PCSAs (as increases in pennation angle leads to an 

increase in the number of sarcomeres in parallel) and result therefore in large force 

production capability (MacIntosh, Gardiner & McComas 2006). In addition, the 

fascicles of the quadriceps muscles are relatively short (i.e. there are few sarcomeres 

in series) resulting in low muscular Vmax. This, however, is also beneficial for force 

production, as decreased contractile velocity results in greater force production. The 

quadriceps are therefore well suited to the generation of large forces (Lieber & Friden, 

2000). 

2.3.3 Determinants of Explosive Strength 

2.3.3.1 Agonist Neural Drive 

During muscular contractions of large muscle such as the quadriceps, full tetanic 

fusion is achieved with a firing frequency of ~ 25 – 40 Hz (Masakado 1994, Roos et 

al. 1999) at maximal force generation, which may be up to > 300 ms from the onset 

of an isometric contraction (Thorstensson et al. 1976, Tillin, Pain & Folland 2012a). 

At the onset of maximal voluntary contractions, motor unit firing rates have been 
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recorded at much higher frequencies (100 – 200 Hz) than those required to achieve 

maximal tetanic fusion (van Cutsem et al. 1998). This high initial neural discharge 

frequency has been shown to increase with training in association with increases in 

contractile RTD and decreases in ½ relaxation time (van Cutsem et al. 1998, Aagaard 

et al. 2002). In addition, Grimby, Hannerz & Hedman (1981) found that an innervation 

rate (and therefore firing frequency) of 100 Hz produced greater RTD, but not peak 

isometric force, of the toe extensors when compared to an innervation rate of 50 Hz. 

This suggests that supramaximal firing frequencies act to increase maximal RTD 

(Figure 2.8), rather than purely increasing maximal contraction force, as maximal RTD 

can only be produced when more action potentials per unit time reach the muscle 

fibres than are necessary for the production of maximal isometric force (Behm 1995, 

de Ruiter et al. 2006). This is supported by work that has found the contribution of 

neural drive to be a major influence on explosive force production throughout the force 

time curve (de Ruiter et al. 2004, 2006, Folland, Buckthorpe & Hannah 2014, Klass 

et al. 2008). Several studies have found associations between agonist muscle 

activation measured using EMG and initial force output in explosive contractions, 

suggesting that increased muscular activation is a key determinant of force production 

during the early phase (0 – 75 ms) of these contractions (Aagaard et al. 2002, de 

Ruiter 2004, 2006, Folland, Buckthorpe & Hannah 2014, van Cutsem et al. 1998). 

This demonstrates the importance of agonist muscle activation for the early stages of 

explosive muscle contraction.  
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Evidence of changes in EMG as a result of strength training, and the greater explosive 

force capability of explosive power athletes compared to controls (ascribed to 

differences in neural drive to the muscle assessed using EMG; Tillin et al. 2010), 

underline this relationship still further. Studies consistently report increases in neural 

activation (increased myoelectrical activity) associated with concurrent increases in 

RTD in the early phase of explosive contractions following periods of strength training 

(Aagaard et al. 2002, del Vecchio 2019b, Gruber et al. 2007, Hakkinen, Komi & Alen 

1985, Tillin, Pain & Folland 2012b, van Cutsem et al. 1998).  

2.3.3.2 Intrinsic Contractile Properties 

The contractile characteristics of a muscle are measured during involuntary 

contractions in response to a controlled stimulus in order to bypass the central 

nervous system and therefore remove the influence of voluntary neural drive (Figure 

2.9). Electrically induced stimuli can be, for example, a supramaximal twitch (evoked 

from a single electrical impulse), or a tetanic response evoked as a result of a train of 
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impulses. Evoked octets, for example, involve eight electrical stimuli delivered at 300 

Hz, used to determine the maximum capacity of the muscle-tendon unit for explosive 

force production (de Ruiter et al. 2006). Contractile properties can be assessed for a 

single motor unit (often done in situ) or skinned muscle fibres, used to investigate the 

contractile performance of single muscle fibres in vitro (Bottinelli et al. 1999); or a 

whole muscle or muscle group in situ or in vivo by eliciting impulses via electrical 

stimulation over the muscle belly, or directly to the nerve supplying the muscle of 

interest (de Ruiter et al. 2004).The intrinsic contractile properties of a muscle (the 

contractile response of the muscle to known stimuli) are likely determined by fibre 

type, although this relationship is not completely clear. In support of this hypothesis, 

Harridge et al. (1996) found that muscle fibres of the same type (determined by 

histochemical analysis) had identical contractile properties, regardless of the muscle 

of origin.  

Several studies have focused on how intrinsic contractile properties influence 

explosive strength of a muscle, as they are thought to be a key determinant of the 

rate of voluntary muscle contraction. Early work by Viltasalo and Komi (1978), building 

on the assumption that contractile properties are linked to fibre type, investigated the 

composition of the Vastus Lateralis muscle (determined by histochemical analysis) 

and the relationship of fibre types to RFD during explosive voluntary isometric leg 

press. There was a low-moderate correlation (r = 0.34 – 0.48) between fibre type and 

RFD, with participants with greater numbers of fast twitch fibres demonstrating 

increased RFD normalised to MVF. While histochemical properties of the muscle only 

explained 12 – 23% of the variance in normalised explosive force, this study provides 

solid evidence of a link between the two in vivo.  
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More recent work has compared voluntary and involuntary force measures in vivo to 

better understand the association between force development and the intrinsic 

properties of the muscle. Their relative influence appears to change over the time-

course of a contraction. Alongside agonist neural drive (Section 2.3.3.1), twitch RFD 

(thought to be dependent upon the rate of cross-bridge cycling within muscle fibres 

[Clark, Fernhall & Ploutz-Snyder 2006]) seems to be an important determinant of 

early-phase voluntary explosive force and RFD. Andersen & Aagaard (2006) found a 

moderate relationship (r = 0.45 – 0.60) between peak twitch RFD and voluntary RFD 

of the knee extensors. This relationship became weaker at time points greater than 

50 ms from the onset of the contraction; and was echoed in the results of a later study. 
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Folland, Buckthorpe & Hannah (2014) found that twitch response made a substantial 

contribution to the explained variance during the early phase of contraction (force at 

25 – 50 ms, 34 – 40%; RFD from 0 – 50ms, 40%) but not at later phases (i.e. > 75 

ms from onset). The importance of twitch response was hypothesised to be 

particularly important in the early phase due to the low levels of Ca2+ present in the 

sarcoplasm during the initial phases of voluntary contraction. 

However, twitch peak RFD has been shown to only produce 25 – 30% of the 

maximum RFD of an evoked octet (de Ruiter et al. 2006). Combined with the greater 

reliability of octet when compared to twitch RFD (CV = 7.3% vs. 11.3%, respectively; 

Buckthorpe et al. 2012), it may therefore be useful to also measure the muscular 

response to octet stimuli, as twitch response may not be a good indicator of the full 

explosive capacity of the muscle. Folland, Buckthorpe & Hannah (2014) found that 

octet RFD was the primary determinant of the steepest phase of RFD (50 – 100 ms, 

the time window in which peak RFD typically occurs), accounting for 68% of the 

variance in RFD. This is in contrast to the findings of de Ruiter et al. (2004, 2007) who 

found that the response of the knee extensors to octet contractions was unrelated to 

voluntary explosive force production. However, de Ruiter et al. (2004, 2007) did not 

measure explosive force beyond 40 ms, while Folland et al. (2014) found the 

relationship did not strengthen until at least 50 ms from onset. It therefore seems that 

octet RFD is an important determinant of voluntary RFD once agonist neural 

activation is typically maximal after the first 50 ms.  

When the relationships between twitch and octet peak force and relative (normalised 

to MVF) rather than absolute explosive force were considered, however, the 

moderate to high bivariate correlations waned (twitch: r ≤ 0.27, octet: r ≤ 0.25 across 

all time windows). Additionally, contractile properties only explained a modest 

proportion of the total variance in relative explosive force (≤ 15% at 25, 50, and 150 
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ms from force onset). The lack of relationships between relative evoked responses 

and relative explosive force indicated a shared variance of absolute twitch and octet 

force with MVF. This suggests that the increases in explosive force in the mid- to late-

stage of contractions are related to the influence of maximum muscle strength rather 

than the intrinsic contractile properties of the muscle per se.  

2.3.3.3 Contractile Capacity  

As MVF/ MVT defines the ultimate plateau of voluntary force/ torque production, it 

seems logical that, all else being equal, a muscle with a greater maximum strength 

capacity will have greater RFD/ RTD. However, its relative contribution changes 

throughout the torque-time curve. Andersen & Aagaard (2006) measured the 

relationship between knee extensor RFD and MVF at multiple points from the onset 

of an explosive contraction. They found that, while MVF accounted for 18 – 25% of 

the variance in initial voluntary RFD (0 – 50 ms), RFD became increasingly dependent 

on MVF as contraction time increased (Figure 2.10). From the period between 100 – 

200 ms, MVF accounted for 52 – 81% of the variance in RFD. Similar results were 

found by Folland, Buckthorpe & Hannah (2014), who found that MVF accounted for 

the majority of the variation in the later phase of explosive contractions (100 ms, 75%; 

150 ms, 90%). Therefore, maximum strength appears to be the primary determinant 

of explosive strength during the late, but not early, phases of an explosive contraction. 
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2.3.4 Determinants of Strength Asymmetry 

A potential association between strength asymmetry and a typical determinant of 

strength may be characterised in one or both of the following ways. Firstly, between-

limb differences in a neuromuscular determinant of strength may exist between the 

strongest and weakest limbs, suggesting asymmetry in strength and the 

neuromuscular determinant share the same direction. Secondly, the asymmetry in 

strength and the asymmetry in a neuromuscular determinant of strength may be 

correlated, suggesting they are proportional to each other. Both approaches are 

utilised in this thesis. To the author’s knowledge, however, no research has directly 

investigated the underlying determinants of asymmetry in strength utilising the 

second method. It is therefore unclear whether the neuromuscular underpinnings of 

strength asymmetry are similar to those that determine force production of a single 

muscle or limb (as described in Sections 2.3.2 and 2.3.3). One possible approach to 
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this problem may be to make inferences from studies who have determined 

associations between asymmetries in these factors through the assessment of 

neuromuscular differences between limbs grouped for strength; for example, in 

unilateral training or injury studies. In this case, a significant difference in the 

determinant when split by the strong and weak (or trained/ untrained, involved/ 

uninvolved) limbs would suggest that asymmetry is in the same direction for the both 

variables.  

For example, let us consider neural drive, which is a key determinant of single limb 

maximum and explosive strength. As neural drive to muscles within a person comes 

from the same central nervous system, regardless of limb, we may reasonably expect 

symmetrical neural drive to muscles. Research into the effects of unilateral injury and 

training supports this assumption, providing evidence of a cross-over effect of neural 

function. Specifically, neural drive adaptations occur at the contralateral, as well as 

the injured/ trained limb (Hart et al. 2010, Bogdanis et al. 2019, Tillin, Pain & Folland 

2011). In either case, a stimulus to one limb would not, therefore, have the effect of 

increasing inter-limb asymmetry in neural drive. Instead, asymmetries in neural drive 

are modulated by the synchronous reduction/ improvement in neural activation that 

occurs at both limbs, despite changes in strength larger in one limb relative to the 

other. In contrast, no changes in peripheral factors (e.g. muscle size) of the 

contralateral limb have been demonstrated following unilateral stimuli (e.g. Narici et 

al. 1989). Asymmetry in such factors would therefore increase if a stimulus was 

applied to only one limb.  It is possible, therefore, that there will be distinct adaptations 

in each limb depending on its use, which may result in inter-limb asymmetries in the 

neuromuscular determinants of strength being very different between individuals. 

This may go some way to explain the variation in strength asymmetry commonly 

reported. For example, in professional Australian football players, Hart et al. (2014) 

reported significantly greater strength asymmetries (calculated using Limb Symmetry 
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Index-3; Appendix A) between the kicking and support limb in accurate (~1%), 

compared to inaccurate (8%), kickers. Accurate kickers also demonstrated 

significantly smaller lean mass (a key determinant of maximum strength) asymmetry 

than inaccurate kickers. This study also provides evidence that strength asymmetry 

may be reflected in altered or asymmetrical movement. Investigation into the 

neuromuscular mechanisms of strength asymmetry is therefore warranted. 

2.4 Associations between Strength and Movement 

Asymmetry  

 

As adequate muscle strength is necessary for various movements (Bassey et al. 

1992, Buchner & Lateur 1991, Chang et al. 2015, de Ruiter et al. 2007, Maffiuletti 

2010), and explosive strength seems to be important when time to develop force is 

limited, e.g. sprinting and jumping (Tillin, Pain & Folland 2013a) it seems logical to 

hypothesise that asymmetries in strength and movement may be related. In an able-

bodied population, gait and bilateral movements such as jumping are frequently 

assumed to be symmetrical, however, research has shown that this is not necessarily 

the case (e.g. Benjanuvatra et al. 2013, Lathrop-Lambach et al. 2014). In ITTAs, 

asymmetries in loading (resulting from asymmetrical movement; Morgenroth et al. 

2011, Nolan & Lees 2000) seem to result in reduced use of the muscles of the 

amputated limb, which may experience disuse-related neuromuscular changes as a 

result. This section of the review will therefore explore our current understanding of 

the relationships between strength and movement asymmetries in both populations. 

2.4.1 Able-Bodied Populations 

In addition to the theorised higher injury risk associated with muscular imbalances 

(e.g. Knapik et al. 1991), athletic performance may also be impaired in the presence 

of asymmetry. Hart et al. (2014) measured lower-limb strength asymmetries in 
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Australian football players using unilateral and bilateral isometric squats. When 

assessing the relationship of these asymmetries with 20m kicking accuracy, they 

found that the more accurate group of kickers demonstrated an average of just −1% 

difference between limbs (i.e. the support limb was 1% stronger). In contrast, the 

kicking limb of the less accurate group was 8% stronger. This appears to indicate that 

strength symmetry is important for kicking performance. Furthermore, in a group of 

competitive cyclists, peak torque asymmetries of the knee extensors were negatively 

correlated (r = -0.50, p < 0.05) with power output during a 5 second maximal effort 

cycling test (Rannama et al. 2015). Further studies have quantified associations 

between strength asymmetry and jump performance, an important skill in many 

sporting and recreational activities. At the single-limb level, some authors have 

reported moderate associations between bilateral jump height and explosive (r = 0.53 

– 0.68; Chang et al. 2015, de Ruiter et al. 2007) and maximal strength of the knee 

extensors (r = 0.56, Chang et al. 2015). It seems logical to hypothesise therefore that 

strength asymmetry of the quadriceps may play a role in jump height; however, to the 

author’s knowledge, no research has currently investigated relationships between 

knee extensor maximal or explosive strength asymmetry and jump performance. 

Despite this, two previous studies have examined the relationship between jump 

height and maximum strength asymmetry of the entire lower limb. Comparing 

computer simulated musculoskeletal models that were symmetrical and 10% 

asymmetrical for lower limb strength, Yoshioka et al. (2011) found a non-significant 

difference of only 0.5% in jump height. They concluded that possibly the stronger leg 

compensated for the weaker; however, in vivo this compensation may not be 

adequate to fully make up for the weaker side. In support of this hypothesis, Bailey et 

al. (2013) reported mean between-limb asymmetries of 6.6 ± 5.1% and found weak 

to moderate negative correlations between bilateral strength asymmetries and jump 

height in loaded and unloaded jumps (r = -0.39 to -0.52, p < 0.01). While a large 
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amount of variance remains unexplained, these data provide an indication that 

asymmetries of a greater magnitude may contribute to reduced jump performance. 

Jump take-off, as a planar movement with a clearly defined objective (to jump as high 

as possible) and large contribution from the quadriceps to jump performance (Chang 

et al. 2015, de Ruiter 2006, 2007) may provide a useful model for the investigation of 

asymmetries in quadriceps muscle strength. In the rising phase of a jump take-off (i.e. 

from the point at which centre of mass [CoM] velocity becomes positive, until toe-off) 

asymmetries of 0.8 – 6.4% have been found in peak vertical ground reaction force 

(vGRF; Bačič et al. 2010, Bell et al. 2014, Impellizzeri et al. 2007, Lawson et al. 2006, 

Newton et al. 2006, Stephens et al. 2007). As vGRF represents the combined actions 

of primarily the lower extremity triple extensors (hip and knee extensors and ankle 

plantarflexors) during the force production portion of a jump, asymmetries in vGRF 

may stem from the way the lower limbs, pelvis, and trunk are coordinated to perform 

the jump (Benjanuvatra et al. 2013, Chang et al. 2015). The level of strength 

asymmetry at the quadriceps may be important for this coordination: Impellizzeri et 

al. (2007) found that correlations between maximum quadriceps strength asymmetry 

(assessed via unilateral isokinetic leg extension test) and vGRF in vertical jumps were 

moderate, but significant, for both 60°·s-1 (r = 0.48) and 240°·s-1 (r = 0.48). However, 

no research has developed this further to investigate associations with knee joint 

loading asymmetries (e.g. asymmetries in peak knee extension moments, 3.23 – 

5.26%; and peak knee powers, 0.90 – 2.73%; Lawson et al. 2006, Stephens et al. 

2007). Given the positive relationships apparent between knee extensor strength and 

vGRF asymmetries described above, it is logical to hypothesise that greater 

maximum strength asymmetry at the quadriceps may also be related to asymmetry 

in loading at the knee joint. Specifically, we may expect to see greater loading 

occurring at the knee of the maximally strong limb. 
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As the take-off portion of a jump is rapid, high-demand movement, the ability to 

quickly produce force is therefore important. This is substantiated by the strong 

relationships between single-limb explosive quadriceps strength and jump height (de 

Ruiter 2006, 2007). Furthermore, Chang et al. (2015) reported 47.6 and 31.4% of the 

variability in vertical jump height was explained by knee extensor early phase RTD 

and MVT, respectively, suggesting that the former is more important for jump 

performance. It may be that asymmetry in explosive strength is a better predictor of 

movement asymmetry than that of maximum strength; however, to the author’s 

knowledge, this has not been investigated.  

Landing from a jump is another useful model for investigating the associations 

between strength and movement asymmetries due to the importance of the 

quadriceps in force dissipation: proportionally, the knee performs most of the 

eccentric joint work involved in decelerating the CoM from a jump landing (39% 

compared to 34% and 27% at the hip and ankle, respectively; Decker et al. 2003, 

McNitt-Gray et al. 1993, Yeow et al. 2011, Zhang et al. 2000). Previous research has 

found evidence of between-limb differences in vGRF of 3.53 – 27.4%, and more 

substantial asymmetries in knee extension moments of 17.4% – 38.3% (Bates et al. 

2013, Schot, Bates & Dufek 1994) in landing tasks. It may therefore be the case that 

strength asymmetries of the quadriceps are related to asymmetries in landing.  

Furthermore, landing mechanics have been associated with increased injury risk at 

the knee. Specifically, it is the rapid development of force that occurs during landing 

that has been associated with various knee injuries, including osteoarthritis and non-

specific knee pain (Murphy et al. 2003). In limbs that have undergone ACL 

reconstruction, previous research has demonstrated decreased dynamic force 

absorption at the knee in landing tasks (i.e. a reduction in knee extensor eccentric 

muscle action to attenuate load) to be associated with large strength asymmetries. 
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While the uninvolved limb was consistently loaded more on landing, possibly in an 

attempt to protect the involved knee, this lack of shock absorption in the involved knee 

was hypothesised to explain the high prevalence of re-injury (Kuenze et al. 2015). 

However, no research has investigated the relationship of strength and landing 

asymmetries in a healthy population. It may be that explosive strength is more 

important than maximum strength for the rapid energy absorption required in the 

lower limb on landing. If we consider that injuries such as ACL ruptures occur within 

50 ms of ground contact (Krosshaug et al. 2007) it is likely that the ability to produce 

force rapidly is of more importance than maximum strength (as maximum force is 

generally not produced until > 300 ms from onset in isometric and eccentric muscle 

contractions [Thorstensson et al. 1976, Tillin, Pain & Folland 2012a]). Larger 

asymmetries in explosive strength may therefore result in one limb attempting to 

dissipate greater loads more rapidly, in which case we may expect to see greater (1) 

differences in peak loads and loading rate with the limbs split by explosive strength, 

or (2) correlation coefficients when asymmetry in loading variables are compared to 

explosive, rather than maximum, strength asymmetry. If such associations were 

apparent, this may have implications for injury 

2.4.2 ITTAs 

A deeper understanding of the relationships between strength and movement 

asymmetries may be gained by investigating their association in a population who are 

known to demonstrate large asymmetries. ITTAs (a population with anatomically 

imposed musculoskeletal asymmetry due to the loss of the ankle joint and 

surrounding musculature on one limb, which has major implications on their functional 

capabilities) display knee extensor maximum strength asymmetries of 41 – 57% 

between the amputated and intact limb (section 2.5.1.1; Isakov et al 1996a, Lloyd et 

al. 2010, Moirenfeld et al. 2000, Pedrinelli et al. 2002, Renstrom, Grimsby & Larsson 
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1983). This compares to 1 – 18% between limbs in healthy, young, non-injured 

controls (Table 2.1; Graham-Smith, Al-Dukhail & Jones 2015, Kobayashi et al. 2013, 

Menzel et al. 2013, Ruas, Brown & Pinto 2015). Additionally, compared to able-bodied 

controls, ITTAs walk more slowly (Bohannan 1997, Oberg et al. 1993, Sanderson & 

Martin 1997); spend more time in double stance (Gailey et al. 2008); have decreased 

balance (Vanicek et al. 2009); can’t jump as high (Schoeman, Diss & Strike 2012) 

and fall more often (Kulkarni et al. 1996). Adequate gait function is fundamental for 

daily living and exercise, and as a result, health and quality of life. This may be 

particularly true in ITTAs who are not necessarily able to perform more intense 

exercises (e.g. running) due to the greater musculoskeletal demand on the weaker 

amputated limb.  

2.4.2.1 Gait Asymmetry and Functional Performance  

Gait analyses have shown that ITTAs walk asymmetrically, with the intact limb playing 

a dominant role. This is evidenced by reduced amputated limb stance and single-limb 

support time (Isakov et al. 2000, Kovač et al. 2010, Mattes et al. 2000, Nolan et al. 

2003) and intact limb step length (Barnett et al. 2009, Sanderson & Martin 1997). 

These between-limb differences result in asymmetries of 4.3 – 7.2% in step length 

and ~7% in single support time (Barnett et al. 2009, Howard et al. 2013, Isakov et al. 

2000). Kinetically, the amputated limb exhibits decreased peak vertical ground 

reaction force, resulting in asymmetries in whole limb loading of 4 – 10% (Menard et 

al. 1992, Powers 1994, Sanderson & Martin 1997). 

The ankle and surrounding musculature provide most of the propulsive power in able-

bodied gait (Winter & Sienko 1988). In ITTAs, who are missing this joint on one side, 

other muscle groups must attempt to compensate for this loss of forward progression. 

Greater muscular strength of both the amputated and intact limb knee and hip flexors 

and extensors, as well as of the hip abductors, have been associated with improved 
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gait function and symmetry in ITTAs assessed via temporospatial (TS) gait 

characteristics such as cadence, and step and stride length, and single support time 

(Renstrom et al. 1983, Powers et al. 1996). Furthermore, walking speed, which is an 

important indicator of functional gait capacity (van Velzen et al. 2006), tends to be 

lower in ITTAs than able-bodied populations (1.25 m/s vs. ~1.4 m/s; Bohannan 1997, 

Oberg et al. 1993, Sanderson & Martin 1997). As walking speed has been shown to 

be predictive of a range of outcomes in multiple populations including functional 

dependence (Purser et al. 2005, Shimada et al. 2013, Shinkai et al. 2000), 

institutionalisation (Woo et al. 1999) and falls (Montero-Odasso et al. 2005), it is 

important that ITTAs are able to maintain adequate speed while walking. Quadriceps 

strength is thought to be important for walking speed: for example, in patients who 

had undergone total hip arthroplasty, maximum walking speed was related to knee 

extensor RTD (but not MVT; Suetta et al. 2004). However, to the author’s knowledge, 

no previous studies have investigated the association between knee extensor 

explosive strength asymmetry and walking speed in ITTAs. 

Adequate, symmetrical muscle strength is thought to play an important role in the 

maintenance of ITTA gait function, with large inter-limb differences in strength 

potentially related to asymmetrical limb loading. In support of this hypothesis, Lloyd 

et al. (2010) found that knee extensor strength asymmetry was correlated with frontal 

plane knee moment load rate asymmetry (rho = 0.71, p < 0.05), while knee flexion 

strength asymmetry moderately correlated with the intact side ground reaction force 

load rate (rho = 0.50). The decreased loading on the amputated side is suggested to 

be the result of a strategy adopted to protect the residual limb (Engsberg et al. 1991, 

Nolan & Lees 2000, Nolan et al. 2003, Royer & Koenig 2005). Specifically, Lloyd et 

al. (2010) proposed that it is due to attempts to avoid generating large moments at 

the knee and the residual limb-socket interface, which create large areas of pressure 

and discomfort. Muscle action at the knee is important in the coordination of ankle 
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and hip mechanics throughout gait, and to help regulate joint movement through the 

eccentric control of knee flexion (Neptune et al. 2008). When the quadriceps are 

activated during gait, they produce an internal knee extension moment in response 

to the external knee flexion moment; however, previous research has found that knee 

extension moments in walking and jumping are reduced in the amputated compared 

to intact limb (Fey & Neptune 2012, Powers, Rao & Perry 1998, Schoeman, Diss & 

Strike 2012, Silverman et al. 2008, Winter & Sienko 1988). The reduced extension 

moments apparent when compared to the intact limb therefore suggest that the 

demand of the amputated side quadriceps is reduced.  

If we consider gait in two roughly equal halves defined by antero-posterior ground 

reaction force (hGRF), we can break the main tasks down into braking (0 – ~50%, 

hGRF < 0 N/kg; whereby the goal is to decelerate the CoM while maintaining forward 

progression) and propulsion (~50 – 100%, hGRF > 0 N/kg). In ITTAs, evidence 

suggests that limb load is substantially less on the amputated limb when compared 

to the intact in both phases. At the knee, Sanderson & Martin (1997) reported that in 

braking, amputated limb knee moment was reduced to the point that it remained flexor 

during the entirety of early stance. Furthermore, in dynamic simulations of amputee 

gait, the work undertaken by RF and the vastus muscles was decreased in the 

residual limb relative to both the intact and control limbs, but particularly in braking 

(Silverman & Neptune 2012). Schmalz et al. (2001) found decreased EMG activity of 

VL, particularly during the early stance phase of gait in the amputated vs. intact limb 

of ITTAs. These findings are consistent with previous work showing atrophy of the 

quadriceps muscle in ITTAs (Moirenfeld et al. 2000, Renstrom et al. 1983), which may 

be one contributor to smaller force output from these muscles. However, no further 

work has attempted to clarify the relationship of maximum or explosive quadriceps 

strength asymmetry with the asymmetry that evident in both TS and loading 

parameters of gait in this population. If symmetry in quadriceps strength is associated 
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with gait symmetry, it may have important implications for exercise prescription and 

functional capacity in ITTAs. 

