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Abstract 
__________________________________________________________________________ 

Measuring energy expenditure using respirometery, heart rate and accelerometry can enable 

hitherto unknown aspects of a species’ energetic ecology to be uncovered. Due to the 

increased use of these methods, rigour is required to improve the accuracy of the results. As 

they can only feed in the sea, King penguins (Aptenodytes patagonicus) need to manage 

their onshore energetic budget well. During fasting periods, which can last up to one month, 

heavy individuals need to walk several kilometres to reach their zone of attachment, where 

they incubate and take care of the egg 24 hours a day. They then need to have sufficient 

energy reserves to return to sea, swim to the polar front and efficiently fish for prey. 

Consequently, knowing the energy expenditure of king penguins while onshore is key for 

understanding their future survival. By investigating the onshore energy expenditure of king 

penguins, this thesis generates new insights not only into their physiological stress response 

and the biomechanics of pedestrian locomotion, but also into proxy-based methods of 

measuring energy expenditure. The cardio-respiratory stress response was defined for this 

species, with some surprising findings, and the energetic cost of the stress response was 

demonstrated. Implications for the confounding effect of stressed states on energy proxy 

calibrations were considered and a standard protocol to alleviate this issue in future studies 

of king penguin energetics is proposed. The biomechanics and energetics of the pedestrian 

locomotion were investigated to enhance the understanding of the mechanisms developed to 

optimise king penguin gait in relation to their body mass. Following investigation of 

differences in walking between heavy and light penguins, no conclusive explanations were 

established, though future investigations are suggested to enhance this learning. Finally, 

using the data collected throughout the thesis, the energy expenditure of early and late 

breeders was investigated, enabling a better understanding of their energy budgets which can 

be fed into conservation projects for king penguins. 
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__________________________________________________________________________ 

Definitions and abbreviations: 
__________________________________________________________________________ 

§ :   Section. 

Acclimated: Refers to the physiology and behaviour exhibited with the stressor-induced bias 

removed.  

Acclimation: “The concept that after repeated or chronic exposure to a stressor, an animal no 

longer considers the stressor to be noxious and reduces its glucocorticoid 

response.” (Romero, 2004) 

Activity: Refers to the initial level of movement of the bird when subjected to a stressor, e.g. 

low for resting, high for walking. 

ASTW:  Astrid S. T. Willener. 

ATP:  Adenosine-5'-triphosphate. 

DBA:  Dynamic body acceleration, inertia of a movement made by accelerometer on an 

animal, given in one of the tri dimensional axis. 

Duty factor: The percent of the total cycle of the stance phase.  

Early/late breeders: King penguins arriving at the beginning of the breeding season (after 

October) are considered early breeders, while birds laying after mid-January are 

considered late breeders. 

FR:  Flow rate. 

Fullest possible acclimation: Refers to the lowest achieved metabolic rate when measured 

in the respirometer chamber, calculated as the lowest five-minutes mean     
.  

Fullest possible acclimation during daytime: Due to the potential confound of circadian 

rhythms affecting metabolism, the lowest achieved five-minutes mean     
 during 

daytime while measured in the respirometer chamber was calculated.  

GCOT:    Gross cost of transport, described as the relationship between metabolic rate and 

speed of walking, i.e.        , where   is the speed (m/s) and   is the energy 

expenditure (J/s). 

NCOT: Net cost of transport (J/m), energy used to move a unit distance. Slope of the 

GCOT function. 

O2:  Oxygen. 

CO2:  Carbon dioxide. 

Level of acclimation achieved by previous studies: Defined as the first five-minute of a 

stable period of 20-minutes of      
 obtained one hour after the occurrence of the 

stressor.  

Level of acclimation achieved by using the protocol found in this study: Refers to the 

lowest      
 obtained within 90 minutes.  
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Motion: Refers only to movement due to the behavioural response (‘fight or flight’, Cannon, 

1929; or the updated ‘freeze, flight, fight or fright’ response, Bracha et al., 2004). 

Motion is the difference in movement between the unstressed and stressed states. 

Movement: Is used in this thesis as a general term for any contractions of the striated 

muscle, including physical ‘activities’ or ‘motions’. 

ODBA:  Overall Dynamic Body Acceleration. 

Overall stress response: Refers to any physiological and behavioural changes due to the 

presence of a stressor (including change in motion). 

PCOT:  Postural cost of transport. Energy expended to maintain the posture of locomotion, 

represented as the extrapolated intercept   of NCOT minus resting metabolic rate. 

PCr:  Phosophocreatine.  

SBA:  Static body acceleration, estimated from recordings of an accelerometer logger 

instrumented on an animal, which can provide information on the posture of the 

animal. 

Shift:  During the breeding season, one member of a king penguin pair takes care of the 

egg or chick onshore, while its partner is fishing at sea. When the sated partner 

returns, an exchange of the egg or chick occurs. This exchange is called a shift. For 

instance, the first shift concerns the exchange of the egg layed by the female to the 

male. An average of 10 shifts occurs during the breeding season (5 while 

incubating an egg and 5 while brooding a chick). 

Stance phase: The phase during which the foot is on the ground. 

Step:  Defined as the time between toe-off and the next initial contact the same foot 

makes with the ground. 

Stress response: “The physiological, hormonal and behavioural changes that enable an 

animal to cope with a stressor’’(Romero, 2004). However this thesis only looked at 

the cardio-respiratory and behavioural (i.e. in term of movements) stress responses. 

Stress response per se: Refers to the physiological and behavioural stress responses which 

are a direct result of the stressor. This response does not include the physiological 

response due to increased body motion associated with the stressor.  

Stressed: Refers to the physiology and behaviour exhibited under presence of an 

anthropological stressor.  

Stressor: “A noxious or unpredictable stimulus that causes a stress response” (Romero, 

2004).  

Stride:  A cycle of stride is defined by the temporal interval of two successive similar 

positions of the same foot, e.g. from the initial contact to the next one. One stride 

contains two steps. 

Swing phase: The phase during which the foot is off the ground.  

Unstressed:  Refers to the physiology and behaviour exhibited without the presence of an 

anthropological stressor.  

VAV:   Vincent A. Viblanc.  

VeDBA: Vectorial Dynamic Body Acceleration. 

    
:  Rate of oxygen consumption (ml/min).  
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1.1 What is Energy? 
To quote Albert Einstein: “Energy cannot be created or destroyed, it can only be changed 

from one form to another.” In biology, energy is the currency of life (as pointed out by 

Dawkins, 1976), defined as “the ability to maintain or increase order in a system” by Hill et 

al. (2008). Without it, there is no anabolism or catabolism, i.e. no metabolism necessary for 

maintaining life. Organisms need to acquire, transform and use energy for all biological 

processes (Brown et al., 2004). If acquisition is higher than expenditure, energy is typically 

stored, predominantly as fat, for later use. If expenditure is higher than acquisition, the 

animal is starving, leading to its death if this net energy loss is maintained for too long. 

Energy expenditure thus reflects the evolutionary fitness of organisms in maintaining an 

optimal trade-off between energy intake and output (Goldstein, 1988, Tolkamp et al., 2002), 

especially for species with restricted areas or episodic resource availability. In recent years, 

measurements of the energy expenditure of animals have been used with increasing 

frequency, particularly in ecological, biomechanical and conservation contexts (Shepard et 

al., 2008, Halsey et al., 2008d, Arnould et al., 1996, Halsey, 2011, Maloiy et al., 1986), as 

they enable a better understanding of life history (Hall et al., 2001), trophic flow (Lowe, 

2002), biogeography (McNab, 2002) and behavioural strategies (Hinch and Rand, 1998) as 

mentioned by Gleiss et al. (2010).  

1.2 How can energy expenditure be measured and estimated? 
The natural currency of life is represented as adenosine-5'-triphosphate (ATP). ATP is a 

reactive molecule whose chemical bindings are energetically full (Equation 1-1), and is used 

to process metabolic endothermic reactions. Once the reaction has been completed, ATP is 

converted into its precursor, via metabolic pathways, and it is thus recycled for further use. 

In animals, the predominant metabolic pathway that generates energy is aerobic oxidative 

respiration (Hill et al., 2008). 

Equation 1-1 

ATP → ADP + Pi + 7.3 kcal/mol ATP (Biewener, 2003) 
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1.2.1 Aerobic respiration and ATP formation 
Aerobic respiration consists of a series of chemical reactions that occur within the cell, 

especially in the mitochondria. The mitochondria are sometimes described as the energy 

factories of an organism, as they transform oxygen (O2) and carbohydrates (e.g. 

polysaccharides) into ATP,  carbon dioxide (CO2) and water (Hill et al., 2008) (Equation 1-2 

and Figure 1.1). Different sources of ATP are discussed in the chapter two ‘General 

Methods’ (in §1.2.2 and § 2.3.1.1). 

Equation 1-2 

C6H12O6 + 6 O2 + 38Pi + 38ADP → 6 CO2 + 6 H2O + 38 ATP, 

          kcal (as heat) (Eckert, 1988) 

 

Figure 1.1 ATP formation from degradation of lipids, polysaccharides and proteins, highlighting oxidative 

respiration (modified from Eckert, 1988). 



Chapter one 
General Introduction 

__________________________________________________________________________ 
 

__________________________________________________________________________ 

Astrid S.T. WILLENER 18 

 

The equation for aerobic respiration (Equation 1-2) shows that ATP production (i.e. the 

quantity of energy required) is directly proportional to heat production or gas intake and 

output. Direct calorimetry measures the heat production of an organism placed in an 

adiabatic chamber and was the first technique used to measure energy expenditure 

(Lavoisier, 1777, Lavoisier and Laplace, 1780, Lavoisier and Seguin, 1789). However, even 

with modern technology this seemingly simple measurement is not easily recorded with 

accuracy. The common alternative method is to measure exchanges in the respiratory gases 

(O2/CO2 + H20, Equation 1-2). This method of indirect calorimetry (O2 consumption or CO2 

production can subsequently be converted into estimates of power output using assumptions 

of the metabolic substrate) is typically called respirometry and is almost always conducted 

within an experimental environment. Respirometry is one of the most accurate 

measurements of energy expenditure when the study organism is respiring predominantly 

aerobically. Several other methods have been developed to estimate respiratory gaseous 

exchanges, each having their pros and cons. The scale of measurement (seconds, days) 

depends on the technique, some techniques are invasive, and some require expensive 

material or surgical knowledge, etc. Some of the most commonly used methods are doubly 

labelled water, body mass loss (Portugal and Guillemette, 2011), heart rate (Green, 2011), 

accelerometry (Halsey et al., 2011) and respirometry (Lighton and Halsey, 2011). For the 

work in this thesis, which centres on short-term measurements of energy expenditure, 

respirometry, the heart rate technique and the accelerometry technique were employed. 

1.2.2 Respirometry 
The proportions of O2 and CO2 breathed in and out from the subject animal are measured. 

This measurement can then be converted into the quantity of carbohydrates burnt and thus 

the amount of ATP can be extrapolated. The respiratory gas exchange of the subject animal 

is captured and analysed, by way of the animal either breathing into a mask or into a 

respirometry chamber within which it has been placed. A tubing circuit connects the expired 

air to the respirometer, which measures the proportions of O2 and CO2 entering and leaving 
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the box. Exhaled air results in a decrease in O2 concentration and an increase in CO2 

concentration in the sample air. Different metabolic fuels result in different ATP yields 

however calculating the respiratory exchange ratio, RER ( 
                    

                      
 

      

     
  

enables an estimation to be made of the substrate oxidized (Dejours, 1981; e.g. 0.7–1.0 for 

aerobic catabolism of fats and carbohydrates, respectively and proteins have intermediate 

values based on their mix of amino acids. Lighton, 2008). An RER lower than 1 indicates 

that the exercise is performed aerobically, indicating that the use of respirometry is 

appropriate to estimate energy expenditure. A requirement of the respirometry technique is 

that the animal must be subjected to an experimental material or environment. As each 

behaviour requires different energy expenditure, the specific studied behaviour should be 

reproduced by the animal in the laboratory environment. For instance to measure the 

walking energy expenditure, the experiment should involve a treadmill to enable the animal 

to walk while the respiratory gas exchange is measured. Ideally, the exhibited behaviour 

should be done in a similar manner as the natural behaviour. Additionally, changes in energy 

expenditure may be due to factors such as thermoregulation state (Kamau and Maloy, 1982), 

for this reason Green (2001) suggested that the natural condition should be mimicked as far 

as possible in the laboratory. To estimate the daily energy budget of an animal, the daily time 

budget of the animal needs to be done and then converted into energy expenditure via the 

calibration of energy expenditure collected in the laboratory. However, to create a time 

budget, the animal needs to be observed in the wild and with the least possible disturbances, 

which is not always technically possible. Thus, for this reason, proxies that estimate enable 

energy expenditure are used. These proxies are typically the heart rate (Figure 1.2) method 

and the increasingly used accelerometery (Figure 1.3) method, which enable measurement of 

the animal outside the experimental environment, without the need to follow the animal. 
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1.2.2.1 Limitations 
However, the method has some limitations that need to be taken into account. For instance, 

energy expenditure is not constant for each behaviour. Factors such as sex (Green et al., 

2001), thermoregulation state (Kamau and Maloy, 1982), physiological state (e.g. 

reproductive state) and nutritional state (Froget et al., 2001, Green et al., 2001) influence the 

entire organism physiology and thus the energy expenditure. External factors also influence 

energy expenditure, e.g. the walking surface (Pinnington and Dawson, 2001).  Consequently, 

mimicking the parameters of an animal’s natural condition when measuring energy 

expenditure logically improves the energy expenditure estimation. Another option would be 

to use several bivariate calibrations to estimate energy expenditure of a species. 

1.2.3 Heart rate 
Blood is the medium by which O2 is transported to the cells that require it. As Fick’s 

convection law explains (Equation 1-3), rate of oxygen consumption (    
) transferred from 

the arterial blood to the cells is proportional to the product of the difference in O2 

concentration between the arterial and venous blood, and the cardiac blood flow, the latter 

being itself the product of heart stroke volume and heart rate (Fick, 1870). If the difference 

of O2 concentration between the arterial and the venous blood and stroke volume are 

constant, heart rate varies linearly with     
. Experimentally, the relationship between     

 

and heart rate is collinear in many species (see  Green, 2011  for a definitive list until 2011), 

enabling an estimation of     
 from heart rate data collected in a free-ranging animal, using a 

calibration relationship obtained in the laboratory. Such calibration involves simultaneously 

measuring     
 and heart rate of the subject animal during activity at different levels 

(typically induced by a treadmill or water flume), thus in captive conditions. Consequently, 

calibration equations are described by the bivariate relationship between     
 and heart rate.  

Equation 1-3 
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;where     
 is rate of oxygen consumption,    is heart rate,    is stroke volume,     

 is 

oxygen content of arterial blood , and     
 is oxygen content of mixed venous blood.  

 

Figure 1.2 Application of the heart rate technique. ”Schematic diagram showing the two steps necessary for 

the full application of the heart rate method used to estimate metabolic rate in free-ranging animals. The ideal or 

“gold standard” approach would be to use the same individual in both steps. However a common approach is to 

use a different group of animals in each step, which necessitates the creation of a group relationship in Step 1, to 

be used in Step 2” (Green, 2011). See text for further details. 

1.2.3.1 Limitations 
Some of the factors modifying energy expenditure affect the     

- heart rate calibrations (see 

Green, 2011 for further details) such as sex (Green et al., 2001), thermoregulation state 

(Kamau and Maloy, 1982), physiological state (e.g. reproductive state) and nutritional state 

(Froget et al., 2001, Green et al., 2001). Indeed, for instance, thermoregulation (due to a 

change in activity level, Butler et al., 2000, Froget et al., 2002, or due to the environmental 

temperature, Green, 2011) affects the stroke volume (see Equation 1-3) via the 

sympathetic/parasympathetic systems to keep the body in homeostasis. Other individual 
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factors such as body condition achieved by training (e.g. wild versus captive individuals, 

Green, 2011) also influence stroke volume and thus the     
- heart rate calibrations. 

Consequently, it is advisable to mimic the parameters of an animal’s natural condition (e.g. 

temperature) as closely as possible in the laboratory during calibration experiments (Green, 

2011), as well as using the same individual while defining the calibration relationship and 

when collecting data while they are free-ranging. However, if the same animal cannot be 

used for both conditions, it is strongly advised to use a calibration relationship as well as free 

ranging data of a group of animals, which will avoid problems associated with differences 

between individuals (Green, 2011)  

1.2.4 Accelerometry 
Another method for estimating energy expenditure, which is becoming more widely used, is 

measuring levels of body movement in a subject animal via recordings of triaxial 

acceleration from an instrumented accelerometer. As explained in Gleiss et al (2010), energy 

is defined in physics by being the potential to do work. While in biology, energy is stored in 

the form of chemical bonds of ATP (§1.2.1) and used, for instance, to execute movements. 

Body movements (mechanical work,  ) are created by muscle contractions, which are a 

mechanism of shortening muscular filaments, themselves being activated by the reduction of 

ATP into ADP + Pi,i.e. chemical energy. The rate at which this mechanical work is done (and 

thus the rate of energy used) is termed the mechanical power ( ). Consequently, highly 

active behaviour requires more ATP than low activity behaviour. Several studies have 

demonstrated correlations between     
 and body movement (i.e. described as accelerations 

in physics). Although movement (i.e. locomotion) has been shown to be a highly variable 

component of animal time budgets (Garland Jr., 1983), it is still a highly important 

component in animal energetic budgets (e.g. Birt-Friesen et al., 1989, Tatner and Bryant, 

1986). However, the accelerometry technique is not useful for comparing or estimating 

energy expenditure for sedentary behaviours (see § 1.3 for further information about the 
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limit of     
-acceleration calibration). The physical link between acceleration produced by 

muscular contraction and mechanical power (and thus energy expenditure) is presented in 

Newton’s laws (Equation 1-4 and Equation 1-5). Acceleration is the difference between 

velocities (  ) per time ( ) (Equation 1-4), and the mechanical equivalent of energy 

expenditure is power ( ), which is the work ( ) made per unit time (in Watt/s) (Equation 

1-5). 

 

Equation 1-4 

   
  

 
 

 
 
 
 

 

  
 

Additionally, work equals force ( ) multiplied by distance ( ) to move an object (in Nm or 

J). A force is described as mass ( , in kilogram) multiplied by its acceleration ( ) and 

velocity is distance (in metres) covered per unit time (  in seconds). However, velocity can 

also be explained relative to acceleration. From Equation 1-4, proceeding to the integration 

of velocity by time results in an equation defining the rectlinear movement uniformly 

accelerated. 

 

Equation 1-5 

  
 

 
 

     

 
 

        

 
                         

Therefore, any mechanical work performed is the proportional result of the acceleration 

(their magnitude and duration) assuming that the mass of the object does not change. The 

power is also influenced by the velocity of the centre of mass at time 0 (   ), however 

locomotion gaits showing a ‘low dynamic’ activity level (Gleiss et al., 2010), as in human 

walking, has shown that the assumption of    = 0 results in a good estimate (Meichtry et al., 

2007). Gaits such as galloping, as in horses (Equus caballus), for example, require an 

estimation of     (Pfau et al., 2005). 
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A common method for biologists to express the level of body movement of a motile animal 

is a single measure which integrates the acceleration measured in all available spatial 

dimensions. Two different ways to measure levels of body movement exist: summing the 

absolute value of the dynamic body acceleration of the three axes (Further details in chapter 

two ‘General Methods’) or calculating the norm of the resulting vector from the three 

dynamic partial accelerations. The first method leads to ‘overall dynamic body acceleration’ 

(ODBA), which has already been widely used (e.g. Halsey et al., 2009b, Fahlman et al., 

2008, Wilson et al., 2006; Figure 1.3), while the second is called the ‘vectorial dynamic 

body acceleration’ (VeDBA) (Qasem et al., 2012). See Equation 1-6 and Equation 1-7. 

 

Equation 1-6 

                              

 

Equation 1-7 

                        
      

      
  

; where DBA is dynamic body acceleration (i.e. inertia of a movement in one of the tri 

dimensional axis) and the subscripts represent each of the three axes (further details about 

calculation of DBA are discussed in the chapter two ‘General Method’). Several studies have 

already shown a good correlation between     
 and ODBA (Figure 1.3) 

1.2.4.1 Limitations 
Accelerometry also has its limitations. Any changes in energy expenditure independent of 

activity will lead to biased estimations, when the relation     
- accelerometer is used. Energy 

expenditure may be underestimated due to post-absorptive state, if the animal is growing, 

gestating, outside of its thermal neutral zone, or if carrying an infant or another load. When 

the animal is soaring or on moving water, energy expenditure may be overestimated (Halsey 
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et al., 2011). Furthermore, changes in gait and mechano-chemical efficiency (defined by 

Alexander and Goldspink, 1977) have been shown to modify the relationship between     
 

and acceleration (Gleiss et al., 2010). Indeed, as shown by Newton’s laws, a change in mass 

influences mechanical power. Furthermore not all mechanical power includes movement. 

Indeed, isometric contractions generate force but not movement, whereby ATP is used 

without mechanical power, i.e. acceleration (Gleiss et al., 2010, Alexander and Goldspink, 

1977). Additionally, different muscle fibre types may have different efficiencies, which lead 

to a variation in energy consumption depending on which filaments are used (Gleiss et al., 

2010, Rome and Sosnicki, 1990). This may explain why changes in gait do not follow a 

linear     
- ODBA calibration as seen in humans (Halsey et al., 2008d). Also, the effects of 

wind or changes in topography such as incline on accelerometric data have not yet been 

widely tested (e.g. Halsey et al., 2008d, Terrier et al., 2001, Campbell et al., 2002). 

 
Figure 1.3 “Best fit linear relationships between rate of oxygen consumption and ODBA for a range of 

bipedal and quadrupedal species while resting and walking/running on a treadmill. Other behaviours were also 

displayed. Where data are available for multiple individuals of a species, a common slope is shown, derived from 

a linear mixed effects model. For clarity, the running order of species on the legend follows the order of slopes on 

the graph from top to bottom. Data for humans are included in an inset figure because values for rate of oxygen 

consumption are an order of magnitude greater than that of the other species” (Halsey et al., 2009b). 
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1.3 Stressed state as a limitation during the energy expenditure 
measurement   

Furthermore, calibration experiments are arguably stressful to the subject animals (Groscolas 

et al., 2010) and can potentially invalidate the energetic data or the calibration relationship 

obtained. For instance, an excess of 81% of heart rate has been found in king penguin due to 

an anthropogenic stressor (Viblanc et al., 2012a), but this study did not look at the 

magnitude of the effect of the stressor on     
. Groscolas et al. (2010) compared his 

calibration (Energy expenditure- heart rate) derived from data for “unstressed” king 

penguins with the calibration of Fahlman et al. (2004;     
- heart rate), using a more 

conventional protocol and thus with potentially stressed king penguins. Groscolas et al. 

(2010) found an underestimation of energy expenditure (average of 25%) when using the 

potential stressed-biased calibration (More details in Chapter four, Figure 4.1). Finally, 

several studies (e.g. Groscolas et al., 2010, Green, 2011, McPhee et al., 2003) have already 

suggested that a stressed state independently affects the cardio- respiratory and behavioural 

(which modifies the accelerometric data) responses. However none of them actually 

measured the magnitude of the effect of the stress response on the different systems. 

Furthermore nothing is known about the effect of a stressor on the      
 and VeDBA in king 

penguins. For this reason chapter three measured the changes in heart rate, rate of oxygen 

consumption and levels of activity in king penguins in response to a stressor to define their 

stress response. Nonetheless no energetic research has so far measured the effect on a subject 

animal of the stressed state resulting from the experimental environment and protocol in 

place, nor on the ability of experimental animals to acclimate. Chapter four in particular 

investigates the acclimation of king penguins to the experimental environment and protocol 

encountered during respirometry experiments. Chapter four also looks at the bias removal 

concerning specifically the respiratory, cardiac and behavioural stress responses. 
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1.3.1 What is stress? 
Stress is often described as a threat to homeostasis where homeostasis is, as defined by 

McEwen and Wingfield (2003), the “stability of physiological systems that maintain life” 

(e.g. pH, body temperature, glucose levels). Cardiac, thermic and behavioural stress 

responses in penguins have already been studied (Nimon et al., 1995, Culik and Wilson, 

1991, Viblanc et al., 2012a, Regel and Pütz, 1997). However, stress responses are typically 

difficult to generalise because they can differ between species (Hill et al., 2008), individuals 

(Romero, 2004) due to life histories, especially during early development (Kitaysky et al., 

1999b, Kitaysky et al., 1999a), over time with acclimation (Romero, 2004), between stressor 

types (Moberg and Mench, 2000), and when multiple stressors occur simultaneously 

(Dallman et al., 1992). This is also partly because stress affects the entire physiology of an 

organism (Hormonal, cardiac, immune system, psychology, etc.), which means that 

assessing and measuring ‘stress’ is complex. Additionally, the wording related to ‘stress’ is 

sometimes misused or unclear within the scientific community (Romero, 2004). To avoid 

confusion, this thesis used the definitions of Romero (2004); Stressor: ‘a noxious or 

unpredictable stimulus that causes a stress response’. ‘Stress response: the physiological, 

hormonal and behavioural changes that enable an animal to cope with a stressor’. 

‘Acclimation: the concept that after repeated or chronic exposure to a stressor, an animal no 

longer considers the stressor to be noxious and reduces its glucocorticoid response.’ 

1.3.2  Stressor 
Different stressors (thermic-, toxic-, etc.) generate different physiological responses (Moberg 

and Mench, 2000). This thesis concentrates only on external negative stressors (i.e. fear or 

tension stress: predator detection, aggressive social interactions, shock avoidance, death-

threatening manoeuvres, detection of human presence for unacclimated individuals, etc.). In 

humans, the closest equivalent would be a ‘psychological stressor’, but as this research is on 

wild animals, the term ‘disturbance stressor’ is implied when the word stressor is used. 
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Furthermore, as the reaction to human presence is being investigated, the stressor was 

specifically an ‘anthropogenic disturbance stressor’. 

 

 

 

Figure 1.4 Simplified pathway showing the cardio, respiratory and behavioural stress responses. ACTH : 

Adrenocorticotropic hormone. Adapted from multiple sources:  Romero (2004), Von Borell et al. (2007) and 

Moberg and Mench (2000).  
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1.3.3 Short term stress response 
Reactions to stressors affect almost all the physiological functions of an organism via the 

sympathetic and parasympathetic system (Hill et al., 2008). When a stressor is perceived by 

the central nervous system, catecholamine is secreted and acts on the sympathetic system by 

increasing heart rate (von Borell et al., 2007, McCraty, 1996). With a delay of about a 

minute, and if the stressor is strong enough, another hormonal cascade is engendered 

through the hypothalamic-pituitary-adrenal axis which finally secretes glucocorticoids. This 

pathway enables changes in metabolic rate and     
, as the glucocorticoid response regulates 

blood sugar concentration, used to create ATP by aerobic respiration (Hill et al., 2008). All 

these changes prepare the “fight or flight” (Cannon, 1929) or the updated “freeze, flight, 

fight or fright” (Bracha et al., 2004) behavioural stress response. As this thesis also involves 

short term energy expenditure measurements, focus is on the stress responses affecting the 

respiratory, cardiac and behavioural systems (Figure 1.4). 

1.3.4 Measuring the stressed state and subsequent acclimation  
Several techniques exist to measure stressed states. Some of them require blood sampling, 

some are only suitable for measuring short term reactions, while others require complex 

knowledge or materials. The most commonly measured variables are: hormones, heart rate, 

vocalisations, behaviour (vigilance), and respiration. By definition, the theoretical reference 

method is the measurement of blood hormone (i.e. glucocorticoids) (Romero, 2004, Hill et 

al., 2008). As mentioned earlier, stress responses are directed by a hormonal reaction which 

activates/inhibits different body systems. As this thesis focuses on energy expenditure 

measurements, glucocorticoids were not measured, but only variables related to energy 

expenditure as respiratory gas exchange, heart rate and activity levels, i.e. behaviour (Figure 

1.4). Indeed glucocorticoids would have led to an additional specific stress response linked 

with blood sampling. Consequently, the term ‘stressed’ data used in this thesis refers to ‘data 

collected under an anthropological disturbance’. The ‘unstressed data’, representing 

‘acclimated data’ mostly refers to ‘data with stressor-induced bias removed’. However these 
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‘unstressed data’ may still represent a physiological stressed state, albeit less stressed than 

the experimentally induced stressed state, or during the first period after being placed in the 

experimental environment. 

1.4 King penguins 

1.4.1 General information 

 

Figure 1.5 Life cycle of king penguin colony. The centre circle denotes the twelve months of the year, with the 

summer in white and winter in black. The surrounding pie charts describe the breeding state of king penguin 

colony. A repetition of the months is provided around the outside of those charts. The spirals represent the 

breeding cycle of a typical, successful pair of breeding king penguins. M is for moult, C for courtship and I for 

incubation. Plain lines represent when the bird is onshore and the dashed line represents when the bird is at sea. 

The striped shaded area represents the kind of individuals taken for groups B and C of this study, while the 

checked shaded areas represents the kind of individual taken for group A and D (Table 2-1). Illustration adapted 

from Ménard J.J.,(1998). 

King penguins (Aptenodytes patagonicus) are the second largest species of extant penguin 

(from 9 to 16 kg at Crozet Archipelago; Barrat, 1976) after the emperor penguin 

(Aptenodytes forsteri). Both sexes look similar, but females are slightly smaller. King 
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penguins are pelagic (Ainley et al., 1992), spending most of their time at sea. They come 

onshore for breeding and moulting, forming big colonies. King penguins arriving at the 

beginning of the breeding season are considered as early breeders, while birds laying after 

mid-January are considered as late breeders (Figure 1.6). As king penguins eat mainly 

myctophid fish and some cephalopods (Cherel and Ridoux, 1992), they fast whenever they 

are ashore. Offspring care switches between partners throughout the breeding season (termed 

shifts). One partner stays onshore while the other is foraging at sea (Figure 1.5). Foraging 

trips become progressively shorter over the season from 24.0 ± 4.9 days in early November 

to 21.6 ± 3.0 days in mid-December at Crozet Archipelago (Barrat, 1976). Parents take turns 

to incubate the egg and chick with an average of five shifts over the incubation period. 

Figure 1.5 summarises a successful reproductive year for a breeding pair of king penguins. 

Most colonies are situated near the shore, but some can be further inland as on Ile aux 

Cochons, Crozet Archipelago (Barrat, 1976). This colony is 1.3 km inland and at an altitude 

of 100 m. The size of a colony can reach 200 000 pairs (at Ile aux Cochons) with a mean 

distance of 89 cm between eggs (at Crozet and Kerguelen Archipelagos; Bauer, 1967). King 

penguins have no nests but have a so-called ‘zone of attachment’ (Barrat, 1976). The single 

egg is incubated on the feet of the adult in a special ‘brood pouch’ (Handrich et al., 1995), 

the incubating parent being able to walk a short distance if necessary, as, for example, to 

escape water flooding.  

 

Figure 1.6 Early and late breeder’ incubation shifts in relation to the month. F = female; M = male 

(modified from Gauthier-Clerc et al., 2002). 
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1.4.2 Actual population state 
The potential deterioration of resources in the Southern Ocean may increase the sensitivity 

of long-lived, diving predators such as penguins (Sphenisciformes) to energy-dependent 

factors. A better understanding of their energy costs would provide insights into their energy 

budgets and its limits. This would improve their protection by focusing on specific sensitive 

areas. Penguin populations are considered to be vulnerable to environmental changes and to 

exhibit slow recoveries in case of population crashes (Williams, 1995). Many species of 

penguin breed in a relatively limited latitudinal range, whether that is within the subtropics, 

the Antarctic, or more temperate latitudes. These birds, towards the top of the food chain, are 

good indicators of the effect of environmental change in ecosystems (Aebischer et al., 1990, 

Gjerdrum et al., 2003, Voigt et al., 2003, Halsey et al., 2007b, Williams, 1995). Indeed, they 

depend on the rich southern marine area, and are sensitive to any changes in the abundance 

and distribution of their prey (Williams, 1995). In addition, recent climatological changes 

and other anthropogenic influences may result in lowering survival success of king 

penguins. For example, Peron et al. (2012) have predicted an extension in foraging trips for 

king penguins within the next decade as the polar front will move further south due to global 

warming. Overfishing has also been shown to impact on penguin populations (Williams, 

1995, Burger and Cooper, 1984). While at sea, king penguins spend most of their time on the 

surface, which increases the likelihood of their contact with pollution (plastic, oil etc.) 

(Williams, 1995). The breeding cycle of penguins is long and is associated with low 

reproductive success (only 21.5% of the birds returning at the colony of Baie du Marin 

successfully raised a chick in 1998-2000; Descamps et al., 2002). For example, king 

penguins attain sexual maturity at the age of four and lay only one egg per attempt. Their 

breeding cycle lasts more than a year, precluding the possibility of reproducing successfully 

every year (Williams, 1995). In recent years, colonies of king penguins are typically 

increasing (Weimerskirch et al., 1992, Woehler and Croxall, 1997, Woehler et al., 2001, 
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Delord et al., 2004), probably recovering from hunting by sealers during the 19th century 

(Delord et al., 2004). However, since the 1990’s, further anthropogenic impacts have served 

to blight penguin populations, for example the observed decreases of some colonies of 

Adélie (Pygoscelis adeliae) and chinstrap (Pygoscelis antarcticus) penguins (Culik and 

Wilson, 1991). Explanations focused on the possibility that the birds were experiencing 

increased stress levels due to, for example, increases in tourism (Culik and Wilson, 1991, 

Nimon et al., 1995, Culik and Wilson, 1995). Indeed, being a relatively curious, large, 

flightless bird living in colonies makes this species fairly easy to approach. Interestingly, all 

the colonies of king penguins on Possession Island (one of the five Islands in the Crozet 

Archipelago) are increasing, resulting in an overall increase in the island’s population 

(Figure 1.7), with the exception of the colony at La Baie du Marin (Figure 1.8) (Delord et 

al., 2004). La Baie du Marin is the only colony subject to an almost constant anthropogenic 

presence, occasionally used for boat access, as well as being entered daily for scientific 

research throughout the year. Research into anthropogenic effects on penguin populations 

has increased in recent years as a rise in studies into the effects of disturbance such as the 

effect of certain markers or loggers that disturb the hydrodynamic shape of penguins (Saraux 

et al., 2011, Gauthier-Clerc et al., 2004, Jackson and Wilson, 2002, Hindell et al., 1996, 

Bannasch et al., 1994). Flipper bands extend the king penguin’s foraging trips due to a 

decrease in their foraging efficiency, which leads to a decrease in adult survival and chicks 

successfully reared (Saraux et al., 2011). Moreover, disturbance resulting from direct human 

presence (Culik and Wilson, 1991, Nimon et al., 1995, Culik and Wilson, 1995, Viblanc et 

al., 2012a, Nimon et al., 1996) has also aroused interest. However, while measurements of 

heart rate have already demonstrated a stress response (Nimon et al., 1996, Nimon et al., 

1995, Viblanc et al., 2012a), as yet no studies have looked directly at the short-term cost of 

this disturbance. For this reason, chapter three investigates the effect of a stressor on the 

energy expenditure of king penguin, via     
, heart rate and levels of body movement.  
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Figure 1.7 Estimates of the breeding populations of king penguins on Possession Island, Crozet 

Archipelago. White circles: estimates are computed for all the colonies of the island combined; Black circles: 

estimates were computed excluding the colony of la Baie du Marin. Errors bars indicate ±SE (from Delord et al., 

2004). 

 

 

 

 

Figure 1.8 Population model fitted to counts of breeding pairs (logged) 1962– 2003, for the colony of la Baie 

du Marin, Possession Island. Lines indicate predictions of linear regression models (dashed line), including 

95% of confident intervals (dotted line) (from Delord et al., 2004) 
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1.4.3 King penguin energetics and ecology 
The life cycle of penguins, including extreme meteorological conditions, attracted attention 

and studies on their energy expenditure (Nagy et al., 1984, Wilson et al., 2004). Their skills 

as air-breathing deep divers attract research interest into their at-sea energy expenditure, 

indeed they spend most of their time in water and swim considerable distances during 

foraging trips. Several studies have estimated their energy expenditures at sea or their levels 

of energy intake (Kooyman et al., 1992, Hanuise et al., 2010). Their restricted energy 

expenditure budget while on shore has also attracted attention (Halsey et al., 2007b, Gales 

and Green, 1990, Halsey et al., 2008a, Groscolas et al., 2010, Viblanc et al., 2012a, Viblanc 

et al., 2011a, Fahlman et al., 2005, Brown et al., 2004, Groscolas, 1990, Groscolas et al., 

2007, Groscolas and Robin, 2001, Halsey et al., 2008c). Indeed while on shore king 

penguins are fasting as they only eat at sea. Consequently, the success of their reproduction, 

as well as for individual or species survival, depends on effective management of energetic 

expenditures during fasting periods (Brown et al., 2004, Viblanc et al., 2011a, Groscolas, 

1990, Groscolas et al., 2007, Groscolas and Robin, 2001, Halsey et al., 2008c). During the 

reproductive season king penguins spend 30 to 50% of their time onshore (successful and 

unsuccessful reproduction, respectively, Descamps et al., 2002). The pair shares the parental 

care of their chick. Thus, parents are submitted to intermittent fasting periods (an average of 

10 egg or chick exchanges occur between a pair of breeding adults) and foraging periods at 

sea. While onshore, they stay protecting the egg or the chick, and while foraging, they hunt 

close to the polar front in the open sea. The beginning of each foraging trip requires the 

parent to walk from the ‘zone of attachment’ (Barrat, 1976) (King penguins have no nests ) 

to the sea or vice versa. However, some king penguins nest more than two kilometres from 

the sea (Guinet et al., 1995, Halsey et al., 2007b) and must walk this distance either laden 

after foraging or having fasted for up to a month. Halsey et al. (2007b) estimated walking 

energy expenditure by measured     
 at different speeds and body masses in king penguins. 

Interestingly, even though total weight loss may have represented a third of their maximum 
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(i.e. sated) body mass, according to these treadmill studies, heavy king penguins used around 

the same amount of energy to move a unit distance as when much lighter having fasted 

(Halsey et al., 2007b). This showed an optimised adaptation of the cost of load carrying, 

contrasting with observations within other species, including humans (Browning et al., 2006, 

Marsh et al., 2006, Griffin et al., 2003, Tickle et al., 2010, Taylor et al., 1980) where the cost 

of transport was higher for heavier subjects. As the factors influencing the energy 

expenditure of pedestrian locomotion are still unclear, investigating this optimised 

adaptation to understand its mechanism could enable a better understanding of the factors 

influencing the cost of transport. Chapter five looks at the energetically ‘optimised fat 

penguin’ using biomechanical measurement through tri-dimensional analyses of the gait of 

king penguins, as well as their global triaxial accelerometry.  

 

Figure 1.9 Tracks of king penguins from Possession Island (Crozet Archipelago), instrumented with GPS 

during the summer (incubating and brooding stages). PF is for the Polar front and SAF is the sub-Antarctic front 

(from Charrassin and Bost, 2001). 

 

Halsey et al (2007b) concluded that the cost of pedestrian locomotion of king penguins may 

not be submitted to selection pressures since even a long walk of two kilometres to the 

colony represented only an additional increase of 1% in      
 for the entirety of a 20 days 

sojourn offshore. However these calculations did not account for parameters for which 
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relevant measurements had not yet been recorded such as topography and stressed state (e.g. 

due to conspecific interactions between breeders within the colony;  (Williams, 1995). Due 

to the predicted extension in foraging trip (Peron et al., 2012), the key moment of the longest 

fasting period (involving the courtship until the second egg shift, which is endured by the 

male; see Figure 1.5 for king penguin reproductive cycle) could become a sensitive limiting 

factor of the reproductive success of king penguins. A male can fast for a period of 29 days 

from courtship until the second egg shift, at which point it is finally able to go foraging 

(Gauthier-Clerc et al., 2001). However, the male still has to walk back to the sea from the 

‘zone of attachment' (which can involve a two kilometre journey) and then needs to swim 

out to the polar front (a journey of over 600 km south) to find its prey (Charrassin and Bost, 

2001, Peron et al., 2012) (Figure 1.9). Thus an extension of the foraging trip due to global 

warming would involve a supplementary cost to their restricted energetic budget. 

Additionally, this long fasting period depends on the female returning from its foraging trip 

to the polar front. Thus an extension in foraging trip duration would lead to an extension in 

fasting period for the partner. Consequently, small factors influencing energy expenditure 

such as walking on an incline and while stressed could be decisive factors in modelling the 

onshore energy expenditure of king penguins. The energy expenditures of incubating birds 

have already been studied by Viblanc et al. (Viblanc et al., 2012a, Viblanc et al., 2011a, 

Viblanc et al., 2012b) resulting in an estimation of the cost of each behaviour (such as 

cleaning, defence, etc.). However the additional cost of stress response per se has not been 

taken in account. Chapter six estimates the cost of this longest fasting period as an example 

of using energy expenditure to better understand the ecology of a species. A simple 

estimation compared the energy expenditures of two groups of breeders (i.e. early and late, 

which are known to have very different reproductive successes; Descamps et al., 2002) 

while incubating, taking the cost of the stress response of territory defence into account, as 
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well as the cost of walking to the zone of attachment over terrains representing different 

inclines. 

1.5 Aims of the thesis  
This thesis has four aims focussed on providing a better understanding of the onshore life of 

king penguins, especially their physiological stress response and the biomechanics of their 

pedestrian locomotion, using their energy expenditures. One aim is addressed per chapter. 

The aims are (1) to assess the cardio-respiratory and behavioural stress responses and their 

cost in king penguins, accounting for  the movement (chapter three), (2) to avoid stress-

induced errors in estimates of energy expenditure by defining an appropriate protocol 

ensuring acclimation of the king penguin to the environment and protocol of calibration 

experiments (chapter four). (3) To find the parameters influencing the energy expenditure 

of walking, using the optimised fat king penguins as a model (chapter five). (4) To estimate 

the cost of incubating for early and late breeders during the longest fasting period, taking the 

cost of stress response and walking on an incline into account (chapter six). 
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2.1 Material and methods 

2.1.1 Preparation and fieldwork  
During two austral summers, fieldwork was undertaken within the king penguin colony at 

‘Baie du Marin’ (Figure 2.1) on Possession Island, Crozet Archipelago, Southern Indian 

Ocean (46°25’S; 51°52’E). The first summer campaign ran from November 2009 to March 

2010, while the second campaign ran from November 2010 to March 2011. Due to the 

remote location of the island (both geographically and in term of communications), scientific 

and non-scientific preparations (e.g. health check, visa application) prior to the trips were 

substantial. Planning of experiment and scientific approval had to be obtained two years 

prior, and one year prior for ethics approval. Materials had to be prepared and sent two 

months in advance from the French National Centre for Scientific Research in Strasbourg, 

France. The journey to reach the island involved a flight to the island of La Reunion, then a 

four day trip by ship (the Marion Dufresne) to Possession Island (Figure 2.2). Transfer to the 

island from the ship was via helicopter, which also transported all supplies from the ship to 

support the functioning of the island for the next few months. The Marion Dufresne typically 

services Possession Island four times a year, in November, December, March and August. 

The respirometry chamber custom-made for this project was not produced sufficiently in 

advance such that it could be shipped to Possession Island for the first field season. For this 

reason the first summer campaign focussed predominantly on developing and trialling 

experimental designs and methods. 
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Figure 2.1 Baie du Marin colony and the laboratory shelters (Courtesy of Maxim Loubon). 

 

Life on the island involved some specific administration, rules (i.e. need to know first aid, 

rudiments of fire fighting) and social life on Possession Island, which sometimes do not 

prioritise research (i.e. experiment were not allowed while in the presence of visitors). 

Consequently, the first season helped me to acquire all the knowledge and skills needed for 

independent work, as well as to select the best place for the experiment and the best set up 

for the video recording. For the second season, the video recording protocols were 

improved, as this equipment had never been used in such rudimentary conditions, and thus 

needed to be thoroughly tested. All other techniques have already been used on king 

penguins, thus no tests were needed but a protocol to use all techniques simultaneously 

needed to be developed.  
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Figure 2.2 Journey of the Marion Dufresne (picture adapted from http://www.marine-

marchande.net/Petits_Reportages/Auroy/Marion/00-Rotation,.jpg). 

 

2.1.2 Ethics 
All procedures used in the present study were approved by the Ethical Committee of the 

Institut Polaires Français-Paul Emile Victor (IPEV) and the Ministère de l'Environnement, as 

well as the ethics committee of the University of Roehampton. The requirements of the 

United Kingdom (Scientific Procedures) Act 1986 were followed. Guidance to researchers 

based in the United Kingdom using similar methods was used as reference. 

2.1.2.1 Subject birds 
Thirty two birds were used in experiments during this project (10 during the first field 

season; 22 during the second). The bodies of two dead penguins were also measured. Details 

about the selection of the subject birds and the experimental protocol are explained only for 
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the birds for which the data were subsequently analysed. Table 2-1 is a summary of the 

different experimental groups of birds, the experimental protocol and the related chapters 

where the data have been used.  

Table 2-1 Summary of the groups of birds studied. 

Gr-

oup 

Ex-

peri-

ment 

Nb of 

birds 
Sex 

Reproduc-

tive status  

(Figure 

1.5) 

Specification 
Data 

collected 

Used in 

chapter 

A Pilot 10 Male In 

courtship 

Heavy, 

periphery of 

the colony  

Heart rate, 

accelerometry, 

body mass, 

video. 

Pilot 

testing and 

protocol 

develop-

ment 

B I 6 Male In 

courtship 

Periphery of 

the colony 
    

, heart rate, 

accelerometry 

3,4,6 

C I 6 Unknown Incubating Close to edge, 

low success 
    

, heart rate, 

accelerometry 

3,4,6 

D II 10 Male In 

courtship 

Heavy, 

periphery of 

the colony 

    
, heart rate, 

accelerometry, 

body mass, 

video. 

5,6 

E III 2 Unknown Dead One heavy, 

one thin 

Centre of 

mass, body 

mass 

5 

 

Group A: The group of birds captured during the first field season consisted of ten healthy 

males in courtship (Figure 1.5) with high body masses (>12 kg) and able to walk on a 

treadmill. Selecting birds in courtship assures that they are not presently breeding.  In 

addition, as both sexes look similar, selecting birds engaged in courtship enabled  

identification by behaviour (Barrat, 1976) and selection of males only, as crucial differences 

in physiology have been found between sexes of the same species (e.g. energy expenditure-

heart rate relationships; Green, 2011). Furthermore it is assumed that birds in this state have 

empty stomachs and thus are post-absorptive (Halsey et al., 2007b, Gauthier-Clerc et al., 

2000). This is important to ensure that the source of ATP production is mostly on lipids, 

enabling an accurate conversion of     
 into calories. These birds were used to develop an 



Chapter two 
General Methods 

____________________________________________________________________________________________________ 

 

__________________________________________________________________________ 

Astrid S.T. WILLENER 44 

 

 

experimental protocol involving the simultaneous measuring of cardiac function and gait (by 

accelerometry and video) while walking on a treadmill.  

Group B: Six males in courtship (Figure 1.5) were captured near the shoreline at the edge of 

the colony. Birds were tested for their ability to walk on a treadmill and trained to do so 

during at least two sessions of walking, each for approximately 10 minutes. 

Group C: Six relatively newly incubating birds (Figure 1.5) of unknown sex and with low 

likely reproductive success (late breeders nesting in a peripheral area of the colony; Barrat, 

1976) were selected. King penguins taking care of a chick or incubating an egg close to 

hatching tend to have full stomachs. Using newly incubating birds allowed the assumption 

that these birds were solely metabolising lipids (Gauthier-Clerc et al., 2000). 

Group D: Ten king penguins in courtship (Figure 1.5)  with heavy body masses (>12 kg) 

were identified as males from their behaviour (Barrat, 1976), and were captured near the 

shoreline at the edge of the colony. They were kept for 22 days in a pen while they fasted, 

thus enabling data to be collected from the same individual at different body masses. They 

were tested for their ability to walk on a treadmill and trained to do so during at least two 

sessions of walking each for approximately 10 minutes. 

Group E: Bodies of two dead king penguins with different body masses (13.6 and 11.1 kg) 

were collected from la Baie du Marin. The heavier cadaver was obtained from another 

research project and represented an individual that had not survived experimental surgery, 

thus it had a healthy body condition including substantial fat reserves. The lighter cadaver 

was a bird found dead within the colony and had less endogenous energy reserves. Both 

were frozen (-40°C) and brought back to the National Natural History Museum of Paris. The 

heavy cadaver was kept in alcohol (Formaldehyde and Ethanol 70%) while the light one was 

preserved in a frozen state (-40°C). 
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2.1.3 Shelters and pens 
Two shelters and three pens located within the study colony (Figure 2.1) were employed 

during the experiments. During the first season, all experimental setups were placed upon a 

wooden platform to reduce the impact of the shelter on local moss ecology and reduce the 

ambient humidity in the shelter. However other human activities near the shelters caused 

vibrations which unduly disturbed the quality of the video footage obtained (§ 2.1.8.2). Thus 

for the second season, an alternate shelter was used for experiments, which was built into the 

ground. A separate shelter was employed for housing the computers used for loggers 

programming, equipment charging, minimising disturbance to the subject birds. The door of 

the first was always left open for aeration and to ensure that conditions inside were similar to 

those outside. When needed, two to three birds were kept within a pen. The pens consisted of 

wooden walls (2 m high, 3*3 m surface) with a door and with wire netting across the top to 

keep skuas (Stercorarius antarcticus) out, while enabling access to rain water. Apart from 

the relative lack of wind, meteorological conditions in the pens were similar to those of the 

colony. A thin gap in the wall enabled the monitoring of the birds without disturbance. 

2.1.4 Treadmill 
A treadmill (DOMYOS model TC 530, 1370 * 1520 * 782 mm) adapted to be water and 

faeces resistant was used during both seasons. During some experiments the treadmill was 

elevated using wooden planks to reach an incline of approximately 13%. The speed range 

was from 0.8 km/h to 16 km/h by increment of 0.1km/h and was independent of the body 

mass of the walker. The speeds used to collect data were: 1.0, 1.2, 1.4 and 1.6 km/h. 

2.1.5 Respirometry 

2.1.5.1 Respirometer chamber  
The chamber (80*50*70 cm, 280 L) enabled the king penguin to comfortably walk with a 

natural gait. The chamber was made of translucent acrylic with six fans on the top to 

maintain good homogeneity of gaseous concentrations. The chamber was secured over the 

tread of the treadmill (Figure 2.3). Exterior air was drawn from a tube connected to the 



Chapter two 
General Methods 

____________________________________________________________________________________________________ 

 

__________________________________________________________________________ 

Astrid S.T. WILLENER 46 

 

 

outside of the shelter. However the system was an open-flow system as a small gap existed 

between the chamber and the treadmill frame, from which a small portion of the air from the 

laboratory entered. To minimise the gas resultant exchange through this aperture, brushes 

were added as skirting, around the bottom of the chamber frame. During the ‘stressor 

experiments’, because the researcher was in close proximity to the chamber, the researcher 

breathed into a mask incorporating a unidirectional valve such that all expired air was 

evacuated to the outside and thus did not affect respiratory gas levels in the laboratory. 

 

Figure 2.3 General respirometer setup and plumbing. P stands for partial pressure. 

 

2.1.5.2 Respirometry protocol 
Flow rate (FR), water vapour pressure, barometric pressure, and molar fraction of CO2 and 

O2 were measured at 1 Hz in a sample of excurrent flow from the respirometer chamber 

using an open-flow respirometry system (Figure 2.3), and recorded using computer software 

(Expedata; Sable Systems International, USA). Chosen flow rate was based on the size of 

the chamber: The large volume of the chamber needed a high flow rate to enable a short time 

constant such that the subject need not walk for an extend period until respiratory gas levels 

in the chamber reach equilibrium (Lighton, 2008). Additionally, a high flow rate is also 
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needed in open-flow systems to avoid gas leak. However a high flow rate decreases the 

difference between the intake and output gas concentration, reducing the measurement 

signal. Finally choice of flow rate needs also to consider the potential accumulation of CO2, 

which, at high concentration can be dangerous for the animal. Considering all these 

compromises, a flow rate of 80 L min
-1

 was used. Consequently the time constant of the 

system was 3.5 min (
      

         
 

   

  
 = 3.5, thus 3*3.5= 10.5 minutes to reach 95% 

equilibrium; Lighton, 2008). A sub-sample (200 mL min
-1

) of excurrent gas was analysed by 

a Turbo FoxBox respiratory gas analyser (Sable Systems International, USA). Water was 

removed from the air by passing it through Drierite prior to analysis. The analyser was 

calibrated every second day (with a mixed gas of CO2 (~1.0 %) and O2 (19.98 %)) followed 

by nitrogen injection tests to validate the system (Lighton, 2008, Lighton and Halsey, 2011). 

The O2 sensor was spanned each day with dry ambient air at 20.95%. The zero point of O2 

was fixed by the manufacturer and did not require calibration. The calibration of water 

vapour pressure was also completed every two days. The main flow of excurrent air from the 

respirometer was evacuated to the outside. During the experiment, baselines from the 

outside air were taken approximately every half hour to measure the drift of the sensors due 

to changes in temperature and pressure throughout the day. 

2.1.5.3 Respirometry calculations 
Expedata was used to correct spikes and analyser drift in measurements of O2 concentration. 

To interpret near instantaneous changes in O2 concentration in the chamber, the 

‘instantaneous equation’ defined by Woakes and Butler (Woakes and Butler, 1983) was used 

to calculate volumes of O2 uptake (   
, in ml) between any two points in time (i.e. t1 and t2, 

in sec) of fraction of O2  (   
  in time (as in Halsey et al., 2009b). 

Equation 2-1 

                                          
      

                   

 
 



Chapter two 
General Methods 

____________________________________________________________________________________________________ 

 

__________________________________________________________________________ 

Astrid S.T. WILLENER 48 

 

 

;where t1 and t2 are two points in time (in sec) with their respective fraction of O2  (   
 ,V is 

the chamber volume in ml,     is the dry flow rate (corrected for removed water vapour) in ml 

min
-1 

 and the subscripts ‘e’ and ‘i’ are for excurrent and incurrent    
, respectively. The 

instantaneous equation defined by Woakes and Butler (1983) assumes RER to be close to 1 

and invariable throughout the activity. For this reason, CO2 can be replaced in the equation 

and the final equation only includes O2. It is assumed that birds used in the present study 

were only metabolising lipids, as they were fasting. They were thus assumed to have empty 

stomachs and therefore post-absorptive (Halsey et al., 2007b, Gauthier-Clerc et al., 2000). 

However, RER was checked to be lower than 1 and reasonably constant before the analyses. 

Rate of O2 consumption per minute (    
, in ml/min) was found by multiplying         by 60.  

2.1.6 Heart rate 
The make of heart rate data loggers used during this project (models RS400, RS800 or 

RS800lite, Polar Electro Oy, Kempele, Finland) have been used previously in several 

research projects on king penguins (Viblanc et al., 2012a, Viblanc et al., 2011a, Groscolas et 

al., 2010). The heart rate logger consisted of a cardiac electrical activity detector and emitter, 

as well as a watch receiving and saving the data. The emitter filtered the electric signals 

received by both electrodes enabling it to accurately calculate heart rate without bias from 

other electrical activity such as due to muscle contraction or electrode noise. Data were 

transferred instantaneously to the receiver by radio-wave transmission. Adaptations of this 

human heart rate logger were made following Groscolas et al. (2010), consisting of the 

addition of security pins to the extremity of the emitter. The logger was attached using 

adhesive tape (Tesa® 4651) to the middle of the subject bird’s back to avoid hindering 

natural movements (Figure 2.4). Heart rate was calculated and recorded each second. Once 

the equipment was removed, data were transferred from the Polar watch onto a computer 

using the Polar logger software: output files were then cleaned for outliers and subsequent 

data analysis conducted with R Cran (R Core Team, 2012).  
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Figure 2.4 View of a Polar attached to a king penguin. Polar emitter (left) and a Polar receiver (right). 

 

2.1.7 Accelerometry   
Acceleration data loggers (Figure 2.5) were attached to the feathers of the penguin with tape 

(Tesa® 4651) on the bird’s back, at the height of the hip (Figure 2.6). This is the assumed 

height of the centre of mass, which is the unique spatial point where the weighted relative 

position of the mass distribution sums to zero. Data were recorded at 32.5Hz. The 

accelerometers were made by the Département Ecologie, Physiologie et Ethologie (DEPE, 

department of the IPHC, CNRS, Strasbourg), model Macrologger FCM (Medina, R. Laesser, 

Strasbourg, France, 85*35*18 mm, 80g.). The triaxial accelerometers (3*3 mm) were made 

of three accelerometry sensors fixed perpendicularly. Each of the sensors is sensitive to both 

the acceleration due to the Earth (gravitational acceleration) and the changes of speed of one 

body axis, i.e. body accelerations, whose acceleration resultant is perceived and measured as 

raw acceleration of the given axis.  

 

 

http://www.iphc.cnrs.fr/spip.php?page=rubrique&id_rubrique=89
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Figure 2.5 Accelerometer data logger being attached to a penguin. 

 

 

 

 

Figure 2.6 Position of the loggers. The accelerometer data logger is placed on the backbone. The heart rate data 

logger is placed higher on the right side of the back 
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A simplified schematic view of an accelerometer is as a weight held by two springs, one at 

each end, able to move in only one axis in a cylinder as illustrated in Figure 2.7 and Figure 

2.9. The recorded raw accelerations for a given axis is the sum of two components: the static 

(static body acceleration, SBA) and the dynamic accelerations (dynamic body acceleration, 

DBA). The static body acceleration measurement represents the orthogonal projection of the 

reaction to gravitational acceleration on the given axis (Figure 2.8) and is included between 

[-1 g, 1 g] (g = 9.81 m/s
2
). The general equation is a scalar production (Equation 2-2). The 

norm of the resultant of the three static body accelerations is equivalent to 1 g. Because the 

gravity vector is always and strictly orientated on the vertical, the three static body 

accelerations directly vary with body orientation (i.e. posture) and its change (i.e. tilt angles 

as pitch and roll. Further descriptions on the angles in § 2.1.7.1). For example, the horizontal 

position of the accelerometer illustrated in Figure 2.8 represents a static body acceleration of 

0 g of the axis x, while an upright vertical position leads to a static body acceleration of -1 or 

+1g depending of the direction. To simplify the interpretation of the position of a logger, 

signs of the results of the scalar production were transformed to represent the displacement 

of the logger and not the reaction to inertia. For instance, when the logger is in an upward 

position, the resulting acceleration is positive (as in Figure 2.8), even though the 

mathematical scalar production, i.e. the measured acceleration, is negative. 

 

Equation 2-2 

                    

 

; where         is static body acceleration,    is gravitational acceleration and   is the angle 

between the axis of measurement and   . 
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Figure 2.7 Representation of static body acceleration. Effect of the orientation on an accelerometer, 

schematically represented as a weight pulled by two springs, one on each side, able to move in only one axis in a 

cylinder (Axes called x in this illustration    ). In the three examples, the device is immobile. A. The device is not 

submitted to any acceleration, not even gravitation (    ). B. The device is vertical and submitted to gravity, thus 

the measured scalar production of static body acceleration (       ) is equivalent to gravitational acceleration (    ). C. 

The device is inclined on the right with an angle   thus                       (Adaptation of Figure by Yves 

Handrich). 

 

 
Figure 2.8 Graphical representation of orientation of an accelerometer and its related static body 

acceleration measured on the x and z axes (Adaptation of Figure from Yves Handrich). Note that the scalar 

production of x when in an upward vertical position should be -1g, however to simplify interpretation, the sign of 

the acceleration weas transformed to represent the direction of the displacement of the logger and not the reaction 

to the inertia of the movement (See text).  

 

The dynamic component represents the orthogonal projection of the resultant change in 

velocities (i.e. inertia) of a movement on the given axis with the effect of gravitational 
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acceleration removed. However if no changes of velocity occur within the movement (e.g. 

static position or constant velocity), the accelerometer only measures the gravitational 

acceleration, as in Figure 2.7. Fortunately, in animal propulsion, even if global velocity 

remains constant, the displacement always corresponds to an alternation of accelerations and 

decelerations resulting from the propeller’s activity (wings, flippers, legs, limbs) and the 

continual loss of energy to the environment (e.g. drag effect). This permanent change in 

velocity corresponds to body acceleration.  

 

Figure 2.9 Representation of the effect of movement on an accelerometer. The accelerometer is schematically 

represented as a weight pulled by two springs, one on each side, able to move in only one axis in a cylinder (Axes 

called x in this illustration    ). Gravitational acceleration (    ) is not represented in this figure. A. The device is 

immobile but inclined to the right. B. The device is moved      ) in the direction of the x axis    ), this provokes 

inertia (  ). The accelerometer measures this inertia (  ) relative to the x axis    ), which is called the dynamic 

acceleration (       ). (Adaptation of Figure by Yves Handrich). 

 

Amplitude and velocities of postural changes of an animal are typically relatively low 

relative to the dynamic acceleration experienced by the logger. This characteristic of body 

locomotion is used to separate the two components of measured raw acceleration. However, 

if the body orientation varies at a significantly slower rate than the instantaneous body 
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velocity, separation of both components (static and dynamic) is not possible (case not found 

in animals yet). To extract the static acceleration from the raw acceleration, a running mean 

(as in Wilson et al., 2006) or low-pass filter (fast Fourier Transform as in Sato et al., 2003, 

Watanabe et al., 2005 or adapted as in Fourati et al., 2009) can be applied on each axis, 

while dynamic acceleration is found by subtracting the static from the raw measures of 

acceleration (Wilson et al., 2006, Shepard et al., 2009). This project employed the low-pass 

filters from Fourati et al. (2009). Figure 2.10 illustrates an example analysis of a king 

penguin dive. This example has been chosen as the different components of acceleration are 

easier to visualise. Indeed change of posture during pedestrian gait is very small. 

 

 

 
Figure 2.10 Graphical representation of the measured acceleration, and subsequent derivatives from it, in 

the z axis of an accelerometer instrumented to a king penguin during a dive at sea (Adapted from a Figure 

by Yves Handrich). In this example, water depth was also recorded (first line). The second line is raw 

acceleration measured in the z axis (Raw z-axis). The third line is the static body acceleration component of the 

raw data (SBAz). The last line is the Dynamic body acceleration component (DBAz) of the raw acceleration data. 
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Furthermore, to capture all important amplitude changes in accelerations experienced by the 

data logger, the recording frequency needs to be adjusted faster than the change of velocities 

related to the animal’s movements (Gleiss et al., 2010). In this study, the frequency was 32.5 

Hz. 

2.1.7.1 Acceleration to estimate posture, angle and gait parameters 
As the static component enables the observer to define the posture of the subject animal,  the 

change in posture indicated by roll and pitch (Figure 2.11) can be defined. Yaw cannot be 

calculated as an additional triaxial magnetometer would have been required. Detailed 

anaylsis of dynamic body acceleration allows the identification of cyclical movements of 

gait such as steps and strides (Fourati et al., 2011) (in bipedial locomotion, one stride 

distance include two steps distance, Figure 2.15). Gait and posture were calculated from the 

accelerometry data using purpose-written software from the DEPE in Strasbourg, Logs 

(Yves Handrich, Strasbourg, France). The analyses were exported using custom-written 

computer programs by Yves Handrich in Matlab 6.0. (The MathWorks, Natick, MA, USA).  

 

 
 

Figure 2.11 Illustration of the X-,Y- and Z- axes and their related angles changes relative to the centre of 

mass (hypothetical position), used in this thesis. Changes in measures of acceleration in the x-axis represent body 

roll, seen as leaning to the side. Change in the y-axis represents the pitch, seen as forward and backward lean. 

Yaw is represented as change in z-axis, but cannot be measured without an additional triaxial magnetometer. 
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2.1.7.2 Acceleration to estimate energy expenditure 
The calculation of vectorial body acceleration (VeDBA) used in this project followed the 

protocol of Qasem et al. (2012) with the previously mentioned filter from Fourati et al 

(2009). The filter is a low pass filter, the fast Fourier Transform used in Watanabe et al. 

(2005) (§ 1.2.4) with adaptation for having a norm of the static body acceleration equivalent 

to 1 g. The analyses were performed using custom-written computer programs by Yves 

Handrich and adapted from Fourati (Fourati et al., 2009) in Matlab 6.0. (The MathWorks, 

Natick, MA, USA). All Statistical analysess and graphs were undertaken in R Cran (R Core 

Team, 2012). 

2.1.7.3 ODBA versus VeDBA 
A study which tested for a difference in the strength of the relationship between     

 and 

ODBA, and     
 and VeDBA, found a small but significantly stronger relationship between 

    
 and ODBA than between     

 and VeDBA (Qasem et al., 2012). However, the magnitude 

of ODBA is dependent on the orientation of the logger on the body (Qasem et al., 2012, 

Gleiss et al., 2010, Fourati et al., 2009), whereas since VeDBA corresponds to the 

mathematical equation of a sum of two vectors, it is independent of possible change of the 

logger orientation on the body. Thus in conditions where a constant orientation of the 

accelerometer cannot be assumed, using VeDBA is advised (Qasem et al., 2012). This 

suggests that when acceleration data are used to describe gait or overall body movements, 

when orientation is important, VeDBA may be more appropriate and consistent. 

Consequently VeDBA was the metric employed throughout this thesis to measure 3D 

movements or gait. 

2.1.8  Kinematics 

2.1.8.1 Materials 
Due to the confined space, two cameras with wide angle lenses were required. The cameras 

were Prosilica GE680, 200Hz, from Allied Vision Technologies, Stadtroda, Germany. A NI 
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USB-6210 module, bus-powered M Series multifunction data acquisition (DAQ) module 

from National Instruments Corporation, Texas, USA was used to synchronise the cameras. 

The software used was Dynamic Vision Acquisition system (Alliance Vision, Montelimar, 

France). A black background was used to avoid any light reflections (directly into the 

camera, as well as via the translucent acrylic box). 

2.1.8.2 Calibrations 
A black and white draughtboard with boxes of 4*4 cm made with rigid plastic was used as a 

spatial reference.  

Intrinsic parameters of the camera: 

The first calibration allowed calculation of, and compensation for, the optic deformation 

from the camera (e.g. zoom). A video sequence was made in which the draughtboard was 

moved throughout the entire area where the bird could be, within the field of vision of each 

of the cameras. Digitisation of four external intersections of the draughtboard, via Loco 3.3 

software (Loco 3.3. Paul-Antoine Libourel, Musée National d’Histoire Natuelle, Paris, 

France), enabled the software to calculate the deformation linked to the intrinsic parameters 

of the camera by re-establishing the real dimension of the spatial reference. This was 

automatically compensated for in the videos.  

Extrinsic parameters of the both cameras: 

A picture of the draughtboard in the field of vision of both cameras was used as the second 

calibration. This picture was critical as it enabled 3D reconstruction using the simultaneous 

videos of both cameras. Digitisation of the four external intersection of the draughtboard in 

Loco 3.3 software for the synchronised pictures of the both cameras enabled calculation of 

their exact spatial position. These extrinsic parameters were automatically taken into account 

by the software to enable calculation of the 3D position of the markers on the king penguin. 
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The camera setup was kept the same for the entire day, to minimise the need for repeat 

calibration. Thus, once the setup was finished and the associated calibration completed, 

every effort was made to avoid moving any of the cameras by touching them or stepping on 

cables, and to avoid any strong wind currents which could lead to the cameras vibrating. As 

a consequence, placing the subject penguin in the respirometery chamber was undertaken 

with great care (Figure 2.12). 

 

 
Figure 2.12 Placement of a king penguin into the respirometer chamber. Top: The position of one of the 

calibrated cameras is highlighted by the circle in the confined experimental environment. King penguins need to 

be held horizontally and firmly when placed inside the respirometer chamber. Bottom left: The subject penguin 

is helped to stand. Bottom middle: the hood on the bird is removed. Bottom right: the chamber is replaced 

accurately to avoid leaks. 
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2.1.8.3 Bird preparation 
To enable the 3D movements of the feet to be followed while the bird was walking, white 

out (Tipp-Ex®) was used to draw markers of approximately two cm diameter in the 

following locations of the foot, described for the left foot (Figure 2.13): (A) Marker placed 

on the left side of the ankle, close to the lowest point of the feathers. This marker was 

orientated relative to the current position of camera (frontward or backward, 2.1.8.4 and 

Figure 2.14 for more details about the cameras positions). (B) Marker placed on the left side 

of the ankle close to the angle formed by the ankle. This marker was again orientated 

relative to the current position of the camera (frontward or backward, 2.1.8.4 for more 

details about the cameras positions). (C) Marker was placed on the middle toe tarsus, at the 

limit formed with the claw. (D) Marker placed on the middle toe at the start of the 

metatarsus. The same markers were used for the right foot.  