In summary, evidence of associations has been found between performance deficits 

and greater strength asymmetries, but the underpinning mechanisms of these 

alterations in movement have not been explored. Both the take-off and landing 

phases of jumps are rapid, planar movements with large contributions from the 

quadriceps, and asymmetries evident in both whole-limb and single joint load (e.g. 

Bates et al. 2013, Lawson et al. 2006, Newton et al. 2006). As such, these movements 

may prove useful for the investigation of the association between quadriceps strength 

and movement asymmetries in a healthy control population. Quantifying the 

associations between such asymmetries in individuals with no specific 

loading/training bias may allow comparison to specialist populations with strength or 

neuromuscular adaptations which may predispose them to overloading or injury 

(Murphy et al. 2003, Lloyd et al. 2010). Building on previous research in injured 

groups, we hypothesise that an able-bodied population will also demonstrate 

associations between strength and movement asymmetries (i.e. where strength 

asymmetry is present, the stronger limb will bear increased load to compensate for 

the weaker limb). Furthermore, investigating these relationships in established ITTAs 

(who are known to be asymmetrical in both strength and gait) may allow the 

opportunity to establish the relationships between asymmetries in strength and 

movement in further detail, as it is likely that relationships may be more observable. 

As ITTAs are increasingly encouraged to exercise for health and quality of life, 

understanding if strength asymmetry is associated with changes in movement 

patterns (specifically, performance and asymmetry in limb/ joint loading) may be 

important to inform healthy movement prescription. 
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2.5 ITTA Asymmetry as a Model of Disuse 

Disuse of the residual limb (discussed below) may contribute to the functional 

changes seen in ITTAs due to alterations in neuromuscular factors affecting the way 

that the muscles produce voluntary force. This section of the review will therefore 

explore the evidence for disuse of the amputated limb of ITTAs, changes in 

neuromuscular function resulting from disuse, and how these changes may be 

expressed in, or effect, the quadriceps muscles in ITTAs. 

Initially following amputation, the amputated limb of ITTAs is fully unloaded, causing 

disuse of the muscles of this limb. During rehabilitation, and then onward, it 

undergoes repetitive, but limited loading (Esquenazi & DiGiacomo 2001). The disuse 

of the amputated limb resulting from gait asymmetry (as discussed in section 2.4.2.1) 

may predispose ITTAs to maladaptations in neuromuscular function. Significant 

decreases in muscle strength and size, and in bone mineral density, of the amputated 

compared to the intact and control limbs support this theory of disuse (Royer & Koenig 

2005, Tugcu et al. 2009). These changes may be associated with a number of 

comorbidities that ITTAs are prone to, such as joint pain and osteoporosis on the 

amputated side (Norvell et al. 2005, Vignon et al. 2006). Several determinants of 

strength are likely to be affected; however, current understanding of what causes 

weakness in the quadriceps the amputated limb of ITTAs is poor. Determining the 

underlying causes of this weakness may allow better targeting of rehabilitation 

interventions. Additionally, current knowledge of the effects of muscle disuse on 

neuromuscular function is based on short-term (typically <120 days) studies utilising 

models of unloading that include microgravity, unilateral lower-limb suspension 

(ULLS), limb immobilisation and bed rest. When undergoing bed rest, participants are 

confined to their bed, free to move but without any load on the lower limbs. In ULLS, 

one leg is kept flexed and suspended above the ground by the use of a shoulder 
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harness; and in limb immobilisation a cast blocks the movement and loading of a limb. 

Each of these protocols are effective and sufficient to induce the expected 

adaptations of muscles to disuse (i.e. reductions in strength, neural drive, and altered 

muscle architectural and contractile properties, as discussed in section 2.5.1); 

however, the short-term nature of these studies makes it difficult to draw conclusions 

about the long-term effect of disuse on skeletal muscle. The decreased loading 

habitually experienced by the quadriceps of the residual limb of ITTAs means that 

this population may provide a useful model for investigating the long-term effects of 

muscle disuse, by using the intact limb as an internal control.  

In order to understand the muscular changes that may occur in ITTAs as a result of 

long-term disuse of the quadriceps in the amputated limb, it is necessary first to 

understand the strength changes and underlying neuromuscular determinants that 

occur in muscles as a result of short-term disuse in a healthy population. 

2.5.1 Neuromuscular Adaptations to Disuse 

Muscles adapt to disuse in multiple ways, for example through atrophy, myosin heavy 

chain [MHC] shifts and decreases in neural drive, all of which can impact muscular 

strength, as discussed below. 

2.5.1.1 Muscle Strength  

The quadriceps muscles, as part of their roles in acting against gravity and 

contributing to locomotion, are particularly susceptible to degenerative changes 

resulting from disuse. Studies utilising bedrest, limb suspension, limb immobilisation 

and microgravity as models of unloading (Figure 2.11) have reported reductions in 

quadriceps maximum strength of approximately 2% per day for the first ten days (Berg 

& Tesch 1996, Gamrin et al. 1998, Rozier et al. 1979, Thom et al. 2001), slowing to 

~1% per week up to 30 days, with an eventual plateau resulting in average strength 
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losses of around 23% after 120 days of disuse (Dirks et al. 2013, 2016, Horstman et 

al. 2012, Narici & de Boer 2011, Suetta et al. 2012, Wall et al. 2013).  Furthermore, 

decreases in RTD of between 15 – 54% have been found, although compared to 

maximum strength, explosive force production capacity has been understudied 

(Bamman et al. 1998).  

 

In ITTAs, strength decrements have been found in both the amputated (-64%; Figure 

2.11d) and intact (-28%; Figure 2.11b) limb when compared to non-injured controls; 

however, the loss of strength in the amputated limb is always greater, resulting in 

maximum strength asymmetries ~42% (Figure 2.11c; Isakov et al 1996a, Lloyd et al. 

2010, Moirenfeld et al. 2000, Pedrinelli et al. 2002, Renstrom, Grimsby & Larsson 
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1983). The decrements in maximum strength experienced in ITTAs are therefore, on 

average, much greater than those resulting from short-term disuse. This is interesting, 

as current disuse studies suggest that strength decreases exponentially, with limited 

change after the first few days (Figure 2.11). Long-term disuse may therefore result 

in more dramatic decreases in strength than predicted from short-term studies. In 

contrast, explosive strength in ITTAs has not been investigated.  

Multiple previous studies have reported significant deficits of between 19 – 34% in 

maximum strength when the intact limb is compared to the control (Isakov et al. 

1996a, Lloyd et al. 2010, Pedrinelli et al. 2002). However, the magnitude of these 

differences may be attributable to the inclusion criteria applied to the participants in 

these studies. Thus, it is unclear if the intact limb of the ITTA participants was 

representative of a normal, healthy limb from which to compare the effects of disuse 

on the amputated limb. For example, all three studies who included ITTAs with 

amputations resulting from vascular conditions and infection, which means that the 

results may be affected by the influence of disease (Sacchetti et al. 2013). Inactivity 

is known to have a detrimental effect on muscle function (Narici & de Boer 2011); 

however, none of these studies controlled for activity level, so it is unclear what affect 

this may have had on the results. Indeed, it is likely that the participants may have 

been inactive: 20% of the TTAs tested by Pedrinelli et al. (2002) relied on walking 

aids, which is likely to severely to have limited their activity levels. Additionally, there 

were no exclusion criteria for age, and the latter studied assessed a mixture of males 

and females (Pedrinelli et al. 2002), so the results may have been affected by the 

confounding effects of gender (Hannah et al. 2012) and ageing (Pincivero et al. 2004) 

on neuromuscular function. It may be that excluding ITTAs with amputations resulting 

from disease, and controlling for age, gender and activity, would minimise the 

negative effect of disuse on the intact limb, and provide an internal control with 

neuromuscular characteristics similar to that of an able-bodied limb.  



Chapter 2. Literature Review 
 
 

 

52 
 

2.5.1.2 Muscle Size and Architecture 

Skeletal muscle is highly plastic, rapidly gaining or losing contractile tissue in 

response to changes in loading. Strength changes due to short-term disuse (periods 

of time from 10-120 days) are accompanied by decreases in muscle volume of 5-18% 

(Alkner & Tesch 2004, Campbell et al. 2013, de Boer et al. 2007, Funato et al. 1997). 

Muscle atrophy in disuse is caused by abnormal skeletal muscle protein turnover. 

This is a dynamic process that, in healthy individuals, balances synthesis and 

breakdown, allowing the body to maximise the use of a limited supply of amino acids, 

regulate enzymatic systems and metabolic processes, and remove defective proteins 

(Stein & Wade 2005). However, during periods of unloading, such as in disuse, this 

balance is disturbed. This causes increased protein breakdown compared to protein 

synthesis so that the net balance of protein turnover is negative (Ferrando et al. 

2002), resulting in muscle atrophy. 

At the quadriceps, Gibson et al. (1987) found a decrease in muscle protein turnover 

after 37 days of lower limb immobilisation, and a corresponding decrease in 

quadriceps muscle mass due mainly to a considerable (25%) depression of muscle 

protein synthesis. Other work has shown that a loss of muscle mass is evident within 

seven days of immobilisation through either bed rest (Ferrando et al. 1995) or limb 

suspension (Dudley et al. 1992), and this decrease continues throughout the period 

of disuse (Alkner & Tesch, 2004, Clark et al. 2007). The loss of strength combined 

with decrease in muscle size is also seen in ITTAs: Schmalz et al. (2001) reported 

that the quadriceps muscles of the amputated limb were significantly thinner than 

those of the intact limb (side-to-side differences measured using ultrasonography 

were 84.3%, 80.2% and 76.2% in RF, VL and VM, respectively; p < 0.001). Similar 

decreases were observed by Renstrom et al. (1983), who found atrophy of both type 

I and II fibres in the amputated limb contributed to a decrease in the size of the 
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quadriceps in ITTAs. Additionally, changes in muscle size were correlated to the side-

to-side differences in strength that have been reported in ITTAs (Renstrom, Grimsby 

& Larsson 1983). Together, this supports the hypothesis that muscle atrophy is 

directly related to decreases in strength. However, greater decreases in strength 

relative to the loss of muscle mass following unweighting (Berg et al. 1997), suggests 

that other aspects of the force-generating capacity of the neuromuscular system are 

compromised. In support, a study by Kawakami et al. (2001) found no relationship 

between change in muscle size and strength following 20 days of bed rest in a control 

group.  This suggests that the atrophy of the quadriceps that has previously been 

found in ITTAs is not the only factor contributing to the decrease in strength in that 

population.  

Two studies that examined the effects of ULSS in humans found a decrease in muscle 

fascicle length at the quadriceps from 6 – 9% after three weeks (Campbell et al. 2013, 

de Boer et al. 2007). This represents a loss of sarcomeres in series resulting in a 

potential shift on the length-tension curve. In addition, decreases in pennation angle, 

and a decrease in number of fascicles in parallel of ~8 – 13% in VL are evident from 

23 – 35 days of ULLS (de Boer et al. 2007, 2008, Campbell et al. 2013). Similarly, 

when examining gastrocnemius muscle atrophy resulting from unilateral disuse due 

to injury to one leg, Narici et al. (1998) found that ACSA of the injured limb was highly 

correlated with a decrease in pennation angle (-16%) and fibre length (-13% 

compared to the control limb). Disuse seems therefore to involve a loss of sarcomeres 

in parallel and in-series (Figure 2.12). These changes have the potential to negatively 

impact maximum torque production, as fascicles in parallel indicate the PCSA of the 

muscle, which is strongly correlated with maximum strength (see Section 2.3.2.2). 

The detrimental effects of the loss of sarcomeres in series could therefore be 

moderated by a more efficient force transmission to the tendon arising from the 

decrease in pennation angle (Fukanaga et al. 1997). 
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The above research indicates that muscle architectural remodelling resulting from 

disuse is very rapid, with major changes occurring within weeks, and some detectable 

from just days after the initialisation of the immobilisation period (Magnusson et al. 

2008). However, these are all short-term studies (the maximum time studied is 35 

days) which is not necessarily indicative of the changes that occur with long term 

disuse due to sedentary behaviours or injury, such as in amputees. Additionally, as 

muscle turnover in skeletal muscles is relatively slow (Johnson et al. 2000), the 

decreases in strength that have been found after just nine days of immobilisation 

(Rozier et al. 1979) indicate that other factors such as neural drive and the intrinsic 

contractile properties contribute to strength deficits resulting from muscle disuse 

(LeBlanc et al. 1992, de Boer et al. 2007).  

2.5.1.3 Neural Drive  

On a global level, previous research demonstrates a strong relationship between 

changes in neural drive measured using EMG, and muscular strength loss per day 

with disuse (r = 0.76; Campbell et al. 2019). Several studies have investigated 

alterations in neural drive following short-term disuse by exploring the response of 

the quadriceps. During maximal isometric contractions, reductions in RMS EMG of 

19% after 42 days of BR (Berg et al. 1997) have been recorded, while Deschenes et 

al. (2002) reported a 16% reduction in integrated EMG after 14 days of the same 
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model of unloading. Following 89 days of bed rest, RMS EMG at MVC decreased by 

38% (Alkner & Tesch 2004). These results seem to demonstrate consistent reduction 

in neural drive to the quadriceps with disuse. In contrast, other studies have found no 

change in maximum EMG in VL (de Boer et al. 2007, Campbell et al. 2013) following 

immobilisation by ULLS. The disparity in these results may be a result of the different 

models of unloading used, or the treatment of the data. Berg et al. (1997), 

Deschennes et al. (2002) and Alkner & Tesch (2004) examined the entire quadriceps 

muscle group EMG as opposed to VL alone, while de Boer et al. (2007) and Campbell 

et al. (2013) only analysed EMG of VL. Additionally, the latter two studies normalised 

the data to the maximal M-wave (de Boer et al. 2007, Campbell et al. 2013); while 

Berg et al. (1997) normalised EMG data to pre-unloading by using the mean of the 

three baseline measurements for each muscle, and Alkner & Tesch (2004) did not 

normalise their EMG data at all. Raw EMG data can be used only for limited 

comparisons, so normalisation is preferable (see Section 2.3.1.1). Of the two methods 

given, normalising EMG to maximal M-wave (the signal recorded at the muscle 

following the supramaximal stimulation of its peripheral motor nerve) is favourable as 

it allows comparison between muscle, tasks and individuals (Halaki & Ginn 2012). 

The differences in the methodologies and treatment of the data between these studies 

therefore makes it difficult to generalise these results. 

Further studies have attempted to quantify neural drive to the quadriceps muscles 

through voluntary activation measured using ITT. While studies measuring neural 

drive at MVT using VA (also measured as Central Activation Ratio) have found non-

significant reductions of 0.5 – 5% between 14 – 30 days of ULLS (Cook et al. 2014, 

de Boer et al. 2007, Campbell et al. 2013, Horstman et al. 2012), Kawakami et al. 

(2001) reported a significant (p < 0.05) central activation deficit of 7% following 20 

days of bed rest. The difference in the results of these studies may be due to the 

different models of disuse employed, as there are subtle but relevant differences are 
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present in the response to each specific protocol (Reggiani 2015). For example, it 

could be that in ULLS there is still some action from RF throughout gait in its role as 

a hip flexor.  

2.5.1.4 Intrinsic Contractile Properties  

In vivo, the response of muscle fibres to disuse is contested. After 6 – 8 weeks of 

immobilisation, Ducheteau et al. (1990) found a decreased twitch peak force (38 – 

42%) in human adductor pollicis and first dorsal interosseous muscles. This was 

accompanied by shorter contraction (13 – 16%) and decreased half relaxation times 

(12 – 13%; indicative of the rate of Ca2+ re-uptake at the sarcoplasmic reticulum). In 

the plantarflexors, 28 days of ULLS resulted in significant reductions in absolute early 

(-15%), but not late phase (-7%) evoked RFD (Clark, Fernhall & Ploutz-Snyder 2006). 

These responses are all likely direct consequences of the decline in the force 

production capacity of the muscle evidenced by decreased twitch force. However, the 

latter study also observed that declines in relative peak RFD were not as great as 

those expressed in absolute terms, suggesting that the contractile speed of the 

muscle increased with disuse (Clark, Fernhall & Ploutz-Snyder 2006).  

As research investigating the changes in intrinsic contractile properties following 

disuse at a whole-muscle level is limited, and there is a hypothetical link between 

evoked contractile properties and fibre type (Harridge et al. 1996), we can attempt to 

draw further conclusions based on single-fibre and cellular changes. In rodents, 

spaceflight induced muscular disuse leads to an increased distribution of fast MHC 

isoforms (Caiozzo et al. 1994), which results in increased Vmax, fatiguability, relative 

RFD and contraction time. This is reflected in the response of human quadriceps 

muscles to short term spaceflight (11 days), which also demonstrate a slow to fast 

MHC shift and increased fatiguability (Day et al. 1994).  
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Ground based models of quadriceps unloading have reported either no MHC shifts, 

or a shift to a faster profile. After two weeks of ULLS, Deschenes et al. (2002) found 

no significant changes in muscle fibre type or distribution in the knee extensors. In 

contrast, Bamman et al. (1998) reported a small, non-significant shift in MHC 

expression at VL (6.5% increase in type IIb compare to IIa) following 14 days bed 

rest. Furthermore, Trappe et al. (2004) found a significant increase in hybrid fibres 

(i.e. those that co-express two or more MHC isoforms), with shift toward faster MHC 

isoforms in VL after 84 days of bedrest. This was accompanied by a significant 

decrease (-29%) in Type I MHC. The difference between the two studies is likely to 

be a result of the longer period of disuse utilised by the latter researchers. In ITTAs, 

a single study found a similar shift of muscle fibre types: a decrease in the percentage 

of type I fibres in the amputated (33%) compared to non-amputated leg (38%; p > 

0.05) was evident, together with significantly fewer type IIa (p < 0.01) and more type 

IIb (p < 0.05) fibres (Renstrom et al. 1983). A slow to fast MHC profile shift of an entire 

muscle would, in theory, lead to faster contractions, which would be reflected in 

increased RTD and decreased contraction time. However, we still have no clear 

picture of what happens in terms of MHC distribution, or, by extension, the intrinsic 

contractile properties of the quadriceps when subjected to long-term disuse. 

Another adaptation to disuse is muscle fibre size changes. Limb immobilisation 

causes slight preferential atrophy of Type I and IIa fibres compared to Type IIb fibres 

in both humans and rodents (Bamman et al. 1998, Maier et al. 1976). This is 

supported by evidence that single muscle fibres experience significant decrease in 

myosin content (35%) following 3 weeks ULLS (Campbell et al. 2013). Trappe et al. 

(2004) found reductions in CSA of MHC I (-15%) and IIa fibres (-8%) after bed rest, 

which was accompanied by significant decreases in peak force in both fibre types (-

47%, MHC I; -25%, MHC IIa). Although, when corrected for cell size, the type I fibres 

still showed a decline in peak force (p < 0.05), suggesting that changes in fibre size 
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could not entirely explain this loss, decreased myosin content may be one factor 

contributing to the overall loss of strength in the quadriceps. 

2.5.2 Strength and Neuromuscular Adaptations to Long-Term Disuse 

In summary, short-term (<120 days) studies suggests reductions occur in both 

maximal and explosive strength. There is also evidence for decreased muscle size, 

agonist neural drive, fascicle length and pennation angle, and increased speed of 

contractile properties. However, the response of muscle strength and its underpinning 

neuromuscular factors to long-term disuse is not known. It may be possible to 

advance our understanding of the above by investigating the neuromuscular 

characteristics of established ITTAs, a population with known movement 

asymmetries, which results in disuse of the amputated limb compared to the intact. 

2.6 Summary and Thesis Aims 

It is clear that some level of strength asymmetry is present at the quadriceps in 

multiple populations. However, there is debate surrounding the normal level of 

strength asymmetries at the quadriceps, primarily due to the multiple ways in which 

asymmetry has been determined, using a range of limb classifications (left/ right, 

dominant/ non-dominant, strong/ weak) and multiple calculations (Appendix A). The 

typical magnitude and variability of strength asymmetry – and particularly that of 

explosive strength, which is theoretically important but understudied - in a healthy, 

non-specialist population needs documenting for future comparison to specialised 

groups. Furthermore, while strength is determined primarily by a muscle’s intrinsic 

contractile properties and its architecture, in addition to the neural drive to the muscle, 

no research has currently investigated how these factors interact to produce strength 

asymmetry, which may be useful for the targeting of interventions. Chapter 4 

therefore aimed to compare the magnitude and variability in maximum and 

explosive strength asymmetries, and to determine the underpinning 
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neuromuscular mechanisms of these strength asymmetries in a population of 

young, healthy, recreationally active males with no specific training bias.  

The association of strength asymmetry at the quadriceps with movement asymmetry 

is also unclear. As strength asymmetry is implicated in ageing, injury and other special 

populations, it is important to understand its relationship to movement performance 

and symmetry in a healthy, young population with no training bias for comparison to 

other groups. Take-off from a jump, and drop landings, being planar movements with 

substantial quadriceps contributions, are useful for the assessment of functional 

capacity. For this reason, Chapter 5 aimed to investigate the associations 

between maximum and explosive quadriceps strength asymmetry and the (1) 

performance of a maximal countermovement jump, assessed via jump height, 

and (2) the underpinning kinetic asymmetries in jump take-off and landing in 

an able-bodied population. However, given the postulated difficulty in identifying 

consistent asymmetries within a group of individuals unless they are highly 

specialised to an asymmetric task (Lawson et al. 2006), studying an inherently 

asymmetrical population may allow relationships between strength and movement 

asymmetries, if present, to be more observable. ITTAs display substantial 

asymmetries in strength and movement. Furthermore, their reduced functional gait 

capacity, evidenced by slower walking speeds when compared to able-bodied 

populations, may affect their participation in sport and thus health and quality of life. 

Chapter 6 therefore aimed to assess the relationship between quadriceps 

strength asymmetries and (1) walking performance, assessed via walking 

speed, and (2) temporospatial and kinetic asymmetries during gait at two 

different walking speeds in ITTAs. 

It may be possible to manipulate asymmetry to help us to study broader physiological 

questions such as the mechanisms underpinning chronic disuse. Studies utilising 
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enforced unloading of the lower limb have found losses of strength of the knee 

extensors with disuse, potentially caused by decreases in muscle size and neural 

drive, along with alterations in the architectural and contractile properties of the 

disused muscles. However, the evidence for these changes are from short-term 

studies only, so we do not know how these factors change over extended periods of 

time. ITTAs, who exhibit habitual, long-term disuse of the amputated limb and the 

knee extensors on this side, provide a unique model to assess the long-term effect of 

disuse on both maximum and explosive strength, and in addition, an understanding 

of the mechanisms underlying weaknesses in ITTAs may help to target interventions 

to improve movement and health in this population. Chapter 7 therefore aimed to 

determine the effects of long-term muscle disuse in ITTAs on strength and its 

neuromuscular determinants. 
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Chapter 3 

Methods  

 

This chapter presents the methods completed in preparation for data collection, data 

collection itself, and the data processing conducted for the entire thesis. Specific 

information pertaining to variable extraction and analysis of the data will be detailed 

in each experimental chapter. 

3.1 Ethical Approval and Participant Recruitment 

This project was approved under the procedures of the University of Roehampton’s 

Ethics Committee on 11/07/16 (reference LSC/ 16/176; Appendix C1). Both ITTAs 

and able-bodied individuals were recruited. An additional ethical application was also 

approved by the NHS Health Research Authority (reference number 17/NW/0566; 

Appendix C2). Two NHS limb-fitting centres (Bowley Close and Queen Mary’s 

Hospital, Roehampton) agreed to aid with recruitment through identification of 

potential ITTA participants. Both sites were supplied with advertisement materials 

(fliers and posters) to distribute accordingly. Additionally, Consent to Contact Forms 

(Appendix D1) were provided to allow the researchers to contact potential participants 

who wished to receive further information about the project.  

Once contact had been established with a potential participant, they were provided 

with an information sheet informing them of the purpose of the study, the protocols to 
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be followed (including details of risks involved), and their right to withdraw from all or 

parts of the study at any time (Appendix D2). All participants provided informed written 

consent prior to commencing the study (Appendices D3 and 4). Participants were 

offered £10 in cash per session (£30 in total) in compensation for their time and effort. 

As the ITTAs were more difficult to recruit, and generally travelled further than the 

control cohort, they were offered up to an additional £20 per session to cover travel 

expenses upon provision of a ticket receipt or details of distance driven (reimbursed 

at £0.45/mile; Appendices D5 and 6).  

3.2 Participant Populations 

All recruited participants were male, with moderate to high levels of habitual physical 

activity. While females were not precluded from participation, the inability to recruit 

female ITTAs dictated a male recruitment in able-bodied controls to facilitate 

comparisons. Physical activity was assessed using the International Physical Activity 

Questionnaire (Short Format, http://ipaq.ki.se/downloads.htm). Participants with an 

MET-mins/week score of 600-3000 were described as moderately active, and those 

with a score of >3000 as highly active (Craig et al. 2003).  

Amputees were included if they had a unilateral transtibial amputation performed >6 

months prior to involvement in the study, to ensure established ambulation. 

Additionally, ITTAs were required to have achieved a K-rating of K3 (basic ambulation 

with the ability to traverse most environmental barriers) or K4 (capability for high level 

ambulation exhibiting large stresses and impacts; Orendurff et al. 2016). This was 

deemed necessary to ensure that ITTAs participating in the study would be able to 

safely perform higher demand movements such as fast walking. These factors were 

assessed using an amputation history questionnaire (Appendix D7). ITTAs were 

excluded if they experienced any pain or discomfort in the residual limb whilst using 

their prosthesis, or if their amputation occurred due to any reason other than trauma. 

http://ipaq.ki.se/downloads.htm
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While amputations following complications arising from metabolic conditions (i.e. 

diabetes) are the largest demographic of ITTAs in the UK (British Society of 

Rehabilitation Medicine 2018), this restriction was imposed to control for health 

status. This is because disease is known to have negative effects on neuromuscular 

function (Sacchetti et al. 2013) and would likely confound the results. 

Exclusion criteria for both groups included cardiovascular disease risk factors or 

neuro-musculoskeletal injuries (other than a transtibial amputation in the case of the 

ITTAs), assessed using a questionnaire modified from the AHA/ACSM Position Stand 

(1998, Appendix D8). Participants over the age of 45 years were excluded due to the 

independent effect of ageing on neuromuscular function (Pincivero et al. 2004) and 

strength asymmetry (Skelton, Kennedy & Rutherford 2002). 

3.3 Study Design  

This thesis was part of a larger project in conjunction with another PhD researcher. 