 

 
Figure 2.13 Position of the feet markers on the left feet. Anatomical positions A, B, C and D are explained in 

the text § 2.1.8.3.  

 

2.1.8.4 Video collection protocol 
Two synchronised videos were recorded at 50 Hz for 15 seconds while the penguin was 

walking. Due to the approximately cylindrical shape of the penguin leg, orientations of the 

camera view angles were less than 90°. This enabled the simultaneous view of, at least, two 

markers by both camera, such that a 3D view could be reconstructed (Figure 2.14). The 15-
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second period included a minimum of 10 cycles of strides (of the same leg). Stride cycle is 

defined by the temporal interval from the initial contact of one foot to the next of the same 

foot. Step length is the distance of a step, while a step is defined as the toe-off (moment the 

entire foot has lost contact with the ground) to the initial contact of the same foot with the 

ground again. A stride is described by two phases: stance and swing phases (Figure 2.16), 

where the stance is limited to the time between the initial contact (first moment when the 

feet touch the ground) to the toe-off (moment that the toe leaves the ground), and the swing 

phase is the opposite. Duty factor is defined as the percentage of duration of the stance phase 

per stride duration (Abourachid et al., 2011). 

 

Figure 2.14 Overhead view from the frontward camera setup. The circle labelled KP represents the position 

of a king penguin while the arrow represents the direction of walking. The shaded area represents field recorded 

by the camera, and the dark areas on the king penguin represent the fields recorded by both cameras 

simultaneously where the markers were placed to enable a 3D vision. 

 

Figure 2.15 Schematic illustration of the step and stride distances of king penguin tracks. R is for right foot, 

L for the left foot. 
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The position of the cameras was changed each day. On the first day the camera was placed 

on the left side and in front of the penguin. On day two the cameras were placed on the left 

side and facing towards the dorsal side of the penguin. The data sets were obtained from pre-

trigger recordings, whereby the 15 seconds previous to the recording activation were saved, 

which enabled 10 fluent walking cycles to be captured after their occurrence. The sequences 

were taken at speeds of 1, 1.2, 1.4 and 1.6 km/h, which was in the range of walking comfort 

of the king penguin, enabling a fluent walk. To enable a 3D reconstitution of the gait, at least 

two of the same marks needed to be visible to both cameras. 

 

Figure 2.16 Example of a stride cycle of pedestrian locomotion and the definitions of walking phases. Time 

is expressed as percentage of the cycle duration. L represents the left foot and R the right foot. IC is for initial 

contact and TO for toe-off moment (from Abourachid et al., 2011). 

2.1.8.5 Data collection and analysis 
Unfortunately, due to malfunction of the Dyvas software at the start of the experiment during 

the second field season, the videos of the first recorded birds (subgroup of birds D) in their 

heavy state (day 0) could not be used. Thus to ensure a large change of mass across the 

experiments concerning birds of group D (at day 0 and day 22), data from the birds recorded 

later (second subgroup D), representing only four birds, were used. Only data from the left 

foot were used for gait analysis as it was found that the markers on the right foot were 

periodically hidden from the camera by the left foot. The step width was defined with data of 

both feet, calculated from using the initial contact position of the left foot and the following 

initial contact of the right foot, using the marker D (Figure 2.13). Movement of the treadmill 

was taken into account by adding the horizontal displacement due to the specific speed of 
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the belt. Each marker on the penguin was manually digitised, frame by frame with Loco 3.3. 

(Loco 3.3. Paul-Antoine Libourel, Musée National d’Histoire Natuelle, Paris, France). The 

task of accurately and precisely digitising was time-intensive so digitising was performed for 

one speed (1.4km/h) on the flat surface only, with birds of the second subgroup D (four 

birds). Due to problems with video or calibration quality, data were only available for four 

individuals at ‘the heaviest’, three at the ‘heavy’, two at the ‘light’ and four at the ‘lightest’ 

body mass conditions for digitisation (n=4, 3, 2, 4). 2D data positions were then translated 

into 3D coordinates using Loco 3.3. Spatial calculations via geometry as a function of time 

were performed in R Cran (R Core Team, 2012). 

 
Figure 2.17 View of a penguin while walking from camera 1 (on the left) and from camera 2 (on the right). 

2.2 Experimental protocols 

2.2.1 Handling birds 
King penguins were captured in La Baie du Marin colony. A hood was place over their head 

immediately upon capture to calm them. To minimise aggressive behaviour, the birds were 

touched as little as possible in all situations until their return to the colony. When it was 

necessary to handle the birds, they were touched on the thorax, close to the keel. This 

minimised their response. This technique was used during instrumentation of the loggers on 

the back of the bird (as in Figure 2.6), which may have helped to minimise their stress 

responses.  
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2.2.2 Experiment I: Stress response and acclimation 

2.2.2.1  High activity birds 
Later on the day of capture or on the following day, a bird in courtship (from group B) was 

taken from its pen, the bird was instrumented with the two data loggers (heart rate data 

logger § 2.1.6, and triaxial acceleration data logger § 2.1.7.). The bird was then placed in the 

respirometer chamber. The chamber was mounted upon a treadmill such that the birds 

walked at a controlled speed.     
 (§ 2.1.5.3), heart rate and VeDBA were measured, while 

the bird was subjected to two sets of three walking sessions at a speed of 1.4 km/h, each of 

10 minutes duration and separated by 10 minutes rest (Figure 2.18 for an example of the 

experimental schedule). One set was performed with the presence of a stressor and the 

second set was performed in a quiet environment, i.e. while unstressed. The order of the sets 

was randomised. Before the unstressed set, the bird was allowed to rest for one hour, which 

was deemed sufficient time to remove any stress effects from previous experiments 

(Groscolas pers. obs.). The unstressed period consisted of leaving the bird alone in the 

respirometer while it walked for 10 minutes, without any additional noise aside from the 

noise of the colony. The stressed data are defined as the data collected during a session of 10 

minutes with the presence of a stressor (§ 2.2.2.3) for the entire time. After the experiment 

the birds were released at the same place in the colony from where they had been caught. 

 

 

Figure 2.18 Example of a schedule of experiment I for bird at high activity (Table 2-1). The dark area 

indicates when the bird is in the respirometer chamber mounted on a treadmill. The light parts indicate when the 

bird is walking in an unstressed condition; the black parts indicate when the bird is walking in the stressing 

condition. The order of the unstressed/stressed sets were randomised however, the bird always rested for an hour 

before the unstressed set. 
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2.2.2.2  Low activity birds 
Incubating birds were hooded to calm them, marked and then equipped in situ with the same 

data loggers as the birds tested in high activity (§ 2.2.2.1). These birds were the birds of 

group C (Table 2-1) The egg of the bird was simultaneously replaced by a plaster dummy 

egg and the real egg placed in an incubator at 37.5°C and 60% relative humidity. 

Subsequently, heart rate and accelerometry were recorded for a minimum of two hours while 

inside the colony (Figure 2.19 for an example of the experiment schedule). Then, the bird 

was transferred by hand, still in incubating posture with the dummy egg held against the 

brood patch, into a respirometer chamber located in a laboratory less than 20 m from the 

bird’s nesting site. It was then left alone overnight for at least 10 hours, while     
, heart rate 

and VeDBA were monitored. The following day, the bird was submitted to four stressing 

periods of 15 minutes, with a resting period of one hour in between, while     
, heart rate and 

VeDBA were continuously measured. The stressed/unstressed conditions were similar to 

those of the walking birds, except the birds were incubating and therefore not expected to 

walk away from the ‘egg’. The bird was subsequently transferred back to its original 

location in the colony, with its egg returned. It was observed for the following three days to 

ensure that it did not desert the egg.  

 

 

Figure 2.19 Example of a schedule of experiment I for a bird at low activity (Table 2-1). The dark area shows 

when the bird was monitored inside the colony. The light area indicates when the bird was in the respirometer 

chamber during the ‘unstressed’ condition, while the black represents the periods of the ‘stressed’ condition. 
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2.2.2.3 Stressor 
Both visual and auditory stressors have been shown to impact on the behaviour and heart 

rate of king penguins (Viblanc et al., 2012a) and thus the stressor used in the present study 

included both types. The visual element was provided by the movement of the researcher 

(ASTW) while the auditory element consisted of noise generated by the striking together of 

two pieces of metal by the researcher. The researcher stood approximately two metres from 

the respirometry chamber at the start of the application of the stressor.  

2.2.2.4 Stressed state 
To avoid acclimation of the bird to the stressor, its intensity (distance to the animal, speed 

and intensity of the movement, amplitude of the sound and the frequency that the sound was 

generated) was adjusted. Initially, the effectiveness of increased heart rate as an indicator of 

a stressed state was (von Borell et al., 2007, Nimon et al., 1995, de Villiers et al., 2006, 

Ropert-Coudert et al., 2009, Culik and Wilson, 1991, Viblanc et al., 2012a) was pilot tested. 

Maintaining a constantly high heart rate in the subject bird was impossible without 

additional motions, and thus only the actions associated with vigilance behaviour were used 

as indicator of stressed state (Rushen, 2000). The objective was to achieve constant attention 

by the bird towards the researcher without an increase in motion (displacement behaviours 

excluded) throughout the period of the stressor. During the high activity condition, the same 

indicator was used while ensuring maintenance of an apparently fluid walk. As soon as a 

bird exhibited an increase in motion or an irregular walk, the stressor was decreased or 

momentarily stopped until the cessation of the additional motion or until fluid walking was 

restored. 

2.2.3 Experiment II: Biomechanics and energy expenditure of walking king 
penguins 

2.2.3.1 Walking birds 
Penguins were captured in the morning and soon afterward their ability to walk on a 

treadmill was assessed. When enough penguins suitable for the treadmill had been captured, 
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data collection began. The first experiment generally took place on the same day or the day 

following capture. The penguins of group D were kept in a pen until the end of experiments 

(Table 2-1). Before the experiment, each bird was weighed and equipped in the same fashion 

as the birds used in § 2.2.2.1. The bird was then placed in the respirometer chamber upon a 

treadmill such that he walked at controlled speeds. The     
 and VeDBA of courting birds 

were measured as soon as the bird was put in the respirometer chamber. The bird rested for 

one hour in before the treadmill was turned one, thus requiring the bird to walk (Figure 2.20 

for an example of the experiment schedule). Then, an initial walking session of five minutes 

was completed to acclimate the bird to walking on the treadmill. The experiment involved 

two sets of four walking sessions at speeds of 1, 1.2, 1.4 and 1.6 km/h, with 10 minutes rest 

between each. The speed order was randomised. One set of walking sessions was conducted 

on the flat, while another was conducted on a 13% incline; the order of the two sets were 

randomised. Experiments and data collection were repeated four times at approximately 

days 0, 7, 14 and 21, with the respective average body masses referred to as ‘heaviest’ (13.2 

kg), ‘heavy’(11.7 kg), ‘light’(11.0 kg) and ‘lightest’ (9.8 kg). Birds were kept in a pen after 

the experiment and released at the same place in the colony after the fourth experiment. 

 

 

Figure 2.20 Example of a schedule for experiment II (Table 2-1). The dark area is when the bird is resting in 

the respirometer chamber. The white represents the first walking session, used as an acclimation to walking on a 

treadmill. The light parts indicate when the bird walked on the flat, while the black parts show when the bird 

walked on an incline. The order of both sets of four walking session were randomised. One set involved four 

walking sessions at the randomised speeds of 1, 1.2, 1.4 and 1.6 km/h. 

 



Chapter two 
General Methods 

____________________________________________________________________________________________________ 

 

__________________________________________________________________________ 

Astrid S.T. WILLENER 67 

 

 

2.2.3.2 Location of the centre of mass  
The location of the centre of mass was determined using the multiple suspension method 

(Abourachid, 1993), on the body of both acquired king penguin cadavers (individuals of 

groups E, Table 2-1). In a rigid body, the centre of mass can be determined by suspension 

(with a rope, for example) of the body from different places on the body. The rope axis will 

always intersect the centre of mass of a stabilised, suspended body that is free of movement. 

Photoshop (Adobe Elements 6.0) or Inkscape (Inkscape 0.48, www.inkscape.org) software 

were used to visually determine the centre of mass from photography of cadaver suspension. 

2.3 Data analyses 

2.3.1 Synchronisation of different physiological and biomechanical measures. 
Simultaneous analysis of different measures (e.g. physiology, biomechanics) was 

fundamental to achieve the objectives of this thesis. For example, to understand the paradox 

of optimised cost of walking fat penguins (chapter five, bird group D), simultaneously 

collected data on estimates of energy expenditure (respirometry) and biomechanics 

(accelerometry and videos) were used, while to define the cardio-respiratory stress response 

per se of the bird (chapter three, birds group B and C), simultaneously collected data from 

respirometry, heart rate and accelerometery were used. However each measure can include a 

different time lag due to both variations in equipment time lag and in rates of the 

physiological responses being measured. To synchronise these different measures, these 

varying time lags were accounted for. Explanations for controlling the lag due to the 

equipment have been discussed in specific paragraphs (as in § 2.1.5.3 concerning the 

respirometer). To use the ‘instantaneous equation’ to calculate     
, a good ventilation is 

essential. However the position of the bird within the chamber cannot be controlled. Thus, 

the distance of the bird to the location in the respirometer that the excurrent air leaves may 

vary (it is especially true for walking birds), which may lead to fluctuations of the gas 

concentration as this air may not be properly mixed, leading to potential error calculating the 
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instantaneous     
. For this reason, the minimal interval of data used for a mean was defined 

as an interval of four minutes (as in chapter three).  All other techniques recorded the 

reaction of the birds’ physiology or biomechanics almost instantaneously. Physiological time 

reactions differ depending on the kind of physiological response (e.g. stress response, 

activity), thus the different responses were tested to enable comparison of simultaneous data. 

2.3.1.1 Reaction to activity 
When an animal increases its activity level (e.g. starts walking), the increase in movement is 

instantaneously measured by the accelerometer. However a lag exists between the ATP 

demand from the muscle cells and its supply. In most species, the first source of ATP comes 

from phosophocreatine (PCr). Studies on nuclear magnetic resonance spectroscopy have 

shown the presence in equilibrium of PCr, ATP and ADP (Biewener, 2003) (Equation 2-3), 

especially in skeletal (and cardiac) cells, enabling a fast response to the myofibril ATP 

demand. 

Equation 2-3 

               

Simultaneously, the glycolysis (anaerobic) and oxidative respiration (aerobic) pathway to 

generate ATP are activated, which represents a delay in reaction time (Figure 2.21). Finally, 

when the ATP demand can be supplied aerobically, glycolysis is shut down. The 

accumulated deficit in PCr, as well as the lactate accumulation from glycolysis are recovered 

after the cessation of effort (Biewener, 2003). Oxygen delivery to the mitochondria is a 

cascade of processes with an important role for heart rate. Indeed blood is the vessel 

transporting oxygen to the cell, thus the reaction time of oxidative respiration depends on 

heart rate reaction time. Heart rate is initiated and set by the sinoatrial node and 

atrioventricular node, which are regulated by the sympathetic and parasympathetic nervous 

systems. Heart rate has been shown to react within less than one minute (von Borell et al., 

2007). Piloted walking sessions indicated that a 10-minute duration resulted in stabilised 

http://en.wikipedia.org/wiki/Sinoatrial_node
http://en.wikipedia.org/wiki/Atrioventricular_node
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measures of     
, heart rate and body movement, confirming previous studies (Halsey et al., 

2007b, Fahlman et al., 2004). Graphical representations of the responses of the three 

aforementioned physiological parameters’ reaction time as a function of time can be seen in 

Figure 2.22.  

 

Figure 2.21 Source of ATP as a function of the time. Diagram showing how the immediate demand for an 

increase in ATP supply (grey line) to the muscle of an exercising animal is met by various sources of metabolism 

during the start of exercise. PCr is for phosphocreatine, and ATP for adenosine-5'-triphosphate. From Biewener 

(2003) 

Visual inspection of      
 plotted against time enabled an approximation of the time lag of 

this measure to be defined. The lag was estimated to be one minute. Graphical comparison 

of individual- and average     
 data, subsequent to the first minute being removed, was a 

good approximation of the stabilised (i.e. plateau) rate of oxygen consumption calculated 

without instantaneous transformation (     
). To take into account possible change of the 

respiratory quotient (
     

    

 , equation 11.7 in Lighton (Lighton, 2008) was used: 

Equation 2-4 

     
   

         
    

   
       

     
    

       
 

        

 

; where     
 is the fractional O2 concentration in the air entering the chamber (incurrent); 

     
 is the fractional incurrent CO2 concentration;      

 is the fractional excurrent O2 
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concentration, with water removed (denoted by the ’);       
 is the fractional excurrent CO2 

concentration, with water removed; and      is the corrected mass flow rate for the water 

vapour pressure, using the equation 8.6 in Lighton (Lighton, 2008), as water was removed 

before measuring the percentage of the different gases.  

Equation 2-5 

     
           

  
 

, where    is the uncorrected flow rate,    is the barometric pressure;     is the water 

vapour pressure. Consequently, the mean data from the 10-minute walking sessions were 

calculated from the entire 10-minutes data for heart rate and accelerometry, while     
 was 

calculated with the first minute removed. 

 

Figure 2.22: Graphical representation of     
, heart rate and VeDBA of a king penguin during a walking 

session as a function of time (sec). t=0 is the start of the walking session, and t=600 its end. The shaded area 

represents the entire walking session. The first vertical line represents 30 sec before the walking session. The 

second to the third vertical line represents the first minute of the walking session, which was disregarded when 

calculating mean     
 for the walking session. To improve visual representation, a 10-second running mean was 

calculated for     
. 
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2.3.1.2 Reaction to a stressor  
 

To define the reaction time to a stressor of each physiological parameter, the same graphical 

analysis was undertaken as when the response to an activity was defined (§ 2.3.1.1). This 

resulted in the same observations: heart rate and accelerometry reacted almost 

instantaneously while     
 needed approximately one minute to react (Figure 2.23). A 

duration of 15-minutes for the stressing session was defined, to ensure a stabilisation of the 

stress response. Consequently mean data for a stressing session were calculated from 15-

minutes data for heart rate and accelerometry, while the first minute was removed for the  

    
 mean. 

 

 
Figure 2.23: Graphical representation of     

, heart rate and VeDBA of a bird at low activity as a function 

of the elapsed time (sec). t=0 is the start of the stressor. The shaded area represents when the stressor is present 

(end at t= 900). The first vertical line represents 30 sec before the start of the stressor, while the third vertical line 

is placed at t=1 min after the start of the walking session. To improve the visual representation, a 10-second 

running mean was calculated for the     
 data. 
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2.4 General statistical analysis 
Due to the amount of data and the different outputs from each of the software types, R Cran 

software (R Core Team, 2012) was used for data importation and analyses. Some analyses 

were double-checked in SPSS. The bioportal website (https://www.bioportal.uio.no/) was 

used for particularly large data files. Scripts were also made in Microsoft Access to ‘cross 

reference’ the data. Unless otherwise specified, all computational transformations and 

analyses of data were undertaken using R 2.13.1 software, R Cran (R Core Team, 2012). 

Inkscape software© was used to customise the graphs. Specific Statistical analyses are 

explained in each results chapter.  
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__________________________________________________________________________ 

3. Reassessment of the cardio-
respiratory stress response: 
accounting for movement. 
__________________________________________________________________________ 

This chapter studied the stress response of king penguin to enable description of the changes 

happening in their cardio-respiratory and behavioural systems, as well as the cost of these 

changes. However, one factor appeared to be important to quantify and compensate for: the 

movement induced by the stressor. Indeed, the proportion of change in the cardio-respiratory 

system is partly due to increases in activity level (i.e. behavioural stress response: ‘fight or 

flight’ response). This issue is discussed in this chapter. 

__________________________________________________________________________ 
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3.1 Abstract 
The typical cardio-respiratory stress response involves an increase in heart rate, as well as an 

increase in     
. Previous research has shown that the increase in heart rate is higher than the 

increase in     
, calling this phenomenon ‘additional heart rate’. However, little is actually 

known about the importance of the effect of movement on the cardio-respiratory stress 

response. No studies have looked at the cardio-respiratory stress response during high 

activity. Moreover the ‘overall stress response’ also includes the behavioural ‘fight or flight’ 

response, which can cause an increase in striated muscle activity (called change of ‘motion’ 

in the present study) between unstressed and stressed conditions. Attempts to minimise these 

changes in motion have been made (e.g. by protocol, which needs contribution of conscious 

subjects) to measure the ‘stress response per se’. However, none of the previous procedures 

attested for the same motion levels between both stress conditions. Moreover, displacement 

behaviours (e.g. scratching) have been shown to help coping with a stressor, and prohibiting 

the subject to move freely may bias the stress response itself. Consequently, the cardio-

respiratory ‘stress response per se’ (compared to the ‘overall stress response’) is still 

unknown. Therefore, this study measured the cardio-respiratory (via heart rate and the     
, 

respectively ) and motion levels  (via vectorial dynamic body acceleration VeDBA) of king 

penguins (Aptenodytes patagonicus), during experimental conditions of 10 to 15 minutes 

defined as ‘stressful’ and ‘not stressful’, during both low and high activities. Findings were 

that (1) at high activity condition, overall stress response is only an increase of mean     
. (2) 

Same results were found for the stress response per se, as the high activity prevent additional 

motion or heart rate. While at low activity, (3) the overall stress response was an increase in 

mean     
, heart rate and VeDBA, which is in accordance with previous research. However 

(4), the stress response per se (i.e. controlling for levels of motion) during low activity, only 

mean     
 changed in response to a stressor, contradicting the popular idea of the stress 

response being mainly an increase in heart rate. These results highlight the importance of 
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including movements, i.e. the initial activity and change in motion, when measuring the 

cardio-respiratory stress response. 

3.2 Introduction 
Laboratory experiments that tested the cardio-respiratory response to psychological stressors 

have usually recorded mean heart rate and     
 during low activity such as piloting, avoiding 

shocks. The repeated findings across the few species (humans, rats, dogs) and psychological 

stressor types that have been studied are that the cardio-respiratory stress response is 

described by an increase in both     
 and heart rate, with heart rate increasing to a value 

greater than expected given the increase in     
 (Blix et al., 1974, Carroll et al., 1986, Boerth 

et al., 1969, Langer et al., 1979). This greater increase in heart rate has been quantified by 

comparing the recorded value of heart rate during the presence of the stressor with heart rate 

predicted for the concomitantly recorded     
, using calibration curves derived from graded 

exercise (Figure 3.1). The resultant high heart rate relative to     
 has been termed 

‘additional heart rate’ (Blix et al., 1974, Stromme and Ingjer, 1978) or ‘additional cardiac 

output’ (Carroll et al., 1991, Sherwood et al., 1986). 

 

Figure 3.1 Visualisation of the additional heart rate. Graphical representation of oxygen consumption as a 

function of heart rate for one individual. Modified from Turner and Carroll (1985). The calibration data collected 

during exercise are symbolised by crosses. Baseline data were collected while resting (plain circle and triangle). 

The stressed data are in black (circle: while playing video game, and a triangle symbolises the data collected 

while doing mental arithmetic.). The additional heart rate (Δx) related to the calibration found during exercise 

(plain line) are represented with the dotted lines. 
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Heart rate is the most typical measure used to assess the response to a short term 

psychological stressor (i.e. from fear, as opposed to a physical stressor such as thermic or 

chemical stressors) in animals and humans. Changes in heart rate occur almost immediately, 

are relatively easy to record, and typically represent a more sensitive response than outward 

signs of stressed state, such as changes in behaviour (Nimon et al., 1995, von Borell et al., 

2007). Thus, this metric has been applied to a wide range of animals including farmed 

breeds of cows (Bos taurus), pigs (Sus scrofa domesticus), horses (Equus caballus) and 

goats (Capra hircus; von Borell et al. 2007), albatrosses (Diomedea  exulans; Weimerskirch 

et al., 2002), giant petrels (Macronectes halli; de Villiers et al., 2006), koalas (Phascolarctos 

cinereus; Ropert-Coudert et al., 2009) and several species of penguin (Adelie Pygoscelis 

adeliae, Culik and Wilson, 1991; gentoo Pygoscelis papua, Nimon et al., 1995; king 

Aptenodytes patagonicus, Viblanc et al., 2012a). 

 

To date there are no studies measuring the cardio-respiratory stress response at high activity. 

A few studies have tested the     
 of swimming fish after different stressors (Davis and 

Schreck, 1997, Barton and Schreck, 1987). For instance, Barton and Schreck (1987) 

measured the     
 in juvenile rainbow trout (Oncorhynchus mykiss) while highly active (i.e. 

swimming against a fixed artificial current), for a group that had been exposed to an acute 

stressor (being handled out of the water) and for a group that had not been exposed to a 

stressor.     
 was approximately double in the stressed fish, demonstrating the cost of stress 

response on a short-term scale. However, heart rate was not measured in this study and a 

constant flow rate of water by no means rules out some variation in motion levels between 

the stressed and unstressed conditions.  

 

The ‘disturbance’ stress response can include behavioural modifications epitomised by the 

concept that the response evokes preparation for “fight or flight” response (Cannon, 1929) or 
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the updated “freeze, flight, fight or fright” response (Bracha et al., 2004). However, small 

changes in motion levels such as mastication can cause relatively large increases in heart rate 

(Major, 1998). None of the aforementioned studies investigating the cardiac or cardio-

respiratory response to a disturbance stressor measured the proportion of modification in the 

response due to changes in motion levels between stressed and unstressed conditions of low 

activity. Yet in the majority of those studies, movements were an inevitable element of the 

stressor response (e.g. piloting a plane during landing or taking off, Blix et al., 1974, or to 

avoid a shock, Langer et al., 1979), and thus measures of     
 and heart rate represent not 

only the cardio-respiratory response to stress ‘per se’ (i.e. changes in physiological activities 

as increases in hormones, up-regulation of the cardio-respiratory system, Moberg and 

Mench, 2000, Brener, 1987) but also the response to small increases in physical activities 

levels from striated muscle (called ‘motion’ in this study), i.e. the ‘overall stress response’. 

Therefore, in cases where motion levels increase in response to a stressor, even if this is only 

slight and thus close to imperceptible, elevations in     
 and heart rate will be due to both a 

stress response per se and a change in behaviour (von Borell et al., 2007). 

 

Some studies on humans have employed protocols that aimed to minimise movements in the 

participants, and thus likely served as a partial control for the potential confounding factor of 

changing motion levels. For example, in a study by Turner and Carroll (1985) the stressor 

was answering mental arithmetic questions to compete for a prize and only the index finger 

should be raised (Turner and Carroll, 1985). In animals, to minimise the change of motion 

level, Von Borell advises measuring the effects of a stressor only during periods when the 

behaviour exhibited was similar to that when measurements were taken without the presence 

of a stressor (von Borell et al., 2007). Yet in all these cases motion levels are only 

approximately controlled for. The only method used to date to control for motion during 

stressing experiments is paralysis. Several stress studies have measured the heart rate of 
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fully paralysed by curare rats (e.g., Hahn and Slaughte.J, 1970, Trowill, 1967) and dogs 

(Church et al., 1966), which therefore fully removes the confounding factor of motion. 

Curarised rats and dogs showed an increase in heart rate during exposure to a shock; 

however curare itself causes a confound as it has also been reported to affect heart rate 

(Hahn, 1970). Furthermore, there is evidence that, in humans at least, displacement 

behaviour such as scratching can help to cope with the stressor and thus any methods that 

restrict such behaviour may hinder the natural stress response (Mohiyeddini and Semple, 

2013, Wechsler, 1995, Maestripieri et al., 1992). 

 

Thus, the per se effects of psychological stressors on the cardio-respiratory system are not 

clear, particularly in unrestrained subjects. Additionally, very little is known about the stress 

response during high activity. This knowledge would help providing a better understanding 

of the cardio-respiratory stress response. This would be especially useful to optimise and 

widen the use of heart rate as an index of stress state while an animal is active, as for 

research measuring the wellbeing of animals where movement may bias the results. 

Additionally, knowing the increase in     
 will give an initial idea of the short-term cost of 

the overall and per se stress response. Finally, defining the cardio-respiratory stress response 

of king penguins will enable testing of their acclimation to experimental environments 

(chapter four). Indeed, this will enable the removal of any potential confound while 

measuring the energy expenditure of king penguins in different situations. To have a better 

understanding of the importance of movement on the cardio-respiratory stress response, the 

present study compared     
, heart rate and motion across two activity levels in fully mobile 

animals, using king penguins as a study species. King penguins are especially suitable for 

such a study as two naturally occurring periods of low activity and high activity have been 

observed. First, while a king penguin incubates an egg, it remains sedentary and lacks 

motivation to flee in stressful situations, such as the presence of predators, which will result 
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in reflecting stress responses at low activity. In this study, wild incubating birds were 

temporarily given a dummy egg to incubate while resting within a respirometer and then 

exposed to a psychological stressor. Second, during the period of courtship, king penguins 

are active, walking within and around their colony. Birds in this phase of the breeding cycle 

were placed on a treadmill at a constant speed within a respirometer and intermittently 

exposed to the same stressor as the incubating birds. While incubating individuals are 

expected to remain sedentary (i.e. low activity) and individuals in courtship are expected to 

continue walking (i.e. high activity) during exposure to a stressor, in both cases this does not 

rule out the possibility of minor behavioural changes in response to the stressor. 

Additionally, the birds were instrumented with a miniature acceleration data logger, which is 

highly sensitive to changes in animal posture and motion levels (Yoda et al., 2001, Wilson et 

al., 2006, Fourati et al., 2009), enabling motion to be controlled for without inhibiting the 

natural responses of the animals to the stressor, as well as measuring the stress response at 

two different activity levels. Therefore, the aims of this experiment were to determine the 

importance of movements in the cardiac and respiratory stress responses of king penguins, 

(1) by looking at the effect of the initial activity on the cardio-respiratory stress response, 

and (2) by differentiation of the ‘overall’ and the ‘per se’ stress responses in both of the 

initial activities presented, i.e. using VeDBA as a control for similar motion for the 

description of the stress response per se. It was hypothesised (1) that birds at high activity 

would increase     
 only for their overall cardio-respiratory stress response, as they will 

already have a high heart rate and VeDBA. (2) Their stress response per se would be similar 

to overall stress response, as no additional motion will be measured in VeDBA, due to the 

initial high activity level. Regarding a stressing condition at low activity (3), birds would 

exhibit the typical increase in the cardio-respiratory system (i.e. Heart rate and     
) as well 

as an increase in VeDBA for an overall stress response, while (4) the stress response per se 
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would only be an increase in     
, as no increase of heart rate would be needed as motion is 

similar.  

3.3 Materials and methods 

3.3.1 Birds and experimental protocol 
Stress responses of high activity birds: 

A bird in courtship (from group B; Table 2-1) was taken from its pen, later on the day of 

capture or on the following day. The bird was instrumented with the two data loggers (heart 

rate data logger § 2.1.6, and triaxial acceleration data logger § 2.1.7.) and then placed in the 

respirometer chamber. The chamber was mounted upon a treadmill such that the birds 

walked at a controlled speed.     
 (§ 2.1.5.3), heart rate and VeDBA were measured, while 

the bird was subjected to two sets of three walking sessions at a speed of 1.4 km/h, each of 

10 minutes duration and separated by 10 minutes rest (Figure 2.18 for an example of the 

experimental schedule). One set was performed with the presence of a stressor and the 

second set was performed in a quiet environment, i.e. while unstressed. The order of the sets 

was randomised. Before the unstressed set, the bird was allowed to rest for one hour, which 

was deemed sufficient time to remove any stress effects from previous experiments 

(Groscolas pers. obs.). The unstressed period consisted of leaving the bird alone in the 

respirometer while it walked for 10 minutes, without any additional noise aside from the 

noise of the colony. The stressed data are defined as the data collected during a session of 10 

minutes with the presence of a stressor (§ 2.2.2.3) for the entire time. After the experiment 

the birds were released at the same place in the colony from where they had been caught. 

 

Stress responses of low activity birds:  

Incubating birds were hooded to calm them, marked and then equipped in situ with the same 

data loggers as the birds tested at high activity (§ 2.2.2.1). These birds were the birds of 

group C (Table 2-1) The egg of the bird was simultaneously replaced by a plaster dummy 
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egg and the real egg placed in an incubator at 37.5°C and 60% relative humidity. Then, the 

bird was transferred by hand, still in incubating posture with the dummy egg held against the 

brood patch, into a respirometer chamber located in a laboratory less than 20 m from the 

bird’s nesting site. It was then left alone overnight for at least 10 hours, while     
, heart rate 

and VeDBA were monitored. The following day, the bird was submitted to a stressor for one 

period of 15 minutes, while     
, heart rate and VeDBA were continuously measured. The 

stressed/unstressed conditions were similar to those of the walking birds, except the birds 

were incubating and therefore not expected to walk away from the ‘egg’. The bird was 

subsequently transferred back to its original location in the colony, with its egg returned. It 

was observed for the following three days to ensure that it did not desert the egg.  

3.3.2 Data Processing and Statistical analysis 
Stress responses of high activity birds:  

Regarding the stress response at high activity, the means of     
, heart rate and VeDBA per 

walking session  (i.e. six walking session in total per bird) were calculated. As discussed in 

the General Methods chapter (§ 2.3.1.2),     
 of king penguins needed almost one minute to 

react. Thus,     
 was calculated as the mean value for the entire walking session excluding 

the first minute. Finally, grand means of     
, heart rate and VeDBA were calculated by 

means of the two last walking sessions, of each set of unstressed or stressed conditions; this 

was to avoid the potential simultaneous and additional stressor of being the first walking 

session. Indeed the first walking session while stressed was also removed as multiple 

stressors have been shown to modify the stress response (Dallman et al., 1992). These two 

grand means were used to represent the unstressed or stressed data of highly active birds. 

The grand means of VeDBA represented the amount of motion level. VeDBA was recorded 

while the birds were unstressed and while stressed. Values were compared using Wilcoxon 

signed-ranks tests and showed no significant statistical difference (P = 0.23), meaning that at 

high activity the motion levels were similar regardless of stress levels. Thus there was no 
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need to select periods where body motion levels were similar while the birds were stressed 

and unstressed to obtain the stress response per se. Indeed, in this case, comparison of 

unstressed and stressed parameters represented both the overall stress response (i.e. any 

changes due to the presence of a stressor including potential change in motion) and the stress 

response per se (i.e. changes due solely to the physiological stress response and not due to 

increased body motion associated with the stressor.). The populations from which the data 

were sampled were normally distributed as tested by the Shapiro-Wilk test. As population 

number was low, non parametric tests as Wilcoxon signed-ranks tests were done. However 

as the precision of the test for this sample number is only about ±0.025, t-tests were done 

simultaneously. T-tests results were always looked at to see the tendency and had priority 

when the p-value of the Wilcoxon signed-ranks tests was in the range of 0.05 ±0.025. This 

chapter only show p-value from the t-test to avoid confusion (This reasoning has been 

applied throughout the thesis). Therefore paired tests were conducted to test the difference 

between unstressed/stressed data, with similar motion between both conditions; N = 6 in 

both cases. See Table 3-1 for a summary of all analyses. 

 

Stress responses of low activity birds:  

Mean     
, heart rate and VeDBA of the birds in the low activity condition for the five 

minutes of lowest mean     
 during the unstressed period were calculated. The unstressed 

periods were considered as the hours of rest within the laboratory prior to the experiments 

(i.e. 10-14 hours) but during the daytime to standardise for the effects of circadian rhythms 

on metabolic rate (Halsey et al., 2008b), since experiments were undertaken during daylight 

hours. As king penguins are observed to recover from handling in approximately one hour 

(Groscolas’ personal observations of heart rate data, and standard used protocol from 

previous studies measuring     
of penguins; Halsey et al., 2007b, Green, 2001, Fahlman et 

al., 2004), the first hour of data after the handling was not included in analysis. These values 
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were taken to represent     
, heart rate and VeDBA of unstressed birds at low activity. The 

means of     
, heart rate and VeDBA, representing the data of stressed birds at low activity, 

were calculated for the incubating birds during stressing sessions, following the same 

protocol as birds of high activity. Wilcoxon signed-ranks tests showed that the means of 

VeDBA (representing motion levels) of the incubating birds during the stressed condition 

were significantly higher than during the unstressed condition (P = 0.004). Therefore, means 

of     
 and heart rate were calculated over 15-minute periods of daytime during the 

unstressed condition where motion levels were similar to those during the stressed condition. 

To do so, a 15-minute running mean was calculated with the R package CaTool (R Core 

Team, 2012) throughout the entire daytime period prior to the experiments and all 15-minute 

periods with similar VeDBA to that recorded during the stressed condition were used to 

calculate mean     
, heart rate and VeDBA of unstressed with control for similar motion, in 

incubating birds. Using Shapiro-Wilk test, the populations from which the data were 

sampled were found normally distributed. As for birds at high activity, Wilcoxon signed-

ranks tests and paired t-tests were conducted to test the difference in the overall stress 

response, using ’unstressed/stressed’ data, and in the stress response per se, using 

’unstressed with control for similar motion/stressed’ data. N = 6 in both cases. However only 

p-value from the t-test are shown to avoid confusion. 
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Table 3-1 Analysis summary 

Aims 

Birds type 
Statistical 

analyses 
Variables 

 
Activity 

level 

Controlling for 

similar motion  
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H
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y
 

No 

 

=> Overall 

stress response 
six birds in 

courtship 

(group B) 

 

Paired t-test Unstressed: Grand mean of      , heart rate and VeDBA collected 

during second and third unstressed walking sessions of 10 minutes 

each. 

Stressed: Grand mean of     , heart rate and VeDBA collected during 

second and third stressed walking sessions of 10 minutes each. 

Yes 

 

=> Stress response 

per se 

Paired t-test As VeDBA was not significantly different between the unstressed and 

stressed walking session, the stress response per se while highly active 

is the same as overall stress response. 

 

L
o

w
 a

ct
iv

it
y
 

No 

 

=> Overall 

stress response 

six incubating 

birds (group 

C) 

Paired t-test Unstressed: Means of     , heart rate and VeDBA of the lowest five-

minute mean of      during the daytime unstressed period. 

Stressed: Means of     , heart rate and VeDBA of the 15-minute 

stressing session. 

Yes 

 

=> Stress response 

per se 

Paired t-test Unstressed with control for similar motion: Grand means of all 15-

minutes period of     , heart rate and VeDBA during the daytime 

unstressed period, with similar VeDBA as during stressing session. 

Stressed: Means of     , heart rate and VeDBA of the 15-minute 

stressing session. 
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3.4 Results 
See Appendices for raw data. 

Stress responses of high activity birds:  

For the high activity birds, the overall stress response was a     
 increase during the stressed 

condition (P = 0.027) while heart rate and VeDBA did not significantly differ (P = 0.780 and 

P = 0.23, respectively; Figure 3.2). As VeDBA did not significantly differ for the highly 

active birds during unstressed/stressed condition (P = 0.23), the overall stress response is the 

stress response per se.  

 

Figure 3.2 Stress responses in high activity birds. Comparisons of ‘unstressed (light boxes)/stressed (black 

boxes)’ means of     
, heart rate (HR) and VeDBA, in walking birds. As no change in motion is measured 

between the unstressed/stressed condition, the overall stress response represents the stress response per se. The 

asterisks represent p-value <0.05 while whiskers represent ± 1 SD. 

 

Stress responses of low activity birds:  

Comparisons within the birds at low activity between the stressed and unstressed conditions, 

without control for similar motion levels, showed a significant increase in     
 and an 

increase in heart rate during the stressed condition (P < 0.004 and P < 0.002, respectively; 

light and black boxes of Figure 3.3). However, motion levels also increased during the 
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stressed condition (P = 0.004). When controlling for motion levels in birds during low 

activity,     
 remained significantly higher (P = 0.04; dark and black boxes of Figure 3.3) in 

the stressed condition compared to the unstressed condition, as seen in the ‘overall’ stress 

response. However, there was no significant difference in heart rate (P = 0.20) between the 

stressed and unstressed conditions, showing a variation in the overall and per se cardio-

respiratory stress response due to motion.  

 

 

Figure 3.3 Stress responses in low activity birds. Comparisons of ‘unstressed (light boxes)/stressed (black 

boxes)’ and ‘unstressed with control for similar motion (dark boxes)/stressed (black boxes)’ means of     
, heart 

rate (HR) and VeDBA, in incubating birds. ‘Unstressed/stressed’ comparison represents the overall stress 

response while the ‘unstressed with control for similar motion /stressed’ comparison represents the stress 

response per se. The asterisks represent p-value <0.05 while whiskers represent ± 1 SD. 

 

3.5 Discussion  
Stress responses of high activity birds:  

As hypothesised, only mean      
increased in the overall stress response for active birds, 

while heart rate and VeDBA remained similar (Figure 3.2). As there were no changes in 

motion between unstressed/stressed conditions, the overall stress response represented the 
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stress response per se, in birds exhibiting a high activity. This increase in metabolic rate 

represents an increase in physiological function only, such as hormone up-regulation and 

brain stimulation (Moberg and Mench, 2000, Brener, 1987). Arguably, the initial and forced 

walking activity, with the precaution to keep a visually fluid walk may have prevented 

VeDBA from being significantly different during the stressed conditions. However, this 

should represent the natural stress response of wild king penguins; when disturbed by an 

anthropogenic stressor, birds in courtship naturally run away (pers. obs.), a behavioural 

stress response is feasible and matching the experiment protocol. The increase of      
due to 

a stressor during high activity has already been shown in fish (Barton and Schreck, 1987). 

However, no studies measuring the cardiac or the cardio-respiratory response to the presence 

of a stressor during high activity have been undertaken. The results of the effect of a stressor 

on heart rate coincided with the hypothesis. As the heart rate has already increased due to the 

activity level close to maximum (normal range of heart rate in king penguins while onshore 

is between 50 and 150 beats/minute; Froget et al., 2004) while unstressed, it precluded the 

heart rate increasing further during the stressed condition. Yet clearly oxygen cannot be 

consumed by the tissues without delivery and thus, according to Fick’s convection equation 

for the cardiovascular system (Fick, 1870), as heart rate remained constant while     
 

increased then either heart stroke volume, the quantity of oxygen per blood volume and/or 

oxygen extraction by the body tissues has increased. Haemo-concentration shown in 

response to a stressor (Van Zanten et al., 2004) can be an explanation. Indeed haemo-

concentration results in a greater transport of oxygen per unit volume of blood likely serving 

to increase oxygen extraction. 

 

Stress responses of low activity birds:  

The overall stress responses of the birds at low activity levels were in line with the findings 

of previous studies; when animals were exposed to a stressor during low activity, increases 
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in mean heart rate and mean     
 were observed (Figure 3.3). Additionally, VeDBA was 

higher in the presence of a stressor, reflecting the behavioural response of the bird. As 

mentioned before, the physiological stress response prepares for and enables the behavioural 

stress response, which is described as ‘fight or flight’ or the updated ‘freeze, flight, fight or 

fright’ and mostly involves movements. However, there is as yet no explanation for the 

observation that part of this increase in heart rate is ‘additional heart rate’ (Blix et al., 1974, 

Stromme and Ingjer, 1978), as calibration of the cardio-respiration system with a gradual 

intensity of activity was not conducted on these birds. As sex, number of fasting days and 

reproductive state are known to influence the cardio-respiratory relation, the measurement 

made with the birds used for the chapter could not be used. When the analysis for birds 

during low activity was limited to unstressed time periods where the birds were exhibiting 

similar motion levels as when they were stressed, the observed cardio-respiratory response 

was an increase only in     
 with no significant increase in mean heart rate, representing an 

increase in physiological function only to react to the stressor. The results are the first 

evidence of the short-term cost of the per se stress response while freely mobile during low 

activity behaviours. Additionally, the lack of increase in mean heart rate for similar motion 

levels contradicts the widely held belief that the cardio-respiratory response to a 

psychological stressor is principally an increase in mean heart rate. These present findings 

confirm the supposition that changes in physical motion levels could influence the cardiac 

stress response (von Borell et al., 2007) and actually demonstrate that the increase of mean 

heart rate during the stress response is mostly due to the change of motion. Whilst 

accelerometry may have its limitations (i.e. movement as mastication may not be reflected 

by VeDBA), its use for measuring overall motion may nonetheless be valid in accurately 

defining the cardio-respiratory stress response per se, leaving the subject free of his 

behavioural stress response. Indeed, as mentioned before, the description of the normal 

stress response may also be biased in studies where the protocol minimised the motion of the 
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subject while stressed, preventing the subject  exhibiting its natural behavioural stress 

response including displacement behaviours which could have helped it to reduce its stress 

response (Mohiyeddini and Semple, 2013, Wechsler, 1995, Maestripieri et al., 1992). 

 

Together these results show that, in fact, the cardio-respiratory stress response per se is 

different from the overall stress response in freely motile subjects where levels of body 

motion increase; the former being predominantly an increase in     
 whilst the latter is an 

increase in both     
 and heart rate. The increase in mean heart rate during exposure to a 

stressor reported by previous studies appears to be mostly the result of, albeit often small, 

increases in overall body motion, or at least in striated muscle tone. 

 

Generalisation of the findings 

The possibility must be considered that the specific stress response per se of king penguins 

may be different to many species, perhaps due to particular adaptations to their environment. 

It is known that incubating penguins need to use their energy expenditure efficiently as they 

are submitted to long fasting periods (Pinshow et al., 1976a, Barrat, 1976, Williams, 1995) 

and are resting most of their time whilst onshore (Challet et al., 1994, Dewasmes et al., 

2001). Thus, incubating king penguins may be in a specific energetic saving mode while 

resting. This would explain the high     
 increase while stressed, as some physiological 

parameters, which would have been minimised during resting, may be reactivated during a 

stress response, even though they are not directly involved in it. Moreover, penguins have a 

relatively high heart mass in comparison to birds of the same size (Drabek, 1989), which, in 

accordance with Fick’s equation (Fick, 1870) enables them to transport more oxygen per 

beat relative to other birds due to a greater stroke volume. As demonstrated in humans, a 

larger heart (more regularly active participants) affects the cardiac stress response by 

decreasing the increase in heart rate, in comparison to unfit individuals (Vandoornen and 
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Degeus, 1989). However, the concept of the importance of defining movements (either by 

defining the initial activity level or the change of motion between unstressed/stressed 

conditions) in the cardio-respiratory stress response has been shown in the present study. 

Consequently, future research should specify the stress response as ‘overall’ or ‘per se’ and 

the levels of activity during which it was measured. 

 

Applications of the findings 

Previous studies have never measured the cardio-respiratory response either during high 

activity or per se to a disturbance stressor, while the subject is freely motile. While it would 

be valuable to validate the generalizability of the present findings to other species, they 

suggest that in contradiction to the consensus opinion, the stress response per se is 

predominantly an increase in     
, not an increase in mean heart rate. An implication of these 

findings is that studies that use mean heart rate as an index of stress level are possibly 

confounded unless motion levels are accurately accounted for. Furthermore, considering the 

increase in     
 in the stress response per se, the question of a potential detrimental effect of 

an anthropogenic stressor has to be evaluated in terms of effective additional energy 

expenditure too and not only by heart rate measurements even on a short time scale (Culik 

and Wilson, 1991, Nimon et al., 1995, Culik and Wilson, 1995). Finally, the mentioned 

effects on the cardio-pulmonary and behavioural stress response revealed the potential bias 

of experimental studies, especially in the specific field of studies estimating energy 

expenditure. Indeed, if the tested animal is not acclimated to the laboratory environment, the 

referential calibration using the bivariate relationship     
-heart rate or     

-VeDBA may not 

be correct. To assess how to remove this bias, complementary work has been done on the 

acclimation of the bird to experimental environment in chapter five, using the results of this 

chapter as a definition of the cardio-respiratory stress response in king penguins. 
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__________________________________________________________________________ 

4. Avoiding laboratory stress-
induced confounds during 
respirometry: let the king penguin 
acclimate  
__________________________________________________________________________ 

After defining the different stress responses in king penguins in chapter three, this chapter 

measured the time required for subjects to acclimate to the experimental environment and 

protocol of treadmill walking. This enabled the definition of an adapted protocol to ensure 

the collection of unbiased data during calibration experiments. 

__________________________________________________________________________ 
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4.1 Abstract 
Studies estimating short term energy expenditure of animals are typically laboratory based. 

To measure the short term energy expenditure of free-ranging animals, proxies, such as heart 

rate or body movement are usually recorded, using miniature data loggers. These proxies 

need to be calibrated under laboratory conditions with measurements of     
, while the 

subject animal is active at different intensities (e.g. on a treadmill). Stress responses are 

known to affect the cardio-respiratory system; however, no studies of energy expenditure 

have assessed the acclimation of the animal to experimental conditions and tasks. In 

addition, as shown in chapter three, a stressor has a clear non-proportional effect on the 

cardio-respiratory system and behaviour of king penguins (Aptenodytes patagonicus), which 

will add errors to     
-heart rate or     

-VeDBA calibrations. Thus, using a calibration 

relationship determined from a stressed bird could lead to an overestimation of     
, and 

subsequently energy expended. The study aimed to (1) define the time needed for the cardio-

respiratory system and behaviour of the king penguin to recover post capture and to 

acclimate to the experimental environment and (2) define the time needed to acclimate to the 

treadmill walking protocol. To do so, heart rate and VeDBA of six incubating king penguins 

were recorded while in their colony for more than two hours and then, in conjunction with 

    
, while undisturbed for more than 10 hours in the laboratory. Furthermore,     

, heart rate 

and VeDBA of six king penguins in courtship were measured while walking three times on a 

treadmill for 10 minutes. The results suggest that an incubating king penguin needs on 

average of a 90 minutes resting time to acclimate to the experimental environment, while 

birds in courtship walk fluently after one 10-minute session. The results of this study can be 

used to define an adapted protocol allowing king penguins to acclimate prior to walking-

based calibrations, thus minimising the stress-induced error in proxy-based estimates of 

energy expenditure. 
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4.2 Introduction   
Studies in experimental biology usually involve an artificial and new environment for the 

subject animals, which often also includes a prescribed activity to be undertaken. This is the 

case for studies measuring energy expenditure via respirometry. Quantification of energy 

expenditure is invaluable in answering many questions in biology, particularly in ecological, 

biomechanical and conservation contexts (Shepard et al., 2008, Halsey et al., 2008d, 

Arnould et al., 1996, Halsey, 2011, Maloiy et al., 1986). During periods of predominantly 

aerobic energy metabolism, measurements of the rate of     
 are typically an accurate 

technique for measuring the estimated energy expenditure (Lighton, 2008). However 

measuring     
 requires equipment that does not allow the subject animals to range freely in 

their natural environment. On the other hand, proxy methods can provide accurate estimates 

of short term energy expenditure in the field, but they require laboratory-based experiments 

to obtain energy expenditure calibrations relationship (e.g., Green, 2011, Halsey et al., 2011, 

Portugal and Guillemette, 2011, Froget et al., 2002). A particularly common proxy is heart 

rate and an increasingly more popular proxy is the measurement of acceleration (Plasqui et 

al., 2005), from which an index of body movement is commonly derived (ODBA or VeDBA 

; ‘Overall’ or ‘Vectorial’ ‘Dynamic Body Acceleration’; Halsey et al., 2009b, Halsey et al., 

2009a, Qasem et al., 2012).  

 

However, such calibration experiments implicitly assume that the behaviours and 

respiratory-cardiovascular physiology exhibited by the animals in the laboratory are 

representative of their free-ranging state, but for a number of reasons this may not be the 

case. Some reviews of these techniques (Gleiss et al., 2010, Green, 2011, Halsey, 2011), and 

other primary studies (McPhee et al., 2003, Groscolas et al., 2010) discussed issues 

associated with stressed animals during calibration experiments, which may lead to 

inaccurate estimations of energy expenditure. Nephew et al. (Nephew et al., 2003) 
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demonstrated that cardiac (heart rate), behavioural (“fight or flight”, Cannon, 1929; response  

or the updated “freeze, flight, fight or fright” response, Bracha et al., 2004, which can be 

described by VeDBA) and hormonal (which indirectly modulates     
) stress responses were 

independent. However, little is actually known about the effects of being stressed on the 

relationship between     
 and heart rate or     

-and VeDBA. In a recent study of fasting king 

penguins (Aptenodytes patagonicus), Groscolas et al. (Groscolas et al., 2010) reported a 

higher estimation of energy expenditure for a given measure of heart rate based on the 

calibrations obtained from ‘unstressed’ resting birds, compared to when using a calibration 

derived from birds exposed to a (more typical) graduated treadmill protocol, as reported in 

Fahlman et al. (Fahlman et al., 2004) (see points B and C in Figure 4.1). To estimate the 

energy expenditure of unstressed king penguins, Groscolas et al. (Groscolas et al., 2010) 

used fasting incubating birds in their colony as well as birds in courtship which were 

maintained in a pen. Birds were weighed every four days from capture until the next shift, 

and an estimation of their energy expenditure was calculated from their body mass loss, 

using the linear relationship between endogenous energy stores and body mass of king 

penguins during fasting phase II (during which the penguins are catabolising predominantly 

their fat stores; Groscolas et al., 2010). The proposed explanation for this difference in the 

relationship between     
 and heart rate between the two calibration methods was that the 

treadmill calibrations induced stress responses in the subject birds, which increased heart 

rate, resulting in underestimations of energy expenditure for a given measure of heart rate 

recorded in the wild (Groscolas et al., 2010). This hypothesis was in accordance with the 

‘additional heart rate response to a stressor’ already observed in humans (Blix et al., 1974, 

Stromme and Ingjer, 1978) and dogs (Boerth et al., 1969, Langer et al., 1979) (Graph in 

previous chapter Figure 3.1). However, the previous chapter of this thesis reported that the 

stress response per se (i.e. the stress response of the bird as a direct result of the stressor and 

not including the physiological response to increased body motion as a result of the stressor) 
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in king penguins corresponded to an increase in     
 only. This ‘additional heart rate’ 

observed in the Fahlman et al. (2004) calibration in comparison to the Groscolas et al. 

(2010) calibration relationship may be due to factors other than animal stressed state. Indeed 

the birds used in these two studies differed in the activities they exhibited (Groscolas et al. 

2010 measured resting birds while Fahlman et al. 2004 measured birds walking on a 

treadmill), as well as the scale of measurement (days, Groscolas et al. 2010; minutes, 

 
 

Figure 4.1 Energy expenditure (EE)-heart rate (HR) calibrations for wild king penguins, some of which 

are potentially stressed-biased. Legends: Calibration from Groscolas et al. 2010; Eq. 1a. (light plain line) is 

derived from birds monitored while in the colony or kept undisturbed in pens. Calibration from Fahlman et al. 

2004; Eq. 2b. (black) has been made with the birds monitored during a typical calibration experiment. The 

dashed dark line is for a hypothetical stressed-biased calibration from the results of chapter three. Three 

different EE estimations (dotted lines) are made from Groscolas et al. 2010 (estimation B), Fahlman et al. 

2004 (estimation C) and the hypothesis (estimation A) calibrations, using the same HR (dashed line). 

Groscolas et al. (2010) hypothesised the calibration in Fahlman et al. (2004) to be stressed-biased referring to 

the ‘additional heart rate’ (represented as the arrow with the single asterisk) described by Blix et al. (1974) and 

leading to the underestimation of EE of a wild king penguin from measure of heart rate. Data from chapter 

three showed that the stress response per se is an ‘additional metabolic rate’, leading to the overestimation of 

EE (represented as the arrow with the double asterisk). 

 



Chapter four 

Avoiding laboratory stress-induced confounds during respirometry: let the king penguin acclimate 

__________________________________________________________________________ 

 

__________________________________________________________________________ 

Astrid S.T. WILLENER 96 

 

 

Fahlman et al. 2004). However, Groscolas et al (2010) was one of the first studies to try to 

avoid a stressed-biased calibration relationship. Results from chapter three showed that one 

of the effects of stress was to elevate     
for a given heart rate and/or value of VeDBA (for 

incubating birds or walking birds in courtship), which may consequently lead to an 

overestimation of true energy expenditure of king penguins in the field (see Point A in 

Figure 4.1 and Figures 8.3 and 8.4 in the Appendices made with the data collected for this 

thesis.). 

 

Calibrations of heart rate or body acceleration have already been used on several species 

including penguins, shags and fish (Blix et al., 1974, Turner and Carroll, 1985, Halsey et al., 

2011, Enstipp et al., 2005, Halsey et al., 2007b, Fahlman et al., 2004), see Green, 2011 for a 

definitive list until 2011). However few such studies considered and tested the required 

acclimation time needed for the subject animals to become relatively stress-free. Indeed, an 

animal does not stay constantly stressed, but the stress response attenuates as the animal 

acclimates. Romero (2004) described the negative feedback of stress mechanisms to avoid 

noxious effects of long-term stress responses, as well as acclimation to a repeated mild 

stressor (Romero, 2004). In the context of energy calibration experiments, several stressors 

may occur: first the bird needs to recover from the stress response due to capture and 

handling, second it needs to acclimate to the novelty of the experimental environment, and 

finally it also needs to undertake the exercise protocol e.g. walking on a treadmill or 

swimming in a flume. The heart rate of king penguins has been observed to recover back to 

resting levels about an hour after manipulation (Groscolas personal communication). A more 

recent study from Viblanc et al. (Viblanc et al., 2012a), in which non-acclimated king 

penguins were restrained for three minutes, showed that post-stressor heart rate was back to 

pre-stressor levels less than 15 minutes after capture. However, no studies have defined the 

acclimation time needed for     
 to recover to pre-stressor levels. Protocols of previous 
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calibration experiments usually enabled the bird to rest in the experimental environment for 

a minimum of one hour, apparently based on the observation that     
 or      

 (rate of carbon 

dioxide produced) was steady by this time (Green et al., 2001, Fahlman et al., 2004, Halsey 

et al., 2007b). Additionally, although behavioural acclimation to walk on a treadmill occurs 

within just a few training sessions at most (pers. obs.), no studies have measured changes in 

acceleration patterns during walking sessions. Such information is relevant for assessing the 

required time for a king penguin to become not only familiar but also acclimated to the task 

of walking on a treadmill, reflected by a visually natural and fluid walk.  

  

The current experiment aims to quantify the cardio-respiratory and behavioural (i.e. 

movement) acclimation of king penguins to a calibration experiment by quantifying: (a) the 

time needed to acclimate to the experimental environment and (b) the minimal number of 

training sessions required for the birds to be acclimated to the experimental protocol of 

walking on a treadmill. To do so, heart rate and VeDBA of six incubating king penguins 

were recorded while in their natural environment for more than two hours and then those 

measurements and also     
 were recorded while the birds were undisturbed for more than 10 

hours in the experimental environment. Additionally,     
, heart rate and VeDBA of six king 

penguins in courtship were monitored while walking for three sessions of 10 minutes on a 

treadmill. It is anticipated that the findings from this research will be useful for developing 

an adapted protocol for acclimating king penguins to calibration experiments, minimising 

stress-based confounds on measures of cardio-respiratory and locomotion. We hypothesised 

that the bird would need less than two hours to get acclimated to the experimental 

environment as well as to get used to the experimental protocol after one walking session. 
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4.3 Materials and methods 

4.3.1 Birds and experimental protocol 

4.3.1.1 Acclimation to the experimental environment 
Incubating birds (group C; Table 2-1) were hooded to calm them, marked and then equipped 

in situ with the two data loggers (heart rate data logger § 2.1.6, and triaxial acceleration data 

logger § 2.1.7.). The egg of the bird was simultaneously replaced by a plaster dummy egg 

and the real egg placed in an incubator at 37.5°C and 60% relative humidity. Subsequently, 

heart rate and accelerometry were recorded for a minimum of two hours while inside the 

colony (Figure 4.2 for an example of the experiment schedule). Then, the bird was 

transferred by hand, still in incubating posture with the dummy egg held against the brood 

patch, into a respirometer chamber located in a laboratory less than 20 m from the bird’s 

nesting site. It was then left alone overnight for at least 10 hours, while     
, heart rate and 

VeDBA were monitored. The following day, the bird was submitted to four stressing periods 

of 15 minutes, with a resting period of one hour in between which was deemed sufficient 

time to remove any stress effects from previous experiments (Groscolas pers. obs.).     
, 

heart rate and VeDBA were continuously measured. The unstressed period consisted of 

leaving the bird alone in the respirometer while incubating its “egg”, without any additional 

noise aside from the noise of the colony. The stressed data are defined as the data collected 

during a session of 15 minutes with the presence of a stressor (§ 2.2.2.3). The bird was 

subsequently transferred back to its original location in the colony, with its egg returned. It 

was observed for the following three days to ensure that it did not desert the egg. 

4.3.1.2 Acclimation to the experimental protocol 
A bird in courtship (from group B; Table 2-1) was taken from its pen, and was instrumented 

with the two data loggers (heart rate data logger § 2.1.6, and triaxial acceleration data logger 

§ 2.1.7.). The bird was then placed in the respirometer chamber. The chamber was mounted 

upon a treadmill such that the birds walked at a controlled speed.     
 (§ 2.1.5.3), heart rate 
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and VeDBA were measured, while the bird was subjected to two sets of three walking 

sessions at a speed of 1.4 km/h, each of 10 minutes duration and separated by 10 minutes 

rest (Figure 2.18 for an example of the experimental schedule). One set was performed with 

the presence of a stressor and the second set was performed in a quiet environment, i.e. 

while unstressed. The order of the sets was randomised. Before the unstressed set, the bird 

was allowed to rest for one hour. The stressed/unstressed conditions were similar to those of 

the incubating birds, except the birds were walking on a treadmill. After the experiment the 

birds were released at the same place in the colony from where they had been caught. 

 

4.3.2 Data processing and statistical analysis 
 

4.3.2.1 Acclimation to the experimental environment: 
 

Is acclimation achieved?  

 

Figure 4.2 A. Example of the schedule of experiment I for an incubating bird (see § 2.2.2.2). The dark area 

represents when the bird is monitored inside the colony. The light area indicates when the bird is in the 

respirometer chamber during the unstressed conditions, while the black areas indicate when the bird is submitted 

to a stressor (see § 2.2.2.2). Day and night times are represented in the second bar. B. Schedule to assess if 

acclimation is achieved? The ‘fullest possible acclimation during daytime’ are from the lowest     
 obtained 

during daytime (i.e. ‘lowest     
 daytime’) selected from data in the black checkered area. The data collected 

when in the colony are represented by the dark box, and when stressed are represented by the black area. See text 

for further details. 
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It was not possible to conduct a hormonal analysis, thus to determine the presence of 

stressed state (1)     
, heart rate and movement measures from stressed king penguins, 

measured in chapter three, were used as the indices of stress-biased data, while (2) the heart 

rate and VeDBA of king penguins in their colony were measured to reflect heart rate and 

levels of body movement at a level of stressed state typical within the natural context of a 

breeding colony. (3) The cardio-respiratory stress response per se in king penguins is most 

clearly represented by an increase in     
. Therefore the lowest     

 and the associated heart 

rate and VeDBA measured during the daytime in the experimental environment were 

considered to represent the minimum stressed state obtainable (see Figure 4.2). These data 

were then considered to represent and were termed the ‘fullest possible acclimation during 

daytime’, where ‘acclimation’ refers to physiology and behaviour exhibited with stressor-

induced bias removed. Comparison of mean values from (3) with mean values from (2) and 

(1) shows the level of acclimation of the cardio-respiratory and body movement between 

natural and experimentally-induced stressed levels. 

 

Means of     
, heart rate and VeDBA of incubating birds while stressed were taken from 

chapter three. Means of heart rate and VeDBA while birds were incubating in their natural 

environment were calculated from data of at least two hours duration. As previous 

observations suggest that king penguins recover from handling within approximately one 

hour (Groscolas’ personal observations of heart rate data, and a standard used protocol from 

previous studies measuring     
of penguins; Halsey et al., 2007b, Green, 2001, Fahlman et 

al., 2004), the first hour of data after the handling was not included in analysis, and neither 

was the period while the bird was manipulated and moved into the respirometer chamber. 

The displacement process took less than 10 minutes, but a period of 30 minutes subsequent 

to this was ignored during analysis to ensure any anthropogenic biases were removed (see 

dark area in Figure 4.2.B). Further to this, in some cases, the bird was being observed before 
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its removal from the colony, which may have led to a degree of heightened stressed state for 

the bird if the researcher was spotted. Means of     
, heart rate and VeDBA were calculated 

for the five minutes of lowest mean     
 during the daytime without the stressor (i.e. 

checkered area on Figure 4.2.B) while in the respirometer chamber. This enabled 

standardisation for the effects of circadian rhythms on metabolic rate (Halsey et al., 2008b), 

since data from the colony or while stressed were measured during daylight hours. Running 

means of five minute periods derived from a second by second were calculated through the 

daytime unstressed period using the CaTools package in R Cran (R Core Team, 2012). Then, 

the lowest five minutes of     
 during the daytime was selected. These means were 

considered to represent the means at the ‘fullest possible acclimation during daytime’. 

Percentage increases or decreases from these data to the data from the colony and to the data 

while stressed were calculated. For example, relative to the colony data:   

                                                                         

; where           
        is the lowest five minutes of     

 during daytime, and        

represent data from the colony. A Shapiro-Wilk test was used to assess the normality of the 

populations from which the data were sampled. To determine whether the birds became 

progressively less stressed in laboratory conditions,     
, heart rate and VeDBA during the 

period of fullest possible acclimation during daytime were compared to values when the 

birds were experimentally stressed using a paired t-test. To compare the difference in heart 

rate and VeDBA while in the colony with those while in the experimental condition at the 

fullest possible acclimation during daytime, a paired t-test was conducted. The population 

data were normally distributed; n=6 in all cases. 
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Calculating time to acclimation:  

 

Figure 4.3 A. Example of the schedule of experiment I for an incubating bird (see § 2.2.2.2). The dark area 

represents when the bird is monitored inside the colony. The light area indicates when the bird is in the 

respirometer chamber during the unstressed conditions, while the black areas indicate when the bird is submitted 

to a stressor (§ 2.2.2.2). Day and night times are represented in the second bar. B. Schedule of the used data for 

‘Calculating time to acclimation’. The data at ‘fullest possible acclimation during daytime’ are from the lowest 

    
 obtained during daytime (i.e. ‘lowest     

 daytime’) selected from data in the black checkered area. The time 

to reach the ‘fullest possible acclimation’ is the time t with the lowest     
 selected in the white striped area. See 

text for further details. 

The time in the experimental environment taken to reach lowest     
 (‘           

) was 

calculated for each individual, again based on a five-minute running mean derived second by 

second throughout the unstressed period. Although physiological parameters are influenced 

by circadian rhythms (Halsey et al., 2008b), the entire unstressed period of 10-14 hours, 

including hours at night (white striped area from Figure 4.3.B), was analysed. The aim of 

this analysis was to find the time needed by the birds to reach minimum metabolic rate 

which, in the experimental environment, represents the fullest possible acclimation of the 

bird and thus its acclimation time. Unfortunately as the bird was usually placed in the 

respirometer at the start of the evening, the time of the fullest possible acclimation might 

occur during the night, when     
 tends to be lower. Consequently, selecting the minimum 

metabolic rate during only the daytime could bias the results. Thus, a preliminary analysis 

was made to select the lowest five-minute mean     
 of the entire experimental period and 
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checked that it did not occur during the period of naturally minimum metabolic rate for king 

penguin (between 1h00 and 3h00 from heart rate data; Halsey et al., 2008b). The median, 

instead of the mean, of the ‘           
’ for each bird was calculated due to the small sample 

size and the non normal distribution of the data. The results showed that lowest     
 was 

typically reached after approximately 90 minutes, see § 4.4.1. Mean data obtained from five-

minute lowest     
(i.e. at t=            

) were taken as the fullest possible acclimation and 

were compared with fullest possible acclimation during daytime by paired t-tests to test their 

similarity.  

Testing the different acclimation times 

 

Figure 4.4 A. Example of the schedule of experiment I for an incubating bird (see § 2.2.1.2). The dark area 

represents when the bird is monitored inside the colony. The light area indicates when the bird is in the 

respirometer chamber during the unstressed conditions, while the black areas indicate when the bird is submitted 

to a stressor (see chapter 2.2.1.2). Daytime and night times are represented in the second bar. B. Schedule of the 

used data for ‘testing the different acclimation times’. The ‘fullest possible acclimation’ is from the lowest  

    
 selected in the white striped area. The data of the ‘level of acclimation achieved in by previous studies’ (i.e. 

first stable     
  after one hour) are selected from black striped area. See text for further details. 
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Is this acclimation time sufficient? To ensure that this acclimation time of 90 minutes (§ 

4.4.1) is sufficient to remove any cardio-respiratory and behavioural bias, the lowest mean 

     
 over five minutes during those 90 minutes (i.e. acclimation time from this study; black 

checkered area, Figure 4.4) was calculated for each bird. For some birds, this value was 

equal to that representing the fullest possible acclimation across the entirety of the 

experiment. These means were considered to represent level of acclimation achieved using 

the protocol found from this study. A paired t-test compared these      
, heart rate and 

VeDBA values to those representing the fullest possible acclimation to test whether 

minimum metabolic rate obtainable in the laboratory within 90 minutes is similar to that 

obtainable over many hours. 