Participants visited the laboratory for 2-3 hours on three separate occasions, 3-7 days 

apart, to complete a familiarisation session, and two measurement sessions. The 

familiarisation session and first measurement session were identical and involved 

assessment of neuromuscular function of the quadriceps muscle group on both limbs. 

The second measurement session involved motion capture to allow analysis of 

various movements. All three sessions commenced at a consistent time (± 2 hours) 

of the day for each participant, following at least 36 hours without strenuous exercise, 

and 24 hours with no alcohol.  

During the neuromuscular function assessment sessions, participants completed a 

series of voluntary and electrically evoked involuntary (twitch and 300 Hz octet) 

isometric contractions of the knee extensors. Maximum voluntary torque (MVT; 

measures maximum strength) was assessed during maximal voluntary contractions 

(MVCs) whilst rate of torque development (RTD; measures explosive strength) were 
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assessed during explosive voluntary contractions. Torque responses measured 

during the involuntary evoked contractions were used to assess the intrinsic 

contractile properties of the muscle. Neural activation at MVT was assessed by (i) 

Voluntary Activation (VA) measured using the interpolated twitch technique with 

doublets stimulation; and (ii) the mean quadriceps root mean square (RMS) EMG 

(normalised to maximal M-wave) at MVT. Explosive agonist neural drive was 

assessed by quadriceps RMS EMG (normalised to maximal M-wave) at 100 ms from 

the onset of explosive voluntary contractions.  Muscle architecture variables (muscle 

thickness, pennation angle and fascicle length) of the Vastus Lateralis were assessed 

using a static ultrasound image. 

The movement analysis session involved collecting kinetic and kinematic data during 

several different activities: step ascent and descent; walking at a habitual and fast 

pace; jogging; running; and unilateral and bilateral jumping and drop-landing. The 

movements that will be analysed as part of this thesis are ITTA walking (at both 

speeds), and control group bilateral jumps and landings. All other movements 

performed part of the other PhD project (Moudy 2019). 

Eight participants returned for a fourth session upon completion of their involvement 

in the main study for investigation of the reliability of the neuromuscular measures. 

This additional session was identical to the two previous neuromuscular sessions, 

other than that data were collected for one limb (the right) only. Test-retest reliability 

data for all neuromuscular measures are presented in Appendix F.  

3.4 Strength and Neuromuscular Function  

Maximum and explosive strength measures (sections 3.4.2.3 and 3.4.2.5) are 

reported in all four experimental chapters (Chapters 4 – 7). All other neuromuscular 

function variables are relevant for Chapters 4 (able-bodied neuromuscular 

asymmetry) and 7 (the effect of chronic disuse on neuromuscular function) only. 
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3.4.1 Experimental Setup 

3.4.1.1 Knee Extension Torque  

Participants were firmly secured in an isokinetic dynamometer (Humac Norm, 

Computer Sports Medicine Inc., Massachusetts, USA) using adjustable straps 

fastened tightly across the pelvis and shoulders, to prevent extraneous upper-body 

movement. Some basic modifications were made to minimise knee joint angle 

changes, including the use of a dense foam padding on the seat and leg attachment, 

and a custom-made lower limb knee pad which could be tightly clamped down to 

remove unnecessary rotation (usually present in dynamometers to assist dynamic 

movement) around the knee adaptor (Appendix E1). In all participants, the adaptor 

was placed at the lowest point of the limb permitted by anatomy and participant 

comfort, remaining proximal to the ankle and flush with the tibia. Amputees did not 

wear their prosthesis in the chair. As a result, for the amputated limb in the ITTA 

group, the crank arm was flipped by 180° to account for the shorter residual tibia, and 

thus enable a higher placement of the adaptor relative to the intact and control limbs 

(Appendix E2). The adaptor was placed lower on the shank in the intact and control 

limbs for several reasons. Firstly, if the adaptor is placed too high on a healthy limb, 

greater external compression forces are experienced at the shank (as a result of the 

smaller moment arm for the same level of torque production). This can be painful, 

and leads to sub-maximal contraction efforts. Furthermore, the high placement of the 

adaptor on a healthy limb causes considerable occlusion to the shank tissues, which 

causes significant discomfort to the participant. The same is not true of ITTAs due to 

the nature of their residual limb following the amputation. However, the placement of 

the attachment should not, in theory, affect torque measurements, as the isokinetic 

dynamometer measures external torque. 

Participants were seated with a hip angle of 100° (80° of flexion from anatomical 
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zero). The axis of rotation of the crank arm was aligned with the lateral knee joint 

space whilst participant produced an MVC at a knee angle of ~110° (full extension = 

180°). Knee joint angle was set manually using a handheld goniometer centred at the 

knee joint space and aligned with lines drawn on the skin over the thigh and shank, 

between the greater trochanter and knee joint space, and between the knee joint 

space and the lateral malleolus, respectively. In ITTAs, the shank line was drawn from 

the lateral knee joint space and extended along the line of the tibia to the end of the 

residual limb. 

The analogue torque signal was sampled at 2000 Hz using an external A/D converter 

(16-bit signal recording resolution; Micro 1401, CED, Cambridge, UK) and interfaced 

with a PC using Spike 2 software (version 8; CED).  

3.4.1.2 EMG  

Electromyographic signals were recorded from the superficial knee extensors (rectus 

femoris [RF], vastus medialis [VM], vastus lateralis [VL]) using a Noraxon TeleMyo 

Desktop DTS System (Noraxon, Arizona, USA). The skin was prepared by shaving, 

abrading and cleansing with 70% alcohol. Dual Ag/Ag/Cl surface electrodes (two 

contacts with a 2 cm inter-electrode distance, Noraxon) were attached over the belly 

of each muscle at SENIAM recommended recording sites (Stegeman & Hermans, 

2007), parallel to the presumed orientation of the muscle fibres (Figure 3.1). The raw 

EMG signals were wirelessly transmitted from sensors connected to the electrodes 

(Wireless Research EMG Probes, Part 542, Noraxon) to a receiver (Desktop DTS, 

Part 586, Noraxon), with a total gain of 500. Signals were sampled at 2000 Hz in 

synch with torque, via the same A/D converter and PC software.  
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3.4.2 Data Collection 

Muscle architecture of the vastus lateralis at rest was assessed using static 

ultrasound images. Participants then completed a series of voluntary and electrically 

evoked involuntary isometric contractions in each limb separately in the following 

order: evoked twitch and 300 Hz octet contractions to assess contractile properties, 

MVCs to assess MVT, and explosive voluntary contractions to assess RTD. To 

assess neural activation, MVCs were superimposed with electrically evoked doublet 

contractions, and surface EMG was collected from the three superficial heads of the 

quadriceps throughout. All measurements of neuromuscular function were taken in 

the first measurement session, apart from the octet contractions, which were taken in 

the familiarisation session only, due to discomfort caused by the octet stimulation. 

Neuromuscular measures were taken on both legs and the first leg tested was 

randomised for each person but remained consistent between sessions. 

3.4.2.1 Muscle Architecture 

A static ultrasound image (Hitachi Noblus, Hitachi Medical Systems, UK) of the VL 

was taken using a linear array probe with a 94 mm scan width (HI VISION L53L, 
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Hitachi Medical Systems, UK), to assess muscle thickness, fascicle length and 

pennation angle. The image was taken at the start of the session, prior to any 

measurements whilst the participant was seated in the dynamometer at rest, with a 

knee joint angle of 100°, to prevent measures being confounded by increased blood 

flow to the muscles with exercise (Joyner 2015). The probe was placed perpendicular 

to skin surface, over the belly of the VL, at 50% of the line between the greater 

trochanter and the knee joint centre, and aligned so that the muscle fascicles of the 

VL and their insertion into the deep aponeurosis were clearly visible.  

3.4.2.2 Electrical Stimulation 

Evoked contractions were performed before voluntary muscle contractions to prevent 

post-activation potentiation of the twitch response (Sale 2004). Electrical stimuli were 

delivered via percutaneous stimulation of the femoral nerve to evoke contractions of 

the knee extensors (Figure 3.1). Measures included supramaximal twitch, doublet 

(two stimuli evoked at 100 Hz as part of the ITT; see Section 3.4.2.4) and octet (eight 

pulses at 300 Hz, thought to elicit the maximum capacity of the muscle-tendon unit 

for explosive force production; de Ruiter et al. 2006).  

The cathode stimulation probe (1 cm diameter, protruding 2 cm from a plastic base, 

Electro Medical Supplies, Wantage UK) was firmly pressed into the femoral triangle 

and maintained in place by adhesive tape. The surface of the anode, a 10 x 7 cm 

carbon rubber electrode, was held in place over the greater trochanter with adhesive 

tape. Square wave pulses, 0.2 ms in duration, were delivered via a constant current 

variable voltage stimulator (Model DS7AH, Digitimer, Ltd, Welwyn Garden City, UK). 

The precise location of the cathode was determined as the position that evoked the 

greatest twitch response for a particular submaximal electrical current (typically 30 – 

60 mA). Single impulses were delivered with step-wise increments in the current, 

separated by 15 s, until a plateau in the amplitude of twitch torque and compound 
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muscle action potentials (M-waves) were reached. The stimulus intensity was then 

increased by 20% to ensure supramaximal stimulation, and three supramaximal 

twitch contractions, separated by 20 s, were delivered. The current was reduced prior 

to commencing the octet contractions, and stepwise increments in the current were 

delivered 15 s apart until the supramaximal current used for twitch contractions was 

attained. Subsequently, three supramaximal octet contractions were evoked.  

3.4.2.3 Knee Extension MVCs  

Participants performed a series of ~20 warm-up contractions of 3-s duration at 

progressively higher torque levels over ~2 min before completing six MVCs. Each 

MVC lasted 3 – 5 s and was followed by 30 – 60 s rest. Participants were instructed 

to push ‘as hard as possible’ and strong verbal encouragement was given throughout 

the contractions. Participants received real-time biofeedback regarding the torque 

response during and after each contraction.  

3.4.2.4 Neural Drive at MVT 

The 2nd, 4th, and 6th MVCs had a single doublet (two impulses at 100 Hz at the same 

supra-maximal stimulation intensities as the twitch and octet) superimposed at the 

plateau of the torque-time curve. Doublets were evoked only provided voluntary 

torque was ≥ 90% of MVT, to ensure that participants were pushing as close to 

maximal as possible to allow reliable between-participant comparison. Doublets were 

chosen as the superimposed stimulus, as they elicit less discomfort than a train of 

more than two impulses (e.g., an evoked octet), and the force produced by paired 

stimuli is greater and less variable than for a single twitch. This is because the second 

impulse is likely to depolarise any motor units that were both not firing maximally and 

in the refractory period at the time of the first impulse (Duchateau 2009). 

As the superimposed doublet appears to be potentiated (Folland 2009), two further 



Chapter 3. Methods 
 
 

 

70 
 

doublets were evoked at rest immediately after the MVC (see Section 2.3.1.1 for 

further explanation of the methodical issues surrounding the ITT).  

3.4.2.5 Explosive Voluntary Contractions  

To measure explosive strength, participants completed 10 – 15 explosive isometric 

contractions of the knee extensors, each separated by 20 s rest. Participants were 

instructed to extend their knee ‘as fast and hard as possible’ for ~1 s, with the 

emphasis on ‘fast’, whilst aiming to achieve > 80% MVT as quickly as possible. Real-

time biofeedback on their RTD was provided via the slope of the torque-time curve 

(15 ms time constant), which was displayed on the computer monitor throughout, with 

participants being encouraged to beat their best peak slope (peak RTD) with each 

attempt. The baseline torque level was displayed on a sensitive scale to provide 

biofeedback on whether any countermovement or pretension occurred before the 

contraction.  

3.4.3 Data Processing 

All strength and neuromuscular data were processed using Spike 2 software (version 

8, CED, Cambridge, UK). 

3.4.3.1 Knee Extension Torque  

Off-line, torque data was filtered using a fourth-order low pass Butterworth filter with 

a cut-off frequency of 10 Hz, and baseline resting torque was subtracted from all 

active torque recordings to correct for the weight of the limb. Torque signal onsets 

(voluntary and evoked) were detected using a threshold method of identification 

(Andersen & Aagaard 2006, Schmidt et al. 2014), and defined as the point at which 

torque exceeded 5 Nm, at which point baseline noise was cleared. 
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3.4.3.2 EMG 

Prior to analysis, raw EMG signals were band-pass filtered off-line between 6 and 

500 Hz using a fourth-order zero-lag Butterworth filter. 

3.4.4 Variable Extraction 

3.4.4.1 Muscle Architecture  

Muscle thickness, pennation angle and fascicle length (Figure 3.2) were determined 

offline using Tracker software (an open source Video Analysis Tool, available from 

http://physlets.org/tracker/). Muscle thickness was defined as the mean distance 

between the deep and superficial aponeuroses at three points: at the middle and 

either end of the image. Pennation angle was defined as the mean of the angle 

between three separate muscle fascicles and their insertion on the deep aponeurosis. 

Previous studies assessing the reliability of muscle thickness and pennation angle 

measures using ultrasound have reported errors of ~2% and 5-10%, respectively 

(Franchi et al. 2018, Kwah et al. 2013), while test-retest reliability of these methods 

evidenced CVs of 4 – 11% (Appendix F). Fascicle length was extrapolated from the 

pennation angle and muscle thickness using trigonometry (de Brito Fontana, Roesler 

& Herzog 2014, Franchi et al. 2014, Tillin, Pain & Folland 2012b), as the entire length 

of the fascicle was not visible in the image. This is a commonly used method, although 

it is associated with some errors due to the curvature of the muscle fascicle and 

aponeurosis. However, in this study fascicle length was estimated at the mid-section 

of the muscle where fascicle and aponeurosis curvature is minimal, and muscle 

architecture relatively uniform, compared to more proximal or distal portions of the 

muscle (Blazevich, Gill & Zhou 2006). The errors associated with linearly extrapolated 

fascicle length are reported to be in the region of 2-7% when compared to image 

fitting (Finni & Komi 2002, Reeves & Narici 2003) or ~12% when compared to 

extended field of view ultrasonography (Noorkoiv et al. 2010). Between-day reliability 

http://physlets.org/tracker/)
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of the architectural features assessed as part of this thesis are reported in Table F2 

(Appendix F). 

 

3.4.4.2 Twitch and Octet Parameters 

The mean M-wave peak-to-peak amplitude of the three supramaximal twitch 

contractions was defined as the maximal M-wave (Mmax). Torque measurements 

extracted from the evoked contractions were twitch and octet peak torque (PT) and 

peak RTD (calculated using a 15 ms moving time constant), presented as absolute 

and relative to PT. Each of these variables were averaged across the three supra-

maximal twitch and octet contractions recorded.  

3.4.4.3 Maximum and Explosive Strength 

MVT was defined as the greatest instantaneous peak voluntary torque (not due to 

superimposed stimulation) recorded during any of the MVCs or explosive 

contractions. Any contractions with a visible countermovement (an initial antagonist 

torque production) or pre-tension (active tension in the muscle prior to contraction 

onset), quantified as change of baseline torque < 0.5 Nm during the 100 ms prior to 

visible torque onset, were discarded. These criteria were applied as the level of pre-
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tension and countermovements have been shown to affect the subsequent levels of 

force production (Buckthorpe & Roi 2017). Furthermore, as RTD has been found to 

have a strong positive relationship with the peak torque achieved in the contraction in 

which it was measured (Maffiuletti et al. 2016), contractions with peak torque > 80% 

MVT were discarded. Peak voluntary RTD (Figure 3.3) was extracted from the three 

explosive voluntary contractions with the highest peak RTD that conformed to these 

criteria.  

 

3.4.4.4 Neural Drive at MVT 

The difference between superimposed and mean resting potentiated doublet torque 

was used to calculate voluntary activation for each contraction (VA; a measure of 

neural drive at MVT), using the equation: 

𝑉𝐴(%) =  100 ×  (1 − (𝐷𝑠 𝐷𝑐⁄ )) 

(3.1) 

where Ds and Dc are the superimposed and control doublets, respectively. The mean 
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VA for all three contractions was reported.  

The RMS of the EMG signal for each quadriceps muscle (RF, VM, VL) was calculated 

over a 500 ms window which wasn’t influenced by stimulation artefact, centred on- or 

nearest to MVT (EMGMVT). EMGMVT was normalised to Mmax of the same muscle 

(Halaki & Ginn 2012, Lanza et al. 2018) and averaged across the three quadriceps 

muscles.  

3.4.4.5 Explosive Neural Drive 

To assess neural drive during the explosive contractions, the RMS amplitude of the 

EMG signal for each quadriceps muscle (RF, VM and VL) was calculated for the time- 

period most closely aligned to RTD (i.e. 0-100 ms) and normalised to Mmax at the 

same muscle. EMG onset, defined as the onset of the first muscle to be activated, 

were identified with a standardised systematic protocol of visual identification (Tillin 

et al. 2010, Tillin, Pain & Folland 2013b). Visual signal inspection is recognised as a 

gold standard method for event detection (Staude & Wolf 1999). Briefly, EMG 

recordings were initially viewed with a consistent y-axis scale of 0.05 mV, and an x-

axis scale of 500 ms. This scale provided sufficient resolution for the accurate 

detection of signal onset, defined as the last peak or trough before the signal deflected 

away from baseline noise. A vertical cursor was then placed on the signal onset 

before the signals were viewed at a higher resolution (y-axis scale of 0.02 mV, and 

an x-axis of 25 ms) to verify the accurate placement of the cursor (Figure 3.4). EMG 

values were expressed as a percentage of their respective Mmax, and averaged across 

the three quadriceps muscles within the time period (EMG0-100). EMG measurements 

were averaged across the three explosive contractions chosen for analysis.  
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3.5 Movement Analysis  

3.5.1 Experimental Setup 

Kinematic data were collected using twelve Vicon Vantage V5 (Vicon Motion Systems 

Ltd.; Oxford, UK) motion capture cameras sampling at 200 Hz. Three in-series Kistler 

force plates (Type 9281c; Kistler Instruments Ltd., Hampshire, UK) sampling at 1000 

Hz were in the middle of a 15 m walkway. Two sets of Brower TC timing gates (Brower 

Timing, Utah, USA) placed 2 m either side of the force plates were used to capture 

average walking pace.  

3.5.2 Anthropometric Measures 

Body mass was taken alongside height, leg length and various joint width measures 

(Table 3.1) for input into Vicon Nexus. Anthropometric measures were taken twice, 

except in the instance that the difference between the two measures was > 2 mm, in 

which case the measure was taken a third time. The mean of two measurements that 

were within 2 mm of each other were used as the data input for the Plug-in Gait 

subject model.  
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3.5.3 Marker Placement 

Thirty-nine retroreflective markers (14 mm diameter) were attached directly to the skin 

in accordance with the full-body marker set (Davis et al. 1991). In the case of ITTAs, 

markers for the shank, ankle and foot were placed in positions on the prosthetic 

corresponding as closely as possible to those on the intact limb (Rusaw & Ramstrand 

2010, 2011, Kent & Franklyn-Miller 2011). 

3.5.4 Data Collection 

As the data collection for this thesis was run in conjunction with another PhD student, 

data were collected for more movements than analysed within the scope of this thesis.  

The movement analysis data collection was performed in the following order: step 

descent/ ascent, habitual and fast walking, jogging, running, bilateral and unilateral 
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countermovement jumps, and bilateral and unilateral drop landings. Task demand 

increased throughout the testing protocol, and participants were provided rest 

between each change in task and, when appropriate, demand (i.e. walking at two 

different speeds, jogging and running) to avoid fatiguing effects on subsequent 

activities. Kinetic and kinematic data were collected for all movements. 

The take-off phase of bilateral maximal vertical CMJs and landing from a drop were 

assessed to determine if asymmetries in strength and loading during movement were 

associated in a control population (Section 2.4.1). Control CMJ and drop landing 

variables (sections 3.5.4.1 and 3.5.4.2) are reported in Chapter 5.  

Walking variables (section 3.5.4.3) were assessed for two reasons: firstly, to 

determine if there were associations in strength and kinetic asymmetries in a 

movement commonly performed by a pathological population (Chapter 6; ITTAs 

only), and secondly, to quantify the relative disuse of the amputated and intact limbs 

of ITTAs in comparison to a control limb (Chapter 7). 

3.5.4.1 Counter-Movement Jump 

The jumps were performed with a low mass plastic bar resting on participants’ 

shoulders to remove the effect of arm swing (Hara et al. 2006). Each foot started on 

a separate force plate. Participants were instructed to do a countermovement to a 

comfortable depth before jumping as high as they possibly could and to land with 

each foot on a separate force plate. To familiarise the participant to the movement, 

three to five practice attempts were made before data collection began, which 

involved participants completing maximal effort jumps until three successful jumps 

had been captured. The jump was considered successful if the participant landed 

each limb fully on their respective force plates and was able to stabilise without 

moving their feet.  
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3.5.4.2 Drop Landing 

Bilateral drop landings, as distinct from the landing of a CMJ, were performed to 

remove the influence of jump height on landing techniques – i.e. drop height was 

standardised to ensure similarity of touchdown velocity. Vertical momentum was 

therefore reduced by the same amount across participants, making comparisons 

equivalent. While it is usual for drop landings to be performed by rolling off a box of a 

standardised height (e.g. Orishimo et al. 2009), the requirements for participants to 

land in front of the box introduces a horizontal velocity component to the landing. 

Additionally, if the roll-off is performed incorrectly, participants may jump slightly, 

raising the centre of mass, and therefore changing the vertical velocity at touch-down. 

To combat these limitations, a specially designed, adjustable metal drop landing 

frame (Figure 3.5) was used. The frame was placed around the force plates to gather 

data from both limbs individually. The grab rail of the frame was adjusted so that the 

participants were 30 cm off the ground (Durall et al. 2011, Doherty et al. 2014, 

Orishimo et al. 2009) as measured from the heel while hanging. Following a 

demonstration, participants lowered themselves to a hanging position from the bar. 

Once still, participants were instructed to hold for one second before dropping to land 

in a natural manner (i.e. they could land with straight legs or bent legs depending on 

their preference). Participants completed drop landings until three successful trials 

were captured. A successful landing was defined when the participant: (i) did not 

visibly pull up before dropping; (ii) landed with each foot on a separate force plate; 

and (iii) stabilised upon landing within 2-3 s without changing their foot position or 

using the frame for stabilisation. 
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3.5.4.3 Walking 

Participants were instructed to walk along the walkway (with ITTAs wearing their 

usual prosthetic limb) at their self-selected everyday walking pace, determined from 

three preliminary practice trials. They were then prompted to maintain this speed for 

the remainder of the passes until five good trials (defined as a single pass within ± 

5% of the average walking speed and a successful force plate strike) were collected. 

The same protocol was repeated at a second (fast) speed, with participants instructed 

to walk at a pace they would choose if they were late for an appointment. Three good 

trials, defined as a single pass with at least one successful force plate strike and no 

gaps in marker data > 40 frames, were selected for analysis for each walking speed.  

3.5.5 Data Processing 

Data processing was completed using Nexus (version 2.7.1, Vicon, Oxford), software 
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that interfaces marker and force-plate data. A low-pass zero-lag fourth-order 

Butterworth filter was used to filter raw marker trajectories (8 Hz) and analogue force 

data (200 Hz cut-off). Hip joint centres were determined using the Newington-Gage 

model, while knee and ankle joint centres were calculated using a modified chord 

function, as per Vicon’s Plug-in Gait Model (Vicon 2016), based on the Newington-

Helen Hayes marker sets. Plug-in Gait is a model used by Nexus to calculate 

kinematic and kinetic data such as joint angles, velocity, moments, powers, etc. 

Inverse dynamics equations were used to calculate net joint moments (reported as 

internal moments), which were reported both as absolute values (Chapter 6) and 

normalised to each participant’s body mass (Chapters 5 – 7). Impulse was calculated 

as the cumulative time-integral of the waveform of interest (knee extension moment 

or vGRF as appropriate).  

The anthropometric characteristics of all participants were based on Dempster’s 

values (Dempster, 1955). In ITTAs, the inverse dynamic analysis assumes that the 

prosthetic components were anatomically equivalent to the intact limb. While this may 

overestimate the inertia of the prosthetic limb, variables of interest occurred during 

the stance phase of gait only. As lower-extremity accelerations in stance are relatively 

small, errors in calculating inertia of the prosthetic limb have been shown to have only 

a minor effect on joint kinetics (Miller, 1987). This modelling method is frequently used 

in the literature assessing joint moments across a range of tasks in for ITTA (e.g. 

Baum et a. 2019, Sanderson & Martin 1997, Schoemann, Diss & Strike 2012, 2013, 

Strike, Arcone & Orendurff 2018, Vanicek et al. 2010). 

3.5.6 Variable Extraction 

Extraction of movement variables was performed in Matlab (R2016a, The Mathworks 

Inc, Natick, MA) using custom-written programs. Unlike the strength and 
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neuromuscular measures, the movement variables analysed were specific to the 

experimental chapter in question. Therefore, data extraction for CMJ and drop landing 

will be described in Chapter 5. Walking variable extraction will be described in 

Chapter 6 (ITTAs only, for the investigation into the relationships between ITTA 

strength and gait asymmetries) and Chapter 7 (both groups, for the quantification of 

the level of disuse at the amputated and intact limb compared to a control). 

3.6 Data and Statistical Analysis 

3.6.1 Asymmetry Calculations 

In this thesis, limbs were split between strong/ weak due to the problems associated 

with right/ left and dominant/ non-dominant limb classification. Furthermore, in 

Chapter 6, ITTA intact limbs are stronger, and, as a result of the amputation, the 

dominant limb. However, this does not necessarily reflect which limb was dominant 

before their amputation. 

Bilateral Strength Asymmetry (BSA, equation 3.2; Nunn & Mayhew 1988) was chosen 

for analysis in Chapter 4 because a scale with perfect symmetry represented by 0% 

is more comparable to the majority of asymmetry literature.  

𝐵𝑆𝐴𝑥(%) =
𝑆𝑇𝑅𝑂𝑁𝐺𝑥 − 𝑊𝐸𝐴𝐾𝑥

𝑆𝑇𝑅𝑂𝑁𝐺𝑥
× 100 

(3.2) 

For Chapter 5, Bilateral Asymmetry Index (BAI, equation 3.3; Bishop et al. 2018) was 

chosen due to the bilateral nature of the movement tasks (CMJ and drop landing) that 

were assessed.  
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𝐵𝐴𝐼𝑥(%) =
𝑆𝑇𝑅𝑂𝑁𝐺𝑥 − 𝑊𝐸𝐴𝐾𝑥

𝑆𝑇𝑅𝑂𝑁𝐺𝑥 + 𝑊𝐸𝐴𝐾𝑥
× 100 

 (3.3) 

BAI is preferable for the quantification of asymmetry in a bilateral task, as the 

differences in force between limbs are always relative to the sum force value (see 

Appendix A, Section A.3 for further discussion of the interpretation of asymmetry 

indices). Modified forms of the BAI and BSA indices were used to study asymmetry 

in ITTAs. Further discussion of these can be found in Chapter 6, Section 6.2.3.1 and 

Chapter 7, Section 7.2.4. 