Is one hour sufficient for a king penguin to acclimate?  The previous protocol used to 

acclimate penguins included one resting hour prior to the experiment (Groscolas’ pers. obs. 

for heart rate and (Halsey et al., 2007b, Green, 2001, Fahlman et al., 2004) for     
). In these 

studies, the penguin was considered acclimated if heart rate or     
 had been stable for the 

previous few minutes or 20 minutes, respectively. To assess this protocol,     
, heart rate and 

VeDBA values obtained after one hour in the experimental environment were analysed. A 

mean of five-minute of the values, subsequent to the first 20-minutes of stable measures of 

    
, was calculated (see Figure 4.4), and taken to represent the level of acclimation achieved 

by previous studies. To determine if the previously used protocol was sufficient to allow the 

bird to acclimate, a paired t-test was conducted on the mean data representing the levels of 

acclimation achieved by previous studies and the data at the fullest possible acclimation. The 

population data were normally distributed as demonstrated by a Shapiro-Wilk test; n=6 in all 

cases.  

Are the data using the acclimation protocol of previous studies and from this study 

similar? Finally, mean data at the level of acclimation achieved by previous studies (first 
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five-minute with previous 20-minutes of stable measures of     
after one hour) and the mean 

data of level of acclimation achieved using the protocol found from this study ( data with the 

lowest     
achieved in 90 minutes) were compared with a paired t-test (Figure 4.5). 

 

 

Figure 4.5 Detailed representations of     
, heart rate (HR) and VeDBA data used  for the aim of ‘Are the 

data using the acclimation protocol of previous studies and from this study similar?’ Sample     
, heart rate 

(HR) and VeDBA data for an incubating king penguin in the colony (dark shading) and in a respirometer chamber 

(light shading).     
, heart rate (HR) and VeDBA are represented as a function of time (min). t=0 (plain black 

vertical line) indicates when the bird was placed in the respirometer chamber. When t<0, the penguin is present in 

the colony. The light plain line is the time t of the first stable     
 one hour subsequent to being placed in the 

respirometer chamber. The dashed line is the time t of the lowest     
 for this specific bird (t ≃ 70 min).  

http://en.wikipedia.org/wiki/%E2%89%83


Chapter four 

Avoiding laboratory stress-induced confounds during respirometry: let the king penguin acclimate 

__________________________________________________________________________ 

 

__________________________________________________________________________ 

Astrid S.T. WILLENER 106 

 

 

 

4.3.2.2 Acclimation to the experimental protocol: 
Acclimation during walking sessions: The means of     

, heart rate and VeDBA for each 

walking session undertaken by the birds in chapter three (see § 2.1.2.1 and § 2.2.2.1) were 

also used in the present chapter. ANCOVAs were used to test the number of walking sessions 

needed before the acclimation of these three variables on each bird individually during the 

first to third walking sessions. The package ‘lme4’ in R Cran was used (R Core Team, 2012) 

to run linear models of the following form: e.g.      
 = walking session + individual 

[random]. If walking session was significant, post hoc paired t-tests with p-value adjusted as 

Holm, Bonferroni and without adjustment, were conducted. The population data were 

normally distributed as demonstrated by a Shapiro-Wilk test; n=6 in all cases. 

 

Acclimation within the first walking session: Means of two consecutive four-minute time 

intervals during the 10-minute walks were calculated. Four-minute durations are sufficient to 

enable comparison of stabilised contemporary means of each measured physiological 

parameter. The first minute of the session was removed as the response time of     
 has been 

shown to occur within one minute (See General Methods chapter § 2.3.1.1). These time 

intervals were thus defined as from minute two to five inclusive and from minute six to nine 

inclusive. To compare the acclimation of each parameter within the first walking session, 

paired t-tests for the means of     
, heart rate and VeDBA were conducted between the two 

four-minute time intervals of the first walking session. The population data were normally 

distributed using Shapiro-Wilk test; n=6 in all cases. Results were considered to indicate a 

significant effect where p<0.05.  
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Table 4-1 Analyses summary 
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Paired t-test  Stressed: Means of     
    

, heart rate and VeDBA while stressed for 15 minutes per individual 

(data from chapter three). 

 Colony: Means of heart rate and VeDBA while inside the colony per individual (30 minutes of 

data minimum). 

 Fullest possible acclimation during daytime: Means of HR and VeDBA of the lowest five-minute 

mean of     
 in day time only (i.e.           

       ). 

Calculating 

time to 

acclimation 

 
Median ± median absolute 

deviation 

‘Acclimation time t’: Elapsed time to reach the lowest five-minute mean of     
    

  in all resting 

period after being place in the per individual (i.e time of           
). 

Are the fullest possible 

acclimation during daytime and 

fullest possible acclimation 
similar? 

Paired t-test 

 

 Fullest possible acclimation during daytime: Means of HR and VeDBA of the lowest five-minute 

mean of     
 in day time only (i.e.           

       ). 

 Fullest possible acclimation: Means of      
, heart rate and VeDBA of the lowest five-minute 

mean of     
  in all resting period per individual (i.e.           

). 

Testing the 

different 

acclimation 

times. 

Is this acclimation time 

sufficient? (90 minutes) 

Paired t-test  Fullest possible acclimation: Means of      
    

, heart rate and VeDBA of the lowest five-minute 

mean of     
  in all resting period per individual (i.e.           

). 

 Data at the level of acclimation achieved by using the protocol found in this study: Means of      
, 

heart rate and VeDBA of the lowest five-minute mean of     
  found within the acclimation time of 

this study (i.e.           
                   ).  

Is one hour sufficient for a king 

penguin to acclimate?(previous 

studies)  

Paired t-test  Fullest possible acclimation: Means of      
, heart rate and VeDBA of the lowest five-minute 

mean of     
  in all resting periods per individual (i.e.           

). 

 Data at the level of acclimation achieved by previous studies: Means of      
, heart rate and 

VeDBA of the first stable five-minute mean of     
 after one hour per individual. 

Are the data using the 

acclimation protocol of previous 

studies and from this study 

similar? 

Paired t-test  Data at the level of acclimation achieved by using the protocol found in this study: Means of      
, 

heart rate and VeDBA of the lowest five-minute mean of     
  found within the acclimation time of 

this study (i.e.           
                   ). 

 Data at the level of acclimation achieved by previous studies: Means of      
, heart rate and 

VeDBA of the first stable five-minute mean of     
 after one hour per individual. 
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Acclimation across walking sessions 
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) Repeated ANCOVA of the mixed 

model. Post hoc: paired t-test 

with p-adjusted for Holm , 

Bonferroni and no P adjusted.   

    
    

 Parameter = order + Individual [random].   

Means of     
, heart rate and VeDBA while 15-minute walking session for each session (three means 

for each parameters) per individual. 

Acclimation during the first walking session 

Paired t-test Means of     
    

, heart rate and VeDBA during 4-minutes interval from the first walking session (two 

means for each parameters i.e. from minutes two to five and from minutes six to nine) per individual. 
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4.4 Results 
See Appendices for raw data. 

4.4.1 Acclimation to the experimental environment: 
Is acclimation achieved? The     

, heart rate and VeDBA in king penguins are all 

significantly lower during periods of rest compared to periods when a stressor is present in 

the laboratory (45% , 40% and 67% lower, p= 0.004, 0.002 and 0.004 for     
, heart rate and 

VeDBA, respectively; see Figure 4.6) which is consistent with the results from chapter three. 

Additionally, heart rate and VeDBA at the lowest mean     
 during daytime are significantly 

lower than when the birds are in their natural environment (27% and 61% lower; p=0.03 and 

p=0.01 for heart rate and VeDBA, respectively; Figure 4.6). For this reason data at lowest 

mean     
 during daytime were considered to represent the fullest possible acclimation 

during daytime. 

 

Figure 4.6 Comparison of mean     
, heart rate (HR) and VeDBA of incubating king penguins during 

periods when the stressor was present (black, from chapter three), periods in the colony (dark box) and 

once at the fullest possible acclimation during daytime to the experimental environment (light box). The 

asterisk indicates where p<0.05 while whiskers represent means ± 1 SD.  
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Calculating time to acclimation: The median time needed to reach the fullest possible 

acclimation during daytime, subsequent to having been placed in the respirometer, was 

approximately 1.5 h (92 min ± 30). No significant changes have been shown between data of 

the fullest possible acclimation and the data of the fullest possible acclimation during 

daytime (i.e. lowest     
 and lowest     

during daytime, respectively); however heart rate had 

a tendency to be lower for the data of the fullest possible acclimation during daytime 

(p=0.12, 0.06, and 0.25, for     
, heart rate and VeDBA, respectively; Figure 4.7). Due to the 

small sample size, this difference is worth noting. VeBDA is lower during the day; however, 

given the magnitude of the scale, this difference represents a minimal physical change. 

 

 

Figure 4.7 Comparison of mean     
, heart rate (HR) and VeDBA of captive incubating king penguins at 

the ‘fullest possible acclimation’ (light box) and at the ‘fullest possible acclimation during daytime’ (dark 

box). There was no significant difference between the data of the fullest possible acclimation and the data of the 

fullest possible acclimation during daytime. The whiskers represent means ± 1 SD. 
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Testing the different acclimation times 

 

Is this acclimation time sufficient to acclimate? Comparison of the data at the level of 

acclimation achieved in this study (i.e. lowest     
within 90 min) and the data of fullest 

possible acclimation indicated no significant difference (p= 0.25, 0.47 and 0.34 for     
, heart 

rate and VeDBA, respectively; Figure 4.8). 

 

Is one hour sufficient for the bird to acclimate? After exposure to the respirometer chamber 

for one hour, the first stabilised     
 (i.e. protocol used in previous studies to obtain 

acclimated data) was still significantly higher than the     
 of fullest possible acclimation (P= 

0.02), while heart rate and VeDBA were not statistically different (P = 0.98, P= 0.13 

respectively; Figure 4.8). These results indicated that the physiogical state of the bird in the 

laboratory is still heightened after one hour even though measurements have settled. 

 

Are the data using the acclimation protocol of previous studies and from this study 

similar? Comparison of data while acclimated from both different acclimation protocols 

(used in previous studies and from this study) showed a significantly lower     
 for the data 

using the protocol from this study, but no difference regarding heart rate and VeDBA (p= 

0.005, 0.19 and 0.15, respectively; Figure 4.8). 
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Figure 4.8 Comparison of mean     
, heart rate (HR) and VeDBA of captive incubating king penguins at 

the ‘level of acclimation achieved by previous studies’ (black boxes), level of acclimation achieved in this 

study’ (dark boxes) and ‘fullest possible acclimation’ (light boxes) when inside a respirometer chamber. 
The asterisk indicates a p-value <0.05 while the whiskers represent means ± 1 SD.  

 

4.4.2 Acclimation to the experimental protocol: 
Acclimation during walking sessions: The results of repeated measures ANCOVA indicated 

a significant decrease in     
 over walking sessions (P=0.02). VeDBA did not significantly 

differ; however the data do suggest a tendency for VeDBA to decrease across walking 

sessions (P=0.08). There was no significant change in heart rate between walking sessions 

(P=0.42). Post hoc paired t-tests for     
 per walking session found no significant differences 

with any p-value adjustment (P=0.21 and 0.21 for Holm and Bonferoni adjustment, 
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respectively). There was a tendency for     
 to be greater during the first walking session 

than during the subsequent sessions but due perhaps to the small sample size this was not 

significant (using no p-value adjustment, P = 0.07, see Figure 4.9). No changes in VeDBA 

were found between the different orders of walking sessions (P= 0.55, 0.55, 0.18 for p-value 

adjustment of Holm, Bonferroni and none, respectively). However, the first session showed 

a considerably bigger standard deviation for VeDBA.  

 

 

Figure 4.9 Boxplot of     
 heart rate (HR) and VeDBA during the three walking sessions. The black lines 

represent the median, the light box the 1st and 3rd interquartile range and the whiskers represent the extreme 

values. The hash sign indicates p = 0.07. The overall results of ANCOVA showed a decrease of     
 across the 

walking sessions. 

 

 

Acclimation within the first walking session: Paired t-test comparisons between the two 

time intervals within the first walking session showed no significant difference (P = 0.17, 

0.78, 0.39; for     
, heart rate and VeDBA, respectively).  
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Figure 4.10 Boxplot of mean     
, heart rate (HR) and VeDBA for the two consecutive four-minute time 

intervals of the first walking session. The black lines represent the median, the light box the 1st and 3rd 

interquartile range and the whiskers represent the extreme values. There were no significant differences between 

the different time intervals. 

 

4.5 Discussion  
Acclimation to the experimental environment: 

The cardio-respiratory and behavioural stress response per se of a king penguin is 

represented by an increase in     
 but not of HR or VeDBA (chapter three). Therefore the 

lowest     
 and its related heart rate and VeDBA measured in the experimental environment 

were considered to represent the fullest possible acclimation that is reasonably obtainable in 

the experimental environment. From this, the acclimation time of incubating king penguins, 

subsequent to exposure to the experimental environment, is calculated to be about 90 

minutes. Although the natural     
 could not be measured and ascertained, the data measured 

in this study using the acclimation protocol of 90 min can be expected to represent data 

without stress-contamination, with a good degree of certainty. Indeed, firstly,     
 of the birds 

decreased constantly over the first few hours that they were in the respirometer, which 

suggests that the bird does acclimate in the experimental environment. Secondly, as the 

lowest     
 during daytime is significantly lower than     

 measured during a stressing 
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experiment (data from chapter three), this showed that birds did not stay highly stressed 

during the 12-hour resting period. Thus, data from the lowest     
 during daytime can be 

considered at least as the data of the less stressed state which can be attained in the 

experimental context, or as data at the fullest possible acclimation during daytime. Thirdly, it 

has been shown that the     
, heart rate and VeDBA of king penguins all increase during 

stress in an artificial environment due to the presence of humans (i.e. overall stress response, 

chapter three). Indeed a stressing situation mostly forces an incubating bird to move, by 

increasing its displacement behaviour, responding aggressively to the antagonist or trying to 

flee or at least move further away from the stressor, following the ‘fight or flight’ 

behavioural stress response (Cannon, 1929). However, VeDBA during data at the fullest 

possible acclimation during daytime was 61% lower than VeDBA measured for birds in the 

colony (for a 27% lower heart rate). This suggests that, at this time, incubating birds were 

acclimated or less stressed than is typically the case in their natural environment. 

 

Choosing the data with the lowest     
 during daytime or the data with the lowest     

  as 

references to represent non stressed biased data may be an extreme choice, and in 

psychological terms at least, the birds could be unstressed before reaching this physiological 

state. Indeed the data with the lowest     
  are usually used to represent the resting metabolic 

rate (Halsey et al., 2008b). However, birds often exhibit more active behaviours in the 

respirometer chamber than simply resting (e.g. being curious and ‘exploring’ the new 

environment), and thus, having a higher     
without being stressed. Consequently, the 

extreme data were chosen for analysis, which ensured having a stress-biased free state of the 

bird. Thus the present data can be considered as representing an initial assessment of the 

stress free cardio-respiratory state of a king penguin. Furthermore, these results suggest that 

a protocol incorporating a period of acclimation of 90 min is needed to ensure that cardio-
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respiratory data, for example for heart rate- or accelerometry-    
 calibrations, are affected as 

little as reasonably possible by stress-related confounds. This protocol contrasts with the 

previous suggestions and  protocols (Groscolas’ personal observation for heart rate, and 

Halsey et al. (2007b), Green (2001, Fahlman et al. (2004) for     
), where king penguins 

were considered as acclimated in one hour, if     
 had been stable for the previous 20 

minutes. The present results show that data from these two different protocols differ 

regarding obtaining an unbiased     
 , suggesting that an error may still remain if an 

appropriate protocol is not applied. 

 

Acclimation to the experimental protocol of walking sessions: 

As shown in chapter three, the birds had a higher     
 while walking in the presence of a 

stressor; however, there was no change in VeDBA in either experimental condition. The 

present analyses showed some evidence that the variation in the VeDBA reduced over the 

course of different unstressed walking sessions. This suggests that the king penguins became 

acclimated to walking on a treadmill during the first walking session of the day (note that 

these birds had been pre-selected as relatively good walkers). The high standard deviation of 

VeDBA of the first walking session in comparison to later walks suggests that some 

individuals need more time to acclimate to the walk. There was also some evidence that     
 

decreased over the three different walking sessions (Figure 4.9). This suggests that a walking 

session prior to the data collection session is advisable to ensure that the king penguin 

acclimated to walking on a treadmill, but is not essential. However, it is important to 

mention that the present results used a previously widely-employed protocol (personal 

observation of R. Groscolas; Halsey et al., 2007b, Green, 2001, Fahlman et al., 2004), which 

allowed the bird to acclimate for only 60 minutes. This may have influenced the     
 results 

of this present study, regarding data of the birds while walking, in the sense that the 
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significant effect of walking session on     
 may also be due to the unachieved acclimation 

to the experimental environment. 

 

Potential limitations of this study 

King penguins used for energy expenditure measurement are typically birds in courtship, as 

the birds used for the calibration experiment are forced to be active, which ensures the 

scientific impact on the studied population is minimised. In this study, the birds used to 

estimate the acclimation time in the laboratory were incubating birds, which, as mentioned 

previously, have a different metabolism to bird in courtship (Froget et al., 2001, Green et al., 

2001). However, birds in courtship tend to move more while in the respirometer chamber 

and     
 would therefore have been more related to their activity levels than to their stressed 

levels. Thus as a first study on acclimation of king penguins to calibration experiments, 

incubating birds were used despite potential dissimilarity regarding the acclimation of birds 

in courtship.  

 

Thus, from the results of this first study on acclimation of king penguin, it is suggested an 

acclimation period of 90 minutes should be used rather than the standard one hour used 

previously. This should enable an improvement in the accuracy of the measurement of the 

response of the cardio-respiratory system of king penguins by reducing the influence of  

stressed state on the data.  

4.6 Calibration guidelines 
Based on the study findings, an adapted protocol to measure the cardio-respiratory 

physiology and behaviour of king penguins while walking on a treadmill involves:  

a) a resting and acclimating period inside the respirometry chamber of at least 1.5 

hours 
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b) a practice walking session before data collection for calibration relationship on 

trained king penguins. 

These guidelines reduce potential stress-induced confounds on the behavioural and cardio-

respiratory systems of king penguins used during calibration. 
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of pedestrian locomotion: a 
biomechanical look at the 
‘optimised fat penguin’  
__________________________________________________________________________ 

The parameters influencing the cost of the transport in animals are discussed in this chapter 

using the cost of transport of king penguin as an example.  
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5.1 Abstract 
The parameters influencing the gross cost of transport (GCOT) are still uncertain. Indeed the 

same parameters have contradictory effects depending of the species, or when looked inter- 

or intra-specifically. This is the case for the parameter of body mass. Between species, mass-

specific GCOT decreases with an increasing body mass, while GCOT increases with the 

increase in body mass when compared within one species. An increasing number of studies 

showed the benefit of partitioning GCOT, and an example is to separate the net cost of 

transport (NCOT, energy used to move a unit distance) and the postural cost of transport 

(PCOT, energy to maintain the posture for the locomotion). King penguins have been shown 

to have an independent NCOT regardless of a body mass increase (i.e. heavy penguins use in 

absolute terms the same amount of energy to move a unit distance as thin penguins). This 

shows an optimised adaptation of the cost of load carrying, which could help to uncover the 

parameters influencing GCOT, via understanding the effect of the different parameters on 

GCOT’s partition: NCOT and PCOT. To understand the mechanism of this optimisation, 

energy expenditure (i.e.     
) and biomechanical measures (i.e. tri-axial acceleration and 3D 

video) of ten king penguins, each walking at four different speeds and at four different body 

masses, were analysed. Furthermore, location of the centre of mass at the two body masses 

was calculated for two king penguin cadavers. Energy expenditure was found to be 

independent of body mass, while only step width and its repeatability from all the measured 

stride parameters (i.e. from length, width, frequency, duration, stance duration, swing 

duration and duty factor) showed a significant change with body mass. Analysis of the 

acceleration data for each axis individually indicated no significant differences but the gross 

body acceleration indicated a difference. Pitch, which indicates forward tilt, was 

significantly increased and waddling was significantly decreased with loss of body mass. 

Unfortunately, attempts to measure the location of the centre of mass were not successful 

and the proposed hypothesis of locomotion of the centre of mass explaining the 
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‘optimisation of fat penguins’ could not be tested. Despite the lack of significant difference 

in gait, this research is a step forward in trying to better understand GCOT, by its partition 

into NCOT and PCOT, and the specific parameter that enable the optimisation of NCOT 

while body mass change. 

5.2 Introduction 
The gross cost of transport (GCOT) is described as the relationship between metabolic rate 

and speed of walking (Taylor et al., 1970, Halsey et al., 2007b). This relationship has been 

found to be a linear regression in a majority of species (Taylor et al., 1970, Halsey et al., 

2007b) (Equation 5-1). 

Equation 5-1 

         , 

; where   is the speed (m/s) and    the energy expenditure (J/min), usually measured as     
 

(in ml/min). Net cost of transport (NCOT) is defined as the energy expenditure per unit 

distance moved (J/m) and is the slope   of the linear relation. The intercept   minus the 

resting metabolic rate is defined as the postural cost of transport (PCOT) (Figure 5.1).  

 

Figure 5.1“Relationship between rate of oxygen consumption (    
) and speed in king penguins walking on 

a treadmill. Net cost of transport (NCOT) is calculated as the slope of the relationship relating     
to speed for 

speeds greater than zero. Postural cost of transport (PCOT) is calculated by subtracting resting     
 (    

rest) 

from the extrapolated y-intercept of relationship describing NCOT.” From Halsey et al. (2007b). 
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The specific parameters which make up the gross costs of pedestrian locomotion are still 

unclear. The first research on this subject described some important parameters. The cost 

mainly depends of the pedestrian gait type (walking, running, trotting, gallop, etc. (Heglund 

and Taylor, 1988, Taylor, 1985, Schmidt-Nielsen, 1972). Besides, an increase in speed 

requires an increase in energy expenditure as limbs need to move faster, engendered from 

quicker muscle contractions, reducing the contact time of the feet with the ground per stride 

cycle, therefore reducing the duty factor (Kram and Taylor, 1990, Fedak et al., 1982, 

Biewener, 1983). Furthermore, mass-specific comparison of the cost of locomotion across a 

broad range of species has shown that larger species have a lower mass specific GCOT, as 

they tend to have a lower stride frequency (Taylor et al., 1970, Kram and Taylor, 1990, 

Roberts et al., 1998). These observations lead to the conclusion that GCOT is generally 

linked with the forces needed to support the body’s mass and the duration of generating the 

force necessary to do this, suggesting that the stance phase was the most important 

parameter influencing the GCOT (Kram and Taylor, 1990, Taylor et al., 1980).  

 

However, recent studies showed that the swing phase was associated with 10 to 26% of the 

stride cost, revealing its importance in determining GCOT (Marsh et al., 2004, Modica and 

Kram, 2005, Doke et al., 2005, Gottschall and Kram, 2005). These proportions are 

independent of speed in helmeted guinea fowl (Numida meleagris) even though duty factor 

decreased with speed, which is contradictory to the interspecific comparison (Kram and 

Taylor, 1990, Taylor et al., 1980). Additionally, the length of the limb has also been shown to 

influence mass specific GCOT, such that limb length is a more effective parameter to predict 

GCOT than body mass; the longer the limbs, the lower the mass specific GCOT (Pontzer, 

2007). Contradictions in these observations depending on the species under investigation, 

suggest the presence of some additional complex relationship amongst the parameters 
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influencing GCOT, and illustrate the ongoing debate about the mechanisms affecting the cost 

of pedestrian transport.  

 

Body mass is the most widely used controllable parameter to understand the influence that 

other parameters may have on the cost of transport. Indeed it is the one of the only 

changeable parameters for experiment within the same individual and within the same gait. 

Furthermore, the effect of body mass is also a peculiar example. As previously mentioned, 

heavier species are more efficient at walking, and thus have a lower mass-specific GCOT 

than lighter species. However, within a species an increase in body mass tends to reduce the 

efficiency in energy expenditure of transport, as indicated in studies comparing individuals 

from the same species but at different body mass conditions, or comparing the same 

individual either bearing an added load or not (Browning et al., 2006, Marsh et al., 2006, 

Griffin et al., 2003, Tickle et al., 2010, Taylor et al., 1980, Askew et al., 2012). Different 

load costs have also been demonstrated for the same load (same weight and location e.g. 

trunk, limbs) but for different gaits (Marsh et al., 2006). Marsh (2006) suggested that the 

lack of proportional changes in the cost for the same load at different speeds was due to the 

differing duty factor between walking and running, with walking being more affected by an 

increase in mass as the stance phase is longer than during running (Marsh et al., 2006). A 

few species have shown an extraordinary efficiency in energy expenditure during load 

transport for instance rhinoceros beetles (Scarabaeidae; Kram, 1996), humans (Homo 

sapiens sapiens; Bastien et al., 2005, Maloiy et al., 1986, Heglund et al., 1995), king 

penguins (Aptenodytes patagonicus; Halsey et al., 2007b) Svalbard Rock Ptarmigan 

(Lagopus muta hyperborean; Lees et al., 2010). Investigations on these specific species or 

ways of carrying loads (e.g. in humans) have attempted to explain this efficiency, but no 

clear reason has been found. 
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Research which has split GCOT by describing separately internal and external work, or by 

stance and swing phases, indicates the importance of partitioning (e.g. Steudel, 1990 

demonstrated the influence of load position on the GCOT, as well as, suggesting the 

importance of swing phase in determining GCOT; Marsh et al., 2004). Using this 

partitioning approach could help to better understand the parameters influencing GCOT, as, 

potentially, the same parameter may influence NCOT more than PCOT. For instance, swing 

phase could be potentially more correlated to the NCOT, while the stance phase could be 

linked with PCOT, although this hypothesis needs further studies for confirmation. Only a 

few studies looked at GCOT as a function of NCOT and PCOT (Halsey et al., 2007b, 

Halsey, 2013), or focused on the parameters influencing specifically NCOT or PCOT 

(Halsey, 2013). Mass-independent PCOT (without taking upright bird as penguins in 

consideration) has been shown to be negatively correlated with limb length in birds (Halsey, 

2013). NCOT of walking king penguin has been shown to be independent of their body mass 

(Halsey et al., 2007b). Apart from this, no research studying specifically the parameters 

influencing only NCOT has been undertaken.  

 

Consequently, the effect of body mass on NCOT independent of PCOT is still unknown. 

However, from extrapolation of previous research using the relationship         (Taylor 

et al., 1970, Roberts et al., 1998, Kram and Taylor, 1990, Marsh et al., 2006, Griffin et al., 

2003, Browning et al., 2006, Maloiy et al., 1986), the effect of body mass on NCOT could 

be demonstrated. The same tendency as for GCOT has been found: an increase in mass-

specific NCOT efficiency in energy expenditure in heavier species (Taylor et al., 1970, 

Roberts et al., 1998, Kram and Taylor, 1990) but a reduction of efficiency with increasing 

mass within a species (Browning et al., 2006, Marsh et al., 2006, Griffin et al., 2003, Maloiy 

et al., 1986). Results of load carried as backpacks in army recruits (Goldman and Iampietro, 

1962, Pandolf et al., 1977), or of humans with higher body mass condition (Browning et al., 
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2006, Griffin et al., 2003), showed an increase in NCOT. Some exceptions have been found 

in certain ethnic groups, who perform a head-supported load carriage of 20% of their body 

mass with no additional NCOT. The mechanics behind this optimised cost of carrying load 

are, however, still unclear (Cavagna et al., 2002, Bastien et al., 2005, Minetti et al., 2006). 

Halsey (2007b) has shown that king penguins’ NCOT was independent of changes in body 

mass. This means that these birds paradoxically use the same amount of energy per unit 

distance when heavy (on their way to the zone of attachment) as when light (on their return 

to the sea). Studies on three other birds species showed a better efficiency in energy 

expenditure when carrying load than mammals, either by a reduced proportional increase 

(Tickle et al., 2010, Marsh et al., 2006, McGowan et al., 2006), or by a decrease of energy 

consumed per loaded mass (Lees et al., 2010). Thus more studies are needed to ascertain 

whether this aptitude is general to birds. However, understanding the mechanism behind this 

optimised cost of transport (i.e. unchanging NCOT) could enable a better understanding of 

the parameters influencing the GCOT.  

 

In the context of king penguin’s ecology, this optimisation represents an advantageous 

evolutionary adaptation (Witter and Cuthill, 1993) to their extreme living context. King 

penguins have a constrained onshore energy budget and need to walk several kilometres to 

and from their zone of attachment in both fed and fasted states. They are fasting up to one 

month and during this period they need to walk several kilometres to reach their zone of 

attachment and still have enough energy to efficiently fish for prey when back in the ocean 

(Barrat, 1976). Thus their energy budget management is very important. Furthermore, 

penguins are known to have a high terrestrial GCOT compared to other species (Pinshow et 

al., 1976a, Pinshow et al., 1976b, Halsey et al., 2007b, Dewasmes et al., 1980), representing, 

however, only a small part of their global onshore energy expenditure (Halsey et al., 2007b) 

which includes, metabolic- , defence-, comfort- costs etc. The skill of optimisation in load 
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carrying while walking is particularly remarkable given that penguins are primarily 

swimmers and not walkers. Both constraints (i.e. pedestrian locomotion being their 

secondary locomotion mode and having to walk with a wide range of body masses) 

engendered an efficient adaptation in penguins, making their walk ecologically and 

evolutionarily interesting. Waddling has been suggested as an explanation for the high cost 

of penguin pedestrian locomotion. However, good energy transfer within each waddle has 

been demonstrated (Griffin and Kram, 2000), suggesting that the high energy cost results 

from their relatively short leg length. This requires penguins to generate muscular force 

more rapidly resulting in  a higher number of strides per unit distance relative to another 

animal of the same body mass (Griffin and Kram, 2000). This represents a morphological 

trade-off for king penguins between swimming and walking energy efficiency. Their 

hydrodynamic shape includes short legs placed in line with their body (with the use of 

flippers for propulsion), resulting in an upright posture during pedestrian locomotion.  

 

Therefore to try to better understand the parameters that influence GCOT, this study looked 

at the energetics and the biomechanics of pedestrian locomotion in king penguins, by 

attempting to understand the mechanism behind this optimisation of their mass independent 

NCOT, using body mass change as variable parameter. The energy measurement protocol 

from Halsey et al. (2007b) was applied on 10 birds, while biomechanical measures were 

recorded during four treadmill sessions involving four different speeds. The study was 

structured with three aims: (1) The first aim was to determine if  the effect of mass on the 

energy expenditure in the data collected in this present conformed with previous research 

(Halsey et al., 2007b), which showed that NCOT was independent from body mass (2) The 

second aim was to determine if any changes in temporal and spatial characteristics of 

penguin gait with body mass could be an explanatory mechanism. Tri-axial acceleration 

measurements (expressed as Vectorial Dynamic Body Acceleration, VeDBA) along with 
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three dimensional reconstruction of walking gait were used to quantify the gait patterns, and 

changes in the following parameters were chosen for analysis: global change of gait, stride 

frequency, stride length, duty factor, stride width, stability and change of position of the 

centre of mass. Finally (3) the third aim was to determine if the location of the centre of 

mass of a light and a heavy penguin could be a parameter explaining any alterations in gait 

and thus the optimised cost of load carrying, i.e. ‘the optimised fat penguin’. We 

hypothesised the following parameters to decrease progressively with decreasing body mass 

as a result of fasting: step width, stride frequency, stance duration, roll and pitch. Further, we 

hypothes§ised that the stride length, stride duration and swing duration would increase with 

decreasing body mass. These adaptations would result in a greater energetic efficiency 

during pedestrian locomotion by heavier king penguins. Finally we hypothesised to find a 

backward translation of the center of mass position with decreasing body mass. 

5.3 Materials and methods 

5.3.1 Birds and experimental protocol 

5.3.1.1 Biomechanics and energy expenditure of walking king penguins 
Penguins were captured in the morning and soon afterwards their ability to walk on a 

treadmill was assessed. When enough penguins suitable for the treadmill had been captured, 

data collection began. The first experiment generally took place on the same day or the day 

following capture. The penguins of group D were kept in a pen until the end of experiments 

(Table 2-1). Before the experiment, each bird was weighed and equipped with the two data 

loggers (heart rate data logger § 2.1.6, and triaxial acceleration data logger § 2.1.7.). The 

bird was then placed in the respirometer chamber upon a treadmill such that he walked at 

controlled speeds. The     
 and VeDBA of courting birds were measured as soon as the bird 

was put in the respirometer chamber. The bird rested for one hour before the treadmill was 

turned on, thus requiring the bird to walk (Figure 2.20 for an example of the experiment 

schedule). Then, an initial walking session of five minutes was completed to acclimate the 
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bird to walking on the treadmill. The experiment involved four walking sessions at speeds of 

1, 1.2, 1.4 and 1.6 km/h, with 10 minutes rest between each on a flat surface. Experiments 

and data collection were repeated four times at approximately days 0, 7, 14 and 21, with the 

respective average body masses referred to as ‘heaviest’ (13.2 kg), ‘heavy’(11.7 kg), 

‘light’(11.0 kg) and ‘lightest’ (9.8 kg). Birds were kept in a pen after the experiment and 

released at the same place in the colony after the fourth experiment. 

5.3.1.2 Location of the centre of mass  
The location of the centre of mass was determined using the multiple suspension method 

(Abourachid, 1993), on the body of both acquired king penguin cadavers (individuals of 

groups E, Table 2-1). In a rigid body, the centre of mass can be determined by suspension 

(with a rope, for example) of the body from different places on the body. The rope axis will 

always intersect the centre of mass of a stabilised, suspended body that is free of movement. 

Photoshop (Adobe Elements 6.0) or Inkscape (Inkscape 0.48, www.inkscape.org) software 

were used to visually determine the centre of mass from photography of cadaver suspension. 

5.3.2 Data processing and statistical analysis 

5.3.2.1 Energetics: Is NCOT mass independent? 
As demonstrated (§ 2.1.2.1),     

 in king penguins needed almost one minute to react. Thus, 

the best representation of the stabilised     
 was a mean of the entire walking session 

excluding the first minute. To test the effect of Mass on NCOT, repeated ANCOVA of the 

mixed model     
= Speed* Mass+ Mass+ Individual[random] was completed with the 

package ‘lme4’ from R Cran (R Core Team, 2012) (unbalanced N = 10, 10, 8, 10, for 

heaviest, heavy, light and lightest, respectively). King penguins did not have a fluid walk at 

the lowest speeds encountered in previous studies (Halsey et al., 2007b, Fahlman et al., 

2004), thus, as the biomechanics data were collected simultaneously with the energetic data, 

the used range speed was from 1.0 to 1.6 km/h.  
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5.3.2.2 Biomechanics: How does the gait adapt along with body mass? 
 

Stride 

Biomechanical data were collected from two synchronised videos at different angles (50 Hz 

for 15 sec) while a king penguin was walking at 1.4 km/h (the modal speed within the 

breeding colony; pers. ob.). These recordings included a minimum of 10 stride cycles. See 

chapter two on ‘General Methods’ (§ 2.1.8) for further information about the material and its 

calibration. Stride parameters (length, frequency and duration, as well as left to right step 

width) were geometrically calculated from the three dimensional coordinates of left feet heel 

at initial contact. Stance duration, swing duration and duty factor were calculated with the 

initial contact and the toe-off of the left feet. Data were repeated measures of four birds and 

four body masses. 

 

Means and standard deviations of the stride parameters (i.e. length, frequency, duration, 

stance duration, swing duration and duty factor) and step width were calculated for each 

individual at each body mass from the videos (N = 4,3,2,4, for heaviest, heavy, light and 

lightest body masses, respectively). Additionally, stride frequency was calculated from the 

dynamic body acceleration of the Z (vertical) axis. The maxima of the graphical 

representation of vertical Z-axis (i.e. DBAz) are linked to the highest acceleration of the 

stride cycle, which is presumably occurring at the heel strike (Figure 5.2). One maximum 

can be thus associated with a heel strike. The first minute data of the 10-minute walking 

session were removed as some birds presented an irregular walk at the start of the 

experiment. The mean and standard deviation from every two maxima (i.e. steps frequency) 

of the last nine minutes were calculated per individual, while walking at 1.4 km/h and for 

each body condition (N=8, 8, 10, 6, for heaviest, heavy, light and lightest body condition, 

respectively). Due to the small sample size for the video-derived data descriptive analyses 

were completed, however statistical analyses were also completed to indicate where 



Chapter five 
An approach to uncover the cost of pedestrian locomotion: a biomechanical look at the 

‘optimised fat penguin’ 
__________________________________________________________________________ 

 

__________________________________________________________________________ 

Astrid S.T. WILLENER 129 

 

 

statistical differences or tendencies were found. Linear design with individual as random 

factor was used with the package ‘lme4’ from R Cran (R Core Team, 2012): Strides/Step 

parameter = Mass + Individual [random]. Repeated ANCOVA of the mixed model was 

completed to test the effect of body mass for each parameter (N=8, 8, 10, 6, for heaviest, 

heavy, light and lightest body condition, respectively). Standard deviations were used as a 

measure of parameter repeatability. Parameter mean or standard deviation having a 

significant P value were further analysed with post hoc Wilcoxon signed-ranks tests and 

paired t-tests, with P value adjusted by Holm, Bonferroni or without adjustment method. 

However only p-value from the t-test are shown in this chapter to avoid confusion. Global 

mean of individual means and standard deviations were calculated for illustration purpose of 

Table 5-3.  

Comparison of data taken from the videos versus data taken from the accelerometer 

Due to the small amount of data obtained from video footage (N = 4,3,2,4, for heaviest, 

heavy, light and lightest masses, respectively), the conformity of results of data taken from 

the videos versus data taken from the accelerometer was tested. To do so comparisons on the 

means and standard deviation of stride frequency of data from the two different methods 

(N=8, 8, 10, 6, for heaviest, heavy, light and lightest body condition, respectively) were 

conducted by paired t-test of each body mass condition. 

 

Gait 

Mean VeDBA was calculated for the last nine minutes of walking per individual (§ 2.3.1.1), 

as some birds presented an irregular walk at the start of the experiment. A repeated 

ANCOVA of the mixed model VeDBA = Speed * Mass + Mass + Individual [random] was 

done to test the change in VeDBA along with change of body mass (N = 10, 10, 8, 10, for 

heaviest, heavy, light and lightest body condition, respectively). 
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The frequency of peaks (number of peaks -minimum and maximum- per minute) and the 

amplitude (i.e. between a minimum and its next maximum) of each DBA were calculated 

using a custom-written script in MATLAB by Yves Handrich (MATLAB, 2010) using an 

algorithm to ignore sub-peaks due to noise (Figure 5.2). Data from the first minute were 

removed to let the bird reach a fluent gait. Mean and standard deviation of the nine last 

minutes were calculated for each parameter per individual at each body mass condition. 

Repeated measured ANCOVA of the linear mixed model Gait parameter = Mass+ 

Individual[random] were done to test the effect of body mass on the individual mean and 

standard deviation of peaks frequency and their amplitude (N=8, 8, 10, 6, for heaviest, 

heavy, light and lightest body condition, respectively) (package ‘lme4’ R Core Team, 2012). 

Global means of individual means for each parameter were made for illustration purpose of 

Table 5-3. 

To assess the extent to which the bird waddled and tilted, the roll and pitch amplitudes of the 

oscillation angle around the static body acceleration (SBA) of X and Y axes (i.e. roll and 

pitch, respectively) were calculated.  A custom-written script by Yves Handrich in MATLAB 

(MATLAB, 2010) was made to find not more than one minimum and one maximum angle of 

roll in each stride (i.e. between three following maxima of DBAz, see Figure 5.3) and to find 

not more than one minimum and one maximum angles of pitch in each step (i.e. between 

two following maxima of DBAz, see Figure 5.3). As for DBA, the mean and standard 

deviation of the last nine minutes of data were calculated per individual at each body mass 

condition. The effect of body mass was tested on each data with a repeated measured 

ANCOVA of the linear mixed model Amplitude = Mass+ Individual[random]  (N=8, 8, 10, 

6, for heaviest, heavy, light and lightest body condition, respectively). Global mean of 

individual means and standard deviation were made for illustration purpose of  

Table 5-6. 
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Figure 5.2 A. Left: Example of a graphical representation of three axes of the dynamic body acceleration 

(DBA) data within 15 seconds. Right: Visual representation of the DBA axes. B. Zoom in the DBAz. Black 

circles represent all peaks considered as maxima by Yves Handrich’s algorithm. The sub-peaks are ignored 

thanks to this algorithm. These maxima represent the heel strike of the king penguin. The dark blue circles 

represent minima, while the light blue one represents next maxima. The horizontal dashed lines represent the 

height of the maxima/minima, while the vertical dashed line represents the amplitudes between the minimum and 

its next maximum peaks. 
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Figure 5.3 Left: Example of a graphical representation of the dynamic body acceleration of Z axis (DBAz; 

plain line), roll (dotted line) and of the pitch (dashed line) in function of the time. The successive light blue 

and white shades represent one ‘stride’ starting at heel strike of the left feet. The grey verticals represent 

separation between two ‘steps’. One maximum and one minimum of pitch within one ‘step’ are represented in 

dark blue circles, while one maximum and one minimum of roll within one ‘stride’ are represented in light blue 

circles. Right: Visual representation of the DBA axes and angle movements. 

 

 

Centre of mass 

Visual comparison of the localisation of the centre of mass was made using Inkscape 

(Inkscape 0.48, www.inkscape.org) software. 
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Table 5-1 Analyses summary; A=accelerometry data, V= videos data. 

Aims Birds type Statistical analysis Variables 

E
n

er
g
et

ic
 

Is
 N

C
O

T
 

m
a
ss

 

in
d

ep
en

d
en

t?
 

Effect of body mass  on  partitioned  

GCOT 

GCOT =NCOT*Speed + PCOT 

T
en

 b
ir

d
 i

n
 c

o
u
rt

sh
ip

 (
g
ro

u
p
 D

) 

Repeated ANCOVA of 

the linear mixed model  

 

    = Speed* Mass+ Mass+ Individual 

[random]. Mean of      collected during of each 

speed-specific walking sessions per individual. 

B
io

m
ec

h
a
n

ic
s 

H
o

w
 d

o
es

 t
h

e 
g

a
it

 a
d

a
p

t 
a
lo

n
g
 w

it
h

 b
o
d

y
 m

a
ss

?
 

Stride 

and it 

repeata

bility 

Length Descriptive analysis as 

well as repeated 

ANCOVA of the linear 

mixed model  

Post hoc: paired t-test 

with P adjusted by 

Holm, Bonferroni or 

not.   

Stride/Step parameter = Mass +Individual 

[random]. Mean of each parameters and their 

standard deviations per individual at each mass 

condition while walking at 1.4km/h. 

 

Step width 

Frequency 

Duration 

Stand Duration 

Swing Duration t-test of stride 

frequency  

Mean of stride frequency taken from 

accelerometer or video per mass condition.  

The four same individuals’ data. Duty factor 

Gait 

and its 

repeata

bility 

 

Global Gait (VeDBA) 

Repeated ANCOVA of 

the mixed model 

VeDBA = Speed+ Mass+ Individual [random]. 

Mean of VeDBA collected during each speed-

specific walking sessions per individual. 

B
A

 

 
D

yn
. 

DBAX Repeated measures 

ANCOVA of the mixed 

model  

Gait parameter = Mass + Individual [random]. 

Mean and standard deviation, per individual at 

each mass condition, of the peaks frequency 

and the amplitude between two min/max peaks, 

while walking at 1.4km/h.  

DBAY 

DBAZ 

S
ta

ti
c 

P
o

st
u

re
 Roll (SBAX) Repeated measures 

ANCOVA  of the 

mixed model 

Amplitude = Mass + Individual [random]. 

Mean and standard deviation, per individual at 

each mass condition, of the amplitude between 

two min/max peaks, while walking at 1.4km/h. 
Pitch (SBAy) 

Location of centre of mass and its change 
Two dead birds 

(group E).
 

NA Pictures of suspension of body with different 

body mass conditions.  
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5.4 Results 
See Appendices for raw data. 

5.4.1 Energetics: Is NCOT mass independent? 
Repeated ANCOVA showed a significant positive effect of mass on the intercept of the 

model (P < 0.001, N=10), while no effect was found on the slope (P= 0.515, N=10, Table 5-2 

and Figure 5.4).  

 

Figure 5.4 Graphical representation of the effect of mass on GCOT (GCOT =NCOT*Speed + PCOT); 

where GCOT is represented as     
. The plain dark line is the GCOT for the “lightest” mass, the dark dashed line 

for “light”, the plain light line is for “heavy” and the dashed light line is for the “heaviest” mass. The black dots 

are the measured data, while whiskers represent ± 1 SD. 

Table 5-2 Effect of mass on GCOT (GCOT =NCOT*Speed + PCOT): ANCOVA Table of linear mixed-

effect model     
= Speed* Mass+ Mass+ individual [random]. The asterisk represents P <0.05. 

Variables DF Sum Sq Mean Sq F value P value 

Speed 3 41584 13861 39.391 < 2x 10-16*    

Mass 3 142328 47443 134.824 < 2x 10-16*       

Speed* Mass 9 3013 335 0.951 0.515 
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5.4.2 Biomechanics: How does gait related to body mass? 

5.4.2.1 Stride parameters 
The results of the repeated ANCOVA indicated no effect of body mass on any of the stride 

parameters except for the step width (P = 0.0143, N = 4,3,2,4, for heaviest, heavy, light and 

lightest body condition, respectively; see Table 5-3). Post-hoc pairwise t-test showed no 

significant differences between body masses, however P = 0.06 when comparing the lightest 

and heaviest body masses. Descriptively, step width slightly increased within the fasting 

period to finally reduce at the lightest body mass. This pattern was similar when 

repeatability of step width was assessed (Table 5-3). Repeatability (i.e. repeated ANCOVA 

the standard deviation) within each parameter is not significantly different, except for step 

width (P = 0.001, N = 4,3,2,4, for heaviest, heavy, light and lightest body condition, 

respectively, Table 5-3). Post-hoc analyses showed that the significantly different pairs are 

between the data for heavy-lightest and light-lightest (P value = 0.018, and 0.015, 

respectively. N = 4,3,2,4, for heaviest, heavy, light and lightest body condition, respectively), 

when the P value was not adjusted. When the P value was adjusted for multiple comparisons 

(Holm or Bonferroni method), no differences were found (N = 4,3,2,4, for heaviest, heavy, 

light and lightest body condition, respectively). Even though statistical analyse are not 

significantly different, the standard deviation of the strides had a trend toward frequency 

decreasing with a decrease of body mass, as well as the standard deviation of the stride 

duration. 

Data taken from the videos versus data taken from the accelerometer 

No differences in the stride frequency were found between the data from the accelerometer 

and from the digitised data using a t-test of each body mass condition using the same 

individuals (P = 0.878, N = 4; P = 0.6, N = 3;  P = 0.95, N = 2; P = 0.618, N = 4; for 

heaviest, heavy, light and the lightest body mass conditions, respectively). Therefore it was 

felt that the accelerometer data could be used to quantify stride frequency over a longer 

period and for more birds. 
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Table 5-3 Table of means of strides parameters while walking at 1.4 km/hour, along with different body 

mass condition. The asterisks represent P value <0.05. V= Video data; A= Accelerometry data.  

 Parameters mean of 
stride 

Body Mass 

P value 
So

urc
e 

Heaviest 
(~13.2 

kg) 

Heavy 
(~11.7 

kg) 

Light 
(~11.0 kg) 

Lightest 
(~9.8 

kg) 

Length [m] 
Mean 
SD 

0.349  
0.031 

0.338   
0.029 

0.345   
0.034 

0.338  
0.026 

0.686 
0.125 

V 

Step width 
[m] 

Mean 
SD 

0.106 
0.017 

0.108 
0.023 

0.118  
0.024 

0.089 
0.014 

0.0143* 
0.001* 

V 

Frequency  
[s-1] 

Mean 
SD 

1.303 
0.112 

1.332 
0.108 

1.296 
0.090 

1.290 
0.085 

0.851  
 0.391 

V 

Mean 
SD 

1.304 
0.191 

1.273 
0.172 

1.252 
0.139 

1.272 
0.155 

0.372 
 0.784 

A 

Duration [s] 
Mean 
SD 

0.777  
0.062 

0.759  
0.059 

0.781 
0.057 

0.779  
0.051 

0.863 
 0.360 

V 

Stance 
duration [s] 

Mean 
SD 

0.522  
0.055 

0.503  
0.050 

 0.518  
0.059 

0.518  
0.045 

0.835 
 0.078 

V 

Swing 
duration [s] 

Mean 
SD 

0.253  
0.029 

0.256  
0.030 

0.259  
0.022 

0.261 
0.028 

0.706 
 0.208 

V 

Duty Factor 
[%] 

Mean 
SD 

67.195 
0.035 

66.347 
0.033 

66.294 
0.034 

66.467  
0.033 

0.318 
 0.942 

V 

 

5.4.2.2 Global change of gait 

5.4.2.2.1 VeDBA 
Repeated measures ANCOVA of the mixed model showed a significant positive effect of the 

mass on the intercept (P > 0.001), while no effect was found on the slope (P= 0.747, Table 

5-4). N = 10, 10, 8, 10, for heaviest, heavy, light and lightest body condition, respectively. 

Table 5-4 Table of the effect of masse:  repeated measures ANCOVA for linear mixed-effect model of 

VeDBA in function of the speed. The asterisk represents P value <0.05 

Variables DF Sum Sq Mean Sq F value P value 

Speed 3 18.619 6.207 105.263 < 2x 10-16*    

Mass 3 5.062 1.687 28.619 1.99 x 10-12* 

Speed* Mass 9 0.362 0.040 0.681 0.747 

 

 

5.4.2.2.2 DBA  
The results of the repeated measures ANCOVA of the model indicated no significant effect 

of body mass on any of the DBA either for peak frequency or amplitude (see Table 5-5. N=8, 

8, 10, 6, for heaviest, heavy, light and lightest body condition, respectively). 
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Table 5-5 Mean of peaks number and the mean amplitude of peaks for each DBA while walking at 1.4 

km/hour, along with different body mass conditions. The asterisks represent P value <0.05 

 

Parameter mean 

Body Mass 
P 

value 
Heaviest 

(~13.2 
kg) 

Heavy 
(~11.7 kg) 

Light 
(~11.0 kg) 

Lightest 
(~9.8 kg) 

D
B

A
X
 

Peaks frequency [min-1] 154.326  149.938 143.178 150.987 0.455 

Amplitude [ms-2] 0.446  0.469  0.439  0.463  0.847 

D
B

A
Y
 

Peaks frequency [min-1] 194.812  200.948 192.322 194.821 0.898 

Amplitude [ms-2] 0.676  0.636  0.596  0.583 0.065 

D
B

A
Z
 

Peaks frequency [min-1] 150.276  148.947 143.078  149.551 0.661 

Amplitude [ms-2] 0.741  0.735  0.677  0.761 0.497  

 

5.4.2.3 Static, posture: Roll and pitch  
 

Table 5-6 Table of the angle amplitude from the posture while walking at 1.4 km/hour. The asterisks 

represent P value <0.05. 

Parameter mean 

Body Mass 

P value Heaviest 
(~13.2 

kg) 

Heavy 
(~11.7 

kg) 

Light 
(~11.0 

kg) 

Lightest 
(~9.8 

kg) 

Roll amplitude [°] 
Mean 
SD 

9.025 

1.828 
8.931 

1.965 
7.209 

1.202 
8.955 

1.679 
0.045* 
 0.341 

Pitch amplitude 
[°] 

Mean 
SD 

2.215 

0.966 
2.369 

0.823 
2.005 

0.648 
2.795 

1.046 
0.010* 
 0.331 

 

Repeated measures ANCOVA of the model on the roll (waddle) and the pitch (tilt) showed a 

significant effect of body mass on both movements (P = 0.045 and 0.010, for roll and pitch 

respectively, N=8, 8, 10, 6, for heaviest, heavy, light and lightest body condition, 

respectively). Post hoc Wilcoxon pairwise comparisons with the adjustment of P value using 

Holm or Bonferroni method did not show any significant differences for the roll. Only the 

paired comparisons for heaviest-light and heavy-light were significantly different (P= 0.03 

and 0.04, N= 8 and 10, respectively) when the P value was not adjusted to the multiple 

comparisons of roll. None of the post hoc tests showed any significant differences between 

different body masses on the pitch. However probably the underlying differences occurred 
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between heaviest-light and heavy-light (P=0.08, 0.09, respectively, with no P value 

adjustment). Repeatability along with change of body mass did not show any significant 

difference (Table 5-6). 

5.4.3 Biomechanics: The centre of mass 
The heavy king penguin cadaver was preserved in alcohol, which slowly penetrated the 

body. As the organs of the bird started to ferment, the body had to be opened to release the 

formed gas. Additionally, the lack of anatomical markers before preservation made it 

impossible to perform a good comparison of both bodies. The posture of the heavy cadaver 

was not akin to a natural walking posture, due to the cramped confines of the container 

within which the cadaver was stored. The light cadaver was maintained in a similar posture 

to the heavy cadaver (frozen) to aid comparison. See Figure 5.5 and Figure 5.6 for an 

overview of the attempts to measure the centre of mass for the two cadavers.  

 

 

Figure 5.5 Frontal location of the centre of mass. Left: heavy cadaver, right: light cadaver. Lines were drawn to 

find the centre of mass from the suspension method. 
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Figure 5.6 Lateral location of the centre of mass. Left: heavy cadaver, right: light cadaver. Lines were drawn to 

find the centre of mass from the suspension method. 

 

Although an imprecise comparison, the results showed no evidence for a difference in 

location of the centre of mass between heavier and lighter king penguins. 

5.5 Discussion 
The energy expenditure data measured in the present study were consistent with previously 

reported data (Halsey et al. 2007) in showing that the relationship between     
 and speed 

(NCOT) is independent of mass in king penguins, supporting the hypothesis of the optimised 

fat king penguins. 

 

In terms of uncovering the parameters influencing the cost of transport, analyses of the 

accelerations did not show any changes for any of the axes, although the global tri-axial 

acceleration of the body was shown to be dependent on mass. Consequently, king penguins 

kept the same gait accelerations when walking with different body mass, attesting that mass 

independency of NCOT was not linked with a change of gait. 
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The cost of gait has been primarly defined by the cost of supporting body mass during the 

stance phase related to the time of the stance phase (Kram and Taylor, 1990). Studies 

analysing the effect of carrying a load have found that loaded horses increase the stance 

phase by 19%  when compared to the unloaded condition (Hoyt et al., 2000), which has been 

used to explain the increase of energy expenditure. A similar finding has been seen in 

bipedal animals (Marsh et al., 2006, Griffin et al., 2003). However, other studies found no 

biomechanical changes in stance timing while loaded (Taylor et al., 1980, Tickle et al., 2010, 

McGowan et al., 2006). The results of this research showed that king penguins do not 

decrease their stance time, stride length or stride frequency when heavier.  

 

Swing phase duration has also been found to have an impact on the GCOT (Marsh et al., 

2004, Modica and Kram, 2005, Doke et al., 2005, Gottschall and Kram, 2005), thus a change 

in its duration could explain a change of NCOT. Nonetheless these present results did not 

show any changes in the swing phase duration, or in the duty factor along with the change of 

body mass.  

 

An additional theory could be that increased stability in movement, indicated through greater 

repeatibility of the cyclic pattern is likely to result in reducing energy expenditure of 

locomotion. Conversely, a variable gait pattern will require many adaptations, over a number 

of steps to maintain locomotion, which, in theory, would result in more energy consumption. 

The current results indcated that none of the parameters related to regularity were 

statistically different as body mass changed. However, the repetability of step width tended 

to decrease with the decrease of bodymass. This tends to suggest that the hypothesis that 

there will be a reduction in cost with increase in variability for heavy king penguin may be 

true, though more research is required to explore this further. 
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 In the stride parameters, only the step width has been demonstrated to have a significant 

relationship with body mass. The dynamic gait theory suggests that step width has a greater 

influence than step length on the cost of walking. Increase in width has been shown to 

mathematically increase the mechanical work on the centre of mass and consequently on the 

metabolic rate, to the power of four while an increase of stride length to the power of two 

(Kuo et al., 2005). The width slightly increased within the fasting period but reduced at the 

lightest body mass. And this slight increase in width during the fasting period of penguins 

may lead to an increase of energy expenditure, at least until the light condition. This may 

explain the optimisation of heavy king penguins in NCOT. The present study, in contrast to 

Kurz et al. (2008), does not show that king penguin have higher stability in step width than 

stride length (Kurz et al., 2008). However, the standard deviation (variability) about the 

mean step width also increased, to again reduce for the lightest body mass. This is in 

accordance with the energetic optimisation, showing that heavy king penguins are as 

efficient as light ones on the NCOT, at least until the light condition (11.0 kg).  

 

The roll amplitude (waddling) tended to decrease with body mass until the lightest body 

mass when an increase occurred, in contrast to the width and its variability, which were 

increasing within the fasting period to finally reduce at the lightest body mass. Waddling has 

been demonstrated to have a good energy transfer, which enables this movement to be less 

energy consuming than it looks (Griffin and Kram, 2000), thus a change in waddling should 

not affect the NCOT. Finally pitch has been shown to generally decrease with body mass, 

representing an increase in the frontward-backward movements while in the lightest body 

mass condition, which probably demands an increase in energy.  

 

As previously mentioned, studies involving head-supported load demonstrate extra load 

carrying with less or no additional NCOT (Maloiy et al., 1986, Minetti et al., 2006, Bastien 
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et al., 2005), while army recruits carrying the same weight as a backpack showed an increase 

of the NCOT (Pandolf et al., 1977, Goldman and Iampietro, 1962). Those studies showed 

that energy expenditure while walking with a load depend principally on how the load is 

carried, suggesting (without proving) that the change in height, and horizontal distance of 

the centre of mass from the base of support explains the change in energy expenditure. 

However training in this method is needed as untrained Europeans were not efficient in head 

load carrying. The process of this optimisation was examined further (Heglund et al., 1995, 

Cavagna et al., 2002), demonstrating that loading in African women significantly improved 

the transduction of potential to kinetic energy during the descent of the centre of mass, while 

the change in European ethnic group while using the same carrying method was not 

significant. Further data collection and biomechanical analysis are required to determine the 

mechanical processes behind this phenomenon and thus far the authors of this research have 

been unable to propose a viable explanation. Unfortunately, the location of the centre of 

mass in king penguins and its change with different body mass conditions was not 

successful. 

 

In summary the only biomechanical parameters which showed a significant difference that 

could be used to explain the optimisation of energy expenditure by fat penguins were step 

width and its stability. Waddling and pitch are significantly changing. However, waddling 

should not affect the GCOT, while no research on the effect of pitch on GCOT has been 

found.  

 

However, a potential interpretation can be suggested along with the previously mentioned 

results. Potentially, the centre of mass of a heavy and a light king penguin change slightly in 

the sagittal plan, i.e. moving frontward when the bird is heavier. The reduction in abdominal 

fat accumulation has been demonstrated to first decrease abruptly at the start of the fasting, 
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while the subcutaneous fat accumulation decreased constantly but progressively along the 

fasting period in emperor penguins (Dewasmes et al., 1980). This phenomenon was also 

observed in king penguins (personal observations), where heavy birds have a bigger 

abdomen in proportion to lighter ones. The consequent anterior location of the centre of 

mass, relative to the feet will likely aid progression and efficiency, as the momentum from 

the forward fall will advance the gait without the need for a large push-off contribution from 

the muscles. Potentially more energy will be required to control the gait than when the centre 

of mass was located closer to the feet in the sagittal plane, to avoid too much momentum 

causing a forward fall, i.e. representing, in absolute terms, the cost of the walking posture 

and its PCOT (heaviest penguins have a smaller pitch than lightest). It would appear that this 

mechanism may be more energy efficient overall. Indeed penguin pedestrian locomotion has 

been shown to be high in energy consumption due to the force generated to move their short 

limbs (Griffin and Kram, 2000), and not to control the fall. See Figure 5.7 for illustration of 

the interpretation. 

 

 

Figure 5.7 Hypothetical change in the location of the centre of mass between light (left) and heavy (right) 

standing king penguins, generating a new resultant force which leads the birds to fall ahead. 
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Additional research needs to be done to demonstrate that the independent propriety of 

NCOT to body mass as exceptional or general for the avian species, and the comparison with 

another upright bipedal (i.e. human) is interesting. The comparison of heavy human gait to 

penguin gait is not straightforward, due to the different anthropometric properties of the two 

species. When normalised to height, the king penguin has a relatively lower centre of mass, 

the consequence of which is improved stability. Furthermore heavy humans have been 

shown to have an accumulation of fat between their thighs, limiting their movements 

(Browning et al., 2006), while penguins did not show such an accumulation. Thus, it would 

be interesting to see the NCOT of humans carrying a frontal artificial load. 

 

Even though the mechanism of this efficient skill is still unclear, this study showed potential 

directions for further research, as well as offering a step forward in trying to uncover the 

parameter influencing GCOT by its partition. Indeed looking at the effect of each parameter 

specifically on the PCOT or NCOT could enable a better understanding of GCOT. The low 

number of birds to provide data for analysis from the video could be improved, as well as 

the location of the centre of mass with new subjects or with CT-scan analyses or the actual 

birds’ bodies. Finally, this study showed the optimisation of the evolutionary adaptation of 

king penguins’ secondary locomotion to enable a good management of their energy budget 

while walking at a wide scale range of body masses. 
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6. It costs to be late: investigating 
the onshore energy expenditure of 
incubating king penguins. 
__________________________________________________________________________ 

Estimating the energy expenditure of the longest fasting period of early and late king 

penguin breeders, developing beyond previous factors by including the energy expenditure 

due to stressed state and walking on inclines to obtain altitude. 

__________________________________________________________________________ 
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6.1 Abstract 
Early and late breeders are known to have differing reproductive success (38.5 versus 

21.5%). Although some studies have investigated this difference, none have looked at 

differences in energy expenditure, due, for instance, to the difference in density of the colony 

at different times of the year and the consequent increase in aggressive behaviours between 

nesting adults, or to the longer journey typically required of a late breeder to reach its zone 

of attachment. The energy expenditure of individual behaviours (such as comfort –preeing, 

stretching-, defence) has been estimated for incubating birds, as well as the energy 

expenditure of pedestrian locomotion. However, extra costs incurred due to stress response 

per se or by walking on different inclines has not yet been considered. In this chapter a 

simple estimate comparing the energy expenditure of the early and late incubating males 

during the first and second shift (the longest fasting periods) was developed, using 

previously published energetics data and further such data collected in the laboratory, such 

as the cost of stress response and walking on an incline. The results indicated that late 

breeders encounter an energetic disadvantage of a 66% increase compared to early breeders. 

However, the disadvantage for late breeders of greater walking distances to and from their 

zone of attachment in the colony represented only a difference of 1.8 % over the 20 days 

ashore. Furthermore, difference in the choice of the colony for incubating only represent an 

advantage of 1.8% of a 20-days energy expenditure of a late breeder. These results suggested 

that the location of the zone of attachment, within or between colonies, is not an important 

factor influencing the onshore energy expenditure of an incubating male. However, being an 

early breeder overall provides an energetic advantage representing eight days of extra fasting 

time between the first and second shift.  

6.2 Introduction 
An important influence on the reproductive success of the king penguin is arrival time at the 

colony to start the breeding cycle, epitomised by the higher reproductive success of ‘early 

breeders’ than ‘late breeders’ (38.5% of the early birds returning to the colony of Baie du 
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Marin successfully raised a chick in 1998-2000 versus 21.5% of the late breeders, Descamps 

et al., 2002). In terms of advantages encountered while being onshore, this higher success of 

early breeder may be linked with, at least, three factors: temporal advantage for chicks, 

lower density of the colony and better choice of locations for a breeding pair’s zone of 

attachment.  

 

Probably the most important factor of these is the greater time for chicks to reach the 

minimal body mass (10-12kg) that enables them to survive through the Sub Antarctic winter 

(Cherel and Lemaho, 1985, Weimerskirch et al., 1992, Van Heezik et al., 1994).  

 

King penguins are highly territorial, and an average rate of 100 interactions/birds/hour has 

been observed within colonies (Côté, 2000).  As the zones of attachment of king penguins 

are not physically limited or visually defined, breeders aggressively defend this territory. 

Thus while brooding, birds are subject to frequent acts of aggression from their neighbours. 

The number of immediate neighbours has been shown to increase the number of aggressive 

interactions between birds (Côté, 2000), which unsurprisingly, and as confirmed by Viblanc 

et al. (in press), has an extra cost (e.g. 171 kJ/h for aggressive behaviour with physical 

contact, estimated from heart rate data). The energy expenditure of an adult breeder 

increases with the population size of the colony, which is probably due to the decrease in the 

distance between incubating birds (Viblanc et al., in press). The number of king penguins in 

a colony increases over the course of the breeding season until reaching a plateau around 

mid-January (Viblanc et al., in press), suggesting an energetic advantage for early breeders. 

Thus an increase in aggressive interactions through the breeding season may also lead to a 

difference in energy expenditure between early and late breeders. In addition, the number of 

neighbours has been shown to be positively related to cortisone levels (a type of 

glucocorticoid, which is a stress response hormone) (Viblanc et al., in review), suggesting 

greater levels of stressed state in more densely populated colonies. 
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Location in the colony may also have an effect on the reproductive success of king penguins. 

Early breeders tend to have a more central position in the colony (80% of the central birds 

are early breeders; Côté, 2000), while late breeders are typically relegated to locations 

further away and/or to peripheral positions (Pers. Obs. / 69% of peripheral birds are late 

breeders; Côté, 2000). The topographic location of the zone of attachment has important 

implications for reproductive success, as more distant locations to rivers and the sea are less 

subjected to flooding (Pers. obs). A location further from the sea obviously increases 

walking energy expenditure for king penguins, while nests towards the periphery of the 

colony are twice as likely to be subjected to predation compared to those in a central 

position (Côté, 2000). In terms of energetic disadvantages, greater walking distances, greater 

heights to climb or crossing more breeding areas will all result in higher energy expenditure 

during pedestrian locomotion. As king penguin adults need to walk from the sea to their  

zone of attachment, or return, typically ten times through the incubating season, a small 

difference in energy expenditure per individual walk could summate across shifts to a 

noteworthy total energy cost across the season. Some king penguin colonies are located two 

kilometres from the shore, reaching an altitude of more than 100 metres (Guinet et al., 1995, 

Halsey et al., 2007b).  Halsey et al. (2007b) estimated that king penguins consume between 

23 and 31l of O2 to walk two kilometres with a body mass of 10 and 13 kg, respectively. 

However, Halsey et al. (2007b) did not account for the local topological variations, 

implicitly assuming a flat topography, nor did they account for the additional energy 

expenditure of crossing the breeding area, which induces a significant stressed state owing to 

aggressive conspecifics that protect their territory (Williams, 1995).  

 

To assess the energetic advantage experienced by early breeders, the energy expenditure of 

both early and late breeders was investigated during the longest fasting period, encountered 

by the males between the first and second shifts while incubating the egg. Indeed, extension 

of the fasting period is expected to happen in the next decade due to the predicted 
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displacement of the polar front. This displacement will increase the distance from and the 

time taken to reach foraging sites at sea (Peron et al., 2012). Their longest fasting period 

could become the limiting factor for their reproductive success. The onshore energy 

expenditures of king penguins have been investigated previously in terms of the energy 

expenditure of different behaviours while incubating (Viblanc et al., 2012a, Viblanc et al., 

2012b, Viblanc et al., 2011a), and, separately, the energy expenditure of walking (Halsey et 

al., 2007b). However key parameters need to be considered such as the energy expenditure 

associated with stressed state and the additional energy expenditure of walking on an incline. 

Therefore, this chapter estimates the energy expenditure during the longest fasting period for 

early and late breeders, taking the cost of stressed state and walking on an incline into 

account. Data from previous, studies adding for the cost of stress per se measured in chapter 

three were used to estimate the daily energy expenditure. Data from 22 birds measured when 

walking on an incline, at different speeds and body masses and data from six walking birds 

measured while stressed (chapter three) were used to estimate the walking energy 

expenditure depending on the zone of attachment location. 