In Chapters 4 and 5, asymmetry values were considered in two ways: absolute, and 

directional. The following sections discuss the difference in the calculation for these.  

3.6.1.1 Absolute Asymmetry 

Absolute asymmetry for each variable of interest was calculated using the equations 

given in Table 3.2, where 𝑥 was the strength, neuromuscular or biomechanical 

variable of interest, and STRONG and WEAK are the legs with the highest and lowest 

values respectively, for 𝑥. This equation quantifies the magnitude of asymmetry 

without specifying its direction i.e., which leg was demonstrated the greater value for 

the given variable.  

Consider, for example, that the variable of interest is VA. An individual may present 

with the following data (N.B. the greater value for the variable of interest is 

presented in bold for ease of interpretation): 

 Left Right 

VA (%) 94 97 
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For this individual, then, absolute asymmetry indices would be calculated thus: 

𝐵𝑆𝐴𝑉𝐴(%) =
97 − 94

97
× 100 = 3.09% 

𝐵𝐴𝐼𝑉𝐴(%) =
97 − 94

97 + 94
× 100 = 1.57% 

These values will always be positive. 

3.6.1.2 Directional Asymmetry 

The calculation of directional asymmetry is a novel method to describe both the 

magnitude and direction of the asymmetry in a given variable. When correlating the 

asymmetry between two variables, it was important to denote the direction of the 

predictor variable asymmetry relative to that of the dependent variable (i.e. directional 

asymmetry), accounting for the fact that the asymmetry may be in opposite directions 

for the two variables. The equations for calculating directional asymmetry are 

therefore: 

BSA_DIR𝑥 (%) =
𝑆𝑇𝑅𝑂𝑁𝐺_𝐷𝐼𝑅𝑥 − 𝑊𝐸𝐴𝐾_𝐷𝐼𝑅𝑥

𝑆𝑇𝑅𝑂𝑁𝐺𝑥
× 100 

(3.4) 

𝐵𝐴𝐼_𝐷𝐼𝑅𝑥(%) =
𝑆𝑇𝑅𝑂𝑁𝐺_𝐷𝐼𝑅𝑥 − 𝑊𝐸𝐴𝐾_𝐷𝐼𝑅𝑥

𝑆𝑇𝑅𝑂𝑁𝐺𝑥 + 𝑊𝐸𝐴𝐾𝑥
× 100 

(3.5) 

where 𝑥 is again the variable of interest, and STRONG_DIR and WEAK_DIR are the 

limbs with the highest and lowest values, respectively, for the variable that 𝑥 is being 

assessed relative to (i.e. asymmetry in MVT or RTD). Continuing the earlier example 

then, let us study the same individual. We now need to consider the maximum 
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strength of each limb (predictor variable) as well as the dependent variable (in this 

case, VA). The data for this individual may be: 

 Left Right 

MVT (Nm) 324 356 

VA (%) 94 97 

 

As the maximally strong limb is the same as the limb with the greatest VA (i.e. the 

right limb), directional asymmetry is calculated as follows: 

BSA_DIR𝑉𝐴 (%) =
97 − 94

97
× 100 = 3.09% 

𝐵𝐴𝐼_𝐷𝐼𝑅𝑉𝐴(%) =
97 − 94

97 + 94
× 100 = 1.57% 

In this instance, directional asymmetry is identical to the absolute asymmetry values 

as calculated previously in Section 3.6.1.1. However, there may be situations in which 

the strong leg does not present with the greatest value for the variable of interest. Let 

us change our example data so that the maximally strong limb becomes the left leg: 

 Left Right 

MVT (Nm) 356 324 

VA (%) 94 97 

 

In this case, directional asymmetry is calculated as follows: 

BSA_DIR𝑉𝐴 (%) =
94 − 97

97
× 100 = −3.09% 

𝐵𝐴𝐼_𝐷𝐼𝑅𝑉𝐴(%) =
94 − 97

97 + 94
× 100 = −1.57% 
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The calculated asymmetry index is now negative, indicating that the asymmetry in the 

variable of interest is in the opposite direction to that of the strength (predictor) 

variable. Notice, however, that the magnitude of the asymmetry index is the identical 

as the denominator is the same (the larger value for the variable of interest, i.e. 

STRONG𝑥 rather than STRONG_DIR𝑥). 

3.6.2 Interpreting Asymmetry Indices 

For all asymmetry indices, calculations were done first at the individual level before 

averaging across the group for the mean value. The group means for each asymmetry 

index are presented in the results of each chapter. However, as directional asymmetry 

for a given variable is not necessarily in the same direction for all individuals, the 

interpretation of the r values from correlational analysis becomes challenging. 

Scatterplots should be investigated for each analysis. Figure 3.6 shows some basic 

examples of how asymmetry index values may be distributed for given r values.  

Figures 3.6A and C both show a scatterplot where r = 1. In contrast, Figures 3.6B and 

D both show a scatterplot where r = -1; however, the interpretation is different 

between these two sets of graphs.  
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For Figure 3.6A, the asymmetry of both V1 and V2 increase proportionally; while 

Figure 3.6B shows that as asymmetry in V1 decreases, asymmetry in V2 increases. 

However, it is possible to have a situation where some individuals within the group 

experience a different relationship between the asymmetry of the predictor and 

dependent variables. Consider Figures 3.6C and D, for which the interpretation is 

more complex. For both figures, the relationship between asymmetry in V1 and V2 is 

different in half the group, dependent on where the data lies. In the top half of Figure 

3.6C, asymmetry in V1 increases as asymmetry in V2 increases, while in the bottom 
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half, asymmetry in V1 increases as asymmetry in V2 decreases. The opposite is true 

for Figure 3.6D. 

Where the interpretation of the r value is complex, such as in Figures 3.6C and D, 

scatterplots of data are presented in this thesis as appropriate to aid the interpretation 

of the r values presented. 

3.6.2 Statistical Analysis 

Specific information pertaining statistical analysis of the variables extracted will be 

detailed in each experimental chapter. 
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Chapter 4 

Associations between Asymmetry in 

Quadriceps Strength and its 

Neuromuscular Determinants in an 

Able-Bodied Population 

 

4.1 Introduction 

Typical human movements are bi-pedal, whereby effective movement relies on the 

co-ordinated contribution of two limbs for absorbing and generating momentum. On 

this basis, it is often assumed that strength discrepancies between the limbs, 

indicating bilateral strength asymmetry, may limit effective movement (Bishop, Turner 

& Read 2017). Strength asymmetry of the quadriceps muscles, which are large 

contributors to triple extension actions (walking, running, jumping, landing; e.g. Chang 

et al. 2015, Decker et al. 2003, Neptune et al. 2008, Yeow et al. 2011), has been 

implicated in a variety of special populations. For example, greater quadriceps 

strength asymmetry has been observed in: old vs young adults (Skelton, Kennedy & 

Rutherford 2002); older adult fallers vs non-fallers (Perry et al. 2007); ITTAs vs. able-

bodied (Lloyd et al. 2010); patients with multiple sclerosis vs controls (Sandroff, Sosnof 
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& Motl 2013) and patients with knee osteoarthritis vs controls (Suetta et al. 2007). 

Furthermore, authors have suggested that quadriceps strength asymmetries of >10 – 

15% place athletes at a greater risk of injury (Kiesel, Plisky & Voight 2007, Knapik et 

al. 1991, Nadler et al. 2001).  

Studies that have investigated quadriceps inter-limb strength asymmetries have 

typically assessed dynamic maximum strength using isokinetic dynamometry 

(measured as peak torque), and reported it to range from on average 1 – 18% in athletic 

populations, 15 – 32% in clinical populations, 10 – 20% in those aged > 65 years, 10 – 

14% in children (Table 2.1), and 1 – 5% in control populations (Kobayashi et al. 2013, 

Lanshammar & Ribom 2010, Schiltz et al. 2009). However, the latter studies on control 

groups all split limbs by dominant vs. non-dominant for the calculation of asymmetry, 

and therefore may underestimate the magnitude of these asymmetries (due to 

cancellation from negative values; Appendix A). There remains therefore limited 

literature on the typical magnitude and variability of maximum strength asymmetries 

present in a young, healthy recreationally active population, which may be useful for 

comparing to special populations that demonstrate bilateral, asymmetrical loading 

patterns that may predispose them to strength asymmetries (e.g., ITTAs, osteoarthritis 

patients, injured athletes). Furthermore, there has been no investigation of the 

magnitude and variability in quadriceps explosive strength asymmetry, which may be 

more functionally relevant than maximum strength asymmetry in certain situations, 

given the functional importance of explosive strength to rapid human actions such as 

joint stabilisation, restabilising the body following a loss of balance, and certain sports 

activities (Behan, Pain & Folland 2018, Maffiuletti et al. 2010, Pijnappels et al. 2008, 

Tillin, Pain & Folland 2013a).  

Given that MVT is one of the primary determinants of explosive strength (Andersen 

& Aagaard 2006, Folland, Buckthorpe & Hannah 2014), it is logical to posit that the 

direction of asymmetry will be the same for both (i.e., the maximally strong leg will 
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also be explosively stronger). However, the results of previous research suggest large 

inter-individual variability is present in explosive strength when compared to MVT 

(Folland, Buckthorpe & Hannah 2014), together with greater between-session 

variability in RTD compared to MVT (see Section 2.2.2; Buckthorpe et al. 2012, de 

Ruiter et al. 2004, Place et al. 2007). These reliability values are similar to those 

reported in this thesis (Appendix F). Together, this suggests that explosive strength 

asymmetry may be more variable, and potentially not in the same direction, as 

maximum strength asymmetry.  

 

To the best of our knowledge, no research has sought to investigate the underpinning 

neuromuscular mechanisms of strength asymmetry. At the single-limb level, a 

muscle’s capacity for force production is typically dependent upon both neural and 

muscular factors (Fig 2.2).  Maximum strength is determined primarily by neural drive, 

muscle size, and architecture (Blazevich et al. 2009, Fitts, McDonald & Schluter 1991, 

Lieber & Friden 2000, MacIntosh, Gardiner & McComas 2006), whilst explosive 

strength is largely determined by maximum strength, neural drive, measured using 

EMG, and the intrinsic contractile properties of muscle, such as evoked twitch and octet 

RTD (Andersen & Aagaard 2006, Folland, Buckthorpe & Hannah 2014, Grimby, 

Hannerz & Hedman 1981). It is unclear if any of these determinants of single-limb 

maximum and explosive strength may underpin maximum and explosive strength 

asymmetries. A cross-over effect has been shown in neural drive, for example, whereby 

unilateral training or injury has influenced neural function on the opposite limb (Hart et 

al. 2010, Bogdanis et al. 2019, Tillin, Pain & Folland 2011), suggesting there are 

common mechanisms underpinning the neural drive to contralateral limbs that would 

limit asymmetries in neural drive and thus strength. In contrast, changes in peripheral 

factors (e.g. muscle size and the intrinsic contractile properties) are limb specific and 

do not cross-over to the contralateral limb (e.g. Narici et al. 1989). Thus, it may be 

that asymmetry in peripheral determinants of strength are more likely to determine 
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asymmetry in strength. A potential association between strength asymmetry and a 

typical determinant of strength may be characterised in one or both of the following 

ways: (1) between-limb differences in a neuromuscular determinant of strength may 

exist between the strongest and weakest limbs, suggesting asymmetry in strength 

and the neuromuscular determinant share the same direction; or (2) the asymmetry 

in strength and the asymmetry in a neuromuscular determinant of strength may be 

correlated, suggesting they are proportional to each other.  

The aims of this study were therefore two-fold. Firstly, we aimed to compare the 

magnitude and variability of quadriceps maximum and explosive strength asymmetries 

for a population of young, healthy, recreationally active males with no specific training 

bias. The second aim was to determine the underpinning neuromuscular mechanisms 

of these strength asymmetries. It was hypothesised that, compared to maximum 

strength asymmetry, asymmetry in explosive strength would be in the same direction, 

but larger and more variable. Additionally, we hypothesised that inter-limb asymmetries 

in strength would be explained by neuromuscular mechanisms similar to those that 

determine single-limb strength, but more likely by peripheral determinants (e.g. muscle 

architecture, intrinsic contractile properties) than central factors such as neural drive. 

4.2 Methods 

A comprehensive description of participant recruitment, inclusion criteria and the 

methods followed for data collection and processing are given in Chapter 3, sections 

3.3 – 3.5. 

4.2.1 Participant Information  

Twenty-one physically active male participants (age 34.2 ± 6.52 years, height 180 ± 

6.07 cm, mass 82.7 ± 11.2 kg, activity 4775 ± 2677 MET-mins/week) took part in this 

study. Participant inclusion and exclusion criteria, and detail about assessment of 
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physical activity, can be found in Chapter 3, Section 3.2. 

4.2.2 Data Collection 

Briefly, participants visited the laboratory for 2-3 hours on two separate occasions, 3-

7 days apart, to complete a familiarisation and a measurement session. The sessions 

were identical and involved assessment of voluntary quadriceps maximal and 

explosive muscle strength of both limbs, as well as the intrinsic contractile properties 

and neural drive to the knee extensors, and architectural properties of VL. Full detail 

on experimental setup, protocol, data processing and extraction is given in section 

3.4. 

4.2.3 Data Analysis 

Strength data analysed were MVT and peak voluntary RTD. Neuromuscular data 

analysed included knee extensor evoked twitch and octet peak torques and RTD; VA, 

EMG at MVT, and explosive EMG0-100; and muscle thickness, pennation angle and 

fascicle length of VL. 

4.2.2.1 Asymmetry Calculation 

Bilateral Strength Asymmetry (BSA; Nunn & Mayhew, 1988) was calculated for MVT 

and RTD using equation 3.2 (Chapter 3, Section 3.6.1). This equation quantifies the 

magnitude of BSA without specifying the direction of that BSA i.e., which leg was 

stronger.  

However, when correlating the BSA between two variables it was important to denote 

the direction of the predictor variable BSA relative to that of the dependent variable 

(BSA_DIR, i.e. directional BSA; equation 3.4), accounting for the fact that the 

asymmetry may be in opposite directions for the two variables. This equation may 

provide a negative magnitude if the direction of asymmetry for the predictor variable 
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is opposite to that of the dependent variable.  For correlating asymmetry in MVT with 

that in RTD, the former was considered the predictor and the latter the dependent 

variable. For correlating the BSA for a strength variable (i.e. MVT or RTD) with the 

BSA of a determinant variable of strength (i.e. VA, EMGMVT, EMG0-100, muscle 

thickness, etc.), the strength variable was considered the dependent, and the 

determinant variable considered the predictor variable. 

4.2.2.2 Statistical Analysis 

Data are reported as mean ± standard deviation (SD).  

Statistical analysis was completed using SPSS version 24, with the significance level 

set at p < 0.05. Levene’s test was used to check for equality of variances prior to 

running all analyses, and Shapiro-Wilkes assessed normality of the data. Paired t-

tests were used to compare the size of BSA in MVT with RTD. To assess if there 

were relationships between maximum and explosive strength asymmetries, 

Pearson’s product moment bivariate correlations were calculated between BSA RTD 

and BSA_DIR for MVT to demonstrate if there was an association between both the 

magnitude and direction of asymmetry in MVT relative to that in RTD. 

Associations between asymmetries in the two measures of strength and their 

determinants were assessed in two ways. Firstly, paired t-tests were used to detect 

any between-limb differences in each determinant of a given strength variable 

(performed between the strong and weak limb as established for that specific variable 

of strength). Effect size (specifically Cohen’s d) was calculated for between-group 

comparisons and interpreted as small (d = 0.2 – 0.5), medium (d = 0.5 – 0.8) and 

large effects (d > 0.8, Lakens 2013). Secondly, to determine if there were 

relationships between strength asymmetries and those of their determinants, 

bivariate correlations were performed between BSA for each strength variable (MVT 

and RTD) and BSA_DIRs of the corresponding predictor variables. All relationships 
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were interpreted as strong (r > 0.7), moderate (r = 0.5 – 0.7), weak (r = 0.3 – 0.5) or 

non-existent (r < 0.3; Mukaka 2012).  

To examine the combined influence of asymmetry of their determinants, separate 

stepwise multiple linear regressions were run in the event that more than one 

moderate and/or significant correlation was present between BSA for the strength 

variable of interest and BSA_DIR of its determinants. 

4.3 Results 

4.3.1 Asymmetries in Maximal and Explosive Strength 

There was no significant difference in the magnitude of BSA between MVT and 

absolute peak voluntary RTD (p = 0.173, d = 0.36; Table 4.1). The magnitude of BSAs 

in MVT were <20% for all participants, with 11/21 participants displaying BSAs <10%. 

In contrast, BSAs were >20% for 4/21 participants for RTD (Figure 4.1). Accordingly, 

the variability in RTD BSA was considered greater than MVT BSA, as evidenced by 

an almost two-fold greater range and standard deviation (Table 4.1).  
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BSA RTD was not always in the same direction (i.e. leg with the highest value) as the 

BSA_DIR MVT, as illustrated by the negative values in Figure 4.2 for 8/21 of the 

participants. A moderate, significant relationship was apparent between BSA RTD 

and BSA_DIR MVT (i.e. when the asymmetry in MVT was considered relative to that 

of RTD; r = 0.56; p = 0.008; Figure 4.2). This indicates that those with greater 

asymmetries in maximum strength displayed greater asymmetries in explosive 

strength. 
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4.3.2 Determinants of Asymmetries in Maximal Strength 

BSA for each determinant of MVT BSA was on average <10% for twitch PT, octet PT, 

muscle thickness, and VA, but ~14 – 18% for EMGMVT, fascicle length, and pennation 

angle (Table 4.2). BSA MVT was not always in the same direction as the BSA for 

each determinant of MVT, as reflected by some negative values of BSA_DIR (i.e., 

BSA of each determinant relative to MVT BSA), and mean BSA_DIRs close to zero 

for all variables (-0.95 – 2.57%; Table 4.2). Accordingly, there were no statistically 

significant differences between the maximally strong and weak limb in neural drive 

(VA: p = 0.808, d = 0.05 and EMGMVT: p = 0.992, d < 0.01), intrinsic contractile 

properties (twitch PT: p = 0.710, d = -0.04; and octet PT: p = 0.223, d = 0.13) or 

architectural properties (fascicle length: p = 0.612, d = 0.15; pennation angle: p = 

0.991, d = 0.03; muscle thickness: p = 0.278, d = 0.16; Table 4.3) of the muscle. 

All relationships between BSA in MVT and the BSA_DIR in each determinant of 

maximum strength were non-existent or weak (r = -0.18 – 0.21, p = 0.354 – 0.955; 

Table 4.2), although there was a trend toward significance when BSA was correlated 

with BSA_DIR VA (r = 0.38, p = 0.095). Owing to the lack of moderate, significant 

correlations between MVT BSA and BSA_DIR of any of its determinants (see Section 

4.2.2.2), multiple regression analyses were not performed.  

4.3.3 Determinants of Asymmetries in Explosive Strength 

BSA in most determinants of RTD was ~10 –15%, the exceptions being BSA twitch 

PT and muscle thickness (~7 – 8%) and BSA RMS EMG0-100 (19%; Table 4.2). As 

with asymmetries in the determinants of MVT, BSA RTD was not always in the same 

direction as the BSA for each determinant of RTD, which again resulted in some 

negative values of BSA_DIR. As a result, BSA_DIR was <5% (range -4.50 – 3.65%) 

for all determinants of BSA RTD other than pennation angle (BSA_DIR 6.83%; Table 
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4.2). Correspondingly, there were no statistically significant differences between the 

explosively strong and weak limb in explosive neural drive (RMS EMG100: p = 0.652, 

d = 0.10), intrinsic contractile properties (p = 0.302 – 0.985, d = -0.04 – 0.18) or 

architectural properties (p = 0.102 – 0.887, d = -0.37 – 0.41; Table 4.3) of the muscle.  
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As stated above, a significant relationship was apparent between BSA RTD and 

BSA_DIR MVT (r = 0.56, p = 0.008; Figure 4.2B, Table 4.2), and absolute twitch RTD 

BSA_DIR was weakly correlated with BSA RTD (r = -0.41, p = 0.067; Table 4.2). No 

correlations were apparent between BSA RTD and BSA_DIR of any other 
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determinants of explosive strength asymmetry (r = -0.26 – 0.17, p = 0.109 – 0.956; 

Table 4.2).  

As there were no moderate, significant correlations between BSA RTD and BSA_DIR 

of any predictor variables other than for BSA_DIR MVT, no multiple regression 

analyses were performed. 

4.4 Discussion 

This study aimed to compare the magnitude and variability in quadriceps BSA for 

MVT and RTD, and determine the neuromuscular determinants of BSA, in a group of 

healthy young males with no specific training background. No difference was 

determined in the size of asymmetry between maximal (10%) and explosive strength 

(~13%) between limbs, although the variability of asymmetry for explosive strength 

was much greater than for maximal strength. BSAs in maximum and explosive 

strength were not necessarily in the same direction, and the large variability present 

in these measures were likely a result of very high variability in BSA_DIR of all 

determinants of strength. It seems unwise therefore to rely on a single metric of 

strength to inform us of clinically relevant changes in functional capacity, injury risk or 

presence of pathology. Furthermore, despite large BSAs in neural and architectural 

determinants of strength, there was no apparent systematic combination of 

asymmetry variables that would explain the asymmetries present in strength. This is 

evidenced by the lack of between limb differences in any of the neuromuscular 

determinants, which shows that asymmetries in strength and their determinants were 

not always in the same direction, as well as the lack of any correlations in the BSAs 

of strength and the BSA_DIR of the strength determinants. Thus, it appears that the 

neuromuscular determinants of strength asymmetry are highly individualised. 
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4.4.1 Maximum and Explosive Strength Asymmetry 

The magnitude of maximum strength asymmetry (mean 10%) found in the 

participants of this study was substantially greater than that previously reported at the 

quadriceps in similar populations (1 – 5%; Kobayashi et al. 2013, Lanshammar & 

Ribom 2010, Schiltz et al. 2009), although the results are not directly comparable, as 

the above studies assessed dynamic strength measured between 60 – 240°s-1 (Table 

2.1) and split limbs categorised by limb dominance. BSAs in RTD were more variable 

(range ~35%) than BSA MVT (range ~17%), and a greater proportion of the sample 

demonstrated larger BSAs in RTD than MVT (Figure 4.1). Possibly this is due to the 

greater inter-individual (RTD: CV = 23 – 41% vs. MVT: CV = 21% Folland, Buckthorpe 

& Hannah 2014) and between-session variability in explosive when compared to 

maximum strength (RTD: ICC = 0.90, CV = 7.2%; MVT: ICC ≥ 0.90, CV <4%; 

Buckthorpe et al. 2012, de Ruiter et al. 2004, Place et al. 2007). Between-day 

reliability for strength measures assessed in this thesis were similarly larger in RTD 

(ICC 87%, CV 8%) than MVT (ICC 0.95%, CV 6%; Appendix F). Unexpectedly, 

however, BSA RTD (13%) was of a similar magnitude to that of MVT (Table 4.1), 

possibly because MVT is an important determinant of peak RTD (Folland, Buckthorpe 

& Hannah, 2014). This is supported by the relationship apparent between BSA RTD 

and BSA_DIR MVT (r = 0.56, p = 0.008; Figure 4.2B), which suggests that these two 

aspects of strength asymmetry are positively associated, i.e. as BSA RTD increases, 

so does BSA_DIR MVT. This is despite the maximally strong limb not always being 

the explosively strong limb. These directional differences in MVT and RTD asymmetry 

may be partially due to the task difference: a review by Maloney et al. (2019) 

suggested that inter-limb asymmetries are task- and variable-specific, which may also 

hold true for strength. Participant history may also have had an effect on the relative 

directions of strength asymmetries, as inter-limb strength asymmetries are likely 

present due to a combination of factors such as training background (Rahnama, Lees 
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& Bambaecichi 2005, Theoharopoulos et al. 2000), previous injury (Newton et al. 

2006), and limb dominance (Sjöström et al. 1991). We attempted to minimise the 

confounding effects of such issues through careful participant recruitment. 

Specifically, we attempted to minimise the effects of laterality (i.e. the preferential use 

of one side of the body when presented with a motor task to perform; Maloney 2018) 

and training history by ensuring that there was no specific training bias for the 

participants in this thesis. Further, we categorised limbs by force dominance (i.e. the 

limb demonstrating superior strength in a given task), rather than the self-selected 

dominant limb, the latter of which introduces issues with limb classification (discussed 

further in Appendix A, Section A.3.1).  

4.4.2 Neuromuscular Asymmetry 

Based on previous literature, which has evidenced maximum strength being 

determined by muscle size, architecture, and peak contractile torques (Fitts, 

McDonald & Schluter 1991, Lieber & Friden 2000), and explosive strength by neural 

drive, intrinsic contractile properties and maximum strength (Andersen & Aagaard 

2006, Folland, Buckthorpe & Hannah, 2014) we hypothesised that inter-limb strength 

asymmetries may be determined by asymmetries in factors that determine single limb 

strength. However, this was not supported by our data. Indeed, the results of this 

study suggest that there is no apparent systematic combination of determinants that 

would cause the maximum strength asymmetry in the quadriceps, i.e. the 

coordination of neuromuscular function between limbs for force production is different 

between individuals. Other than the moderate correlation between BSA RTD and 

BSA_DIR MVT (discussed in Section 4.4.1), asymmetries in strength and their 

determinants were not correlated (Table 4.2). Furthermore, they were not in the same 

direction, as evidenced by the lack of between-limb differences in the determinants 

when grouped for the strong and weak limbs (Table 4.3). Indeed, despite absolute 
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BSAs of 6.2 – 19.1%, when considered relative to the strength variable of interest, 

the group mean in the magnitude of determinant BSA_DIR was close to zero 

(determinants of MVT: 0.3 – 2.6%; determinants of RTD: 0.1 – 4.6; Table 4.2). In 

other words, when grouped relative to the strength of the limbs suggest asymmetries 

in strength determinants mostly cancel out. Consequently, determinant asymmetries 

appear to combine differently across participants, which perhaps explains the lack of 

explanatory relationships (Table 4.2). This may potentially be a result of factors such 

as limb dominance (Sjöström et al. 1991), previous injury (Newton et al. 2006) and 

training background (Rahnama, Lees & Bambaecichi 2005, Theoharopoulos et al. 

2000). Each of these factors causes adaptations at the limb undergoing the stimulus 

(e.g. training causes adaptations such as increased muscle thickness and enhanced 

neural drive [Narici et al. 1989, Tillin & Folland 2014]) and each participant will have 

experienced a different combination of these between limbs in their lives. 