6.3 Materials and methods 

6.3.1 Birds and experimental protocol 

6.3.1.1 Walking energy expenditure on an incline 
Penguins were captured in the morning and soon afterwards their ability to walk on a 

treadmill was assessed. When enough penguins suitable for the treadmill had been captured, 

data collection began. The first experiment generally took place on the same day or the day 

following capture. The penguins of group D were kept in a pen until the end of experiments 

(Table 2-1). Before the experiment, each bird was weighed and equipped in the same fashion 

as the birds used in § 2.2.2.1. The bird was then placed in the respirometer chamber upon a 

treadmill such that he walked at controlled speeds. The     
 and VeDBA of courting birds 

were measured as soon as the bird was put in the respirometer chamber. The bird rested for 

one hour in before the treadmill was turned one, thus requiring the bird to walk (Figure 2.20 
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for an example of the experiment schedule). Then, an initial walking session of five minutes 

was completed to acclimate the bird to walking on the treadmill. The experiment involved 

one set of four walking sessions at speeds of 1, 1.2, 1.4 and 1.6 km/h, with 10 minutes rest 

between each. The speed order was randomised. One set of walking sessions was conducted 

on a 13% incline. Experiments and data collection were repeated four times at 

approximately days 0, 7, 14 and 21, with the respective average body masses referred to as 

‘heaviest’ (13.2 kg), ‘heavy’(11.7 kg), ‘light’(11.0 kg) and ‘lightest’ (9.8 kg). Birds were 

kept in a pen after the experiment and released at the same place in the colony after the 

fourth experiment. 

6.3.2 Data Processing and Statistical analysis 

6.3.2.1 Daily energy expenditure during incubating 
 

Time budget 

To estimate the daily energy expenditure of an early and a late breeder, the daily time budget 

of an incubating king penguin by Challet et al. (1994) was used: 67.2% resting, 17.5% for 

comfort (i.e. preening, shaking, stretching), 7.4% sleeping and 7.9% defence. Extrapolations 

of the density of the colony, for early and late breeding males whilst incubating, were made 

from Figure 26 in Viblanc (2011b) (i.e. 150 and 350 birds, early and late, respectively). 

From Figure 31 (Viblanc, 2011b) reporting the relationship between colony density and 

resting heart rate, extrapolation of resting heart rate was calculated for an early and a late 

breeder (i.e. 39 and 47 beats/min, respectively). These values were used to represent heart 

rate while resting (67.2% of the day) and sleeping (7.4% of the day) and to estimate daily 

energy expenditure using the calibration relationship reported in Groscolas et al. (2010). 

Equation 6-1 

               ; 

where EE is energy expenditure (kJ/day) and HR is heart rate (beats/min). Energy 

expenditure during comfort activity and defence was calculated from Viblanc et al.(2011a) 

and VAV’s thesis (unpublished work, in press or in review) (i.e. 61.2 kJ/h for energy 
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expenditure of comfort, and 29.8 kJ/h for energy expenditure of aggressive behaviour). Early 

breeders were assumed to be unstressed, while the late breeders were assumed to be stressed 

due to the higher density and aggression between birds, and higher measured 

glucocorticoides (VAV’s thesis, Viblanc et al., in press). Therefore the energy expenditure of 

the stress response per se (see chapter three) was added to the late breeders’ resting 

metabolic rate: excess heart rate was multiplied by the percentage increase in    
 due to the 

presence of a stressor (26% increase in     
 while stressed for a similar heart rate ; in birds 

from group C). As the energy expenditure of defence was estimated from heart rate data 

(VAV’s thesis), daily energy expenditure for both early and late breeders was also multiplied 

by the percentage of increase in     
 due to the stressor. Total daily energy expenditure was 

calculated for both early and late breeders and compared. 

6.3.2.2 Walking energy expenditure 
 

Energy expenditure of walking 

As in Halsey et al. (2007b),     
 as a function of speed was calculated accounting for body 

mass. This allowed the linear equation of the relationship to be determined as in chapter five: 

Equation 5-1 with data of birds group D: 

    
         

; where   is speed (m/s). Four different linear equations were investigated using two body 

masses (‘heaviest’ mass ~13.2 kg and ‘lightest’ mass ~9.8 kg) and two inclines (0% flat and 

13% incline). Furthermore, the data set obtained while walking under the presence of a 

stressor was also used (data of bird group C, chapter three) to account for the influence of 

stressed state on the energy expenditure of walking. Specifically, the energy costs associated 

with stress per se were included, defined as a direct result of the stressor and not including 

the physiological response to increased body motion as a result of the stressor (i.e. having 

the same level of motion between unstressed/stressed states).  
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Topographic and energetic aspects of an onshore roundtrip 

The four colonies of (A) Ile aux Cochons (Crozet Archipelago), (B) Ratmanoff (on the 

Kerguelen Archipelago), (C) Jardin Japonais and (D) La Baie du Marin (both on Possession 

Island, Crozet Archipelago) were incorporated in the development of the estimate. Using 

www.geocontext.org/publ/2010/04/profiler/en/, two extreme locations inside the colonies 

(with the shortest or longest distances/height from the sea) were digitised allowing distance 

and altitudes values to be imported to R Cran (R Core Team, 2012). King penguins usually 

avoid walking through the colony and prefer following a path about the periphery using 

standard routes, where less aggressive interactions therefore occur (Pers. Obs.). However 

such routes were not discernible from the satellite images, thus journey routes using the 

periphery of the colony were chosen based on shortest distances. The package 

“RgoogleMaps” (R Core Team, 2012) was used to create visual representations of the 

journeys using Google maps. For each colony, the energy expenditure of pedestrian 

locomotion was then calculated accounting for body mass, topography and stressed state. 

King penguins were assumed to be at the “heaviest” body mass when walking to the zone of 

attachment (i.e. having just returned from a foraging trip at sea) and at the “lightest” body 

mass while walking back to sea. Each journey was split into upward and downward inclines. 

From each incline, its minimum and maximum were used to calculate the distance and the 

altitude walked, given by www.geocontex.org. However the degree of incline encountered in 

the experiments (13 %) often did not represent that encountered in the field. Therefore, if the 

true incline was greater than 13% the energy expenditure of walking on the incline was 

considered similar to walking at 13%. When the true incline to be modelled was less than 

13% the distance over which the incline existed was conceptually divided into sequences of 

flat and 13% inclines, which summed to represent that same total altitude achieved over the 

same horizontal distance walked. For instance, a journey of 10 metres on a 6.5% incline was 

modelled as a journey of five metres on the flat and five metres on a 13% incline. Energy 

expenditure when walking on negative inclines (i.e. downhill) was assumed to be the same 
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as walking on the flat (energy expenditure decreases slowly with angle of downhill slope up 

to 9% decline, Margaria, 1968). Because data are not available for birds both walking on an 

incline and subjected to a stressor, when such a situation was encountered in the model it 

was represented by estimates of energy expenditure obtained for walking on an incline since 

this represented the highest energy costs recorded in the laboratory. Birds were considered to 

be in a stressed state when crossing the breeder area. Unfortunately walking energy 

expenditure while stressed has only been measured at the heaviest body mass (chapter 

three), thus the energy expenditure at the heaviest body mass while stressed was also used 

for the return journey through the breeding area. Personal observations (ASTW) indicated 

that preferred pedestrian speeds are 1.0, 1.2 and 1.4 km/h, on an incline, on the flat, and 

while stressed, respectively. In the estimate therefore birds were assumed to walk at these 

speeds in the respective scenarios. Energy expenditure per metre walked taking into account 

walking speed, body mass, incline and stressed state were used to model the     
 of for each 

roundtrip. Conversion of oxygen consumption into energy expenditure in Joules was made 

using the following equation: 

Equation 6-2 

             
, (Schmidt-Nielsen, 1997) 

; where EE is the energy expenditure in Joules per second. 

6.3.2.3 Energy expenditure during the longest fasting period  
Using the incubating and walking energy expenditures calculated as described in previous 

sections (§ 6.3.2.1 and § 6.3.2.2), the total energy expenditure of an early and late breeding 

male between the first and second shift was investigated. Late breeders were considered to 

have the longest roundtrip in the colony. To assess the importance of walking energy costs to 

overall onshore energy expenditure, the percentage contribution of walking to daily energy 

expenditure and for the entire fasting period (20 days in average; Barrat, 1976) was 

calculated. The different energy expenditures calculated for walking short and long 

roundtrips were compared. 
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Table 6-1 Analysis summary. VAV: Vincent A. Viblanc 

Aims 
Birds type Analyses 

 Behaviour 
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b
a
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Resting 

(67.2% of 

the time 

budget) and 

sleeping 

(17.5%) 

VAV’s data + 

six incubating 

birds (group C) 

Early: 1. Extrapolation of the density and its related resting heart rate found during early breeding period from VAV’s figures.  
 

2. Conversion into energy expenditure (Equation 6-1). 

Late: 1. Extrapolation of the density and its related resting heart rate found during late breeding period from VAV’s figures. 

2. To include the additional energy expenditure of the stress response per se, the difference between resting heart rate of an 

early and late was calculated and  multiplied by 126%. 

3. Conversion into energy expenditure (Equation 6-1). 

Comfort 

(7.4%) 
VAV’s data 61.2 kJ/hour  

Defence 

(7.9%) 

VAV’s data + 

six incubating 

birds (group C) 

Early: 29.8 kJ/h multiplied by the energy expenditure of the stress response per se 126%. 

Late: 29.8 kJ/h multiplied by the energy expenditure of the stress response per se 126%. 

W
a

lk
in

g
 

Flat 
10 birds in 

courtship (group 

D, walking on a 

flat and on an 

incline at two 

different body 

masses) 

Calculation of the energy 

expenditure per metre: 

Equation 5-1. 

           

1.  Use of www.geocontext.org/publ/2010/04/profiler/en/ to draw journeys of early (i.e. 

shortest) and later (longest) breeders. Then exportation of distances and altitude data. 

2. Calculation of the energy expenditure of each journey using the energy expenditure 

per metre depending on the terrain and body mass. 

3. Conversion of the oxygen consumed into energy expenditure (Equation 6-2). 

Incline 

Stressed (i.e. 

walking 

inside the 

colony) 

six birds in 

courtship (group 

B, walking while 

unstressed and 

stressed) 

Calculation of the energy 

expenditure per metre:  
Only one data point. 

W
h

o
le

 

fa
st

in
g

 

p
er

io
d

 

All data above 

Early: Addition of the early breeder daily incubating energy expenditure multiplied for 20days with the walking energy for the 

shortest roundtrip. Walking energy expenditure was compared in percentage to the daily and fasting incubating expenditure. 

Late: Addition of the late breeder daily incubating energy expenditure multiplied for 20days with the walking energy for the 

longest roundtrip. Walking energy expenditure was compared in percentage to the daily and fasting incubating expenditure. 
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6.4 Results 
See Appendices for raw data. 

6.4.1.1 Daily energy expenditure during incubating 
Daily energy expenditure was estimated to be 1988 kJ and 3311 kJ for an early and a late 

breeder, respectively (Figure 6.1). These ranges are similar to the daily energy expenditure 

calculated by Groscolas et al. (2010) based on the body mass loss of king penguins 

incubating in the colony or while captive in pens (1315 to 5903 kJ). The components of the 

expenditure were estimated at 1661, 256 and 71 kJ for the resting and sleeping, comfort and 

defence energy expenditures of an early breeder, and as 2983, 256 and 71 kJ for a late 

breeder (Figure 6.1). The daily energy expenditure of a late breeder was 66% higher than the 

early breeder’s daily energy expenditure.  

 
Figure 6.1 Estimation of the daily energy expenditure for an early and late breeder. The light boxes 

represent the energy expenditure of sleeping and resting (including the energy expenditure of stress response per 

se for the late breeder), the dark boxes are the energy expenditure for comfort behaviour and the black boxes are 

the energy expenditure for defence behaviours (including the energy expenditure of stress response per se). 
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6.4.2 Walking energy expenditure 

6.4.2.1  Energy expenditure of walking 
 

The different linear equations of the relationship between     
 and speed were calculated 

accounting for body mass, inclines and stressed state and can be seen in Figure 6.2. 

 
 

Figure 6.2     
 – speed relationship as a function of various important parameters. A: ‘heaviest’ and 

‘lightest’ body mass, walking on the flat. B: heaviest’ and ‘lightest’ body mass, walking on an incline. C: walking 

while stressed at “heaviest” body mass. Legends The black points highlight the data used in the estimate of 

energy expenditure for a roundtrip to the colony. The different colours represent the two different body masses; 

see legend box in the graph. Terrain: flat=plain line, incline=dashed line.  

 

The energy expenditure of walking one metre on a flat surface at 1.2 km/h ranged from 174 

to 293 kJ, for the lightest (~9.8 kg) to the heaviest (~13.2 kg) body mass (Table 6-2). 

Walking one metre on an incline cost between 206 to 343 kJ (for the lightest to the heaviest 

body mass, respectively) and walking one metre while in the colony (thus while stressed) 
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cost 303 kJ for the heaviest birds (data from chapter three) The flat data corresponded to the 

range values found by Halsey et al. (2007b) while walking two kilometres on a flat surface. 

 

Table 6-2 Energy expenditure to walk one km (at their preferred speed) in kJ and LO2 (in brackets) 

Body Mass 
Flat 

1.2km/h 
Incline 

1km/h 
Stressed 

1.4km/h 

Heaviest (~13.2 kg) 
293 

(14.59) 

343 

(17.04) 

303 

(15.09) 

Lightest (~9.8 kg) 
174 

(8.63) 

206 

(10.26) 
NA 

 

6.4.2.2 Topographic and energetic aspects of an onshore roundtrip 
 

 

Figure 6.3 Bird’s eye view of likely shortest and longest routes into the colony. Colony areas are denoted by a 

dotted white line. The breeding areas that are crossed are highlighted with a thick white shade around the line. A. 

Ile aux Cochons. B. Ratmanoff, Kerguelen. C. Jardin Japonais, Possession Island. D. La Baie du Marin, 

Possession Island. The inclines are not highlighted in these images, however, they were taken into account in the 

estimations of walking energy expenditure. Modified pictures from maps.google.com using R. 
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The shortest and longest distances overland to the colonies of Ile aux Cochons (A), 

Ratmanoff (B), Jardin Japonais (C), and Baie du Marin (D) can been seen in Figure 6.3. The 

longest and shortest distances at Ratmanoff are the same as the colony is parallel to the 

shore, thus all zones of attachment are roughly the same distance to the sea (Figure 6.3). 

Furthermore, as the colony is on the coastline, there is negligible incline. A topographic 

profile of the journeys can be seen in Figure 6.4. 

 

The distance walked ranged from 59 to 311 m and between 848 to 5209 m, for shortest and 

longest roundtrips respectively across the four modelled colonies (Table 6-3). The energy 

expenditure for the shortest roundtrips ranged between 17 to 94 kJ, while the range of energy 

expenditure for the longest roundtrip was between 225 and 1321 kJ (Table 6-3 and Figure 

6.1). 

 
Figure 6.4 Topographic profile of likely shortest and longest journeys into various colonies. A. Ile aux 

Cochons. B. Ratmanoff, Kerguelen. C. Jardin Japonais, Possession Island. D. La Baie du Marin, Possession 

Island. The breeding areas are highlighted by thickened lines. The dashed lines represent a constant 13% incline. 
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Table 6-3 Energy expenditure of likely shortest and longest roundtrips to a colony by king penguins. Early 

breeders were assumed to undertake the short roundtrip and the late breeders were assumed to undertake the long 

roundtrip. ‘Short’ and ‘Long’ refer to roundtrips, ‘early’ and ‘late’ refer to the breeders. 

Colony 
A. Ile aux 

Cochons 

B. Ratmanoff, 

Kerguelen 

C. Jardin 

Japonais, 

Possession Island 

D. La Baie du 

Marin, 

Possession Island 

Journey (return) 
Short. 

‘early’ 
Long. 

‘late’ 
Short. 

‘early’ 
Long. 

‘late’ 
Short. 

‘early’ 
Long. 

‘late’ 
Short. 

‘early’ 
Long. 

‘late’ 

E
n

er
g

y
  

ex
p

en
d

it
u

re
 (

k
J

) 

(D
is

ta
n

ce
 i

n
 m

) Flat 
0 

(0) 

697 

(3114) 

0 

(0) 

0 

(0) 

0 

(0) 

109 

(497) 

0 

(0) 

83 

(380) 

Incline 
2 

(10) 

469 

(1585) 

0 

(0) 

0 

(0) 

14 

(41) 

53 

(164) 

1 

(6) 

64 

(210) 

Stressed 
77 

(255) 

155 

(511) 

94 

(311) 

94 

(311) 

12 

(41) 

92 

(305) 

16 

(53) 

78 

(258) 

TOTAL 
79 

(265) 

1321 

(5209) 

94 

(311) 

94 

(311) 

26 

(81) 

254 

(966) 

17 

(59) 

225 

(848) 

 

6.4.2.3  Energy expenditure during the longest fasting period  
The estimated energy expenditure while incubating for the 20-day fasting period between the 

first and second shift cost between 39789 and 39865 kJ and between 6639 and 67535 kJ, for 

early and late breeders, respectively (Table 6-4). Roundtrips represented 1 to 5%, and 7 to 

41% of the daily incubating energy expenditure for the shortest and longest roundtrip, 

respectively. Roundtrips represented 0.04 to 0.2%, and 0.1 to 2% of the total energy 

expenditure over the 20-days ashore, incorporating the shortest and longest roundtrips to and 

from the colony, respectively (Table 6-4).  

Table 6-4 Energy expenditure estimation for late and early breeders between the 1st and 2nd shift, at 

different colonies. EE is for energy expenditure. Walk is for Walking and Inc for incubating. Late breeders are 

assumed to undertake the longer routes to and from the colony. 

Colony 
A. Ile aux 

Cochons 

B. 

Ratmanoff, 

Kerguelen 

C. Jardin 

Japonais, 

Possession 

Island 

D. La Baie 

du Marin, 

Possession 

Island 
Breeder Early Late Early Late Early Late Early Late 

Energy  

expenditure 

(EE in kJ) 

Incubating 

(daily) 
1988 3311 1988 3311 1988 3311 1988 3311 

Walking 

(return) 
79 1321 94 94 26 254 17 225 

Total for 20 

days 
39850 67535 39865 66308 39798 66468 39789 66439 

Percentage 

 
      

     
 

     

Daily 4 40 5 3 1 8 1 7 

Fasting 

period (20 

days) 

0.2 2 0.2 0.1 0.07 0.4 0.04 0.3 
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6.5 Discussion 
The estimated daily energy expenditure of late breeders, while incubating between the first 

and the second shift, is 66% higher than the daily energy expenditure of early breeders (1984 

and 3311, for early and late breeders respectively), indicating a considerable energetic 

disadvantage for late breeders. This is explained mostly by an increase in aggressiveness 

between neighbours linked to the increase in colony density (resting heart rate 39 and 47 

beats/min for early and late breeders, respectively, representing 1661 and 2081 kJ, without 

accounting for the additional cost due to stress per se). Consequently, the energetic 

equivalent of an average 20 days fasting period for an early breeder is just 12 days for a late 

breeder, resulting in a temporal disadvantage of eight days for the late breeders. 

 

The maximal difference in cost of walking between early and late breeders within the same 

colony (i.e. assuming that the early breeders take short routes and late breeders take long 

routes, and that late breeders are obliged to take zones of attachment at higher altitudes and 

experience greater stressed state while walking to them) represents an increase of 36% of the 

daily incubating energy expenditures (4 to 40%, in Ile aux cochons), and 1.8% of the total 

energy expended during a 20-day fast (from 0.2 to 2%). Thus, the longer roundtrip is 

estimated to represent a reduction in maximal fasting duration of less than half a day. Thus it 

might be reasonable to conclude that the difference in reproductive success between early 

and late breeders is not generally due to additional costs of a longer or for other reasons 

energetically more costly roundtrip for the latter, even when accumulated over the breeding 

season. 

 

In addition, comparison of the walking energy expenditure between the different colonies 

showed a difference of 36% for a late breeder daily energy budget (3 to 40% for a late king 

penguin at Ratmanoff and Iles aux cochons, respectively) which only represents a 1.9% 

different in the 20-days energy budget (from 0.1 to 2%). These results suggested that the 

pedestrian locomotion energy expenditure due to the choice of colony (at least between the 
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specific four measured colonies) is not an important parameter affecting their incubating 

energy budget, representing only a temporal advantage of a third (36%) of a day of a 20-day 

fasting period.  

 

Furthermore, the present results showed that the energy expenditure of walking only 

represented a maximum of 40% of an incubating late breeder’s daily energy expenditure, 

which represented 2% of an incubating late breeder 20-day energy expenditure. This 

suggests that, generally, the energy expenditure is not an important parameter affecting the 

fasting energy budget. Even when taking the cost of the stress response per se and incline 

into account, the present results support the previous finding that the energy expenditure of 

walking for a roundtrip is unlikely to be subject to selection pressures (Halsey et al., 2007b, 

Angelier et al., 2006). 

 

While the longest incubating fasting period by king penguins is known to last 20 days on 

average (Barrat, 1976), this represents both early and late breeders together; data are not 

presently available for these groups of birds separately. Clearly then, future work should 

record observed durations of incubating between two shifts for early and late breeders 

separately as well as the fasting duration until egg abandon. From the predictions of the 

present model, late breeders are able to remain fasting ashore for eight days less. This is a 

dramatic difference and thus could well be a contributory factor to the lower reproductive 

success rates of late breeders in the event of unfavourable year. Furthermore, this difference 

may become even greater due to the potential increase in the distance out to sea that king 

penguins must travel to reach foraging areas, predicted to be up to 25 to 40 km per decade 

(Peron et al., 2012) due to displacement toward the south pole of the polar front. Indeed, this 

displacement of foraging patches in response to global warming may result in an additional 

day every decade associated with each foraging trip (Charles-André Bost, unpublished data). 

This may result in the available fasting duration becoming a limiting factor for king penguin 



Chapter six 
It costs to be late: investigating the onshore energy expenditure of incubating king penguins 

____________________________________________________________________________________________________ 

 

__________________________________________________________________________ 

Astrid S.T. WILLENER 162 

 

reproductive success. Thus improving the knowledge of incubating energy budget of early 

and late king penguin may enable a better forecast of king penguin population viability in 

the face ofglobal warming. 

  

The model developed in this study of course included a number of simplifying assumption. 

For example, the cost of stress per se may be different according to the stressor (Moberg and 

Mench, 2000). Here, the energetic values used to represent the costs of stressed state were 

collected from experiments employing an anthropogenic stressor, which possibly may not be 

particularly generalisable. In addition, acclimation time may last longer than the defence 

event itself, meaning that the extra cost due to the stress response per se may continue 

beyond the defence duration, which would increase the daily energy expenditure. To account 

for incline walking, data were used to parameterise the model based on a single incline angle 

only, and no downward incline. The resting heart rate included in the model, taken from 

Viblanc (2011b)’s data, represents the lowest heart rate reported and is thus assumed to 

represent the minimal energy expenditure of an incubating king penguin. These birds may 

sometimes exhibit resting and sleeping behaviour requiring a higher metabolic rate than this 

minimum value for a variety of reasons including slight changes in physiological state or 

activity level. For instance, Viblanc showed in his thesis (2011) that heart rate changes 

during the breeding cycle, having, for example, a peak a few days before the laying day for 

early breeders. Furthermore, the model focuses on energy expenditure. However the energy 

reserves may be different between groups of birds, such as there might be differences in 

weight and body condition (proportions of fat to protein) between early and late breeders. 

 

Despite these limitations, this study demonstrated the application of using energy 

expenditure to better understand the ecology of a species. The results of this present chapter 

offer evidence that there is a considerable energetic advantage to being an early breeder, at 

least during the first, and longest, incubating fasting period by the male. 
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7.1 Summarising the results and further work 
Measuring the energy expenditure of a species is key to better understanding its life history 

(Hall et al., 2001), trophic flow (Lowe, 2002), biogeography (McNab, 2002) and 

behavioural strategies (Hinch and Rand, 1998), as mentioned by Gleiss et al. ( 2010). By 

investigating the energy expenditure of king penguins, this thesis generates new insights not 

only into their physiological stress response and the biomechanics of pedestrian locomotion, 

but also into proxy-based methods of measuring energy expenditure. 

7.1.1 The physiological stress response of king penguins 
Techniques for measuring energy expenditure via respirometric calibrations of measurable 

proxies, in particular heart rate and accelerometry, are increasingly being used yet there is 

still considerable scope for enhancing their predictive accuracy through rigorous 

experimentation and validation. For example, while there are a plethora of calibration 

studies refining the relationship between     
 and heart rate in king penguins, to date no 

published work has explicitly investigated the effects of a laboratory-induced stressed state. 

In order to improve the accuracy of energy expenditure estimations of king penguin, this 

thesis looked at the effect of the presence of a stressor on their physiology. Through knowing 

the stress response of a king penguin, it is possible to identify the potential bias of data 

collected from a bird not fully acclimated to its experimental surroundings or to the protocol 

during calibration experiments. However, stress responses are difficult to generalise 

(Romero, 2004). Therefore chapter three sought to determine the cardio-respiratory and 

behavioural responses of king penguins in the specific context of the presence of an 

anthropogenic stressor. 

 

Cardio-respiratory stress responses in king penguins taking the movement into account 

The nature of responses to a stressor depends on several parameters, such as the species in 

question (Hill et al., 2008), individuals within a species (Romero, 2004) (which can differ 

for a number of reasons including variation in life history) and the type of stressor involved 

(Moberg and Mench, 2000). Nonetheless, while determining cardio-respiratory and 
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behavioural stress response, movements are a clear confound. In these studies, it was found 

that the stress responses were partly due to an increase in activity level (i.e. behavioural 

stress response: ‘fight or flight’ response), thus this issue was investigated in depth here. The 

results showed the importance of factoring in the movement (i.e. activity and motion) of the 

subject animal during the presence of the stressor. Indeed the cardio-respiratory and 

behavioural stress responses are different depending on whether the animal is active while 

stressed or not, and on whether the measured response is based on the overall or per se stress 

response. The overall cardio-respiratory and behavioural stress response of an active king 

penguin results in a significant increase in mean     
 only, while the stress response at low 

activity is an increase in mean     
, heart rate and VeDBA. When the stress response per se is 

measured (i.e. the physiological and behavioural stress responses which are a direct result of 

the stressor, without including the physiological response due to increased body motion),     
 

is the only parameter which increases significantly. In addition, these results also 

demonstrate for the first time the short term cost of the stress response. This chapter 

demonstrates that noteworthy error can be introduced if a subject animal is not fully 

acclimated during a calibration experiment. 

 

Stress-induced biases 

Developing on from chapter three, chapter four proposed a protocol to reduce the stress-

related bias induced by exposure of a king penguin to treadmill-calibration experiments. 

Leaving the bird acclimating for 90 minutes in the respirometer chamber and walking them 

for a session prior to data collection on a treadmill was shown to remove much of the stress-

related error in measurements. Future work should include  simultaneous hormone analysis 

to better describe the levels of acclimation achieved (Romero, 2004); however, this analysis 

must not interfere with the natural behaviour of the animals and, of course, not increase the 

stress response. By measuring the cardio-respiratory system alone, nonetheless the results of 
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chapter four showed that with an appropriate acclimation, it is possible to effectively 

attenuate the stress related confound. 

7.1.2 The biomechanics of pedestrian locomotion in king penguins 
Understanding GCOT 

To date, the parameters influencing GCOT and how they interact are uncertain. While 

principal parameters, such as stride frequency, have been defined, others, such as body mass 

have been shown to have contradictory influences on GCOT, and it is not fully understood 

why this is the case. Although partitioning GCOT has shown good results in improving this 

understanding (Steudel, 1990, Marsh et al., 2004, Halsey, 2013), the results presented in 

chapter five have been inconclusive. The small sample size in the biomechanical data may 

have influenced these findings. Further research is also needed to test the hypothesis of 

sagital displacement of the centre of mass in heavy king penguins. However, chapter five is a 

step towards better understanding GCOT through partitioning it into NCOT and PCOT. 

7.1.3 From the laboratory to the field: ecological energetics 
Due to the predicted future displacement of the polar front, the distance and time taken by 

king penguins to reach their foraging sites at sea will be extended (Peron et al., 2012). 

Consequently, the longest fasting period of the king penguin – the first incubation phase by 

the male - is likely to become the limiting factor for their reproductive success. Furthermore, 

investigations of the different energy budget management between early and late breeders 

could enable a better understanding of their differing reproductive success. Therefore 

measurements of energy expenditure obtained through this project were used to estimate the 

energy use between early and late breeders while incubating between shift one and two 

(chapter six). Despite some simplifications made in the estimate as, for instance, applying  

the energy cost recorded for an anthropogenic stressor to represent stresses in the field, 

noteworthy differences in energy expenditure between early and late breeders were found. 

The higher stressed state encountered by late breeders due to the higher density of the colony 

at the start of the breeding season results in them having an estimated 63% higher incubating 
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energy expenditure per day than early breeders. This suggests that their reproductive success 

is more likely to decrease if the daily energy budget is restricted (for instance extension of 

the fasting period, or increase of energy expenditure due to an anthropogenic presence) than 

is the case for early breeders. Late breeders are also likely to have to walk further and / or 

higher to reach their zone of attachment. It was calculated that the associated energy 

expenditures of locomotion represented only up to 2% of the total energy expended over a 

20-day incubating period, suggesting that the additional cost of walking for a late breeder is 

not so important for their reproductive success, at least in term of energy budget. Similarly, 

the small difference in walking energy expenditure between colonies representing locations 

of very differing shape, size, distance from the coast and altitude (maximum energy costs 

difference of 1.8%) suggests that the choice of location of the colony for incubating is also 

not an important factor concerning king penguin reproductive success. 

7.2 Relevance and application of the findings 

7.2.1 Understanding the cardio-respiratory stress response per se 
For the king penguin model at least, if heart rate or     

 are used as measures of stress, it is 

imperative that movements are accounted for. It would appear that the increase in measured 

heart rate might be due to the increased oxygen demands of active muscles (change in 

motion) rather than as a direct result of the physiological stress response per se. If the 

findings for king penguins are generalizable to other species then without measures of 

activity there is likely to be spurious interpretations of wellbeing if body movement is not 

considered (von Borell et al., 2007).  

7.2.2 Energetic costs of being stressed in the short-term 
Furthermore, while the disturbance of penguins by anthropogenic factors has already been 

demonstrated and studied (Culik and Wilson, 1991, Nimon et al., 1995, Culik and Wilson, 

1995, Viblanc et al., 2012a), the results in chapter three demonstrated that stressors have an 

energetic impact, as mean     
 significantly increased during the stressed state. Possibly then 

the cost of short-term stress responses should be taken into account when considering 
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conservation issues. The decreasing size of the population of the colony at La Baie du 

Marin, Possession Island, where the field work for this study was conducted, could partly be 

due to this anthropogenic presence. This is the only colony on the island to have a human 

presence throughout the year and also the only colony to be decreasing in numbers (Viblanc 

et al., 2012a, Delord et al., 2004). Factoring in the additional energy expenditure and its 

duration due to human presence (punctual or constant) could enable quantification of its 

impact on overall energy expenditure. The influence of this result could be evaluated in 

relation to other factors which may also be influencing the current population decrease, such 

as habitat loss. Such models could improve the management of penguin colonies which 

experience a human presence, or more generally, any place where humans interact with the 

fauna. 

7.2.3 Reassessing previous results taking stress state levels into account 
The results also suggest that stress-induced error may exist in previous calibration 

experiments which did not allow sufficient acclimation by the subject birds prior to 

measurements being taken. For instance, interpreting research on the energy expenditure of 

king penguins at sea (Butler, 2006, Halsey and Butler, 2006) in light of the above could 

encourage some reinterpretation of the results. Estimated energy expenditure of king 

penguins at sea enabled calculation of the aerobic dive limit, which is the ratio of usable 

oxygen stores to     
 during diving (Butler, 2006), representing the theoretical limit to 

aerobic dive duration. In several species, including king penguins, animals have been shown 

to exceed this limit. For example, 20% of king penguin dives exceed their calculated aerobic 

dive limit (Butler, 2006). An incorrect estimation of the usable oxygen stores, or an incorrect 

estimation of     
 consumed during the dive, have been suggested as explanations. Butler 

(2006) suggested that the usable oxygen store was underestimated due to underestimation of 

the ATP available from phosphocreatine stores. In the case of king penguins, all 

measurements of     
 have been made in water channels (Culik et al., 1996, Halsey et al., 
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2007a) without mention of an acclimation time. As shown by the results of chapter three, a 

stressed king penguin has an increased     
. Thus if acclimation to remove this stress-

induced confound is not included in the protocol, the calculated aerobic dive limit is 

estimated from the     
 of a stressed bird and an underestimated calculation of aerobic dive 

limit would probably result.  

7.2.4 Experimental biology: the need to account for stress state 
In a more general context, the results of chapter three and four showed that it is important to 

acclimate the animal to the laboratory and experimental protocol, to obtain more accurate 

results. This observation is pertinent  to measures over and above energy expenditure, 

especially as stress responses are known to affect almost all physiological systems (Romero, 

2004). 

7.2.5 The use of accelerometry in biomechanics analyses 
Through the research conducted in chapter five, advances were made concerning the 

methodology for collecting walking data. The video- and accelerometer- based results 

regarding stride frequency suggest that accelerometers can be used to describe effectively 

walking gait. The well-known, well-validated and well-used technique of 3D reconstruction 

of the gait for its analysis (Abourachid et al., 2011, Provini et al., 2012, Provini et al., 2013) 

was used to quantify the temporal-spatial characteristics of the penguin gait. Thereafter, 

further analysis of the accelerometry data characterised the acceleration pattern in terms of 

amplitude and between the axes. This enabled comparison of the animal’s walking, and the 

data could improve the quantification of the change in gait between different body 

conditions, for instance, high or low body mass. This new method of analysing gait could 

overcome the issues encountered during field work, which lead to small sample sizes. 

Furthermore, using the accelerometer output for a first interpretation of results could provide 

a direction for future work using video recordings in the field. This would potentially help to 

reduce digitising of video footage for analysis, which is precise but time-consuming.  
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7.2.6 Understanding GCOT: using incline and a larger range of speeds 
Another application of the validated video and accelerometer analysis could be to investigate 

how gait changes across different speeds and with whether the bird is walking on a flat 

surface or on an incline. Analysing the biomechanics and energetic changes along with these 

parameters could lead to additional information which could aid in better understanding of 

GCOT.  

7.2.7 Evaluation of the health of a penguin colony using the biomechanics of 
pedestrian locomotion 

Knowledge about the biomechanics of penguin pedestrian locomotion could underpin 

applied research. Conservation studies often require non-invasive data collection with a 

minimum level of human impact. Video recordings of bird colonies are used to monitor 

behaviour and colony ‘health’. Automated recording of arrivals to and departures from a 

colony is currently being conducted by Tom Hart (from Oxford University). From these data 

population trends within and over years can be calculated. Ideally, if the penguin gait 

changes with differing body mass, this could potentially be recognised on videos. Then, 

from short video sequences taken throughout the year, the nutritional state of a penguin 

could be determined, without the bottleneck effect that a weigh bridge can bring (Le Maho et 

al., 1993). This would enable automation of the measurements of key population parameters 

with less human intervention. 

7.2.8 Reducing human impact in a wild colony: using energy expenditure as a 
unit of comparison 

Better understanding of the different energy expenditures of different anthropogenic 

stressors, and the consequences of those energy expenditures for different birds and at 

different times of the year/breeding cycle, could facilitate improved cohabitation. For 

instance, further research on the acclimation time required for both constant and periodic 

human presence could directly benefit the population of La Baie du Marin, by defining the 

best frequency and duration of access by people to the colony. The use of accurate measures 

of onshore energy expenditure, i.e. accounting for oft-neglected factors such as stress state 
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and its duration, assessed simultaneously with topographic information, could help uncover 

how energy expenditure varies with location of the ‘zone of attachment’ within the colony. 

The results of such on energy landscape, with the collaboration of the French Polar Institute 

(IPEV), could potentially lead to a more appropriate use of the colony for anthropogenic 

purposes, taking the wellbeing of the birds into consideration.  

7.3 Conclusion 
Knowing how animals expend energy is crucial to improving our knowledge of a species. 

The importance of research on energetics has already been demonstrated (Hall et al., 2001, 

Lowe, 2002, McNab, 2002, Hinch and Rand, 1998). In addition, this collection of studies 

has revealed the necessity to take the stress response into account, especially during 

calibration experiments. Using accelerometer data has demonstrated that taking movement 

into account is important when defining the stress response of an animal. Despite 

inconclusive results regarding  the mass-independent NCOT of king penguins, the present 

study is a step forward in defining the parameters influencing GCOT, by suggesting and 

using a new methodological approach for further research (i.e. partitioning GCOT into 

NCOT and PCOT and the use of accelerometers in characterising the gait). Finally, including 

the additional energy expenditure incurred due to stressed state and to walking on an incline 

has enabled a better understanding of the energy budgets of early and late breeders, which 

can feed into conservation projects for king penguins. 

  

In summary, the results of this thesis demonstrated the utility of energy expenditure 

measurements, and the numerous applications that the simultaneous use of respirometry, 

heart rate and accelerometry data can have to answer interdisciplinary questions.   
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8.1 Ethics form 
 
Figure 8.1 Ethical authorisation for the first field work 2009 
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Figure 8.2 Ethical authorisation for the second field work 2010 

 

 

8.2 Data for each chapter 

8.2.1.1 Rough Data:  
In two summer field trips, the following data were collected:  
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More than 400 hours of heart rate data at a frequency of 1Hz (in just under 200 files). More 

than 400 hours of acceleration data at a frequency of 32.5Hz (in just under 200 files). 

Approximately 200 hours of data to calculate oxygen consumption at a frequency of 1Hz (in 

approximately 90 files). Just under 6 hours of video taken at 50Hz to analyse king penguin 

gait (in more than 700 files). 

Table 8-1 General abbreviations 

Abbreviations Definitions 
Ind Individual identity 

    
[ml/min] Rate of oxygen consumption in millilitre per minute 

HR [beats/min] Heart rate frequency in beats per minute 

VeDBA [g] Vectoriel Dynamic Body Acceleration in metre per second square 

 

8.2.2 Reassessment of the cardio-respiratory stress response: accounting for 
movement 

8.2.2.1 High activity 
 
Table 8-2 Data of     

 heart rate (HR) and VeDBA of king penguins while walking on the treadmill under 

different stressing conditions. Stressi:1=unstressed, 2= stressed. 

Ind Stressi     
[ml/min] HR [beats/min] VeDBA [g] 

31 1 286.98 143.00 2.99 
31 2 310.17 155.50 2.90 
32 1 282.94 115.50 2.99 
32 2 293.74 114.00 2.96 
33 1 253.07 137.50 2.49 
33 2 257.28 132.50 2.33 
35 1 289.01 180.50 2.66 
35 2 371.16 163.50 2.97 
36 1 304.24 196.50 2.54 
36 2 363.09 190.00 3.04 
37 1 283.49 145.50 2.97 
37 2 342.68 155.00 3.39 

 

8.2.2.2 Low activity 
 
Table 8-3 Data of     

 heart rate (HR) and VeDBA of incubating king penguins under different stressing 

conditions. VeDBAg: 1=unstressed same VeDBA as stressed (i.e 2); 2 = stressed; 3 = unstressed different. 

Ind VeDBAg     
[ml/min] HR [beats/min] VeDBA [g] 

24 1 64.85 85.89 0.12 
24 2 93.34 91 0.12 
24 3 55.22 63.12 0.02 
25 1 75.33 88.01 0.07 
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25 2 68.87 104 0.07 
25 3 48.34 87.69 0.04 
26 1 81.1 128.16 0.2 
26 2 123.78 129 0.2 
26 3 43.91 67.34 0.04 
27 1 89.83 128.5 0.2 
27 2 119.28 155 0.2 
27 3 49.92 100.56 0.04 
28 1 67.71 94.74 0.15 
28 2 75.54 82 0.15 
28 3 44.46 38.94 0.07 
30 1 74.16 73.67 0.17 
30 2 91.34 87 0.17 
30 3 49.74 33.92 0.05 

 

8.2.3 Avoiding laboratory stress-induced confounds during respirometry: let 
the king penguin acclimate 

8.2.3.1 Introduction:  Illustration of the effect of stress on the calibration 
relationship with the data collected in this thesis. 

Two graphs of     
in function of heart rate from the data used in this thesis are shown. Data 

were separated into two figures, at high (Figure 8.3) and low (Figure 8.4) activity to improve 

the fit of the calibrations. Data used in chapter three (Table 8-2 & Table 8-3) and five (Table 

8-8) were shown (total n= 153) in the graphs, too. Two calibration relationships were 

calculated from the data: One including all the data from the thesis apart from the one 

measured while in the presence of the human stressor (black triangles), and the second one 

was calculated using only the “unstressed” data from chapter three (light and dark grey 

triangles). Calibration relationships of king penguins from previous studies (i.e. Groscolas et 

al. 2010, dotted line;  Fahlman et al. 2004 dashed line) are also shown. These graphs have 

been made for illustrative purposes only. As discussed in chapter four, the calibration 

relationship of Groscolas et al. (2010) used a time scale measurement of one day, while 

Fahlman et al. (2004) used birds in courtship. Those different parameters enable 

comparisons between previous calibration relationships relative to the data measured while 

stressed, obtained in this thesis (black triangles). Comparison between the calibration 

relationship obtained with the data of this thesis (dark plain line) and stressed data from 

chapter three (black triangles) need to be interpreted with caution. Indeed the calibration was 
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made using a data set (grey dots) with a protocol including only 60min of acclimation, 

which has been shown in chapter four to be insufficient to remove the bias due to stressor. 

Thus the calibration relationship itself is potentially biased by the stress effect (dark plain 

line). Furthermore, regarding the birds at low activity (Figure 8.4), data in this Figure comes 

from birds at two different reproductive states (incubating for the triangles or in courtship for 

the grey dots), which may bias the comparison. Consequently, a second calibration 

relationship has been made with the data measured while unstressed (total n= 18), to 

represent the bias of the effect of the stress response (see black triangles in comparison to the 

light plain line). Comparison from this calibration relationship made with “unstressed” data 

with the “stressed” data shows the displacement of the “stressed” data above the calibration 

relationships, illustrating the additional cost of stress response. 

 
Figure 8.3 Effect of the stress response on the calibration relationships for birds at high activity.  Data used 

in chapter three at high activity (while unstressed –light triangles-, and while stressed –black triangles-) were 

placed with the calibration relationship calculated with all data used in this thesis while highly active (grey dots 

and light triangles), apart from while stressed (black triangles). Previous calibration relationships from Groscolas 

et al. (2010); Eq. 1a (dotted line) and Fahlman et al. (2004); Eq. 2b were also drawn. This graph has been made 

for illustrative purpose only (see text).  
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Figure 8.4 Effect of the stress response on the calibration relationships for birds at low activity. Data used 

in chapter three (while unstressed –light triangles-, while unstressed with control for similar motion-dark 

triangles- and while stressed –black triangles-) were placed with the calibration relationship calculated with all 

data used in this thesis at low activity (grey dots, light and dark triangles), apart from while stressed (black 

triangles). Previous calibration relationships from Groscolas et al. (2010); Eq. 1a (dotted line) and Fahlman et al. 

(2004); Eq. 2b were also drawn. This graph has been made for illustrative purpose only (see text).  

 

8.2.3.2 Acclimation to the experimental environment 
 
Table 8-4 Data of     

 heart rate (HR) and VeDBA of incubating king penguins in different environments. 

Conditions: 1= unstressed in experimental condition, 2= in colony, 3= stressed in experimental condition.  

Ind     
[ml/min] HR [beats/min] VeDBA [g] Conditions 

24 55.22 63.12 0.02 1 
24 NA 103.88 0.05 2 
24 93.34 91.00 0.12 3 
25 48.34 87.69 0.04 1 
25 NA 74.41 0.12 2 
25 68.87 104.00 0.07 3 
26 43.91 67.34 0.04 1 
26 NA 99.66 0.12 2 
26 123.78 129.00 0.20 3 
27 49.92 100.56 0.04 1 
27 NA 128.54 0.21 2 
27 119.28 155.00 0.20 3 
28 44.46 38.94 0.07 1 
28 NA 64.45 0.09 2 
28 75.54 0.29 0.15 3 
30 49.74 0.16 0.05 1 
30 NA 0.35 0.18 2 
30 91.34 0.33 0.17 3 
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Table 8-5 Data of     

 heart rate (HR) and VeDBA of incubating king penguins at different times after 

being placed in a respirometer chamber. Time t: time (in hour) when the means of     
, HR and means were 

made. RMR: 0=           
            , 1=           

; 3 =           
       ; 4 = first stable     

 in 

one hour.  

Ind Start 
resting 

Time t Stop 
resting 

RMR     
 

[ml/min] 

HR 
[beats/min] 

VeDBA 
[g] 

24 18:21:00 18:51:21 08:14:00 0 66.94 63.77 0.03 
24 18:21:00 01:48:45 08:14:00 1 54.93 63.42 0.02 
24 18:21:00 06:01:51 08:14:00 3 55.22 63.12 0.02 
24 18:21:00 19:21:00 08:14:00 4 90.52 86.44 0.04 
25 18:55:55 20:01:52 09:37:00 0 48.71 84.86 0.04 
25 18:55:55 20:36:07 09:37:00 1 45.94 86.49 0.05 
25 18:55:55 07:46:17 09:37:00 3 48.34 87.69 0.04 
25 18:55:55 19:55:55 09:37:00 4 56.07 90.92 0.04 
26 20:09:00 21:19:28 08:35:00 0 33.73 70.16 0.10 
26 20:09:00 21:19:28 08:35:00 1 33.73 70.16 0.11 
26 20:09:00 06:13:34 08:35:00 3 43.91 67.34 0.04 
26 20:09:00 21:09:00 08:35:00 4 48.31 67.07 0.1 
27 18:08:00 19:33:07 08:25:00 0 49.83 109.30 0.05 
27 18:08:00 19:33:07 08:25:00 1 49.83 109.3 0.05 
27 18:08:00 06:36:33 08:25:00 3 49.92 100.56 0.04 
27 18:08:00 19:08:00 08:25:00 4 64.58 113.9 0.12 
28 17:52:40 19:06:51 08:21:10 0 42.19 47.96 0.04 
28 17:52:40 19:06:51 08:21:10 1 42.19 47.96 0.04 
28 17:52:40 07:21:54 08:21:10 3 44.46 38.94 0.07 
28 17:52:40 18:52:40 08:21:10 4 48.85 48.84 0.05 
30 16:20:08 17:41:41 08:25:26 0 48.24 48.47 0.06 
30 16:20:08 05:30:54 08:25:26 1 47.69 40.39 0.17 
30 16:20:08 07:05:42 08:25:26 3 49.74 33.92 0.05 
30 16:20:08 17:20:08 08:25:26 4 57.51 50.75 0.08 

 

8.2.3.3 Acclimation to the experimental protocol 

8.2.3.3.1 Acclimation across walking sessions 
 
Table 8-6 Data of     

 heart rate (HR) and VeDBA of king penguins while walking on a treadmill. Order: 1= 

first walking session, 2= second walking session, etc. 

Ind Order     
 [ml/min] HR [beats/min] VeDBA [g] 

31 1 276.67 140 2.85 
31 2 278.84 139 2.96 
31 3 295.12 147 3.01 
32 1 316.75 125 3.29 
32 2 285.55 115 2.98 
32 3 280.33 116 3.00 
33 1 291.33 150 2.69 
33 2 257.47 137 2.50 
33 3 248.66 138 2.49 
35 1 308.29 163 2.96 
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35 2 296.16 183 2.74 
35 3 281.86 178 2.57 
36 1 306.17 168 2.41 
36 2 299.60 178 2.46 
36 3 308.88 215 2.62 
37 1 377.28 152 4.28 
37 2 300.10 147 3.13 
37 3 266.88 144 2.82 

 

8.2.3.3.2 Acclimation during the first walking session 
 
Table 8-7 Data of     

 heart rate (HR) and VeDBA of king penguins while walking during the first walking 

session on a treadmill. Min interval: 1= from minute 2 to 5 inclusive, 2= from minutes 6 to 9 inclusive.  

Ind Min 
interval 

    
 [ml/min] HR [beats/min] VeDBA [g] 

31 1 275.96 147 2.72 
31 2 279.49 135 2.95 
32 1 330.33 125 3.37 
32 2 306.23 127 3.24 
33 1 337.92 150 2.54 
33 2 256.79 149 2.52 
35 1 312.11 162 2.99 
35 2 304.11 164 2.93 
36 1 329.39 166 2.40 
36 2 288.89 169 2.37 
37 1 354.73 149 4.81 
37 2 369.00 161 4.15 

 

8.2.4 An approach to uncover the cost of pedestrian locomotion: a 
biomechanical look at the ‘optimised fat penguin’ 

8.2.4.1 Energetics 
 
Table 8-8 Data of     

 and VeDBA of king penguins while walking on a treadmill at different body masses 

and different speeds. 

Ind Body mass [kg] Speed [km/h]     
 [ml/min] VeDBA [g] 

13 11.34 0 85.89 0.09 
13 11.34 1 244.72 2.27 
13 11.34 1.2 240.36 2.52 
13 11.34 1.4 253.42 2.99 
13 11.34 1.6 298.24 3.31 
14 10.07 0 66.71 0.07 
14 10.07 1 183.42 1.88 
14 10.07 1.2 197.75 2.19 
14 10.07 1.4 209.54 2.58 
14 10.07 1.6 218.79 2.93 
14 10.56 0 66.82 0.04 
14 10.56 1.2 248.03 2.4 
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14 10.56 1.4 258.99 2.94 
14 10.56 1.6 261.43 3.08 
14 12.59 0 94.07 0.08 
14 12.59 1 257.85 2.28 
14 12.59 1.2 266.65 2.6 
14 12.59 1.4 279.65 2.98 
14 12.59 1.6 308.45 3.42 
15 9.67 0 51.78 0.02 
15 9.67 1 148.58 1.5 
15 9.67 1.2 161.02 1.81 
15 9.67 1.4 191.22 2.09 
15 9.67 1.6 197.79 2.57 
15 10.12 0 58.32 0.02 
15 10.12 1 162.98 1.46 
15 10.12 1.2 181.15 1.79 
15 10.12 1.4 195.97 2.09 
15 10.12 1.6 217.74 2.61 
15 10.47 1 173.8 1.45 
15 10.47 1.2 188.51 1.84 
15 10.47 1.4 209.85 2.23 
15 10.47 1.6 239.72 2.7 
15 12.36 0 71.02 0.02 
15 12.36 1 252.04 1.74 
15 12.36 1.2 267.93 2.05 
15 12.36 1.4 288.37 2.43 
16 11.8 0 79.78 0.04 
16 11.8 1 221.26 2.15 
16 11.8 1.2 223.11 2.45 
16 11.8 1.4 239.88 2.81 
16 11.8 1.6 268.48 3.26 
16 12.61 0 76.7 0.02 
16 12.61 1 248.02 2.29 
16 12.61 1.2 247.51 2.57 
16 12.61 1.4 273.06 2.99 
16 12.61 1.6 293.54 3.53 
17 10.71 0 67.69 0.03 
17 10.71 1 174.85 1.24 
17 10.71 1.2 211.04 1.68 
17 10.71 1.4 226.33 2.02 
17 10.71 1.6 236.55 2.25 
17 11.23 1 231.2 1.55 
17 11.23 1.2 198.5 1.61 
17 11.23 1.4 244.83 2.26 
17 11.23 1.6 281.64 2.59 
18 11.4 0 77.03 0.27 
18 11.4 1 184.13 1.25 
18 11.4 1.2 214.14 1.76 
18 11.4 1.4 217.46 2.04 
18 11.4 1.6 241.83 2.38 
18 12.31 0 83.94 0.03 
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18 12.31 1 207.89 1.52 
18 12.31 1.2 201.61 1.9 
18 12.31 1.4 239.95 2.47 
18 12.31 1.6 275.88 2.69 
18 13.56 0 80.63 0.03 
18 13.56 1 252.38 2.35 
18 13.56 1.2 318.87 3.59 
18 13.56 1.4 325.73 3.86 
18 13.56 1.6 347 4.33 
19 9.17 1 156.52 1.72 
19 9.17 1.2 175.14 1.96 
19 9.17 1.4 181.74 2.23 
19 9.17 1.6 206.46 2.67 
19 10.69 0 85.06 0.44 
19 10.69 1 218.81 1.96 
19 10.69 1.2 223.87 2.27 
19 10.69 1.4 263.25 2.78 
19 10.69 1.6 260.46 3.14 
19 11.56 0 81.62 0.1 
19 11.56 1 242.46 2.22 
19 11.56 1.2 281.18 2.59 
19 11.56 1.4 292.31 2.81 
19 11.56 1.6 289.14 3.21 
19 12.88 0 108.71 0.06 
19 12.88 1 254.42 2.07 
19 12.88 1.2 297.48 2.66 
19 12.88 1.4 294.34 2.74 
19 12.88 1.6 324.87 3.37 
20 10.36 0 45.63 0.03 
20 10.36 1 139.94 1.54 
20 10.36 1.2 161.91 1.86 
20 10.36 1.4 168.68 2.28 
20 10.36 1.6 180.39 2.75 
20 12.05 0 80.1 0.2 
20 12.05 1 194.22 1.56 
20 12.05 1.2 204.67 2.01 
20 12.05 1.4 226.88 2.37 
20 12.05 1.6 246.47 2.74 
20 14.39 0 108.84 0.03 
20 14.39 1 295.91 2.15 
20 14.39 1.2 289.06 2.22 
20 14.39 1.4 322.4 2.78 
20 14.39 1.6 390.11 3.69 
21 9.92 0 29.67 0.03 
21 11.33 0 64.79 0.02 
21 12.23 0 85.14 0.03 
21 12.23 1 222.5 1.29 
21 12.23 1.2 233.67 1.67 
21 12.23 1.6 305.13 2.65 
21 13.22 0 100.33 0.08 
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22 10.99 0 67.84 0.04 
22 11.87 0 75.12 0.04 
22 11.87 1 215.88 1.98 
22 11.87 1.2 271.18 2.7 
22 11.87 1.4 253.9 2.65 
22 11.87 1.6 262.36 3.01 
22 13.15 0 93.29 0.03 
22 13.15 1 257.69 1.89 
22 13.15 1.2 356.07 2.76 
22 13.15 1.4 360.23 3.24 
22 13.15 1.6 375.05 3.46 

 

8.2.4.2 Biomechanics 

8.2.4.2.1 Video 
Table 8-9 Stride and step parameters of king penguins walking on a treadmill at 1.4km/h at different body 

masses.  

Ind Body 
mass 
[kg] 

Stand 
duration 

[s] 

Swing 
duration 

[s] 

Stride 
duration 

[s] 

Length 
[m] 

Frequency 
[s-1] 

Step 
width 

[m] 
19 12.88 0.54 0.25 0.78 0.36 1.28 0.11 
19 11.56 0.46 0.23 0.69 0.31 1.46 0.13 
19 9.17 0.51 0.26 0.76 0.34 1.33 0.1 
20 14.39 0.46 0.23 0.69 0.31 1.46 0.12 
20 10.36 0.54 0.26 0.79 0.33 1.26 0.08 
21 13.22 0.58 0.28 0.86 0.37 1.18 0.09 
21 12.23 0.52 0.26 0.79 0.35 1.28 0.09 
21 11.33 0.56 0.28 0.84 0.37 1.19 0.1 
21 9.92 0.54 0.28 0.81 0.35 1.24 0.08 
22 13.15 0.51 0.26 0.78 0.35 1.3 0.11 
22 11.87 0.53 0.28 0.8 0.35 1.25 0.1 
22 10.99 0.47 0.24 0.72 0.32 1.4 0.14 
22 9.71 0.5 0.26 0.76 0.33 1.33 0.1 

 

 



Appendices 

____________________________________________________________________________________________________ 

 

__________________________________________________________________________ 

Astrid S.T. WILLENER 183 

 

8.2.4.2.2 Accelerometry 
Table 8-10 Parameters of the Dynamic Body Acceleration (DBA) of king penguins walking on a treadmill at 1.4km/h at different body massed.  SD= standard deviation. 

Ind Body mass 
[kg] 

DBAX DBAy DBAz 

Nb 
peaks/min 

amplitude Nb 
peaks/min  

Amplitude Nb peaks/min Amplitude Frequency [s-1] frequency SD  

13 11.34 161.67 0.63 198.89 0.59 156.11 0.87 1.33 0.16 
13 10.68 154.33 0.44 216.67 0.51 153.78 0.55 1.30 0.11 
14 12.59 161.67 0.49 209.56 0.60 158.22 0.82 1.35 0.23 
14 10.56 161.56 0.45 203.56 0.60 164.89 0.88 1.40 0.18 
14 10.07 157.11 0.43 196.11 0.52 153.67 0.84 1.31 0.15 
15 12.36 150.56 0.35 195.67 0.67 140.33 0.60 1.21 0.17 
15 10.47 144.89 0.46 198.00 0.60 136.78 0.63 1.17 0.10 
15 10.12 57.22 0.19 81.00 0.36 56.00 0.34 0.90 0.14 
15 9.67 142.81 0.44 196.38 0.56 140.75 0.62 1.22 0.14 
16 12.61 161.56 0.50 187.67 0.74 167.33 0.89 1.41 0.13 
16 11.8 159.22 0.58 182.78 0.69 165.78 0.76 1.40 0.21 
17 12.8 160.11 0.45 162.89 0.68 134.78 0.60 1.22 0.29 
17 11.23 137.11 0.38 194.67 0.57 134.67 0.62 1.16 0.16 
17 10.71 130.89 0.35 192.78 0.52 135.44 0.55 1.16 0.15 
18 13.56 162.00 0.56 194.11 0.81 173.89 1.07 1.48 0.15 
18 12.31 145.56 0.41 195.89 0.66 146.33 0.61 1.26 0.24 
18 11.4 142.78 0.39 208.56 0.56 142.67 0.60 1.19 0.07 
19 12.88 140.89 0.38 198.56 0.64 149.00 0.64 1.32 0.21 
19 11.56 154.22 0.45 208.44 0.71 157.56 0.72 1.35 0.20 
19 10.69 157.22 0.41 203.22 0.70 156.78 0.71 1.34 0.16 
19 9.17 147.78 0.39 185.78 0.60 152.67 0.61 1.30 0.19 
21 13.22 144.50 0.36 208.50 0.63 138.88 0.62 1.20 0.09 
21 12.23 145.50 0.43 208.70 0.56 145.80 0.75 1.26 0.17 
21 11.33 148.33 0.47 209.67 0.58 144.11 0.74 1.21 0.12 
21 9.92 151.78 0.51 212.67 0.44 150.67 0.72 1.27 0.15 
22 13.15 156.56 0.50 185.44 0.73 147.11 0.90 1.28 0.20 
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22 11.87 149.00 0.49 215.33 0.66 147.00 0.80 1.26 0.22 
22 10.99 169.56 0.69 220.00 0.82 160.89 1.05 1.37 0.15 
22 9.71 160.22 0.64 211.33 0.73 150.78 1.13 1.29 0.18 
20 14.39 158.33 0.49 203.78 0.66 160.00 0.67 1.38 0.18 
20 12.05 150.67 0.43 205.00 0.63 150.44 0.60 1.26 0.10 
20 10.36 146.22 0.38 166.67 0.65 148.78 0.64 1.25 0.12 

 

 

 
Table 8-11 Parameters of angles (i.e. Static Body Acceleration) of king penguins walking on a treadmill at 1.4km/h at different body masses. SD= standard deviation. 

Ind Body 
mass 
[kg] 

Roll Pitch 

Nb 
peaks/
min 

Frequency 
[s-1] 

SD 
Frequency  

Amplitude SD 
Amplitude 

Nb 
peaks/
min 

Frequency 
[s-1] 

SD 
Frequency 

Amplitude SD 
Amplitude 

13 11.34 73.11 0.63 0.10 8.93 2.01 138.89 1.20 0.21 2.90 1.04 
13 10.68 75.89 0.64 0.06 8.54 1.29 149.11 1.27 0.15 2.36 0.76 
14 12.59 77.11 0.66 0.09 8.34 1.35 137.11 1.19 0.24 2.18 0.78 
14 10.56 80.33 0.68 0.10 6.58 1.59 128.67 1.15 0.28 1.89 0.77 
14 10.07 73.44 0.63 0.09 8.94 2.16 137.89 1.19 0.21 2.79 1.05 
15 12.36 65.44 0.57 0.11 8.69 1.82 97.00 0.87 0.26 2.41 1.00 
15 10.47 66.78 0.57 0.06 5.90 0.93 126.67 1.10 0.16 2.37 0.48 
15 10.12 27.44 0.26 0.04 2.69 0.52 51.33 0.50 0.09 0.96 0.27 
15 9.67 68.06 0.60 0.10 6.91 1.56 131.06 1.15 0.18 2.39 0.78 
16 12.61 82.11 0.69 0.08 7.59 1.36 136.44 1.20 0.27 2.16 0.96 
16 11.8 81.44 0.69 0.06 6.47 1.01 112.56 1.00 0.27 2.25 0.98 
17 12.8 61.33 0.53 0.09 9.21 1.68 98.22 0.88 0.24 2.91 1.18 
17 11.23 66.89 0.57 0.06 9.81 1.76 125.11 1.08 0.17 2.75 0.66 
17 10.71 66.56 0.56 0.06 9.63 1.78 130.56 1.11 0.15 2.87 0.59 
18 13.56 86.44 0.73 0.07 7.73 1.61 137.22 1.21 0.29 2.02 0.97 
18 12.31 72.11 0.61 0.06 8.30 1.47 136.33 1.17 0.20 1.80 0.52 
18 11.4 71.11 0.60 0.04 7.20 0.93 142.33 1.19 0.07 2.08 0.42 
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19 12.88 70.00 0.61 0.12 10.52 3.49 121.44 1.09 0.27 2.08 0.90 
19 11.56 75.89 0.65 0.09 10.19 2.02 105.00 0.95 0.29 2.37 0.97 
19 10.69 76.44 0.65 0.09 11.53 2.32 137.11 1.20 0.25 2.13 0.62 
19 9.17 74.67 0.63 0.07 8.65 2.17 146.56 1.25 0.18 2.17 0.79 
21 13.22 64.88 0.57 0.07 7.51 0.76 136.63 1.18 0.10 1.47 0.33 
21 12.23 72.00 0.62 0.06 10.94 4.67 133.00 1.16 0.17 2.13 1.03 
21 11.33 71.22 0.60 0.05 3.63 0.46 142.11 1.20 0.12 0.94 0.28 
21 9.92 74.33 0.63 0.05 8.19 1.36 143.67 1.22 0.14 2.17 0.80 
22 13.15 71.00 0.61 0.10 12.51 2.54 118.00 1.05 0.26 2.95 1.81 
22 11.87 68.56 0.59 0.08 9.80 1.50 133.67 1.14 0.18 2.46 0.94 
22 10.99 78.00 0.66 0.07 8.68 1.41 113.44 1.02 0.27 2.84 1.40 
22 9.71 74.11 0.63 0.07 12.59 2.12 102.22 0.92 0.27 4.96 2.30 
20 14.39 79.00 0.67 0.08 7.69 1.38 138.89 1.22 0.25 1.70 0.75 
20 12.05 74.33 0.62 0.04 7.15 0.72 150.22 1.25 0.09 1.73 0.38 
20 10.36 73.33 0.62 0.04 8.44 0.69 148.44 1.24 0.07 2.29 0.55 
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8.2.5 It costs to be late: investigating the onshore energy expenditure of 
incubating king penguins. 

 
Table 8-12 Data of     

 king penguins while walking on a treadmill at different body masses, different 

speeds and inclines. 

Ind Body mass [kg] Speed [km/h] Incline     
 [ml/min] 

14 10.07 1 1 183.42 
14 10.07 1.2 1 197.75 
14 10.07 1.4 1 209.54 
14 10.07 1.6 1 218.79 
14 10.07 1 2 208.30 
14 10.07 1.2 2 225.66 
14 10.07 1.4 2 246.12 
14 10.07 1.6 2 258.49 
14 12.59 1 1 257.85 
14 12.59 1.2 1 266.65 
14 12.59 1.4 1 279.65 
14 12.59 1.6 1 308.45 
14 12.59 1 2 286.71 
14 12.59 1.2 2 294.51 
14 12.59 1.4 2 328.53 
14 12.59 1.6 2 345.13 
15 9.67 1 1 148.58 
15 9.67 1.2 1 161.02 
15 9.67 1.4 1 191.22 
15 9.67 1.6 1 197.79 
15 9.67 1 2 175.59 
15 9.67 1.2 2 196.77 
15 9.67 1.4 2 216.47 
15 9.67 1.6 2 243.12 
15 12.36 1 1 252.04 
15 12.36 1.2 1 267.93 
15 12.36 1.4 1 288.37 
15 12.36 1 2 286.70 
15 12.36 1.2 2 296.12 
15 12.36 1.4 2 355.90 
18 13.56 1 1 252.38 
18 13.56 1.2 1 318.87 
18 13.56 1.4 1 325.73 
18 13.56 1.6 1 347.00 
19 9.17 1 1 156.52 
19 9.17 1.2 1 175.14 
19 9.17 1.4 1 181.74 
19 9.17 1.6 1 206.46 
19 9.17 1 2 185.11 
19 9.17 1.2 2 198.53 
19 9.17 1.4 2 204.26 
19 9.17 1.6 2 226.22 
19 12.88 1 1 254.42 
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19 12.88 1.2 1 297.48 
19 12.88 1.4 1 294.34 
19 12.88 1.6 1 324.87 
20 10.36 1 1 139.94 
20 10.36 1.2 1 161.91 
20 10.36 1.4 1 168.68 
20 10.36 1.6 1 180.39 
20 10.36 1 2 189.90 
20 10.36 1.2 2 186.54 
20 10.36 1.4 2 210.61 
20 10.36 1.6 2 240.39 
20 14.39 1 1 295.91 
20 14.39 1.2 1 289.06 
20 14.39 1.4 1 322.40 
20 14.39 1.6 1 390.11 
20 14.39 1 2 307.20 
20 14.39 1.2 2 344.63 
20 14.39 1.4 2 393.36 
20 14.39 1.6 2 419.08 
21 9.92 1 2 195.94 
21 9.92 1.2 2 180.37 
21 9.92 1.4 2 205.50 
21 9.92 1.6 2 239.62 
21 13.22 1 2 295.51 
21 13.22 1.2 2 339.02 
21 13.22 1.4 2 339.96 
21 13.22 1.6 2 392.68 
22 13.15 1 1 257.69 
22 13.15 1.2 1 356.07 
22 13.15 1.4 1 360.23 
22 13.15 1.6 1 375.05 
22 13.15 1 2 265.17 
22 13.15 1.2 2 301.11 
22 13.15 1.4 2 342.21 
22 13.15 1.6 2 365.41 
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Table 8-13 Distance and cost of the likely shortest and longest routes into the colony. Distance and cost are split into flat, incline and stressed (when crossing breeding areas). Colonies: A= 

Ile aux Cochons (Crozet Archipelago), B= Ratmanoff (on the Kerguelen Archipelago), C= Jardin Japonais and D= La Baie du Marin (both on Possession Island, Crozet Archipelago). J = 

journey from sea to zone of attachment, R= return journey from zone of attachment to sea.  

Colony type outward Distance [m] Cost [LO2] 

flat incline Stressed flat Incline Stressed Total 
J R J R J R J R J R J R J R 

A Short 1 0  1  131  0.0  0.0  2.0  2.0  
A Short 2 0 0 8 10 124 255 0.0 0.0 0.1 0.1 1.9 3.8 2.0 4.0 
A Long 1 1305  1044  256  19.0  17.8  3.9  40.7  
A Long 2 1809 3114 540 1585 256 511 15.6 34.7 5.5 23.3 3.9 7.7 25.0 65.7 
B Short 1 0  0  155  0.0  0.0  2.3  2.3  
B Short 2 0 0 0 0 155 311 0.0 0.0 0.0 0.0 2.3 4.7 2.3 4.7 
C Short 1 0  41  0  0.0  0.7  0.0  0.7  
C Short 2 0 0 0 41 41 41 0.0 0.0 0.0 0.7 0.6 0.6 0.6 1.3 
C Long 1 189  141  152  2.8  2.4  2.3  7.5  
C Long 2 308 497 23 164 152 305 2.7 5.4 0.2 2.6 2.3 4.6 5.2 12.7 
D Short 1 0  0  30  0.0  0.0  0.4  0.4  
D Short 2 0 0 6 6 23 53 0.0 0.0 0.1 0.1 0.4 0.8 0.4 0.9 
D Long 1 140  156  129  2.0  2.6  1.9  6.6  
D Long 2 241 380 54 210 129 258 2.1 4.1 0.6 3.2 1.9 3.9 4.6 11.2 
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