4.5 Conclusion 

This study is the first to compare the magnitude and variability in quadriceps 

maximum and explosive strength asymmetries, together with asymmetries of their 

underlying neuromuscular determinants, in a young, healthy, recreationally active 

adult population. No difference in the size of inter-limb asymmetries between maximal 

and explosive strength was apparent, possibly due to the key role maximum torque 

capacity plays in determining explosive strength capabilities at a muscle. Despite this, 

the relative direction of asymmetry in the two measures of strength was not 

consistent, i.e. the maximally strong limb was not necessarily the more explosive limb. 

Additionally, other than the moderate relationship between asymmetries in the two 

measures of strength, neither maximum nor explosive strength asymmetry was 

explained by a systematic combination of asymmetries in the neuromuscular factors 

which are thought to determine strength. As both underpin different functional 
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capabilities of muscle, for a complete profile for diagnosis and monitoring of muscle 

strength asymmetry, both aspects of strength should be considered. It remains 

unclear to what extent the variability in maximum and explosive quadriceps strength 

observed in the current study is relevant to function, i.e., whether strength 

asymmetries are associated with asymmetrical loading during movements that rely 

on quadriceps torque contributions. 
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Chapter 5 

The Association between 

Asymmetries in Strength and Jump 

Take-off/ Drop Landing Capabilities 

in an Able-Bodied Population 

 

5.1 Introduction 

The previous chapter provided evidence that large inter-limb asymmetries in 

quadriceps strength and neuromuscular function are prevalent even in a young, 

healthy control population. Previous research has linked quadriceps strength 

asymmetries with performance deficits in a range of sport-specific skills, e.g. kicking 

accuracy (Hart et al. 2014) and sprint cycling power (Rannama et al. 2015). 

Furthermore, in some populations (e.g. those with ACL injuries and ITTAs) 

quadriceps strength asymmetries are implicated in movement, and consequently, 

limb loading asymmetries (Grindem et al. 2016, Lloyd et al. 2010, Schmitt et al. 2015). 

This suggests there may be a direct association between the magnitude and direction 

of asymmetries in strength and loading during movement; however, such 

associations remain unclear. 
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Jumping is an important skill in many sport and recreational activities, and it is a useful 

model to assess lower-body function due to the planar nature of movement with its 

single clear performance outcome (i.e. to jump as high as possible). While it may be 

expected that both limbs would contribute equally to take-off, and thereby jump 

height, previous research has indicated that this supposed equality between limbs is 

not necessarily the case. For example, asymmetries of 0.8 – 6.4% have been found 

in peak vertical ground reaction force (vGRF; Bačič et al. 2010, Bell et al. 2014, 

Impellizzeri et al. 2007, Lawson et al. 2006, Newton et al. 2006, Stephens et al. 2007). 

It is possible therefore that strength asymmetry may contribute to jump height in a 

bilateral CMJ. This hypothesis is supported by the work of Bailey et al. (2013), who 

found greater lower-limb strength asymmetries to be indicative of reduced jump 

height. Evidence of loading asymmetry in jump take-off has also been found to be 

associated with strength asymmetry. Impellizzeri et al. (2007) found strong 

correlations between peak vGRF asymmetry (calculated between strong and weak 

limbs) during a bilateral CMJ and strength asymmetry determined via an isometric leg 

press. As there is a large quadriceps contribution to the take-off phase of a jump, with 

the knee contributing approximately 49% of the total work done in a maximal CMJ 

(Hubley & Wells 1983, Impellizerri et al. 2007), it is possible that quadriceps strength 

asymmetry may contribute to both jump height and asymmetrical limb load. 

Specifically, we may expect: (1) the stronger leg to contribute a higher load (e.g., peak 

vertical, GRFs, rates of loading) during a jump; and/or (2) the asymmetry in strength 

to be correlated with the asymmetry of loading during the jump. However, the 

associations between quadriceps strength asymmetry, jump height, and asymmetries 

in limb loading during the take-off phase of a jump have not been quantified. 

Landing from a jump occurs frequently in sport but carries a high risk of injury (Murphy 

et al. 2003). In a computer modelling study, Sandler and Robinovitch (2001) 

demonstrated that decreased strength adversely affects energy absorption 
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mechanisms as a result of decreased eccentric torque production at the lower limb 

joints. The knee extensors have a large contribution to the energy absorption in 

landing. They contract eccentrically to control knee flexion and decelerate the CoM, 

performing a substantial proportion of energy dissipation when compared to other 

lower limb joints (39% compared to 34% and 27% at the hip and ankle, respectively; 

Decker et al. 2003, McNitt-Gray et al. 1993, Yeow et al. 2011, Zhang et al. 2000). It 

is possible therefore that quadriceps strength asymmetries may result in asymmetries 

in loading (both at a whole-limb level, and at the knee specifically) during a landing 

task. Indeed, in limbs that have undergone ACL reconstruction, previous research 

has demonstrated that individuals with maximum strength asymmetries of > 15% of 

the quadriceps displayed reduced involved limb peak knee internal extension 

moments and vGRFs, and lower peak loading rates in the landing from a drop jump 

(Schmitt et al. 2015). While these authors did not perform a correlational analysis, 

investigating differences between limbs in this way is another way of measuring 

associations – in this case between loading parameters in landing and the involved 

(weak) and uninvolved (strong) limbs. The differences found suggest that there is an 

association between the asymmetry in quadriceps strength and knee joint loading in 

landing; however, these associations have not been explored in a non-injured 

population, which may respond differently.  

It possible that asymmetry in RTD may be more closely associated with asymmetries 

in jump take-off and landing than that of MVT, as the take-off and landing phases of 

a bilateral jump are both movements with high accelerations. The ability to quickly 

produce force is therefore important for both. For example, de Ruiter et al. (2007) 

reported significant positive linear relationships (r = 0.76 – 0.86) between the first 40 

ms of unilateral explosive knee extension torque production and bilateral jump height. 

Moreover, Chang et al. (2015) reported 47.6 and 31.4% of the variability in vertical 

jump height was explained by unilateral knee extensor early phase RTD and MVT, 
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respectively, suggesting that the former is more important for jump performance. 

Furthermore, the rapid development of force that occurs during landings has been 

associated with various knee injuries, including osteoarthritis and non-specific knee 

pain (Murphy et al. 2003). If we consider that injuries such as ACL ruptures occur 

within 50 ms of ground contact (Krosshaug et al. 2007), but the time to develop 

maximum force either isometrically or eccentrically is generally > 300 ms 

(Thorstensson et al. 1976, Tillin, Pain & Folland 2012a), it may be that asymmetry in 

explosive strength is more important than that in maximum strength for the rapid 

energy absorption required in the lower limb on landing. As large loading rates have 

been linked to injury risk (Gailey et al. 2008, Mundermann et al. 2005), we may expect 

the stronger and more explosive quadriceps to be able to absorb the momentum more 

effectively in early loading, evidenced by larger limb loads.  However, these 

associations have not yet been explored. 

The purpose of this study was therefore to determine whether (1) jump height and (2) 

loading asymmetries in jump take-off and landing phases are associated with 

asymmetries in knee extensor maximum and explosive strength. We hypothesised 

that: (1) the stronger limb would experience greater loading (whole-limb and at the 

knee) during both jumping take-off and landing. (2) the bilateral asymmetry in strength 

would be correlated with the asymmetry in loading during both jumping and landing. (3) 

asymmetry in quadriceps explosive strength would be more closely associated than 

asymmetry in maximum strength, with jump performance and loading asymmetry in 

both jumping and landing.  

5.2 Methods 

A comprehensive description participant recruitment, inclusion criteria and the 

methods followed for data collection and processing are given in Chapter 3, sections 

3.3 – 3.5. 
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Briefly, participants visited the laboratory for 2-3 hours on three separate occasions, 

3-7 days apart, to complete a familiarisation session, and two measurement sessions. 

The familiarisation session and first measurement session were identical and 

involved assessment of voluntary quadriceps muscle strength on both limbs (sections 

3.4.2.3 and 3.4.2.5). The second measurement session involved motion capture to 

allow analysis of CMJ and drop landings (sections 3.5.4.1 and 3.5.4.2). 

5.2.1 Participant Information  

Twenty-one physically active male participants (age 34.2 ± 6.52 years, height 180 ± 

6.07 cm, mass 82.7 ± 11.2 kg, activity 4775 ± 2677 MET-mins/week) took part in this 

study. Participant inclusion and exclusion criteria, and detail about assessment of 

physical activity, can be found in Chapter 3, Section 3.2. 

5.2.2 Data Extraction and Analysis 

Strength data (MVT and RTD) were extracted for both limbs and processed as 

discussed in section 3.4.4.3. Details about movement analysis data processing can 

be found in Sections 3.5.5 and 3.5.6.  For both movements, values were recorded for 

each limb and averaged across the three trials selected for analysis. 

5.2.2.1 CMJ 

Jump height was calculated using CoM velocity at take-off (TOV) using the equation 

𝐽𝑢𝑚𝑝 𝐻𝑒𝑖𝑔ℎ𝑡 =
𝑇𝑂𝑉2

2𝑔
  

(5.1) 

where g = 9.81 m.s-2 (Moir 2008). CoM was calculated as the weighted mean of all 

body segment CoMs as calculated by Vicon Nexus. The take-off phase was broken 

into two sub-phases: lowering (eccentric, defined from the start of the 
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countermovement to the point at which CoM velocity = 0) and rising (concentric, 

defined as the first positive value for CoM velocity until toe-off; Figure 5.1A).  

 

The loading variables extracted from the CMJ take-off are represented in Figure 5.1B 

– D. Peak vGRF, peak positive knee power, peak knee extensor moment and total 

knee extensor moment impulse throughout the entire CMJ take-off were extracted. 
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Additional variables considered were mean vGRF RFD, calculated from the end of 

the lowering phase to peak vGRF; mean vGRF decay rate, calculated from 20-80% 

of the time from peak vGRF to toe-off (Moudy et al. 2018); and net vGRF impulse for 

the lowering and rising phases, respectively. RFD and decay rate were both 

calculated using a 5 ms time constant.  

5.2.2.2 Drop Landing 

The phase of interest (absorption) was defined as touchdown to maximum knee 

flexion. The variables extracted from the drop landing are represented in Figure 5.2.  

Peak vGRF, peak knee extensor moment and peak negative knee power (determined 

as the minimum value throughout the entire drop landing) were extracted. Total knee 

extensor moment impulse; mean vGRF loading rate, calculated from touchdown to 

peak vGRF; and mean knee extensor moment loading rate, calculated as the linear 

rate between touchdown and peak knee extension moment, were also extracted.  



Chapter 5. Able-Bodied Movement Asymmetry 
 
 

 

113 
 

 

5.2.2.3 Asymmetry Calculation 

Chapters 4 and 6 use Bilateral Strength Asymmetry (BSA) as the index of asymmetry. 

However, for this analysis, Bilateral Asymmetry Index (BAI; Bishop et al. 2018) was 
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used. BAI is preferable for the quantification of asymmetry in a bilateral task, as the 

differences in force between limbs are always relative to the sum force value (see 

Appendix A, Section A.3.3 for further discussion of the selection of asymmetry 

indices). 

BAI was calculated for MVT, RTD and all loading parameters of CMJ and drop 

landings using equation 3.3 (Chapter 3, Section 3.6.1). This equation quantifies the 

magnitude of BAI without specifying the direction of that BAI, i.e. which leg was 

stronger.  

However, when correlating the BAI between two variables it was important to denote 

the direction of the BAI of the predictor (i.e. strength) variable relative to the BAI of 

the dependent (i.e. loading) variable (BAI_DIR, i.e. directional BAI; equation 3.5), 

accounting for the fact that the BAI may be in opposite directions for the two variables. 

This equation may provide a negative magnitude if the direction of BAI for the 

predictor variable is opposite to the BAI of the dependent variable. For correlating the 

BAI for a strength variable (i.e. MVT or RTD) with the BAI of a movement variable 

(i.e. peak vGRF, KE moment impulse, etc.) the strength variable was considered the 

predictor, and the movement variable considered the dependent variable. 

5.2.2.2 Statistical Analysis 

Data are presented as mean ± standard deviation (SD) unless otherwise stated. 

Statistical analysis was completed using SPSS version 24, and the significance level 

was set at p<0.05. Levene’s test was used to check for equality of variances prior to 

running all analyses, while Shapiro-Wilkes assessed normality of the data.  

To assess if there was an association in the direction of strength and loading variables 

during a CMJ and drop landing, all loading variables for each movement were 

grouped into strong and weak for both MVT and RTD separately, and paired t-tests 
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compared the magnitude difference of each variable between limbs. Effect sizes 

(specifically Cohen’s d) were calculated for between-group comparisons and 

interpreted as small (d = 0.2 – 0.5), medium (d = 0.5 – 0.8) and large effects (d > 0.8, 

Lakens 2013).  

Pearson’s product moment bivariate correlations were performed to determine if there 

was an association between strength BAI and jump height. To determine if the 

direction and magnitude of strength and loading asymmetries were associated, 

Pearson’s product moment bivariate correlations assessed the relationships of BAI 

for both maximum and explosive strength with the BAI_DIR for each individual loading 

variable in both landing and jumping. All relationships were interpreted as strong (r > 

0.7), moderate (r = 0.5 – 0.7), weak (r = 0.3 – 0.5) or non-existent (r < 0.3; Mukaka 

2012).  

5.3 Results 

Relatively small asymmetries (calculated using equation 5.1) were present between 

limbs in both quadriceps maximal (BAI MVT: 5.32 ± 2.78%) and explosive strength 

(BAI RTD: 7.07 ± 5.69%).  

5.3.1 CMJ 

Average jump height across all participants was 0.33 ± 0.07 m. Although no 

correlation was evident between jump height and BAI MVT (r = 0.07, p = 0.752) a 

weak, non-significant positive relationship was present between jump height and BAI 

RTD (r = 0.36, p = 0.113; Figure 5.3).  
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BAI was ≤ 10% for peak vGRF, vGRF impulse (in lowering and rising), and peak knee 

extensor moment, but substantially larger for peak positive knee power (39.1%) and 

knee extensor moment impulse (23.3%; Table 5.1). Individual strength BAIs were not 

always in the same direction as the BAI for each loading variable (e.g. BAI RTD and 

BAI_DIR vGRF lowering impulse; Figure 5.4), which occasioned most mean values 

of BAI_DIR being close to zero (Table 5.1). The exceptions were BAI_DIR for knee 

extensor moment impulse (relative to MVT, 8.37%; RTD, -8.63%) and peak positive 

knee power (relative to MVT, 17.1%; RTD -6.6%; Table 5.1). 
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There was a statistically significant difference in vGRF decay rate (p = 0.047, d = 

0.27; Table 5.2) between the maximally strong and weak legs, whereby the limb with 

the greatest quadriceps MVT also displayed the greatest vGRF decay rate. No 

statistical differences were evident between maximally strong and weak limbs for any 

other loading variables (p = 0.208 – 0.942, d = 0.02 – 0.44; Table 5.2). There was a 

trend for the limb with the greatest quadriceps RTD to demonstrate smaller peak 

vGRF (p = 0.079, d = 0.29), but no other significant differences were evident between 

the explosively strong and weak limbs (p = 0.095 – 0.490, d = 0.07 – 0.43; Table 5.2).  

A weak, significant negative relationship was present between BAI RTD and BAI_DIR 

braking vGRF impulse (r = -0.45, p = 0.048; Figure 5.4). All other correlations between 

BAI_DIR of a loading variable and BAI of either MVT or RTD were non-significant and 

weak or non-existent (Table 5.1). 
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5.3.2 Drop Landing 

BAI was 16 - 26% for all variables other than for peak vGRF and average vGRF 

loading rate (< 7%; Table 5.3). No statistically significant differences were evident 

between maximally strong and weak limbs in any loading variables during landing (p 

= 0.520 – 0.921, d = 0.02 – 0.17; Table 5.4). However, several significant differences 
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were evident in loading parameters compared between the explosively strong and 

weak limb. The limb with the most explosive quadriceps displayed lower peak 

negative knee powers (p = 0.019, d = 0.73), peak knee extension moments (p = 0.042, 

d = 0.62); and greater peak vGRF (p < 0.001, d = 0.43), and vGRF loading rates (p = 

0.029, d = 0.22; Table 5.4). Additionally, there was a trend toward the explosively 

strong limb demonstrating lower knee extension moment loading rates (p = 0.083, d 

= 0.47), but KE moment impulse was similar between limbs (p = 0.890, d = 0.02; 

Table 5.4).   

All correlations between BAI of either MVT or RTD and BAI_DIR for any loading 

variable during landing were non-significant (p ≥ 0.178) and small at best (r ≤ 0.31; 

Table 5.3). 
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5.4 Discussion 

This study aimed to determine if quadriceps strength (both maximum and explosive) 

asymmetry was associated with jump performance and bilateral asymmetry in loading 

variables during jumping and landing. While jump height was weakly correlated with 

BAI RTD, there was no relationship with BAI MVT. Furthermore, there were no 

between limb differences when split for maximally or explosively strong and weak, 

except in decay rate when split for maximum strength. Additionally, there were no 

correlations except a weak relationship between asymmetry in explosive strength and 

vGRF impulse in the lowering phase of jump take-off. However, the significant 
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differences in most loading variables in landing when grouped by explosive strength 

of the quadriceps suggests that there was systematic agreement between the 

direction of strength asymmetries and those of some loading variables. In particular, 

the more explosive limb demonstrated increased loads and loading rates at the 

whole-limb (i.e. vGRF), but decreased knee joint loading (i.e. knee extension 

moments), possibly a result of different coordination strategies between the joints 

between the two limbs.  

5.4.1 Associations between Strength and Movement Asymmetries  

5.4.1.1 Jump Height 

The hypothesis that there would be a negative relationship between strength 

asymmetry and jump height does not appear to be supported by the results of this 

study. We found no correlation between jump height and MVT asymmetry. While the 

positive correlation with RTD asymmetry suggests that greater inter-limb asymmetry 

in explosive strength may result in a higher jump, care should be taken when drawing 

conclusions from these data given the weak, non-significant nature of this 

relationship. The lack of association between strength asymmetry and jump height 

may be explained by the knee extensors of the stronger leg compensating for the 

weaker leg, or perhaps it is the overall asymmetry of the limb (i.e., the coordination of 

each joint with the others) that is important for jump height. The latter hypothesis is 

supported by the work of Bailey et al. (2013) who found significant moderate negative 

correlations between lower-limb strength asymmetries and jump height. Alternatively, 

it may be the homogeneity in the group that limits the correlations, as all participants 

demonstrated low levels of strength asymmetry (~5 – 7%), and similar jump heights 

(0.33 ± 0.07 m). 
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5.4.1.2 Loading in CMJ Take-Off  

This study provided limited evidence of a link between strength and loading 

asymmetries in the take-off phase of a CMJ. Other than a weak relationship between 

asymmetry in explosive strength and vGRF lowering impulse (Figure 5.4), no 

correlations were apparent between any strength and loading asymmetries (Table 

5.1). Furthermore, the lack of differences found in loading variables when split for 

either maximum or explosive strength, suggests that the asymmetries in these 

variables were not necessarily in the same directions between individuals (Table 5.2). 

The exception is vGRF decay rate (i.e. the acceleration in unloading prior to take-off), 

which describes the rate at which the body unweights in response to the force 

generated in the concentric phase of a jump-take off. This is likely related to 

coordination of the triple extensors causing the limbs to extend and/ or extension 

velocity, and is thought to be a key predictor of jump height (Moudy et al. 2018). 

Despite no correlation between maximum strength asymmetry and vGRF decay rate, 

suggesting that the magnitudes of asymmetry weren’t proportional, a significant 

difference was apparent between the maximally strong and weak limbs. This 

suggests that the asymmetries in these two variables are in the same direction i.e., 

when compared to the weaker, the maximally strong limb systematically produced 

greater decay rate in jump take-off.  It may be that maximum strength asymmetries 

are a clinically relevant feature when looking to maximise jump performance; 

however, the mechanisms of this are unclear. As a greater decay rate is indicative of 

a higher CoM acceleration, and therefore likely a higher velocity at take-off, this result 

is potentially the consequence of the stronger leg extending with a higher velocity.  

The lack of association between asymmetries in strength and other vGRF 

asymmetries suggest that, contrary to our hypothesis, individuals do not necessarily 

load their stronger limb more than the weaker limb in the take-off phase of a jump. 

This may be a result of the way in which the joints coordinate during movement. As 
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vGRF represents the combined actions of primarily the lower extremity triple 

extensors (hip and knee extensors and ankle plantarflexors) during the force 

production portion of a jump, previous authors have suggested that asymmetric vGRF 

should not be interpreted as a direct result of lower limb strength asymmetries. 

Rather, it is argued that bilateral asymmetries in vGRF stem from the way the lower 

limbs, pelvis, and trunk are coordinated to perform the jump (Benjanuvatra et al. 2013, 

Chang et al. 2015). The comparatively large asymmetries in knee loading parameters 

(BAI 10.2 – 39.1%), when compared to those in vGRF (BAI 3.07 – 6.69%) suggest 

that compensations occur elsewhere in the kinetic chain (i.e. at the hip, ankle or trunk) 

to reduce the overall asymmetry in load. It may indicate that when considered 

bilaterally, the knee has a greater role in coordinating the action of the hip and ankle 

joints, rather than directly impacting jump performance itself. Perhaps instead it is 

therefore strength asymmetry at the ankle and/ or hip that are responsible for the 

loading asymmetries evident between limbs in jumping. This in turn may explain the 

lack of correlations apparent between quadriceps strength asymmetries and knee 

loading, and the large directional variability when variables are grouped by knee 

extensor strength.  

5.4.1.3 Loading in Landing 

During bilateral landing, rapid impact forces are typically dissipated by near 

synchronous joint flexion of both limbs and eccentric work of the quadriceps muscles. 

There was limited evidence of associations between maximum strength asymmetries 

and those in limb load, (i.e. there were no correlations, and differences in loading 

weren’t noticeable when grouped according to maximum strength), but the 

explosively strong limb presented with greater peak loads and loading rates (vGRF). 

This may be explained by previous research that has demonstrated an association 

between decreased muscular strength and reduced lower-limb eccentric torque 



Chapter 5. Able-Bodied Movement Asymmetry 
 
 

 

126 
 

production on landing (Sandler & Robinovitch 2001). It is this eccentric muscle action 

that decelerates the CoM on touchdown. As weaker muscles may not be able to 

attenuate the same loads as the stronger limb, this may result in a greater proportion 

of load being absorbed (demonstrated by greater vGRF) at the stronger limb. The 

greater loading rates experienced on the more explosive limb are logical when we 

consider that peak vGRF is greater on this limb. 

The decrease in knee power at the more explosive limb may be largely explained by 

the decreased peak knee extensor moment on this side. However, while the more 

explosive quadriceps demonstrated decreased peak knee extension moment, and 

consequently, knee extensor moment rate, there was no difference in total impulse 

over the landing phase. This suggests that although the peak was smaller at the more 

explosive limb, the amount of force produced by the knee extensors during the 

entirety of the landing phase was similar to that of the less explosive quadriceps. 

Furthermore, as in the take-off phase of a CMJ, absolute loading BAIs were larger at 

the knee (BAI 15.7 – 26.4%), when compared to those in vGRF (BAI ~ 6%), 

suggesting that overall limb load asymmetry is reduced elsewhere in the loading 

chain. This is supported by the combination of decreased peak loading at the knee 

extensors of the explosively strong limb with greater peak vGRF (i.e. total limb load). 

This may be a result of compensations occur elsewhere in the kinetic chain: the knee 

may act primarily to coordinate the contributions of the ankle and hip, both of which 

are thought to be important in dissipating the load experienced early in landing 

(Rowley & Richards 2015). This in turn may explain the lack of correlations apparent 

between quadriceps strength asymmetries and knee loading asymmetries, and the 

large directional variability when variables are grouped by knee extensor strength. 

Alternatively, there is the possibility that the data analysed in this study was 

inappropriate to represent loading. For example, the use of EMG alongside loading 
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analyses may allow the differentiation between reduced agonist, or increased 

antagonistic muscular activity, when interpreting reduced net joint moments. 

Limb loading, and particularly loading rates, in landing are associated with injury 

(Gailey et al. 2008, Mundermann et al. 2005). It appears from the results of this study 

that the explosively strong and weak limbs may potentially perform different landing 

mechanics at both the knee joint and whole-limb level. Clinically, therefore, greater 

symmetry in explosive strength could potentially reduce injury risk in the weaker limb 

by more equal distribution of load relative to limb strength, resulting in landing which 

effectively mediates force bilaterally. Future research should look to explore the 

relationships between strength and loading asymmetries at other joints in the lower 

limb to explore this further. 

5.5 Conclusion 

This study investigated the association between loading asymmetries in a CMJ take-

off and drop landing to maximal and explosive strength asymmetries in a healthy 

population with no training bias. vGRF asymmetries in both CMJ and drop landing 

were small (<10%), while knee loading BAIs were substantially larger (10 - 39%), 

suggesting that the role of the knee in both movements may be to coordinate the 

action of other joints in the kinetic chain (either proximally or distally to the knee) to 

produce a relatively symmetrical movement. The lack of correlations between 

strength and loading asymmetries in both CMJ take-off and landing from a drop 

suggests that, despite some of the inter-limb differences, these asymmetries are not 

proportional. The exception is the relationship between asymmetry in explosive 

strength and impulse in the lowering phase of take-off, although the correlation was 

weak. This may be a result of each individual performing movements in a different 

way within the constraints of their system – which may explain the large variability in 

each loading variable BAI_DIR. However, in landing, the significant differences 
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between whole-limb (vGRF) and knee joint loading variables when organised by the 

explosively strong and weak limb suggest that symmetry in explosive strength may 

be important for loading symmetry, although the mechanisms of this are as yet 

unclear and require further investigation. The lack of associations between the two 

forms of asymmetry in jumping may be a result of the population tested not being 

habitually asymmetrical. It may be therefore that associations are more apparent in a 

pathological group with habitual asymmetry for both strength and movement in the 

same direction, such as ITTAs. 
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Chapter 6 

The Association between 

Asymmetries in Strength and Gait in 

Unilateral Transtibial Amputees 

 

6.1 Introduction 

The loss of an ankle joint in individuals with unilateral transtibial amputations (ITTA) 

impacts their ability to walk. The ankle and surrounding musculature produce the 

majority of the propulsive power in gait (Winter & Sienko 1988), so ITTAs must adapt 

their motor control strategies to compensate for this loss of forward propulsion on one 

limb. As a result, walking speed – a key indicator of gait function – is often 

substantially slower in ITTAs compared to an able-bodied population (Bohannan 

1997). Walking speed has been shown to be predictive of a range of outcomes in 

multiple populations including functional dependence (Purser et al. 2005, Shimada et 

al. 2013, Shinkai et al. 2000), institutionalisation (Woo et al. 1999) and falls (Montero-

Odasso et al. 2005). In able-bodied populations, faster walking speeds are associated 

with longer strides (Murray et al. 1984). In ITTAs, the decreased strength of the 

amputated limb knee extensors when compared to the intact – i.e., the level of 

strength asymmetry – was most predictive of stride length, and as a result, walking 
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speed (Powers 1996). Previous research in ITTAs has shown reduced amputated 

limb isometric and concentric knee extensor maximal muscle strength, resulting in 

asymmetries of 41 – 57% between limbs (Isakov et al. 1996, Renstrom et al. 1983, 

Pedrinelli et al. 2002, Lloyd et al. 2010). As muscle action at the knee is vital to 

coordinate mechanics of the ankle and hip throughout gait, and to help regulate joint 

movement through the eccentric control of knee flexion (Neptune et al. 2008) it is 

conceivable that strength asymmetry underpins walking speed. Currently, this has 

only been investigated in one study, which assessed habitual walking speeds only 

(Powers et al. 1996). As ITTAs should be encouraged to exercise, it is important that 

they can withstand increases in exercise intensity such as increased walking speed. 

Therefore, it would be beneficial to have a better understanding of the influence of 

muscular strength asymmetry on walking speed and overall gait function in ITTAs. 

During fast limb movements, the short contraction time may not allow MVT to be 

reached (Krosshaug et al. 2007), and the ability to quickly increase torque is likely 

important. RTD has been shown to be important for postural corrections and balance 

(Behan, Pain & Folland 2018, Izquierdo 1999); fall avoidance (Pijnappels et al. 2008); 

and functional capacity in the elderly (Bassey et al. 1992); and positive outcomes in 

patients following total knee arthroplasty (Maffiuletti et al. 2010). In a control 

population, explosive strength asymmetry is of a similar magnitude to that of 

maximum strength, although more variable (Chapter 4). Currently, however, 

asymmetry in explosive strength has not been investigated in ITTAs, and 

relationships between asymmetries in RTD and gait in this population are unclear. 

Chapter 5 provided evidence that in an able-bodied population, some associations 

were evident between asymmetries in the kinetics of landing and RTD, suggesting 

that explosive strength asymmetry may play a more important role in movement than 

maximum strength asymmetry. While strength asymmetry was not related to 

movement performance (i.e. jump height) in controls, the same may not be true of 
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ITTAs, who demonstrate larger, systematic asymmetries in both strength and 

movement. Indeed, evidence shows that ITTAs adapt to their partial limb loss by 

walking more asymmetrically (Sanderson & Martin 1997, Winter & Sienko 1988, Hak 

et al. 2013). In gait, ITTAs typically display reduced amputated limb stance time 

(Mattes et al. 2000, Nolan et al. 2003), stride length (Powers et al. 1996, Sanderson 

& Martin 1997), and contralateral (i.e. intact limb step length (Hak et al. 2014). 

Additionally, the amputated limb exhibits dec)reased peak vertical ground reaction 

force (vGRF; Mattes et al. 2000), and a reduction in knee extensor joint moments 

(Powers, Rao & Perry 1998, Silverman et al. 2008, Winter & Sienko 1988) when 

compared to the intact limb, suggesting reduced demand on the knee extensors to 

control knee flexion in braking on the amputated side. Thus, the asymmetrical knee 

kinetics and limb loading during gait (Beyaert et al. 2008, Schaarschmidt et al. 2012) 

may be a result of reduced amputated limb strength, requiring the intact limb to 

compensate to allow forward progression at a consistent pace. As increased strength 

asymmetry has previously been linked with altered gait mechanics in ITTAs (LaRoche 

et al. 2008, Lloyd et al. 2010, Powers et al. 1996) understanding how asymmetries in 

both MVT and RTD influence gait asymmetry may therefore be important in improving 

walking performance in ITTAs. This may be particularly important as muscular 

demand, and loading asymmetry, increases with increased walking speed (Nolan et 

al. 2003). 

This study aimed to quantify the magnitude of asymmetries in knee extensor maximal 

and explosive strength in ITTAs, and to determine their relationship with walking speed 

and gait asymmetry for both habitual and fast walking speeds. This study also aimed 

to explore whether strength (maximal or explosive) was associated with changes in 

walking speed and gait asymmetry between habitual and fast walking speeds. It was 

hypothesised that (1) substantial asymmetries in maximum and explosive strength of 

the knee extensors would be present between the amputated and intact limbs, with the 
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latter being greater; (2) gait asymmetries would be present at both walking speeds, but 

larger when walking fast; (3) greater strength asymmetries would be related to slower 

walking speeds and more asymmetrical gait patterns in unilateral ITTAs; and (4) gait 

asymmetries at faster walking speeds would be affected more than habitual speeds by 

larger strength asymmetries. 

6.2 Methods  

A comprehensive description participant recruitment, inclusion criteria and the 

methods followed for data collection and processing are given in Chapter 3, Sections 

3.3 – 3.5. 

6.2.1 Participant Information 

Eight male ITTAs, who were moderately to highly physically active, took part in this 

study (Table 6.1). Participant inclusion and exclusion criteria, and detail about 

assessment of physical activity, can be found in Chapter 3, Section 3.2. 

6.2.2 Data Collection 

Briefly, participants visited the laboratory for 2 – 3 hours on three separate occasions, 

3 – 7 days apart, to complete a familiarisation session, and two measurement 

sessions. The familiarisation session and first measurement session were identical 

and involved assessment of voluntary maximal and explosive muscle strength of the 

quadriceps (section 3.4.2.3 and 3.4.2.5). Neuromuscular measures were taken on 

both legs and the first leg tested was randomised for each person but remained 

consistent between sessions. The second measurement session involved the 

collection of kinetic and kinematic data during walking at habitual and fast speeds 

(section 3.5.4.3). 
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6.2.3 Data Extraction and Analysis 

Further detail on specific data processing is given in sections 3.4.2.2 (maximal 

strength); 3.4.2.4 (explosive strength); and 3.5.5 (gait). 

Strength data analysed were MVT and peak voluntary RTD, expressed as both an 

absolute value and relative to body mass (BM). Temporospatial (TS) gait parameters 

analysed were: cadence (steps per minute), single support time and step length 

(defined by the limb being stepped onto; Figure 6.1). Walking speed (calculated in 

Vicon Nexus) was extracted for each trial analysed, and the change in speed from 

habitual to fast (ΔSpeed) was calculated as 
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ΔSpeed = Walking Speed𝐹𝑎𝑠𝑡 −  Walking Speed𝐻𝑎𝑏𝑖𝑡𝑢𝑎𝑙 

(6.1) 

Peak knee extension moments and net knee extension moment impulse were 

extracted from braking, while peak vGRF was calculated for the braking and 

propulsive phases individually. Values were recorded for each limb and averaged 

across the three trials selected for analysis. The braking (~0 – 50%) and propulsion 

(~50 – 100%) phases of stance were determined using the antero-posterior ground 

reaction forces (hGRF) – the first instance of positive hGRF indicating the end of the 

braking phase and beginning of propulsion (Figure 6.2).  
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6.2.3.1 Asymmetry Calculation 

Bilateral Asymmetry Index (BAI; Bishop et al. 2018) was generated for each variable 

of interest (x) using the formula 

𝐵𝐴𝐼𝑥(%) =
(𝐼𝑛𝑡𝑎𝑐𝑡𝑥 − 𝐴𝑚𝑝𝑢𝑡𝑎𝑡𝑒𝑑𝑥)

(𝐼𝑛𝑡𝑎𝑐𝑡𝑥 + 𝐴𝑚𝑝𝑢𝑎𝑡𝑒𝑑𝑥)
× 100 

(6.2) 

resulting in a negative value if a greater value for a given variable was recorded on 

the amputated limb than the intact limb.  A BAI of zero indicates perfect symmetry. 

The difference in BAI from habitual to fast walking speeds (ΔBAI) for a given variable 

was calculated as  
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ΔBAIx = BAI_Fast𝑥 −  BAI_Habit𝑥 

(6.3) 

where BAI_Fast and BAI_Habit are the BAI for a given variable (x) at fast and habitual 

speeds, respectively.  

6.2.3.2 Statistical Analysis 

Data for the individual limbs (amputated and intact) and BAIs were reported as mean 

± SD. Statistical analysis was completed using SPSS version 24, and the significance 

level was set at p < 0.05. 

Levene’s test was used to check for equality of variances, and Shapiro-Wilkes 

assessed normality of the data prior to running all analyses. To determine if limbs 

were asymmetrical for strength variables, paired t-tests compared MVT and peak 

RTD between the intact and amputated limb. To assess if there was a difference in 

the magnitude of maximum and explosive strength asymmetries, BAI MVT vs. BAI 

RTD was also compared. To determine if gait asymmetries were present at either 

walking speed, a two-way ANCOVA was used to assess the effects of limb 

(amputated vs intact) and walking speed (habitual vs fast) on each gait parameter, 

while controlling for the variation in self-selected walking speed within each speed 

group. In the instance of a main or interaction effect, post-hoc Bonferroni corrected 

paired t-tests were performed to compare limbs at each speed. To determine whether 

there was a difference in the size of asymmetry between walking speeds, paired t-

tests compared the magnitude of BAI for each dependent variable at habitual vs. fast 

walking speeds. Effect size (Hedges g, incorporating correction for small sample bias) 

was calculated for all comparisons, and interpreted as small (g = 0.2 – 0.5), medium 

(g = 0.5 – 0.8) and large effects (g > 0.8; Lakens 2013). Where variables were greater 

in the amputated than intact limb, g was correspondingly a negative value. 
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To determine the relationships between strength asymmetry and walking speed, 

Pearson’s product moment correlations between BAI MVT and RTD were performed 

with (1) habitual and fast walking speeds; and (2) ΔSpeed. To determine if strength 

asymmetry was associated with gait asymmetry, correlations between BAI MVT and 

RTD were performed with both the BAI and ΔBAI for each gait variable. To ensure 

these latter relationships were independent of self-selected walking speed, the criteria 

outlined in Table 6.2 were used to select the type of correlation (i.e. bivariate, semi-

partial, or partial). All relationships were interpreted as strong (r > 0.7), moderate (r = 

0.5 – 0.7), weak (r = 0.3 – 0.5) or non-existent (r < 0.3; Mukaka 2012).  

 

6.3 Results 

6.3.1 Maximal and Explosive Strength Asymmetries  

There were considerable strength asymmetries, with both MVT (p = 0.003, g = 2.01) 

and RTD (p < 0.001, g = 2.36) being significantly greater in the intact compared to 

the amputated limb. Additionally, the asymmetry in RTD was significantly greater than 

the asymmetry in MVT (p < 0.001, g = 2.67; Table 6.3). 
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6.3.2 Walking Speed and Gait Asymmetry 

Self-selected fast walking speeds (1.70 ± 0.20 m/s) were significantly greater than 

habitual walking speeds (1.33 ± 0.15 m/s; p < 0.001, g = 1.88). Additionally, cadence 

was significantly greater at fast (124 ± 11.4 steps/min) when compared to habitual 

walking (109 ± 9.11 steps/min; p < 0.001, g = 1.41). Amputated and intact limb values 

and BAI for all gait parameters are presented in Table 6.4.  

At habitual walking speeds, single support time was significantly longer in the intact 

limb (p = 0.001, g = 0.93), while step length was significantly greater in the amputated 

vs. intact limb (p = 0.006, g = 1.41). During fast walking, step length remained 

significantly greater in the amputated compared to the intact limb (p < 0.001, g = 1.26), 

but single support time was similar between limbs (p = 0.218, g = 0.32; Table 6.4). 

Peak vGRF was significantly lower in the amputated compared to the intact limb in 

both phases of stance at habitual (braking: p = 0.010, g = 1.59; propulsion: p = 0.002, 
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g = 2.18) and fast walking speeds (braking: p = 0.002, g = 1.59; propulsion: p < 0.001, 

g = 2.68; Table 6.4).  

Knee moment waveforms throughout stance are presented in Figure 6.3. Significant 

differences were apparent in the braking phase at both walking speeds, between the 

amputated and intact limbs in peak knee extensor moment (habitual: p = 0.002, g = 

1.72; fast: p < 0.001, g = 3.45; Table 6.4) and impulse (habitual: p = 0.008, g = 1.56; 

fast: p < 0.001, g = 2.80).  

There were no significant differences in the size of BAI between habitual and fast 

walking speeds for any gait variable (p = 0.085 – 0.365; g = 0.16 – 0.46).  
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6.3.3 Relationships between Strength Asymmetry and Walking Speed 

When considering the relationship between strength asymmetry and walking speed, 

weak, non-significant relationships were evident between BAI for MVTBM and both 

habitual and fast walking speeds (Figure 6.4A and C). In contrast, there were strong 

significant negative relationships between BAI RTDBM and both habitual and fast 

walking speeds (Figure 6.4B and D); i.e. at both speeds, amputees with greater 

asymmetry in RTD walked more slowly. Moderate, but non-statistically significant, 

negative relationships were observed between the difference in walking speed 

between habitual to fast (∆speed), and both BAI MVTBM and BAI RTDBM (Figure 6.4E 
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and F), thus those with greater strength asymmetries had less ability to increase their 

walking speed from habitual to fast. 

6.3.4 Relationships between Strength and Gait Asymmetries 

6.3.4.1 TS Parameters 

At habitual walking speed, the relationships between asymmetries in TS parameters 

of gait and knee extensor strength were weak to non-existent (Table 6.5). However, 

at a fast walking speed, BAI single support time was moderately related to BAI MVTBM 

but not to BAI RTDBM (i.e. those with greater maximum strength asymmetries 

displayed greater asymmetries in single support time), whilst BAI step length was 

moderately related to BAI RTDBM, but not to BAI MVTBM (Table 6.5). The latter 

relationship suggests that step length (which was negative; Figure 6.4B) became 

more symmetrical with increased explosive strength asymmetry.  

When the difference in walking speed between habitual and fast walking was 

considered, there was a strong positive relationship between ΔBAI single support time 

and BAI MVTBM, but only a weak relationship between ΔBAI step length and BAI 

MVTBM. This implies that with greater maximum strength asymmetries, the asymmetry 

in single support time increased by a larger amount when walking speed changed 

from habitual to fast. The same held true when considering explosive strength 

asymmetry: both ΔBAI single support time and ΔBAI step length were moderately 

correlated with BAI RTDBM (Table 6.5). 
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6.3.4.2 Kinetic Parameters 

When ITTAs walked at their everyday habitual pace, BAI MVTBM was either not 

correlated, or correlated weakly with BAIs for all kinetic parameters in both braking 

and propulsive phases of gait (Table 6.5). However, moderate negative relationships 

were apparent for BAI RTDBM with BAI peak knee extension moment and impulse in 

the braking phase (Table 6.5), suggesting that as asymmetry in explosive strength 

increased, knee extension impulse became more symmetrical. Relationships 

between BAI RTDBM and other kinetic variable BAIs at habitual walking speeds were 

weak or non-existent (Table 6.5). 
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During fast walking, BAI MVTBM was moderately related to BAI knee extensor moment 

impulse during the braking phase (Table 6.5), but weakly, or not, related to BAIs for 

all other measured kinetic variables during gait; thus, at fast speeds, those with 

greater maximum strength asymmetries displayed decreased knee extension impulse 

asymmetry in braking. In contrast, BAI RTDBM was moderate to strongly correlated 

with the BAI for peak vGRF in both the braking and propulsive phase of gait. Weak 

or non-existent relationships were evident between BAI RTDBM and other BAIs for 

kinetic variables during fast walking (Table 6.5).  

When considering the difference in walking speed between habitual and fast, there 

was a moderate positive correlation between ΔBAI peak propulsive vGRF and BAI 

MVTBM, whilst there were strong positive relationships between BAI RTDBM and ΔBAI 

peak vGRF during both braking and propulsive (Table 6.5) phases. Thus, those with 

greater strength asymmetries had greater increases in vGRF asymmetries when they 

walked at a faster speed compared to their habitual speed. BAI MVTBM and BAI 

RTDBM were both weakly related to ΔBAI for other kinetic variables. 

6.4 Discussion 

This study provides novel evidence that, in addition to significant asymmetry in knee 

extensor maximal strength (42%), substantially larger asymmetry was present in 

explosive strength (59%) in ITTAs. Explosive strength asymmetry was directly related 

to walking speed, and both forms of strength asymmetry were related to the ability to 

increase self-selected walking speed from habitual to fast. As walking speed is a key 

indicator of gait function, this finding is fundamental for the promotion of health, 

exercise and quality of life in ITTAs. Furthermore, relationships between asymmetries 

in strength and single support time suggest that some aspects of ITTA gait become 

more asymmetrical with larger between-limb strength differences. Strength 

asymmetry was also related to some kinetic asymmetry, in particular, change in vGRF 
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BAI with faster walking speeds. This suggests that those ITTAs with larger strength 

BAIs are more asymmetrical in loading with faster walking speeds, which may have 

implications for the development of degenerative neuromuscular conditions – such 

as osteoarthritis – which are potentially related to loading asymmetries and are highly 

prevalent in this population. 

6.4.1 Strength Asymmetry and Walking Speed 

The amputated limb knee extensors of the ITTAs that participated in this study 

consistently performed with reduced maximal and explosive strength than the intact 

limb, resulting in substantial strength asymmetries. Asymmetry between limbs 

reported in this study of 42% for MVT (Table 6.3) is much greater than that found in 

able-bodied controls (10%; Chapter 4) but of a smaller magnitude to that found in 

previous amputee research, where decreases in maximum strength of the amputated 

limb resulted in asymmetry (BAI) of up to 57% (Isakov et al. 1996a, Lloyd et al. 2010, 

Moirenfeld et al. 2000, Pedrinelli et al. 2002, Renstrom, Grimsby & Larsson 1983). 

This may be in part because some of these earlier studies measured concentric, not 

isometric, MVT, but potentially the increased activity levels of our ITTA also 

contributed. No previous research has examined the asymmetries in explosive 

strength in ITTAs. In this study we found significantly larger asymmetry in explosive 

(BAI 59%, Table 6.3) compared to maximal strength in the knee extensors of ITTAs, 

and explosive strength was significantly related to a greater number of gait asymmetry 

features. In other populations, past research has reported similar findings, for 

example, substantial deficits in RTD but not MVT six months in the involved limb post-

ACL reconstruction (Angelozzi et al. 2012); positive associations between RTD, but 

not MVT, and patient-reported outcomes and walking speed post-joint arthroplasty 

(Cobian et al. 2017, Suetta et al. 2007); and relationships between asymmetry in 

RTD, but not MVT, and subjective knee function in total knee arthroplasty (Maffiuletti 



Chapter 6. ITTA Strength and Gait Asymmetries 
 
 

 

147 
 

et al. 2010). Furthermore, Chapter 4 found that RTD asymmetry in able-bodied 

populations was more variable than that in MVT, despite similar magnitudes. 

Currently, knee extensor MVT strength assessment is used as the gold standard to 

identify muscle weakness in multiple populations, often in the form of an asymmetry 

index (e.g. LaRoche et al. 2008, Palmieri-Smith & Lepley 2015, Rannama et al. 2015). 

However, our results of greater BAI for RTD suggest it is a more sensitive measure 

of functional capacity in ITTAs and should perhaps be assessed as well as, if not 

instead of, MVT BAI. This is further highlighted by the relationship seen between 

explosive, but not maximal, strength asymmetry and walking speed – a key measure 

as an indicator of walking ability in multiple populations (van Velzen et al. 2006). 

However, to the author’s knowledge no previous studies have investigated the 

association between knee extensor explosive strength asymmetry and walking speed 

in ITTAs. Whilst cause and effect cannot be assumed from correlation, the results of 

this study suggest that explosive strength asymmetry is a significant limiting factor for 

functional capacity during walking in this population (Figure 6.4B, D & F). The 

importance of MVT symmetry for walking speed is less clear; while at habitual and 

fast walking speeds correlations with BAI MVT were only small-to-moderate (Figure 

6.4A & C), there was a moderate association with change in walking speed from 

habitual to fast (Figure 6.4E). Smaller asymmetry in both maximal and explosive 

strength may therefore enable ITTAs to better increase their walking speed, which is 

fundamental for exercise and daily living. 

6.4.2 Influence of Strength Asymmetry on Gait 

Significant differences in single support time were evident between the amputated 

and intact limbs at habitual, but not fast, walking speeds (Table 6.4). This supports 

the work of Lloyd et al. (2010), who reported that while ITTAs tend to spend less time 

in single support on the amputated limb, and experience prolonged load transfer from 
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the intact onto the amputated limb, asymmetries in single support time decrease with 

increasing speed. Despite this, no relationships were apparent between asymmetries 

in single support time and RTD. Instead, asymmetries in single support time during 

fast walking were moderately correlated with asymmetry in maximum strength, and 

strongly related to the difference in speed between habitual and fast walking (Table 

6.5). This suggests that maximum, rather than explosive, strength asymmetry of the 

knee extensors is more important in an ITTA’s ability to sustain their body weight on 

a single limb when walking at speeds greater than their habitual pace. Previous 

research has demonstrated significant increases in support contributions from the 

knee extensor muscles with increases in walking speed from habitual to fast (Fey, 

Silverman & Neptune 2010, Liu et al. 2008). In the presence of knee extensor strength 

asymmetry in ITTAs, it follows that as the muscular demand of gait increases via 

increased walking speeds, the weaker amputated limb is less able to perform its role 

in supporting the body during single support. As a result, the ITTA would spend less 

time in this phase on the amputated limb, which in turn would lead to such 

asymmetries in single support time between the limbs as reported in this study. 

ITTAs were observed to have a significantly reduced step length on the intact 

compared to amputated limb (and therefore negative BAIs; Table 6.4) which supports 

the findings of past research (Barnett et al. 2009, Isakov et al. 1996, Mattes et al. 

2000). While this pattern was evident at both speeds, the effect was greater in fast (g 

= 1.26) when compared to habitual walking (g = 0.93). Previous research has found 

increases in step times (which combine a period of single support and its preceding 

double support), with increasing speed (Lloyd et al. 2010). This was thought to reflect 

the increasing muscular and loading demands of ITTA walking at higher speed, and 

may partially explain the results of the current study. At habitual walking speeds, 

relationships between strength and gait asymmetries were minimal; however, 

stronger associations became apparent at fast speeds, and/or when considering the 
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difference between fast and habitual speeds (ΔBAI). These asymmetries in step 

length were moderately related to BAI RTD in fast walking (although not habitual) and 

in the difference in walking speed between habitual and fast (Table 6.5). The increase 

in step length symmetry with increased explosive strength asymmetry may be a result 

of adaptations ITTAs perform when walking to maintain a stable gait. Previous 

research has found evidence that both able-bodied individuals and ITTAs increase 

walking speed by increasing step frequency and step length (Roerdink et al. 2012). 

However, as shorter steps are thought to be more stable because the CoM is closer 

to the moving base of support (Epsy et al. 2010); it may therefore be that in order to 

maintain gait stability, ITTAs preferentially increase their step frequency, but not step 

length, when walking faster. Furthermore, links between decreased rapid force 

production capabilities and poor control of postural sway have been found (Izquierdo 

et al. 1999); when considered in relation to explosive strength asymmetry, therefore 

it could be that those ITTAs with larger strength asymmetries increase their step 

frequency (but not length) to maintain stability while reducing the load borne by the 

amputated limb when stepping onto the intact. In contrast, those with more 

symmetrical explosive strength may be able to take larger steps as their increased 

amputated limb strength means that they are able to sustain additional loads on this 

limb. In combination with a constant step frequency, this also helps to explain why 

those ITTAs who are more symmetrical in explosive strength walk faster. 

Asymmetries in limb loading of up to 11% (peak vGRF braking phase) and 12% (peak 

vGRF propulsive phase; Table 6.4) present in this study were of a comparable 

magnitude to those reported previously in ITTAs (4-10%; e.g. Menard et al. 1992, 

Powers 1994, Sanderson & Martin 1997) but substantially larger than those reported 

in an able-bodied population (LSI3 ~0.05% [see Appendix A for calculation]; Polk et 

al. 2017), demonstrating that ITTAs load their amputated limb less than the intact in 

these phases during gait. There was no difference in the magnitude of the asymmetry 



Chapter 6. ITTA Strength and Gait Asymmetries 
 
 

 

150 
 

in any loading variables in either braking or propulsion phases between the two 

walking speeds. This supports the work of previous authors who have reported that 

while faster walking significantly affected gait parameters at the individual limbs in 

ITTAs, the level of asymmetry between them remained unchanged (Isakov et al. 

1996, Nolan et al. 2003, Silverman 2008). Despite this, the correlations between BAIs 

in strength and vGRF highlight the variability in individual responses. In the braking 

phase, moderate to strong relationships were evident between asymmetries in RTD 

and peak vGRF in fast walking and as speed changed, suggesting that more 

symmetrical explosive strength may allow the amputated limb to become more 

involved as walking demand increases. Furthermore, in propulsion, strong significant 

relationships were present between asymmetries in explosive strength and peak 

vGRF during fast walking. As speed changed from habitual to fast, peak propulsive 

phase vGRF was also related strongly to BAI RTD, and moderately with BAI MVT 

(Table 6.5). This suggests that, when increasing demand by changing pace and/ or 

walking faster, ITTAs with greater strength symmetry are more likely to experience 

more symmetrical loads, implying that the amputated limb may become more involved 

in the generation of propulsive force. This is an important consideration, particularly 

in those ITTAs who aim to be more active and need to withstand increases in exercise 

intensity such as increased walking speed, due to the link between loading 

asymmetry and the high prevalence of degenerative neuromuscular conditions in this 

population (Macfarlene et al. 1991, Lloyd et al 2010, Schmalz et al. 2001). 

This study also examined asymmetry in knee joint kinetics in gait. Significant 

differences were apparent between limbs in both peak knee extension joint moment 

and total knee extension impulse in the braking phase, resulting in substantial BAIs 

at both speeds in early stance. This agrees with the findings of Sanderson & Martin 

(1997) who reported that in braking, amputated limb knee moment was reduced to 

the point that it remained flexor during the entirety of early stance.  There were no 
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significant increases in the size of asymmetry in knee kinetics in braking when 

habitual and fast walking were compared, which is consistent with the findings of 

Silverman et al. (2008). Unlike previous research, this study additionally assessed the 

relationship of knee kinetics to knee extensor strength; several negative associations 

were found between BAIs in strength and knee kinetic variables. While logically we 

might expect the reverse to be true (i.e., increased strength asymmetry associated 

with increased kinetic asymmetry), these relationships could be a result of increased 

co-contraction of the amputated limb hamstrings in ITTAs with smaller strength BAIs. 

Such muscular activity has been observed in previous studies (Isakov et al. 2001, 

Mattes et al. 2001, Powers et al. 1998, Silverman et al. 2008) to aid braking and 

provide increased propulsion (Liu et al. 2006, Neptune, Zajac & Kautz 2004) but with 

the result of reducing the net knee joint moments.  

6.5 Conclusion 

Significant strength asymmetries were found in ITTAs – importantly, explosive 

strength asymmetry, which has not previously been measured in this population, was 

substantially larger than the asymmetry in maximal strength. Additionally, knee 

extensor explosive strength asymmetry was an excellent predictor of walking speed, 

and asymmetries in both MVT and RTD were associated with the ability to increase 

walking speed in this population, which is vital for health, exercise and quality of life. 

When related to movement, those ITTAs with greater symmetry in maximal, and more 

particularly, explosive strength of the knee extensors showed greater symmetry in 

single support time and whole-limb loading, although this was not true for all 

conditions. This knowledge may be useful in the design of rehabilitation programmes 

for ITTAs, where neuromuscular training to target increases in maximal and explosive 

strength and muscle size may be incorporated, with the goal of improving functional 

gait capacity, and decreasing the risk of degenerative neuromuscular conditions in 

this population. Furthermore, the substantial asymmetries in both maximal and 
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explosive strength, together with those of gait, in this population of ITTAs allows us a 

novel opportunity. Namely, by investigating the neuromuscular characteristics of their 

amputated and intact limbs, we may be able to answer some broader physiological 

questions, such as the effect of long-term disuse on strength and neuromuscular 

function.
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Chapter 7 

The Effects of Long-Term Disuse on 

Neuromuscular Function in 

Unilateral Transtibial Amputees 

 

7.1 Introduction 

 

Chapter 6 showed large strength asymmetries in ITTAs that were closely associated 

with gait asymmetry. Previous studies have also shown substantial asymmetries in 

ITTA movement: during movements such as walking, jumping, and stair ascent/ 

descent, they adopt an asymmetrical loading pattern characterised by considerably 

shorter stance time, lower vGRFs, and knee extensor moments on the amputated 

compared to the intact limb (Fey & Neptune 2012, Schmalz, Blumentritt & Marx 2007, 

Schoeman, Diss & Strike 2012). Collectively, these results suggest that the 

quadriceps of the amputated limb are chronically disused. While cause and effect is 

hard to pinpoint, it is likely a vicious cycle, with muscular weakness leading to reduced 

use and movement asymmetry. This is then likely to result in further disuse and 

muscular maladaptations. It is therefore not surprising that studies on ITTAs have 

observed considerably lower (~50%) quadriceps maximum strength (Isakov et al. 

1996, Lloyd et al. 2010, Pedrinelli et al. 2002) and size (Moirenfeld et al. 2000) in the 
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amputated, compared to the intact and control limbs. Comparison of quadriceps 

neuromuscular function in the amputated vs. intact limb of ITTAs may therefore offer 

new insight into the long-term effects of habitual disuse. 

Prolonged disuse of skeletal muscle poses a considerable threat to muscle tissue and 

neuromuscular function (Narici & de Boer 2011) and as a result, functional capacity 

and health (Kortebein et al. 2008). Just nine days of disuse causes observable 

declines in maximum strength (Rozier et al. 1979), and within two weeks, deficits in 

explosive strength are apparent (Bamman et al. 1998). As reduced or limited physical 

activity is implicated in multiple clinical populations, continuous muscle disuse is a 

default position for many (Brown et al. 2004), thus it is important to understand the 

effects of long-term disuse on both maximum and explosive strength, and their 

neuromuscular determinants. 

The knee extensor muscles are particularly susceptible to degenerative changes 

resulting from disuse (Campbell et al. 2019) owing to their large contributions to 

locomotion on land, and so are frequently investigated in typical study models of 

disuse including spaceflight (e.g. Tesch et al. 2005), unilateral lower-limb suspension 

(ULLS; e.g. Campbell et al. 2013), limb immobilisation (e.g. Deschenes et al. 2002) 

and bed rest (e.g. Berg et al. 1997). Studies show reductions in quadriceps maximum 

strength of approximately 2% per day for the first ten days (Berg & Tesch 1996, 

Gamrin et al. 1998, Rozier et al. 1979, Thom et al. 2001), slowing to ~1% per week 

up to 30 days, with an eventual plateau resulting in average strength losses of around 

23% after 120 days of disuse (Dirks et al. 2013, 2016, Horstman et al. 2012, Narici & 

de Boer 2011, Suetta et al. 2012, Wall et al. 2013).  Unfortunately, it is unclear how 

maximum strength may change with more long-term, habitual disuse, as typical 

disuse study models last <90-120 days for logistical and ethical reasons. 

Furthermore, explosive strength has not been widely studied in disuse studies. In 
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order to further explore the mechanisms of reduced maximum and explosive strength 

with chronic unloading, there is therefore a need for a study model with an internal 

control independent from the effects of ageing and disease states. 

ITTAs may provide a useful model for studying the effects of chronic disuse. However, 

currently it is unclear whether the intact limb provides an internal control that is 

unaffected by the amputation and comparable to the limb of an able-bodied control, 

which would support the efficacy of ITTAs as a study model of long-term disuse. 

Previous studies in ITTAs have shown lower maximum strength in the intact limb 

compared to able-bodied participant limbs (Isakov et al. 1996, Lloyd et al. 2010, 

Pedrinelli et al. 2002, Powers et al. 1996); however, these studies did not control for 

other factors known to independently affect muscle strength between the groups such 

as ageing, health, and sedentary lifestyle. It is possible that, by comparing knee 

extensor muscle load during habitual walking (by assessing knee extensor moments 

and impulse), we may be able to quantify the level of disuse of the amputated and 

intact limbs quadriceps when compared to those of a control group. 

Six studies (Isakov et al. 1996, Lloyd et al. 2010, Moirenfeld et al. 2000, Pedrinelli et 

al. 2002, Powers et al. 1996, Renstrom et al. 1983) have previously measured 

quadriceps maximum strength, albeit isokinetically, in ITTAs. None have assessed 

the changes in explosive strength in this population. Furthermore, the neuromuscular 

mechanisms of the considerable strength loss in the amputated limb of ITTAs have 

not been investigated. Short-term (< 89 days) disuse studies have reported 

decreases (e.g. Alkner & Tesch 2004, Deschenes et al. 2002, Kawakami et al. 2001) 

or no change (de Boer et al. 2007, Campbell et al. 2013) in neural activation, and a 

shift to faster contractile properties in the disused limb (measured as increased 

involuntary RTD relative to peak torque; Lambertz et al. 2001). Furthermore, 21-30 

days of disuse have elicited declines in muscle size (≤10%), pennation angle (≤13%), 
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and fascicle length (≤9%) (e.g. Campbell et al. 2013, de Boer et al. 2007, Wall et al. 

2013). Determining the degree of change in these neuromuscular determinants of 

muscle strength with long-term habitual disuse may allow better targeting of 

preventative and rehabilitative interventions for populations subject to muscular 

disuse.   

The aims of this study were firstly to assess the efficacy of unilateral ITTAs as a model 

to study long-term disuse. This was achieved by comparing neuromuscular function 

and loading during walking gait of the intact limb with a control limb in an able-bodied 

population, where both groups are healthy, young, and active. Secondly, we aimed 

to assess maximum and explosive strength, and the mechanisms underpinning these 

(neural activation, contractile properties and muscle architecture) in the disused 

quadriceps muscles of ITTAs, in comparison to both the intact and an able-bodied 

control limb.  

7.2 Methods  

A comprehensive description participant recruitment, inclusion criteria and the 

methods followed for data collection and processing are given in Chapter 3, Sections 

3.3 – 3.5. 

7.2.1 Participant Information 

Nine male ITTAs and nine male controls took part in this study (Table 6.1). The control 

participants were selected prior to analysis of gait, strength or neuromuscular data to 

ensure group means were matched for age, height, body mass, and physical activity, 

all of which are factors known to independently affect muscle strength and 

neuromuscular function (Hannah et al. 2012, Narici & de Boer 2011, Pincivero et al. 

2004, Sacchetti et al. 2013). As a result, the groups had similar age, height, body 

mass and physical activity scores (p ≥ 0.354; g = 0.10 – 0.64; Table 7.1). Participant 
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inclusion and exclusion criteria, and detail about assessment of physical activity, can 

be found in Chapter 3, Section 3.2. 

 

7.2.2 Data Collection 

Briefly, participants visited the laboratory for 2-3 hours on three separate occasions, 

3-7 days apart, to complete a familiarisation session, and two measurement sessions. 

The familiarisation session and first measurement session were identical and 

involved assessment of voluntary maximal and explosive muscle strength and 

intrinsic contractile properties of the quadriceps, and muscle architecture of the VL 

muscle (section 3.4). Neuromuscular measures were taken on both legs and the first 

leg tested was randomised for each person but remained consistent between 

sessions. The second measurement session involved the collection of kinetic data 

during walking at a habitual speed. The loading on the knee (peak knee extensor 

moments and impulse in stance) was used to quantify disuse of the amputated limb 

(section 3.5.4.3). 
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7.2.3 Data Processing and Extraction 

Full detail on specific data processing is given in sections 3.4.2.3 and 3.4.2.5 

(strength), 3.4.2.4 and 3.4.2.5 (neural drive), 3.4.2.2 (intrinsic contractile properties), 

3.4.2.1 (muscle architecture) and 3.5.5 (gait analysis). Values were recorded for each 

limb and averaged across the three trials selected for analysis 

Strength data extracted were MVT and peak voluntary RTD. Both were analysed as 

an absolute value and relative (MVT relative to BM, MVTBM; RTD relative to MVT, 

RTDMVT). Neuromuscular data extracted included knee extensor evoked twitch and 

octet peak torques and RTD; voluntary activation (VA), EMG at MVT, and explosive 

EMG from 0-100 ms. Muscle architectural variables (muscle thickness, pennation 

angle and fascicle length of VL) were extracted using Tracker software (available from 

http://physlets.org/tracker/).  

In walking, internal peak knee extension moment (Figure 7.1) and knee extension 

moment impulse were extracted (i.e. the area under the torque-time curve for the 

entire stance phase) to quantify the comparative disuse of the amputated and intact 

limbs when compared to the control. Gait kinetic data were reported both as an 

absolute value and relative to body mass (BM). 

http://physlets.org/tracker/)
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7.2.4 Statistical Analysis 

Paired t-tests revealed no differences in either MVT or peak RTD between dominant 

vs. non-dominant (MVT: p = 0.775, g = 0.07; RTD: p = 0.237, g = 0.43) limbs in the 

control group, where the dominant limb was defined as the one in which the 

participant would favour to kick a ball. Given the lack of differences in strength 

variables between limbs, and the substantial variability in the relative direction of 

strength and neuromuscular asymmetries in a control group in Chapter 4, each 

dependent variable was averaged between the dominant and non-dominant limbs in 

the control group. Thus, comparisons are made between the mean of the control 

limbs (CON) vs the amputated limb of ITTAs (AMP) vs the intact limb (INT).  

Levene’s test was used to check for equality of variances, and Shapiro-Wilkes 

assessed normality of the data prior to running all analyses. A one-way ANOVA was 

used to analyse the influence of limb for independent comparisons (AMP vs. CON 

and INT vs. CON) on each dependent variable. In the instance of a main effect, post-
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hoc t-tests were performed. Paired t-tests compared dependent variables between 

the intact and amputated limb. Effect size (specifically Hedges g, incorporating 

correction for small sample bias; Lakens 2013) was calculated for paired 

comparisons, and interpreted as small (0.2 – 0.5), medium (0.5 – 0.8) and large 

effects (> 0.8). Statistical analysis was completed using SPSS version 24, and the 

significance level was set at p < 0.05. Data are reported as mean ± standard deviation 

(SD), with absolute percentage difference (BAI) in values between each condition.  

7.3 Results 

Due to an injury that occurred between laboratory visits two and three, one ITTA 

participant did not complete biomechanical data collection. For this reason, while 

neuromuscular data are presented for 9 ITTAs (with the exception of VA, where n = 

8 due to participant withdrawal), gait data is presented for 8 ITTAs. One control 

withdrew from evoked train stimuli, so control data for is given for 9 participants 

excepting octet and doublet stimulation (where n = 8). There was a large effect size 

for the controls to have a faster walking speed (g = 1.21), although this difference was 

not statistically significant (p = 0.616; Table 7.1).   

7.3.1 Knee Kinetics in Gait 

Knee moment waveforms throughout stance for each limb are presented in Figure 

3.10. Both absolute and relative peak knee extensor moment during the stance phase 

of gait was significantly lower in the AMP compared to INT (-59 to -60%, p < 0.011, g 

= 1.77 – 1.78) and CON (-54 to -59%, absolute p = 0.005, g = 1.61; BM p = 0.006, g 

= 1.72) limbs, but similar between INT and CON (p = 1.000; g = 0.05 – 0.14; Table 

7.2). While there was no main effect of limb on absolute or relative knee extensor 

moment impulse during stance (p > 0.069), there were medium to large effects for it 

to be 36% and 27% lower in AMP than INT (absolute g = 0.99, BM g = 1.15) and CON 
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(absolute g = 0.56, BM g = 0.90), respectively (Table 7.2).  

7.3.2 Maximal and Explosive Strength 

Although ITTA strength (n = 8) was reported in Chapter 6, it is reported again here as 

(1) data in this chapter are presented for n = 9; and (2) for the comparison against the 

control limb. 

MVT (both absolute and relative to body mass) was significantly lower in AMP than 

INT (~-60%, p < 0.002, g = 1.74 – 1.97) and CON (~-64%, p < 0.001, g = 2.05 – 2.33). 

There were no differences between INT and CON in absolute (p = 1.000, g = 0.35) or 

relative (p = 1.000, g = 0.28; Table 7.2) MVT.  

Absolute peak voluntary RTD (Table 7.2) was ~75% lower in AMP than INT (p = 

0.001, g = 2.22), ~76% lower in AMP than CON (p < 0.001, g = 2.36), but similar 

between INT and CON (p = 1.000, g = 0.14). When expressed relative to MVT, peak 

RTD was significantly smaller in AMP than INT (-43%, p = 0.027, g = 1.37) and CON 

(-39%, p = 0.031, g = 1.09), while INT and CON were similar (p = 1.000, g = 0.23; 

Table 7.2).  
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7.3.3 Neural Drive 

Both VA and RMS EMGMVT (Table 7.2) were lower in AMP than INT (-44% for VA, p 

< 0.001, g = 3.63; and -43% for EMGMVT, p< 0.001, g = 1.97) and CON (-43% for VA, 

p < 0.001, g = 3.54; -32% for EMGMVT, p = 0.021, g = 1.23), but similar between INT 

and CON for either VA (p = 1.000, g = 0.14) or EMGMVT (p = 0.271, g = 0.70).  

There was no significant difference main effect of limb in the amplitude in explosive 

RMS EMG100 (p = 0.304; Table 7.2). However, there was a moderate effect for EMG0-

100 to be greater in INT than AMP (g = 0.75), but only small to moderate effects for 

differences for other comparisons (AMP vs. CON, g = 0.30; INT vs. CON, g = 0.45).  

7.3.4 Intrinsic Contractile Properties 

PT in both evoked twitch and octet contractions (Table 7.2) was lower in AMP 

compared to INT (twitch PT: -62%, p < 0.001, g = 1.97; octet PT: -50%, p = 0.001, g 

= 1.43); AMP compared to CON (twitch PT: -70%, p < 0.001, g = 2.84; octet PT: -

68%, p = 0.004, g = 2.07), but similar between INT and CON (p ≥ 0.284 , g = 0.68; 

Table 7.2).  

Absolute peak RTD for both twitch and octet was lower in AMP compared to INT 

(twitch RTD: -62%, p < 0.001, g = 1.94; octet RTD: -63%, p < 0.001, g = 1.43); AMP 

compared to CON (twitch RTD: -72%, p < 0.001, g = 2.62; octet RTD: -70%, p < 

0.001, g = 2.49); but statistically similar in INT and CON (twitch RTD: p = 0.433, g = 

0.62; octet RTD: p = 0.497, g = 0.40; Table 7.2). When expressed relative to PT, 

twitch RTD was 18% lower (p = 0.006, g = 1.35), and octet RTD 25% lower (p < 0.001, 

g = 2.60) in AMP when compared to INT (Table 7.2). Relative twitch and octet RTD 

were also both 14% lower in AMP compared to CON (twitch RTD: p = 0.036, g = 1.59; 

octet RTD: p = 0.037, g = 1.63). Despite being statistically similar, there was a large 

effect for relative octet RTD to be greater in INT than CON (p = 0.120, g = 1.03; Table 
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7.2), whilst relative twitch RTD was similar between INT and CON (p = 1.000, g = 

0.18). 

7.3.5 Muscle Architecture 

There was no main effect (p = 0.226) of limb on pennation angle (Table 7.2). However, 

muscle thickness in AMP was lower than both INT (-41%, p = 0.030, g = 1.78) and 

CON (-38%, p = 0.002, g = 1.58; Figure 7.2), but similar between INT and CON (p = 

1.000, g = 0.23; Table 7.2). Fascicle length was shorter in AMP than INT (-36%, p < 

0.001, g = 0.95), but similar between AMP and CON (p = 0.187; g = 0.50), and INT 

and CON (p = 1.000; g = 0.49).  

 

7.4 Discussion 

In this study, we compared quadriceps strength and neuromuscular function in the 

amputated limb of ITTAs with their intact limb and a control group limb. The intact and 

control group limbs were comparable for all gait and neuromuscular measures, 
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suggesting that the intact limb is a good internal control. ITTAs therefore provide a 

novel model for studying the long term (>1.5 years) effects of disuse. Long-term 

disuse of the amputated limb in ITTAs was evidenced from the ~60% lower peak knee 

extensor moments during walking compared to the intact and control limbs.  This 

disuse was accompanied by ~60% lower maximal strength and ~75% lower explosive 

strength in the amputated limb, which are much greater differences than may be 

predicted from short-term disuse studies. Declines in MVT appeared to be largely due 

to reduced muscle size (evidenced by lower muscle thickness in AMP) and neural 

drive (evidenced by lower VA and EMGMVT in AMP). Declines in RTD appeared to be 

due primarily to declines in MVT and a shift towards slower intrinsic contractile 

properties, with neural drive in explosive contractions being unaffected in AMP. 

7.4.1 ITTAs as a model for long-term disuse 

In the current study, there were large effects for knee extensor kinetics during gait to 

be lower in amputated than intact or control limb, suggesting that the knee extensors 

of the amputated limb undergo substantially less habitual loading during walking. This 

is evidenced by significant differences and large effects in knee extensor kinetics 

between the amputated and intact, and amputated and control limbs confirming their 

efficacy as a chronic disuse model. These data are supported by the findings of 

previous studies, which reported decreased knee moments (Powers, Rao & Perry, 

1998, Winter & Sienko, 1988); powers (Powers, Rao & Perry, 1998, Winter & Sienko, 

1988); and work (Silverman & Neptune, 2012) on the amputated limb in walking. The 

knee extensors of the intact limb in the ITTAs did not differ from those of an able-

bodied population for kinetics during walking, maximal or explosive strength, or any 

of the neuromuscular determinants of strength. This suggests the intact limb of the 

ITTAs provides an ideal internal control for comparison to the amputated limb, from 

which to draw conclusions about the effects of long-term disuse. Furthermore, the 
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ITTAs in this study were young, healthy, and moderate-highly active indicating that 

the effects of disuse on strength and neuromuscular function are isolated from factors 

such as ageing, disease, and sedentary behaviour.    

7.4.2 Changes in Strength 

The declines in maximum strength found in the amputated limb of ITTAs when 

compared to the intact limb (-59%; measured isometrically) are comparable, albeit at 

the high end, of differences observed in previous amputee studies (-33 to -57%, 

measured isokinetically; Isakov et al. 1996, Lloyd et al. 2010, Moirenfeld et al. 2000, 

Pedrinelli et al. 2002), but considerably greater than the reduction in strength typically 

observed after a period of short-term disuse of up to 120 days (~23%; Narici & de 

Boer, 2011). Short-term intervention studies suggest that maximum strength 

decreases exponentially over time following unloading, plateauing out after ~90 days; 

however, the results of this study suggest that the strength declines with longer-term 

disuse are considerably more than could be predicted from short-term intervention 

studies. 

To the authors’ knowledge, only two previous studies have investigated the effect of 

disuse on voluntary explosive strength of the knee extensors, reporting 54% 

(Bamman et al., 1998) and 42% (de Boer et al., 2007) decreases in RTD after 16 

days of bed rest, and 23 days of ULLS, respectively. The considerable reductions in 

peak RTD (-75%) in the amputated vs. intact limb are important, as explosive strength 

is considered more functionally relevant than maximum strength, in many sports-

specific and daily tasks, such as sprinting, jumping, and balance recovery (Behan, 

Pain & Folland 2018, Pijnappels et al. 2008, Tillin, Pain & Folland 2013a).  Peak RTD 

expressed relative to MVT was significantly reduced in the amputated compared to 

the non-amputated limbs. Thus, the reduction in MVT appears only partially 
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contributed to the reduction in peak RTD, which was likely also influenced by the 

slowing of the contractile properties (discussed in more detail below).  

7.4.3 Mechanisms of Strength Differences 

7.4.3.1 Neural Drive 

A broad suppression in neuromuscular activity at maximal force production – 

indicated by reduced amputated limb VA (~44%) and EMGMVT (~38%) compared to 

non-amputated limbs – likely contributes to the reduction in amputated limb maximum 

strength. Whilst many previous studies have reported reduced quadriceps EMG 

amplitude (-16 to -35%; Alkner & Tesch 2004, Deschenes et al. 2002) and VA (-7%; 

Kawakami et al. 2001), others have not observed changes in these measurements 

(de Boer et al. 2007, Campbell et al. 2013, Horstman et al. 2012), following periods 

of disuse of up to 89 days. Thus, the large limb effects on VA and EMG responses 

observed in the present study suggest that reductions in neural drive with disuse 

become more pronounced and observable over time. Of note is the specificity of the 

neural deficits in the ITTAs to the amputated limb. Evidence from unilateral injury and 

training studies suggest a cross-over effect of neural function, in that neural drive 

adaptations occur at the contralateral, as well as the injured/ trained limb (Hart et al. 

2010, Bogdanis et al. 2019, Tillin, Pain & Folland 2011). In this study, however, there 

was no evidence that the reduced neural drive on the amputated side had affected 

neural drive on the intact side, which was similar to the control limb. Perhaps this is 

because ITTAs rely more heavily on the intact limb for most activities of daily living 

and exercise (e.g. Mattes et al. 2000, Fey et al. 2010, Winter & Sienko 1988), which 

may negate any cross-over effects of reduced neural drive from the amputated to the 

intact limb. 
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Despite the substantial differences between the amputated and non-amputated limbs 

evident in neural drive during maximum force production, no such differences were 

observed in this study in explosive EMG0-100, although moderate to large effects were 

noticeable (g = 0.45 – 0.71; Table 7.2). This suggests that altered neural drive does 

not explain the lower RTD in the amputated limb, which is interesting given that neural 

drive is a key determinant of explosive strength, (del Vecchio et al. 2019a, Folland, 

Buckthorpe & Hannah 2014). The large variability in EMG, even after normalisation 

to Mmax (Buckthorpe et al. 2012), greater variability in explosive torque compared to 

MVT (Folland, Buckthorpe & Hannah 2014, Tillin, Pain & Folland 2013a), and small 

sample sizes (n = 9 per limb) may have reduced the chances of observing a significant 

effect. Alternatively, the amputated limb’s role in ambulation may explain the lack of 

differences in neural drive during the explosive contractions. Specifically, whilst the 

knee extensors of the amputated limb experience reduced load compared to the intact 

during ambulation, the amputated side does contribute to stability and postural 

correction, for which RTD appears to be important (Behan et al. 2018). Thus, typical 

physical activity in the amputees may provide sufficient stimulus to maintain the 

neural drive during short, rapid contractions, which typically underpins RTD.    

7.4.3.2 Muscle Architecture 

The VL muscle was 41% thinner in the amputated limb compared to the intact, which 

is a larger difference than the declines in magnetic resonance imaging (MRI) and 

computed tomography scanner measurements of muscle size (-3 to -18%) observed 

in short-term disuse studies (Alkner & Tesch, 2004, Campbell et al. 2013, de Boer et 

al., 2007, Dirks et al. 2016). Thus, similar to the changes observed for strength and 

neural drive, reductions in muscle size with long-term disuse are much greater than 

could be predicted from short-term disuse studies. Muscle size is considered an 

important determinant of MVT (Blazevich et al. 2009), and thus the reduction in 
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muscle thickness is likely to contribute to the declines in both maximum and explosive 

strength in the amputated limb. 

Fascicle length was reduced by 36% in the amputated limb compared to the intact. 

Again, this difference is considerably greater than the decline in knee extensor 

fascicle length (6 – 9%) typically observed with short-term unloading (Campbell et al. 

2013, de Boer et al. 2007). ITTAs walk with a comparatively stiff knee joint on the 

amputated limb (Powers, Rao & Perry 1998, Winter & Sienko 1988), which would 

theoretically isolate loading to shorter fascicle lengths, and limit the stimulus likely 

required to maintain longer fascicle lengths. Decreases in fascicle length may reduce 

maximum shortening velocities and power (Blazevitch & Sharp 2006) and shift the 

torque-angle relationship towards more extended knee positions (Blazevich et al. 

2009). Given our strength measurements were made at a typical plateau region of 

the torque-angle relationship (Chow et al. 1999), a shift away from this region in the 

amputated limb may have partly contributed to the observed differences in maximum 

and explosive strength.  

In contrast to the results of previous research which demonstrated decreases in 

pennation angle during short periods of ULLS (de Boer et al. 2007, 2008, Campbell 

et al. 2013), our results appear to suggest that pennation angle does not change with 

long-term disuse. In healthy populations, angles of pennation of the VL muscle have 

been reported to be 6 – 27° (Blazevich et al. 2006, Rutherford & Jones 1992); the 

pennation angle of all three limbs in this study (~12 – 14°) falls within this range. This 

suggests that the structural re-modelling that seems to take place in the early phases 

of disuse are not representative of long-term adaptations. It is possible that muscle 

thickness declines at a faster rate than fascicle length with short term disuse, causing 

a decline in pennation angle; whilst over longer periods of disuse, fascicle length 
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reductions “catch-up” with muscle thickness loss, causing a return to baseline 

pennation angle. However, this hypothesis cannot be tested with our data. 

7.4.3.3 Intrinsic Contractile Properties  

The significant reductions in evoked (twitch and octet) contractile peak torque in the 

amputated compared to the intact and control limbs (Table 7.2) are reflective of the 

reduced capacity of the amputated limb knee extensors for torque production. These 

changes were accompanied by reductions in RTD, both absolute and relative to peak 

torque, reflecting a shift towards slower contractile properties in the amputated limb. 

This is in contrast to the results of short-term disuse studies, which have reported a 

shift towards faster contractile properties owing to a greater expression of fast-

contracting MHCs (Bamman et al. 1998, Trappe et al. 2004). The results of the current 

study therefore provide novel evidence that changes in intrinsic contractile properties 

with long-term disuse are more characteristic of ageing muscle, which also displays 

a slowing of the contractile properties (Roos et al. 1999). This slowing may be due to 

preferential atrophy of type II muscle fibres, and potentially also to an increased 

dominance of type I MHC in fibres co-expressing MHCs commonly seen with old age 

(Lexell et al. 1988). The slower contractile properties in the amputated limb likely 

contributed to the lower explosive strength also observed in this limb, as twitch and 

octet RTD are importance determinants of explosive strength. 

7.5 Conclusion  

This study was the first to utilise ITTAs as a novel study model to investigate the 

effects of chronic muscle disuse on strength and neuromuscular function, in young, 

healthy, and active adults. The ITTAs, who displayed chronic disuse of the quadriceps 

muscle on the amputated side characterised by considerably less (internal) loading 

of the quadriceps during walking, recorded considerable reductions in maximal 

strength (-60%), and to a greater extent explosive strength (-75%), in the amputated 
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compared to the intact limb. These differences were substantially greater than 

previously reported in short-term unloading studies suggesting strength loss with 

long-term disuse is considerably greater than can be predicted from short-term disuse 

studies. The reductions in MVT were likely due to the considerable declines in muscle 

size and neural drive, whilst the reductions in explosive strength appeared due to the 

decline in MVT coupled with a slowing of the contractile properties. The slower 

contractile properties and the observed similarities in pennation angle between limbs 

contrast with previous findings of short-term disuse studies, which have observed 

faster contractile properties and a decline in pennation angle. 
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Chapter 8 

General Discussion 

 

 

The purpose of this thesis was to investigate strength asymmetry, its underpinning 

neural and mechanical determinants, and to determine its influence on movement. 

The results of this thesis have provided further insight into strength and movement 

asymmetries by (1) comparing the magnitude, relative direction and variability of knee 

extensor maximum and explosive strength asymmetries, and their potential 

underlying determinants in a healthy, active, control population, discussed in Section 

8.1; (2) investigating the influence of knee extensor strength asymmetries on 

movement asymmetries in two populations with different levels of inherent strength 

asymmetries, discussed in Section 8.2; and (3) utilising a known asymmetric ITTA 

population to assess the effects of long-term disuse on strength and neuromuscular 

function of the quadriceps muscle, discussed in Section 8.3.  

8.1 Strength Asymmetry and its Determinants 

Strength asymmetries at the quadriceps have previously been linked to ageing 

(Skelton, Kennedy & Rutherford 2002), pathology (e.g. Lloyd et al. 2010, Sandroff, 

Sosnof & Motl 2013, Suetta et al. 2007) and increased risk of musculoskeletal injury 

(Knapik et al. 1991, Impellizzeri et al. 2007). Up until now, however, research in healthy 

populations has only considered asymmetries in maximal strength. When comparing 

the strong and weak limbs, Chapter 4 found greater magnitudes of maximal strength 
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asymmetry compared to those previously reported in a healthy able-bodied population 

(10% [Table 4.1] vs. 1 – 5%; Kobayashi et al. 2013, Lanshammar & Ribom 2010, Schiltz 

et al. 2009), although it should be noted that the results are not directly comparable: 

the previous studies performed dynamic maximum strength testing at various speeds, 

and calculated asymmetry using a dominant/ non-dominant limb split. Based on past 

research indicating the functional importance of RTD, and its large inter-individual 

variability (Behan, Pain & Folland 2018, Folland, Buckthorpe & Hannah 2014, 

Pijnappels et al. 2008, Tillin, Pain & Folland 2013a), we hypothesised that magnitudes 

of RTD asymmetry would be larger than those in MVT; however, this did not appear 

to be the case. Instead, Chapter 4 found that there was no difference in the size of 

maximum and explosive strength asymmetry in a control population (10% vs. 13%, 

respectively), although the latter was more variable (range BSA MVT ~17%, BSA 

RTD ~35%). Furthermore, although asymmetries in the two aspects of strength were 

related, they were not always in the same direction (Figure 4.2). In comparison, ITTAs 

demonstrated significantly greater asymmetry in RTD than MVT (Chapter 6) that was 

consistently in the same direction – i.e. the intact limb was always the strong limb. 

The difference in the magnitudes of strength asymmetry in these two populations is 

reflected in asymmetries in neuromuscular function in controls and ITTAs. In an able-

bodied population demonstrating relatively small strength asymmetries in maximal 

and explosive strength, neither was explained by a systematic combination of 

asymmetries in the factors which are thought to determine strength. In other words, 

the coordination of neuromuscular function between limbs for force production is 

different between individuals. This appears to be supported by the large inter-

individual variability inherent in the data (Tables 4.1 and 4.3). As previous research 

has suggested that a combination of factors such as load distribution mechanisms 

(e.g. in ITTAs, Chapters 6 & 7), training background (Maloney 2018), and 

environmental interactions (including injuries, e.g. Knezevic et al. 2014) determines 
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the presence and magnitude of bilateral asymmetries in strength, the substantial 

variability demonstrated in the bilateral asymmetries of both aspects of strength 

(discussed above) and neuromuscular function in this population is perhaps 

unsurprising.  

In contrast, in ITTAs, the differences in determinants between limbs clearly explain 

asymmetries in both aspects of strength (Chapter 7). The difference in the results is 

likely a result of the substantial and systematic nature of the strength asymmetries 

evident in ITTAs. In this population, asymmetries in maximum strength are strongly 

associated with reductions in muscle size (-41%) and neural drive (VA: -44%, 

EMGMVT: -43%; Table 7.2) at the amputated limb when compared to the intact. 

Asymmetries in explosive strength were associated with deficits in MVT coupled with 

a slowing of the contractile properties on the amputated limb, but not, surprisingly, 

explosive neural drive, which is the primary determinant of later-stage explosive 

torque (Folland, Buckthorpe & Hannah 2014). These asymmetries – both in strength 

and neuromuscular function – are presumably reflective of the effects of long-term 

disuse (discussed in detail in Section 8.3). 

8.2 Strength Asymmetry and Movement Performance 

While the effect of movement asymmetry on sporting performance is a popular topic 

in research literature, we currently have little understanding of the underpinning 

mechanisms of these asymmetries (Bishop, Turner & Read 2018). This thesis aimed 

to better understand the association between asymmetries in strength and 

movement. To that end, Chapters 5 and 6 explored the relationships of strength and 

movement asymmetries in two populations with substantially different levels of 

asymmetry: a control group and a group of ITTAs. To aid comparisons between these 

chapters, both groups were young, healthy and active. 
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The knee plays a key role in both a jump take-off and landing from a drop. 

Furthermore, both are planar movements that seem to be partially determined by 

maximal and, to a greater extent, explosive quadriceps strength (Chang et al. 2015, 

de Ruiter et al. 2007, Sandler and Robinovitch 2001), which makes these movements 

a useful means of assessing the relationships between movement and strength 

asymmetries in a healthy population. However, Chapter 5 presented limited evidence 

for relationships between strength asymmetries and jump height (Figure 5.3) or 

kinetic asymmetries (whole-limb or at the knee specifically; Table 5.1) in the take-off 

phase of a CMJ. We hypothesised that this was reflective of joint coordination, i.e. 

that rather than being the prime mover in a jump take-off, the primary role of the knee 

extensors was instead to coordinate the actions of the ankle and hip. This in turn may 

explain why there is such large directional variability when variables are grouped by 

knee extensor strength for this movement. In contrast, while asymmetries in MVT 

were not associated with landing from a drop, explosive strength symmetry did appear 

to be important for kinetic symmetry in this task. The latter associations were 

assessed by between-limb differences, indicating that the asymmetries were in the 

same direction; however, they were not correlated. It seems likely that this is because 

each individual performs movements in a different way within the constraints of their 

system. The results of Chapter 5, which further echo the substantial variability in 

asymmetry in a healthy, able-bodied population (as seen in Chapter 4), highlight the 

importance of personalised data analysis when attempting to quantify an individual’s 

strength and/ or movement asymmetry. 

Given the postulated difficulty in identifying consistent bilateral asymmetries within a 

group of individuals unless they are highly specialised to an asymmetric task (Lawson 

et al. 2006) – which was indeed apparent in the results of Chapters 4 and 5 – Chapter 

6 allowed a further opportunity to establish the relationships between asymmetries in 

strength and movement in greater detail. ITTAs have previously been established to 
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be asymmetrical for both strength and movement (Lloyd et al. 2010, Winter & Sienko 

1988), which was confirmed by the results of Chapter 6. Furthermore, as the 

asymmetries in strength in ITTAs are in the same direction as those in movement (i.e. 

the amputated limb is consistently weaker and accepts less load in a variety of 

movements; Sanderson & Martin 1997, Schoeman, Diss & Strike 2012, 2013), we 

hypothesised that associations between asymmetries in strength and movement 

would be more observable in this population. 

Adequate gait function is fundamental for daily living and exercise, and as a result, 

health and quality of life. ITTAs are not necessarily able to perform more intense 

exercises (e.g. running) due to the greater musculoskeletal demand on the weaker 

amputated limb; therefore, this thesis utilised walking as a model to investigate 

associations between strength and movement asymmetries. Explosive strength 

asymmetry was directly related to walking speed, and both forms of strength 

asymmetry were related to the ability to change self-selected walking speed from 

habitual to fast (Figure 6.2). As walking speed is a key indicator of gait function (van 

Velzen et al. 2006), this finding is important for the promotion quality of life in ITTAs. 

The magnitude of asymmetry in RTD should therefore be an additional key outcome 

measure in rehabilitation protocols alongside the commonly measured asymmetry in 

MVT. Furthermore, ITTAs who were more symmetrical for strength (and particularly 

explosive strength) demonstrated greater symmetry in single support time and gait 

kinetics. As mechanical overloading of a joint is thought to place an individual at an 

increased risk of developing joint degenerative diseases (Farrokhi et al. 2016), and 

the intact limb of ITTAs is at a 25 – 28% greater risk of joint degeneration compared 

to the general population (Struyf et al. 2009, Norvell et al. 2005), this may have 

important implications for rehabilitation. Specifically, as more symmetrical limb 

loading may be important to reduce likelihood of degenerative conditions, it may be 

that we could mitigate this risk through improving explosive strength asymmetry. The 
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results of Chapters 5 and 6, when taken together (i.e. the presence of relationships 

between strength and movement asymmetries in ITTAs but not controls, who have 

smaller levels of asymmetry), also suggest that perhaps strength asymmetry 

becomes more important for movement performance at higher levels of asymmetry. 

8.3 ITTAs as a Model for Long-Term Disuse 

By investigating the neuromuscular characteristics of populations with known 

asymmetries, we can answer some broader physiological questions. Chapter 7 was 

the first study to utilise ITTAs as an experimental model to explore the effect of long-

term disuse on strength and neuromuscular function. The knee extensors of the intact 

limb in the ITTAs did not differ from those of an able-bodied population for kinetics 

during walking, maximal or explosive strength, or any of the neuromuscular 

determinants of strength. This suggests the intact limb of the ITTAs provides an ideal 

internal control for comparison to the amputated limb, from which to draw conclusions 

about the effects of chronic disuse. Furthermore, as the ITTAs in this study were 

young, healthy, and moderate-highly active, so the effects of disuse could be isolated 

from factors such as ageing, disease, and sedentary behaviour, which are known to 

independently affect muscle strength and function (Narici & de Boer 2011, Pincivero 

et al. 2004, Sacchetti et al. 2013). The results of this study may have applications to 

multiple clinical populations that experience chronic muscular disuse as a result of, 

for example, prolonged bedrest, injury or pathological conditions. 

The ITTAs, who displayed chronic disuse of the quadriceps muscle on the amputated 

side characterised by considerably less (internal) loading of the quadriceps during 

walking, recorded considerable reductions in maximal strength (-60%), and to a 

greater extent explosive strength (-75%), in the amputated compared to the intact 

limb. These differences were substantially greater than previously reported in short-

term unloading studies (maximum strength ~23%; explosive strength ~48%; Bamman 
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et al. 1998, de Boer et al. 2007; Narici & de Boer, 2011). Short-term intervention 

studies suggest that maximum strength decreases exponentially over time following 

unloading, plateauing out after ~90 days; however, the results of this study suggest 

that, with longer periods of disuse, both maximum and explosive strength declines 

considerably more than would be predicted from short-term intervention studies. As 

explosive strength is considered more relevant for function in many sports-specific 

and functional daily situations (e.g. sprinting, jumping, recovery from balance 

perturbation) than maximum strength (Maffiuletti et al. 2010, Pijnappels et al. 2008, 

Tillin, Pain & Folland 2013a), these findings have significant implications for the 

rehabilitation of both ITTAs and those who have been subject to long-term disuse. It 

is important for clinicians to note that the training stimuli for increases in explosive 

strength are distinct from the stimuli for changes in MVT (Tillin & Folland 2014), so 

both should be factored into any programming to combat muscular changes resulting 

from disuse.  

This recommendation is underpinned by the findings regarding alterations in the 

neuromuscular determinants of strength (as discussed in Section 8.1) which were 

different and distinct for MVT and RTD. Interestingly, this study provides novel 

evidence that intrinsic muscular changes with chronic disuse are characteristic of 

ageing muscle, which also displays a slowing of the contractile properties (Doherty & 

Brown, 1997, Roos et al. 1997, Roos et al. 1999), in contrast to the increase in 

contractile speed (measured as relative evoked RTD) evident in short-term disuse 

studies (Narici & de Boer 2011). While perhaps surprising given that neural drive is a 

key determinant of explosive strength (del Vecchio et al. 2019a, Folland, Buckthorpe 

& Hannah 2014), there were no differences between limbs in explosive EMG0-100. This 

suggests that altered neural drive does not explain the lower explosive torques and 

RTD in the amputated limb. Two potential explanations for this have been highlighted. 

Firstly, the large variability in EMG, even after normalisation to Mmax (Buckthorpe et 
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al. 2012), greater variability in explosive torque compared to MVT (Folland, 

Buckthorpe & Hannah 2014, Tillin, Pain & Folland 2013a), and small sample sizes (n 

= 9 per limb) may have reduced the chances of observing a significant effect. 

Alternatively, whilst the amputated limb is loaded less than the intact during 

ambulation, it may be that the amputated side contributes to postural control and 

stability – for which RTD appears to be important (Behan, Pain & Folland 2018). Thus, 

typical physical activity in the amputees may provide sufficient stimulus to maintain 

the neural underpinnings of RTD.    

8.4 Limitations 

Limitations of this thesis include the small sample size, which was restricted by the 

stringent inclusion criterial applied to ITTA participants, and the assumptions of 

inverse dynamics. The results of ITTA studies (Chapters 6 and 7) should be 

generalised with care, primarily due to the low sample size which reflects the lack of 

availability of healthy, young, active traumatic unilateral amputees. Furthermore, it is 

important to note that the population of ITTAs that participated in this study were ideal 

for studying strength and neuromuscular changes without the confounding influences 

of age, inactivity or disease, was nevertheless not necessarily reflective of ITTAs in 

general. The majority of ITTAs in the UK tend to be older, less active, and have 

amputations arising from vascular conditions (British Society of Rehabilitation 

Medicine 2018); however, they are likely to be more asymmetrical in strength (Isakov 

et al. 1996, Lloyd et al. 2010, Moirenfeld et al. 2000, Pedrinelli et al. 2002) and thus 

the associations with movement asymmetries potentially stronger. 

Additionally, the assumptions of inverse dynamics – specifically, that there is no co-

contraction of agonist and antagonist muscles during movement – may be considered 

a limitation of this study, which assessed net joint moments in walking, CMJs and 

drop landings. The use of EMG alongside kinetic analyses may allow the 
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differentiation between reduced quadriceps muscular activity, or increased 

antagonistic (hamstring) activity, when interpreting reduced net knee joint moments. 

Despite this, inverse dynamics is an easy, non-invasive approach to estimating 

muscle function. Furthermore, further work is required to understand the effect of 

modelling on joint moments on amputees. Initial research is being conducted by a 

research group lead by Silverman (Strike 2019, personal communication) and 

indicates little evidence of a significant effect.  

The isometric measurement of strength could be considered a limitation of this study, 

due to (1) its reduced ecological validity, and (2) as Chapters 5 and 6 involved 

correlating isometric measures of strength with dynamic movements. However, 

isometric measures of RTD are necessary to remove the confounding influence of 

joint angle changes that are inherent in isokinetic contractions (Maffiuletti et al. 2016). 

As the isokinetic dynamometer measures external torque (rather than force which is 

later converted to torque by consideration of external moment arm) it is unlikely that 

the placement of the adaptor on the amputated compared to the intact and control 

limbs affected the results. It may, however, be possible that there are other, 

unidentified factors that may have affected the groups differently because of where 

the adaptor was placed. Nevertheless, measurements not affected by the isokinetic 

dynamometer setup (i.e. muscle thickness and fascicle length, VA, EMGMVT and gait 

kinetic parameters) were, similarly to torque measures, significantly reduced on the 

amputated limb compared to the two healthy limbs. This suggests that the overall 

picture of the results (i.e. that strength and neuromuscular function is significantly 

impaired in the amputated limb of ITTAs, and by extension, in long-term disuse) is 

reliable. 

Finally, changes in fascicle length such as those evident in the amputated limb of 

ITTAs may result in a shift in the torque-angle relationship which may have partly 
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contributed to the observed differences in maximum and explosive strength in ITTAs. 

However, we tested strength close to a plateau region of the torque-time curve (Chow 

et al. 1999), and differences apparent between the amputated and control limbs were 

much greater than could be explained by the small differences on part of the torque-

angle curve. 

8.5 Potential Implications 

As both maximum and explosive strength asymmetry are variable, not necessarily in 

the same direction, and underpin different functional capabilities of muscle, both 

aspects of strength should be considered for a complete profile for diagnosis and 

monitoring of muscle strength asymmetry in able-bodied populations. In ITTAs, as the 

magnitude of asymmetry in RTD appears to be a more sensitive marker of functional 

gait capacity than the commonly measured asymmetry in MVT, the former should be 

an additional key outcome measure in rehabilitation protocols. These should 

emphasise strengthening of the amputated limb knee extensors in order to improve 

both maximal and explosive strength symmetry. 

In addition to improving walking speed and functional capacity, targeting RTD 

asymmetry in ITTAs could reduce the risk of asymmetrical loading that may 

predispose to degenerative disorders (Macfarlene et al. 1991, Lloyd et al 2010, 

Schmalz et al., 2001). As the reductions in explosive strength with long-term 

unloading are significantly greater than deficits in maximum strength, populations who 

experience long-term disuse could also benefit from explosive strength training. In 

particular, this may be important for individuals who frequently perform movements 

such as landing from a jump, which involves the rapid deceleration of the CoM. This 

is because explosive strength asymmetry appears to be associated with loading 

asymmetry in able-bodied populations. Greater symmetry in explosive strength could 

therefore potentially reduce injury risk in the weaker limb by more equal distribution 
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of load relative to limb strength, resulting in landing which effectively mediates force 

bilaterally. However, it is important to note that the training stimulus for increases in 

explosive strength is specific and different to that for MVT (Tillin & Folland, 2014), so 

both will need to be factored into the programming. Given the associations between 

explosive strength asymmetry and landing from a drop in a control population (as 

evidenced by the significant differences apparent between limbs when split strong vs. 

weak), including drop landings in rehabilitation could be a good way to target this 

deficit. 

8.6 Future work 

Possible suggestions for further work to build on that of this thesis are as follows:  

1) Investigate the determinants of strength asymmetry in more specialised 

populations with systematic asymmetries (e.g. unilateral injury, the elderly), 

given that clearly, they exist for ITTAs, if not for a control population. This may 

be useful for targeting rehabilitation protocols in such groups of individuals. 

2) Further explore the mechanisms of the association between explosive 

strength asymmetry and landing. This could be done by investigating the 

mechanics of the motion at the other joints in the kinetic chain (i.e. ankle, hip, 

pelvis and trunk) and/ or utilising EMG to establish how the joints coordinate 

to rapidly attenuate the load associated with a landing task.  

3) Building on the above, a prospective study design could be utilised to explore 

the associations between explosive strength, load distribution asymmetry in 

movement, and injury. This may help provide a better understanding of the 

role that strength asymmetries play in injury risk. 

4) Given the significance of explosive strength asymmetry that was identified in 

Chapters 5, and 7, and the very large asymmetries in explosive strength 
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present in ITTAs whose amputated limb was chronically disused (Chapters 6 

and 7), investigate the response of ITTA muscle to a period of a) maximal and 

b) explosive strength training, and the subsequent effect on movement 

patterns. This may allow us to establish more effective rehabilitation protocols 

for ITTAs/ populations that undergo chronic muscular disuse. 

5) Utilise ITTAs as a disuse model to investigate the associations between long-

term disuse and factors such as protein synthesis, muscle morphology, and 

metabolic health. Furthermore, imaging methodologies such as MRI could be 

used to quantify the effect of long-term disuse on internal muscle-tendon 

forces. 
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Strength asymmetries are typically reported as a percentage, with limbs split as 

dominant/ non-dominant, left/ right, strong/ weak in order to provide a reference limb 

for the calculation. Table A.1 gives the seven equations that have been used to 

calculate strength asymmetries. Note that each equation has been given an acronym 

as suggested by Bishop et al. (2016, 2018) to differentiate between calculations, as 

the available literature often refers to different equations by the same name. 
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A.1  Importance of Reference Limb 

For example, Bilateral Strength Asymmetry-1 (Table A.1) distinguishes between 

limbs as strong and weak. However, the same equation has also been used in the 

literature but with the limbs split as dominant and non-dominant (Bilateral Strength 

Asymmetry-2). In a situation where the participant’s strong limb is not the dominant, 

the choice of calculation will give two different asymmetry values. 

Consider a participant who has a maximum strength score of 200 Nm for their right 

leg, and 150 Nm for their left. However, they have identified the left as their dominant 

limb. 

𝐵𝑆𝐴1 (%) =  
200 − 150

200
 × 100 = 25.0% 

𝐵𝑆𝐴2 (%) =  
150 − 200

150
 × 100 = −33.3% 

The different results given by what is essentially the same equation highlights the 

importance of the careful selection of reference limb. Further discussion of reference 

limb selection will be given in context of the individual equations in Section A.2 below. 

A.2  The Difference between Asymmetry Calculations 

Conversely, some equations give the same asymmetry value, regardless of the 

differences in the equation.  

𝐿𝑆𝐼2 = (1 − (
150

200
)) × 100 =  −33.3% 

Other equations will give still different values. 

𝐿𝑆𝐼3 = (
200 − 150

0.5(200 + 150)
) × 100 = 28.5% 

𝐵𝐴𝐼1 = (
200 − 150

200 + 150
) × 100 = 14.2% 
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Consideration therefore needs to be given when selecting the equation for use. 

A.3  Interpretation of Asymmetry Calculations 

Equations that produce the same result have been grouped together for further 

discussion. Sections A.3.1 and A.3.2 will discuss equations that could potentially be 

used to quantify asymmetries in a unilateral task, given that force is produced solely 

on the designated test leg potentially providing a more accurate representation of 

‘true’ inter-limb asymmetry. Section A.3.3 will discuss equations that could be used 

to quantify asymmetries in a bilateral task, whereby the influence of the contralateral 

limb must be taken into account (Bishop et al. 2018). 

A.3.1 LSI1, LSI2, BSA1, BSA2 

LSI1 used by Ceroni et al. (2012) gives a value of limb symmetry rather than 

asymmetry.  When compared with LSI2 (Schiltz et al. 2009) and BSA2 (Maly et al. 

2015), it gives a value at the opposite end of the ‘asymmetry spectrum’. Perfect 

symmetry is represented by 0% for LSI2, BSA1, BSA2, but 100% for LSI1. For the 

earlier example, while LSI2 and BSA2 give an asymmetry score of 25%, LSI1 gives a 

score of 75%. 

BSA1 (Impellizzeri et al. 2007, Nunn & Mayhew 1988) differs from the other equations 

purely as a result of using a different reference limb. Bishop et al. (2016) suggests 

that always putting the strong limb first (i.e. BSA1) will pose problems for longitudinal 

analysis due to this always resulting in a positive value. They argue that a later testing 

date the strong limb could become weaker (e.g. as a result of injury, or exposure to 

training), and the criteria in this equation do not take this into account. This could have 

implications for reliability of the asymmetry measure. Furthermore, having only 

positive values for asymmetry would be problematic when calculating percentiles, as 

the distribution would be skewed. Classifying limbs by left/ right or dominant/non-
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dominant, in contrast, would result in a negative value if the stronger limb changed. 

However, classifying limbs by dominance has its own problems. Limb dominance is 

used to standardise limb comparisons. The most common method to determine limb 

dominance is by using self-reported kicking leg preference, although the validity of 

this in situations other than where kicking is a key demand (e.g. football, kickboxing, 

some rugby positions) has been questioned. Kicking preference may not accurately 

categorise limb dominance in relation to strength, power, proprioception, or other 

variables that relate to biomechanical movement strategies (Mulrey et al. 2018). 

Perhaps because of this, Schlumberger et al. (2006) have suggested that limb 

dominance should not be used for classifying asymmetry, as it may not have sufficient 

external validity. 

A.3.2  LSI3 

In order to circumvent some of the issues surrounding the definition of limb 

dominance, LSI3 (Bell et al. 2014) defines inter-limb asymmetry as between right and 

left. However, as limb dominance is known to be task-specific (Maloney et al. 2019), 

and laterality (i.e. the preferential use of one side of the body when presented with a 

motor task to perform) manifests dependent on sport-specific demands (Maloney 

2018), some sports (e.g. fencing) which are very asymmetrical in nature are likely to 

dictate which limb is dominant in key sport-specific actions. In these contexts, 

grouping limbs by right and left may not give a true account of the inter-limb 

asymmetry present in the population being studied. 

A.3.3  BAI1, BAI2 

These two equations produce substantially smaller asymmetry scores than any of the 

previously discussed methods. However, unlike the above equations, which account 

for the lack of contribution from the opposing limb in a unilateral task, these equations 
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are useful when considering the asymmetry in a bilateral task such as a CMJ or drop 

landing (Chapter 5), as the differences in force between limbs are always relative to 

the sum force value.  
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F.1 Rationale 

The purpose of this pilot study was to determine the test-retest reliability of the 

methods used for assessing neuromuscular function.  

F.2 Methods 

Following their participation in the main study, eight able-bodied participants visited 

the laboratory for a fourth session to collect quadriceps strength and neuromuscular 

data on a single limb. This session was identical to the neuromuscular data collection 

session (Chapter 3, Section 3.4), other than that data were collected for the right leg 

only. One participant withdrew from performing octet contractions, so contractile data 

are presented for n = 7 (octet) and n = 8 (twitch). An issue with an EMG transducer 

during some testing sessions means that EMG data are presented for n = 4. 

F.2.1 Statistical Analysis 

Statistical analysis was completed in in SPSS version 24. Test and re-test values 

were correlated using Pearson’s product moment correlation coefficients. Intraclass 

Correlation Coefficient (ICC) was also calculated. Coefficient of Variation (CV) for 

each variable was calculated for each participant’s test-retest scores and the mean 

presented. Significance level was set at p < 0.05.  

F.3 Results  

Results are presented in Table F1. 
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